
Expressive Power of Digraph Solvability

Marc Bezema, Clemens Grabmayerb, Micha l Walickia

a Department of Informatics, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
b Department of Philosophy, Utrecht University, P.O. Box 80125, 3508 TC Utrecht,

The Netherlands

Abstract

A kernel of a directed graph is a set of vertices without edges between them,
such that every other vertex has a directed edge to a vertex in the kernel. A di-
graph possessing a kernel is called solvable. Solvability of digraphs is equivalent
to satisfiability of theories of propositional logic. Based on a new normal form
for such theories, this equivalence relates finitely branching digraphs to proposi-
tional logic, and arbitrary digraphs to infinitary propositional logic. While the
computational complexity of solvability differs between finite dags (trivial, since
always solvable) and finite digraphs (NP-complete), this difference disappears
in the infinite case. The existence of a kernel for a digraph is equivalent to the
existence of a kernel for its lifting to an infinitely-branching dag, and we prove
that solvability for recursive dags and digraphs is Σ1

1-complete. This implies
that satisfiability for recursive theories in infinitary propositional logic is also
Σ1

1-complete. We place several variants of the kernel problem in the axiomatic
hierarchy and, in particular, prove as the main result that over RCA0, solvabil-
ity of finitely branching dags is equivalent to Weak König’s Lemma. We then
show that ZF proves solvability of trees and that solvability of forests requires at
most a weak form of AC. Finally, a new equivalent of the full AC is formulated
using solvability of complete digraphs.

1. Introduction

In a digraph (directed graph), a subset X of its vertices is called independent
if the successors of vertices in X are not in X. A kernel of a digraph is an
independent subset K of vertices such that there is an edge from every vertex
outside of K to a vertex in K. Equivalently, a kernel of a digraph is a subset K
of vertices such that a vertex is in K if and only if none of its successors is in K.
This concept corresponds to, and originates from, the concept of solution of
binary relations as introduced by von Neumann and Morgenstern in their book
Theory of Games and Economic Behavior [16]. To see the connection with game
theory, consider a two-player game with alternating moves, with vertices of a

Email addresses: bezem@ii.uib.no (Marc Bezem), clemens@phil.uu.nl (Clemens
Grabmayer), michal@ii.uib.no (Micha l Walicki)

Preprint submitted to Elsevier August 17, 2011

2 BASIC DEFINITIONS AND FACTS 2

digraph G representing the positions and the edges the possible moves. Then
any kernel of G describes a stable situation for one of the players: a player A in
a position outside a kernel K of G can always choose to move to a position in K,
forcing the opponent B to move out of K, and so on. Thus A can stay outside
K for the rest of the game, whereas B is forced to stay inside K. Depending on
the other rules of the game, this can be a winning strategy for A.

Today, kernel theory is an active research field in graph theory. Its main
question concerns sufficient conditions for the existence of kernels in finite di-
graphs, e.g., [1, 6, 7, 9], with a recent overview in [2].

In this paper we aim at more general formulations. The expressive power
in the title refers to, on the one hand, the recursion-theoretic complexity of the
problem of kernel existence and, on the other hand, to the axiomatic strength of
solvability of digraphs of various classes. These questions, apparently of purely
graph theoretic flavour, have strong logical import. Section 2 starts with the def-
initions of kernels and solutions of digraphs, and introduces functions between
digraphs and propositional theories mapping satisfiable theories to solvable di-
graphs and vice versa. The mappings relate infinitely branching digraphs to
infinitary propositional logic, and finitely branching ones to the usual proposi-
tional logic. A new, simple proof of this otherwise known equivalence, [3, 5], is
given. Section 3 presents simple generalizations of two known results, useful for
a general study of the digraph solvability and applied in later sections. Section 4
presents the first main result of the paper: Σ1

1-completeness of the solvability
of recursive digraphs and, as a consequence of the above equivalence, of satis-
fiability of recursive theories in infinitary propositional logic. Section 5 shows
axiomatic strength of the solvability of some classes of digraphs. Subsection 5.1
presents the other main result of the paper: equivalence, over RCA0, of solv-
ability of finitely branching dags and countable compactness (or Weak König’s
Lemma). Subsection 5.2, noting solvablity of trees in ZF, shows the solvability
of forests from a very weak form of the Axiom of Choice, AC(2), assuming a
choice function for any collection of sets, all having 2 elements. It then gives a
new equivalent of AC in terms of the solvability of complete digraphs.

2. Basic definitions and facts

A directed graph (a digraph) is a pair G = 〈G,EG〉, where G is a set of
vertices and EG ⊆ G×G is a binary relation representing the directed edges of
G. When G is understood, we write E instead of EG. A directed acyclic graph
(a dag) is a digraph without cycles.

For a vertex x ∈ G, we denote by E(x) := {y ∈ G | E(x, y)} the set of
successors of x, and by E`(x) := {y ∈ G | E(y, x)} the set of predecessors of
x with respect to the edge relation of G. This notation is extended to subsets
of vertices, for example, for all X ⊆ G, we let E`(X) :=

⋃
x∈X E

`(x). A
sink (source) in G is a vertex x ∈ G without successors (predecessors) and
sinks(G) = {x ∈ G | E(x) = ∅} denotes the set of sinks of G.

Given a digraph G = 〈G,E〉, we denote by G = 〈G,E〉 its underlying undi-
rected graph, obtained by turning every directed edge 〈x, y〉 into an undirected

2 BASIC DEFINITIONS AND FACTS 3

one {x, y}, i.e., with E = {{x, y} | 〈x, y〉 ∈ E}.1
We give a general definition of path since we need both finite and infinite

paths. Consider the digraph 〈Z, Succ〉, where Z denotes the integers and Succ =
{〈n, n+ 1〉 | n ∈ Z}. An interval graph is the subgraph induced by I ⊆ Z where
for all i, j ∈ I with i < j we have i + k ∈ I for all 0 < k < j − i. A digraph
morphism h : F → G is a mapping of vertices h : F → G preserving the edge
relation, i.e., when extended pointwise to sets, satisfying h(EF(x)) ⊆ EG(h(x))
for all x ∈ F . A path in G is a digraph morphism h from an interval subgraph
of Z to G. In particular, an ω-path is such a morphism from the interval graph
consisting of all non-negative integers. Note that any cycle gives an ω-path. An
integer graph is a digraph isomorphic to 〈Z, Succ〉. An ancestor (descendant) of
any vertex x of G is a vertex y such that there is a path in G from y to x (from

x to y), and E
∗̀

G (x) (E∗G(x)) is the set of x’s ancestors (descendants) in G.
A kernel of a digraph G = 〈G,E〉 is a subset of vertices K ⊆ G such that:

(i) G \K ⊇ E`(K) (K is an independent set in G), and

(ii) G \K ⊆ E`(K) (K is dominating: from every non-kernel vertex there is
at least one edge to a kernel vertex).

The equivalence between the existence of kernels and the satisfiability of propo-
sitional theories that we explore in this paper arises from an equivalent definition
of kernels, the notion of solution. Let G = 〈G,E〉 be a digraph. An assignment
α ∈ {0,1}G (of truth-values to the vertices of G) is a solution of G if for every
x ∈ G : α(x) = 1⇔ α(E(x)) ⊆ {0} or, equivalently, if for every x ∈ G :(

α(x) = 1 ∧ α(E(x)) ⊆ {0}
)
∨
(
α(x) = 0 ∧ 1 ∈ α(E(x))

)
(2.1)

The set of solutions of G is denoted by sol(G). G is called solvable iff sol(G) 6= ∅.
By α1 we denote the set {x ∈ G | α(x) = 1}.

The simplest example of an unsolvable digraph is •
zz . For all digraphs G

and all assignments α ∈ {0,1}G it holds:

α ∈ sol(G)⇐⇒ α1 = G \ E`(α1)⇐⇒ α1 is a kernel of G. (2.2)

Now, a digraph G induces a (possibly infinitary) propositional theory T (G) by
taking, for each x ∈ G, the formula x ↔ E¬(x), where E¬(x) =

∧
y∈E(x) ¬y

with the convention that
∧
∅ = 1.2 Letting mod(T) denote all models of a

theory T, it is easy to see that (2.1) entails:

sol(G) = mod(T (G)) . (2.3)

As a consequence of (2.2) and (2.3), determining kernels of digraphs can be
viewed as a special case of determining the models of theories in propositional

1Notations E(x, y), 〈x, y〉 ∈ E, y ∈ E(x) and x ∈ E`(y) are used interchangeably for
denoting that x is E-related to y.

