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Abstract

In this paper, we introduce a foundation for computable model theory of
rational Pavelka logic (an extension of Lukasiewicz logic) and continuous logic,
and prove effective versions of some related theorems in model theory. We show
how to reduce continuous logic to rational Pavelka logic. We also define notions
of computability and decidability of a model for logics with computable, but
uncountable, set of truth values; we show that provability degree of a formula
with respect to a linear theory is computable, and use this to carry out an
effective Henkin construction. Therefore, for any effectively given consistent
linear theory in continuous logic, we effectively produce its decidable model.
This is the best possible, since we show that the computable model theory
of continuous logic is an extension of computable model theory of classical
logic. We conclude with noting that the unique separable model of a separably
categorical and computably axiomatizable theory (such as that of a probability
space or an LP Banach lattice) is decidable.

Key words: Continuous Logic, Fuzzy Logic, Computable Analysis, Effective
Model Theory
MSC: Primary 03D45, Secondary 03B50

*Department of Mathematics and Computer Science, Amirkabir University of Technol-
ogy, Tehran, Iran

"Department of Computer Sciences, University of Toronto, Toronto, ON, Canada

¥School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran,
Iran

$Partially supported by a grant from IPM.



1 Introduction

The school of computable mathematics, which is one of the major constructive ap-
proaches toward the subject, studies mathematical structures from the computability
theoretic viewpoint. The importance of this school increased significantly after the
realization of digital computers, and after many well established subjects in math-
ematics were restudied through the theme of computability; classical model theory
(model theory of classical logic) was not an exception. [Har98, [EGNR9IS| [Ers98al,
Ers98bl IMil99] revisit many classical concepts and theorems in classical model theory
under the light of computability. Extending this approach to various non-classical
logics has been carried out, e.g., in [GN04].

First order logic serves well for a model theoretic study of structures in combi-
natorics and algebra. On the other hand, it is not very fruitful to use classical first
order logic for model theoretic study of structures in analysis. Therefore, a direct
approach to use computability over uncountable domains for generalizing results is
not viable. Using a non-classical logic can be more fruitful for model theoretic study
of analytic structures. Continuous logic (CL), introduced by Chang and Keisler in
[CK66], seems to be a natural choice for this endeavor. Working with CL has become
easier to a considerable extent due to [BU] and [BBHUI.

In this paper, we study computable continuous model theory (CCMT), i.e. model
theory of continuous logic computably.

Use of a non-classical logic, such as modal or continuous logic, generates consid-
erable complexity in effectivizing arguments, even in the most basic model theoretic
constructions; one such example is in establishing the completeness theorem via a
Henkin construction as seen through comparing the case of classical logic [Mil99]
with the case of modal one [GNO4]. Not every formulation of classical completeness
theorem is correct for continuous logic; furthermore, similar to modal logics, nei-
ther the deduction theorem nor the principle of excluded middle (PEM) holds for
continuous logic.

Another main obstacle in extending computable model theory to continuous logic
is the uncountability of truth values involved. The concepts in classical computability
theory were mainly developed for countable domains such as natural numbers, and
structures that can be represented by them. These concepts are adopted for the study
of effectiveness in countable structures, not uncountable ones. Again, combinatorics
and algebra fit well in this framework, where many of interesting structures occur nat-
urally in the finite or countable cases. On the other hand, we have analysis, wherein
natural interesting structures are essentially based on real numbers and thus contain
uncountable concepts, and which does not embed well in the classical computability
theory. There has been some interest in computability on uncountable domains since
late 1950s but this topic remained mostly out of the mainstream of research in com-
putability theory till recently. The need for robust and reliable computer software
dealing with computation over real numbers, or in analytic or geometric structures,
has changed the situation. Currently there are many proposed foundations, which



are, to various extents, incompatible with each other.r'_-] The main idea behind many of
them is the possibility of approximating a result with arbitrary precision given good
enough approximation(s) for the necessary inputs. We use continuous domain theo-
retic approach to present our results, as it makes the presentation simpler, although
translating them to TTE or Scott-Ershov w-algebraic approach is straightforward.

Here, we initiate the study of computable model theory for continuous logic. We
believe that CCMT fills the place of the question mark in the following analogy,
thereby offering a satisfactory and unifying framework to the model theoretic, effective
study of analytic structures:

Computable (Classical) Model Theory ?
Computable Algebra ™ Computable Analysis

The first step in this direction is defining primary concepts and adapting basic
theorems such as Henkin’s model construction technique to our framework.

2 Preliminaries

2.1 Lukasiewicz Logic, Rational Pavelka Logic

We use LLV to denote first order Lukasiewicz logic. Lukasiewicz logic is the only
many-valued logic given by a continuous t-norm and a continuous residuum. RPLY
is first order rational Pavelka logic, the extension of LLV by propositional truth
values for rational numbers. Following [MOG]’s notions, the logical operations are:
®,O,A,V,—, >, V.3, L. The unit interval [0, 1] is our standard lattice for the
evaluation of operators; @ is interpreted by the continuous t-norm z+y := min{z +
y,1}; © by z xy := max{l —x — y,0}; A and V are interpreted by max and min
over [0, 1], respectively; © — y by the y — = := max{y — z,0}; = by  — (1 — x);
— by (x,y) — |z — y|; V by sup; and 3 by inf. We will use U for sup, interpreting
both A and V; and M for inf, interpreting both V and 4. The truth value of 1L is 1.
A propositional constant 7 has truth value r, for 7 in Q1) (the set of rationals in
0, 1])E] The following conventions are used: z, ¥, z, ... represent variables; a, b, ¢, . ..
represent constants; f, g, h, ... represent functions; r, s, t,... represent terms; P, (),
R, ... represent relations; and ¢, ¥, o,... represent formulas. ny and @™ abbreviate
PD.. . Ppand pO...O .

