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Abstract. Demuth tests generalize Martin-Löf tests (Gm)m∈N in that
one can exchange the m-th component for a computably bounded num-
ber of times. A set Z ⊆ N fails a Demuth test if Z is in infinitely
many final versions of the Gm. If we only allow Demuth tests such that
Gm ⊇ Gm+1 for each m, we have weak Demuth randomness.

We show that a weakly Demuth random set can be high, yet not
superhigh. Next, any c.e. set Turing below a Demuth random set is
strongly jump-traceable.

We also prove a basis theorem for non-empty Π0
1 classes P . It extends

the Jockusch-Soare basis theorem that some member of P is computably
dominated. We use the result to show that some weakly 2-random set
does not compute a 2-fixed point free function.

1. Introduction

The notion of Demuth randomness is stronger than Martin-Löf-randomness
yet compatible with being ∆0

2. Demuth tests generalize Martin-Löf tests
(Gm)m∈N in that one can exchange the m-th component (a Σ0

1 set in Cantor
space of measure at most 2−m) for a computably bounded number of times.
A set Z ⊆ N fails a Demuth test if Z is in infinitely many final versions of
the Gm. If we only allow Demuth tests such that Gm ⊇ Gm+1 for each m,
we have weak Demuth randomness. The implications are

Demuth random ⇒ weak Demuth random ⇒ ML-random.
These randomness notions, introduced and studied by Demuth [3, 4],

remained obscure for a long time, but now begin to stand out for their rich
interaction with the computational complexity aspect of sets. We study two
examples of such an interaction.

(a) A highness property of a set determines a sense in which the set is
close to being Turing complete. We study to what extent highness
depends on the degree of randomness of a set. Using this we show
that the implications above are strict.

(b) A lowness property of a set specifies a sense in which the set is
close to being computable. We show that each c.e. set Turing below
a Demuth random set satisfies an extreme lowness property: it is
strongly jump-traceable. There is multiple evidence [8] that the
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strongly jump-traceable c.e. sets, introduced in [6], form a very small
subclass of the c.e. K-trivials.

1.1. The results in more detail.
(a) Recall that a set Y is called high if ∅′′ ≤T Y ′, and Y is superhigh
if even ∅′′ ≤tt Y

′. We show that a weakly Demuth random ∆0
2 set can

be high. In contrast, every Demuth random ∆0
2 set is known to be low.

Next, a ML-random such as Ω is Turing complete. We show that no weakly
Demuth random set is Turing complete. In fact, such a set is not even
superhigh. The intuition is that the more random Y , the further it must be
from computing ∅′.
(b) The first author proved in [14] that every ∆0

2 random set Y Turing
bounds some noncomputable c.e. set A. In [10] it is shown that if Y is
Turing incomplete then A must be a base for randomness, and hence K-
trivial. Greenberg, Hirschfeldt and Nies, in a preliminary version of [8],
showed that there is a ∆0

2 Martin-Löf-random set Y such that every c.e. set
computable from Y is strongly jump-traceable. (For the definition, recall
that a c.e. trace for a partial function ψ is a uniformly c.e. sequence (Tx)x∈N
of finite sets such that for all x ∈ dom(ψ) we have ψ(x) ∈ Tx; that an
order function is a computable, nondecreasing, and unbounded function
h : N→ N \ {0}; that a c.e. trace (Tx)x∈N is bounded by an order function h
if for all x, |Tx| ≤ h(x); and finally, that a set A is strongly jump-traceable
if for every order function h, every partial function ψ : N→ N that is partial
computable in A has a c.e. trace that is bounded by h. ) We prove here
that any Demuth random ∆0

2 set Y serves this purpose. The intuition is
that the more random Y , the closer to being computable must be a c.e. set
bounded by Y .

In a final section we prove a basis theorem for non-empty Π0
1 classes P .

It extends the Jockusch-Soare basis theorem [11] that some member of P is
computably dominated. The extension is that, if B >T ∅′ is Σ0

2, then there
is a computably dominated set Y ∈ P such that Y ′ ≤T B.

In the applications, one takes P to be a class of ML-random sets. Note
that each computably dominated ML-random set is already weakly 2-random.
Recall that a function g is 2-fixed point free if Wg(x) 6=∗ Wx for each x. We
use the result to show that, unlike the case of 2-randomness, some weakly
2-random set does not compute a 2-fixed point free function. Further, in
[2], the basis theorem was used to show that some weakly 2-random Y is
K-trivial in ∅′. It suffices to take B K-trivial in ∅′ but not ∆0

2, and let
Y ≤T B be ML-random and computably dominated.

2. The randomness notions

We will formulate test via sequences of open classes in Cantor space.
However, via the binary representation, co-infinite sets can be identified
with the reals in [0, 1). In fact, Demuth tests were introduced originally for
real numbers. In [3] only the arithmetical real numbers were considered.
Later on [4], tests were generalized to all real numbers. Sets which fail some
test of this type were called Aα numbers in [3], or WAP-sets, where WAP
stands for weakly approximable in measure.
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Demuth was primarily interested in various kinds of effective null classes
because of their role in constructive mathematical analysis. For instance, he
studied differentiability of constructive (in the Russian sense, mapping com-
putable reals to computable reals) functions f defined on the unit interval.
He proved that for each Demuth random real x ∈ [0, 1) the “Denjoy alterna-
tive” holds: either f ′(x) is defined, or +∞ = lim suph→0[f(x+ h)− f(x)]/h
and −∞ = lim infh→0[f(x+ h)− f(x)]/h.
He also showed that mere Martin-Löf-randomness of x does not imply the
Denjoy alternative for every constructive f .

