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ARTICLE INFO ABSTRACT

Artide history_-' The class of recursive functions over the reals, denoted by REC(R), was introduced by

Available online 19 March 2009 Cristopher Moore in his seminal paper written in 1995. Since then many subsequent

investigations brought new results: the class REC(R) was put in relation with the class

g/gsgég of fupctioqs ‘generated by'the General Purpose' Analogue CompL}ter of Claude Shannon;
68Q05 classical digital computation was embedded in several ways into the new model of
28A05 computation; restrictions of REC(R) were proved to represent different classes of recursive

functions, e.g., recursive, primitive recursive and elementary functions, and structures such
Keywords: as the Ritchie and the Grzergorczyk hierarchies.
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Computability on reals

The class of real recursive functions was then stratified in a natural way, and REC(R)
and the analytic hierarchy were recently recognised as two faces of the same mathematical
concept.

In this new article, we bring a strong foundational support to the Real Recursive
Function Theory, rooted in Mathematical Analysis, in a way that the reader can easily
recognise both its intrinsic mathematical beauty and its extreme simplicity. The new
paradigm is now robust and smooth enough to be taught. To achieve such a result some
concepts had to change and some new results were added.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In 1996 Cris Moore published a seminal paper, Recursive theory on the reals and continuous-time computation [24], where
he defines an inductive class of vector-valued functions over R, aiming to provide a framework to study continuous-time
phenomena from a computational perspective. This class was defined as the closure of some basic functions for the operators
of composition, solving of first-order differential equations and a kind of minimalisation.

Some work was done since then, using Moore’s definition [8,9,26,25], but unfortunately some of Moore’s assumptions
were not very consensual among people interested in the field. Most of these controversial assumptions were consequences
of Moore’s attempt to bring the minimalisation operator - used in the classical recursive functions - into a continuous
context. So in their paper [27], Jerzy Mycka and José Félix Costa gave a similar definition of Moore’s inductive class of
functions, replacing minimalisation with the taking of infinite limits. We will cite both papers [24,27] when appropriate.

Restrictions of this inductive scheme have given rise to several interesting characterisations of computability [17,2,4,
10] and complexity [9,7,3,29,28] of real functions; this is an analogue of the studies in sub-recursion of classical recursion
theory. Connections with other areas have appeared, e.g., the study of periodic real recursive functions and the connections
between infinite time Turing machines and real recursive functions [14,15].

* Corresponding address: Departamento de Matematica, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.
E-mail addresses: felixgomescosta@gmail.com (J.F. Costa), bruno.loff@gmail.com (B. Loff), Jerzy.Mycka@umcs.lublin.pl (J. Mycka).

0168-0072/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2009.01.013


http://www.elsevier.com/locate/apal
http://www.elsevier.com/locate/apal
mailto:felixgomescosta@gmail.com
mailto:bruno.loff@gmail.com
mailto:Jerzy.Mycka@umcs.lublin.pl
http://dx.doi.org/10.1016/j.apal.2009.01.013

256 J.F. Costa et al. / Annals of Pure and Applied Logic 160 (2009) 255-288

We will, however, be concerned with the more general aspects of the theory. In their papers, Mycka and Costa [27,30,
31] have laid out the basics for our study. The most important or distinguishing feature of the more general theory, opposed
to what we have called sub-recursion, is the access to unrestricted infinite limits, which can be made to work as a search
operator over R.

The purpose of this text is to lay out a solid foundation for the theory of real recursive functions, and survey the known
results in the more general aspects of the theory. We will begin in Section 2 by studying function algebras and differential
equations; after this preparation, we introduce the inductive definition for the class of real recursive functions, and finish
the section with some further considerations on differential equations and infinite limits. In Section 3, we prove the most
fundamental results in the theory, and show how we may stratify the class of real recursive functions into a hierarchy.
Section 4 will solve the problem of universality, with a proof that there is no universal real recursive function. In Section 5
we show that there is an exact correspondence between the class of real recursive functions and the analytical hierarchy of
predicates. Finally, in Section 6, we attempt some advance in the problem of collapse; this problem was believed to have
been solved in [22], but an error turned up after a solid foundation was put in place — we expound the current status of this
open problem.

2. Introduction to real recursive functions

This section will establish the theoretical basis for the study of real recursive functions. We begin by studying function
algebras and their related problems in Section 2.1. Some preliminaries on the Cauchy problem will be given in Section 2.2.
The primordial function algebra which characterises the class of real recursive functions will be presented in Section 2.3.
Finally, we will make some general considerations on two specific operators in Sections 2.4 and 2.5.

2.1. Function algebras

A function algebra is a characterisation of a set of functions by the inductive closure, for some operators, of another set of
functions. This concept is frequently used in recursion theory, and more recently to obtain characterisations of complexity
classes [11].

Definition 2.1. Let .# be a class of functions, # C .Z be a set of such functions, and @ € Uen{O : #¥ — ) be a set of
operators. The inductive closure of # for O, written A = [F; @], is the smallest set containing &, such thatiff;, ..., fi € 4
are in the domain of the k-ary O € O, then O(fy, .. ., fy) € . When taken together with O, the inductive closure [F; O] is
called a function algebra.

A function algebra is said to be enumerable if both # and O are enumerable.

We will simplify the notation by writing A = [F; @] to let A designate both the inductive closure [F; @] and the
function algebra ([¥; @], ©), when appropriate.'

Remark 2.2. We show that the definition is well-founded, i.e., for any such & and © there is a unique smallest 4 that
satisfies the conditions of closure. This follows easily from Kleene’s fixed point theorem. Take the complete lattice of sets
of functions in .#, L = (%), under the partial order of inclusion. It is easy to see that the function f : L — L, given
by f(F) = FUF U{O0(f1,...,fx) : fi,...,fkx € Fareinthe domainof O € @}, is continuous. We may conclude, by the
well-known result of Knaster and Tarski, that there is a least fixed point of f. By Kleene’s fixed point theorem,

A = Ugen 1(2)

is this least fixed point. Such an « satisfies the closure condition since it is a fixed point of f, and the uniqueness condition
since it is the least fixed point. O

Notation 2.3. We make a liberal use of the square bracket notation, e.g., if f, g are functions, ¥ is a class of functions, and
01, ..., Oy are operators, then we set

[f.8,F;01,....,0,] =[{f, g} UF;{01,...,0,}]. O

Example 2.4. Consider the class .# of partial, scalar, multiple-argument functions over N = {0, 1, 2, ...}. Examples of
functions in .# are the zero function z, such that z(x) = 0; the successor function s, given by s(x) = x+ 1; and the projection
functions u}, 1 < i < n, where each u}' obeys u}'(x1, ..., X,) = x;. Take x to designate an arbitrary sequence X = x1, ..., Xp.
We may consider the composition operators ¢™, such that for every g : N — N, hy,..., hy : N' — N, the function
c™@g, hq, ..., hy) : N* — Nis given by

Cm(gv h17 RN hm)(x) = g(hl(x)v R hm(x))

1 The distinction between the inductive closure [F; 0] and the function algebra ([F; @], ©) is not always made in the literature (e.g., in [11]). However,
we felt it was an important distinction to make, since certain concepts (such as inclusion of some function) relate to the inductive closure, as a set, and
others (such as the rank of a function) relate to the function algebra, with its specific structure.
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We will also consider the primitive recursion operator p, which, for every giveng : N' — Nand h : N2 5 N, sets

p@E. & 0 =gx®andp(g, hHx.y+1) =hxy, pg hHExy)).
The class PRIM of primitive recursive functions may then be given by the function algebra PRIM = [z, s, u}'; ¢, p]. O

It is important, in the study of a function algebra, to consider self-referential properties of the inductive closure. Function
algebras provide a natural way of doing so, in particular for the case when the set of initial functions and the set of operators
are countable.

Definition 2.5. Let A = [¥; 0] be an enumerable function algebra, for a set £ = {f1, f2, ...} of functions and a set
O = {04, Oy, ...} of operators. The set D, of descriptions of +, is the smallest set of words in {fun, Op, (, ),,, 0, 1,...,9}%,
such that

(i) (fun, n) € D4 for all n, and
(ii) ifdy, ..., dx € Dy, then (Op, n,dq, ..., dy) € Dy.

We write D, to stand for the set of good descriptions in D 4; by good description we mean any description d such that

(i) dis (fun, n) and f, € F (i.e, ¥ has at least n functions), and in this case d is said to describe f;, or
(ii) dis (Op, n, dy, . .., di), for some good descriptions dy, . . ., dy which describe g1, . . ., g in the domain of 0, € ©@; then
d is said to describe O, (g1, ..., g).

Notation 2.6. With A = [F; O] given as above, let f denote a function f, € ¥ and O denote an operator O, € . Then we
write funy to denote the pair fun, n, and Op,, to denote the pair Op, n. In this sense, (funy) is the description (fun, n) and
(Opg, d1, ..., di) is the description (Op, n, dq, ..., d). O

When studying a function algebra one wishes to understand the extent of functions which it contains. One then often
considers a particular operator O : #¥ — #, and attempts to determine whether the function algebra is closed for O or not
(meaning that the respective inductive closure is closed for O or not). Many important problems in computer science may
be equated to the proof or disproof that certain function algebras are closed for certain operators, e.g., P = NP if and only if
P is closed for a bounded minimalisation operator ji [cf. 1,11], i.e., if P = [P; f1].2

The proof that a function algebra » is closed for an operator may or may not be constructive. In the former case, one
considers that the closure is effective.

Definition 2.7. An enumerable function algebra 4 is said to be effectively closed under an operator O : .#¥ — . if there
is an effective procedure which, given good descriptions of functions fi, ..., fy € + in the domain of O, obtains a good
description of the function O(f, . . ., fi).

Function algebras usually offer natural measures of complexity, simply by looking at the descriptions which describe
a certain function. One such syntactic measure, which is frequently considered, is the number of nested applications of a
certain operator, or set of operators. This is called the rank.

Definition 2.8. Let A = [F; O] be an enumerable function algebra, with @ = {04, 0, ...}, and let O be a subset of ©. The
rank of a good description d € D, for the set of operators @ under the function algebra «, rk(d), is inductively defined as:

(i) tk({fun, n)) =0,
(ii) if 0, & O, then rk({Op, n, dy, ..., di)) = max(rk(d,), ..., rk(dy)), and
(iii) if 0, € O, then rk({(Op, n, d1, ..., d¢)) = max(rk(dy), ..., rk(dy)) + 1.

The rank of a function f € 4 for @ under 4, rk(f), is given by:
rk(f) = min{rk(d) : d is a good description which describes f}.

Notation 2.9. The manner of denoting the rank for @ under 4, using the word rk, does not make the dependency in © and
A explicit. We chose to do this so as not to over-encumber the notation. When it becomes necessary to disambiguate between
different possible function algebras or operator sets, we will then denote the rank by rk"‘@f. O

Example 2.10. One may consider, in the function algebra PRIM = [z, s, u}'; ¢™, p] for primitive recursive functions, the
rank for the primitive recursion operator. Intuitively, the rank rk;R'M(f ) = rk(f) of a function f : N — N is the smallest
number of nested for loops necessary for any program to compute f without while loops (from the basic functions z, s, and

n
ui). O

2 Note that P and NP are often taken as a class of subsets of N, and not a class of functions. The problem P = NP for sets is equivalent to the problem
“P = NP” for functions.
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The rank for a set of operators, as a measure of complexity, is rich enough to stratify function algebras into interesting
hierarchies.

Definition 2.11. Let A = [#; O] be an enumerable function algebra, with @ = {01, 0, ...}, and let O be a subset of O.
The rank hierarchy for @ under 4 is the N-indexed family of functions:

H, ={f € A : tk(f) < n}.

Notation 2.12. We take the same precautions of Notation 2.9 so as not to burden the notation for the rank hierarchy. When we
wish to disambiguate between hierarchies for different operator sets or under different function algebras, we will either index our

denotation as in H;*®, or assign different letters to the different hierarchies. O

An important problem for such a hierarchy is whether it collapses, or degenerates, i.e., whether there is a number k
such that A C Hy. Again, many problems in computer science can be seen as a problem of rank-hierarchy degeneration.
Recycling the previous example on P vs. NP, it can be shown that the polynomial time hierarchy collapses if and only if the
rank hierarchy for a bounded minimalisation operator i, under the function algebra [P; 1], collapses.

Example 2.13. The rank hierarchy for the primitive recursion operator under the function algebra PRIM = [z, s, u}'; c™, p],

PRIM, . I o . .
H, =H, F , can be intuitively understood as the stratification of the primitive recursive functions by the number of nested
for loops needed to compute each function. This hierarchy is known not to collapse (cf. [23]). O

Example 2.14. The function algebra PRIM™ = [z, s, ul, +; ¢, pl, where + represents the 2-ary sum, is an alternative

function algebra for the class of primitive recursive functions. This algebra gives Kalmar's class of elementary functions, &,
PRIMT, p
. O

at the second level of the rank hierarchy for primitive recursion. i.e,, & is equal to H, = H,
Proposition 2.15. Let A = [¥; @] be an enumerable function algebra, let O be a subset of O, and set V = © — O. The rank
hierarchy for @ can be inductively defined by:

(i) Ho = [#; V], o )
(ii) I, = H, U {O(f1, ..., fr) : 0 € Oandf,...,fx € H, N Dom(0)}, and
(iii) Hap1 = [ V],

The previous proposition better illustrates the idea of the rank hierarchy: the next level of the hierarchy is obtained by
allowing one further application of the operators in the operator set. We will skip the proof, which is obtained by a simple
induction.