2Satisfiability of such a theory is equivalent to the existence of solutions for the corres-
ponding system of boolean equations. This motivates the name “solution”, which was also
used for kernels in the early days of kernel theory, e.g., [16], p.588, or [13].

2 BASIC DEFINITIONS AND FACTS 4

logic. These theories are in ordinary, finitary propositional logic (PL), if G is
finitely branching, and in infinitary propositional logic (PL∞), otherwise.

PL∞ denotes propositional logic with formulas of finite depth, formed over
an arbitrary set of propositional variables by unary negation and (possibly)
infinite conjunction3. PLω denotes the restriction of PL∞ to propositions over
a countable set of propositional variables and with conjunction of arity ω.

Conversely, consistency of propositional theories can be reduced to solvabil-
ity of corresponding digraphs. Every PL∞-theory T can be represented as a
digraph G(T) whose solutions are in bijective correspondence to the models of
T. This is particularly simple if a theory T is given as a set of equivalences in
the digraph normal form

y ↔
∧
i∈Iy

¬xi , (2.4)

where all y, xi are variables, and where every variable occurs at most once on
the left of ↔. The digraph G(T) is obtained by taking variables as vertices
and, for every formula, introducing edges 〈y, xi〉 for all i ∈ Iy. In addition, for
every variable z not occurring on the left of any ↔, we add a new vertex z
and two edges 〈z, z〉 and 〈z, z〉. This last addition ensures that each variable z
of T which would become a sink of G(T), and hence could only be assigned 1
by any solution of G(T), can now also be assigned 0 (when the respective z is
assigned 1). Letting V (T) denote all variables of T, and sol(X)|Y the restriction
of assignments in sol(X) to the variables in Y , we have that

mod(T) = sol(G(T))|V (T). (2.5)

An arbitrary theory T, not in the above form (2.4), can be translated into an
equisatisfiable theory in this form. The idea is to introduce new variables for
every subformula, and to express the relation between the formula and its direct
subformulas, using the normal form (2.4), in the graph structure. We assume
vertices v for every propositional variable v (plus enough extra vertices used at
every stage of the definition). We define a mapping G from formulas to digraphs
in two steps. The first step is to define a rooted dag G′(ϕ), essentially the parse
tree of ϕ, by recursion on ϕ:

(i) G′(
∧
i ϕi) consists of a new vertex n, all G′(¬ϕi) and new edges from n to

the root of each G′(¬ϕi);
(ii) G′(¬ϕ) consists of a new vertex n′, G′(ϕ) and a new edge from n′ to the

root of G′(ϕ);

(iii) G′(v) consists of the vertex v as a sink.

Then we extend the rooted dag G′(ϕ) to digraph G(ϕ) in the following way.
First, add a new vertex n′′ to G′(ϕ) with a loop and an edge to the root of
G′(ϕ). This enforces solutions in which the root of G′(ϕ) is 1. Second, for every

3Many variations are possible, e.g., one could allow well-founded formulas or take disjunc-
tion instead of conjunction. Binary connectives, such as ↔, are assumed to be encoded, but
could have been added.

2 BASIC DEFINITIONS AND FACTS 5

sink v, add a new vertex v and one new edge from v to v and one from v to v.
As explained above, this makes it possible to assign any truth value to v. The
extended graph has neither sources nor sinks. This completes the description of
G(ϕ).

Some obvious simplifications of G(ϕ) can be made. The first one is to remove
double negations by putting G′(¬¬ϕ) = G′(ϕ). The second one is to remove a
possible double negation from the vertex with the loop to the root of G(¬ϕ),
that is, when the main formula is negative. The third one is to put G(¬v) = v,
in combination with appropriate edges between v and v.

Finally, we collect the set of all G(ϕ), ϕ ∈ T, to obtain G(T), satisfying Equa-
tion (2.5) by construction. We illustrate the translation with some examples.

Example 2.6. Simplifying the digraphs for T1 = {¬x} and T2 = {¬x∨ y}, we
obtain:

n1
$$ // x // xoo

G(T1)

n
$$ //

%%

x // xoo

G(T2) y // yoo

The theory T3 with literals ¬xi for all i ∈ N and one infinitary disjunction
C =

∨
i∈N xi = ¬

∧
i∈N ¬xi, gives rise to the following digraph G(T3):

G(T3) x1
// x1oo n1oo zz

...

C
&&

;;

// xi
// xioo nioo zz

...

G(T3) can be obtained from the finite subgraph G1 induced by {C, x1, x1, n1} by
replicating the subgraph induced by these vertices except C. The inconsistency
of T3 is reflected by the unsolvability of G(T3) which, in turn, reduces to the
unsolvability of the finite subgraph G1. This suggests a possibility of reducing
satisfiability of theories in PL∞ to solvability of finite graphs, instead of to
satisfiability of finite subtheories. Such an investigation, however, is not the
topic of the present paper.

Equation (2.3) for digraphs, and Equation (2.5) for propositional theories es-
tablish a back-and-forth correspondence between satisfiable propositional the-
ories and solvable digraphs. Various statements of sufficient conditions for the
existence of kernels, e.g., [1, 2, 6, 7, 9], can be now applied for determining
satisfiability of PL theories and vice versa. The following investigation of the
placement of variants of the kernel problem in the recursive and axiomatic hi-
erarchy, invokes this equivalence – sometimes, merely for facilitating the proof,
and at other times for drawing a conclusion in one field, having obtained it in
the other.

3 SOME GENERAL FACTS ABOUT SOLVABILITY 6

3. Some general facts about solvability

This section presents two results on solvability that are of independent, gen-
eral interest. They are not new but only generalize earlier known facts by dis-
charging some unnecessary assumptions. Section 3.1 shows that every digraph
has a sinkless subgraph with essentially the same solution set. The proof also
yields the well-known fact that every finite dag, and even every dag without
ω-paths, has a unique solution, since the relevant sinkless subgraphs of such
dags are empty. Section 3.2 shows that solutions for arbitrary digraphs can be
represented as solutions for appropriate, infinitely branching dags.

3.1. Induced assignment
This subsection uses induction on the set of ordinals with cardinality at

most the cardinality of the graph in question. All quantifications are relative
to this set of ordinals and we use κ to denote such ordinals (λ for limits). The
construction sequentially removes vertices from the graph until a fixed-point, a
sinkless subgraph with essentially the same solution set, is reached.

Assigning 1 to sinks(G) may force values at some other vertices. This was
implicitly used already in the proof of Richardson’s theorem (finitely branching
digraph without odd cycles is solvable, [13]), and then formulated more generally
in [11] for irreflexive graphs. Since irreflexivity is unnecessary, we spell out and
justify the construction in full generality. It is based on repeatedly removing
sinks and their predecessors. The induced (partial) assignment σ is defined by
ordinal recursion as follows:

C0 = G, for the given digraph G = 〈G,E〉
Cκ is the subgraph induced by Cκ
σ1
κ = sinks(Cκ)
σ0
κ = E`(σ1

κ) ∩ Cκ
Cκ+1 = Cκ \ (σ1

κ ∪ σ0
κ) and Cλ =

⋂
κ<λ Cκ for limit λ

G◦ =
⋂
κ Cκ and G◦ is the induced subgraph

σv =
⋃
κ σ

v
κ , for v ∈ {0,1}

The induced assignment is given by σ = {〈x,v〉 | x ∈ σv}


(3.1)

Note that σ is well-defined since there is no overlap between the sets σv
κ , when

κ or v varies. For finitely branching digraphs ω iterations suffice. In general,
even if any path to a sink is finite, one may need transfinite ordinals to reach
a fixed-point, but one never needs ordinals with cardinality larger than that of
the graph. In the following example the (empty) fixed-point is reached in ω+ω
iterations, while the infinitely branching graph is countable.

Example 3.2. In the digraph below, after ω iterations only vertices at level 1
have induced values. The digraph has the induced (unique) solution when, after
ω + ω iterations, G◦ becomes empty.

2 ·

��)) ++ ,,

·oo ·oo ·oo ·oo ·oo ·oo oo

1 · ·oo ·oo ·oo ·oo ·oo ·oo oo

3 SOME GENERAL FACTS ABOUT SOLVABILITY 7

The example is an instance of a general fact, namely, the solvability of digraphs
without ω-paths. The latter follows from the next proposition, allowing the
reduction of many solvability questions to solvability of sinkless digraphs.