For more background on Demuth randomness see Section 3.6 of [19].

2.1. Formal definition and basics on Demuth randomness.

Definition 2.1. A Demuth test is a sequence of c.e. open sets (Sm)m∈N
such that ∀mλSm ≤ 2−m, and there is a function f ≤wtt ∅′ such that
Sm = [Wf(m)]≺.

A set Z passes the test if Z 6∈ Sm for almost every m. We say that Z is
Demuth random if Z passes each Demuth test.

Recall that for a function f , f ≤wtt ∅′ if and only if f is an ω-c.e. function.
Hence, as already mentioned, the intuition is that we can change the m-
component Sm a computably bounded number of times. We will sometimes
denote by Sm[t] the version of the component Sm that we have at stage t.

We cannot allow an arbitrary effective null sequence αm as upper bounds
in tests: at least we need

∑
m αm <∞. For instance, consider the example

of αm = 1/m. Let (ki)i∈N be an increasing computable sequence such that
k0 = 1,

∑ki+1−1
m=ki

αm ≥ 1. Then it is easy to find strings σj such that⋃ki+1−1
m=ki

[σm] = 2ω and such that λ[σm] ≤ αm. This yields a modified test
in an obvious sense. No set Z passes this test since Z belongs to infinitely
many [σm].

Given that, the choice of 2−m as an upper bound for λSm is still less
arbitrary here than for Martin-Löf tests. However, we could replace the
condition ∀mλSm ≤ 2−m by the more general condition that there is a
computable function α : N → Q+

0 such that
∑

m α(m) < ∞, the sequence
of tail sums converges to 0 effectively, and ∀mλSm ≤ α(m). Given a test in
this more general sense, define a computable sequence by

k−1 = 0 and ki+1 = µk > ki.
∑∞

j=k α(j) ≤ 2−i.

Let Ŝi =
⋃ki+1−1
m=ki

Sm. Then (Ŝi)i∈N is a Demuth test. Further, if Z ∈ Sm
for infinitely many m, then Z fails this Demuth test.

Demuth proved several interesting results concerning Turing and truth-
table degrees of sets at various levels of randomness. We mention a few that
are relevant for the rest of the paper.

Proposition 2.2.

(i) Each Demuth random set A is GL1, i.e.,
A′ ≡T A⊕ ∅′

(ii) If A is a set such that ∅′ ≤T A, there is a Demuth random set B
such that B′ ≡T A.
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Proof. The first part is stated in [4, Remark 10, part 3b] with a sketch of a
proof. A full proof can be found in [19], Theorem 3.6.26. The second part
is in [4, Theorem 12]. �

As a consequence of the foregoing theorem, a Demuth random set can
be ∆0

2 (and hence low). A proof of this special case is also given in [19,
Theorem 3.6.25].

2.2. Weak Demuth randomness.

Definition 2.3. In the context of Definition 2.1, if we also have Sm ⊇ Sm+1

for each m, we say that (Sm)m∈N is a monotonic Demuth test. In this case
the passing condition is equivalent to Z 6∈

⋂
m Sm. If Z passes all monotonic

Demuth tests we say that Z is weakly Demuth random.

This type of tests was introduced by Demuth [3], in a slightly different,
but equivalent, form. (He called sets that fail some test of this type A∗α
numbers.) Note that we would define the same randomness notion if we
retained the test concept of Definition 2.1 and only changed the passing
condition to Z 6∈

⋂
m Sm. For in that case, an equivalent monotonic Demuth

test (S̃i)i∈N is given by S̃i =
⋂
m≤i Sm.

Recall that a set A is ω-c.e. if and only if A ≤wtt ∅′. Clearly no ω-c.e. set
is weakly Demuth random.

Fact 2.4. Each weakly 2-random set is weakly Demuth random.

Proof. Suppose (Gm)m∈N is a monotonic Demuth test. Then
⋂
mGm is a

null Π0
2 class, because Z ∈

⋂
mGm ↔ ∀m∀s ∃t ≥ sZ ∈ Gm,t[t]. �

In fact, we didn’t need here that the number of changes to the c.e. open
set Gm is computably bounded.

Proposition 2.5. Both Demuth randomness and weak Demuth randomness
are closed downward under Turing reducibility within the ML-random sets.

Proof. The case for Demuth randomness is stated as Theorem 11 in [4], and
is an immediate corollary of Theorem 18 in [5]. The case of weak Demuth
randomness can be derived from the same theorem in a similar way. For
the convenience of the reader we give proofs in more standard terminology.
This appeared as the solution to Exercise 5.1.16 in [19].