There are many typical problems of interest to a function algebra. We have already mentioned the problem of closure
and the problem of collapse. Another important problem is the problem of universality. In the following definition and in
the later sections, we use ~ to denote equality whenever both sides of the equation may occur undefined; f(x) >~ g(y)
means that f and g are both either undefined, or defined and equal, respectively for x and y.

Definition 2.16. A binary function f : D x D — R in an enumerable function algebra » is said to be universal if there is an
effective procedure which, given a good description d of a function g : D — R in », will construct an element d € D such
that, for every x € D, f(d, x) ~ g(x).2

It is thus important, in the study of a function algebra, to know if it has a universal function. The last problem which we
will refer that generally concerns function algebras, is the problem of alternative characterisation. In order to understand
the function algebra more clearly, it is important to find alternative ways to obtain the same class of functions, or discover
that previously known classes of functions are exactly given by a function algebra.

Example 2.17. As we have seen, Meyer and Ritchie have solved the problem of collapse. It is interesting to note that the
class of primitive recursive functions does not have a universal function: a simple argument based on the second recursion
theorem would show that if this was the case, then PRIM would be closed under the minimalisation operator, which we
know is false. An alternative characterisation can be obtain by substituting the recursion operator by an iteration operator,
and adding a few basic functions [13]. O

Example 2.18. To realise that the collapse of a rank hierarchy may depend on the specific function algebra, and not
only on the relevant operator, consider the class of partial recursive functions. If we take u to stand for the unbounded
minimalisation operator, the class of partial recursive functions, PREC, can be given by PREC = [z, s, u}'; ¢, p, i]. Kleene's
normal form theorem implies that any partial recursive function can be obtained using a fixed number of primitive
recursions, and so, despite the fact that the rank hierarchy for p does not collapse under PRIM, the same rank hierarchy
does collapse under the function algebra PREC. O

We will below study a specific class of real-valued vector functions, which we call real recursive functions. This class is
an analogue of Kleene’s partial recursive functions, and it was first conceived, in a primitive form, by Cris Moore [24]. We
will give a complete definition of this class in Section 2.3, using a function algebra. In the following section, however, we
will review some basic properties of ordinary differential equations.

3 Notice that this definition is only suitable given certain assumptions on the nature of the functions in .
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2.2. Weak conditions for existence and uniqueness

In the next subsection we will discuss a partial operator, called the differential recursion operator, which will give us
solutions to very simple differential equations. It is thus in our interest to study conditions for existence and uniqueness of
such solutions. Let f denote a total function from R™*! — R" and J represent a (possibly unbounded) open interval (A, B)
of the real line, with ty € J. Consider the Cauchy problem of the form

g(to) = 8o 0g(t) = f(t, g(t)). (1)

A solution of (1) onJ is a continuous function g : R — R" which takes the value gy at t = t, and satisfies the differential
equation for every t in J. We will show that a few straightforward properties of f will ensure that the solution of (1) exists
and is unique. The proofs will require some basic knowledge of Banach spaces; the unfamiliarised reader will find a good
reference in [20].

Definition 2.19 (see, e.g, [33,35]). A total function f : R™ — R" is called locally Lipschitz if for every compact set C C R™
there is a constant K such that all x, y € C verify the Lipschitz condition

If @) —f@Il <Kllx—yll. (2)
The smallest such K is called the Lipschitz constant of f for C.

The local Lipschitz property implies other weaker properties, such as continuity. In fact, letting B(x, r) (or B(x, 1)) denote
the open (resp., closed) ball of radius r around x, should we take an arbitrary ¢ > 0 and pointx € R™, and let K satisfy (2) for
the compact C = B(x, 1); then ||x —y| < % implies that ||f (x) —f ()| < K||x —y|| < ¢; sof is continuous. This continuity
ultimately implies that the concept of Lipschitz constant is well-defined.

The name locally Lipschitz is motivated because a total function f : R™ — R" is locally Lipschitz if and only if around
every point z € R™ there is a neighbourhood V of z and a constant K such that all x,y € V satisfy (2). Clearly, if F is
locally Lipschitz, then we may take V = B(z, 1) as this neighbourhood. Now suppose that around every point z € R™ there
is a neighbourhood V, of z where (2) is satisfied — this implies that f is continuous, by a similar argument to the above
paragraph. Now suppose that f is not locally Lipschitz, and take a compact set C C R™, and two sequences x;, y; in C such
that

If @) = F @l > 2'l1% = ill. (3)

By the compactness of C, further suppose that x; and y; converge as i — o0, respectively to x and y. Then the continuity of
f implies that f (x;) — f(x) and f(y;) — f(y), and so

% — yill < 27'lIf &) — F @Il — O;

which means ¥ = y. But then for every large enough i both x; and y; will be in the corresponding neighbourhood V of %, and
because x; and y; satisfy (3), then (2) cannot be satisfied in Vy, a contradiction.
The following simpler conditions imply the local Lipschitz property.

Theorem 2.20. Let f : R™ — R" be a total function.

(a) The function f is locally Lipschitz if and only if every closed ball verifies (2).

(b) The function f is locally Lipschitz if and only if every closed m-cube verifies (2).

(c) Iff is everywhere differentiable and Df is bounded in every compact set, then f is locally Lipschitz.
(d) Iff is continuously differentiable, then it is locally Lipschitz.

Proof. (a) The necessity is obvious, since a closed ball is compact. Now take any compact set C. Since C is bounded, some
closed ball will contain C, and the constant K which ensures that (2) is satisfied in this closed ball will trivially suffice to
ensure that (2) is also satisfied for C. The equivalence (b) is proved similarly.

(c) Suppose that f is differentiable, and Df is bounded in every compact set. Let C be an arbitrary compact set. Recall that,
for any x € R™, Df (x) € L(R™ — R") is a bounded linear operator, and its norm is given by

D
D) = sup Il f(x)(v)ll.
yeRrM ”y”

Then let M; be a bound for ||Df || in C, which exists by hypothesis.
Sets: R™ x R™ — [0, +00) so that
If@) —f® -Df® @ - .
ifx#£y
s(x,y) = ly — Il
0 otherwise.

Then s is bounded in C x C, because f is differentiable and Df is bounded in C. So let M; be an upper bound for s in C x C.
Thus,
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If@) —f@I < If@) —f@® —Df®@ — )| + IDfF®) ¥ — )|l < (M2 + My)ly — ],

and f obeys the Lipschitz condition in C. By the arbitrary nature of C, f must be locally Lipschitz.
(d) If f is continuously differentiable, then Df is continuous and therefore bounded on any compact set: (c) gives us the
result. O

Henceforth, in this section, f will always designate a total function.
Theorem 2.21 (Picard). Iff is locally Lipschitz, then there exists a solution g of (1) in a neighbourhood of ty.

Proof. Let] = [ty — a, ty + a] for some a > 0, and let R C R" be the closed n-cube centred on gy with side of length b > 0.
Since f is continuous and I x R is compact, let M be the maximum of f over I x R, and let K be its Lipschitz constant for I x R.
We choose some 0 < ¢ < min{a, % %} and show that we may obtain a solution g of (1) in the interval ] = [t — ¢, t + ¢].
Use the letter € to denote the space of continuous functions from J to R, under the supremum norm:

IFIl = sup IF -

C is a Banach space, and so by the theorem of Banach, any strict contraction operator has a fixed point. We show that the
operator T, given by

t
(Te)(0) = go + / £(s.g(5))ds,
fo

is a strict contraction on C, for the constant k = ¢K < 1. See thatif g € C, then Tg € G, since for any t € ] we have
(Tg)(t) € R:

1(Tg)(®) — goll < 11g(to) — goll + <eM < b.

t
/ If (s, g(s))llds
fo

Additionally, T is a strict contraction, because
t
ITg — Thil < su?/ If (s, g(s)) —f(s, h(s))llds < eK|g — hll = k|ig — hl|.
te to

We conclude that if we let g denote the fixed point of T, then g is a solution of (1) on the intervalJ. O
We will make use of the following uniqueness theorem in the remaining sections.
Theorem 2.22. Iff is locally Lipschitz, and g is a solution of (1) on the interval ], then g is the unique solution of (1) on J.

Proof. Suppose that there were two solutions g and g to (1) on the interval J. Set h(t) = g(t) — g(t). Let ty € [a,b] C J
and let C C R" be an arbitrary compact set such that g([a, b]) € C and g([a, b]) C C. Let K be the Lipschitz constant for f
in [a, b] x C, according to (2).

Clearly we have h(ty) = 0, because both g(t;) = g(to) = go. If we denote the scalar product with -, then, for every
t € [a, b],

IIh(@)[1* = 2h(t) - 0:h(t) = 2 (1) — g(0)) - (F(t, &(t)) — f(t, (D).
From (2) and the Cauchy-Schwarz inequality, we obtain

|G () —g(0) - (F(t. &) — F(t. 2O <KIZ(E) —g@®)] x [E(t) — gl = KIE(®) — gO))]*.
This gives us 9 ||h(t)]|?> < 2K ||h(t)||%, and so we must conclude that

3 (Ilh(®)[1?e™) = (@ |Ih(D)*)e~" — 2K ||h(t)||*e™** < 0.

So we see that ||h(t)||?e 2K does not increase on [a, b], and since ||h(0)|| = 0, then it follows that ||h(t)|| = O for every
t € [a, b],i.e., g = g on [a, b]. The proof is done for an arbitrary compact set C such that g([a, b]) C C and g([a, b]) C C.
Now, should we take

C={y:llyll < max lg®l + Ig©®)I}
tela,b]
then C is well-defined by the continuity of g and g, and will be compact. Also, C contains g([a, b]) and g([a, b]). We then
conclude by the previous argument that g and g are equal on [a, b], and everywhere on J, since a and b are arbitrary. O
The uniqueness theorem ensures immediately the following.
Corollary 2.23. If f is locally Lipschitz, and g, g are two solutions of (1) respectively in the intervals | ] theng =g on]j ﬂ].

For some locally Lipschitz function f, let S denote the set of solutions of (1). We set A to be the infimum of Dom(g) for
every g € S, and B will denote the supremum of Dom(g) over every g € S.The previous corollary provides that the following
concept is well-defined.
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Definition 2.24. Let f be locally Lipschitz. Then the maximal solution of (1) is the function g defined in (A, B) such that if
g is a solution of (1) over some interval (a, b), then g(t) = g(t) for allt € (a, b). The interval (A, B) is called the maximal
interval of (1).

It will be in our interest to show that the solutions of (1) are well-behaved in A and B.

Theorem 2.25. Let f be locally Lipschitz, and let g denote the maximal solution of (1), defined on ] = (A, B). Then B < +o00 (or
A > —oo)ifand only if lim,_ ;- [|g(t)|| = +oo (resp. lim,_,;+ [|g(t)]| = +o00) for some finite t € R, and in this case we have
B=rt(resp. A=)

Proof. If lim,_ ;- ||g(t)|| = +oo for some finite f, then g cannot respect the equality (1) at point £, and thus f = B < +o0.
For the converse, suppose that B < 400, but that lim,_,z- g(t) = g; € R". Then the Cauchy problem

g(B) =g 0,&(t) =f(t. &) (4)

would have a solution & on some neighbourhood [B — ¢, B + ¢] of B, by Theorem 2.21. But then, the function g given by
g(t) = g(t) fort < B, g(t) = g(t) for B < t < B + ¢ testifies that g is not the maximal solution. By contradiction, we
conclude that either B = +o00, or that lim,_, 3- g(t) is undefined.

But it cannot be the case that lim,_, z- g(t) is undefined, while ||g(t)|| is bounded for t sufficiently close to B, as we will
now show, again by reductio ad absurdum. Suppose that these were the case, i.e., let] = (to, B) be an open interval where
g is bounded in the norm, and suppose that for some sequence t; in this interval we would have t; — Basi — oo, but
g(t;) would diverge. By the boundedness of] and of ||g(t)|| inj, take some compact interval C containing ] x g(f ), and let
M = max zec If (¢, 2)||. M is well-defined by continuity of f and compactness of C. Choose some sub-sequence t; of t; such
that

o0
D e — Bl < oo, (5)
i=1
(the existence of which is ensured by convergence of t;), and also such that
o0
D llgEien) — @l = +oc; (6)
i=1
(this is ensured by the divergence of g(t;)). The mean value theorem tells us that
lg(tir1) — @ < Mty — &l
But taking the sum with the proper indexes, this contradicts (5) and (6). So we conclude that divergence of g(t;) implies

unboundedness of ||g(t;) ]|, and so lim,_, g- ||g(t)|| = +00. We proceed in a similar way forA. O

2.3. The class of real recursive functions

We are now prepared to describe our function algebra. We take .# to be the class of partial, vector-valued, multiple-
argument functions over R, i.e., the class of partial functions f : R™ — R" for some m, n € N. We accept functions of arity
0, and call them constants, or values.

There will be two kinds of basic functions: the constant functions, and the projections. The constant functions are

denoted —1", 0", and 1", for everyn = 0, 1,2, ..., and are given by —1"(xy,...,x,) = —1,0"(xy,...,x,) = 0 and
1"(x1,...,x,) = 1. The projections are denoted by U}, for eachn = 1,2,...and 1 < i < n; they are given by
Ul(Xq, ..., Xp) = X;.