— -—
n-times n-times

'E.g., TTE: [Wei00], Banach/Mazur, Grzegorczyk [Grz55) [Grz57], Pour-El/Richard [PERS9,
PE99], Ko [Ko91l [Ko98]; Continuous Domains: [EH98| [ES99b| [ES99al, [Edad7]; Scott-Ershov Al-
gebraic Domains: [SHT07, Bla00, Bla97bl Bla97a]; Markov School, Real-RAM: [BSS89, BCSS90,
BCSS98], Sharp Filters [KW98| [KW99]. For a comparison of these, see [Wei00, §9].

2Notice that we consider 0 as the highest degree of truth (the least degree of falsity), and 1 as the
least. Although this is not the usual practice, see [Haj98] for example, it simplifies the interpretation
of operators. This will be helpful when we consider continuous logic later. Also, the isomorphism
2+ (1 — ) can be used to get [Haj98]’s notions.



A standard structure for a language L is defined similar to the classical bi-valued
Boolean logic, but relations take values in [0, 1]. An M -evaluation v is a mapping from
set of variables to the universe of M. The truth degree of ¢ in (M, v), ||¢||mw, is defined
as the truth value of its interpretation, defined inductively from atomic formulas
using interpretation of logical operators. ||p||as and ||p]| abbreviate, respectively,
L{||¢l|lare = v an M — evaluation} and L{||p||p : M a standard structure}. ¢ is a
tautology iff ||p|| = 0. A model of a theory T in the language L, is a standard structure
for L, M, and an evaluation v, so that the truth degree of any formula of 7" in (M, v)
is 0; we write (M,v) E T in this case. If for every v, (M,v) E T, we write M F T.
|||l is defined as U{||¢||a : M E T'}.

We take —, 1, and V as primitive connectives and define the rest as follows:

o= — L
@ @1 = (e — ),
O 9 OP = 2p =1,
N AN =@ (p— 1),
Vi V= (p =) =1,
crpeovi=(—=Y) oW — ),
3: Jxp(z) = Vo —p(x).
The axioms and rules of LLY from [MOG, p. 94], [Haj98, 3.1.3]:
LLV

Ll: ¢ — (¥ — o),

L2: (¢ = ¢) = (¥ — o) = (¢ — 0)),
L3: ((p— ) =) = (¥ — ¢) — ¢),
L ((p— L) = (v — 1)) = (¥ — o),

V1: Vz ¢ — ¢[t/z], where no free variable of ¢ becomes bounded by substitution for
T in @,

V2: Vo (p — ) — (¢ — Ya 1)), where z is not free in ¢,

mp: 2= ffw,
. P
gen: i

And RPLYV is given by adding:



RPLV

R: (F—35) < s=r, forrand s in Qg

RPLY is a definable extension of LLV. For r € Q 1, let ¢, be new atomic proposi-
tions, and consider the following axioms:

o = (o © 7o), P1 < (1B 7p1), ©1 = Q1 NP o 1, Pm oo 2mP L.

The completeness theorem of LLV holds when restricted to standard models, which
are also models of RPLY, therefore adding these axioms will not change properties
of theories such as consistency.

Following [Haj98], we do not consider equality as a logical relation, and do not
interpret it by identity. This means that there are distinct elements which are equal
with the truth degree 0. We do not have any set of axioms forcing the equality, which
is a congruence relation, to be the true identity. Theoretically, one can create a model
that interprets equality as identity in a model, by taking a quotient over the crisp
equality relation of the model, but as we will see, this process is not always effective.

Following is the list of axioms for fuzzy equality, ~, which is called similarity:

Similarity

S1(Reflexivity): = ~ x,
S2(Symmetry): r =y —y =~ x,
S3(Transitivity): (r~yQy~z2) -z~ 2.

It is easy to check that any interpretation of the similarity relation, satisfying
above axioms, is actually a pseudo-metric. It is sometimes useful to require similarity
to satisfy the following axioms:

Congruence

Sdp: T ~ Y — (R« R[T/Y]), where @ = (z1,..,2), ¥ = (Y1, ., Yn), and n is
the arity of R, 7 ~ ¥ abbreviating o1 ~ 41 @ - ® 2, = Yy,

Sdp: T~y — (f(7) =~ f(Y)), with the same conditions as above.

In every structure that S4 holds, all interpretations will become 1-Lipchitz. Such
structures are called extensional ﬁ S4 is not assumed below, unless explicitly stated.
We write T ¢ when there is a proof for ¢ from 7" in RPLV. ¢ is valid if - .
The provability degree of ¢ over T, |p|r is defined as M{r € Q1) : T 7 — ¢}. We

3See [Haj98, p.142]



say 1" is consistent if T'¥ L. We say T is strongly consistent if Vr € Q)T ¥ 7. In
a standard model M, and for all € Q(g,1), we have M ¥ 7. This is the motivation
behind the definition. Every satisfiable theory is strongly consistent. This condition
is necessary to prove the existence of a standard model for a theory, but it is easy
to see this is equivalent to consistency (the less obvious direction holds by taking a
natural n such that nr > 1 and showing 7'+ n7). T is complete iff for any sentence
@, either T o or T F —p. T is linear complete if for any two sentences ¢ and 1),
either THyp - Y orTH1Y — goﬁ T is Henkin if for any sentence of the form dx ¢,
if T+ Jz ¢, then there is a constant ¢ such that T F ¢[c/z].

For a consistent, linear complete T, provability degree is equal to U{r € Qo1 :
T+ ¢ — 7} [Haj98, Theorem 3.3.8 part 1]. Provability degree commutes with logical
connectives [Haj98, Theorem 3.3.8 part 2|. It also commutes with quantifiers over
the constants of language, if the theory is Henkin [Haj98, Theorem 5.2.6 part 2].