Given a set A, and a Turing functional Φ, for n > 0 let

SAΦ,n = [{σ : A�n� Φσ}]≺.

By a result of Miller and Yu (see [19, 5.1.14]) if A is ML-random, then for
each Turing functional Φ there is a constant c such that ∀nλSAΦ,n ≤ 2−n+c.
This result of Miller and Yue plays a similar role here as Theorem 18 of [5].

Given a c.e. open set R, we will effectively obtain a c.e. open set R̂ such
that λR̂ ≤ 2cλR. Suppose

A = Φ(Y ).

If A fails a Demuth test (Gm)m∈N, then Y fails the Demuth test (Ĝm+c)m∈N.
For x ∈ 2<ω, let Sx be the effectively given c.e. set which follows the

canonical computable enumeration of {σ : x � Φσ} as long as the measure
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of the open set generated does not exceed 2−|x|+c. From a c.e. open set R
we can effectively obtain a (finite or infinite) c.e. antichain {x0, x1, . . .} such
that R =

⋃
i[xi]. Let R̂ =

⋃
i[Sxi ]

≺. Since [Sxi ]
≺ ∩ [Sxj ]≺ = ∅ for i 6= j, we

have λR̂ =
∑

i λSxi ≤ 2cλR. Moreover, A ∈ R implies xi ≺ A for some i
and hence Y ∈ R̂ by the hypothesis on c. Clearly (Ĝm+c)m∈N is a Demuth
test which Y fails.

For weak Demuth randomness, suppose (Gm)m∈N is a monotonic Demuth
test failed by A, namely, A ∈

⋂
mGm. Then Y ∈

⋂
m Ĝm+c. If the Demuth

test (Ĝm+c)m∈N is not monotonic, we replace its m-th component by the
intersection of its first m+ 1 components to ensure monotonicity. �

Chaitin’s halting probability Ω, viewed as a set, is Turing complete and
ML-random. Being ω-c.e., it is not weakly Demuth random. So we have an
immediate corollary.

Corollary 2.6. Every weakly Demuth random set is Turing incomplete.

Remark 2.7 (The number of changes). Note that by the argument above,
every Y ≥T Ω fails a Demuth test (Sm)m∈N with bound 2m on the number
of times a version of Sm changes.

Suppose (Sm)m∈N is a Demuth test and h is a function such that h(m)
bounds the number of times a version of Sm changes. If

∑
m h(m)2−m <∞

then we can take the effective sequence of all versions and obtain a Solovay
test failed by any set that fails the Demuth test (Sm)m∈N. Thus, if some
ML-random set fails the Demuth test (Sm)m∈N then

∑
m h(m)2−m = ∞.

For instance, this means that h(m) ≥ 2m/2 for infinitely many m.

It is not hard to see that the class of Demuth random sets, the weakly
Demuth random sets and the weakly 2-random sets form Π0

4 classes.
For instance, in the case of Demuth randomness, observe that the sets

which pass a given Demuth test (Sm)m∈N form a Σ0
3 class, namely,

{Z : ∃m0∀m ≥ m0∀n ∃s ≥ n [Z �n] 6⊆ Sm,s[s]}.
A Demuth test (Sm)m∈N is given by a pair of computable functions f, g,

where f(m, s) is the index for the Σ0
1 class which is the version of Sm at

stage s, and g(m) bounds the number of changes. As totality of indices
for partial computable functions is Π0

2, we can universally quantify over all
Demuth tests and obtain a Π0

4 expression for the class of Demuth random
sets.

The following diagram gives an overview of the randomness notions dis-
cussed and their implications.

weak 2-rd.

!!CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

limit rd.

33gggggggggggggggggggg

&&MMMMMMMMMMM 1-rd.

Demuth // weak Demuth

77ooooooooooo
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The leftmost notion is limit randomness, which is defined similar to De-
muth randomness in 2.1, but with the weaker requirement that f ≤T ∅′.
Thus, a version can change any (finite) number of times. Stronger notions
than limit randomness have been studied:

2-random ⇒ Schnorr random relative to ∅′ ⇒ limit random.
See [2] for more on Schnorr randomness relative to ∅′.

3. Complexity of weakly Demuth random sets

In this section we construct a weakly Demuth random high ∆0
2 set. Since

each Demuth random set is generalized low, this shows that some weakly
Demuth random set is not Demuth random. We will also show that no
weakly Demuth random set is superhigh. In particular, it cannot be LR-
complete.

Theorem 3.1. Each Π0
1 class P of positive measure contains a weakly De-

muth random set B which is ∆0
2 and high.

Proof. We combine two strategies. The first strategy is used to construct
a weakly Demuth random ∆0

2 set. The second strategy is used for jump
inversion.