Proposition 3.3. For any G, with σ, Cκ and G◦ as defined in (3.1):

1. G◦ = Cκ = Cκ+1 for some κ with cardinality at most |G|
2. sinks(G◦) = ∅
3. sol(G) = {α ∪ σ | α ∈ sol(G◦)}, in particular, sol(G) 6= ∅⇔ sol(G◦) 6= ∅.

Proof. 1. For finite graphs this is obvious, so let G be infinite and assume
by contradiction that Cκ \Cκ+1 is non-empty for all κ with cardinality at most
|G|. Then there would be an injection {κ : |κ| ≤ |G|} → G, which is impossible.

2. This follows directly from the previous point, since Cκ = Cκ+1 implies that
there are no sinks in Cκ = G◦.

3. Let α ∈ sol(G). By induction we show that for all κ, σ1
κ ⊆ α1 and

σ0
κ ⊆ α0. This is obvious for σ1

0 = sinks(G) and, consequently, also for
σ0
0 = E`(sinks(G)). Inductively, if x ∈ σ1

κ = sinks(Cκ), then E(x) ⊆
⋃
κ′<κ σ

0
κ′

(since y ∈ E(x) ∩ σ1
κ′ would imply x ∈ σ0

κ′ and hence x 6∈ σ1
κ). By the in-

duction hypothesis we get E(x) ⊆ α0, and so α(x) = 1. If x ∈ σ0
κ then

x ∈ E`(σ1
κ) ⊆ E`(α1), so α(x) = 0. Hence any α ∈ sol(G) extends σ.

Now let x ∈ G◦ and y ∈ E(x). If y 6∈ G◦, then y ∈ σ0, since y ∈ σ1 would
imply x 6∈ G◦. In other words, all successors of x outside G◦ have α(x) = 0,
which means that α restricted to G◦ is a solution of G◦. By similar arguments,
any solution of G◦ can be extended to a solution of G by joining σ. �

When G◦ = ∅, sol(∅) = {∅} 6= ∅ and, by point 3, G has only one solution
σ. This is the case, for instance, for finite dags, which appears to be the first
theorem in kernel theory from [16]. More generally, Proposition 3.3 has the
following corollary. The absence of ω-paths means that the digraph is well-
founded in the forward direction and, in particular, contains no cycles.

Corollary 3.4. Every digraph without an ω-path has a unique solution.

3.2. Lifting digraphs to dags

Every digraph G (with at least one edge) can be transformed into an infinitely
branching dag Gω – preserving and reflecting the solutions – as follows.

The (dag-)lifting of a digraph G = 〈G,E〉 is the digraph Gω = 〈Gω, Eω〉
with:

Gω := G× ω
Eω := {〈ni,mj〉 | 〈n,m〉 ∈ E ∧ i < j} (3.5)

where, here and below, the vertices of Gω, pairs in G×ω, are denoted by indexing
the vertex in the first component, that is, a pair 〈n, i〉 is written as ni. The
graph Gω is indeed a dag: it contains no cycles, since there can be a path of
positive length from yi to yj only when i < j. Also, sinks(Gω) = sinks(G)× ω
and G has an ω-path iff Gω has an ω-path.

4 RECURSION-THEORETIC COMPLEXITY 8

For every function f : G→ X, its lifting fω : Gω → X is given by:

fω(ni) := f(n) (for all n ∈ G and i ∈ ω) . (3.6)

For a set (of functions) F we denote Fω = {fω | f ∈ F}.

Lemma 3.7. For every G, (sol(G))ω ⊆ sol(Gω).

Proof. By definition, for every vertex x ∈ G and for all i ∈ ω :

E¬(xi) =
∧

m∈E(x),j>i

¬mj (so E¬(xi) = 1 for all x ∈ sinks(G)).

Let α ∈ sol(G), then α(x) = α(E¬(x)). By (3.6) we have αω(xi) = α(x) =
α(E¬(x)) = αω(E¬(xi)) for all x, i. It follows that αω ∈ sol(Gω). �

We say that a β ∈ sol(Gω) is stable on a vertex n ∈ G if ∀i∀j (β(ni) = β(nj))
and call β stable if β is stable on every vertex of G.

Lemma 3.8. For every G, every β ∈ sol(Gω) is stable.

Proof. Gω has the property that ∀n ∈ G ∀i∀j > i (Eω(nj) ⊆ Eω(ni)). Now,
if β(ni) = 1, that is, β(Eω(ni)) ⊆ {0}, then also β(nk) = 1 for all k ≥ i. If
β(ni) = 0, there is an mj ∈ Eω(ni) with β(mj) = 1 and, by the previous case,
β(mj′) = 1 for all j′ ≥ j. Hence β(nk) = 0 for all k ≥ i.
The immediate corollary of the two lemmata is the following:

Theorem 3.9. For every G, (sol(G))ω = sol(Gω).

In particular, G is solvable if and only if Gω is. A special case of the above
gives, for a finite cyclic G, its infinite, acyclic counterpart. The paradigmatic
example is lifting a single loop to the infinite Yablo dag, the digraph 〈N, <〉,
[17]. The special case of finite, sinkless graphs was addressed in [4] and we
merely generalized it allowing infinite graphs and sinks. When digraphs are
infinitely branching, the theorem allows us to equate the problem of solvability
of arbitrary digraphs and the problem of solvability of dags. Consequently,
many results characterizing the solvability of arbitrary digraphs, also hold for
the solvability of arbitrary dags.

4. Recursion-theoretic complexity

This section contains the first main result of the paper, namely, that solv-
ability of recursive digraphs is Σ1

1-complete and that, as a consequence, this
also holds for satisfiability of (clausal) recursive PLω-theories. We begin with
a simple argument showing that even binary recursive trees (which are always
solvable in systems at least as strong as WKL0, by the main result in Section
5.1) may fail to have recursive solutions.

A consistent, recursive, propositional theory may have no recursive models.
In terms of digraphs, a solvable, recursive digraph may have no recursive solu-
tions. Since lifting (3.5) of a recursive digraph yields a recursive dag, there are

4 RECURSION-THEORETIC COMPLEXITY 9

recursive dags with no recursive solutions. The following gives a direct proof of
this fact, even for binary trees, using a variation of the Kleene tree (as explained
to us by Dag Normann). Note that a tree can be viewed as a dag (with unique
paths from the root to each vertex).

Proposition 4.1. There exists a recursive binary tree T without recursive so-
lutions.

Proof. The argument is based on the existence of two recursively enumerable
but recursively inseparable sets A and B. This means that A∩B = ∅ and there
is no recursive set C such that A ⊂ C and B ⊂ C. Let recursive functions a and
b enumerate these sets A and B, respectively. We define, uniformly recursive in
n, linear trees Tn consisting of all sequences 00, 01, 02, ..., 0k where 00 = ε and k
is such that:

(1) a(i) 6= n ∧ b(i) 6= n for all i < k/2,

(2) k = 2i if i is minimal such that a(i) = n, and

(3) k = 2i+ 1 if i is minimal such that b(i) = n.

This means that Tn = 0∗ if n 6∈ A ∪ B. Otherwise, Tn is a finite path with an
even number of edges if n ∈ A and an odd number if n ∈ B. The recursive tree
T consists now of all prefixes of sequences 0n10k for all n ∈ N and 0k ∈ Tn. If
there exists a recursive α ∈ sol(T), then the set C = {n ∈ N | α(0n1) = 1} is
recursive and separates A and B. Contradiction. �

Before stating the main results of this section, we briefly recall Theorem XX
from Rogers [14, Section 16.3]. Let FPT be the following subset of N:

FPT = {z | ϕz is the characteristic function of a finite-path tree}

Here ϕz is the partial recursive function with Kleene index z. A tree in [14] is
a prefix-closed set of finite sequences of natural numbers encoded by so-called
sequence numbers. It is convenient to assume that every natural number is a
sequence number and that 0 encodes the empty sequence. For brevity, we will
say that z encodes a tree if ϕz is the characteristic function of a tree. In this
setting, Theorem XX states that FPT is a Π1

1-complete set. Consequently, the
complement of FPT is a Σ1

1-complete set:

FPT = {z | if z encodes a tree, then this tree has an ω-path }

The set FPT is instrumental in proving other sets Σ1
1-complete by means of a

so-called many-one reduction. Let A,B ⊆ N. We write A≤mB to denote the
fact that there is a many-one reduction from A to B, that is, a total recursive
function f : N→ N such that n ∈ A if and only if f(n) ∈ B, for every n ∈ N. If
A≤mB and A is Σ1

1-complete and B is Σ1
1, then B is Σ1

1-complete as well.
The set that we will prove to be Σ1

1-complete is GSOL defined by

GSOL = {z | if z encodes a digraph, then this digraph is solvable}

4 RECURSION-THEORETIC COMPLEXITY 10

We must first make clear what it means for a Kleene index z to encode a digraph.
We take this to mean that ϕz is the characteristic function of a set of pairs of
natural numbers, where the pairs represent the edges of the digraph. We assume
a primitive recursive, surjective encoding of such pairs as natural numbers.

