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a b s t r a c t

We prove the correctness of an algorithm for normalizing untyped combinator terms by
evaluation. The algorithm is written in the functional programming language Haskell, and
we prove that it lazily computes the combinatory Böhm tree of the term. The notion of
combinatory Böhm tree is analogous to the usual notion of Böhm tree for the untyped
lambda calculus. It is defined operationally by repeated head reduction of terms to head
normal forms. We use formal neighbourhoods to characterize finite, partial information
about data, and define a Böhm tree as a filter of such formal neighbourhoods. We also
define formal topology style denotational semantics of a fragment of Haskell following
Martin-Löf, and let each closed program denote a filter of formal neighbourhoods. We
prove that the denotation of the output of our algorithm is the Böhm tree of the input
term. The key construction in the proof is a ‘‘glueing’’ relation between terms and semantic
neighbourhoods which is defined by induction on the latter. This relation is related to the
glueing relation which was earlier used for proving the correctness of normalization by
evaluation algorithm for typed combinatory logic.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The correctness of an algorithm for normalizing typed combinatory terms was proved by Coquand and Dybjer [5]. They
showed that this algorithm can be used for deciding whether two terms are convertible (provably equal by equational
reasoning from the axioms for K and S) by checking whether their normal forms are identical.

However, the algorithm can be applied to all combinatory terms, also to those which do not have a type.We show that in
this case it computes the combinatory Böhm tree of the input under lazy evaluation. Although the Böhm treemay be infinite
the output of the algorithm can approximate any finite part of it. In particular, the Böhm tree of a normalizing combinatory
term is a (tree representation) of its normal form, irrespectively of whether the input term has a type or not.

We shall here use formal neighbourhoods to represent such finite approximations of data. On the one hand we define
the Böhm tree of a combinatory term as a filter of formal neighbourhoods which approximate the successive head normal
forms of the term, the subterms of the head normal form, etc. On the other hand we will write our algorithm in the lazy
functional programming language Haskell. We define the denotational semantics of this Haskell program as a filter of formal
neighbourhoods. Finally,weprove that a formal neighbourhood approximates the output of the algorithm iff it approximates
the Böhm tree of the input term.
Background. This paper combines two techniques which are both inspired by constructive thinking.
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The first is normalization by evaluation or normalization by intuitionistic model construction, whereby the meaning of a
term is first computed and then the normal form is extracted from the meaning. The resulting algorithm can be extracted
from a constructive proof of weak normalization using Tait’s reducibility predicates [16,17,3].

The second is the idea of expressing the denotational semantics of a program using formal neighbourhoods which
approximate the canonical form of a program under lazy evaluation [18]. Martin-Löf used this technique for the domain
interpretation of the language of terms underlying intuitionistic type theory. Martin-Löf’s interpretation was in turn based
on Scott’s reformulation of domains as neighbourhood systems [25] and information systems [26].

Martin-Löf’swork on formal neighbourhood semantics in 1983–84was a starting point for his and Sambin’s development
of a more general formal topology [23,24].

Normalization by evaluation was originally applied to compute normal forms of terms in languages (or logical systems)
where such normal forms always exist. However, several researchers have later applied the technique to languages where
normal forms do not always exist. For example, Mogensen [19] defined a self-reducer for the untyped lambda calculus
using normalization by evaluation. Then Danvy and Filinski [7,12] used the technique for partially evaluating programs in
languages with general recursion and non-terminating computations.

Aehlig and Joachimski [1] analysed normalization by evaluation algorithm for the untyped lambda calculus. They
considered an untyped β-normalizing version of Berger and Schwichtenberg’s algorithm [4] for the simply typed lambda
calculus which produced long βη-normal forms. Using operational techniques, they showed that this algorithm computed
the Böhm tree (in the ordinary sense of the lambda calculus) of a term. Aehlig and Joachimski also wrote a Haskell program
which implemented the Böhm tree computation using lazy evaluation.

A Standard ML version of this program was then analysed by Filinski and Rohde [13] who instead used denotational
semantics (and a proof technique due to Pitts [21,20]) in their proof that the algorithm outputs Böhm trees. They argued
that in this way they could prove the correctness of the precise Standard ML program rather than of a (subtly different)
operational model, as Aehlig and Joachimski. Devautour (in a summer internship project supervised by the first author [8])
adapted Filinski and Rohde’s proof to the case of combinatory logic.