The first strategy is a straightforward modification of the proof of [19,
Theorem 3.6.25]. Let He be [We]≺. We use an auxiliary type of tests: a
special test is a sequence of c.e. open sets (Vm)m∈N such that ∀mλVm ≤ 2−m,
and there is a function g ≤T ∅′ such that Vm = Hg(m). A set Z passes this
test if Z /∈ Vm for almost every m. (Special tests are more general than
Demuth tests in that the function g is merely ∆0

2, not ω-c.e.)
By Fact 1.4.9 from [19] there is a binary function g̃ ≤T ∅′ that emulates all

unary ω-c.e. functions f in the sense that there is i such that f(n) = g̃(i, n)
for each n. We can stop the enumeration of Heg(e,m) whenever it attempts to
exceed the measure 2−m . Hence there is a function g ≤T ∅′ such that for all
e,m, ∀mλHg(e,m) ≤ 2−m and Hg(e,m) = Heg(e,m) if already λHeg(e,m) ≤ 2−m.

Now let Vm =
⋃
e≤mHg(e,e+m+1). Then λVm ≤

∑
e≤m 2−(e+m+1) = 2−m ·∑

e≤m 2−(e+1) ≤ 2−m.
Clearly, (Vm)m∈N is a special test. Observe also that if (Sm)m∈N is a

Demuth test then Sm ⊆ Vm for almost every m. Thus, each set passing this
test is Demuth random.

We will use an additional property of this test. Suppose we merely have
Z /∈ Vm for infinitely many m. Then Z /∈

⋂
m Sm for each monotonic Demuth

test (Sm)m∈N. Thus we have proved:
Claim. There is a special test (Vm)m∈N such that any set Z for which
∃∞mZ /∈ Vm is weakly Demuth random.

This strategy can be used to construct various weakly Demuth random
sets (such as ∆0

2 sets), similar to Theorem 3.6.25 in [19]. Here we will
combine it with a further method.
The second strategy. The method of jump inversion is based on coding a
set into members of Π0

1 classes of positive measure. This technique was first
used for the so called Kučera/Gács theorem [13, 7] (see Theorem 3.3.2 in
[19]). It can be combined with a cone avoidance technique for members of
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Π0
1 classes and with an injury technique at a construction relative to ∅′ to

construct a high, but incomplete ML-random ∆0
2 set [15].

We use a standard computable enumeration of all Π0
1 classes. Let Qe be

the Π0
1 class with index e (see [19, Section 1.8]).

A Π0
1 class P is called rich if λP > 0 and there exists a computable

function h such that for all e, if ∅ 6= Qe ⊆ P then λQe > 2−h(e). Each Π0
1

class P of positive measure contains a rich Π0
1 class. (To prove this one can

use the original method of [13], or a more direct way described in the proof
[21, Theorem 5.1].) Thus we may assume that the given Π0

1 class P is rich,
with computable function h as above.

Since P is rich, given a string σ and a Π0
1 class Q ⊆ P we can compute

k such that if Q ∩ [σ] 6= ∅ then λ(Q ∩ [σ]) > 2−k. So, there are at least two
distinct strings ρ extending σ of length k such that if Q∩ [σ] 6= ∅, then also
Q∩ [ρ] 6= ∅. Thus, it is easy to construct a computable function g such that

• g(0, e) = 0 for all e
• g(−, e) is increasing for all e
• for each k, e, σ with |σ| = g(k, e), if Qe ⊆ P , then there are at least

two distinct strings ρ extending σ of length g(k + 1, e) such that
Qe ∩ [σ] 6= ∅ implies Qe ∩ [ρ] 6= ∅.

To build a weakly Demuth random ∆0
2 set B in P which is high, we first

describe two strategies in isolation.
Isolated strategy of jump inversion. We will code one bit ∅′′(m) into required
set B in a way which B′ can decode. Let m and a Π0

1 class Q = Qe such
that ∅ 6= Q ⊆ P be given. We first define a nonempty Π0

1 class (Q)0, by
X ∈ (Q)0 ↔ X ∈ Q∧

∀k∃τ(X �g(k,e)≺ τ <L X �g(k+1,e) ∧ |τ | = g(k + 1, e) ∧ Q ∩ [τ ] 6= ∅).

The idea is that (Q)0 consists of those X’s from Q for which for all k,
X �g(k+1.e) is not the beginning of the leftmost member of Q extending
X �g(k.e).

Secondly, we define a nonempty Π0
1 class (Q)1,s, as follows. Let τ0, . . . , τn

be all strings τ of length g(s+1, e) such that they are the leftmost extension
of τ �g(s,e) for which Q ∩ [τ ] 6= ∅. Note, that we can find these strings using
the oracle ∅′. Now let

(Q)1,s = {X : X ∈ Q ∧ ∃j ≤ n(τj ≺ X)}.
Here the idea is that (Q)1,s consists of those X’s from Q such that

X �g(s+1,e) is the beginning of the leftmost member of Q extending X �g(s,e).
We will ensure that
• if m /∈ ∅′′ then B ∈ (Q)0

• if m ∈ ∅′′ and m enters ∅′′ at step s (in a standard enumeration of
∅′′ relatively to ∅′), then B ∈ (Q)1,j for some j.

For any set X, membership of X in a Π0
1 class is always Π0

1 relative to
X, and, therefore, computable from X ′. So we can compute a value ∅′′(m)
from B′ by asking whether B ∈ (Q)0.