Before we give the details of a many-one reduction from FPT to GSOL we
provide an intuitive sketch of this reduction. It is a small step to view a tree
in the sense of Rogers as a digraph: the vertices are finite sequences of natural
numbers and the edges point from any σ to each finite sequence σx, extending
σ by x, in the tree. Recall from Corollary 3.4 that any finite-path tree, that is,
a tree without ω-paths, has a unique solution. We can standardize this solution
by splitting every edge in two, adding intermediate vertices and appropriate
edges. Then a finite-path tree leads to a digraph in which all sinks have even
distance to the root. Because of the absence of ω-paths, the unique solution
now assigns 1 to root. We can spoil this solution by adding an edge from the
root to itself (a single loop): the resulting digraph is no longer solvable.

If the tree has an ω-path, the effect of splitting the edges in two is different.
To analyze this case, assume the tree has an ω-path and split all edges as in
the previous paragraph. Let I be the set of new, intermediate vertices and O
be the set of other vertices, (the old vertices of the tree). The resuling digraph
is still a tree and still has the solution assigning 1 to all vertices in O and 0 to
all vertices in I. But there are now other solutions as well. These solutions are
among the solutions given in Proposition 3.3, point 3, but one is most easily
described here directly. Distinguish between vertices not on any ω-path and all
others. Obviously. the root is on an ω-path. For vertices not on any ω-path
we keep the truth values as in the previous paragraph, that is, 1 for all vertices
in O and 0 for those in I. This is correct for sinks that are all in O, but also
for all other vertices not on any ω-path. The reason is simply that if a vertex
is not on any ω-path , then none of its successors is on any ω-path . On the
other hand, for vertices on an ω-path we swap the above truth values, that is,
we assign 0 if such a vertex is in O and 1 if such a vertex is in I. This is correct
for the following reason. If a vertex x ∈ O is on an ω-path , then x must have at
least one successor on an ω-path , and all successors of x are in I. This means
that at least one successor of x gets assigned 1, justifying x = 0. Furthermore,
if a vertex x ∈ I is on an ω-path , then its unique successor in O is also on an
ω-pathand gets assigned 0, justifying x = 1. So due to the ω-path, there exists
a solution assigning 0 to the root. This assignment is still a solution when we
add a single loop to the root.

In summary, if T is a tree and G(T) is the digraph extending T by splitting
edges in two and adding a single loop at the root, then we have:

T has an ω-path ⇐⇒ G(T) is solvable.

We are now in a position to give the details of the many-one reduction of FPT to
GSOL. Readers who are already convinced by the informal explanation above
may skip this rather technical paragraph. We multiply sequence numbers by
two so that odd numbers become available for intermediate vertices. Let ϕz be a

4 RECURSION-THEORETIC COMPLEXITY 11

partial recursive function. We define the partial recursive function ψ as follows: 4

ψ(〈0, 0〉) = ϕz(0) (the single loop at the root if the tree is non-empty)
ψ(〈2x−1, 2x〉) = ϕz(x) if x > 0 (2x− 1 represents an intermediate vertex)
ψ(〈2x, 2y−1〉) = ϕz(y) if x is y without the last element (2y − 1 intermediate)

Otherwise (if none of the above cases apply):
ψ(〈x′, y′〉) = 0 if x′ is odd or y′ is odd
ψ(〈2x, 2y〉) = 0 if ϕz(y) ≤ ϕz(y′) for all prefixes y′ of y
ψ(〈2x, 2y〉) = ↑ in all other cases (↑ denotes divergence).

Recall that characteristic functions are total, binary functions. The last two
cases are designed to ensure that ψ is encoding a digraph only if ϕz is the
characteristic function of a tree.

Since the definition of ψ is uniformly recursive in z, it follows that ψ = ϕf(z)
for some recursive function f . Given the informal explanation in the previous
paragraph, it is not difficult to verify that f is the desired many-one reduction
of FPT to GSOL.

Theorem 4.2. The solvability problem for digraphs, GSOL, is Σ1
1-complete.

Proof. Since we have FPT ≤m GSOL by the above reduction, it suffices to
prove that GSOL is Σ1

1. We first note that encoding a digraph means being a
total recursive function on all pairs of natural numbers, which has only arith-
metical complexity. Next, we give a Σ1

1-formula in z that expresses solvability
for digraphs encoded by z:

∃K ∀n
[
n ∈ K ↔ ∀n′(EdgeIn(n, n′, z) → n′ /∈ K)

]
Here n, n′ vary over natural numbers, and K over sets of natural numbers, and
EdgeIn(n, n′, z) is a Σ0

1-formula equivalent to ϕz(〈n, n′〉) = 1. �

Natural questions at this point are: what is the complexity of digraph solvability
for finitely branching digraphs? And for dags? Define the following sets

FBGS = {z | if z encodes an fb digraph, then this digraph is solvable}
DSOL = {z | if z encodes a dag, then this dag is solvable}.

Recall that solvability of fb digraphs is equivalent to satisfiablility of theories in
ordinary propositional logic, by Equations (2.3) and (2.5). This means that the
‘solvability part’ of FBGS is rather easy and that the complexity of FBGS comes
from the encoding of digraphs, complicated by the ‘fb’ requirement. However,
this complexity is still arithmetical and does not exceed Π0

3.
Regarding dags, we note that adding a single loop to the root of a tree, such

as done in G(T), results in a digraph and not in a dag. In order to get a dag
D(T) rather than a digraph, instead of the single loop we add a new vertex v

4The arguments 〈x, y〉 of ψ denote codes of pairs of numbers. Arguments of ϕz , on the
other hand, are understood as sequence numbers. These two codings are unrelated.

4 RECURSION-THEORETIC COMPLEXITY 12

with an edge to the root r of the tree (with the edges split in two as before),
plus a Yablo dag 〈N, <〉, [17], with edges from every vertex n ∈ N to v.

0 // ,, **

,,

)) ((1 //

((

2 //

��

3 //

vv

4

rrv

��
r

uu ��))◦

vv

◦
��

◦

))•
��))

•
��))

•
��))◦

��

◦
��

◦
��

◦
��

◦
��

◦
��

• • • • • •

This has the same effect as the single loop at r, namely spoiling solutions as-
signing 0 to v, that is, 1 to r. This informal argument proves FPT ≤m DSOL.
We now get that DSOL is Σ1

1-complete since GSOL is Σ1
1 and acyclicity is of

arithmetical complexity.
Equation (2.3) relates satisfiability of infinitary propositional logic with di-

graph solvability. One would expect both to have the same analytical complex-
ity. This will turn out to be the case, but we must first define what it means for
a Kleene index to encode a theory in infinitary propositional logic. There are
many possibilities here and we minimize technicalities by considering infinitary
clausal theories.

A literal is a propositional variable or its negation. A clause is a (possibly
infinite) set of literals representing a disjunction. A PLω-theory in infinitary
clausal form can be encoded by a ternary predicate C on N representing the
clauses:

Ci := {pj | C(i, j, 1)} ∪ {¬pj | C(i, j, 2)}, for all i ∈ N.

We take a Kleene index z to encode the theory consisting of all clauses Ci if ϕz is
the characteristic function for the predicate C. We remark that the complexity
of encoding a theory is arithmetical. We define the set ISAT by:

ISAT = {z | if z encodes a PLω-theory, then this theory is satisfiable}

Satisfiability can be expressed by a Σ1
1-formula:

∃M∀i∃j [(j ∈M ∧ LitIn(z, i, j, 1)) ∨ (j /∈M ∧ LitIn(z, i, j, 2))],

where M varies over sets of natural numbers and LitIn(z, i, j, k) is a Σ0
1-formula

equivalent to ϕz(i, j, k) = 1. This establishes ISAT ∈ Σ1
1, and we now sketch

the many-one reduction GSOL≤m ISAT.