Our goal here is to provide an alternative andwe hopemore perspicuous proof of this result by usingMartin-Löf’s formal
neighbourhood semantics of lazy functional programs [18].

We also have amore general aim: to investigate formal topology style proof principles for proving the correctness of lazy
functional programs in their full generality. Many (perhaps most) practically useful proofs of functional programs can be
done in first order logic where the proper axioms are the recursion equations of the programs and axioms for inductively
defined predicates [10,11]. Moreover, coinduction can be useful for reasoning about infinitely proceeding computations
[9]. However, there are cases where we genuinely seem to need the ínsights of domain theory such as the example in the
present paper. There are two key difficulties. The first is that we need to reason about partially defined data. The second is
that we use a reflexive type, a recursive type where the type variable appears negatively in the defining type equation. Such
types do not have induction principles in the usual sense, although they havemixed induction principles in the sense of Pitts
[20]. Proof systems based on domain theory have a long history going back to Scott’s ideas about a Logic of Computable
Functions and their implementation by Milner and his coworkers in the influential LCF-system [14]. But this system was
based on classical domain theory where the use of "admissible" predicates sometimes caused complications. One of our
aims here is to demonstrate an approach based on direct reasoning about the formal neighbourhoods of programs, which
we propose as an alternative to principles based on classical domain theory and on abstract reasoning principles based on
category theory [21].

2. Combinatory expressions and their neighbourhoods

2.1. The type of combinatory expressions

Our task is to write a program which computes the Böhm tree of a term in combinatory logic. Such terms are generated
by the following grammar:

e ::= K | S | e@e.

We use the @-sign to denote application in combinatory logic, our object language, and reserve juxtaposition for application
inHaskell, ourmeta programming language. (Weuse the usual notational conventions such as left-associativity of application,
etc.)

The type of combinatory logic terms is implemented as a recursive data type Exp in Haskell:

data Exp = K | S | App Exp Exp.

Semantically, this type can be understood as the domain of lazy expressions D which is a least solution of the domain
equation

D ∼= 1 + 1 + D × D.

Here 1 is a one-point domain, + is the separated sum of domains, and × is the cartesian product of domains.
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However, we shall not use classical domain theory here, but the neighbourhood system approach introduced by Scott
[25,26] and in particular the formal neighbourhoods of Martin-Löf [18].

Our algorithmwill do case analysis on the type Exp. Although Haskell provides case analysis for arbitrary data types, the
formal analysis will be facilitated by using a special combinator for case analysis of expressions:

expcase :: a -> a -> (Exp -> Exp -> a) -> Exp -> a

expcase c d f K = c
expcase c d f S = d
expcase c d f (App e e’) = f e e’.

Note that Haskell uses double colon :: for the typing relation.

Remark. Wewould like to emphasize that the discussion in this paper is not specific to the Haskell programming language.
We only use a clean subset of Haskell which deserves to be called the ‘‘canonical lazy functional programming language": the
simply typed lambda calculus with polymorphic types and recursive function and data type definitions. Our normalization
algorithm will be written in this subset.

Since Haskell is a lazy language, the evaluation of a program e of type Exp, written e :: Exp, may give rise to a
computationwhich goes on indefinitely. It may not produce any output at all, or it may produce infinite output. For example,
using Haskell’s fixed point combinator

fix :: (a -> a) -> a

fix f = f (fix f)

we can write the term

fix (\x -> App K x) :: Exp

which will produce infinite output when evaluated:

App K (App K (App K ... )).

A formal neighbourhood (we will later drop ‘‘formal’’) represents a finite piece of information about the value of an
expression of a certain type. We have a special neighbourhood ∆ which represents no information at all. Other examples of
expression neighbourhoods are K which represents that we know that the expression is K, and ∆@∆ which represents that
we know that an expression is lazily evaluated to e@e′, but where we have no information about the canonical forms of e
and e′.

The grammar for expression neighbourhoods is as follows:

U ::= ∆ | K | S | U@U .

To characterize the combinatory Böhm tree it is sufficient to use the following special normal form neighbourhoods:

U ::= ∆ | K | K@U | S | S@U | (S@U)@U .