During our construction, which is relative to ∅′, we cannot decide which
case applies (m ∈ ∅′′ or m /∈ ∅′′). Thus, if m enters ∅′′ at step s it may
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not be possible to take any of τ0, . . . , τn mentioned above, due to actions of
other strategies. Instead, we take a properly chosen n (as explained later)
and choose some string of length g(n + 1, e), say ρ, which is the leftmost
extension of ρ�g(n,e) for which Qe ∩ [ρ] 6= ∅. Then we define

(Q)1(ρ) = {X : X ∈ Q ∧ ρ ≺ X)}

and we ensure that B ∈ (Q)1(ρ). Note, that (Q)1(ρ) ∩ (Q)0 = ∅.
Isolated strategy to make B weakly Demuth random - called wD strategy.
To guarantee that our constructed set B is weakly Demuth random we will
have to ensure that B /∈ Vm for infinitely many m.

Given a Π0
1 class Qe, ∅ 6= Qe ⊆ P we can compute k such that λQe > 2−k.

Then Qe \ Vk+1 is a nonempty Π0
1 class. Provided that Qe was already a

restriction on B, to which class to belong to, the next restriction will be
Qe \ Vk+1. Let us denote this class by wD(Qe).

The construction. We build, computably in ∅′, a sequence of strings
(σs)s∈N such that σs � σs+1 for all s, where B =

⋃
s σs. We will also build,

not computably in ∅′ but only in ∅′′, a sequence of Π0
1 classes (Bm)m∈N

together with their indices (em)m∈N. To adapt it to our construction we
define computably in ∅′ their approximations, which at step s we denote by
Bm[s] and em[s]. For each m there will be only finitely many changes in
these sequences and they settle down eventually to their limit values.

Let σ−1 = ∅, B−1 = P and e−1 be an index of P (here all approximations
equal to these final values).
Step s. Look whether there is m ≤ s which enters ∅′′ at step s (in a standard
enumeration of ∅′′ relatively to ∅′).
Case 1. If yes, let m be the least such. For all j < m approximations
to Bj and ej remain at this step the same as at step s − 1. Further, let
n, n ≥ s, be the least number for which g(n, em−1[s − 1]) ≥ |σs−1|. Define
a Π0

1 class Am = (Bm−1[s− 1])1(ρ), where ρ is the leftmost string of length
g(n+ 1, em−1[s− 1]) extending σs−1 for which Bm−1[s− 1]∩ [ρ] 6= ∅. Let τm
be ρ. To the class Am apply one more wD strategy to get wD(Am), and let
Bm[s] be wD(Am) and em[s] its index. It remains to redefine classes Bj [s]
for all j, m < j ≤ s. This is done inductively. Suppose Bj−1[s] (and its
index ej−1[s]) and a string τj−1 are already defined for j, m < j ≤ s.
If j /∈ ∅′′[s], then define Aj = (Bj−1[s−1])0 and apply one more wD strategy
to Aj to get Bj [s], together with its index ej [s]. Also let τj = τj−1.
If j ∈ ∅′′[s], then let ρ be the leftmost string of length g(1, ej−1[s]) extending
τj−1 for which Bj−1[s] ∩ [ρ] 6= ∅. Define Aj = Bj−1[s] ∩ [ρ], τj = ρ and,
further, apply one more wD strategy to Aj to get Bj [s] together with its
index ej [s].
Finally (at the end of this process), let σs = τs.
Case 2. If there is no such m, then for all j, j < s approximations to Bj and
ej remain at this step the same as at step s−1. Further, let As = (Bs−1[s])0,
apply one more wD strategy to As to get Bs[s] together with its index es[s].
Let σs = σs−1. This ends the construction.

Obviously, B is ∆0
2. By a standard induction argument it is straight-

forward to show that B′ can find, for all m, limit values em of Π0
1 classes

Bm. Since each Bm arises by an application of a wD startegy, B is weakly
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Demuth random. It remains to show that ∅′′ ≤T B′. As pointed out before,
m /∈ ∅′′ if and only if B ∈ (Bm−1)0. Since membership of any set X in a
Π0

1 class is computable from X ′, we can computably in B′ decide whether
m ∈ ∅′′. �

The preceding result can be generalized.

Theorem 3.2. Let P be a Π0
1 class of positive measure. For any set A ≥T ∅′

that is c.e. in ∅′, and any set C such that ∅ <T C ≤T ∅′, we can find a
weakly Demuth random ∆0

2 set B ∈ P such that B′ ≡T A and C 6≤T B.

Proof of Theorem 3.2. The above proof can be easily modified as follows.
1) Jump inversion method is applied not to ∅′′ but rather to a given set A
which c.e. in ∅′ and ≥T ∅′.
2) The method of the proof is well compatible with the method of

• the proof of the Low Basis Theorem, introduced by Jockusch and
Soare [12],which is used to control the jump of B, i.e. to ensure that
B′ ≤T A
• avoiding an upper cone above a given noncomputable ∆0

2 set,
since the latter methods are forcing by Π0

1 classes and require only an ora-
cle ∅′.

�

Before we proceed, we need to review some definitions from [19, Section
5.3].

Definition 3.3. (i) A monotonic cost function is a computable function
c : N× N→ {x ∈ Q2 : x ≥ 0}

that is nonincreasing in the first, and nondecreasing in the second argument.