The class will be closed under a countable number of partial operators over .%. The first operator is the composition
operator, denoted by C. Given two functions f : R — R"and g : R™ — R¥, the function C(f, g) goes from R™ to R", and
is given by

C(f,g)(x) =f(g(x)), foreveryx e R™.

The domain of C(f, g) is Dom(C(f, g)) = {x € Dom(g) : g(x) € Dom(f)}.
Our second operator is the differential recursion operator, denoted withR. Let f : R"*! — R" be a total locally Lipschitz
function. Consider, for a fixed x € R™, the Cauchy problem

g(x,0)=x 0g(x,t)=f(t,g(x,1)). (7)

Then R(f) is a function from R™! to R" such that for every fixed x € R*, R(f)(x, t) = g(&, t), where g(x, -) is the maximal
solution of (7). The domain of R(f) is Dom(R(f)) = {(x,t) : x € R™, A(x) < t < B(x)}, where A, B give the extrema of the
maximal interval. In the next section we will show that the concept of differential recursion is well-founded, and provide a
few examples.



262 J.F. Costa et al. / Annals of Pure and Applied Logic 160 (2009) 255-288

Following this we have the infinite supremum limit operator, denoted by Ls. This operator takes any function f :

R™1 — R", and maps it into the component-wise infinite supremum limit, i.e., foreveryi=1,...,n,
(Ls(f)(*))i = lim sup (f(x, y)); -
y—>00

For the sake of abbreviation, we write simply

Ls(f)(x) = limsupf(x,y).
y—00

Then Dom(Ls(f)) = {x € R™ : limsup,_, ., f (¥, y) exists}. We will further discuss the Ls operator in Section 2.5.

The final operator is called the aggregation operator, denoted by the symbol V. The aggregation operator takes two
functions f : R™ — R¥and g : R™ — R" and joins them into a single vector function V(f, g) : R™ — R¥t"  As expected,
this is given by

V(. &)® = (F(x),gX),

and Dom(V(f, g)) = Dom(f) N Dom(g).
We end this subsection with the central definition of this text.

Definition 2.26. The class of real recursive functions, denoted by REC(R), is given by the function algebra
REC(R) = [—-1",0%, 1", U]; C,R, Ls, V].

We will use the letter H (capital eta — not to be confused with the Latin capital h: H # H) to denote REC(R) given by this
specific structure. We will, below, give alternative characterisations of REC(R), using other algebraic structures; these will
also be denoted by capital Greek letters.

2.4. More on differential recursion

The operator of differential recursion is an attempt to mimic the functioning of an idealised disk-and-wheel integrator.
Such integrators have been invented in the nineteenth century by Lord Kelvin [cf. [36]], and have been used to implement
the famous differential analyser of Vannevar Bush [6]. To those who have studied real recursive functions, this has always
given a certain sensation of security: the well-foundedness and good-behaviour of the differential recursion operator were
freely assumed.

Recently, however, the well-foundedness of differential recursion was no longer a matter of consensual agreement.
Authors, such as Akitoshi Kawamura [19], and referees of ours, have remarked that differential recursion needs a more
thorough and precise treatment. The paper [19] provides a successful attempt, with a much stronger differential recursion
operator than that shown above. In this paper, we have opted to limit the scope of the differential recursion operator. As
stated in the previous section, R(f) will only be defined when f is a total locally Lipschitz function. This will ensure that
whenever f € Dom(R), the solution R(f) exists (Theorem 2.21), is unique (Theorem 2.22), and has a good-behaviour in the
extremities of its domain of definition (Theorem 2.25). We then see that the operator R is well-defined and well-behaved.

We could have imposed weaker conditions and obtain similar properties, but in our every attempt these would become
too technical and complex. Local Lipschitz conditions, on the other hand, are considered in any standard text on ordinary
differential equations [e.g. 12,34,35]. Furthermore, we have a few simple ways to assess whether f will be in the domain of
R (Theorem 2.20).

The definition of solution ensures us that R(f)) will always be continuously differentiable in the last variable, i.e., R(f) (%, -)
is continuously differentiable for every fixed x. We show the following stronger result.

Theorem 2.27. For any total locally Lipschitz f : R™! — R", g = R(f) is locally Lipschitz in its domain.

By locally Lipschitz in its domain, we mean that any compact set C C Dom(g) must obey the Lipschitz condition. The proof
will require the use of the following lemma.

Lemma 2.28 (Gronwall-Reid). Let C be a given constant and k : ] — [0, +00) a given non-negative continuous function on an
interval ] C Rwithtg € J. Then, ifv : ] — [0, 400) is continuous and, for all t € ],

/ k(s)v(s)ds

).

v(t) < C+

; (8)
it follows that, again for all t € ],

t
/ k(s)ds
to

v(t) < Cexp (
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Proof. With t > ty, the inequality (8) implies that
t
k(t)v(t) — k(t) (C +/ k(s)v(s)ds) <0.
to

Taking Q(t) = C + f[; k(s)v(s)ds, we rewrite this as 9;Q (t) — k(t)Q (t) < 0. Multiplying by exp(— ftg k(s)ds), we arrive at

t
o <Q(t) exp <—f k(s)ds)) <0.
to

Seeing that Q (tg) = C, and integrating this last inequality from ty to t, we get

t t
Q(t) exp (—/ k(s)ds) —(C<0 << Q(t) <Cexp (f k(s)ds) .
to to

From (8) and the definition of Q (t), we obtain the intended result. For t < to, the result is proved similarly. O

Proof of Theorem 2.27. Choose an arbitrary (x, u) € Dom(g). Let] C Dom(g(x, -)) be a closed interval with diameter d;
containing 0 and u as interior points. Use S to denote the unit neighbourhood of the graph (t, g(x, t)) when t ranges over J:

Ss={t2):te] llz—gx )] <1}

By the continuity of g in its last variable, Sy is compact, and so f has a Lipschitz constant in Sy, say K. Suppose that for some
(y,v) € Dom(g),0 < < 1,we have |ly — x|| + |v — u| < §, and that § is small enough so that v € J. Then forany t < v,
(y, t) isin Dom(g), and

lgw.t) —g&x O < lly — x| +

t
/ If(s,g@.5)) —f(s,g(x,5))llds
0

As long as g(y, t) remains on Sy, we have, by the Gronwall-Reid Lemma,

lew.t) —gx, 0l <+ < S exp(Kxlt]).

t
/ Kelg®.s) — g(x, 9)[1ds
0

Now, g(y, t) is a continuous function of t, and g(y, 0) € S,. So g(y, t) must be in S, for some open interval. So if we choose
8 < exp(—Kyd;), we must conclude by this last equation that g(y, t) remains in S, for all t € J, t < v. Furthermore, if for
any given ¢ > 0 we set § < min(gs/2, 1) exp(—Kxd;), then we get

£
lgey,t) —gx, )| < 5 forallt €], t < v.

If, furthermore, § < 1%2, then using the triangle inequality and the Gronwall-Reid Lemma,

€ & £
lgew, v) — g wl < 5 + <35 exp(Kxlv —ul) < 5 exp(Kyd) < &.

/ Kellg(x, 5) — g(x, 5)l|ds
u

With this, we have proved that g is continuous in its domain. So let C C Dom(g) € R™"! be a compact set; let J be a closed
interval containing every t such that (x, t) € C. Because g is continuous, D = J x g(C) is compact, and so let Kf be the
Lipschitz constant of f in D, and M be the maximum of ||f|| in D. We may repeat the previous argument using the Lipschitz
constant Ky which does not depend on x. For any (x, u), (¥, v) € C, and assuming without loss of generality that v < u, we
find

lgw,v) —g@& V)| <y — x| + ‘f Killg,s) — g(x,s)|lds| < |ly — x| exp(Krd)).
0

Also,

lgx, v) — g, u)| < < Ju — v|My.

f IIf (s, g(x,5))lIds

And so K; = 2(exp(Krd;) + Mr) bounds the Lipschitz constant of g for C, because for our arbitrary (x, u), (¥, v) € C, by the
triangle inequality,
lg@. v) —g& W < ly — xllexp(Krd)) + [u — v[My < [|(y, 1) — *, V)[Kg. O

We conclude that the values of the solutions have a continuous dependence on the initial condition. At first sight, it might
appear that we would prefer a more general differential recursion, where f would be allowed to depend on x, or where the
initial condition can be given at any point t,. However, we will show in the next section that the Cauchy problem

g, to) =go(®) dg(x,t) =f(t,g(x,1),%) (9)

can be reduced to the form (7).
A trivial example is the exponential function.
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Example 2.29. The exponential function, exp, is trivially given by the differential recursion
exp(0) =1 9, exp(t) = exp(t).
In the notation of (9), we have gg = 1and f(t,x) = x. O
We provide another simple example to give sin and cos, which is nevertheless appropriate to show the expressive power

of differential recursion. In the next section, we will see that every function needed for the example is real recursive, and
conclude that sin and cos are real recursive.

Example 2.30. Consider the differential recursion schema

g(0)=(0,1)  3g(t) = (&), —g1(t)).
With the notation of (9), we have go = (0, 1) and f (t, z) = ((2)2, —(2)1).Easily, f € Dom(R). The solution can be recognised
asg = (sin, cos). O

2.5. More on the supremum limit operator

The class REC(R) is a subset of ., i.e., it is composed of partial, multiple-argument vector functions over R. This may cause
confusion, because it is not immediately obvious how the concept of infinite supremum limit applies to such functions. We
will give a rigorous, yet simple characterisation of the concept.

Any partial function f : R™ — R" can be uniquely identified with its graph. The graph of f, Gy, is a predicate over R™*",
given by:

Gr(x,z) <= x€Dom(f) and z=f(x).
Given any function f : R™! — R" and setting g(x, w) = supy..,, f (%, y), the graph of g will be given by:
Ge(x,w,2) <= (Vy>w)zi>(F&EyiAVu <z)@Fy >w)u; < (fR&,y);, fori=1,....m

In words, z is the supremum of f (x, -) for y > w if it is, component-wise, the least upper bound of f (x, y) for every y > w.
We could further extend this symbolic expression to explicitly show its dependence on Gy:

Gy (%, w, 2)
(10)
Yy > w)dv [Gf(x, YV AZ > v,—] ANVup <z)@y > w)Av Gy, v) Ay <v], fori=1,...,m.

See that G is still the graph of a function, for if some (x, w, z), Gy (%, w, v), then z = v. Now, we have that
(%, w) € Dom(g) <= 3z Gz(x, w, 2). (11)

From (10) and (11), considering most especially the underlined part of (10), we may see that if for some particular (x, w), we
have (x, y) & Dom(f) for somey > w, then (x, w) ¢ Dom(g). Thus, in order for g(x, w) to be defined, f (x, y) will have to be
defined foreveryy > w.Iff (x, y) isdefined forally > w, for some (x, w), then the predicate (10) gives the component-wise
supremum.

The same will apply to the supremum limit. Given f : R™*! — R" setting h = Lsf (i.e., h(x) = lim Sup,_, oo f (%, ¥)), we
get

Gh(x,2) <— z = supf(x,y) = wl_i)ngoog(x, w).

lim
w—~+00 y>w
Making the dependence on G, explicit, we find

Gh(%,2) <= (Ve >0)Fw > 0)(Vw > w)Iv G (X, w, V) AJlv —z| < e.

As we have seen, the underlined sub-predicate will not be valid unless f (x, y) is total for all y > w. Since w is universally
quantified, we conclude the following.

Remark 2.31. Take any fixed x € R™. If f(x, y) is undefined for arbitrarily large y, then Ls(f)(x) will be undefined, i.e.,
x & Dom(Ls(f)).

Furthermore, in order for the supremum limit to be defined, it is required that every one of its components is defined.
The following two remarks are in order:

Remark 2.32. Take any fixed x € R™. If at least one component of f (x, y) is undefined for arbitrarily large y, then Ls(f) (x)
will be undefined, i.e., x &€ Dom(Ls(f)).

Remark 2.33. Take any fixed x € R™. If at least one of limsup,_, ., (f(x,y)); is undefined, then Ls(f)(x) will also be
undefined, i.e., x & Dom(Ls(f)).

The study we have made here also applies to the remaining operators. Regarding undefinedness and partiality, we use
the same principle as classical recursion theory:
Strict undefinedness. If a function is given an undefined parameter, or results in an undefined component, then the function will
be undefined.

Eg,0x L = 1.
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3. Basic theory

This section is devoted to the basic results of real recursive function theory. We will study the most elementary real
recursive functions and operators in Section 3.1; in Section 3.2 we show a naturally-arising hierarchy of real recursive
functions. More complex real recursive operators will be given in Section 3.3. Finally, in Section 3.4, we will consider the
relationship between real recursive functions and partial recursive functionals.

3.1. Avariety of real recursive functions and operators

We begin with the most basic operations over R.
Proposition 3.1 ([24,27]). The binary addition, subtraction and multiplication are real recursive.
Proof. For addition, consider the following differential recursion scheme:
+(x,0) =x 3+ xy) =12y, +xy) = 1.
Subtraction is obtained by replacing 1 with —1. For multiplication, set
g1, %,0) = (X1, %) Bg(X1, %2, y) = V(U3, 0°)(£, 8 (x1, X2, 1)) = ((§(x1, X2, ¥))2, 0).
Then g(x1, X2, ¥) = (X1 + X2Y, X2) is the solution, and so
x(x,y) = C(U}, (g, V(0*, V(U}, U))) (x.y) = ((0.x. y)1. O

The expression for multiplication is not very simple, because we have not allowed ourselves to specify initial conditions
that depend on the parameter x. However, we said in the end of Section 2.4 that REC(R) is closed for a more general form of
differential recursion. We will soon prove this rigorously, but just now we will continue with a few more very basic facts.

