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Abstract. We study the relationship between algebraic struc-
tures and their inverse semigroups of partial automorphisms. We
consider a variety of classes of natural structures including equiv-
alence structures, orderings, Boolean algebras, and relatively com-
plemented distributive lattices. For certain subsemigroups of these
inverse semigroups, isomorphism (elementary equivalence) of the
subsemigroups yields isomorphism (elementary equivalence) of the
underlying structures. We also prove that for some classes of com-
putable structures, we can reconstruct a computable structure, up
to computable isomorphism, from the isomorphism type of its in-
verse semigroup of computable partial automorphisms.

1. Introduction

A structure with no nontrivial automorphisms may admit nontriv-
ial partial automorphisms. For example, the natural numbers have a
unique (trivial) order-preserving automorphism, but there are many
order-preserving partial maps. We consider collections of maps of this
type and see that they contain a great deal of information about the
associated underlying structure.
A partial automorphism is a partial injective map on a structure that

respects predicates and predicate representations of functions. (Note
that we make no substructure requirement on the domain or range of
the map.) Some collections of such maps for a structure form semi-
groups. We will see that unlike the situation that arises when con-
sidering the group of automorphisms of a structure, different mutually
definable signatures for a structure can yield different semigroups of
partial automorphisms.
The reconstruction of algebraic structures from their automorphism

groups has been studied for Boolean algebras (see, for example, [11,
12, 13]). For results on the recognition of computable structures from
their groups of computable automorphisms, see the survey article [10].
In this article we continue work begun by Lipacheva who established a
series of results on the reconstruction of structures from their partial
automorphism semigroups [7, 8].
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We consider structures for finite languages L. When it is convenient,
and without loss of generality, we may take L to be a predicate language
by interpreting the operations in the signature of a structure as their
graphs. When this is the case, constants are understood as unary
predicates true on their values only.
The domain M of any countable structureM can be identified with

a subset of ω. A countable structure is computable when its atomic
diagram is decidable.
We writeM0 ≡M1 for elementarily equivalent structures and use

M0
∼= M1 to denote isomorphic structures. Computable structures

M0 and M1 are computably isomorphic, in symbols M0
∼=c M1, if

there is a computable isomorphism fromM0 ontoM1. Details about
the existence of computable isomorphisms may be found in [1, 4, 5, 6].
LetMM = (M, a)a∈M be the natural expansion of M for the lan-

guage LM , the language of M expanded by adding a new constant
symbol a for every a ∈M .
For a partial function p, dom(p) and ran(p) are its domain and range,

respectively. Let A and B be countable structures for the same pred-
icate language L. We say that a partial function p from A to B is
a partial isomorphism from A to B if p is 1—1 and for every atomic
formula θ = θ(x0, . . . , xn−1) in L, and every a0, . . . , an−1 ∈ dom(p), we
have

AA |= θ(a0, . . . , an−1)⇔ BB |= θ(p(a0), . . . , p(an−1)).

A partial function p from A to B is a finite partial isomorphism from
A to B if p is a partial isomorphism and finite. If A and B are sets
of natural numbers, then a partial function p from A to B is a partial
computable isomorphism from A to B if p is a partial isomorphism and
a partial computable function.
For a countable structureM, we write I(M), Ifin(M), and Ic(M)

to denote the set of all partial, finite partial, and partial computable
automorphisms of M, respectively. Each of these sets of partial au-
tomorphisms forms an inverse semigroup under function composition
and the inversion f 7→ f−1. We will consider these as structures for
the language of inverse semigroups, {·, −1}, and identify each structure
with its universe.
In Section 2, we present techniques and preliminary results that will

be of use in all subsequent sections, where we consider a variety of
classes of structures.
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2. Basic interpretations in the semigroups of partial
automorphisms

In this section we aim to give a uniform method of interpreting
the action of an inverse semigroup I of a structure M into I, where
Ifin(M) ⊆ I ⊆ I(M). We begin by interpreting the universe ofM in
the semigroup I.
First, one can easily check that the set

Id(I) = {f ∈ I | f2 = f}
of idempotent elements of I consists of exactly those elements that are
the identity on their domain. Let Id(x) be x2 = x, a corresponding
first-order formula in the language of inverse semigroups. We may
identify each f ∈ Id(I) with dom(f), a subset of M . Next, we define
the relation x ⊆ y on elements of Id(I) in the language of inverse
semigroups by the following formula

Id(x) & Id(y) & xy = x.

The empty function, which we denote here by Λ, is defined as the
unique element x ∈ I that satisfies the formula

∀y[Id(y)⇒ x ⊆ y].

We define the set

A(M) = {ha, ai | a ∈M}
as the set of all minimal elements in I \ {Λ} by the first-order formula

x 6= Λ & ¬∃y[Λ ⊂ y ⊂ x].

Every element a ∈ M naturally corresponds to a finite partial auto-
morphism {ha, ai} ∈ I satisfying this formula. Therefore, the elements
of A(M) will be naturally identified with the elements of M , and we
will usually write a for ha, ai.
Finally, the natural action of I on A(M)∪ {Λ} is given by the rules

apM(g, {ha, ai}) =

½ {hg(a), g(a)i} if a ∈ dom(g),
Λ otherwise,

apM(g,Λ) = Λ,

and can be defined by a first-order formula. Indeed, one can easily
ascertain that for f ∈ A(M) ∪ {Λ}, the following holds

apM(g, f) = gfg−1.

We will omit the subscriptM in apM when the structure is clear from
the context, and usually write g(x) = y for ap(g, x) = y.
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The interpretation of the universeM and of the action of elements of
I on M into the semigroup as described above suggests a natural two-
sorted extension of I. We will make use of this extension in subsequent
sections and define it as follows.

Definition 2.1. Let M be a structure with universe M , and I an
inverse subsemigroup of I(M). We define the two-sorted structure I∗

naturally extending I as

I∗ =
­
I,M ∪ {Λ}; ap, ·, −1

®
,

where the second sort, M ∪ {Λ}, and the function, ap, are the inter-
pretations based on the underlying structureM as described above.

The following proposition is immediate from the definition of I∗.

Proposition 2.2. (1) Assume that M0 and M1 are structures,
and that Ii are inverse subsemigroups of I(Mi) for i = 0, 1,
such that Ifin(Mi) ⊆ Ii. Then any isomorphism λ from I0 to
I1 can be extended to an isomorphism of the two-sorted struc-
tures I∗0 and I

∗
1 . That is, there is a bijection λ0 from M0 ∪ {Λ}

to M1 ∪ {Λ} such that the pair hλ, λ0i is an isomorphism from
I∗0 to I

∗
1 .