Definition 3.4. (i) A computable approximation of a set A is an effective
sequence (As)s∈N of strong indices for finite sets such that A(x) = limsAs(x)
for each x.
(ii) Given a computable approximation (As)s∈N and a cost function c, the
total cost of A-changes is∑

x,s c(x, s) [x is least s.t. As−1(x) 6= As(x)].
We say (As)s∈N obeys c if this quantity is finite.

(iii) We say that a set A obeys c, written A |= c, if some computable ap-
proximation of A obeys c.

In [9] (also see [19, 8.5.3]) a monotonic cost function c is called benign if
there is a computable function g such that

x0 < x1 < . . . < xk & ∀i < k [c(xi, xi+1) ≥ 2−n] implies k ≤ g(n).
In the following we show that no weakly Demuth random set is superhigh.

We obtain this result as a corollary to the Theorem 3.5 below that there is
a c.e. set which obeys a given benign cost function, and is not below any
weakly Demuth random. This is interesting on its own right because of
the persistent open question [17] whether each K-trivial set A is below an
incomplete ML-random Y . Since K-triviality is equivalent to obeying a
certain benign cost function cK, we know that, at least, such a Y cannot
always be weakly Demuth random.
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Theorem 3.5. Let c be a benign cost function. Then there is a c.e. set
A |= c such that A 6≤T Y for each weakly Demuth random set Y .

Proof. Let Θ be the Turing functional such that Θ0e1X = ΦX
e for each

oracle X. If A = ΦX
e for some weakly Demuth random X, then Y = 0e1X

is also weakly Demuth random and A = ΘY . So it suffices to build a c.e.
set A |= c and a Demuth test (Gm)m∈N such that for each Y we have

A = ΘY → Y ∈
⋂
mGm.

Given the cost function c we define numbers vk[s] for k ≤ s. Let v0[0] = 0.
At stage s > 0, let j be least such that j = s or c(vj [s− 1], s) ≥ 2−j .

• For k < j let vk[s] = vk[s− 1].
• For k ≥ j (re)define values vk[s] in an increasing fashion and larger

than all numbers previously mentioned,
and such that c(vk[s], s) < 2−k.

Suppose c is benign via a computable function g. Note that the value of
vk changes for at most ĝ(k) =

∑
j≤k g(j) times.

Construction of a c.e. set A and a Demuth test (Gm)m∈N.
Stage s.

(a) The version of Gm at stage s is
Gm[s] = {Z : ΘZ � As �v〈m,i〉[s]+1},

where i is the number of times a number of the type v〈m,j〉 has so
far been enumerated into A.

(b) If λGm,s[s] > 2−m put v〈m,i〉 into As+1.

Verification. Since we have c(vk[s], s) ≤ 2−k, the total cost of A-changes is
at most 2.

Given m, as long as we are at (a), the version Gm[s] can change at most
ĝ(〈m, i〉) times. If we pass (b), all the later versions are disjoint from the
previous versions because we chose the vk in an increasing fashion at each
stage. Hence we pass (b) for at most 2m times. The total number of times
the version of Gm can change is thereby bounded by 2m · ĝ(〈m, 2m〉).

Clearly, if A = ΘY then Y is in the final version of Gm for each m. �

Corollary 3.6. No weakly Demuth random set is superhigh.

Proof. For each ML-random superhigh set Y , [8, Theorem 4.2] define a
benign cost function c such that A |= c implies A ≤T Y for each c.e. set
A. (In fact c only depends on the truth table reduction procedure showing
that ∅′′ ≤tt Y

′.) If we let A be the c.e. set obeying c given by the foregoing
theorem, this shows that Y cannot be weakly Demuth random.

It is also possible to prove this result directly, without relying on Theo-
rem 3.5. Rather, one only uses the methods of [8, Theorem 4.2]: given a
truth table reduction procedure Γ one builds a weak Demuth test such that
each set Z with ∅′′ = Γ(Z ′) fails the test. �

4. Demuth randomness and strong jump-traceability

We begin with some preliminaries. As in [8], we define a Turing functional
to be a partial computable function Γ: 2<ω × ω → ω, such that for all
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x < ω, the domain of Γ(−, x) is an antichain of 2<ω (in other words, that
domain is prefix-free). The idea is that the functional is the collection of
minimal oracle computations of an oracle Turing machine. For any set A
and number x, we let ΓA(x) = y if there is some initial segment τ of A such
that Γ(τ, x) = y. Then ΓA is an A-partial computable function, and every A-
partial computable function is of the form ΓA for some Turing functional Γ.
We write ΓA(x) ↓ if x is in the domain of ΓA; otherwise we write ΓA(x) ↑.
The use of a computation ΓA(x) = y is the length of the unique initial
segment τ of A such that Γ(τ, x) = y.

If (As)s∈N is a computable approximation for a ∆0
2 set A, and (Γs)s∈N is

an effective enumeration of (the graph of) a Turing functional, then we let
ΓA[s] = ΓAs

s .
The following is a special case of a lemma in [8].