Proposition 3.2. Take k scalar functions fi, . .., fp : R™ — R. Then the function F = (f1, ..., fi) is real recursive.
Proof. SetF =V(f;,V(fo, ..., V(fic1,fr)...)). O
This will allow us to simplify our notation. As a corollary we get:
Corollary 3.3. For any m, n € N, the m-ary, n-component constants — 1}, 07", 17" are real recursive.
We could invent more similar assertions, such as the following two.
Proposition 3.4. Iff : R? — R is real recursive, then so is f : R?> — R, given by f x,y) =f,x).
Proof. Take f = C(f, V(UZ,U?)). O
Proposition 3.5. Iff : R — R? is real recursive, then so is f : R — R2, given by f(x) = ((f(x))2, (f (X))1).
Proof. Take f = C(V(UZ, U?),f). O

The main point, which we will not rigorously prove to avoid the tedious details, is that any fixed switching of components,
or of the order of the arguments, or any selection of components, or a mixture of all of these things can be obtained in
a straightforward way by using projections, composition and aggregation. We will take this for granted from this point
forward. We may now prove the following, without excessive detail.

Proposition 3.6. Let ty € R be a real recursive constant, let go : R™ — R" be an arbitrary real recursive function, and let
f @ R™™1 5 R" pe a total locally Lipschitz real recursive function. Then the maximal solution g : R™"! — R" of the
differential equation

g(x,to) =go(x) dgx, t) =f(t, g, 1), %), (12)
is real recursive.
Proof. Begin by considering the following differential recursion, where z ranges over R", and x over R™:
8(z,%,0) = (z,x) 0g(z,xt)=((t+1t,8(z,x1)),0,...,0).
m

The solution exists and is unique, because the function given by (f (t+to, v), 0, . . ., 0) is locally Lipschitz. Then the solution g
verifies g(go(X), X, t —ty) = (g(x, t), X) (this is derived by a simple calculation), and so g is real recursive using composition
and projections. 0O

By using only the addition and subtraction functions, we have obtained the more general form of differential recursion
(12). We could now show that multiplication is real recursive, simply by displaying the differential recursion scheme
x(x,0) = 0,9, x (x,y) = x. By showing that REC(R) is closed under a differential recursion operator of the form (12),
we have simplified the proofs ahead.
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Fig. 1. Convergence of the shown expressions to § and @ (minus the %S(X) part).

Proposition 3.7 ([24,27]). The restrictions to the domain (0, +00) of the inverse, division and square root functions are real
recursive. The exponential, logarithm, power, sine, cosine and arc-tangent functions are real recursive. The real numbers 7 and e
are real recursive constants.

Proof. The restricted division and logarithm functions are obtained simultaneously, through the differential recursion
scheme:

1 1 1 1

1 =1 ax* = <7> 8 <7> B _72’

1=0 and X . X b b
log(1) =1, A log(x) = —.

In the differential recursion scheme of Proposition 3.6, we have t; = 1, go = (1, 1) and the total, locally Lipschitz
function f(t, z, z2) = (—(z1)?, z1). The solution is, therefore, unique, and we obtain the restricted inverse function and
the logarithm function, as intended. The following expressions, using the differential recursion scheme (12), give us the
remaining functions

(i

1

1%

=XX - glves us the restricted division;
xp(0) = 1 dy exp(x) = exp(x) solves to the exponential function;

—
o<

)
(ii)
(iii) » = exp(log(x)y) where x > 0, is the power function;
(iv) /x = x2 gives us the square root from the power function, restricted to positive x;
v) (sin, cos)(0) = (0, 1), dx(sin, cos)(x) = (cos, — sin)(x);
(vi) arctan(0) = 0, 0y arctan(x) =
(vii) e = exp(1);
(viii) m = 4 x arctan(1). O

X241

Proposition 3.8 ([24,27]). Kronecker’s § and Heaviside’s @, given by

1 ifx>0
0 otherwise;

1 ifx=0

d oK =
0 otherwise " ®) {

S(x) = {
are real recursive.

y
Proof. Set §(x) = limsup,_, o, (ﬁ) and O (x) = (lim SUPy_, o0 Hz%xy) + %S(X) (see Fig. 1). O

Proposition 3.9 ([24,27]). The sawtooth wave function, denoted by r, and the square wave function, denoted by s, are real
recursive.

Proof. The square function is given by s(x) = © (sin(7x)). We can build the sawtooth using the recursion scheme #(0) = 0
and 3,7 (x) = 2 sin(wx)%s(x) — % Wegetr(x) =s(x)f(x + 1) + (1 — s(x))r(x) (cf. Fig. 2). O

Proposition 3.10. The characteristics x— of equality, x of inequality and x - of proper inequality are real recursive.
Proof. Take x_(x,y) = 8(y — X), x<(x,y) = O(y —x),and x-(x,y) = x<(x,y) — x=(x, ). O

We will often use the characteristics of equality and inequality to define a function by cases, as in the following proofs.
We use the abbreviations y.(x,y) =1 — x=(x,¥), x> (X, ¥) = x<(¥,%) and x> (X, ) = x< ¥, X).

Proposition 3.11. The functions of unrestricted inverse (with domain R\{0}), unrestricted division (with domain R x (R\{0}))
and unrestricted square root (with domain [0, 4-00)) are real recursive.
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Fig. 2. Wave functions.

Proof. Take the real recursive function sgn, given by

1 ifx > 0,
sgn(x) = (X> (X! O) - X<(X7 0)) =30 ifx = 0,
—1 ifx <0.

Now use the restriction of % to positive x, and set

1 ifx > 0,

sgn(ox {—1)( ifx <0

>

1
— = sgn(x)
b

where in the left we mean the unrestricted inverse, and in the right we use the inverse restricted to positive values, which
was already defined in Proposition 3.7. Unrestricted division is obtained in the same way as for the restricted case. In an
analogous way, we take the restricted square root (to the right), and define an unrestricted square root (to the left):

ﬁ:xi(x,o)x\/m:{\/& ifx>0,

1 otherwise. O

Proposition 3.12. The floor function, the ceil function, the absolute value function, the Euclidean and supremum norms over R"
are real recursive.

Proof. We use the following expressions:

(i) x] =x—r1(=x);
(i) [x] =x+rx);
(i) x| = ROK) — Dx;
) Xl = (/x5 + - X3
(V) 11, %) loo = x> (21, [X2Dx1 + x< (X1, [X2)x2;
(vi) [1®lloo = 11, 1(x25 I - - - 1 (KXn—1, X llo0) - - - o) |- O

(iv

Definition 3.13. The sigmoidal function, o, is given by
X
o(x) =

1+ex’
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Fig. 3. Plot of o (x).

Proposition 3.14. The sigmoidal function is real recursive. Furthermore, for any function f : R"*! — R, we have

limsupf(x,y) =z € R <= limsupo(f(x,y)) =o(z) € (0, 1),

y—o00 y—o00
limsupf(x,y) = +00 <= limsupo(f(x,y)) =1, and
y—00 y—o00

limsupf(x,y) = —0co <= limsupo(f(x,y)) =0.

y—>00 y—>00

Proof. The expression given for the sigmoidal function is a composition of functions that we have already shown to be
real recursive, and thus o itself must be real recursive. The first property with respect to the infinite supremum limit is a
consequence of o being a strictly increasing surjection to (0, 1); we find that forany x € R",y € R,

o(supf(x,z)) =supo(f(x,2z)).

zzy zzy

We then make use of the definition of supremum limit; we know that limsup,_, . f(x,y) € R if and only if there is a
real value r such that || sup,., f(x,2)|| < r for all sufficiently large y. This is equivalent, as we have seen, to o (—r) <
sup,., o (f(x,2)) < o(r), for some r, which is a sufficient and necessary condition for limsup,_, ., o (f(x,¥)) € (0, 1) to
hold. So the existence of both supremum limits of f and o o f is equivalent. The additional fact that, when these limits are
defined,

limsupo(f(x,y)) =0 (lim sup f (x, y))

y—00 y—00
can be derived from the continuity of o and its inverse. The remaining equivalencies are proven in the same fashion. 0O
Definition 3.15. The infinite infimum limit operator, Li, and the infinite limit operator, L, are given by

Li(f)®) = liminff(x,y) ~ L()(x) = lim f(x,y);

where f : R™! — R"isin .Z.
Proposition 3.16 ([26]). REC(R) is effectively closed under Li and L.

Proof. We setLi(f)(x) = —limsup,_, . —f (¥, y).Itisknown thatlim, .« f (%, y) is defined if and only if lim sup,,_, . f (%, y)
and lim infy_,  f (¥, y) are both defined and equal, and in this case lim,_,  f (¥) = lim sup,_, . f (%, y). So we set

1 .
LO® = limsup, om0 G (0 3), Iminhow o (,y)) P/ ). O

This ends the most elementary part of real recursive function theory. We have seen that a number of functions are
real recursive. In Section 3.3, we will see that this class extends even further. Hopefully, the reader will nurture a growing
astonishment at the expressive power of such a simple inductive definition. A full and insightful characterisation will have
to wait until Section 5. In the next section, we will stratify REC(R) into a hierarchy.
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3.2. The n-hierarchy

Remember from Definition 2.26 that we use the capital letter H (eta) to designate the function algebra for REC(R).
Definition 3.17. The n-hierarchy is the rank hierarchy for the limit operator under the algebra H for REC(R). We use H,, to
denote the nth level of this hierarchy. In symbols we have:

H, = H = {f € REC(R) : rkiL(f) < n}.

A clearer picture for this hierarchy may be obtained from the following corollary of Proposition 2.15.

Corollary 3.18. The n-hierarchy is inductively given by:

(i) Hp = [-1",0", 1", U"; C,R, V],
(i) Hy = Hy U {Ls(f) : f : R™' — R¥isin H,}, and
(iii) Hpy1 = [Ha; C, R, V],

The following corollary comes from the proofs of the previous section.
Corollary 3.19. The following functions and constants are in Hy:

(i) The addition, subtraction and multiplication functions.

(ii) The inverse, division and square root functions, restricted to a positive argument.
(iii) The exponential, logarithm, power, sine, cosine and arc-tangent functions.
(iv) The numbers it and e.

(v) The sigmoidal function.

The following functions are in Hy:

(i) Kronecker’s 6 and Heaviside’s ©.

(ii) The sawtooth wave function r and the square wave function s.

(iii) The characteristics x—, x< and x .

(iv) The unrestricted inverse, unrestricted division and unrestricted square root functions.
(v) The floor, ceil, absolute value, supremum norm and Euclidean norm.

Ifty € R, gy : R™ — R, f : R™1 . R" are in H;, then the solution g of (12) is also in H;. If f : R™1 — R™ is in H;, then
Li(f), L(f) are in H;11.

Most proofs will now include the position of functions in the n-hierarchy.

3.3. Non-trivial real recursive operators

The operator Ls serves as an analogue to the minimalisation operator of classical recursion theory. However, this operator
has a distinct feature: there is a real recursive way of telling whether or not the infinite supremum limit exists.

Definition 3.20. For an (m + 1)-ary function f € .#, the n° operator gives an m-ary function, °(f), such that:

1 if limsupf(x,y) exists,
7 () x) = yoo

0 otherwise.

The 1’ and 7 operators are defined in the same way, but with respect to lim inf and lim.

Here we will show that we may obtain n(f), 7°(f) and 5'(f) when f is a total function. In fact, REC(R) is effectively closed
for these operators, i.e., our restriction on f is not required, but we will withhold the (more complicated) proof for now.

Theorem 3.21 ([27],[22]). Iff is a total function in H;, then n(f), n°(f) and n'(f) are in Hiy1.

Proof. We make the proof for a scalar function f : R™ — R; the proof generalises to the vector case, by Proposition 3.2.
The function 7°(f) is given by the following real recursive expression:

7?HHE) =1— x= <lim supo (f(x,Y)), 1) — X= <lim supo (f(x,¥)), O) .
y—00 y—00

Then limsup,_, ., o (f(*,y)) exists, because o o f is a bounded total function, and 7°(f)(¥) = 0 if and only if
limsup,_, , o (f(x,y)) € {0, 1}, which provides the intended behaviour according to Lemma 3.14. A similar expression
gives us n'(f).

We have seen that lim,_, o f (*, ¥) exists if and only if the supremum and infimum limits of f exist and are equal. If they
exist, the supremum and infimum limits of f are equal if and only if the supremum and infimum limits of o o f are equal.
For this reason n(f) can be set as

1@ = n° (@) x n'(FH(*) x x= (liynligfa(f(x, ¥)), lim suw(f(x,y))> . O

y—>0o0
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2k 2k+ 1 2k+ 1 2k+2

Fig. 4. Plot of % between 2k and 2k + 1, and of % between 2k + 1 and 2k + 2, with their respective derivatives drawn in a lighter line.

Definition 3.22. The restricted iteration operator, I, transforms an n-ary, total, locally Lipschitz function g € .# with n
components, into a total (n + 1)-ary function I(g) with n components, given by

Ig)x, 1) =g'lx) =gogo---og).
N —’
LIt]] times

The following theorem is one of the most fundamental results in the field. The differential recursion scheme that is used
goes back to the ideas of Branicky [5] and, more explicitly, Moore [24].