(2) Assume thatM is a structure and that I is an inverse subsemi-
group of I(M) such that Ifin(M) ⊆ I. Then each first-order
formula ϕ(x̄) in the language of I∗ with all free variables x̄ of
sort I can be effectively transformed into a formula ϕ∗(x̄) in the
language of inverse semigroups so that

I∗ |= ϕ(x̄) ⇔ I |= ϕ∗(x̄).

We proceed to study specific classes of structures.

3. Equivalence structures

Here we focus on equivalence structures, M = hM,Ei, where E is
an equivalence relation on M . We call an equivalence relation E on
a set M (and the corresponding equivalence structure) nontrivial if E
differs from the diagonal relation {ha, ai | a ∈ M} and from the set
M ×M . TheM-equivalence class of a ∈M is

[a]E = {x ∈M : xEa}.
The following theorem demonstrates that the isomorphism class or

elementary type of a nontrivial equivalence structure can be determined
by the corresponding classification of the semigroup of its partial au-
tomorphisms. In particular, countable structures can be recovered up
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to isomorphism from the elementary type of their semigroups of finite
partial automorphisms.

Theorem 3.1. LetM0 = hM0, E0i andM1 = hM1, E1i be nontrivial
equivalence structures. Let I0 and I1 be inverse semigroups such that
Ifin(Mi) ⊆ Ii ⊆ I(Mi) for i = 0, 1. Then
(1) I0 ∼= I1 ⇒M0

∼=M1,
(2) I0 ≡ I1 ⇒M0 ≡M1.
(3) If both structuresM0 andM1 are countable, then

Ifin(M0) ≡ Ifin(M1) ⇔ M0
∼=M1.

Proof. First assume thatM = hM,Ei is a nontrivial equivalence struc-
ture, and that I is an inverse subsemigroup of I(M) such that Ifin(M) ⊆
I ⊆ I(M). We interpret E in I in the following way. Let

p, q ∼ r, s

be an abbreviation for the formula

∃f [f(p) = r & f(q) = s]

in the language of I∗. LeteE(a, b) =def ∀x∀y ∀z [(a, b ∼ x, y & a, b ∼ y, z)⇒ (x = z ∨ a, b ∼ x, z)].

Thus, for all a, b ∈M ,

M |= E(a, b)⇔ I∗ |= eE(a, b).
Indeed, by transitivity of E, we have that M |= E(a, b) implies

M∗ |= eE(a, b). To prove the converse, assume thatM∗ |= eE(a, b), but
M |= ¬E(a, b). We have that a 6= b. The relation E is nontrivial,
so choose pairwise distinct elements x, y, z ∈ M so that E(x, z) and
¬E(x, y). Then we have a, b ∼ x, y and a, b ∼ y, z. However, a, b ¿ x, z,
which contradicts eE(a, b).
Now, suppose that I0 ∼= I1. By Proposition 2.2 and the properties

of the formula eE above, we haveM0
∼=M1. The implicationM0

∼=
M1 ⇒ Ifin(M0) ∼= Ifin(M1) is trivial.
Similarly, (2) follows from Proposition 2.2 and the properties of the

formula eE.
For (3), the direction (⇐) is trivial.
For the other direction, take nontrivial equivalence structureM, and

for each m ∈ ω and n ∈ ω ∪ {∞} define the property ϕm,n as follows:

ϕm,n =def “E has at least m n-element equivalence classes.”

It is clear that any two countable equivalence structures are isomor-
phic if and only if they satisfy the same ϕm,n for allm ∈ ω, n ∈ ω∪{∞}.
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If we prove that all of these properties ϕm,n are expressible by first-
order sentences in the language of (Ifin(M))∗, then the result will follow
from Proposition 2.2(2). Using the properties of formula eE(x, y), we
can easily express ϕm,n for finitem and n by a sentence in the language
of (Ifin(M))∗. To express this property for n =∞, it suffices to express
“a is a member of an infinite equivalence class” by a first-order formula
in the language of (Ifin(M))∗. To do so, first note that a ∈ M is a
member of an infinite equivalence class if and only if

¬∃f [∀x ( eE(a, x)⇒ x ∈ dom(f))],

since each f has a finite domain. It remains to note that the condition
y ∈ dom(f) is equivalent to f(y) 6= Λ. ¤

Remark 3.2. The converse of (2) fails. Indeed, consider an equivalence
relation E0 on an infinite set M0 such that all of its classes are finite
and E0 has infinitely many n-element classes for every n ∈ ω. Let E1 be
an equivalence structure on a set M1 with infinitely many equivalence
classes of each cardinality in ω∪{ω}, so that hM0;E0i ≡ hM1;E1i, but
hM0;E0i À hM1;E1i. The elementary equivalence Ifin(hM0;E0i) ≡
Ifin(hM1;E1i) must fail, because

∀a∃f [∀x ( eE(a, x)⇒ x ∈ dom(f))]

holds in hM0;E0i but not in hM1;E1i.

Remark 3.3. We cannot omit the cardinality condition in (3). Con-
sider two equivalence structuresM0 andM1 of distinct infinite cardi-
nalities such that all of their equivalence classes are infinite and each of
them has infinitely many equivalence classes. Then we haveM0 ÀM1,
but Ifin(M0) ≡ Ifin(M1).
To see that these structures are elementarily equivalent, recall that

a family S of partial isomorphisms from a structure A into a structure
B satisfies the back-and-forth property from A to B if for every f ∈ S :

(1) for all a ∈ A, there exists f 0 ∈ S such that f ⊆ f 0 and a ∈
dom(f 0),

(2) for all b ∈ B, there exists f 0 ∈ S such that f ⊆ f 0 and b ∈
ran(f 0).

The structures A and B are called partially isomorphic if there ex-
ists a back-and-forth property from A to B. It follows from Karp’s
Theorem (see [2, Theorem VII, 5.3]) that if two structures are partially
isomorphic, then they are elementary equivalent. To prove that the
structures Ifin(M0) and Ifin(M1) are partially isomorphic, it suffices
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to prove that a family S defined by

S = {Gf | f is a finite partial isomorphism fromM0 toM1},
where

Gf = {
­
h, fhf−1

®
| dom(h) ∪ ran(h) ⊆ dom(f)}

satisfies the back-and-forth property from Ifin(M0) to Ifin(M1). The
details can be checked routinely.

The following theorem shows that we can restore nontrivial equiva-
lence structures up to computable isomorphism from the first-order the-
ory of their inverse semigroups of partial computable automorphisms.
Moreover, the isomorphism type of these structures can be character-
ized by a single formula in the language of inverse semigroups.

Theorem 3.4. Let M0 be a nontrivial computable equivalence struc-
ture. Then there exists a first-order sentence ϕ in the language of
inverse semigroups such that for any nontrivial computable equivalence
structureM1, the condition Ic(M1) |= ϕ impliesM1

∼=c M0.

Proof. First, we establish two lemmas.