Deduction Theorem is not valid for RPLV, but we have the following weak form
[Hajog]:

Lemma 2.1. If T, ¢ 1, then for some natural n, T+ np — w.ﬂ

RPLV is sound: if T F ¢, then T' F ¢, with respect to models. RPLY also satisfies
completeness theorem: ||¢||7 = |7

In RPLV, T F ¢ and T - ¢ are not equivalent. The following lemma shows their
relationship.

Lemma 2.2. Forallg>0,TkFp=q iff T E .

Hence, there are two options for axiomatizability. Axiomatizability using ‘+’ leads
to axiomatizability using ‘F’. Thus the latter will be called weak azxiomatizability.
We list some theorems from [Haj98|, which we will use.

Lemma 2.3. If T ¥ ¢ — 1, then T U{Y) — ¢} is consistent.
Lemma 2.4. If every finite Ty C T has a model, then T has a model.

Lemma 2.5. T is linear complete iff for each pair (@, 1) of sentences, if T F oV 1),
then either T @ or T F .

Lemma 2.6. The logical connectives, —, ¥V commutate with provability degree for con-
sistent, linear complete, Henkin theories; |ps|r = |o1|r = |1 — wa|7, Uacc|¥[z/allr =

Lemma 2.7. - (¢ — )"V (¢ — @)™,

4[Hajo8] calls this complete. Linear complete seems more appropriate, because the condition forces
the Lindenbaum Algebra of theory to be a linear order, and it will not conflict with completeness in
classical sense.

5See [Hajos8, p.43].

6Let T={np —q:n€w}U{-p— q}. Then T F q, but T ¥ ¢! Therefore T F ¢ = T I ¢ does
not hold.



There are a few notions for completeness of a theory, to avoid confusion, we list
their definitions.

1. Classical completeness: for all ¢ either T ¢ or 17" —p,
2. Linear completeness: for all ¢ and 1, either TF o — ¥ or T+ ¢ — o,

3. Semantically linear completeness: for all ¢ and v, either T F ¢ — ¥ or T F
Y= .

2.2 Continuous Logic

We follow [BU] and [BBHU]. Continuous Logic (CL) is a truth functional logic. The
set of truth values is [0, 1]. We call a set of continuous functions over [0, 1] a full system
of connectives, if it contains projections, is closed under composition, and is dense
in compact-open (i.e. uniform convergence) topology over the set of all continuous
functions over [0, 1]. By Stone-Weierstrass Theorem [BU, §1.6], {=}U{q: ¢ € Qp1}
is a full system. The natural reinterpretation of classical quantifiers in this continuous
setting are sup and inf [BU, p. 6]. We will use ~, ¢ for ¢ € Qjo.1), and sup as our
connectives. Other connectives can be defined from these as we did for LLV above.

We call a function 0 : (0, 1] — (0, 1] a modulus of continuity. Assume that (X7, d;)
and (Xs, d2) are two (pseudo-)metric spaces, and f a function from X; to Xy. We say
f is uniformly continuous with respect to 9, iff Ve > 0Vx,y € Xi(di(x,y) < d(e) —
do(f(x), fy)) < €). A non-metric continuous signature is a set of function and
relation symbols with their arities. A (metric) continuous signature is a non-metric
continuous signature with a distinguished binary relation d that has, for each s of the
non-metric continuous signature and for all ¢ < n,, a uniform continuity modulus 9, ;.

Let L be a continuous signature. A continuous pre-structure is a set M, a pseudo-
metric d™ over M, where for each function symbol f € L, there is a function f :
M"™ — M that is uniformly continuous with respect to d7; (i < np); and where for
each relation symbol R € L, there is a function RM : M™® — [0,1] that is uniformly
continuous with respect to dg; (i < ng). A continuous structure is a pre-structure
where d is complete metric. From any pre-structure, we can build an elementary
equivalent structure by first taking quotient (with respect to distance-zero points),
and then completing it (with respect to its metric).

The axioms and rules of CL are:

CL

Cl: (=)= ¢,
C2: ((0=p) (0 =) == ),
C3: (p=(p=9)) === ),



Cd: (p=1) = ((1=¢)=(1=9)),

sup 1: @[t/z] = sup, ¢, such that no free variable of ¢ becomes bounded by substitu-
tion for x in ¢,

sup 2: (sup, ¥ =~ ) = sup, (¥ = ), where z is not free in ¢,
Rl: (F=35)=r=s, for r and s in Qy 1,

R2: r ~ s~ (F=~3), for r and s in Qpo,1)5

SM1: d(z, ),

SM2: d(z,y) - d(y, z),

SM3: (d(z,2) = d(z,y)) = d(y, 2),

ULg: (¢-d(z,y)) V ((R(a,z,b) ~ R(a,y,b)) = r),
where €,7,q € Qjo1), 7 > €, ¢ < dpi(e),

)
ULyg: (¢ d(x,y)) v (d(f(@,,b), f(@,y,b)) =),
where €,7,q € Qpaj, ¥ > €, ¢ < 0y,(€),

e v —o
mp: ,
. _®
en: .

9 sup, ¢

2.3 Reducing CL to RPLY

We can consider CL as a theory in RPLV. Every connective in CL can be defined
in RPLY, o ~ ¢ := ¢ — ¢, sup, ¢ = Vzp, ¢ :== q. Axioms and rules are identical
except for S4 and UL. We assume that S4 is not part of LLV or RPLYV, unless
explicitly stated otherwise. We can put all UL axioms in our theory 7', instead of
adding it as an axiom for RPLV. Note that UL axioms are actually expressed in
the language of RPLYV, and also form a decidable subset of its sentences. Given a
theory T in CL we build 7" by adding all UL axioms to 7', which is an effective
process. Any model of T in RPLY will be a model of T"in CL since in any model
of this theory, satisfaction of UL forces every function and relation to be uniformly
continuous with respect to their given modulus of continuity. Therefore a problem in
CL is reduced to a problem in RPLYV.