Theorem 3.23 ([27,22]). REC(R) is effectively closed under 1. Furthermore, ifg € Dom(I) N H;, then 1(g) € Hmax, 1)-

Proof. Let g € H; be an n-ary, total, locally Lipschitz function with n components. Let f be the (1 + 2n)-ary function with
2n components given by:

(g(2) —2) = sin(t)s(t)
ty.7) = a )
f(t.y,2) (y — z)m sin(rrt) (1 — s
cos(mt) — 14 &(cos(wrt) — 1)

The components of f are shown using a column vector; the first line gives the first n components, and we will call these the
first part of f; the remaining components will be called the second part of f. Several observations can be made:

(i) The first part of f will be zero whenever t is in an interval of the form [2k + 1, 2k + 2], and
(ii) The second part of f will be zero for t in [2k, 2k + 1].
(iii) For a fixed z, and any y : [2k, 2k + 1] — R", t € (2k, 2k + 1),
t T [t 1 — cos(rrt)
f(s,¥(),2)ds = (g(z2) —2)~ | sin(ms)ds = (g(2) —2) ———
2% 2 Jo 2

(iv) Ify is fixed, z(2k + 1) = 2o, then z(t) = zo + (y — zo)”%s(’”) is the unique solution to
y — z(t))m sin(wt)
cos(mt) — 14 6(cos(wt) — 1)

in the interval 2k + 1, 2k + 2).
(v) The function f is total locally Lipschitz, because it is the composition of a total locally Lipschitz function with g.

orz(t) =

1—cos(t) and 14-cos(mt)

To understand why (iii) and (iv) are important, we show the plot of the solutions , and of its

derivatives (see Fig. 4). Notice how these functions go from O to 1, and how the derivatives are locally Lipschitz.
So, should we take the differential recursion scheme

@.29x0=x 3y 2)xt)=f(t ¥ 2)x 1)

where (y, z) is regarded as a function from R™*! to R?", we may set*

1(g)(x, t) =y, 2[]t]]).

4 The differential recursion scheme could be changed so that the scaling 2 x ||t|] would become unnecessary.
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(c) (v, z) for the logistic function g (x) = 3.9x(1—x) with initial (d) Plotof I(g) (thickline) and I(g) (dashed line) for the logistic
value x = 0.22. function g(x) = 3.9x(1 — x) with initial value x = 0.22.

Fig. 5. Plot of y (t) and z(t) for various functions.

These functions can be explained in the following way: as t changes from 0 to 1, z is constant and y goes through the distance
from x to g(x). For t € [1, 2],y is constant and z catches up, hence z(x, 2) = y(x, 2) = g(x).If t > 2, then the same cycle
begins again, and, for everyn € N, I(g)(x,n) =y(2n) =z(2n). O

Example 3.24. You may see a plot of (y, z) for various functions in Fig. 5. The function y is shown in a thick line, and z is
shown in a thin, dashing line. O

Definition 3.25. The restricted smooth iteration operator, I, takes~an n-ary, total, locally Lipschitz function g € . withn
components, and gives a total (n + 1)-ary locally Lipschitz function I(g) with n components, such that
1(©)®, ) = y(x, 2t x=(t, 0)),
where y is given by the previous proposition.
The restricted iteration operator I(g) is not smooth; in fact, it gives a discontinuous function. The smooth iteration

operator I still verifies i(g) (x,n) = I(g)(x, n) for all natural n, but has the following advantage, which may be concluded
from Theorem 2.27.

Theorem 3.26. If g is total and locally Lipschitz, then so is i(g).
Remark 3.27. i(g) is also given by:
X ift <O,

g"(®) ift e (n

1
- — } for somen € N,
Ig)(x. t) = 2’

g"X)E + g1 —¢) ifte (n, n-+ } for some n € N.

Above, £ is an abbreviation for %
Iteration is very useful, and very powerful.

Proposition 3.28 ([31]). If g is an (m + 1)-ary total locally Lipschitz function with n components in H;, then there are two
functions S and P in Hpax,1), Such that

Linl) Linl)
Sx.n) =) gxi Pxn)=]]egxi.
i=1 i=1
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Proof. We show the proof only for S, since the proof for P is very similar. Begin by setting
Sy, i) = @®y+g&i,i+1).

Then S is total and locally Lipschitz, and (x, S(x, n), n) = i(§) (x, 0, 1, n). Thus S may be obtained by composition, projections
and aggregation. [

Very pathological functions of analysis are real recursive too. Take, for instance, the everywhere continuous and nowhere
differentiable Weierstraf function w, given by

o0
1
w(x) = Za”cos(b”nx), O<a<1,ab>1+ 57{.
n=0

As a corollary of the previous proposition, taking the sums of the continuously differentiable a"cos(b" x) to the limit, we
get:

Corollary 3.29 ([22]). The Weierstrafs function is real recursive for any real recursive numbers a and b.

There are a number of operators which are real recursive, but we may generally say that they come in two flavours.
Some of these operators make some calculations with some function, and other operators could be called search operators,
because their expressive power arises from searching for some value with certain properties. Differential recursion and
iteration are examples of the former. While not entirely obvious, infinite limits and the 1 operators are good examples of

search operators; solving an infinite limit consists in finding the value which is approximated by a function as one argument
grows.

Definition 3.30. Let f : R™"! — R be in .%. The Sup and Inf operators are given, component-wise, by

Sup(f)(x) =supf(x,y) and Inf(f)(x) = inff(x,y).
YER yeR

In a similar way to the infinite limits, Sup(f) (x) is undefined if f (x, y) is undefined for any y € R; Sup and Inf are typical
examples of search operators. In order to show that REC(R) is effectively closed for Sup and Inf, we create a periodic function,
and take the supremum or infimum limit of that function.

Theorem 3.31 ([21]). REC(R) is effectively closed for Sup and Inf. Furthermore, if f € H;, then Sup(f), Inf(f) € H;,.

Proof. Consider the functionf, given byf(x, z, w) = f(x, zsin(w)). Because sin(y) surjectively maps [w, +00) into [—1, 1],
for any w € R, we find

limsupf(x,z, w)= sup f(x,y).

w—+00 yel-z.2]

Then we set Sup(f) (x) = lim,_, ; lim sup,,,_,oof(x, z, w). We proceed in the same way for Inf. O
Another search operator is minimalisation over the reals, denoted with a (boldface) w.

Definition 3.32. Let f : R™"! — R be in .%. The u operator is given by

n(f)(®) = infly € [0, +00) : f(x,y) = 0}.

Theorem 3.33. REC(R) is effectively closed for minimalisation. Furthermore, if f € H;, then p(f) € Hmax3,i+2)-

Proof. Recall that the sigmoidal function, o, surjectively maps [0, +00) to [%, 1), preserving the order (cf. Fig. 3). Its inverse
o~ 1(y) = log(y) — log(1 — y) is undefined for y = 1. Take

~ ‘f 9 O’
Fxy) = 10,00 + -Gy, 00w = {1 20

and set u(f)(x) = o~ (Inf(f)(x)). O
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3.4. Real versus classical recursive functions

We will study the relationship between real recursive functions and classical recursive functionals. These are a class of
partial, multiple-argument functions from R¥ x N™ to N*. We will denote such a functional by using a semicolon to separate
the real-valued arguments, which we will write on the left, from the natural-valued arguments, shown in the right. For
instance F(x; n).

Notation 3.34. We use w, x, y, z to denote variables ranging over R, and a, b, c, i, j to denote variables ranging over N. The
corresponding vector forms w, x, ... and a, b, . . . will denote vector-valued variables over tuples of Rand N. O

Take the following basic functionals as examples.

(i) The zero functionals, where each Z* is such that Z¥(xy, ..., xx; @) = 0;

(ii) The successor functionals, where each $¥, given by 8%(x, ..., x; a) = a+ 1;

(iii) The projection functionals, where each ‘l,l]’-"m obeys

u]"{’m(xu ce X A, - Oy) = 4G
(iv) The oracle functionals, (9{‘, such that®
(9!‘(x1, ..., Xg; b) = x;(b) (the bth digit of the binary expansion of x;).
We write G, R and u to stand for the composition, primitive recursion and minimalisation operators. Given F
Rk x N™ — N" G : Rk x N — N™, the functional C(F, G) : Rk x N™ — N" is given by
C(F, G)(x; @) = F(x; G(x; @)).
Given two functionals F : R x N® — Nand G : R* x N™2 — N, R(F, G) : R¥ x N"*! — Nis given by
R(F,G)(x;a,0) = F(x; @),

R(F,G)(x;a,b+1) = G(x; b, R(F, G)(x; @, b), @).
The minimalisation operator 4 takes a functional F : R x N™1 — Nand gives i (F) : R¥ x N® — N such that
W(F)(x; a) = min{b € N : F(x; a, b) = 0}.

Finally, V is the aggregation operator: If F : R¥ x N™ — N', F : R¥ x N® — N are two functionals, then
V(F, G) : R¥ x N™ — N"tk comes from

V(F, G)(x; a) = (F(x; @), G(x; a)).

Now take care in the following definition. We begin by defining two classes of functions, and only then the relevant class
of functionals.

Definition 3.35. The class of primitive recursive functions, PRIV, is given by the function algebra
PRIM = [Z°, 8°, U™ e, R, VI.
The class of partial recursive functions, PREC, is given by the function algebra
PREC = [2°, 8%, U)'™; €, R, V, pul.
The class of partial recursive functionals, PRECF, is given by the function algebra (k is not fixed):
PRECF = [Z, 8%, U™, 0f™; €, R, V, pu].
Note 1. We have described functionals as functions from R* x N™ to N*, but in the literature functionals are usually defined

as functions from (N — N)¥ x N™ to N. It is important to understand that our approach is only superficially different. We
may use any simple bijection from N — N to R, and from N to N", to obtain this result. O

The reason we call PRIM and PREC classes of functions, is because the following may be trivially obtained by induction:
Proposition 3.36. Every functional in PRIM and PREC has zero real-valued arguments, i.e., has a signature R® x N™ — N",

We will then omit the R? part from the signature of functions in PRIM and PREC. In fact, we could easily take the algebras
for PRIM and PREC given, resp., in Examples 2.4 and 2.18, and show that a function(al) F : R® x N™ — N" is in the algebras
for primitive recursive (or partial recursive) functions of Definition 3.35 if and only if there are n functions f1, . . ., f, in the
algebras of Example 2.4 (resp. 2.18) such that F(; @) = (fi(a), . .., fu(a)).

To get a clearer picture of what a partial recursive functional is, we give a computational characterisation.

5 The definition is ambiguous because a dyadic rational number x has two different binary expansions. In this case, x(b) is the bth digit in the binary
expansion ending in an infinite string of Os.
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Theorem 3.37. A function f : R¥ x N™ — N is in PRECF if and only if there is a Turing machine with k + m + n tapes with
the following behaviour. If we take the binary expansion of X1, . . ., X, and write it in the first k tapes (this expansion might be
infinite), write the numbers ay, .. ., a,, in each of the following m tapes, and begin the computation; then, if f (x; a) is defined,
the Turing machine will halt after a finite number of steps, and print (f (x; @))1, ..., (f (x; @)),, in the last n tapes; if f (x; a) is
undefined, then the machine will not halt.

The rest of this subsection will be dedicated to:

(I) Showing that every primitive recursive function is real recursive, in some sense;
(I1) Proving that every partial recursive function is real recursive;
(II) Concluding that every partial recursive functional is real recursive;

To prove (I), we see that every primitive recursive function has a real extension which is real recursive.

Proposition 3.38. IfF : N™ — N" is in PRIM, then there is a real recursive total locally Lipschitz function f : R™ — R" in H;
such that

FG;a) =f(a) foralla € N™.

Proof. Our proof is by structural induction on the function algebra for primitive recursive functions. This is clearly true for
Z and 4, by taking the real recursive zero and add-one functions, and the inductive step for composition and aggregation is
trivial, using the corresponding real recursive operators. Now suppose that H : N™*! — Nin PRIM is givenby H = R(F, G),
forsomeF : N — N, G : N™2 — N, ie,

H(;a,0) =F(;a) H(Ga,n+1)=G(;n,H(;a,n),a).

Then by the induction hypothesis, let f and g be two total locally Lipschitz real recursive functions in H; such that
F(;a) =f(a)and G(; n,b,a) = g(n, b, a) foralla € N" and n, b € N. Form

fl(n, b,a)=(n+1,g(n,b,a),a)

by aggregation. Then let h be given by (n, h(a, n), a) = i(fz) (0, f (@), a, n), from which we find h € H;. This function h will
be a real recursive extension of H, and will also be total and locally Lipschitz by Theorem 3.26. O

Now recall the normal form theorem of Kleene.®

Theorem 3.39 (Normal form theorem). For every natural m,n > 0 are two primitive recursive functions U : N — N" and
T : N™2 — N with the following property. Take any partial recursive function F : N™ — N", and there will be a number e,
called a code of F, such that

(i) F(a) is defined if and only if (3b € N) T(e, @, b) = 0, and
(ii) F(a) = U(u(T)(e, @)).

By Proposition 3.38, there will be a real recursive extension of T and U, but we may furthermore ensure that:
Proposition 3.40. IfF : N™*! — Nand f : R™"! — Rin H; are such that
F(;a,b) =f(a,b) forallae N" be N
then there is another real recursive functionf : R™1 — Rin H; such that
1(F)G @) = p(f)(@ forallaeN".
Proof. Justsetf(a,y) = f(a, ly)r(y) + f(a, ly + 1)1 —r(y)). O

The functionf is justa linear interpolation of f on the last argument. If F(b) = 1 when b is not a prime, and F(b) = 0 if
b is a prime, then the f we would obtain is shown in Fig. 6.
We now get the following corollary.

