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Abstract

We study closed choice principles for different spaces. Given information about what
does not constitute a solution, closed choice determines a solution. We show that
with closed choice one can characterize several models of hypercomputation in a
uniform framework using Weihrauch reducibility. The classes of functions which are
reducible to closed choice of the singleton space, of the natural numbers, of Cantor
space and of Baire space correspond to the class of computable functions, of func-
tions computable with finitely many mind changes, of weakly computable functions
and of effectively Borel measurable functions, respectively. We also prove that all
these classes correspond to classes of non-deterministically computable functions
with the respective spaces as advice spaces. The class of limit computable functions
can be characterized with parallelized choice on natural numbers. On top of these
results we provide further insights into algebraic properties of closed choice. In par-
ticular, we prove that closed choice on Euclidean space can be considered as “locally
compact choice” and it is obtained as product of closed choice on the natural num-
bers and on Cantor space. We also prove a Quotient Theorem for compact choice
which shows that single-valued functions can be “divided” by compact choice in a
certain sense. Another result is the Independent Choice Theorem, which provides
a uniform proof that many choice principles are closed under composition. Finally,

Preprint submitted to Elsevier 30 October 2018

http://arxiv.org/abs/1002.2800v2


we also study the related class of low computable functions, which contains the
class of weakly computable functions as well as the class of functions computable
with finitely many mind changes. As one main result we prove a uniform version
of the Low Basis Theorem that states that closed choice on Cantor space (and the
Euclidean space) is low computable. We close with some related observations on the
Turing jump operation and its initial topology.

Key words: Computable analysis, Borel complexity, Weihrauch reducibility.

1 Introduction

The basic task to be studied in the present paper is the following:

Given information about what does not constitute a solution, find a solution.

The difficulty of this task depends strongly on the structure of the set of po-
tential solutions. In general, each represented space (X, δ) induces a topology,
where a set U ⊆ X is open, if its characteristic function

χU : X → S, x 7→




1 if x ∈ U

0 otherwise

is continuous with respect to the representation δ and a standard representa-
tion δS of Sierpiński space S = {0, 1} (which is equipped with the topology
{∅, {1}, {0, 1}}). Such a standard representation of S can be defined by

δS(p) = 1 : ⇐⇒ (∃n) p(n) = 0

for all p ∈ NN. Intuitively, the open sets are those for which membership can
be continuously confirmed. Each represented space then comes naturally with
a representation δ◦ of the open sets, defined by

δ◦(p) = U : ⇐⇒ [δ → δS](p) = χU

for all p ∈ NN. Here [δ → δS] denotes the canonical function space repre-
sentation (see [36]) of δ and δS (which is the exponential in the category of

⋆ This work has been supported by the National Research Foundation of South
Africa (NRF) and the Japanese Society for Promotion of Sciences (JSPS)

2



represented spaces). The representation δ◦ in turn induces a representation
ψX
− of the closed sets by ψX

− (p) = X \ δ◦(p). The restriction to closed sets as
solution sets arises from the fact that they are exactly those sets for which
one can continuously confirm membership in the complement.

We give some intuitive descriptions of equivalent versions of this very general
representation for concrete spaces that we will consider.

• N = {0, 1, 2, ...}, the set of natural numbers: the standard representation
is defined by δN(p) := p(0) and an equivalent way of defining ψN

− is by
ψN
−(p) = {n ∈ N : n + 1 6∈ range(p)}. That is ψN

−(p) = A, if p is an
enumeration of all points that are not in A.

• {0, 1}N, the Cantor space: the standard representation can be obtained by
restricting the identity on Baire space to Cantor space δ{0,1}N := idNN|{0,1}N .

In this case one can think that ψ
{0,1}N

− (p) = A if p is a (potentially empty)
enumeration of words wi ∈ {0, 1}∗ such that A = {0, 1}N \

⋃∞
i=0wi{0, 1}N.

That is p is a (potentially empty) enumeration of words wi such that the
corresponding balls exhaust the exterior of A.

• NN, the Baire space: this case can be handled analogously to Cantor space,
except that the representation δNN is just the identity.

• R, the Euclidean real number line (and Rn in general): for convenience we
assume that we use some standard numbering : N → Q. Then the Cauchy
representation ρ :⊆ NN → R can be defined by ρ(p) := limn→∞ p(n), where
the domain dom(ρ) contains only rapidly converging sequences, i.e. p with
|p(i)− p(j)| < 2−j for all i > j. Thus, a real number x is represented by a
rapidly converging sequence of rational numbers. The representation ψR

− can
then be considered as follows: a name p of a set A is a sequence (〈ai, bi〉)i∈N
such that A = R \

⋃∞
i=0(ai, bi). That is, intuitively, p is a list of rational

intervals that exhaust the complement of A.
• I := [0, 1], the real unit interval (and In in general): this can be treated by
restricting the case of Rn.