Lemma 4.1. Suppose the c.e. set A is superlow. Then for each Turing
functional Γ there is a computable enumeration (As)s∈N of A and a com-
putable function g such that g(x) bounds the number of stages s such that
ΓA(x)[s− 1] is defined with use u and As �u 6= As−1 �u.

In the situation of the lemma we say the computation ΓA(x)[s − 1] is
destroyed at stage s.

Proof. Let (Ãs)s∈N be some computable enumeration of A. There is a Turing
functional ∆ such that for each x and each stage s such that Γ eA(x)[s] ↓, the
output of ∆ eA(x)[s] is the stage t ≤ s when this computation became defined.
Clearly the defined distinct values ∆ eA(x)[s] are increasing in s.

By [18] A is jump-traceable. Thus, there is a c.e. trace (Tx)x∈N with
computable bound g for ∆A. Define a computable sequence of stages as
follows. Let s0 = 0. For i ≥ 0, let

si+1 = µs > si.∀x < si [Γ eA(x)[s] ↓−→ ∆ eA(x)[s] ∈ Tx,s].

Define a computable enumeration (As)s∈N of A by As(x) = Ãsi(x) for si ≤
s < si+1. For each s such that ΓA(x)[s] is newly defined, a further element
must enter Tx. Thus (As)s∈N is a as required. �

Theorem 4.2. Suppose the c.e. set A is Turing below a Demuth random
set. Then A is strongly jump-traceable.

Proof. Since a Demuth random set is Turing incomplete, A is a basis for
ML-randomness. Hence A is low for K and therefore superlow. See [19,
5.1.23] for more detail.

Fix a Turing functional Φ. For each order function h we will build a
c.e. trace (Tx)x∈N such that #Tx ≤ h(x); we will also define a Demuth test
(Gm)m∈N such that, whenever A = ΦY , we have

(1) ∃∞xJA(x) 6∈ Tx ⇒ Y fails (Gm)m∈N.

Thus, if A = ΦY for some Demuth random set Y , then A is strongly
jump-traceable.

Fix an order function h. For m ∈ N let
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Im = {x : 2m ≤ h(x) < 2m+1}.

Let (As)s∈N be a computable enumeration of A such that the conclusion of
Lemma 4.1 holds for the jump functional J via a computable bound g.
Construction of the c.e. trace (Tx)x∈N.

For each m we run a procedure for m which defines Tx for each x ∈ Im.
The actions of these procedures will be exploited later to define the Demuth
test (Gm)m∈N. Namely, if JA(x) 6∈ Tx for some x ∈ Im, then Y ∈ Gm for
each Y such that A = ΦY .

The procedures for different m act independently. In the following fix m.
The procedure for m has a parameter v which is nondecreasing over stages.
Initially v = 0. At stage s we have a description of a c.e. open set

(2) G = {Z : ΦZ � As �v}.

Let Gs be the clopen set approximating G at stage s, namely,
Gs = {Z : ΦZ [s] � As �v}.
Procedure for m.

(a) While λG ≤ 2−m do:
if there is a new convergence JA(x) ↓ for x ∈ Im,
raise v to the stage number.

(b) Enumerate JA(x)[s] into Tx for each x ∈ Im such that this compu-
tation is defined.

(c) Wait for a stage s such that As �v 6= As−1 �v.
(d) Let v = s and goto (a).

Claim 1. For each x we have #Tx ≤ h(x).
Let m be the number such that x ∈ Im. Thus 2m ≤ h(x). Each time the
procedure for m goes back to (a), A�v has changed. Because the parameter v
is non-decreasing over stages, this means that the next set G defined in (2)
will be disjoint from the previous versions. Since λG exceeds 2−m when the
procedure enters (b), the procedure enters (b) for at most 2m times. This
proves Claim 1.

We now wish to define the Demuth test (Gm)m∈N. We cannot let Gm
copy all the versions of G the procedure for m goes through. For, since we
have to keep the values of v nondecreasing, typically v is much larger than
the maximum of the uses of the computations JA(x) for x ∈ Im. This means
that even if we have applied Lemma 4.1 to J , there may be too many changes
of A�v for the computable enumeration (As)s∈N used in the construction.

As a remedy, we introduce a new enumeration (Âs)s∈N of A. For this,
we define an auxiliary functional Γ which always has output 0. Given m,
initialize a counter i with value −1. When v is raised at a stage s in (a) of
the procedure for m, increment i and define ΓA(〈m, i〉) with use v. From
now on, each time A�v changes, redefine ΓA(〈m, i〉) with the same use.

Recall that g(x) bounds the number of times JA(x) can become destroyed
with the given computable enumeration of A. Then the maximum value of
i is bounded by r(m) = 2m

∑
x∈Im g(x).
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Now, by Lemma 4.1, there is a computable enumeration (Âs)s∈N of A and
an increasing computable function f such that Γ bA(w) gets destroyed for at
most f(w) times.

At any stage s, for each m, if v is the parameter of procedure m, let Gm
copy the c.e. open set {Z : ΦZ � Âs �v}, as long as its measure does not
exceed 2−m. (This is similar to (2) but with the new enumeration of A.)