Lemma 3.4.1. Let M = hM ;Ei be a computable equivalence struc-
ture. Then the following first-order formula of the language I∗c (M) is
satisfied by exactly those f ∈ Ic(M) with infinite dom(f):

(1) ∃g[dom(g) ⊆ dom(f) & ran(g) ⊂ dom(g)].
Proof. If (1) is true, then dom(g) is in 1—1 correspondence with some
proper subset of itself, and, since dom(g) ⊆ dom(f), we conclude that
dom(f) is infinite.
Assume now that dom(f) is infinite. Consider the following two cases.

Case 1. There exists a ∈ dom(f) such that dom(f) ∩ [a]E is infinite.
In this case, the set dom(f) ∩ [a]E is an infinite c.e. set. Hence we

may take g ∈ Ic(M) to be any partial computable 1—1 function such
that dom(g) = dom(f) ∩ [a]E and ran(g) ⊂ dom(g), so (1) is satisfied.
Case 2. The set dom(f) has a nonempty intersection with infinitely
many equivalence classes.
In this case, there exists an infinite c.e. set S ⊆ dom(f) so that any

two distinct members are in different equivalence classes. The result
follows analogously to Case 1. ¤
FromLemma 3.4.1 we see that the structure I♦(M) = hI∗c (M); Fin,∈i,

where Fin is the set of all finite subsets ofM and ∈ is the membership
relation on M× Fin, is elementary definable without parameters in
I∗c (M). This means that each formula in the language of I♦(M) ex-
pressing a first-order property of elements of I∗c (M) can be transformed
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into a first-order formula expressing the same property in the language
of I∗c (M). Indeed, we can identify finite sets with elements f ∈ Ic(M)
not satisfying the formula (1). Any such f0 and f1 are identified with
the same finite set if and only if

∀x [x ∈ dom(f0)⇔ x ∈ dom(f1)].
Finally, a belongs to the set identified with f if and only if a ∈ dom(f).
Lemma 3.4.2. There exists a first-order formula nat(v) in the lan-
guage of I∗c (M) that distinguishes p ∈ Ic(M) for which there is a
computable 1− 1 function f : ω →M with the following properties:
(1) dom(p) = {f(i) | i ∈ ω},
(2) ∀i [p(f(i)) = f(i+ 1)],
(3) ∀i∀j [i 6= j ⇒ hf(i), f(j)i /∈ E],
(4) ∀x∃i[hf(i), xi ∈ E].

Proof. We will show that the required formula nat(v) can be taken as
the conjunction of three first-order formulas, each expressing one of the
following conditions:
(a) The set dom(v) \ ran(v) contains only one element.
(b) Let a0 be the unique element in the set dom(v) \ ran(v). Then

for all x, there exists x1 ∈ dom(v) such that hx, x1i ∈ E, and
there exists a finite set F ⊆ dom(v) such that a0 ∈ F and for
all t ∈ F \ {x1}, we have v(t) ∈ F .

(c) Distinct elements of dom(v) are not E-equivalent.
It follows immediately that if p and f satisfy (1)—(4), then p satisfies

nat.
On the other hand, if p ∈ Ic(M) satisfies (a)—(c), define f : ω →

M by f(n) =def pn(a0) so that (2) holds. Take an arbitrary x ∈
dom(p) and fix a finite set F satisfying (b). Consider the sequence
a0, p(a0), p

2(a0), p
3(a0), . . . . If there is no m ∈ ω such that pm(a0) = x,

then by (b), all elements in this sequence belong to F . The elements in
the sequence are pairwise distinct, for if pk(a0) = pl(a0) for some k < l,
then a0 = pl−k(a0) and thus a0 ∈ ran(p), which is a contradiction. It
follows that F contains an infinite subset, which is impossible. So (1)
must hold. Clearly (3) and (4) hold. ¤
We split the proof of the theorem into two cases.

Case 1. There are finitely many E-equivalence classes.
This case is distinguished by the sentence saying that there is no p

satisfying nat(p).
It follows from the interpretability of both E and of the finiteness of

subsets that the property “the equivalence class of a is finite” can be
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expressed by a first-order formula in the language of I∗c (M) saying

(∃F ∈ Fin)(∀x)[ha, xi ∈ E ⇒ x ∈ F ].

Note that for each n ∈ ω, n 6= 0, there exists a first-order formula
in the language of I∗c (M) asserting that “the equivalence class of x
consists of n elements.”
Now assume that E contains m equivalence classes, and that they

have cardinalities k0, . . . , km−1, where ki ∈ ω ∪ {∞}. Such a property
can be expressed in the language of I∗c (M) by a sentence saying

∃x0, . . . , xm−1[
V

i<j<m hxi, xji /∈ E & ∀x [
W

i<m hx, xii ∈ E] &V
i<m([xi]E contains ki elements)].

The conjunction of this sentence with the sentence ¬∃p nat(p) is
satisfied in I∗c (M) if and only ifM has m equivalence classes with car-
dinalities k0, . . . , km−1. Since this sentence is equivalent to a sentence
in the language of inverse semigroups, and any two computable equiv-
alence structures with the same finite number of equivalence classes of
cardinalities k0, . . . , km−1 are computably isomorphic, this completes
the proof for this case.

Case 2. There are infinitely many E-equivalence classes.
First we define a standard model of arithmetic in Ic(M). We will

need an arbitrary parameter p satisfying the formula nat, and will use
the property that the action of p looks much like the successor function
on the natural numbers.
Define the zero element 0p as the unique element in the set dom(p) \

ran(p). Define the successor function sp on dom(p) as sp(a) = p(a).
Next, define the ordering <p on dom(p), which corresponds to the

usual ordering on the natural numbers,

pm(0p) <p p
n(0p) ⇔def m < n,

as follows:

a <p b ⇔def a 6= b & (∃S ∈ Fin)[ 0p ∈ S & a ∈ S & b /∈ S &

(∀t ∈ S \ {a})[p(t) ∈ S] ].

We define the operations +p and ×p that correspond to the usual ad-
dition and multiplication as follows:

a+p b = c ⇔def ∃f [ dom(f) ⊇ {t | 0p 6p t 6p b} & f(0p) = a &

(∀t <p b)[sp(f(t)) = f(sp(t))] & f(b) = c ],

a×p b = c ⇔def ∃f [ dom(f) ⊇ {t | 0p 6p t 6p b} &
f(0p) = 0p & (∀t <p b)[(f(sp(t))) = f(t) +p a] &

f(b) = c ].
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Now we consider the following two subcases.
Subcase 1. The set of cardinalities of E-equivalence classes is finite.
The sentence C1, saying there exists a finite set F such that for any

x, there exists y ∈ F and f ∈ Ic(M) that is a bijection from [x]E onto
[y]E, distinguishes this case. Let

K = {k0 < k1 < . . . < km−1}
be the set of all possible cardinalities of classes of E. We do not exclude
the possibility that km−1 =∞. Let ψi(v) be a formula (in the language
of inverse semigroups) requiring that the cardinality of [v]E be ki. Since
E is computable and p is a partial computable function, the set

{n | the cardinality of [pn(0p)]E equals ki}
is arithmetical for any i < m; that is, it can be expressed by a for-
mula ϕi(n) in the language of arithmetic. We can now describe all the
cardinalities along dom(p) by the following statement:

∀t
_
i<m

(ϕi(t) & ψi(t)).