2.4 Examples of Continuous Structures and Theories

We give a few metric structures and continuous theories as examples from [BBHU]:

1. A complete, bounded metric space (M, d) with no additional structure.



. A structure M in the usual sense from first-order logic. d is the discrete metric

0 a=0b
on the underlying set, i.e. d(a,b) = and a relation is considered as
a

a predicate taking values (truth-values) in the set {0,1}. So, CL is, in a sense,
a generalization of first-order logic.

. Let C be the set of continuous functions over [0,1] and [ as a unary predicate,
defined as f — fol f(z)dz. Then (C, [,]].||s) is a metric structure.

- (C< -, > ]||leo), Where C'is the same as above, and < -,- > is the Ly inner
product over C, i.e. < f,g >:= fol f(x)g(z)dx.

. An infinite dimensional Hilbert space over R can be considered as a metric
structure, according to [BBHUJ, §15], if only the range of its metric is assumed to
be bounded. This obstacle can be overcome easily by introducing many-sorted
models. We will not study many-sorted structures here, although generalization
of our results is straightforward. Let H be an infinite dimensional Hilbert space
over R, i.e. H is a complete normed space with an inner product < -,- > which
induces the norm. H can be considered as a metric structure (B, :n > 1, I, :
m<n,0,A:NER +,— < - > ||||) where B, :={x € H : ||z|| < n?}, Lnn:
B, — B, is the inclusion map for m < n. It is proved in [BBHU, §15] that H
has quantifier elimination property and for any Hy and Hy, Th(H,) = Th(H,),
therefore H is semantically linear complete.

. The unit ball B of a Banach space X over R or C: as functions we may take
the maps f,3, defined by fas(x,y) = ax + By, for each pair of scalars satisfying
la| 4+ |5] < 1; the norm may be included as a predicate, and we may include the
additive identity Ox as a distinguished element. See [BU, 4.4, 4.5].

. Probability spaces can be represented as metric structures using their measure
algebra [BBHU, §16]. Assume (X, B, u) is a probability space, i.e. X is an
arbitrary set, B is a o-algebra of subsets of X, and u is a o-additive measure in
B such that pu(X) = 1. a € B is an atom iff there is no b € B such that b C a
and 0 < u(b) < p(a). a € B is atomless iff no subset of it is an atom. (X, B, i)
is atomless iff X is atomless. For any atomless a € B and r € [0, 1] there exists
b € B such that b C a and p(b) = r - u(a). a,b € B represent the same event
iff u(aAb) = 0 (A being symmetric difference, i.e. aAb:= (a Nb) U (a® N b)),
in which case we say a ~, b. ~, is an equivalence relation. Denote equivalence
class of a by [a],, and B as set of equivalence classes, which is called measure
algebra of (X, B, j1). Since ~, is congruence with respect to complement, union,
intersection, and u, these operations are well-defined on B. We also have that
Bisa o-algebra and p is a strictly positive countably additive measure over it.
The metric structure M = (E, 0,1,-5,U,N, u,d) is called a probability structure,



where d([a],, [0],) = p(aAb), 0 := [0],, and 1 := [X],. Modulus of uniform
continuity of -¢, U, and N are respectively € — €, € — ¢/2, and € — €/2.

It turns out that theory of a probability structure is axiomatizable:

(a) Boolean Algebra Axioms: axioms are closure of equations, thus expressible
in CL

(b) Measure Axioms:

11(0) = 0: (0),
p(1) =1z —p(l),
sup,,, (1(z Ny) = p(x)

)= p(x) — p(rNy)),
sup,, (u(z) = p(r Uy)) =

Y)

)

y(
y (u(zUy) — p(x)),
sup,, |(u(z) = p(z Ny)) - ( (x U y) = u(y))| = 0: Yo,y ((u(zNy) — p(z))

(1(y) — pu(r Uy))),

(c) Connection between p and d: sup, , |d(z,y) — p(rAy)| =
Le. Va,y(r =~y < p(rly)),

(d) Atomlessness: sup, inf, |pu(z Ny) — px Ny°)| =0,
ie. Ve Iy (u(xNy) < plzNy)).

The last three axioms of Measure Axioms express p(z)+u(y) = p(xUy)+p(zn
y). The theory PRy satisfies (a), (b), and (c), and PR satisfies (a), (b), (c),
and (d). For every metric structure M in this language we have that M F PRy
iff M is the probability structure of some probability space (X, B,u). PR
has quantifier elimination, and is separably categorical, i.e. every two separable
metric models of it are isomorphic, and by using downward Lowenheim-Skolem
theorem for CL one can obtain a separable elementary substructure of any
given structure, therefore, PR is semantically linear. We will show that every
axiomatizable semantically linear theory has a computable model, thus PR has
a unique computable model.

8. The L? Banach lattice is another example of [BBHU] §17], [BBH]. Similarly to
PR, it is axiomatizable, has quantifier elimination, and is separably categorical,
therefore is semantically linear complete, and has a unique computable model.

2.5 Computable Analysis and Continuous Domain Theory

We will closely follow [EH9S, E899b][]. We do not use any special property of effec-
tive continuous domain approach to computable analysis in our work, and therefore
transferring our results to other approaches, such as TTE [Wei00] or Scott-Ershov
w-algebraic domains [SHTOT], is straightforward. We prefer continuous domains since
they are simpler and more intuitive.

"See also [AJ94]
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We will use fairly standard notions from computability theory. N denotes non-
negative integers. ¢, is the nth partial computable function, and W, := dom(yp,),
the nth computably enumerable (c.e.) subset of N. < - - > my, and m are the
usual Cantor’s pairing function and its inverses, satisfying < m(n),m(n) >= n,
mi(< ng,my >) = n; for i = 0,1. Any c.e. A can be expressed as a computable
union of decidable sets {A,}ne,. K is the associated set with halting problem, i.e.,
K ={n: ¢,(n) is defined}.