For most spaces, closed choice is not computable. Thus, our interest lies on
classifying the degree of incomputability, that is theWeihrauch degree of closed
choice, depending on the underlying space. Some of the arising Weihrauch
degrees are associated with certain models of type-2 hypercomputation, giving
an independent justification for our interest in closed choice. Additionally, as
already demonstrated in [6], several important mathematical theorems share
a Weihrauch degree with an appropriate version of closed choice.

In recursion theory, a question closely related to our notion of closed choice
has been studied. Given a Π0

1-class of Cantor space (which is a co-c.e. closed
set in our terminology), what can we say about its elements? It is known that a
co-c.e. closed set may contain no computable points, but always contains a low
point [16]. We present a stronger result, which takes the form that closed choice
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for Cantor space is computable, if we replace the standard representation of
the elements with another one, which just renders the low points computable.
On the side, we present a few results on the initial topology of the Turing
jump operator (called Π–topology by Joseph Miller, see [21]).

2 Weihrauch Reducibility

This section serves to give a brief introduction into represented spaces, re-
alizers, Weihrauch reducibility and several associated operations. The basic
reference for this section is [36]. While the study of (variants of) Weihrauch-
reducibility has commenced over a decade ago ([31], [34], [35], [15]), the rele-
vant sources for this section are [7], [6] and [28].

A significant ingredient of the theory of represented spaces is Baire space
NN, i.e. the set of natural number sequences, equipped with the topology
derived from the metric dNN which is defined by dNN(u, u) = 0 and dNN(u, v) =
2−min{n|un 6=vn} for u 6= v. A useful property of Baire space to be exploited
frequently is the existence of an effective and bijective pairing function 〈 , 〉 :
NN × NN → NN. In the following we will denote partial functions using the
symbol ⊆ as prefix and multi-valued function using the double function arrow
⇒. The term “function” or “map” might refer to any of those but often we
will indicate totality or single-valuedness, if relevant.

Definition 2.1 (Representation) A representation δ of a set X is a surjec-
tive single-valued (potentially partial) function δ :⊆ NN → X . A represented
space (X, δ) is a set X together with a representation δ of it.

Using represented spaces we can define the concept of a realizer. We denote
the composition of two (multi-valued) functions f and g either by f ◦ g or by
fg.

Definition 2.2 (Realizer) Let f :⊆ (X, δX) ⇒ (Y, δY ) be a multi-valued
function between represented spaces. A realizer of f is a single-valued function
F :⊆ NN → NN satisfying δY ◦ F (p) ∈ f ◦ δX(p) for all p ∈ dom(fδX). We use
the notation F ⊢ f for expressing that F is a realizer of f .

As realizers are single-valued by definition, the statement that some function F
is a realizer always implies its single-valuedness. Realizers allow us to transfer
the notions of computability and continuity and other notions available for
Baire space to any represented space; a function between represented spaces
will be called computable, if it has a computable realizer, etc. Now we have
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gathered the necessary provision to define Weihrauch reducibility (≤W):

Definition 2.3 (Weihrauch reducibility) Let f :⊆ X ⇒ Y and g :⊆ U ⇒

V be multi-valued functions between represented spaces. Define f ≤W g, if
there are computable single-valued functions K,H :⊆ NN → NN satisfying
K ◦ 〈id, G ◦H〉 ⊢ f for all G ⊢ g.

We note that the relations ≤W and ⊢ implicitly refer to the underlying rep-
resentations, which we will only mention explicitly if necessary. The relation
≤W is reflexive and transitive, thus it induces a partial order on the set of
its equivalence classes (which we refer to as Weihrauch degrees). This par-
tial order will be denoted by ≤W, as well. In this sense, ≤W is a distributive
bounded lattice (for details see [28] and [7]). We use ≡W to denote equiv-
alence regarding ≤W, <W for strict reducibility and |W for incomparability.
There is a slightly stronger version of Weihrauch reducibility where the condi-
tion K ◦ 〈id, G ◦H〉 ⊢ f is replaced by K ◦G ◦H ⊢ f . This strong Weihrauch
reducibility is denoted by f ≤sW g.

We mention that the symbol ≤W is also used to denote Wadge reducibility,
which is in some sense a counterpart of Weihrauch reducibility for sets and
has been studied since the early 1970s, see [32,33,29]. The double usage of ≤W

should not lead to confusion since Wadge reducibility is defined for sets and
Weihrauch reducibility for functions. We mention that some further informa-
tion on the history of Weihrauch reducibility is given in [7] and not repeated
here.

We proceed to define a couple of useful operations. While all definitions are
given in terms of functions between represented spaces, they transfer directly
to the according Weihrauch degrees.