Thus, the equivalence structure can be characterized, up to computable
isomorphism, by the following statement, which can be translated into
an equivalent statement in the language of inverse semigroups:

C1 & ∃p[nat(p) & ∀t
_
i<m

(ϕi(t) & ψi(t))].

Subcase 2. The set of cardinalities of E-equivalence classes is infinite.
Suppose that we have already expressed the following property of a

and b by a first-order formula Card(a, b, p) in the language of I♦(M):
“a, b ∈ dom(p) and there exists n ∈ ω such that b = pn(0p) and the

cardinality of [a]E equals n.”
Note that nat(p) implies that the relation

C(n,m) =def {hn,mi | (n = 0 & [pm(0p)]E is infinite)∨
(n 6= 0 & [pm(0p)]E contains exactly n elements)}

is arithmetical.
We can express the relation describing all of the cardinalities of

classes along the sequence 0p, p(0p), p2(0p), . . . by a formula saying:

∃p [ (∀m ∈ dom(p)) (∃n ∈ dom(p)) [ C 0(n,m) &(2)

[(n = 0p & ([m]E is infinite)) ∨ (n 6= 0p & (Card(m,n, p)))] ] ],

where C 0 is obtained from C by replacing all the occurrences of 0, s,
<, +, × with 0p, sp, <p, +p, ×p, respectively. It can be shown that the
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Figure 1.

conjunction of the formula (2) with ∃p nat(p) & ¬C1 characterizes the
equivalence structure up to computable isomorphism. Indeed, if this
conjunction is satisfied by two computable equivalence structuresM0

andM1 of type I♦c (M), then there exist computable sequences

a0, a1, . . . , and b0, b1, . . .

of representatives of the equivalence classes such that the cardinalities
of [ai]EM0 and [bi]EM1 are the same for all i ∈ ω. Using this fact, we can
easily construct a computable isomorphism between these equivalence
structures using a back-and-forth argument.
It only remains to prove the existence of the formula Card(m,n, p).

Note that it suffices to express the fact that [m]E has at least k elements,
where n = pk(0p), by a first-order formula.
Observe that there is a 1− 1 correspondence between the sets [m]E

and An =def {a | a <p n}. This correspondence cannot be established
by a partial computable automorphism because all elements in [m]E are
E-related, while the elements of An are not. We will need additional
partial computable automorphisms q and d, satisfying special condi-
tions, to express this correspondence. The idea is shown in Figure 1.

In Figure 1, p satisfies the property nat(p). All the arrows in this
figure act like partial automorphisms. Partial automorphism q has the
property that for each x ∈ dom(p), it generates the whole class [x]E as
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the set
{y | (∃i ∈ ω) [qi(x) ↓ & y = qi(x)]}.

The action of d serves to establish a direct 1−1 correspondence between
a subset of [0p]E and a subset {t | 0p 6p t <p u} by means of diagonal
arrows of different lengths: d, d2, d3, etc. Its behavior outside the
region drawn is of no importance. In the concrete situation displayed
in Figure 1, we can assert that the number of elements in [0p]E is greater
than or equal to 4. This idea will help us to express the property of
the number of elements in [0p]E only.
We must express this property for an arbitrary element a ∈ dom(p).

Fix p such that nat(p) and use the assumption of Subcase 2 to find
appropriate p0 and q0 to create a configuration as in this figure, saying
that the number of elements in [a]E is greater than or equal to the
number of the position of some y0 in the sequence 0p0 , p0(0p0), p02(0p0), . . .
Then we identify y0 with an appropriate element y in the standard
sequence 0p, p(0p), p2(0p), . . .
We can now describe these figures by first-order formulas. The action

of p and q is specified by the conjunction of formulas expressing the
following conditions:
(a) nat(p),
(b) ∀x [hq(x), xi ∈ E],
(c) ∀x [q(x) ↓⇒ q(x) 6= x],
(d) (∀a ∈ dom(p)) (∀y ∈ [a]E) [ y 6= a ⇒ (∃F ∈ Fin) [a, y ∈

F & (∀t ∈ F \ {y})[q(y) ↓∈ F ]] ].
An immediate check shows that if p and q satisfy the conditions above,
then p defines the complete system of representatives {pi(0p) | i ∈ ω}
for E, and every equivalence class of E has the form

{qk(pi(0p)) | k ∈ ω & qk(pi(0p)) ↓}
for an appropriate i ∈ ω.
The behavior of d, whose action draws diagonals on Figure 1 up to

the diagonal with the lower right end being an element y ∈ dom(p), is
specified by the following conditions:

(e) For every x ∈ dom(p), the property 0p 6p x <p y implies q(x) ↓,
d(q(x)) ↓, and d(q(x)) = p(x);

(f) For all t, if t is equivalent to some u such that 0p 6p u <p y,
q(t) ↓, d(t) ↓, and d(q(t)) ↓, then we have d(q(t)) = q(d(t)).

Let Θ(p, q, d, y) be the conjunction of (a)—(f). If Θ is satisfied on
the sequence p, q, d, y, then the number of elements in the class 0p is
greater than or equal to the natural number corresponding to y. On
the other hand, if the cardinality of the class [a]E is greater than or
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equal to n+ 1, then there exist p, q, d, y such that a = 0p, Θ(p, q, d, y),
and y = pn(0p).
Finally, we can formulate the property Card(x, y, p) as follows:
There exist partial computable automorphisms γ, p0, q, d and y0 ∈

dom(p0) such that x = 0p0, Θ(p0, q, d, y0), dom(p0) ⊆ dom(γ), dom(p) ⊆
dom(γ−1), γpγ−1 = p0, γ−1p0γ = p, and γ(y0) = y.
Since this assertion can be expressed in the language of semigroups, we
have established the existence of the formula Card. This completes the
proof of Subcase 2. ¤

4. Partial Orderings

We now consider partial orderings and show that the elementary
equivalence of the semigroups of finite partial automorphisms of partial
orderings yields elementary equivalence of the orderings themselves, up
to a possible inversion of the ordering. For convenience, we will assume
the ordering is strict.
IfM = hM,<i is an ordering, we denote its reverse ordering by

Mrev = hM,<revi .
Theorem 4.1. Let M0 = hM0, <0i and M1 = hM1, <1i be strict
partial orderings, and let Ii be inverse subsemigroups of I(Mi) for i =
0, 1, such that Ifin(Mi) ⊆ Ii. Then

I0 ≡ I1 ⇒ [M0 ≡M1 ∨M0 ≡Mrev
1 ].