Let (P,C) be a partially ordered set (poset), i.e. C is reflexive, antisymmetric,
and transitive. We think of P as partial information and C as refinement (having
more information). Upper and lower bounds, maximal, minimal, top (maximum, T),
bottom (minimum, 1), supremum (L/) and infimum (1) with respect to C are defined
as usual. The set of maximal elements of P is denoted by max(P). Assume that A is
a subset of P. We say that A is a chain, if every two elements of A are comparable;
and A is directed, if every two elements have an upper bound in A. Upper set of A
(1A)is{zr e P:3ye Ay C x}. Lower set of A (| A) is defined similarly.

A partial order is called depo (directed complete partial order), or bepo (bounded
complete partial order), if it contains sups of all directed sets, or if it contains all
bounded sets, respectively. We call a dcpo pointed if it contains a least element L. A
cpo (complete partial order) is a pointed dcpo.

If S is a set, the flat domain of S, S, , is the partial order over S U {L}, where
1 is minimum and no two elements of S are comparable. For example, if B is the
bi-valued Boolean set {0,1}, B, is flat domain of B.

We say that x is way-below y, or x approximates y, and write x < y, iff for all
directed A, y C LUA implies = C a for some a € A. An element which approximates
itself is called compact or finite. We denote the set of all elements way-below x (way-
above x) by lz (fz). A base for D is a subset B of D such that for all x € D we can
approximate x by elements of D, i.e. Lz N B is directed and x = U({x N B). A dcpo
is called (w-)continuous iff it has a (countable) base. A continuous dcpo is called a
continuous domain or simply a domain.

Real interval domain, IR, is the set of all closed intervals in R including R itself,
partially ordered by reverse inclusion relation. Unit interval domain, [0, 1], is defined
similarly. It is easy to see that both IR and I[0, 1] are w-continuous domains, and
r < y iff x° O y, where z° is the interior of x. The set of maximal elements are
homeomorphic to the original space by x +— {x}.

Assume that (D, C) and (£, C) are two dcpos. We say that a function f: D — E
is Scott-continuous (or simply continuous), iff:

e monotonicity: for all z,y € D, x Ty — f(z) C f(y)
e continuity: for all directed subsets A of D, f(UA) = Uf(A)

We denote the set of all continuous functions from D to E by [D — EJ, which is
itself a depo by pointwise ordering, i.e. f C g iff Vo € D f(x) C g(z). f € [D — E]
is strict iff f(Lp) = Lg.

11



The product of two domains is also a domain, where (xg,yo) C (z1,y1) iff 29 C
x1 Ayo C yp. Tt is also easy to check that (zg,yo) < (x1,y1) iff o € 21 Ayo < Y15 a
function from product is continuous if it is continuous in each variable separately.

Let D be a w-continuous dcpo with a given countable base B = {b, : n € w}.
Without loss of generality, assume that by = L. We say that D is computably given
with respect to b iff {(m,n) : b,, < b,} is a c.e. set. An element x € D is computable
iff {n : b, < z} is computably enumerable, i.e. {n : b, < z} is the range of
a computable function; thus = will be supremum of this c.e. set. A sequence of
elements of D, {z,, : n € w} is computable iff there exists a computable function
¢ 1w X w — wsuch that {m : b, € z,} = {p(n, k) : k € w}, i.e. approximations of
the elements of the sequence are uniformly computable. If D and E are computable
domains, then their product is a computable domain too.

Let f € [D — E], where D and E are computably given by bases A = {a,, : n € w}
and B = {b, : n € w}. We say that f is computable iff f takes computable sequences
in D to computable sequences in E, i.e. {(m,n) : b, < f(a,)} is computably
enumerable.

Let 1[0,1] = {[p,q] : p,q € [0,1]} where [p,q] C [r,s]| iff [p,q] D [r,s]. Elements
of I]0,1] are approximations to real numbers in the unit interval. The order of
approximation is given by [p, ¢] < [r, s] iff [p, q] D (7, s). As an effective base, we use
B = {[p,q] : p,q € Qpaj}. The bottom element of this ordering is 1. = [0,1]. For
r € Qo {r} is a maximal element. All maximal elements are of this form. The unit
interval is embedded in I[0, 1] by {-} : [0,1] — I[0, 1], taking = — {z}.

Let (X, d) be a metric space. Formal ball construction on X is defined as BX :=
{(z,r): x € X,r € R*}, where R* is the set of nonnegative real numbers. We define
(x,r) C (y,s) iff d(z,y) < r—s. (BX,C) is a poset. Many notions for dcpo can
be generalized for posets, e.g. continuity, by replacing quantifications over “directed”
with “directed with an upper bound.” We now state some important properties of
Formal Balls: BX is always a continuous dcpo. (X, d) is a complete metric space iff
BX is a dcpo. (z,7) < (y,s) iff d(z,y) < r—s. If Ais a dense subset of X and
(@ is a dense subset of R*, then A x @ is a base for BX. X is separable iff BX is
w-continuous. X is embedded in BX by x — (x,0), where each (z,0) is a maximal
element of BX. This embedding is continuous with respect to Scott and Lawson
topologies.

Therefore, if X is a separable complete metric space, then BX is w-continuous
dcpo. X is a computable metric space if its domain is computable. Maximal elements
will be homeomorphic to X. We denote this homeomorphism by tx : Max(D) — X.
We adopt some concepts from [SHT07] to apply to continuous domains. Let X and
Y be metric spaces represented by D and E. A function f : X — Y is represented by
f:D — Eiff f{Maxz(D)] C Max(E) and for any x € Maxz(D), vy (f(z)) = f(ix(z)).
f is a computable function iff f is a computable function between corresponding
domains.