Theorem 3.41 ([27] and See Also [16]). IfF : N™ — N" is in PREC, then there is a real recursive function f : R™ — R" in Hs
such that

F(;a) ~f(a) foralla € N".

Proof. LetU, T be the primitive recursive functions given by the normal form theorem, u, t be their real recursive extensions
given by Proposition 3.38, and let f be given from t by the previous proposition. For any partial recursive function F, let e
be one of its codes. Then set f (x) = u(u(f)(e, x)), and conclude that f is a real extension of F. The function f will be in Hs,
because u, t are in Hy, and by Proposition 3.33. O

6 Real-recursion theory also admits its own normal form theorems [cf. [18,21]].



J.F. Costa et al. / Annals of Pure and Applied Logic 160 (2009) 255-288 275

Fig. 6. A plot off (y), where F(b) is given by the dots.

Thus concluding (II); in order to prove (III), we use the fact that any converging computation will always make use of
only a finite part of the oracle.

Definition 3.42. If x € R¥, then let x/" denote, for some n € N, the vector in N¥ given by
xrf = (x1]n X 2", ..., XkIn X 2™), where x|, denotes truncation of x to n digits in its binary expansion.

Proposition 3.43. The function given by f (x, n) = x| is real recursive.
Proof. For x € R, x[, x2" = |x2"]. The rest comes from aggregation, etc. O

We can now use Theorem I1.3.11 from [32], which for our purposes can be formulated as follows.

Proposition 3.44. A functional F : R¥ x N™ — N" is in PRECF if and only if~there is a partial recursive function F:Nktm 5 Nm
with the property that F(x; a) >~ b if and only if there is an n € N such that F(; x [?, a) >~ b.

The following corollary can be understood as saying that for any given input the behaviour of a recursive functional only
depends on a finite part of the oracle.

Corollary 3.45. Ifa functional F : R* x N™ — N" is in PRECF then Ehere is a partial recursive function F : N¥t™ — N" with the
property that F(x; a) >~ b if and only if there is an m € N such that F(; x {f, a) >~ b for all naturaln > m.

And so we conclude this section, with the following result.

Theorem 3.46. IfF : R* x N™ — N" is in PRECF, then there is a real recursive function f : R¥t™ — R" in Hy such that

F(x;a) ~ f(x, a) forallx € R*, a € N™.

Proof. Let F be given from the previous corollary, and let f be a real recursive function in Hs extending F. Then take

fa@ = lim f@&il,.a
and f € Hy willextend F. O

We have shown that every partial recursive function or functional has a real recursive extension. However, the class of
real recursive functions stretches much further. We will see in Section 5 that any predicate in the analytical hierarchy is

real recursive, and as a corollary many non-computable functions, such as the Busy Beaver function, have real recursive
extensions.

4. Universality

This section is devoted to solving the problem of universality. We will begin Section 4.1 with a series of considerations
on the Euler method to approximate solutions of our simple differential recursion scheme (7). Our first conclusion will be
that we may replace differential recursion with the restricted iteration operator of Definition 3.22, by adding a few basic
functions to the algebra H. With this, we will form a new algebra I that also gives REC(R). In Section 4.2 we show that we may

totalise any real recursive function, and this will solve the problem of universality, in the negative sense: we will conclude
that there is no universal real recursive function.
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Fig. 7. The bounded Euler broken line, for x = 1 and f(t, y) = y, with various values of M and z.

4.1. The Euler method and differential recursion

Let f : R™! — R" be a total locally Lipschitz function; consider again the Cauchy problem
g(xs O) =X afg(xs t) :f(tvg(x» t)) (13)
We study some interesting properties of the Euler method to approximate solutions to (13).

Definition 4.1. The Euler broken line for the Cauchy problem (13)is a total function g : R""? — R”" satisfying the following
conditions. For any fixed z > 0,let § = % to = 0, ti 1 = t; + 8. Abbreviate g(x, t, z) = g,(x, t). Then g is given by:
& (x, b)) =x;

ift; <t < tiyq, then

gz(x’ t) = gz(xs tl) + (t - ti)f(tis gz(xv tl))z

and if —t;11 < t < —t;, then

gz(& t) = gz(x’ _tl) - (t + ti)f(_ti’ gz(xv _tl))

The bounded Euler broken line for the Cauchy problem (13)is the total function g : R"*3 — R" described below. We set §, t;
as before, and abbreviate g(x, t, M, z) = 8y . (&, t). Let j, k denote the smallest natural numbers such that ||, (x, —t)|| > M
and ||g; (%, ty)|| > M. If there is no such k (or j), then ty_ (resp. —t;_1) will denote oo (resp. —co). Then g is given by

gz(x, _tj—1) lft < —[j_]
gM,Z(xs t) = gz(x, t) if — tj,1 <t< tk,1
g’z (x, t—1) ifty_q <t.
The bounded Euler broken line is a piece-wise linear approximation of the solution g of (13), using Euler’s method, which

is bounded in the norm by a value M, and where the number of approximation steps for a segment of length 1 is given by z.
Fig. 7 illustrates how the bounded Euler broken line looks for different values of M and z.
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Theorem 4.2. Let g be a solution of (13), and let g be its Euler broken line. Fix an arbitrary ¥ € R", and compact interval
J C Dom(g). Then, for every large enough M € R, the function gy ,(x, -) converges to g(x, -) uniformly inJ asz — +o0. In
symbols,

(Ve > 0)AM(YM > M)3z(Vz > Z)(Vt €]) |En.. (X, t) —g(x, )| < ¢.
Proof. Take any ¢ > 0. By the compactness of ] and continuity of g (Theorem 2.27), set

M > nge;xllg(x, Ol +1t] + €. (14)
€

Let B denote the closed (compact) cylinder B = J x B(0, M) C R™"!. Because f and g are locally Lipschitz (Theorem 2.27),
then choose two constants Ky and K, such that

g, ©) —g@®. D) <Kglt —t| forallt,e; (15)
If & 3) —fE. DI < Krlt — t| + Klly —yll forall (¢,), (,3) €B. (16)
Choose K € R to be greater than both Ky and K; + 1, and choose z and §, so that letting d; denote the diameter of J,

1 Kd; _ 1 _ =t
z > —K(9 — 1), §=—, th =0, tiv1 =t +9.
e z
We will show, by induction on i, that setting A; = ||gu .. (X, t) — g(x, t)||, then
1
A < 51(8(e’“ -1

for any positive t € J. Because of our choice of z, this ensures that A; < ¢, which is what we intend to prove. The hypothesis
is true for t; = ty = 0, because Ay = 0. Now suppose it is true for some t;. Then, choosing any t € [t;, ti1] N ],

Ar = 8., t) —gx, D) =

gM,Z(xv 0) - g(X7 O) + / f(tiv gM,Z(Xv tl)) _f(sv g(xv S))ds
0

N

Ay + / If (i, 8m.2 (%, t:)) — f (s, g(x, 5)) | ds
ti

N

t t
At,‘ + / ”f(tlv gl\/l,z(xv tl)) _f(tiv g(X, tl))“ds + / ”f(tlv g(X, tl)) _f(sv g(xv S))”ds
t tj

By induction hypothesis, A;, = [|8u; (%, t;)) — g(*, t)|| < &, and so (t;, gu,;(X, t;)) € B. Then we may apply the Lipschitz
properties (15) and (16) to the integrals, and find

t
/ |s — t;j|ds
t

which implies A; < (14 K(t — t;)) Ay, + %KZ (t — t;)%. Using again the induction hypothesis, and (t — t;) < 8,

A < Ay + Kt — ) Ay + Kp (K + 1)

Ap < %I(Se’“"(l +K(t—t;) — %1@(1 +K(t—t) + %Kzé(t —t).
Now, because 1+ x < e* and K? > K, we arrive at

Ar < %K(S(e’“ -1 <e,
as intended. The proof is symmetrical for a negative t. O

Corollary 4.3. If g is a solution of (13), and g is its Euler broken line, then

limsup limsup gy (%, t) = g(x,t) for (x,t) € Dom(g).

M—+o00 z—>+00

We may, in fact, obtain the following.
Proposition 4.4. If g is a solution of (13), and g is its Euler broken line, then

limsup limsup gy , (%, t) >~ g(x, t).
M—>+400 z—+00 '
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Proof. We already know that g will equal Ls(Ls(g)) where it is defined, and so we only need to show that Ls(Ls(g)) will
be undefined where g is undefined. This is an easy conclusion derived from Theorem 2.25, and from the definition of the
bounded Euler broken line. For any fixed x, and any compact interval J, we have two cases. Either that g(x, -) is bounded in
J.and solimsup,_, , ., 8w (X, t) = g(x, t) forevery t € ] and every large enough M; or otherwise lim sup,_, - [Ig(x, t)|| =
+oo for some positive B in J (the case is symmetrical for a negative A). In this case, g will be continuous and defined for
every 0 < t < B.So let ty; € J be the smallest value for which ||g(x, ty)| > M, i.e,

ty = min{t €] : |lg(x, tm)]| > M}
(which is well-defined because g is continuous). Then by the definition of g

{g(x, t) ift < ty,

l Bz (%, 1) = i
imsup gy . (X, t) gx, ty) ift > ty.

Z—+00

By the continuity of g, ||g(x, t)|| is always bounded for any compact interval [0, T] C [0,B),andsoty > Tif M >
maxepo,r] 18X, t)]|. So ty — Bas M — +4oc. We may then conclude that

lim sup lim sup ||gy . (®, t)|| = 400
M—+00 z—+o00

forany t € [B, +00), and so [B, +00) is disjoint from Dom(Ls(Ls(g)). O
The Euler broken line can be obtained in a real recursive way.
Proposition 4.5 ([9,22]). For any real recursive f in Dom(R), the Euler broken line g of g = R(f) is real recursive.

Proof. Let b be given by

1 iflly+38xft, | <M;
b(t,y,a,M>=x<<||y+sxf(r,y>||,M>={0 ly 0 fit. )l
otherwise.
Now take the auxiliary function g, given by
g(t,y, 8, M) = (t+8 x b(t,y,8,M),y +8 x f(t,y) x b(t,y, 8, M), 8, M).

It is straightforward to see that if f is real recursive, then so is 8. The function g calculates the point (t;11, &v .- (X, tit1), 8, M)
in the bounded Euler broken line, when given the currentt = t;,y = g,(%, t;),8 = % and M.If6 = — % then g will calculate
(—tiy1, & (x, —tiy1), 8, M) instead. We may then use another function, g, with its ith component given by:

_ Altz) t
(g(xa t,M,Z)),‘: g Oax577M .
Itlz i1

The function g, given t, z, M, calculates g(x, t;) for the largest t; < t. Then & may be given by a linear interpolation:

Su.xt) =r(zt)gx, t,M,z) + (1 —r(zt))g (x, t+ ; M,z) . O

Supported by this proposition, we define the following new operator.

Definition 4.6. The Euler operator E : & — .#, takes a total locally Lipschitz function f : R™*! — R" and maps f — &,
where g is the Euler broken line of Definition 4.1.

Then Proposition 4.5 is equivalent to saying that E is a real recursive operator. We may, however, take the following
stronger result.

Theorem 4.7. The class of real recursive functions is also given by the function algebra
[-1",0", 1", U}; C,E, Ls, V].

Proof. Clearly this function algebra only gives real recursive functions, because REC(R) contains every basic function and is
closed for every operator by Proposition 4.5. However, because R = Ls o Ls o E (Proposition 4.4), this algebra will also give
us every real recursive function. 0O

We will, however, use the following.

Theorem 4.8 ([22]). The class of real recursive functions is given by the function algebra

REC(R) =1=[-1",0",1", U}, +, x,¥; C, 1, Ls, V].

Above, +, x and ¥ denote the binary addition, multiplication and exponentiation (the later being undefined for negative
bases).
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Proof. We only need to show that we may obtain E using only restricted iteration, +, x, ¥’ and the remaining operators.
But looking at the proof of Proposition 4.5, we see that this is the case, but we additionally use restricted inverse 1/-, the

characteristic of strict inequality x., the absolute value function | - |, the Euclidean norm || - ||, and the floor function |-].
However, all of these may be obtained from the basic functions: % = x~!; the expressions given in Proposition 3.8 may still
be used to give Kronecker’s § and Heaviside’s ® — and thus x. and | - |; the Euclidean norm comes from /- and x, and

JX = x%; finally, iterating the successor function s(x) = x + 1 we get [x| = I(s)(0, x). In this way, we may obtain E using
the shown function algebra. O

This specific function algebra was named, using the capital Greek letter I (iota), because it will be fundamental in most
of the following results.

4.2. Totalisation operators and universality

We will solve the problem of universality in two steps. First, we show that any real recursive function can be extended
to a total function. Then, we show that if there were a universal real recursive function, this would be impossible.

Definition 4.9. Given a function f : R™ — R" in .#, its totalisation is a function (xy, 77) : R™ — R""!, such that

1 ifx € Dom(f),
0 otherwise;

f(x) ifx € Dom(f),

xr(®) = { (%) = {0 otherwise.

Theorem 4.10 ([22]). Iff is a real recursive function, then so is its totalisation.