Proof. Note that for every pair a < b of elements of an orderingM, we
can define the structure’s ordering x < y in the semigroup I by saying
“x and y are in the same relative ordering as a and b,” i.e., with the
formula

∃p [p(a) = x & p(b) = y].

In nontrivial situations, we can distinguish the pairs of comparable
elements a and b and use them as parameters to define the relation
“x and y are in the same relation as a and b,” which means x < y or
x <rev y. In general, however, we will not be able to determine which
of x < y or x <rev y holds as we will know only that a and b are
comparable in the ordering, and not how they are ordered.
More formally, assume thatM = hM,<i is an arbitrary strict par-

tial ordering and that I is an arbitrary inverse subsemigroup of I(M)
containing Ifin(M).
Define a binary relation <a,b on the elements of the sort M of the

structure I∗ as

(3) x <a,b y ⇔ ∃p [p(a) = x & p(b) = y].
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Let

(4) Comp(a, b) =def (a 6= b) & ¬∃p [p(a) = b & p(b) = a].

Note that for any a, b ∈M , the condition Comp(a, b) is satisfied in I∗ if
and only if a and b are distinct and comparable, that is, a < b or b < a.
We must transform an arbitrary formula ϕ in the language of strict

partial orderings to an equivalent formula ϕs in the language of inverse
semigroups. Let u and v be variables not occurring in ϕ, and set

ϕs =def (∃u∃v[Comp(u, v) & eϕ] ∨ ¬∃u∃v[Comp(u, v) & ϕ0])∗,

where ∗ is the transformation of formulas from Proposition 2.2(2), eϕ
is obtained from ϕ by replacing each of its atomic subformulas of the
form x < y with x <u,v y, and ϕ0 is obtained from ϕ by replacing all of
its subformulas x < y with the false sentence ¬∀x (x = x).

Lemma 4.1.1. M |= ϕ ⇒ I |= ϕs.

Proof. If there are comparable elements in M , then, sinceM |= ϕ, we
must have

I∗ |= ∃u∃v[Comp(u, v) & eϕ].
If there are no elements a, b ∈ M such that a < b, then all atomic

subformulas of ϕ containing < are false, so ϕ is equivalent to ϕ0. Fur-
thermore, I∗ |= ¬∃u∃vComp(u, v). It follows that

I∗ |= ∃u∃v[Comp(u, v) & eϕ] ∨ ¬∃u∃v[Comp(u, v) & ϕ0].

By Proposition 2.2, we have that I |= ϕs. ¤
Lemma 4.1.2. I |= ϕs ⇒ [M |= ϕ ∨Mrev |= ϕ].

Proof. Assume that I |= ϕs. By Proposition 2.2, we have that

(5) I∗ |= ∃u∃v[Comp(u, v) & eϕ] ∨ ¬∃u∃v[Comp(u, v) & ϕ0].

We will consider two cases.

Case 1. There are no comparable elements inM.
By (5), we have that

I∗ |= ¬∃u∃v[Comp(u, v) & ϕ0],

and, in particular, I∗ |= ϕ0. Since all subformulas of ϕ containing <
are false, we have thatM |= ϕ.

Case 2. There exists a pair of comparable elements inM.
By (5), we have that

I∗ |= ∃u∃v[Comp(u, v) & eϕ].
Let a and b from M witness that Comp(u, v) & eϕ holds. If a <M b,
then <a,b is an exact interpretation of <M. That is, for x and y in M ,
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we have x <M y if and only if x <a,b y, and thus,M |= ϕ. If b <M a,
then we have for x and y in M , x <M y if and only if y <a,b x in I, so
Mrev |= ϕ. ¤

Now, suppose thatM0 andM1 satisfy the assumption of the the-
orem, and that neither M0 ≡ M1 nor M0 ≡ Mrev

1 . Let ϕ be a
sentence true in M0 but not in M1, and let ψ be a sentence true in
M0 but not in Mrev

1 . Then M0 |= ϕ & ψ, so, by Lemma 4.1.1, we
have I0 |= (ϕ & ψ)s. By hypothesis, I1 |= (ϕ & ψ)s as well, but ϕ & ψ
is true neither inM1 nor inMrev

1 . This contradicts Lemma 4.1.2. ¤
The following theorem is a generalization of a result by Lipacheva

from [7, 8].

Theorem 4.2. If M0 and M1 are strict partial orderings and Ii are
inverse semigroups such that

Ifin(Mi) ⊆ Ii ⊆ I(Mi) for i = 0, 1,

then
I0 ∼= I1 ⇒ (M0

∼=M1 ∨M0
∼=Mrev

1 ).

Proof. Using Proposition 2.2, extend the initial isomorphism between
the inverse semigroups I0 and I1 to an isomorphism between I∗0 and
I∗1 . Without loss of generality, we may consider the sorts of the struc-
tures I∗i to be disjoint sets, so that we may denote the union of both
components of this isomorphism by λ. Fix a pair a, b ∈ M0 such that
a < b. It follows from the considerations above that the elements λ(a)
and λ(b) are comparable.
If λ(a) < λ(b), then the relation x <λ(a),λ(b) y defines the ordering

< on M1. Thus, we have M0
∼= M1. If λ(b) < λ(a), then the same

formula x <λ(a),λ(b) y defines the ordering <rev. Thus, we haveM0
∼=

Mrev
1 . ¤

5. Relatively complemented distributive lattices

A strict partial ordering B = hB,<i with smallest element 0 is called
a relatively complemented distributive lattice (RCDL) if it is a distribu-
tive lattice and for all a, b with a 6 b in B, there exists the unique rela-
tive complement of a in b (that is, an element a0 such that sup{a, a0} = b
and inf{a, a0} = 0). It can be proven that for each element a ∈ B, the
structure hba,<i, where ba = {x ∈ B | x 6 a}, is a Boolean algebra in
which a is the maximal element. Relatively complemented distributive
lattices can also be considered in the language {∩,∪, \, 0}, where 0 is
the smallest element of B, x ∩ y = inf{x, y}, x ∪ y = sup{x, y}, and
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x \ y = z if z is the relative complement of x∩ y in x. For more details
on RCDLs, see [3].
If we change the language of a RCDL from {<} to {∩,∪, \, 0}, the

semigroup Ifin changes as well. To see this, let B be a RCDL, let a, b,
c be pairwise distinct elements such that a ∩ b = c, and let a0, b0, c0 be
pairwise distinct elements such that a0∩ b0 6= c0 but c0 < a0, b0, and a0, b0

are incomparable. Then the mapping p with dom(p) = {a, b, c} taking
a to a0, b to b0, and c to c0 is a member of Ifin(B) with respect to the
language {<} but not with respect to the language {∩,∪, \, 0}. Thus,
different languages must be handled separately.
First, we consider RCDLs in the language {<}. From Theorems 4.1

and 4.2, we immediately obtain the following result.