(Xo, X1, ..y fo, -..) is called a many-sorted topological structure when X;s are topo-
logical spaces and f;s are continuous functions over them. A (pre-)metric structure

12



is a special case, where R is one of the spaces, and for every space X in the structure
we have a continuous function dx that is a (pre-)metric on X. Definition of a domain
presentation is straightforward. A structure is computably presentable iff there is a
computable domain presentation for it.

2.6 Effective Model Theory

A countable, first order language L is said to be computably given iff the sets of
variables, functions, relations are decidable and arity of functions and relations are
computable. Let T' be a theory in L. T is computably axiomatizable or simply axiom-
atizable iff the set of axioms are computably enumerable. T is decidable iff the set of
theorems of T is decidable.

A countable structure is called computably representable iff its relations are decid-
able and its functions are computable, i.e. its atomic diagram, Diamq (M) := {¢ €
Ly : M E @ A ¢ is atomic}, is decidable. A countable structure is called decidable
iff it is computably presented and satisfaction is decidable. Equivalently, its Elemen-
tary Diagram, Diagy(M) = {p € Ly : M E ¢}, is decidable. When adopting this
notion to logics with an uncountable set of truth values, we need to clarify what we
mean by decidable and computable. We use effective domain theory. Decidability of
relations in classical models is equivalent to computability of their characteristic func-
tions. Extending this to continuous case, where the range of characteristic functions
is [0, 1], in a computable continuous structure, we require characteristic functions of
relations to be computable. Therefore, a computable continuous model of a theory is
a computable continuous structure that is also a model of the theory.

For countable models, accordingly, equivalent formulations by Diag. (M) and
Diage (M) can be adopted by replacing classical decidability of truth for formulas with
computability of their truth degree. However, we want to allow a complete metric
space as the underlying set of models of continuous logic, and since most of these
structures are uncountable, we cannot use this formulations directly. For complete
metric spaces with continuous operations and relations, we can use a countable dense
set for approximating elements, and consider only formulas that use parameters only
from this dense subset. Since operations and relations are continuous, every formula
in the full diagrams can be approximated with arbitrary precision. Assume that M
is a complete metric space. We say that M is computably representable iff there is
a countable dense subset X of M so that Diagy(M,X) := {(p,2) € Ly Xx B : 1z <
llellsr A @ is atomic} is computably enumerable, where B is the effective base of
the unit interval discussed in previous section. M is decidable iff Diagy (M, X) =
{(p,x) € Lx x B : x < ||¢||m} is computably enumerable. (The construction
of a computably presented structure from a computable enumeration of elementary
diagram is straightforward.)

Note that every linear complete theory that has a decidable model is weakly
axiomatizable.
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3 Constructive Henkin Construction

In this section, we will construct an effective model for an effectively given theory.

Theorem 3.1. Fvery consistent, complete, computably axiomatizable theory in RPLY
s decidable.

Proof. Assume T is a theory as stated. Because RPLY is an effective deduction sys-
tem with computably enumerable axioms and two deduction rules, we can effectively
list all valid proofs with assumptions in 7". Since T' is complete and consistent, we
have T'¥ ¢ < T I —p. For any given sentence such as ¢, either '+ ¢ or T' F = has
a proof, and, at some point, that proof will appear in the list. According to whether
it is a proof of ¢ or —p, we answer positively or negatively. ]

Completeness is too strong to be satisfied by a theory. The Lindenbaum Algebra
of a complete theory will have just two classes, in other words, the logic will be
the classical bi-valued logic. We want to allow truth degrees in [0, 1], not just in
{0,1}. Linear-completeness is an acceptable condition, which forces the classes of the
Lindenbaum Algebra of a theory to be linearly ordered. The concepts of decidable
model and decidable theory are not as useful for many-valued logics as for the classical
bi-valued one. Decidability is the same as saying the characteristic functions of truth
and validity are computable. The natural extensions of these concepts to many-valued
cases are the computability of the degree of the truth and provability of formulas. Crisp
truth and validity are not computable functions because of discontinuity ([Wei00,
§2.4]). It is proved in [Haj98, Theorem 6.3.15] that crisp truth in LLY is IIo—complete.

Theorem 3.2. For every consistent, linear-complete, computably axiomatizable the-
ory in RPLY, the provability degrees of sentences is computably comparable.

Proof. The proof is similar to previous one. Since T is linear-complete, for any given
two sentences such as ¢ and ), at least one of T+ ¢ — ¢ and T'F ¢y — ¢ has a
proof, and, at some point, that proof will appear in the list. According to whether it
is a proof of T+ ¢ — ¢ or T ¢ — @, we answer |Y|r < ||, or |plr < |¢|r. O

We use Henkin’s technique for model construction. To construct a decidable
model, we need to deal effectively with real numbers. For this purpose, we need a
model for computable analysis.

The provability degree of a formula with respect to a theory is a real number,
and since comparison of real numbers is not decidable in finite time, we have to
accept existence of distinct elements in our model which are equal with provability
degree 0. The underlying set for a computably representable (which is the weakest
computability notion) model in classical computable model theory is natural numbers
(although often not explicitly stated) and, therefore, has a decidable equality.

Theorem 3.3. There is a computably axiomatizable, consistent theory that does not
have a computable model (with a decidable equality on its domain), where equality is
interpreted as identity.
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Proof. Assume that a is a computable real number in [0,1] such that ‘a 20 is
not decidableff| Suppose {s;}ico ({ri}icw) is a decreasing (increasing) computable
sequence of rationals converging to a. Let ¢ and d be two distinct constants of the
language, and T'= {5, m c~d:i € wAs; € QutU{ccd—T7; i € wAr; € Qpa}-
T is computably axiomatized. If there existed a computable model M E T', then by
checking whether the interpretation of ¢ and d are identical, we could decide ‘a = 0;
a contradiction. O

This can be avoided at the expense of allowing computable models over domains
that lack a decidable equality. For countable domains, this is very artificial. But
computable uncountable domains essentially lack a decidable equality, since they are
represented by a countable sequence of approximating elements from a countable do-
main.