The terminology neighbourhood comes from the fact that each neighbourhood characterizes a set of programs (of
type Exp) according to what we know about their (lazy) value. For example, ∆ characterizes the set of all programs, K
characterizes the set of programs which evaluate to K, and K@∆ characterizes the set of all programs which evaluate to K@e
for some e.

Dually, each program of type Exp determines the set of those neighbourhoods which approximate its lazy value.

Remark. We can now inductively define the notion of (formal) inclusion U ⊇ U ′ of expression neighbourhoods: ∆ ⊇ U for
all U; K ⊇ K, S ⊇ S, and if U ⊇ V and U ′

⊇ V ′ then U@U ′
⊇ V@V ′. It follows easily that formal inclusion is a partial order.

Remark. The (formal) intersection U ∩ U ′ of two neighbourhoods can be defined as the greatest lower bound of U and U ′

with respect to formal inclusion. Note that a lower bound may not exist, so in our setting, formal intersection is a partial
operation.

Remark. Here we deviate in an inessential way fromMartin-Löf [18] whose formal neighbourhoods are closed under finite
intersection: if (Ui)i∈I is a family of formal neighbourhoods, then so is∩i∈IUi. In this way formal intersection becomes a total
operation, but the price is that inconsistent neighbourhoods such as K ∩ S are introduced. See also Scott [26].
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3. Combinatory Böhm trees

3.1. Head normal form

The notion of combinatory Böhm tree for combinatory logic is analogous to the usual notion of Böhm tree for the untyped
lambda calculus [2]. It is obtained by first computing the head normal form of a term, then computing the head normal form
of the subterms of the first head normal form, and so on possibly ad infinitum. To define it formally, we first introduce the
notion of a head normal form v of a combinatory expression e. It is an inductively defined relation e ⇒

h v generated by the
following rules:

K ⇒
h K S ⇒

h S

e ⇒
h K

e@e′ ⇒h K@e′

e ⇒
h K@e′ e′

⇒
h v

e@e′′ ⇒h v

e ⇒
h S

e@e′ ⇒h S@e′

e ⇒
h S@e′

e@e′′ ⇒h S@e′@e′′

e ⇒
h S@e′@e′′ (e′@e′′′)@(e′′@e′′′) ⇒

h v

e@e′′′ ⇒h v

Corollary. It follows immediately, by case analysis, that

K@e@e′
⇒

h v iff e ⇒
h v

S@e@e′@e′′
⇒

h v iff (e′@e′′′)@(e′′@e′′′) ⇒
h v.

3.2. The Böhm tree of a combinatory expression

The relation e ◃
Bt U expresses that the combinatory Böhm tree of an expression e is approximated by the expression

neighbourhood U . It is inductively generated by the following rules:

e ◃
Bt ∆

e ⇒
h K

e ◃Bt K

e ⇒
h K@e′ e′

◃
Bt U ′

e ◃Bt K@U ′

e ⇒
h S

e ◃Bt S

e ⇒
h S@e′ e′

◃
Bt U ′

e ◃Bt S@U ′

e ⇒
h S@e′@e′′ e′

◃
Bt U ′ e′′

◃
Bt U ′′

e ◃Bt S@U ′@U ′′
.

The Böhm tree of an expression e in Exp is the set

BT (e) = {U | e ◃
Bt U}.

The following properties are easy to prove:

1. BT (K@e@e′) = BT (e)
2. BT (S@e@e′@e′′) = BT ((e′@e′′′)@(e′′@e′′′))
3. Böhm trees are upward closed with respect to formal inclusion: if U ⊇ U ′ and e ◃

Bt U ′ then e ◃
Bt U

4. e ◃
Bt ∆

5. Böhm trees are closed under formal intersection e ◃
Bt U then e ◃

Bt U ′ then e ◃
Bt U ∩ U ′.

The three last properties state that a Böhm tree is a filter of neighbourhoods.
It is however not immediate to define application of combinatory Böhm trees and prove that they form a combinatory

algebra, see Barendregt [2] for a construction of the Böhm tree model of the lambda calculus.
In the following section we shall give an alternative definition of the combinatory Böhm tree of a term: it will be lazily

computed by a normalization by evaluation (nbe) algorithm. As usual for nbe-algorithms, it will be easy to prove that the
algorithm maps convertible expressions to equal results (Böhm trees). Hence it will also follow easily that Böhm trees
(defined by nbe) form a combinatory algebra.
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4. A program which lazily computes combinatory Böhm trees

The reader is referred to [5] for an introduction to the algorithm (with extensions to natural number and Brouwer ordinal
types). In the algorithm for typed combinatory logic we interpret a combinatory expression of function type A → B as a pair
consisting of its normal form and a function whichmaps themeaning of A to themeaning of B. In this waywe keep track not
only of normal forms but also of how an expression maps normal forms to normal forms, and how such mappings extend
to higher types.