Corollary 5.1. Let B0 and B1 be RCDLs considered in the language
{<}. Let Ii be inverse semigroups such that Ifin(Bi) ⊆ Ii ⊆ I(Bi) for
i = 0, 1. Then

(1) I0 ≡ I1 ⇒ B0 ≡ B1, and
(2) I0 ∼= I1 ⇒ B0 ∼= B1.

Proof. If I0 ≡ I1 (or I0 ∼= I1), then Theorem 4.1 implies that B0 ≡ B1
or B0 ≡ Brev1 (and, by Theorem 4.2, the respective result holds in the
case when I0 ∼= I1). If B0 ≡ B1, then the results follow immediately. If
B0 ≡ Brev1 , then we have that both B0 and B1 have greatest elements,
so they are Boolean algebras. However, for any Boolean algebra B,
the mapping taking each element b to its complement b in B is an
isomorphism from the ordering B onto the ordering Brev, since it is
1− 1 and x < y is equivalent to y < x. Thus, B1 ∼= Brev1 , which implies
B1 ≡ Brev1 , and the results follow immediately. ¤

Similar results can be obtained for RCDLs when the language is
{∩,∪, \, 0}.

Theorem 5.2. Let B0 and B1 be RCDLs considered in the predicate
language {∩,∪, \, 0} (we mean that all the mentioned operations are
replaced with their graphs). Let Ii be an inverse semigroup such that
Ifin(Bi) ⊆ Ii ⊆ I(Bi) for i = 0, 1. Then
(1) I0 ≡ I1 ⇒ B0 ≡ B1, and
(2) I0 ∼= I1 ⇒ B0 ∼= B1.

Proof. If B is a RCDL and Ifin(B) ⊆ I ⊆ I(B), we can distinguish the
element 0 of B in the structure I∗ as it is the unique element of the
universe satisfying the first-order formula:

(x 6= Λ) & ∀p [ p(x) = x ∨ p(x) = Λ ].
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Using this formula, we can distinguish the set of pairs of distinct com-
parable elements of the set B \{0} in the structure I∗ with a first-order
formula Comp1(a, b):

(a 6= b & a, b /∈ {0,Λ}) & ¬∃p [ p(a) = b & p(b) = a ].

Indeed, if a, b 6= 0 are comparable (for instance, if a < b, so a∩ b = a),
and a witness p for the subformula following the negation does exist,
then we would have that p(a) ∩ p(b) = p(a), which implies the false
statement a = b ∩ a = b. On the other hand, if Comp1(a, b) holds, and
a and b are incomparable, then let p = {ha, bi , hb, ai}. If p ∈ Ifin(B),
we will have obtained a contradiction. The preservation (under p) of
the predicates ∩ and ∪ is obvious. As for the predicate \, the cases
a\a ∈ {a, b}, b\ b ∈ {a, b}, a\ b = b, and b\a = a are impossible, since
a and b are nonzero. Now, assume that a \ b = a. This is equivalent to
the condition b \ a = b, so, by definition of p, p(a) \ p(b) = p(a) and p
preserves \. We conclude that p is a finite partial automorphism.
Now we can distinguish the pairs ha, bi such that Comp1(a, b) and a <

b. One can easily check that this property is equivalent to the following
condition, which can be easily expressed by a first-order formula:

Comp1(a, b) &

∃x 6= 0 [x <a,b b & (a and x have no <a,b -lower bound in B\{0})].

Using this property and the fact that for such a and b, the ordering
<a,b coincides with the usual ordering given by the formula

x < y ⇔def x ∩ y = x,

we can define the ordering < on the whole B as

<a,b ∪ {h0, bi | b ∈ B & b 6= 0}.

Then we can define the operations ∩, ∪, and \ by first-order formulas
using < as we have just interpreted it.
The considerations above together with Proposition 2.2 imply the

existence of a function ` from the language σ = {∩,∪, \, 0} into the
language of inverse semigroups such that for every RCDL B and every
inverse semigroup I with Ifin(B) ⊆ I ⊆ I(B), we have that for every
sentence ϕ of the language σ,

B |= ϕ ⇔ I |= ϕ`

holds, which establishes (1). Moreover, it follows that such I uniquely
defines the isomorphism type of B, which gives (2). ¤
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To formulate and establish our further results, we need some results
on presentations of countable RCDLs. Similar results for Boolean alge-
bras are well-known and may be found, for instance, in [5]. The proofs
of these results for RCDLs are based on similar ideas.
As usual, a nonzero element a of a RCDL is called an atom if there

is no x with the property 0 < x < a. An element b is called atomless if
there is no atom a 6 b. An RCDL is called atomless if it contains no
atoms.
In the following proposition, we consider RCDLs in the language

{∩,∪, \, 0}.

Proposition 5.3. (1) There exists a unique, up to isomorphism,
countable RCDL with no atoms and no greatest element.

(2) There exists a unique, up to computable isomorphism, countable
computable RCDL with no atoms and no greatest element.

Proof. Let B be an arbitrary RCDL. Note that a RCDL generated by
a finite family {a0, . . . , an−1} ⊆ B is finite and consists of all possible
unions of elements of the form

(6) aε00 ∩ aε11 ∩ . . . ∩ a
εn−1
n−1 ,

where εi ∈ {0, 1} for i < n and

aεii =

(
ai if εi = 1,hS

j<n aj
i
\ ai if εi = 0.

The nonzero elements of the form as in (6) are atoms of this algebra.
It follows that each element is the union of a finite family of these
atoms.
To see that there is a countable atomless RCDL with no greatest

element, consider the algebra of all subsets of the ordered set of ratio-
nals Q with the usual set-theoretic operations ∩,∪, \, ∅. Its subalgebra
generated by all elements of the form [a, b) = {x ∈ Q | a 6 x < b},
where a, b ∈ Q, is an atomless countable RCDL. Moreover, using an
appropriate coding of the rational numbers, we can easily prove that
this algebra has a computable isomorphic copy.
Now, consider two countable atomless RCDLs A and B with no

greatest elements, and fix enumerations of their respective universes:

A = {a0, a1, . . .},

B = {b0, b1, . . .}.
Assume that we have already established an isomorphism f between
two finitely generated subalgebras A0 6 A and B0 6 B.
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Take an arbitrary element a ∈ A. We extend this isomorphism to
an isomorphism f 0 ⊇ f between the finitely generated extensions of A0
and B0 so that a ∈ dom(f 0).
For x ∈ dom(f), let f 0(x) = f(x). Let c0, . . . , ck−1 be a list of all

atoms ofA0. Then the atoms of the RCDL generated by the set A0∪{a}
are exactly all nonzero elements among those of the form ci∩a or ci\a,
for i < k, together with a\

¡S
i<k ci

¢
. If a\

¡S
i<k ci

¢
6= 0, find an element

b ∈ B greater than
S

i<k f(ci), and let

f 0(a \
Ã[

i<k

ci

!
) = b \

Ã[
i<k

f(ci)

!
.