Proof. The proof is by structural induction on the algebra I. Because the basic functions are all total, the result is trivial
for the basic case. If f is C(g, h), then the totalisation of g and h is real recursive, by the induction hypothesis, and then
X (X) = xg (th(®)) X xn(X), 77 (X) = 75 (Th(X)) X xn(x) gives the result for composition. The result is also trivial for restricted
iteration, because it maps total functions to total functions. Now, if f is Ls(g), then the totalisation of g must be real recursive,
by our induction hypothesis. Then, for any x,

f*) =limsupg(x,y),
y—>0o0

and we must have one of the two cases:
(i) g(x,y) is defined for every large enough y; in symbols,
W (Vy > ) (*.y) € Dom(g);
(ii) g(x, y) is undefined for arbitrarily large y; in symbols,
vy(3Fy > y) (*,y) & Dom(g);

In the first case, then clearly f (x) = limsup,_, ,, 7;(x, y), but in the second case, this might not be so. However, we have
that

lim sup [ (%, ) + (1 — xg(x,¥))y]

y—00
will be defined if and only if f (x) is defined,” and will be equal to f () if it is indeed defined. So we may set
Xr®) =11 (tg + (1 = xg) x Uy H®)
(%) = xr(®) x limsup (xr (%) X 75(x,¥)) .
y—00
The induction step for aggregation is very simple: if f is V(g, h), we may use the induction hypothesis and set x;(x) =
Xe@®) X xn(®) and 77 = (75, ). O

Now we may solve the problem of universality. We will simplify our result by making the following assumption.

Assumption on Godelisation. There is an effective enumeration d, of all the descriptions in D;. O

This assumption can be made into a theorem by any standard method of encoding. Whenever d. is a good description
(Definition 2.5), ¢, will denote the described function, and e is said to be a code of ¢.. We may then specialise Definition 2.16
into the following form.

7 Recall that we treat 400, —oo and L in the same way. If this is somehow confusing, remember that we may use the sigmoidal function, as we did in
order to prove Propositions 3.16 and 3.21.
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Definition 4.11. A real recursive function ¥ : R™! — R" is called universal if for every e € N, x € R™, we have
V(e X) = Pe(X)

whenever d, is a good description of an m-ary function with n components (decidability of this condition allows us
distinguish such cases).

Theorem 4.12 ([22,30]). There is no universal real recursive function.

Proof. A diagonal argument, very similar in nature to its counterparts in classical recursion theory, will give us reductio ad
absurdum. For clarity we present only the case when m = n = 1, but the argument may easily be extended. Suppose that
there was a universal real recursive function ¥ : R*> — R. Then by the previous theorem we could find its real recursive
totalisation yy and 7y, and the function given by

1 ifx &€ Dom(¢y),

g(x) =log(1 — xy (x,x)) = log(1 — x¢, (%)) = { 1 otherwise:

would be a real recursive function of arity 1. So let e be a code of g. We have that e € Dom(g) if and only if e & Dom(¢,),
which is the contradiction we sought. O

5. Understanding REC(R)
We have shown in Section 3.3 that REC(R) is effectively closed for the Sup and Inf search operators. We may strengthen
this result in the following way.
Theorem 5.1 ([21]). The class of real recursive functions is given by the function algebra
REC(R) = [—1",0", 1", U}, +, x,¥; C, I, Sup, V].

Proof. Let 4 denote the given algebra. All we have done was to replace the infinite supremum limit by the supremum in
the algebra I. We know that I is closed for the supremum operator, and so all we need to show is that we may obtain the

infinite supremum limit in the algebra «. This algebra is also closed for the infimum, because Inf(f) = —Sup(—f). But by
definition,
limsup f(x, y) = inf sup f(x, z) = inf supf(x, z° + y),
y— 00 YER 75y YER zeR

and so + is also closed for Ls. O

We therefore reduce our original function algebra to a fairly trimmed down inductive definition. However, in this section
we will show that the expressive power of this function algebra is much greater than what was anticipated. In Section 5.1
we will introduce the analytical hierarchy of predicates, and show that the graph of any real recursive function is in this
hierarchy. In 5.2 we will show the converse, that any function with a graph in the analytical hierarchy must be real recursive.
The expressive power of the analytical hierarchy is evidently great, and so this result explains why it seems to be so hard to
find a function which is not real recursive.

5.1. The analytical hierarchy

The analytical hierarchy is a hierarchy of predicates of second-order arithmetic, and is studied in a variety of contexts. It
was originally devised by Lusin (1925) for the then-incipient field of descriptive set theory and discovered independently
by Kleene (1955) in the study of recursion on higher types. The name ‘analytical’ is used because second-order arithmetic
allows for the formalisation of elementary analysis.

We present the analytical hierarchy of predicates, and relate it with the n-hierarchy.

Definition 5.2. A predicate P over real and natural numbers is called recursive if there is a partial recursive functional F

such that
1 if P(x, a) holds,
0 otherwise.

F(x;a):{

A predicate Q over real and natural numbers is called arithmetical if it is given using natural number quantifiers over a
recursive predicate, i.e., if for some recursive predicate P,
Qx, a) <= (Vby)(3by) ... (Vby_1)(3bn)P(x, a, b).

Definition 5.3. The analytical hierarchy of predicates consists of three N-indexed families of predicates over real and
natural numbers:

(i) X is the class of arithmetical predicates, and [T = X.
(ii) EJH is the class of predicates given by 3y P(x, y, @), with P in 1'[,}.
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(iii) I7,, is the class of predicates given by Vy P(x, y, @), with P in X.
(iv) Ay =X} nm).
We will call analytical to the predicates in the analytical hierarchy. We write A! to stand for Upen A, which is exactly
the set of all analytical predicates. We will make abundant use of the following result [cf. [32, p. 377]].
Proposition 5.4. (a) Zr} 41 is closed for existential quantification over R.

(b) I'In1 11 s closed for universal quantification over R.
() 1'1”1Jrl and Er}ﬂ are closed for existential and universal quantification over N.
(d) We may exchange quantifiers over N with quantifiers over R, i.e.,

(di) If P € X! then some P also in X! is such that Ya P <= Vx P.

(dii) IfP € IT] then some P also in IT] is such that 3a P <= 3x P.
Recall the following definition from Section 2.5.
Definition 5.5. The graph of a function f : R™ — R", denoted Gy, is the (n 4+ m)-ary predicate given by
Gf(z,x) <= x<cDom(f) Az =f(x).
Definition 5.6. We say that a function f : R™ — R"is in X if its graph is in X. Similarly for /7] and A}.

We know that quantifiers may be used to express a rich variety of mathematical ideas, and so we expect that there are
many functions in the analytical hierarchy.

Propesition 5.7. The functions 1", 1", 0", U}, +, x, ¥, | - | and |- |, as well as the predicates of equality and inequality over the
reals, are in A}.

Proof. We begin by showing that there is a recursive way to decide the predicate over the reals given by the expression ‘x
and y are not different up to the nth digit’, written x =, y. An algorithm to decide this predicate needs to solve the ambiguity
of the representation of a real number by binary expansion, and we can make it work in the following way: given two real
numbers x, y and a natural number n, we obtain the first n digits of the two reals and verify if they are the same. If they are,
then we decide that x =, y. If the digits are not equal we consider the first different digit — one is 0 and the other 1 — and
check if the digits after the 0 are all 1's and the digits after the 1 are all 0’s.2 If so, then we decide that x =, y, and we decide
that x#,y otherwise. The predicate of real number equality is then given by: Vn x =, y, which is in A}). For the function +,
we define a predicate, of the expression z =, x + y, that decides if z = x + y for the first n digits of z, x and y. This function
computes the sum of the truncations of x and y to the nth fractionary digit and checks if resulting rational number coincides
with z to the nth digit using the method shown above. If so, the function is valued 1, and 0 otherwise. Now we have that
z =x+yifand only if Vn z =, x + y, which is Aé. The proof is similar for the remaining operations. [

A single real number can code any finite tuple of real numbers by alternating the digits of the real numbers in the tuple
(we will make use of this fact in the next section). In this sense, we write y, ; to stand for the ith real number in the n-ary
tuple coded by y. For an m-ary tuple y, we write y, ; to stand for the tuple ((¥1)n.i, - - - » Vm)n,i)- Then it is not hard to see

that if some n-ary predicate P is in A} (or X}, or IT}), then the (n + 1)-ary predicate p given by
P.m) <= (¥i <mP@n)
isalsoin A} (resp. X1, IT)).
Proposition 5.8 ([21]). All real recursive functions belong to the analytical hierarchy, in the sense of Definition 5.6.

Proof. The result is proved by induction on the structure of REC(R) presented in Proposition 5.1. Proposition 5.7 gives us
the result for the atomic functions. Proposition 5.4 will suffice to show closure under the operators. If f and g are in X!, then

C(f,g)isin X, since:
z2=Cf,9)®) < Jyz=fy)ry=8®.

Let f be an m-ary total locally Lipschitz function with m components in X!. Then I(f) is in ¥ sincez = I(f)(x, y) if and
only if

w3k [k = [lyl] Awir =@ A (Vi <) Wiirr = FWie)] Az = wi].
Iff is an (m + 1)-ary function in X}, then Sup(f) € IT, ; € X, since

z=Sup(f)(x) <= (Vi<mVyz > (f&*y)iNVZ<z)Fyz < (F* ).

Furthermore, if f, g are in X! then V(f, g) is trivially also in ¥!. O

8 E.g.x = 101.110000 and y = 101.101111, where the first different digit is underlined.
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5.2. Real recursive functions and the analytical hierarchy

In this section, we show one of the most important results of this text:
Theorem 5.9 ([21]). REC(R) is the class of functions with a graph in the analytical hierarchy, i.e.,
REC(R) = {f : the predicate given by z = f (x) is in Allu}.

This will be carried out in a few steps. We have already shown in the previous subsection that every real recursive
function has a graph in the analytical hierarchy. We will now prove (I) that every predicate in the analytical hierarchy has a
real recursive characteristic, and (II) that if the graph of a function has a real recursive characteristic then the function itself
is real recursive.

Proposition 5.10 ([27]). The characteristic of every predicate P € IT 11 has a real recursive extension.

Proof. We use the normal form theorem [32, p. 380] for 1‘[]1 predicates, which states that P € 1711 if and only if some
recursive predicate R verifies

P(x,a) < VydbR(x,y;a,b).

But then, setting Q (x,y; @) <= 3b R(x,y; a, b), we get a predicate Q € X? C AY.° From Shoenfield’s limit lemma [32,
p. 373], there must then be a recursive functional G such that
. 1 if 3b R(x, y; a, b) holds
lim G(x,y;a,b) = X, y,a) = .
b—+o00 .y )= Xo.y @) {0 otherwise.

Above, the variable b ranges over the natural numbers. Therefore, by Proposition 3.46, G must have a real recursive extension
g, and so the characteristic of Q:

lim gx,y,a,|z]) = xo®* ;0
Z—>+00

must also have a real recursive extension. We then set

. 1 if P(x, a) holds
x,a) = inf X,y,a) = .
Xp (%, @) A}ER Xo(.y. @) {O otherwise. O
Proposition 5.11 ([21]). The characteristic of every predicate P in the analytical hierarchy is real recursive.

Proof. All predicates in A} C [1] have real recursive characteristics, by the previous proposition. We now show that if
P is an (n + 1)-ary predicate with a real recursive characteristic xp, then there are real recursive characteristics of the
predicates given by VyP(x, y) and JyP(x, y). We have shown in Proposition 3.31 that if a function is real recursive, then so
is its supremum and infimum over R. So we have that VyP(x, y) if and only if Inf(xp)(x) = 1 and that yP(x, y) if and only
if Sup(xp)(x) = 1. In this way we conclude that all analytical predicates have real recursive characteristics. O

The proof of (I) is easy for scalar functions.
Proposition 5.12 ([21]). Let x; denote the characteristic function of the graph of f : R™ — R, i.e.,
1 ifz=f(x)

Z,X) = .
X (2 %) 0 otherwise.
If xs is real recursive, then so is f.

Proof. We construct a search operator, somewhat like minimalisation, but with the whole R as search domain. Consider
again the function o (x) = 1~eTex and its inverse o ~1(y) = log(y) — log(1 — y). The function o surjectively maps R into (0, 1).
So let

o
Fx,2) = (1 — xp(z.0) + 152, 00 (2) = {;’(2) he =,
We may then set

f@® = o '(Inf(F)(x)). O

Because every graph of every function in the analytical hierarchy must be real recursive (Proposition 5.11), and if the
graph of such a scalar function is real recursive, then so is the function itself (Proposition 5.12), we get the following.

Corollary 5.13. Every scalar function in the analytical hierarchy is real recursive.

9 These are levels in the arithmetical hierarchy, which is defined in a similar way to the analytical hierarchy; cf. [32, p. 367].
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Notice that the class of functions with a graph in the analytical hierarchy is closed for component selection, and this
immediately gives us Theorem 5.9. But we may make a more explicit proof.

efinition 5.14. The function ¥ is the injection from (0, 1) to (0, 1) given by
Definition 5.14. The function ¥ is the injection fi (0, 1)? to (0, 1) given b
0 . .
76 y) =y D, )27 4+ D(y, )27,
i=1
where D(x, i) denotes the ith digit of the binary expansion of x; 7; and j,, denote each component of the inverse of 7, given by
(o] . o0 .
7@ =Y D@ 2i—-127, @ =) D227
i=1 i=1
Then we set y, y4, ¥ to be given by

y(x,y) =y X),00), n@ =0~ (@), 12(2) = 07 (72(2)).

We may easily see that i, y; and y, are scalar functions in the analytical hierarchy, forming an injection from R? to (0, 1).
So by Corollary 5.13, with the use of composition and aggregation, we conclude the following.