In the untyped setting these pairs are represented by elements of the Haskell type
data Sem = Gl Exp (Sem -> Sem).

In other words, Sem is the solution of the domain equation (in mathematical notation):

D ∼= Exp × (D → D).

The constructor
Gl :: Exp -> (Sem -> Sem) -> Sem

is a curried version of the isomorphism from left to right. Note that D is a reflexive domain in Scott’s sense: D appears
negatively on the right hand side.

The following Haskell function interprets an expression in Exp in the semantic domain Sem:
eval :: Exp -> Sem

eval K = Gl K (\x -> Gl (App K (reify x)) (\y -> x))
eval S = Gl S (\x -> Gl (App S (reify x))

(\y -> Gl (App (App S (reify x)) (reify y))
(\z -> appsem (appsem x z) (appsem y z))))

eval (App e e’) = appsem (eval e) (eval e’)

where
appsem :: Sem -> Sem -> Sem

appsem (Gl e f) x = f x

is the application function on the semantic domain. The function
reify :: Sem -> Exp

reify (Gl e f) = e

returns the first component (the normal form) of a pair in the semantics. The normal form of an expression can now be
computed by first interpreting and then reifying:
nbe :: Exp -> Exp

nbe e = reify (eval e).

Our task is to prove that this algorithm computes the combinatory Böhm tree using formal neighbourhoods.

5. Denotational semantics of the nbe program

5.1. A fragment of Haskell

We shall now define the denotation of the nbe program as a set of neighbourhoods (actually a filter). Since it is written
in Haskell we shall define the denotational semantics of a fragment of Haskell which contains the nbe program. In doing
so we shall follow Martin-Löf’s semantics of the terms of the untyped language underlying intuitionistic type theory as
denotational neighbourhood filters of formal neighbourhoods [18]. We only deviate from his presentation in inessential ways.

Note that we are only using the core of Haskell, that is, the simply typed lambda calculus with polymorphic types (in
the sense of Hindley–Milner) and recursive data type and recursive function definitions. For the purpose of the presentation
we shall only use a simply typed lambda calculus where the base types are Exp and Sem. (It would be straightforward, but
verbose, to extend our definitions to recursive types in general.)

The terms of our Haskell subset are generated by the following grammar:
e ::= x | e e | \x -> e

| K | S | App e e | expcase e e e e
| Gl e e | reify e | appsem e e
| fix e

As before, we will use e@e′ for App e e’. We will also use λx.e for \x -> e.
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We can redefine the recursive function eval given in the previous section so that it is a term in the above fragment of
Haskell:

eval :: Exp -> Sem

eval = fix (\ev e -> expcase
(Gl K (\x -> Gl (App K (reify x)) (\y -> x)))
(Gl S (\x -> Gl (App S (reify x))

(\y -> Gl (App (App S (reify x)) (reify y))
(\z -> appsem (appsem x z) (appsem y z))))))

(\e’ e’’ -> appsem (ev e’) (ev e’’))
e
).

We will associate to each program t with at most n free variables an n + 1-ary relation JtK between neighbourhoods (of
appropriate types). One can prove that JtK is an approximable mapping in Scott’s sense [25,26]. In particular, we associate to
each closed program t , a set JtK which is a filter of neighbourhoods.

5.2. Function neighbourhoods

We have already defined the neighbourhoods of type Exp, but also need to define those of the type Sem of semantic
elements. Since Sem is a recursive type using a function space in its definition, we first introduce the notion of a function
neighbourhood. The reader is referred to Plotkin [22], Scott [25,26], Martin-Löf [18], and Hedberg [15] for more discussion
of function neighbourhoods qua finite elements of function domains.