Then for each i < k, if ci∩a 6= 0 and ci\a 6= 0, find an element b strictly
between 0 and f(ci), and let f 0(ci ∩ a) = b and f 0(ci \ a) = f(ci) \ b.
Thus, f 0 is defined on all atoms of the RCDL generated by the set
A0 ∪ {a}. Extend the mapping defined so far to an isomorphism f 0

from this algebra into B. One can easily see that f ⊆ f 0.
Similarly, we can show that for an arbitrary element b ∈ B, we can

extend f to an isomorphism f 0 ⊇ f between the finitely generated
extensions of A0 and B0 so that b ∈ ran(f 0).
Using this construction, we can start from the empty funciton f0 = ∅

and extend it by adding new elements to its domain and range so that
each ai ∈ A and bi ∈ B eventually appear in the domain and range of
the isomorphism from A to B we are constructing.
If A and B are computable algebras, we can assume that ai = i

and bi = i for i = 0, 1, . . . Then we can execute the above procedure
algorithmically by selecting the least element available at each stage.
The resulting isomorphism between A and B will be computable. ¤

The presentations of countable Boolean algebras by subtrees of 2<ω

are well-known (see [5]). For presentations of RCDLs, we modify this
approach since the “trees” appear to be not well-founded, since a RCDL
may have no greatest element. Specifically, let 2<Z be the countable
set consisting of all functions f from sets of the form Z ¹ m = {x ∈ Z |
x < m} into the set 2 = {0, 1} such that the set {x | f(x) 6= 0} is finite.
The set 2<Z admits a usual coding by natural numbers such that given
the number of any f ∈ 2<Z, we can effectively compute the maximal
element of dom(f) and the index for the finite set {x | f(x) 6= 0}. Fix
such a coding and identify elements of 2<Z with their codes.



20 CHUBB, HARIZANOV, MOROZOV, PINGREY, AND UFFERMAN

For a function f ∈ 2<Z, if k = sup(dom(f)), we let
f− = f \ {hk, f(k)i},

fb0 = f ∪ {hk + 1, 0i},
fb1 = f ∪ {hk + 1, 1i}.

The element s− is called the predecessor of f . The elements fb0 and
fb1 are called the successors of f . The elements of the set 2<Z could
be thought of as elements of an infinite {0, 1}-branching tree with no
root, so each f ∈ 2<Z splits into fb0 and fb1, and f− precedes f , and
so on. The set 2<Z is naturally ordered by inclusion.
Denote by F the computable nontrivial atomless RCDL with no

greatest element.

Proposition 5.4. There exists a computable 1−1 function θ from the
set 2<Z into F so that the following conditions are satisfied.
(1) The set ran(θ) generates F. Moreover, each element of F is

the union of a finite subset of ran(θ).
(2) For all f, g ∈ 2<Z,

f ⊆ g ⇔ θ(f) > θ(g).

(3) For all f ∈ 2<Z,
θ(fb0) ∪ θ(fb1) = θ(f) and θ(fb0) ∩ θ(fb1) = 0.

(4) There exists an element a in F and computable automorphisms
ϕ,ψ of F such that for every b ∈ ran(θ), there exist k,m ∈ Z
and l ∈ ω such that b = ϕkψlϕm(a).

Proof. We assume that the universe of F is the set of natural numbers,
all the operations ∩,∪, \, 0 are computable, and that the natural num-
ber 0 is the value for the constant 0F denoting the least element. We
will write ai instead of i when we refer to elements of F . Define the
function θ as follows.
First, define f0 ∈ 2<Z by

f0 = {hz, 0i | z ∈ Z & z 6 0}.
Let θ0(f0) = a1.
Assume that a finite function θi, for i ∈ ω, is already defined and

that the following conditions are satisfied:
1. dom(θi) contains a least element f∗ under inclusion such that

ran(f∗) = {0},
2. for all f , if f ∈ dom(θi) \ {f∗}, then f− ∈ dom(θi),
3. for all f ∈ dom(θi), fb0 ∈ dom(θi)⇔ fb1 ∈ dom(θi),
4. 0 /∈ ran(θi),
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5. for all f , if fb0, fb1 ∈ dom(θi), then θi(fb0)∪θi(fb1) = θi(f)
and θi(f

b0) ∩ θi(fb1) = 0.
It follows that if f ∈ dom(θi) has no successors in dom(θi), then

θi(f) is an atom of the algebra generated by ran(θi). This algebra is
generated by such atoms, and each of its elements is the union of a
finite set of such atoms. Furthermore, all atoms of this algebra have
this form.
For each pair of elements ai+2∩ θi(f) and ai+2 \ θi(f) such that both

of these elements differ from 0, and f has no successors in dom(θi),
let θi+1(fb0) = ai+2 ∩ θi(f) and θi+1(f

b1) = ai+2 \ θi(f). Further-
more, if ai+2 ∪ θi(f∗) > θi(f

∗), we let θi+1((f∗)−) = θi(f
∗) ∪ ai+2 and

θi+1((f
∗)−b1) = ai+2 \ θi(f∗). We also let θi+1(f) = θi(f) for all

f ∈ dom(θi).
Let θ =

S
i∈ω θi. Since F is atomless and has no greatest element,

dom(θ) = 2<Z. Parts (1)—(3) of the proposition follow immediately from
the construction.
To establish (4), we define the automorphisms ϕ and ψ. The auto-

morphism ϕ shifts the generators of F . It is defined on generators θ(f)
as follows:

ϕ(θ(f)) = θ(f+),

where

f+(i+ 1) =

½
f(i) if i ∈ dom(f),
undefined otherwise.

We wish to define the automorphism ψ so that it will permute gener-
ators smaller than θ(f0) in such a way that each θ(f0

bε1
b . . .bεk) for

ε1, . . . , εk ∈ {0, 1} can be expressed as ψj(θ(f0
b 0b · · ·b0| {z }

k times

)) for some

j ∈ ω. First, we define an automorphism τ on the structure
­
2<Z;⊆

®
,

and then we let ψ(θ(f)) = θ(τ(f)). Let τ(f) = f for all f ∈ 2<Z such
that f ⊆ f0. In particular, τ(f0) = f0. Assume that we have already
defined all values of τ on the set

Fk = {f0bε1b . . .bεk | ε1, . . . , εk ∈ {0, 1}}
for some k ∈ ω, so that τ forms a single cycle on the set Fk. That is,
τ acts on Fk as follows:

g0
τ−→ g1

τ−→ · · · τ−→ g2k
τ−→ g0.