Before proceeding, we prove a lemma.

Lemma 3.4. Provability degree of a formula with respect to a consistent, linear-
complete, computably axiomatizable (Henkin) theory is computable.

Proof. Since T is linear-complete, |p|lr = M{r € Q1 : T F7 — ¢} = U{r € Q. :
T F ¢ — 7}, which is a maximal element of 7]0, 1], using the embedding = — {x}.

Let B = {[r,s] € I[0,1] : r < s € Q)o11}. B is an effective base for the unit interval
domain [0, 1]. We have [p|r = [ |;o{[rs] € B: (TF5—=¢) A (TFEe—T7)} It
is easy to check that this set is directed, and effectively listable. Let {¢;}ic, be an
effective list of rationals in [0, 1]. The following algorithm gives an enumeration of
the set:

1. list [0, 1];
2. r+—0;5 «— 1;

3. fori € w,
if r < ¢; < s, depending on whether T+ ¢ — @ or T F q; — ¢, go to (a) or (b)
(a) s« g;; for j <iand ¢; < s, list [g;, s];
(b) r « ¢; for j < i and r < g;, list [r, ¢;];
For any r € Qy,1, either T' ¢ — 7 or T'F 7 — . Listing the proofs, we will
find, at some point, which is the case. Therefore, [¢|r = | ;o {[r,s] € B: (T'F35 —

¢) N (T ¢ — 7)} is computable, using the effective base B of I]0,1] as defined
above. O

Theorem 3.5. Fvery consistent, linear-complete, computably aziomatizable Henkin
theory in RPLY has a decidable model.

8See [TvD8T], [Beel0], and [Wei00)].
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Proof. Assume that T is as stated, and C' = {¢;}iew is the set of constants of the
language of T'. First, note that all of the logical connectives, specially —, commute
with provability degree, and for a Henkin theory, we have |Vx ¢|r = U{|p[c/z]r : c €
C'}.

Let the underlying set of our model, M, be C'. Assuming the language of T' is
decidable, M is a decidable set. As we stated before, we cannot expect our model
to identify elements that are equal with provability degree 0. The notion of similar-
ity,ﬂ i.e. fuzzy equality, will be interpreted by a pseudo-metric p on M. We define
p(x,y) = | = y|r. Similarity is computable since provability degree with respect to
T is computable. It is easy to check that p is a pseudo-metric, because of similarity

axioms ([2.1]).

S1 S2

TR T TRy, TRY YT

0—-2z=z T—oyYR T

o TRy T YR

S3

MO —=rRyYOQUYUR2z , TRYOYRZ =T R 2

Hence, p(a,a) =0, p(a,b) < p(b,a), p(a,c) < p(a,b) + p(b,c) < p(a,b) + p(b, c).
For each function symbol f of T, we have T' V2 3y f(Z') ~ y, and therefore for
any @ € M, T+ 3y f(d) ~ y. Since T is Henkin, there is a constant ¢ in 7" so
that T F f(a’) = c. We define the interpretation of f over @ in M, fM (@), as the
first constant ¢ where we find a proof of T+ f(@) = c. This gives a computable
interpretation of f in M. This procedure can be used repeatedly for computing
complex terms.

Interpret 7 by 7, for r € Qyp1). For any relation symbol R of T, define RM(a)
as |R(a)|7, which is again computable. Actually, we can compute the value of any
sentence of M directly using provability degree.

So far, we have created a decidable structure M. Using commutativity of prov-
ability degree with logical connectives, we now show that M is indeed a model of T,
i.e. M ET. We prove the stronger |p|r = ||¢||s by induction on formulas.

For any r,s € Qo,1, by axiom R of , Thr7— 5iff T F s=r; by strong
consistency (which is equivalent to consistency), that is equivalent to s —r = 0, i.e.
s<r.

Let qc Q[oJ], then

alr = | |{lnsleB:Tra—7ATFs»qy = | [{[nsle B:r<q<s}={q}

100,1] 1[0,1]

9Actually we use a pseudo-metric, because of the isomorphism = — 1 — . This transformation
maps an interpretation of similarity to a pseudo-metric and vice versa; see [Haj98, §5.6].
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On the other hand, ||q||5s is defined as g.

For relational symbol R, we have ||R(@)||x = |R(@ )|, by definition. Similarly,
for ~.

For ¢ = ¢1 — 9,

lolla =
o1 — @ollar = (by definition)
llo2llar = @il = (by induction hypothesis)
lpalr = [p1]r = (by lemma [2.6])
1 — palr =
ol
For ¢ = Vx ¢,
|ol|ar =
[V || = (by definition)
Usenr||¥[z/a]||ar = (by induction hypothesis)
Uaenm|¥]z/allr = (M =C)
Ueec|t[z/a)|lr = (by lemma [2.6])
Vza)|r =
plr
Therefore the above interpretations over M give a decidable model of T O]

Remark 3.6. If the theory contains S4, the resulting model will be extensional.
We state two results about completion process of a theory.

Theorem 3.7. Every computably axiomatizable, consistent theory in RPLY has a
K-computably axiomatizable, consistent, linear-complete Henkin extension.

Proof. Assume that T is as stated. L* is created by adding {c,}ne. to L. Let
{(¢n, ¥n) tnew be an enumeration of pairs of L*-sentences, so that any sentence ¢
appears in {¢, ne, infinitely many times. We build 7% in w steps:

1. Let Ty « T

2. For n € w,
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(a) If T,, ¥ @, — 1y, then let T, 11 «— T, U {w, — ¢n};

(b) If ¢, is of the form 3z, and T,, F 3z 1,
take an unused constant ¢, and put 7,41 < T,, U {¢[x/cl};

3. Let T* = U, Th.

T* is linear complete, since for any pair of sentences such as (¢, 1), either T,, -
Yn — ¥, and thus T* F ¢, — ¥, or T, ¥ v, — ¥, and thus ¥, — ¢, € T,,.1 CT*
and T* F 1, — .