The formal neighbourhoods of function type are constructed as follows: if Ui (i ∈ I) is a finite set of neighbourhoods of
type α and Vi (i ∈ I) is a finite set of neighbourhoods of type β , then

i∈I

[Ui; Vi]

is a neighbourhood of typeα → β .We let∆ =


i∈∅
[Ui; Vi] anddefine the notion of formal inclusion and formal intersection

following Martin-Löf. See also Hedberg’s [15] machine-checked proof that a category of lower semi-lattices (of formal
neighbourhoods) and approximable mappings is cartesian closed.

i∈I

[Ui; Vi] ⊇


j∈J

[U ′

j ; V
′

j ]

iff
∀i ∈ I.∃J ′ ⊆ J.


j∈J ′

U ′

j ⊇ Ui&Vi ⊇


j∈J ′

V ′

j .

The idea is that a program f is approximated by a function neighbourhood


i∈I [Ui; Vi] iff the output of f is approximated
by Vi whenever the input is approximated by Ui, for all i ∈ I . There are however two ways of interpreting this idea:

operationally: if an arbitrary input x is approximated by Ui, then the output f x is approximated by Vi. Formally, one bases
this notion of approximation on the lazy operational semantics of programs.

denotationally: one drops the reference to an element x of input type α, and instead directly models the effect of f as a
relation between an input neighbourhood and the neighbourhoods which approximates the output computed by
f on an input approximated by the input neighbourhood.

The two notions differ because of the full abstraction problem. The neighbourhoods of a program with input type Bool →

Bool → Boolwill depend on the result when evaluating it on the neighbourhood ‘‘parallel or" [22] which is not inhabited
in Haskell or any other sequential programming language.

Accordingly, Martin-Löf [18] associated two sets of neighbourhoods to each program, its operational neighbourhood filter
and its denotational neighbourhood filter. He also proved an adequacy theorem: a denotational neighbourhood is always an
operational neighbourhood, but not vice versa.

We remark that some function neighbourhoods are inconsistent, e g [∆, K] ∩ [∆, S]. Such neighbourhoods are of course
always uninhabited operationally.

5.3. Neighbourhoods of Sem

We recall the type Sem of semantic values:

data Sem = Gl Exp (Sem -> Sem).
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The neighbourhoods of Sem are given by the following inductive definition:

• ∆ is a neighbourhood.
• if U is a neighbourhood of type Exp, and V is a neighbourhood of type Sem -> Sem, then Gl U V is a neighbourhood of

Sem.

5.4. Denotational semantics

To each program e (in our Haskell subset) with at most n free variables, we will assign an n + 1-ary relation between
neighbourhoods, and write U1, . . . ,Un JeK V .

We first define the semantics of typed lambda terms

• U1, . . . ,Un JxiK V iff Ui ⊆ V .
• U1, . . . ,Un Jλxn+1.eK


i[Vi;Wi] iff for all i,U1, . . . ,Un, Vi JeK Wi.

• U1, . . . ,Un Je e′KV iff there exists U such that U1, . . . ,UnJe′KU and U1, . . . ,UnJeK[U; V ].

Thenwedefine the semantics of the combinators. For simplicity,we assume that the terms are closed, so that the denotations
are sets of neighbourhoods. (It is of course straightforward to extend this to open terms.)

• JKK = {K, ∆}.
• JSK = {S, ∆}.
• Jt@t ′K = {U@U ′

| U ∈ JtK and U ′
∈ Jt ′K} ∪ {∆}.

• Jexpcase c d f eK = {V | (K ∈ JeK & V ∈ JcK) ∨ (S ∈ JeK & V ∈ JdK) ∨

(U@U ′
∈ JeK & [U; [U ′, V ]] ∈ Jf K)} ∪ {∆}.

• JGl e f K = {Gl U V | U ∈ JeK, V ∈ Jf K} ∪ {∆}.
• Jreify eK = {U | Gl U V ∈ JeK} ∪ {∆}.
• Jappsem e e′K = {V | ∃U ∈ Je′K, ∃V ,W .Gl W [U; V ] ∈ JeK} ∪ {∆}.

Finally, the semantics of the fixed point combinator is [25]:

• Jfix f K = {V | ∆ Jf nK V for some n}.

One can now show that:

• Jeval KK = JGl K (λx.Gl (K@(reify x)) (λy.x))K.
• Jeval SK = JGl S λx.Gl(S@(reify x))

(λy.Gl (S@(reify x))@(reify y) (λz.appsem (appsem x z) (appsem y z))K if S ∈ JeK.
• Jeval (e@e′)K = Jappsem (eval e) (eval e′)K.