5 AXIOMATIC STRENGTH 13

Given a graph G = 〈N, E〉, the construction yielding Equation (2.3) gives rise
to formulas i ↔

∧
j∈E(i) ¬j in the corresponding theory. Writing this equiva-

lence in clausal form gives:
(a) one positive clause i ∨

∨
j∈E(i) j and

(b) binary negative clauses ¬i ∨ ¬j for each j ∈ E(i).
We use the even numbers to represent clauses under (a), and a subset of the
odd numbers to represent clauses under (b). For the latter we use some familiar
injective pairing function such as f(i, j) = (i + j)(i + j + 1) + 2i + 1, which
is surjective on the odd numbers. Now we define the ternary predicate C as
follows, where C is taken to be false in all cases in which it is not defined to be
true.

(a) C(2i, i, 1) for all i ∈ N
C(2i, j, 1) for all i ∈ N and j ∈ E(i)

(b) C(f(i, j), i, 2) for all i ∈ N and j ∈ E(i)
C(f(i, j), j, 2) for all i ∈ N and j ∈ E(i)
C(f(i, j), 0, k) for all i, j, k ∈ N with j 6∈ E(i)

The last clauses are deliberately tautological, including k = 1 and k = 2. With-
out these, the theory would contain empty clauses Cf(i,j) for j 6∈ E(i), and
would hence be unsatisfiable. Clearly we have that the clausal theory encoded
by C is satisfiable if and only if G = 〈N, E〉 has a kernel. Also, C is recursive
when E is, yielding GSOL ≤m ISAT. We thus obtain:

Corollary 4.3. Consistency of PLω-theories, ISAT, is Σ1
1-complete.

5. Axiomatic strength

The next subsection contains the main result of the paper: equivalence, over
RCA0, of countable compactness and the solvability of finitely branching dags.
Subsection 5.2 shows that ZF proves solvability of trees, while the solvability of
forests can be proven in ZF with only a weak form of AC. It also gives a new
equivalent of AC in terms of digraph solvability.5

5.1. Solvability of fb dags over RCA0

The transformations between digraphs and propositional theories from Sec-
tion 2 suggest an analogy where ω-paths correspond to infinite theories while
infinite branching corresponds to infinitary formulae. Infinitary propositional
theories can be much more complex and expressive than infinite theories in
finitary propositional logic. Consequently, one can expect that bounding the
branching degree really makes solvability results less demanding from the ax-
iomatic point of view. On the other hand, bounding the length of paths to be
finite, cannot be expected to simplify solvability results much in this respect.

As an important special case, solvability of trees, or more generally dags,
without ω-paths (but with arbitrary branching), leaves much axiomatic strength

5Not even full ZF is necessary, but we have refrained from analyzing this in detail.

5 AXIOMATIC STRENGTH 14

intact. The result was given in Corollary 3.4 and Friedman states its equivalence
over RCA0 to ATR0, [8]. On the other hand, it is not difficult to see that already
RCA0 proves solvability of every rooted tree with no finite path but with finite
branching. (Assuming the tree is given by an adjacency list for every node,
the distance to the root can be defined recursively, and nodes can be assigned
the value given by the parity of this distance.) In this section we prove the
solvability of finitely branching (fb) dags in the weakest possible subsystem of
second-order arithmetic in which this result can be proved, namely, the system
WKL0. Recall from [15] that the weakest of these systems is RCA0, in which
only ∆0

1-comprehension and Σ0
1- and Π0

1-induction are allowed (in addition to
first-order arithmetic). The system WKL0 extends RCA0 by Weak König’s
Lemma. Since solvability of a finitely branching digraph G is equivalent to
consistency of the corresponding propositional theory T = T (G), we find it
convenient to use an equivalent of WKL0, namely the extension of RCA0 by
the axiom stating the compactness of countable propositional theories (see [15,
Thm.IV.3.3]). We henceforth call the latter axiom countable compactness.

Our proof consists of two parts. The easy part is to show that countable
compactness is sufficient to prove solvability of fb dags in RCA0. This result is
not new, but is not well-known and we have not found any reference. (E.g., [12]
applies propositional compactness to obtain solvability of certain fb digraphs,
but doesn’t state the general result explicitly.) What is truly new here is the
converse, that solvability of countable fb dags proves countable compactness and
that this proof can be carried out in RCA0. This is the hard part, which can be
seen as a contribution to Friedman’s programme of Reverse Mathematics. We
start with the easy part.

Lemma 5.1. Countable compactness implies, over RCA0, solvability of fb dags
(represented by adjacency lists).

Proof. Let G = 〈N, E〉 be an fb dag. The corresponding propositional the-
ory T (G) consists of all formulas x ↔

∧
y∈E(x) ¬y. If x is a sink then the

above formula reads x↔ 1, or simply x. At this point, care must be exercised
when reasoning in RCA0. First, the propositional formulas must be encoded as
numbers. Second, the set of codes representing T (G) must be definable by ∆0

1-
comprehension. In order to achieve this we require that the graph G is given by
a (neighbourhood) function E : N→ N∗, that is, as a function of nodes to finite
sequences of nodes. These finite sequences are called adjacency lists. For a sink
x the sequence E(x) is empty. These adjacency lists make it possible to define
in RCA0 the theory T (G) as the set of all codes of formulas x ↔

∧
y∈E(x) ¬y.

As noted after Proposition 3.3, every finite dag has a unique kernel. This fact
can actually be proved with only finite combinatorics. Now, any finite subset S
of T (G) can easily be strengthened by adding propositions y for all y occurring
in S only on the righthand side of a formula in S. (The reason for doing this
is that such y become sinks in the graph corresponding to S, and hence get
assigned truth value 1.) Call the extended set of formulas S′. Taking G′ to
be the finite subgraph of G induced by the nodes/variables occurring in S, we

5 AXIOMATIC STRENGTH 15

then have S′ = T (G′). The solution of G′ is a model of S′ by Equation (2.3),
and hence S has a model. It follows by countable compactness that T (G) has a
model, which is a solution of G by, again, Equation (2.3).�

For the difficult part, let Σ = {p1, p2, ...} be a countable set of variables, C the
set of all (finite) clauses over Σ without complementary pairs of literals. For
any theory T ⊆ C, we will define a graph GT . These graphs GT will be fb dags
whose solutions represent models of T provided that every finite subtheory of
T has a model. In this way we will prove that solvability of countable fb dags
implies countable compactness.

Let a theory T be given by an enumeration t0, t1, . . . of its clauses. Let Ti
denote the finite subtheory of T consisting of t0, t1, . . . , ti. For every i ∈ N, let
Ci ⊂ C contain all clauses with maximal literal index i. Clauses are denoted
as disjunctions of literals with increasing indices, but are actually finite sets of
literals. This means that we may write, for example, ¬p1 ∈ C for a clause C.
For every i, Ci is finite and we denote its cardinality by |Ci|. For example, C2
consists of the six clauses p1 ∨ p2, p1 ∨¬p2, ¬p1 ∨ p2, ¬p1 ∨¬p2, p2,¬p2. (Note
that the enumerations of T and C may be totally unrelated, for example, both
t0 = p99 and t99 = p1 are possible.)

The set N×N is the set of nodes of the graph GT . In order to be compatible
with Lemma 5.1, the graph must be represented by an adjacency list for every
node. We allow ourselves a graphical representation which is easier to grasp,
and leave it to the reader to verify that the set of adjacency lists actually can
be obtained by ∆0

1-comprehension. The nodes at even levels 2i represent the
literals, in such a way that for all k, 〈2i, 2k〉 corresponds to pi and 〈2i, 2k + 1〉
to ¬pi. The odd levels 2i − 1 are used to represent clauses from Ci. The
level 2i − 1 is thought to be divided into intervals of length |Ci|, with nodes
〈2i − 1, s+ |Ci| ∗ n〉, for all n ≥ 0 and 0 ≤ s < |Ci|, representing the (s + 1)-th
clause Csi ∈ Ci. The n in the second element of the pair determines whether this
node has edges (in and possibly out), and this depends on whether Csi follows
from Tn or not. With the exception of edges 〈2i, k〉 → 〈2i, k+ 1〉, there are only
edges 〈a1, a2〉 → 〈b1, b2〉 with bi < ai (i = 1, 2). This ensures both fb and the
fact that adjacency lists can be computed from the edge relation that we will
define now.