Clearly, Gm can only change at a stage s if Γ bAs−1(〈m, i〉) is destroyed for
the current i < r(m). Hence the number of times Gm changes is bounded
by

∑
i<r(m) f(〈m, i〉). This shows that (Gm)m∈N is a Demuth test.

Claim 2. The property (1) is satisfied.
Suppose that A = ΦY , and that there are infinitely many m such that
JA(x) 6∈ Tx for some x ∈ Im. For such an m, whenever the procedure for
m reaches (c) it will after some waiting go back to (a), because the use of
JA(x) is at most v for each x ∈ Im. This can happen at most 2m times, so
eventually the procedure stays permanently at (a).

Recall that the number of times the parameter v is raised is bounded by
r(m). For the final value of this parameter, since ΦY � A�v, we put Y into
the final version of Gm by a stage s when Â�v= A�v= As �v. �

We give an application. Recall that each ML-random ∆0
2 set Turing

bounds an incomputable c.e. set (Kučera; see [19, Thm. 4.2.1]). However, a
stronger statement fails: Y0 6≤T Y1 for ML-random ∆0

2 sets does not imply
that some c.e. set A is below Y0 but not below Y1. Still better would be
to find ML-random ∆0

2 sets Y0 6≡T Y1 that bound the same c.e. sets. This
remains open.

Note that if a set Y = Y0⊕Y1 is ML-random then Y0, Y1 are ML-random
and Y0 |T Y1.

Corollary 4.3. There is a ML-random ∆0
2 set of the form Y0⊕Y1 such that

each c.e. set Turing below Y0 is Turing below Y1.

Proof. Let Y1 be a ML-random superlow set. Let Y0 be a ∆0
2 set that is

Demuth random relative to Y1. By van Lambalgen’s theorem, Y is ML-
random.

If A is c.e. and A ≤T Y0, then A is s.j.t., whence A ≤T Y1 by [8]. �

5. A basis theorem and its application to weak 2-randomness

Theorem 5.1. Let P be a non-empty Π0
1 class. Suppose that B >T ∅′ is Σ0

2.
Then there is a computably dominated set Y ∈ P such that Y ′ ≤T B.

Proof. We combine the techniques of the Low Basis Theorem of Jockusch
and Soare [12] and the basis theorem for computabaly dominated sets of
Martin and Miller [16], see Theorem 1.8.42 from [19], with permitting be-
low B relative to ∅′. Fix an enumeration (Bs)s∈N of B relative to ∅′. We
use the function cB ≤T B given by cB(i) = µt > i.Bt �i= B �i for the
permitting. Note also that cB ⊕ ∅′ ≡T B.
Construction relative to ∅′ of Π0

1 classes (P i)i∈N. Let P 0 = P .
Stage 2i+ 1. If

P 2i ∩ {X : JX(i) ↑} 6= ∅,
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then let P 2i+1 be this class. Otherwise, let P 2i+1 = P 2i.
Stage 2i + 2. See whether there is e ≤ i which has not been active so far
such that for some m ≤ cB(i) we have

Qie,m := P 2i+1 ∩ {X : ΦX
e (m) ↑} 6= ∅.

If so let e be the least such number, let m be the least such number for e,
and let P 2i+2 = Qie,m. Say that e is active. Otherwise, let P 2i+2 = P 2i+1.

A standard argument shows that there is a unique set Y such that Y ∈⋂
r P

r, i.e.
⋂
r P

r = {Y }.
Verification. Since B can determine an index for each P r, we have Y ′ ≤T B
by the usual argument of the Low Basis Theorem. Each e is active at most
once, and if so then ΦY

e is partial. Suppose now that ΦY
e is total. We claim

that there is r such that ΦZ
e is total for each Y ∈ P r, and therefore ΦZ

e is
computably dominated by the argument in the proof of the basis theorem
for computably dominated sets (Theorem 1.8.42 from [19]). If the claim fails
then B ≤T ∅′, as follows. Let s0 be a stage such that no j < e is active from
s0 on. Given i ≥ s0, using the oracle ∅′ find the least m such that Qie,m 6= ∅.
Then cB(i) ≤ m (otherwise we would now ensure ΦY

e (m) is undefined), so
that Bm �i= B �i. �

Corollary 5.2. There is a weakly 2-random set Y that does not compute a
2-f.p.f. function.

Proof. Let B >T ∅′ be a Σ0
2 set such that B′ ≡T ∅′′. By 5.1 there is a

computably dominated ML-random set Y such that Y ≤T B. Thus Y is
weakly 2-random. If g ≤T Y is 2-f.p.f then there is 2-d.n.c. function f ≤T Y ,
whence ∅′′ ≤T B⊕∅′ by completeness criterion of Arslanov relativized to ∅′,
[1], (see Theorem 4.1.11 from [19]), contradiction. �

An alternative proof can be obtained from a result in the literature. By
[20] relative to ∅′, there is a set Y <T ∅′′ such that Y is Schnorr random
relative ∅′ and left-Σ0

2. Then Y is weakly 2-random and does not compute
a 2-f.p.f. function again by [1] relative to ∅′.
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