We are now ready to prove our theorem: that the nbe-algorithm computes combinatory Böhm trees. In doing so we shall
write e ∈ U for U ∈ JeK. We can read e ∈ U as ‘‘e formally belongs to the neighbourhood U".

6. Proofs of correctness

6.1. Nbe maps convertible terms into equal Böhm trees

Let e conv e′ mean that e and e′ are convertible combinatory expressions, where convertibility is the least congruence
(w.r.t. application) which contains the axioms for K and S. We prove that the nbe-algorithm maps convertible terms into
equal Böhm trees. This follows immediately from the fact that e conv e′ implies eval e = eval e′, which is proved by a
straightforward induction on the derivation of e conv e′ :

• The K-conversion rule.

Jeval (K@e@e′)K = Jappsem (appsem (eval K) (eval e)) eval e′K

= Jappsem (Gl (K@(reify (eval e))) (λy.(eval e))) (eval e′)K

= Jeval eK.

• The S-conversion rule follows by a similar calculation.
• Application preserves conversion. Assume as induction hypothesis that Jeval e0K = Jeval e′

0K and Jeval e1K =

Jeval e′

1K. Then

Jeval (e0@e1)K = Jappsem (eval e0) (eval e1)K
= Jappsem (eval e′

0) (eval e′

1)K

= Jeval (e′

0@e′

1)K.

It follows immediately that e conv e′ implies Jnbe eK = Jnbe e′K.
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6.2. Completeness of nbe

We now prove that the nbe-algorithm is complete, that is, that it returns any finite part of the Böhm tree:

e ◃
Bt U implies nbe e ∈ U .

The proof is by induction on the derivation of e ◃
Bt U .

• U = ∆ is immediate.
• U = K where e ⇒

h K.
Since convertible terms have equal normal forms, it follows that Jnbe eK = Jnbe KK. Since nbe K ∈ K we conclude

nbe e ∈ K.
• U = K@U ′ where e ⇒

h K@e′ and e′
◃
Bt U ′. It follows that Jnbe eK = Jnbe (K@e′)K = JK@(nbe e′)K. By induction

hypothesis, nbe e′
∈ U ′. Hence nbe e ∈ K@U ′.

• The three cases for S (applied to 0, 1, and 2 arguments) are analogous.

6.3. Soundness of nbe

We then prove soundness, that is, that the nbe-algorithm only returns approximations of the Böhm tree:

nbe e ∈ U implies e ◃
Bt U .

We shall prove this as a corollary of the following main lemma (cf. the reducibility/glueing method [5]):

eval e ∈ V implies e ◃
Gl V .

where e ◃
Gl V is defined by (generalized) induction on V : it holds if either

• V = ∆;
• or V = Gl U (


i[Vi;Wi]) where e ◃

Bt U and for all i and e′, e′
◃
Gl Vi implies e@e′

◃
Gl Wi.

The following properties are consequences of the analogous properties of ◃
Bt in section 3.2:

1. If V ⊇ V ′ and e ◃
Gl V ′ then e ◃

Gl V .
2. K@e@e′

◃
Gl V iff e ◃

Gl V .
3. S@e@e′@e′′

◃
Gl V iff e@e′′@(e′@e′′) ◃

Gl V .

The main lemma is then proved by induction on e.
Case K.We prove that eval K ∈ V implies K ◃

Gl V by case analysis on the neighbourhoods of eval K.
The case V = ∆ is immediate, so let V = Gl U (


i[Vi;Wi]). It follows that U ⊇ K and

λx.Gl (K@(reify x)) (λy.x) ∈ [Vi;Wi].

We need to prove two things:

• K ◃
Bt U , which follows directly from U ⊇ K.

• For all i, e′, e′
◃
Gl Vi implies K@e′

◃
Gl Wi.

The case Wi = ∆ is immediate so we let Wi = Gl Ui (


j[Vij;Wij]). It follows that Ui ⊇ K@U ′

i and λy.x ∈ [Vij;Wij].
We need to prove two things:
– K@e′

◃
Bt Ui.

Case Vi = ∆. It follows that Ui ⊇ K@∆ and hence K@e′
◃
Bt Ui.