Definition 5.2. Given the enumerated theory T = {t0, t1, t2, ...}, where no
clause ti contains a complementary pair, recall that Ti = {t0, ..., ti}. The nodes
of GT are pairs of natural numbers:

for every i > 0, pi ∈ Σ : {2i} × N, written pki ,
for every i > 0 : {2i− 1} × N, written cki .

There is an edge 〈a1, a2〉 → 〈b1, b2〉 in GT in each of the three cases:

1. pki → pk+1
i , i.e., a1 = b1 = 2i, a2 = k and b2 = a2 + 1.

2. pki → c
s+|Ci|∗n
i , i.e., a1 = 2i = b1 + 1, a2 = k > b2 = s + |Ci| ∗ n, provided

that Tn |= Csi for clause Csi ∈ Ci (0 ≤ s < |Ci|). Moreover we require that

5 AXIOMATIC STRENGTH 16

odd(k) ↔ pi ∈ Csi . The latter requirement means that if ¬pi ∈ Csi , then the
edges depart from pki with k even, that is, departing from nodes representing
pi. If the other literals in Csi are false, then for Csi to be true pi must be false,
and this is exactly what this edge does. The case pi ∈ Csi and odd k is perfectly
dual. This motivates the last part of the definition, where we define the outgoing

edges of c
s+|Ci|∗n
i to the remaining literals (if any) in Csi .

3. c
s+|Ci|∗n
i → pkj , i.e., a1 = 2i−1, a2 = s+ |Ci| ∗n, b1 = 2j, 1 ≤ j < i, provided

that Tn |= Csi for a clause Csi ∈ Ci (0 ≤ s < |Ci|) and either pj ∈ Csi and b2 = 0,
or ¬pj ∈ Csi and b2 = 1.

Example 5.3. Let T0 = {C3
3}, where C3

3 = p1 ∨ p2 ∨ ¬p3 is, say, the fourth
clause in C3, and T5 |= ¬p1 ∨ p2 = C2

2 ∈ C2.

6 p3 · // · // · // · // ·
~~

... · // · //

ss

· ...

5 c3 · · · c33

tt

��

· ... · · · ...

4 p2 · // · // · // · // · ... · // · // ·
||

...

vv
3 c2 · · · · · ... · c322

qq

· ...

2 p1 · // · // · // · // · ... · // · // · ...

1 c1 · · · · · ... · · · ...

0 1 2 3 4 ... 31 32 33 ...

For C3
3 ∈ C3, we have T0 |= C3

3 , so it appears for the first time in the “interval
n = 0” of the c3-level, at position 3 + |Ci| ∗ 0, i.e., in the node c33. Its maximal
literal p3 occurs negatively, so there are edges from all pk3 with even k > 3 to
c33. Since p1 and p2 occur positively in C3

3 , we have edges c33 → p01 and c33 → p02.
Further, there are six clauses in C2, i.e., |C2| = 6, and we have assumed

T5 |= C2
2 (and T4 6|= C2

2). Hence C2
2 ∈ C2 appears at position 2 + 6 ∗ 5 = 32

of the c2 level. Since the maximal literal p2 in C2
2 occurs positively, there are

edges from all pk2 with odd k > 32 to c322 . Since C2
2 contains ¬p1, there is an

edge from c322 to p11.

The following theorem gives the desired connection between solutions of GT and
models of T . Given a binary function α on N×N, we view α as a valuation on
Σ by putting α(pi) = α(p0i) (recall that p0i = 〈2i, 0〉). We may then extend α to
literals and clauses by putting α(¬pi) = ¬α(pi) and α(C) = 1 iff α(l) = 1 for
some literal l ∈ C.

Theorem 5.4. Let GT be as in Definition 5.2 and let α be a solution of GT . If
Tn has a model for all n, then we have for all j > 0 :
(1) ∀k ≥ 0 (α(pkj) = ¬α(pk+1

j)) and
(2) ∀n ≥ 0 ∀i ≤ j ∀C ∈ Ci [Tn |= C ⇒ α(C) = 1].

5 AXIOMATIC STRENGTH 17

Proof. Before we prove the theorem by induction on j, observe that (1) and
(2) are Π0

1-formulae, so that the induction can be carried out in RCA0.
Base case j = 1. The nodes cm1 are all sinks. If we do not have Tn |= p1

or Tn |= ¬p1 for some n, then there are no edges pk1 → cn1 and (1) and (2)
hold trivially. Note that C1 consists of p1 = C0

1 and ¬p1 = C1
1 . If Tn |= p1

(Tn |= ¬p1) then there are edges pk1 → c2n1 (pk1 → c1+2n
1) for all odd (even)

k > 2n (k > 1 + 2n). Using Tn |= p1 ∧ ¬p1 for no n, one proves (1) and (2) by
observing that the k above have the correct parity in the respective cases.

Step case j + 1. Assume we have proved (1) and (2) for j and below.
We first prove (1) by contradiction. If α(pkj+1) = α(pk+1

j+1) for some k, then

it must be that α(pkj+1) = 0 = α(pk+1
j+1) since α is a solution of the graph

GT in which pkj+1 → pk+1
j+1 is an edge. Hence there must be cqj+1 = 1 with

an edge pkj+1 → cqj+1 for some q. By Definition 5.2.2 this is the case when
q = s + |Cj+1| ∗ n, Tn |= Csj+1 ∈ Cj+1 for certain s, n. Moreover we have
k > |Cj+1| ∗n+ s, with k odd iff pj+1 occurs positively in Csj+1. But then there

is also an edge pk+2
j+1 → cqj+1, so also pk+2

j+1 = 0. As a consequence there must

also be a crj+1 = 1 with an edge pk+1
j+1 → crj+1 based on a clause Ctj+1 ∈ Cj+1

with Tm |= Ctj+1 for certain t,m. As k and k + 1 have different parity, the
literals in Csj+1 and Ctj+1 with maximal index j + 1 are complementary. As the
situation is perfectly symmetric, we may assume without loss of generality that
k is odd, that is, pj+1 ∈ Csj+1 and ¬pj+1 ∈ Ctj+1, and that n ≥ m. Then we
have that Tn |= R = (Csj+1 − {pj+1}) ∪ (Ctj+1 − {¬pj+1}), where the resolvent
R consists entirely of (one or more) literals with index ≤ j. It follows by the
induction hypothesis (2) that α(R) = 1. However, since csj+1 = crj+1 = 1 and
α is a solution, all successors of these nodes are assigned value 0 by α. Since
these successors represent the literals in R we get α(R) = 0, which is a plain
contradiction. This completes the proof of (1) in the induction case. For proving
(2), assume that Tn |= C for some clause C that consists entirely of literals with
index ≤ j + 1. Without loss of generality we may assume that n is minimal. If
the literal with highest index in C has index ≤ j we can apply the induction
hypothesis (1). Otherwise, C = Csj+1 ∈ Cj+1 for suitable s. It follows that C
is represented by the node cmj+1 with m = s + n ∗ |Cj+1| (and by such nodes

with n + 1, n + 2, . . ., but one suffices). Then we have an edge pkj+1 → cmj+1

for k = m + 1 or k = m + 2, as well as edges to the nodes representing the
(zero or more) literals in C with index ≤ j. (At this point it may be helpful
to revisit Example 5.3 and to look at the nodes c33 and c322 .) We are in a situ-
ation in which we have (1) for all levels up to and including level j + 1. This
means that all nodes pki with k even have the value α(pi), and those with k
odd the value α(¬pi) (1 ≤ i ≤ j + 1). Now, by the definition of GT and the
assumption that α is a solution, we get that α(C) = 1: if all literals in C with
index ≤ j have value 0, then cmj+1 has value 1 and hence pkj+1 has value 0. By
Definition 5.2 and (1), the latter node represents the complement of the literal
with index j+1 in C, and hence α(C) = 1. This completes the induction step. �

5 AXIOMATIC STRENGTH 18

Theorem 5.5. The solvability of countable fb dags (given by adjacency lists) is
equivalent to WKL over RCA0.