To see T™* is Henkin, assume that 7™ + dx . There is an m € w such that
T b 3z, ¢, = Jz1p for some m < n. T, F Jz 1, therefore Y[z /c] € T, 41 C T* for
some ¢, and T* - ¢[x/c].

To see T™ is consistent, it is sufficient to prove that if T,, is consistent, then T},,4
is consistent. Tp is consistent. Assume that SU{¢o — 9} F 1, i.e. is inconsistent. By
2.1] thereis an n € wsuch that S + (¢ — ¥)* — 1. ByR.7, S F (¢ — ¢)" V(¢ — ¢)",
therefore S 1V (b — )", SE (b — @), SF (v — ).

On the other hand, if S + 3z, S ¥ 1, and ¢ does not occur in S, then SU{v[z/c|}
must be consistent.

The above algorithm is computable in K, thus it is in class AY, i.e. it is limit
computable. O

Remark 3.8. It is easy to check that if the theory were to be computably enumerable
in A, the procedure above would yield a theory computably enumerable in A’, and,
therefore, would have a A’-decidable model.

We now show that this is the best result one can achieve. We actually prove a much
stronger result by showing that for theories in classical logic, i.e. those containing
{eV —p : ¢ € L}, a classical decidable model can effectively be generated from our
construction. This shows that computable continuous model theory is a generalization
of classical computable model theory, as continuous logic is a generalization of classical
logic.

Theorem 3.9. There is an algorithm that given a classical theory T in RPLY, and
a countable decidable model M E T, produces a classical computable model.

Proof. Take M as our underlying set of the model. Since the theory is classical, M
is a classical model (just forget that the range is [0, 1], since all values fall in {0, 1}).
It is sufficient to show that its elementary diagram is decidable. Let ¢ € L be
a sentence. Since T is classical, it proves PEM for all instances of ¢ and we have
T F oV =, therefore M F ¢V —p, i.e. min{||¢||a, 1—||¢|lar} =0, or ||¢||ar is either
0 or 1. Since ||¢||as is @ maximal element, at some point of ||p||ys’s computation, we
will see that the approximation does not contain either 0 or 1. Since ||¢||as is either
0 or 1, we can say at this point which of them it is, and can decide whether it is true
or false in our model. O
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It is now easy to get the following corollary:

Corollary 3.10. There exists a computably axiomatizable, consistent theory in RPLY
(and thus in LLY) that has no decidable model.

Proof. There is a consistent theory in classical logic which is computably axiomati-
zable but does not have a decidable classical model by [Mil99]. Since RPLV is a
conservative extension of classical logic, this theory is consistent in RPLV. By the
previous theorem, it can’t have a decidable continuous model. [T_U] O

Corollary 3.11. The theory discussed above has no computably axiomatizable, con-
sistent, linear-complete extension.

Proof. Take the theory in the previous theorem. If it had a computably axiomatizable
consistent linear-complete extension, then by [3.5 it would have a decidable model,

contradicting [3.10] m

This technique can be used easily to carry over negative results from computable
classical model theory to computable continuous model theory.

Our last theorem is a construction of a decidable complete metric model from the
countable metric model produced by a Henkin construction.

Theorem 3.12. Given a countable, decidable model of T as in the there is an
elementarily equivalent, decidable, complete, metric model of T.E]

Proof. Take M as the metric completion of the underlying countable pseudo-metric
space B of our Henkin model after taking the quotient with respect to its pseudo-
metric. Functions and relations of B can be extended to M by taking limits of their
values over elements of B (a countable dense subset of M) since they are continuous.
An easy induction shows that B is an elementary substructure of M. Therefore, for
every ¢ € Lg, BE ¢ iff M E ¢. Thus Diage (M, B) = Diag.(B), and is computably
enumerable. ]

Remark 3.13. We have shown in Theorem that any computable linear complete
theory has a decidable model. It is easy to see the essential property of a linear theory
we use is the computability of the truth degree of the formulas. Therefore with minor
adjustments, the proofs will hold also for semantically linear complete theories in
continuous logic. Hence the following corollary follows.

Corollary 3.14. The unique separable models of probability spaces and LP Banach
lattices are decidable.

19The idea of proof is the well-known fact in constructive mathematics that (Vo < y € R)(Vz €
R), (x < zV z < y). [TvD81].
UThis is computable version of one of fundamental results of continuous logic, e.g., see [BU, 2.10].
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4 Conclusions and further works

In this paper we defined basic notions of computability for continuous model theory.
We proved a constructive version of Henkin’s construction. A paper in preparation
will discuss constructive versions of omitting types theorem, elementary chain con-
struction , and existence of prime and saturated models. The work on other theorems
and concepts such as computably categorical theories is still in progress.

Extending definitions and theorems to multi-sorted case is straightforward. An-
other interesting topic is study of partial models. Partial models for CL and LLV, are
what Boolean valued models are for classical first order logic. The capturing of a sat-
isfactory definition for a partial model is in a sense more complicated than that of the
definition of Boolean valued models. The basic trick is to require ||p||a = ||¢]|m T
|| = ||a in the domain theoretic sense. For example, [0,1] —[0,1] = [0,1] # {0},
therefore the stronger condition || = ¢||ar = ||¢||ar = ||¢||y does not work for ¢ —
¢, which is a logical tautology, for ||¢||ar = [0, 1]. We think that partial models can be
helpful in the study of forcing constructions in continuous logic. For model theoretic
forcing in continuous logic see [BI].
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