Proposition 5.15 ([26]). The functions y, y, and y, are real recursive. Furthermore, for every n there are two real recursive
functions y,, : R" — (0, 1) and its inverse y;l : (0, 1) — R" forming an injection from R" to (0, 1).

We could construct such functions H3 by using sums and infinite limits. The following final corollary implies Theorem 5.9.

Corollary 5.16. Let y; denote the characteristic function of the graph of f : R™ — R If x; is real recursive, then so is f.

Proof. Consider the function f , given by

f@) =y,(f()).
Then f is scalar, and its characteristic function is given by

1 ifze (0,1)and x;(y,'(2),%) =1,
0 otherwise.

Xj (2, %) = {

This expression gives a real recursive function, and sof is real recursive by Proposition 5.12. But then f (x) = y, 1 (f (x)),and
therefore f is also real recursive. O

6. Towards solving the problem of collapse

Consider the rank hierarchy for the infinite limit operator under the algebra I:

Definition 6.1. The (-hierarchy is the rank hierarchy for the limit operator under the algebra I for REC(R). We use I, to
denote the nth level of this hierarchy. In symbols,
I = Hy"™ = {f € REC(R) : tkl((f) < k}.
A clearer picture for this hierarchy may be obtained from the following corollary of Proposition 2.15.
Corollary 6.2. The (-hierarchy is inductively given by:
(i) Io = [-1",0", 1", U}; G, L, V],
(i) I = L U{Ls(f) : f : R™ — R"isin 1}, and
(iii) Igg1 = [I; C, L V]
The purpose of this section is to show that the ¢-hierarchy does not collapse. In Section 6.1 we show that REC(R) is closed
for unrestricted iteration, and that there is a real recursive way to manipulate stacks of functions. In Section 6.2 we construct

restrictions of universal real recursive functions for bounded levels in the (-hierarchy. In Section 6.3 we will conclude that the
t-hierarchy does not collapse, and explain why this result does not immediately imply a similar result for the n-hierarchy.
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S dup(S,n)
S swt(S,n) # #
S
# Ly I
# : .
Y In : dui)n)
I .
tlﬁ) . Ty s Ty &1
: SWEL) & Tn
I

Fig. 8. Applying tp, swt and dup to a stack S.
6.1. Unrestricted iteration and stacks

From the previous section we immediately see that REC(R) is closed for unrestricted iteration.

Definition 6.3. The iteration operator I maps any n-ary function f with n components into an (n + 1)-ary function with n
components I(f), given by

1)) =f1@) =fofo--of(x).
N— ———

Lt]] times

Notation 6.4. When the given number of iterations is expected to be a natural number, we omit the flooring and absolute value
symbols in the number of iterations. Then f"(x) is an abbreviation to f." (x).

Proposition 6.5. REC(R) is effectively closed under 1.

Proof. The analytical hierarchy is easily closed under I, by using the same expression we have used in the proof of
Proposition 5.8 to obtain unrestricted iteration. O

Using this unrestricted iteration operator, we may find a way to manipulate stacks of real values by using the pairing
function y of the previous section. We denote a stack of real numbers by #x, ... x;, where # marks the top of the stack.
We represent an empty stack by the number 0. The stack #x,, . . . x; is represented with the number y (x,, ...y (x1,0)...).
Recall that the range of y is (0, 1), and so there is no risk of confusing an empty stack with a non-empty stack.

We can then define four basic stack manipulation functions. The psh function, which pushes a value on top of the stack,
is given by psh(S, x) = y(x, S). The pop function removes the top of the stack: pop(S) = y»(S). The top function gives
the value on the top of the stack, and 0 if the stack is empty: top(S) = (1 — §(5))y1(S + %8(5)). The emp function gives
1 if the stack is empty and 0 otherwise: emp(S) = §(S). We abbreviate top(pop"~1(S)) = tp(S, n). More complex stack
manipulation functions can be defined using the four basic functions. The function swt, for instance, pushes the top of the
stack into the (n + 1)th position: swt(S, n) = U{‘(I(f)(S, 0, n, 0, 2n + 2)), where

(pop(51), 0, n, top(S1)) ifr=0andn > 0,

(pop(S1), psh(S,, top(S1)),n —1,r) ifr #0andn > 0,
f(513527n7r): .

(psh(S1,71), S, 0, 0) ifr #0andn =0,

(psh(S1, top(Sz)), pop(Ss), 0, 0) ifr=0andn = 0.

Notice that the above definition by cases can be implemented using the characteristics of equality and inequality, along with
products and sums. The function dup duplicates the top n elements of the stack: dup(S, n) = U{‘(l(g)(s, 0,0,n,3n+ 1)),
where

(pop(S1), psh(S,, top(Sy1)),0,n — 1) ifn > 0,

(51,52, 5,,0) if n = 0 and emp(Ss3),
(psh(S1, top(S3)), pop(S,), S3, 0) if n = 0 and not emp(S,),
(psh(Sy, top(S3)), S», pop(Ss3), 0) if n = 0 and not emp(S3).

g(51,52,53,n) =

The effect of tp(S, n), swt(S, n) and dup(S, n) on the stack S are illustrated on Fig. 8.
In the next section, we will construct the universal real recursive functions ¥,"" for m-ary, n-component functions in I,
by manipulating an analogue of an execution stack.



J.F. Costa et al. / Annals of Pure and Applied Logic 160 (2009) 255-288 285

6.2. Universal level-bounded functions

We show that the :-hierarchy does not collapse by constructing functions lPkm'" which are universal for .

Definition 6.6. A function ¢,"" : R™! — R" s called a universal function for I, if for every good description d™" with
rk(d}"") < k, and every x € R,

(e, X) = " (%)
Theorem 6.7 ([22]). For any m, n, k, there is a universal function l,I/,{"""'for Ig.

Proof. We construct functions that simulate any real recursive function step-by-step, given its code, by maintaining two
stacks. On the first stack we keep real values and on the second stack we maintain codes of descriptions of real recursive
functions or of stack manipulation instructions. A switch instruction swt(-, n) is represented by the number 3n + 1, and a
duplicate instruction dup(-, n) is represented by 3n + 2. The description d, is represented by 3e. If the description in the top
of the second stack describes an n-ary function, it is expected that n real values are in the first stack, each corresponding to
one argument, with the last argument on top. To implement the aggregation operator, it will be necessary to duplicate and
switch the contents of the stack, and that is why we encode the swt and dup instructions. Let ¥, be given by:

1

(psh(pop"(51), 1), pop(S2)) if gtop(Sz) is (funqn),
1

(psh(pop"(S1), —1), pop(S2)) if gtop(Sz) is (fun_qn),
1

(psh(pop"(51), 0), pop(S2)) if gtop(Sz) is (fungn),

1

(psh(pop™(S1), tp(S1.n =i+ 1)), pop(S))  if StOp(Sy) is (Funyp),
1

(psh(pop?(S1), tp(S1, 2) + top(S1)), pop(Sy))  if gtOP(Sz) is (funy),

1
(psh(pop?(S1), tp(S1, 2) x top(S1)), pop(Sz))  if gtop(Sz) is (fun,),

(51, 52) = "
(psh(pop?(S1), tp(S1, 2)©°PCV), pop(S,)) if gtop(Sz) is (funy),
L1 .
(S1, psh(psh(pop(S2), 3e1), 3ez)) if gtop(sz) is (Opc, de;, de, ).
1
(Pop(Sy), pshH PSP (pop(s;), 3e)) if top(S;) is (Opy. de).
1 .
(S1, aggr(pop(S2), 3e1, 3e2)) if 3top(S2) is (Opy. de;» dey ).
(swt(Sy, n), pop(S2)) if top(Sy) is 3n + 1,
(dup(S1, n), pop(S2)) if top(S,) is 3n + 2,
(S1, S2) if emp(S,)

where for every m-ary descriptions d., with n components and d., with k components, aggr(S, 3eq, 3e;) carries out the
following pushes to the stack S (the corresponding instructions are shown in parenthesis):

(i) push 3m + 2 (duplicate the top m elements);
(ii) push 3e; (apply the function described by e1);
(iii) push 3(m +n — 1) 4+ 1 a total of n times (move the result of applying this function below the previously duplicated
values);
(iv) push 3e, (apply the function described by e;).

By induction on the structure of I we conclude that if S; encodes a stack with the real numbers x,, ..., X1, ¥;, ..., y1,and
S, encodes a stack with the numbers 3e, ey, .. . e, where d, describes an n-ary function with m components and rk(d,) = 0,
then, by iterating ¥y, S, will eventually contain only eq, ..., e, and then we will have m real numbers in the top of Sy, given
by each component of ¢.(x1, . .., X;), followed by y;, . . ., y1. This is illustrated by Fig. 9.

We may set

Wo(S, €) = Uf( lim 1(%)(S, psh(0, e)),

and then ¥ is a universal function when the input and output is given using a stack. Now we set
(¥y"" (e, %))i = tp(¥o(psh(0, x), 3e), 1);
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Fig. 9. Stack manipulation by .

obtaining a universal function for Io; above, psh(0, x) abbreviates psh(. .. psh(0, x), ... xn).
Now, for every k > 1, we define ¥ as

1
- lim sup ¥_(psh(Sy, y), 3e), pop(S if —top(S,) is (Opy., de),
B(51.S) = (ﬂy%op —1(psh(S1,¥), 3e), pop(Sz)) 3 p(S2) is (Opyg, de)
Yo(S1,52) otherwise;

Wi(S, e) = UZ( lim 1(%)(S, psh(0, e));

and
(" (e, 0)); = tp(V(psh(0, %), 3e). ).

In this way, ¥,"" is in some bounded level of the I-hierarchy (not necessarily I;), and simulates any real recursive function
in [, when given one of its codes with rank bounded by k. O

6.3. Conclusions for the problem of collapse

Notice that the existence of our universal functions for I, will not give us the result of non-collapse. We will need the
following concept.
Definition 6.8. A number e € N is called a low-rank code of ¢, if rk(d,) = rk(¢.).

And now we show:

Proposition 6.9 ([22]). There is no real recursive function which restricts a universal function to low-rank codes, i.e., there is no
real recursive function y™" such that if e is a low-rank code then

Y™ (e, X) >~ ¢ (x) forallx € R™,
whenever d, is a good description of an m-ary function ¢, with n components.

Proof. We take the same expression for g of the proof of Proposition 4.12, now using a totalisation of /™". We then choose
a low-rank code e of g, rather than any code of g. O

Now we may conclude:
Theorem 6.10 ([22]). The t-hierarchy does not collapse.

Proof. Suppose, by contradiction, that it would collapse. Then for some number k we would have REC(R) C I,. But then
every low-rank code would have a rank of at most k, and we could set ™" = " and obtain a universal function restricted
to low-rank codes. This contradicts the previous proposition, and so we are forced to conclude that the (-hierarchy does not
collapse. O

But how about the n-hierarchy? The non-collapsing character of the (-hierarchy does not imply the non-collapse of the
n-hierarchy, because we have not shown that every bounded level in the n-hierarchy is fully contained on some bounded
level in the ¢-hierarchy. In fact, we use two infinite limits for each differential recursion in our proof that REC(R) C I, and
so by nesting differential recursions in a description d € Dy, our proof would give a description d € D; with twice the rank
as the number of nested differential recursions. We believe that this does not have to be the case, i.e., the n-hierarchy is
collapse-equivalent to the (-hierarchy, in the following sense:

Definition 6.11. Two hierarchies 4, and B, are called collapse-equivalent if for all n there is a number m such that
An € By and B, C Apy.
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We could easily prove the following proposition.
Proposition 6.12. The (-hierarchy and the analytical hierarchy are collapse-equivalent.

We conclude this section with an open conjecture, once believed to have been proven true [22]. Now we know that the
proof was flawed. The conjecture implies the non-collapse of the n-hierarchy, and this is the justification for this section’s
name.

Conjecture 6.13. The n-hierarchy and the (-hierarchy are collapse-equivalent.

7. Conclusion

This paper gives a solid foundation for the theory of real recursive functions.

This text is entirely self-contained, and may be used for teaching.

Research in this field was sometimes troubled by unclear assumptions or imperfect proofs. Our article builds a robust
theory by defining differential recursion supported on the concept of local Lipschitz continuity (Section 2.2), and by
presenting a specific, quantifier based definition of the supremum limit (Section 2.5). Note that the results obtained
previously [27,31] where completely sound: some freedom may be allowed with respect to the definition of the differential
recursion operator, as well as the definition of the infinite limit operator, and the same class of functions will be obtained.
However, these small differences in the definitions may or may not result in different limit hierarchies. We still do not know
whether the differential recursion schemes presented in [24,27,22,19] result, or do not result, in collapse-equivalent limit
hierarchies.

Our form of the theory is smooth enough to be taught for a wider group of the scientific community. Moreover, it
creates the possibility to restart research of those problems involving real recursive functions which did not find satisfactory
solutions in the past, namely the study of complexity classes over real-valued functions.

The following topics remain relevant to our research. Is the n-hierarchy (Section 3.2) collapse-equivalent to the ¢-
hierarchy (Section 6)? In any case, does the former collapse? What is the proper presentation of non-determinism in the
setting of real recursive functions? How can we describe the classical complexity classes in the language of the real recursive
functions, as in previous work [9,29,3]?

As is now, the theory seems to be promising subject of computation with continuous variables, and our results secure
enough to develop a new sub-field of computability theory.
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