Proof. Over RCA0, countable compactness is equivalent to WKL [15, Thm.IV.3.3].
Theorem 5.4 above and its converse in Lemma 5.1 give the equivalence. �

5.2. Choice principles and solvability over ZF

We start by showing solvability of arbitrary trees in ZF. The proof suggests
that solvability of forests may require the Axiom of Choice. Surprisingly, a very
weak version – AC(2) or, for countable forests, van Douwen’s Choice Principle –
suffices. Finally, we give an equivalent of full AC over ZF, in terms of solvability
of complete digraphs.

Recall some basic definitions. Given an indexed family of sets X = {Xi | i ∈
I}, its disjoint union is the set⊎

X =
⊎
i∈I Xi :=

{
〈i, x〉 | i ∈ I, x ∈ Xi

}
,

while its cartesian product is the set∏
X =

∏
i∈I Xi :=

{
f ⊆

⊎
X | f is a function with domain I

}
.

Unless stated otherwise, we assume that all sets Xi are non-empty. Then, a
choice function on a set X is any f ∈

∏
X. The Axiom of Choice, AC, is the

statement: for every set X (with all Xi 6= ∅), there exists a choice function,
i.e.,

∏
X 6= ∅. AC(2) states that a choice function exists for every set X with

cardinality |Xi| = 2 for every Xi ∈ X.
For an indexed family of digraphs G = {Gi | i ∈ I}, with Gi = 〈Gi, Ei〉

for all i ∈ I, its disjoint union is defined by
⊎
i∈I Gi := 〈

⊎
i∈I Gi, E〉 with

E := {〈〈i, v〉, 〈i, v′〉〉 | i ∈ I, v ∈ Gi, v′ ∈ Ei(v)}.

5.2.1. Trees, forests and AC(2).

An acyclic digraph is a forest if every node has at most one predecessor.
Ancestors of every node in a forest are thus totally ordered by the transitive
closure of the predecessor relation E`. A tree is a forest where every two nodes
have a common ancestor. A tree’s (unique) source, if any, is called its root.

The construction from (3.1) and Proposition 3.3 can be carried out in ZF by
transfinite recursion on ordinals with cardinality not exceeding the cardinality
of the considered graph. This allows us to establish the following proposition.
The proof uses the notion of a tight digraph morphism which not only preserves
but also reflects the edge relation, i.e., a mapping of vertices h : F → G such
that h(EF(x)) = EG(h(x)). A tight morphism reflects solutions: whenever
α ∈ sol(G), then α ◦ h ∈ sol(F), where, for all x ∈ F : (α ◦ h)(x) = α(h(x)).

Proposition 5.6. ZF ` every tree is solvable.

Proof. Given a tree T = 〈T,E〉, define σ as in (3.1). If the resulting σ leaves
a non-empty T ◦ ⊆ T unassigned, Proposition 3.3 ensures that T◦ has no sinks.

5 AXIOMATIC STRENGTH 19

(For any X ⊆ T , X denotes the subgraph of T induced by X.) It is possible
that T◦ is a forest but not a tree. We argue that all trees in the forest T◦, with
at most one exception, U, are rooted. Let R = {r ∈ T ◦ | ¬∃x ∈ T ◦ r ∈ E(x)}
be the set of sources (roots of trees) in T◦. For each r ∈ R, T◦r = E∗T◦(r) is a
tree with root r. The trees T◦r , r ∈ R, are mutually disjoint (each containing
all T◦ descendants of its root r). It is possible that U = T ◦ \

⋃
r∈R T

◦
r is not

empty, but then U is a tree: every x, y ∈ U have a common ancestor in T which
is in U as well (since every node in U has a predecessor in U, it has the same
ancestors in U as in T.) Also, all trees are sinkless, since T◦ is sinkless.

Define an equivalence on the nodes T ◦ by

x ∼ y ⇔ ∃v ∈ T ◦∃n ∈ N {x, y} ⊆ EnT◦(v), (5.7)

i.e., if the nodes are at the same distance n from some common ancestor v in
some tree of the forest T◦. (Transitivity of ∼ follows since ancestors of every
node are totally ordered.) The quotient Q = T◦/∼ = 〈T ◦/∼, E1〉, where E1([x]) =
{[y] | y ∈ E(x)}, is then a collection of disjoint digraphs, each isomorphic to N =
〈N, Succ〉, with the possible exception of one integer graph (the quotient of the
rootless tree U). Each digraph isomorphic to N is solvable by assigning α([r]) = 1
to its root and propagating the values α(Succ([x])) = ¬α([x]). The integer
graph is solvable by choosing its arbitrary element [u], assigning α([u]) = 1 and
propagating the values “downwards”, α(Succ([x])) = ¬α([x]), and “upwards”,
α(Succ`([x])) = ¬α([x]), starting with [x] = [u]. Thus, Q is solvable.

The quotient mapping T◦ → Q, sending x onto [x], is a tight morphism, so
any solution for Q can be reflected into a solution for T◦ which, combined with
σ, gives a solution to T by Proposition 3.3. �

If all but finitely many trees in a forest are rooted or have no ω-paths, the
proof can be still done in ZF (using the roots, when needed). But for unrooted,
sinkless trees, the proof relies on the choice of an u, suggesting the plausible
conjecture that solvability of arbitrary forests requires some form of AC. The
following lemma allows to show that full AC is not needed, and that a very weak
form suffices.

Proposition 5.8. ZF ` every forest is solvable iff every collection of disjoint
integer graphs is solvable.

Proof. Implication to the right is obvious since every disjoint union of integer
graphs is a forest. For the opposite, as noted above, we only have to show the
claim for a forest consisting of unrooted trees without sinks. Given such a forest
F = 〈F,E〉, define an equivalence relation on its nodes by (5.7). The quotient
Z = F/∼ = 〈F/∼, E1〉, where E1([x]) = {[y] | y ∈ E(x)}, is then a collection of
disjoint integer graphs. The quotient mapping F → Z is a tight morphism so
any solution for Z can be reflected into a solution for F. �

Solvability of forests follows now in ZF extended with AC(2). Define an equiva-
lence on Z = F/∼ by z ' u⇔ ∃n ∈ N [z ∈ E2n

1 (u)∨u ∈ E2n
1 (z)], i.e., if the nodes

are at an even distance from each other. The quotient L = Z/' = 〈Z/', E2〉,
where E2([z]') = {[y]' | y ∈ E1(z)} is isomorphic to a disjoint collection of

5 AXIOMATIC STRENGTH 20

graphs • � •. Solvability of such collections is equivalent to AC(2). The quo-
tient mapping Z→ L is a tight morphism, so a solution for L, existing by AC(2),
can be reflected into a solution for Z, and then for F.

For countable forests, another version of choice suffices. Van Douwen’s
Choice Principle, vDCP (FORM 119 in [10]), is the assertion that a count-
able family of non-empty disjoint sets X = {Xi | i ∈ ω}, for which there is
a function f such that for every i ∈ ω : 〈Xi, f(i)〉 is an integer graph, has a
choice function. Having a choice function for every such X, allows to solve any
countable collection of disjoint integer graphs which, by Lemma 5.8, implies
solvability of any countable forest. Over ZF, vDCP does not imply the axiom
of choice for countable collections of sets with two elements, AC(ℵ0, 2), [10].
Consequently, since solvability of countable forests is implied by vDCP, it does
not imply AC(ℵ0, 2).

Note that solvability of disjoint integer digraphs amounts to a specific par-
tition principle, splitting each Z-isomorphic subset into its “odd” and “even”
vertices. This appears significantly weaker than vDCP, and we conjecture that
ZF does not prove vDCP from forest solvability.

5.2.2. Complete digraphs and full AC.

To formulate an equivalent of AC in terms of digraph solvability, we will use
a specific property of solutions of weakly complete graphs, which we describe
first.

We call a digraph G strongly complete if E = {〈x, y〉 | x, y ∈ G, x 6= y}, i.e.,
if each pair of distinct vertices is connected by two directed edges, each in one
direction. We call it weakly complete if for each pair of distinct vertices x 6= y
either 〈x, y〉 ∈ E or 〈y, x〉 ∈ E. (The latter allows loops, the former does not.)
Equivalently, digraph G is weakly complete if its underlying, undirected graph
G is complete, namely, E ⊇ {{x, y} | x, y ∈ G, x 6= y}.