Case Vi = Gl U ′

i (


j[V
′

ij;W
′

ij]). We know e′
◃
Bt U ′

i and hence K@e′
◃
Bt Ui.

– For all j, e′′
◃
Gl Vij implies K@e′@e′′

◃
Gl Wij. But, we know that λy.x ∈ [Vij;Wij] and hence thatWij ⊇ Vi. Hence e′

◃
Gl Vi

by property 1 and thus K@e′@e′′
◃
Gl Wij by property 2 of ◃

Gl above.

Case S. The proof that eval S ∈ V implies S ◃
Gl V begins with a case analysis which is analogous to the case analysis for K,

except that the last case is different:

• . . .

– For all j, e′′
◃
Gl Vij implies S@e′@e′′

◃
Gl Wij.

The case Wij = ∆ is immediate so we let Wij = Gl Uij (


k[Vijk;Wijk]). It follows that Uij ⊇ S@U ′

i@U ′

ij and
λz.xz(yz) ∈ [Vijk;Wijk]. We need to prove two things:
∗ S@e′@e′′

◃
Bt Uij.

Case Vij = ∆. It follows that Uij ⊇ S@∆@∆ and hence S@e′@e′′
◃
Bt Uij.

Case Vij = Gl U ′

ij (


k[V
′

ijk;W
′

ijk]). It follows thatUij ⊇ S@U ′

i@U ′

ij. We know e′′
◃
Bt U ′

ij and hence S@e′@e′′
◃
Bt Uij.
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∗ For all k, e′′′
◃
Gl Vijk implies S@e′@e′′@e′′′

◃
Gl Wijk. But we know that λz.xz(yz) ∈ [Vijk;Wijk] which together with

previous assumptions about the neighbourhoods of x and y, the assumptions about e′, e′′, e′′′, and the definition of
◃
Gl entail that e′@e′′′@(e′′@e′′′) ◃

Gl Wijk. Thus S@e′@e′′@e′′′
◃
Gl Wijk by property 3 of ◃

Gl above.

Case e@e′. We prove that eval (e@e′) ∈ V implies e@e′
◃
Gl V from the induction hypotheses that eval e ∈ U implies

e ◃
Gl U for all U and eval e′

∈ U ′ implies e′
◃
Gl U ′ for all U ′.

It follows that either

• V = ∆ and we are done.
• Or there exists U such that eval e ∈ Gl ∆ [U; V ] and eval e′

∈ U . In this case the induction hypotheses tells us that
e′

◃
Gl U and e ◃

Gl Gl ∆ [U; V ]. But then it follows immediately from the definition of the latter that e@e′
◃
Gl V .

7. Conclusion and further research

A new approach to Böhm trees. There is alreadymuchworkwhich shows how normalization by evaluation provides a new
approach to normalization with simpler and sometimes more general proofs. Similarly, we here get a new approach to the
theory of Böhm trees defined as the output of a lazy functional programs. By usual standards such Böhm trees generated
by a program are perhaps rather unconventional mathematical objects. But we hope to have demonstrated that formal
neighbourhoods provide a suitable framework for their analysis. We would for example like to investigate whether we can
get a simpler proof of Wadsworth’s theorem [27] which relates equality of Böhm trees to equality in Scott’s D∞-model, if
Böhm trees are defined by nbe.
A formal topology style logic of lazy functional programs. As we mentioned in the introduction we are interested in
isolating the principles needed for a logic of lazy functional programswhich can be used for reasoning about partial elements
and reflexive types. The aim is to provide a formal topology style alternative to the logic of computable functions in the sense
of Scott and Milner.

In our proof above we have used several inductively defined relations: the relation e ⇒
h v which relates total elements

of the type Exp, the relation e ◃
Bt V which relates partial elements of the type Exp and neighbourhoods of type Exp. The

denotational semantics is given by a relation between programs and neighbourhoods of a given type. In our proofs we have
used induction on the structure of neighbourhoods, and induction on the inductively defined relations. We would like to
investigate in future work whether we can provide a general theory of inductive definitions of properties of programs and
neighbourhoods. We would also like to understand the connection between this logic and abstract reasoning principles
better.
Intersection types. Formal neighbourhoods are closely related to intersection types [6]. It would be interesting to see how
the above development could be rephrased inside that framework.
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