Then τ will act on Fk+1 as follows:

g0
b0

τ−→ g1
b0

τ−→ · · · τ−→ g2k
b0

τ−→ g0
b1

τ−→
τ−→ g1

b1
τ−→ · · · τ−→ g2k

b1
τ−→ g0

b0.
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We now let ψ(θ(f)) = θ(τ(f)).
The automorphism ϕk moves θ(f0) along some branch of the tree

2<Z, consisting of all elements of the form θ(f) with ran (f) = {0}, and
shifts all of the elements below them. The automorphism ψk identifies
all the elements on the same level below θ(f0). It is immediate from the
construction that ϕ and ψ are computable. Thus, we have established
(4). ¤
Proposition 5.5. For each computable RCDL B, there exists a com-
putable isomorphic embedding from B into F.

Proof. We construct this embedding as the union of an increasing chain
of embeddings of finitely generated subalgebras. Let B = {b0, b1, . . .},
and let all the basic operations be computable on the indices of the
elements bi.
Stage 0. Let f0 = {h0B, 0Fi}, where 0B and 0F are the least elements
in the corresponding structures.
Stage t+1. Assume that ft is already defined and its domain is a finite
subalgebra of B. For all x ∈ dom(ft), we set ft+1(x) = ft(x). For each
atom α in B, we execute the following. If both elements α∩bt and α\bt
are not equal to 0, we let ft+1(α∩bt) be equal to the element c ∈ F with
minimal index so that 0 < c < ft(α), and we let ft+1(α\bt) be ft(α)\c.
Now extend ft+1 to an isomorphism from the RCDL generated by its
domain into F .
It is clear that f0 ⊆ f1 ⊆ . . . ⊆ fk ⊆ . . . and that

S
i∈ω fi is com-

putable. Since bt ∈ dom(ft+1), we have dom(f) = B, and f is the
required embedding. ¤

The following theorem shows that in many cases we can restore a
computable RCDL, up to computable isomorphism, from its inverse
semigroup of partial computable automorphisms.

Theorem 5.6. Assume that B0 and B1 are computable RCDLs in the
language {∩,∪, \, 0}. Suppose that there exists a computable isomor-
phic embedding of F into B0. Then

Ic(B0) ∼= Ic(B1)⇒ B0 ∼=c B1.

Proof. Assume that B is a computable RCDL. It was established in the
proof of Theorem 5.2 that the ordering <, the operations ∩, ∪, and \,
and the constant 0 are first-order definable in I∗, for any inverse sub-
semigroup I such that Ifin(B) ⊆ I ⊆ I(B). Furthermore, the defining
formulas do not depend on I. Thus, if Ic(B0) ∼= Ic(B1), then

hIc(B0)∗;<,∩,∪, \, 0i ∼= hIc(B1)∗;<,∩,∪, \, 0i ,
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or, more specifically,

(7)
hIc(B0), B0; ap , ·,−1, <,∩,∪, \, 0i ∼=
hIc(B1), B1; ap , ·, −1, <,∩,∪, \, 0i .

Let β be a computable isomorphic embedding of F into B0. Fix
a computable isomorphic embedding γ of B0 into F , which exists by
Proposition 5.5. Their composition ξ = β ◦ γ is a computable isomor-
phic embedding from B0 to B0. Fix partial computable automorphisms
ϕ,ψ ∈ Ic(F) together with an element a, as in Proposition 5.4.
Take an arbitrary b ∈ B0. By Proposition 5.4, the element γ(b) can

be represented as the union

γ(b) =
n−1[
i=1

ϕkiψliϕmi(a)

for appropriate n ∈ ω, and ki, li, mi for i = 1, . . . , n. It follows that
the element ξ(b) = βγ(b) can be represented as

ξ(b) =
n−1[
i=1

(βϕβ−1)ki(βψβ−1)li(βϕβ−1)miβ(a).

Denote Φ = βϕβ−1, Ψ = βψβ−1, and a0 = β(a). Note that ξ,Φ,Ψ ∈
Ic(B0) and that the following condition is satisfied:
For all b ∈ B0, there exist n ∈ ω and integers ki, li,mi, for i < n,

such that

(8) ξ(b) =
n−1[
i=1

ΦkiΨliΦmi(a0).

Denote the isomorphic images of ξ, Φ, Ψ, b, a0 with respect to the
isomorphism (7) by ξ1, Φ1, Ψ1, b1, a1, respectively. Then we have

(9) ξ1(b1) =
n−1[
i=1

Φki
1 Ψ

li
1Φ

mi
1 (a1).

This gives us the following algorithm to compute the isomorphism be-
tween B0 and B1.

Given b ∈ B0, use exhaustive search over all n, ki, li,mi,
for i < n, to find a decomposition for ξ(b) of the form
in (8). Then define the isomorphic image b1 of b as the
unique element of B1 satisfying (9).

¤
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Let a be an element of a Boolean algebra B. We letba = {x ∈ B | x 6 a}.
Denote by F1 a fixed computable atomless Boolean algebra. It is

unique, up to computable isomorphism (for example, see [5]).
Lipacheva [7, 8] proved that if B0 and B1 are computable Boolean

algebras such that Ic(B0) ∼= Ic(B1), and B0 contains a nontrivial atom-
less element, then B0 and B1 are computably isomorphic. The proof of
her result gives us the analogue of Theorem 5.6 for Boolean algebras.

Theorem 5.7. Assume that B0 and B1 are computable Boolean alge-
bras in the language {∩,∪, , 0, 1} and that there exists a computable
isomorphic embedding of F1 into B0. Then

Ic(B0) ∼= Ic(B1)⇒ B0 ∼=c B1.
Note that if B0 contains a nontrivial atomless element, then it satis-

fies the condition of the theorem. However, there exist Boolean algebras
without nontrivial atomless elements satisfying this condition. Thus, it
is natural to look for counterexamples among atomic Boolean algebras.
Morozov [9] showed that if B0 is a nontrivial atomic computable

Boolean algebra with a computable set of atoms and Ic(B0) ∼= Ic(B1)
for a Boolean algebra B1, then B0 and B1 are computably isomorphic.
It follows easily from our analysis above that the group of computable
automorphisms of a computable Boolean algebra is definable in its
inverse semigroup of partial computable automorphisms. Therefore,
the implication

Ic(B0) ∼= Ic(B1)⇒ B0 ∼=c B1
remains true when B0 is a nontrivial atomic computable Boolean alge-
bra with a computable set of atoms.
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