For a kernel α ∈ sol(G), α1 must be independent and dominating in the
underlying graph G. These two properties are equivalent to α1 being a maximal
independent subset of G. A simple fact follows from this observation.

Proposition 5.9. For a weakly complete digraph G, the following holds:
α ∈ sol(G)⇐⇒ ∃x ∈ G [α1 = {x} ∧ E`(x) = G \ {x}].

Proof. The implication to the left holds for any digraph: if x satisfies {x} =
G \ E`(x), then {x} is a kernel. Conversely, if α ∈ sol(G) then, since α1 must
be a maximal independent subset of the complete G, |α1| = 1. So assume a so-
lution with α1 = {x} for some x. Then x 6∈ E`(x) and if y 6= x, then α(y) = 0
and so y ∈ E`(x), i.e., E`(x) = G \ {x}. �

Example 5.10. The digraph C3 is a cycle with three vertices. C3 is weakly
complete and unsolvable, having no vertex x as required by the proposition.
But adding a single reverse edge makes it solvable.

6 CONCLUSION 21

Every strongly complete digraph G is solvable: every solution α of G picks a
vertex u making α(u) = 1 and α(v) = 0 for all v 6= u, Hence strongly complete
digraphs have precisely as many solutions as vertices.

The Yablo dag, 〈N, <〉, is unsolvable: it is weakly complete, but does not con-
tain a vertex x as required by the proposition. The argument applies unchanged
to generalizations of the Yablo dag to any total ordering without greatest ele-
ment, e.g., dags over rationals or reals, 〈Q, <〉 or 〈R, <〉, are unsolvable.

Theorem 5.11. Over ZF, AC is equivalent with the following statement:

GS: For every indexed family {Gi | i ∈ I} of solvable digraphs, the disjoint union⊎
i∈I Gi is solvable.

Proof. AC⇒ GS) Let {Gi = 〈Gi, Ei〉 | i ∈ I} be an indexed family of solvable
digraphs. By AC it follows that the product

∏
i∈I sol(Gi) is non-empty. But

every f ∈
∏
i∈I sol(Gi) defines a solution αf :

⊎
i∈I Gi → {0,1} of

⊎
i∈I Gi by

letting αf (〈i, v〉) := f(i)(v) for all 〈i, v〉 ∈
⊎
i∈I Gi.

GS ⇒ AC) Let {Xi : i ∈ I} be a collection of non-empty sets. For each
i ∈ I, let Gi be the strongly complete digraph with Xi as its set of vertices. By
Proposition 5.9 Gi has |Xi| solutions, each picking one element of Xi. For every
solution α of the disjoint union

⊎
i∈I Gi it holds that the restriction α|Gi

of α
to Gi is a solution of Gi. Consequently, every solution α of

⊎
i∈I Gi induces a

function f : I →
⋃
i∈I Xi in

∏
i∈I Xi by defining, for every i ∈ I, f(i) as the

x ∈ Xi such that α|Gi
(x) = 1 – which x is unique by Proposition 5.9. �

By employing dag-lifting and Theorem 3.9, this result extends to dags.

Corollary 5.12. Over ZF, AC is equivalent with the following statement:

DS: For every indexed family {Di | i ∈ I} of solvable dags, the disjoint union⊎
i∈I Di is solvable.

Proof. Since GS⇒ DS is obvious, in view of Theorem 5.11 it suffices to show
DS ⇒ GS. For this, assume DS and let {Gi | i ∈ I} be an indexed family of
solvable digraphs. By Theorem 3.9, the dag-lifting Gωi of Gi is solvable for every
i ∈ I. Then it follows by DS that the dag D :=

⊎
i∈I G

ω
i is solvable. Since, as is

easy to prove in ZF, D is isomorphic to Gω for G :=
⊎
i∈I Gi, it follows that Gω

is solvable, and hence, by Theorem 3.9 again, that G is solvable. �

6. Conclusion

Kernel theory is an active research field of graph theory; a recent overview
can be found in [2]. Unlike most of the research in kernel theory, we have studied
graph kernels from the point of view of mathematical logic. We have elaborated
constructions for the following:

1. For every digraph G a (possibly infinitary) propositional theory T (G), the
model class of which corresponds to the set of kernels of G.

REFERENCES 22

2. For every propositional theory T a digraph G(T) the set of kernels of which
corresponds to model class of T.

3. For every digraph an infinite dag having essentially the same kernels.

4. For every binary relation R a digraph which has a kernel if and only if R
is not well-founded.

All constructions preserve recursiveness. These constructions yield, among other
results, the following insights, of which only the first has been noticed before:

1. Propositional SAT and the existence of kernels of finitely branching di-
graphs are equivalent problems. In the finite case, both are NP-complete.

2. The problem of the existence of a kernel of recursive digraph is Σ1
1-complete.

3. Since SAT of recursive theories in infinitary logic is equivalent to the
existence of kernels of recursive, infinitely branching digraphs, this version
of SAT is Σ1

1-complete, too.

4. The problem of the existence of a kernel is equally difficult for (recursive)
dags and for (recursive) digraphs.

5. The existence of kernels of finitely branching dags is equivalent over RCA0

to countable compactness.

6. The existence of kernels for trees is provable in ZF. The existence of
kernels for arbitrary forests requires at most AC(2), while for countable
forests also vDCP suffices.

7. The existence of kernels for disjoint unions of digraphs (or respectively, of
dags) that have kernels is equivalent over ZF to AC.

Acknowledgments.

We thank Dag Normann, Sjur Dyrkolbotn, Vincent van Oostrom and Albert
Visser for comments and discussion of various issues related to the results pre-
sented. An anonymous referee conjectures that, when fb dags are represented
by edge sets instead of adjacency lists, an analogue of Theorem 5.5 can be ob-
tained by replacing WKL0 by ACA0. This would imply that Theorem 5.5 really
depends on the representation of fb dags. We are grateful for this suggestion
for future research.

References

[1] Martine Anciaux-Mendeleer and Pierre Hansen. On kernels in strongly
connected graphs. Networks, 7(3):263–266, 1977.

[2] Endre Boros and Vladimir Gurvich. Perfect graphs, kernels and cooperative
games. Discrete Mathematics, 306:2336–2354, 2006.

[3] Vašek Chvátal. On the computational complexity of finding a kernel. Tech-
nical Report CRM-300, Centre de Recherches Mathématiques, Université
de Montréal, 1973. http://users.encs.concordia.ca/~chvatal.

REFERENCES 23

[4] Roy Cook. Patterns of paradox. The Journal of Symbolic Logic, 69(3):767–
774, 2004.

[5] Nadia Creignou. The class of problems that are linearly equivalent to
Satisfiability or a uniform method for proving NP-completeness. Theoretical
Computer Science, 145:111–145, 1995.

[6] Pierre Duchet. Graphes noyau-parfaits, II. Annals of Discrete Mathematics,
9:93–101, 1980.

[7] Pierre Duchet and Henry Meyniel. Une généralisation du theorème de
Richardson sur l’existence de noyaux dans les graphes orientés. Discrete
Mathematics, 43(1):21–27, 1983.

[8] Harvey Friedman. Kernel tower theory, I. FOM 407 (email list); http:

//cs.nyu.edu/pipermail/fom/2010-March/014507.html, 2010.

[9] Hortensia Galeana-Sánchez and Victor Neumann-Lara. On kernels and
semikernels of digraphs. Discrete Mathematics, 48(1):67–76, 1984.

[10] Paul Howard and Jean E. Rubin. Consequences of the axiom of choice.
Providence, R.I., American Mathematical Society, 1998.

[11] John R. Isbell. On a theorem of Richardson. Proceedings of the AMS,
8(5):928–929, 1957.

[12] Eric C. Milner and Robert E. Woodrow. On directed graphs with an inde-
pendent covering set. Graphs and Combinatorics, 5:363–369, 1989.

[13] Moses Richardson. Solutions of irreflexive relations. The Annals of Math-
ematics, Second Series, 58(3):573–590, 1953.

[14] Hartley J. Rogers. Theory of Recursive Functions and Effective Com-
putability. MacGraw–Hill, 1967.

[15] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives
in Logic. Cambridge University Press, second edition, 2009.

[16] John von Neumann and Oskar Morgenstern. Theory of Games and Eco-
nomic Behavior. Princeton University Press, 1944 (1947).

[17] Stephen Yablo. Paradox without self-reference. Analysis, 53(4):251–252,
1993.