The first operation is the coproduct, which plays the role of the supremum
in the Weihrauch lattice. By X

∐
Y := ({0} × X) ∪ ({1} × Y ) we denote

the disjoint sum of two sets X and Y and if these spaces are represented
spaces, then we assume that X

∐
Y is equipped with the canonical coproduct

representation (see [28] for details).

Definition 2.4 (Coproduct) Let f :⊆ X ⇒ Y and g :⊆ W ⇒ Z be
two multi-valued functions on represented spaces. Then we define f

∐
g :⊆

X
∐
W ⇒ Y

∐
Z by (f

∐
g)(0, u) := {0}×f(u) and (f

∐
g)(1, u) := {1}×g(u).

One obtains that H ⊢ (f
∐
g) holds for exactly those H satisfying H(0w) =

F (w) and H(1w) = G(w) for some realizers F ⊢ f and G ⊢ g (that can depend
on w). We assume that the product X × Y of represented spaces (X, δX) and
(Y, δY ) is represented with the canonical product representation [δX , δY ] (see
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[36] for details).

Definition 2.5 (Products) Let f :⊆ X ⇒ Y and g :⊆ W ⇒ Z be two
multi-valued functions on represented spaces. Then we define f × g :⊆ X ×
W ⇒ Y × Z by (f × g)(x, w) := f(x)× g(w).

One obtains that H ⊢ (f ×g) holds for exactly those H satisfying H(〈u, v〉) =
〈F (u), G(v)〉 for some realizers F ⊢ f and G ⊢ g (that might depend on u, v).

We say that a multi-valued map f on represented spaces is pointed, if it con-
tains at least one computable point in its domain and we say that it is idem-
potent, if f ×f ≡W f . In some cases the product and the coproduct are closely
related. If f×g is pointed and f

∐
g is idempotent, then f

∐
g≡W f×g, since

f
∐
g≤W f × g≤W(f

∐
g)× (f

∐
g)≤W(f

∐
g), (1)

where pointedness of f×g is only required for the first reduction and idempo-
tency of f

∐
g only for the last one. It is useful to consider a countable product

of a multi-valued function with itself, which has been introduced in [7].

Definition 2.6 (Parallelization) Let f :⊆ X ⇒ Y be a multi-valued func-
tion on represented spaces. We define the parallelization f̂ :⊆ XN

⇒ Y N by
f(xi)i∈N := X

∞
i=0 f(xi).

We obtain that H ⊢ f̂ holds for exactly those H satisfying H(〈u1, u2, . . .〉) =
〈F1(u1), F2(u2), . . .〉 for some realizers Fi ⊢ f for i ∈ N (that might depend
on ui). We use the notation 〈x1, x2, . . .〉 for the canonical countable pairing
on Baire space. In [28] a finite type of parallelization was introduced. For any
represented space (X, δ) we denote by X∗ =

⋃∞
i=0({i}×X

i) the set of all finite
sequences over X and we assume that X∗ is denoted by its canonical standard
representation δ∗. For f :⊆ X ⇒ Y , we use f i to denote the i–fold product of
f with itself; and understand f 0 to be Weihrauch-equivalent to idNN.

Definition 2.7 (Finite parallelization) Let f :⊆ X ⇒ Y be a multi-
valued function on represented spaces. We define the finite parallelization
f ∗ :⊆ X∗ → Y ∗ by f ∗ :=

∐∞
i=0 f

i with f ∗(i, x) := f i(x) for all (i, x) ∈ X∗.

Both types of parallelization form closure operators for the Weihrauch lattice,

which means f ≤W f̂ and f̂ ≡W
ˆ̂
f , and f ≤W g implies f̂ ≤W ĝ and analogously

for finite parallelization (see [28,26] and [7] for details). It is easy to see that
for pointed multi-valued functions idempotency is equivalent to f ≡W f ∗. It
is interesting to mention that some variant of the (continuous) Weihrauch
degrees has recently be proved to be undecidable (see [20]).
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3 Closed Choice

Now we define the general version of closed choice for a represented space.

Definition 3.1 (Closed Choice) Let (X, δ) be a represented space. Then
the closed choice operation of this space is defined by

CX :⊆ A−(X) ⇒ X,A 7→ A

with dom(CX) := {A ∈ A−(X) : A 6= ∅}.

Here we assume that A−(X) is the set of closed subsets of X equipped with
the negative information representation ψX

− as defined in the introduction.
The computable points in A−(X) are called co-c.e. closed sets. Intuitively, CX

takes as input a non-empty closed set in negative description (i.e. by some
form of enumeration of its complement) and it produces an arbitrary point of
this set as output. Hence, if we write A 7→ A, then we mean that the multi-
valued map CX maps the input A (as a point in A−(X)) to the set A as a
subset of X , namely the set of possible function values.

Closed choice for particular spaces can characterize certain classes of functions
or degrees of mathematical theorems. In [14] it was proved that C{0,1}N is
equivalent to the Hahn-Banach Theorem and to Weak Kőnig’s Lemma and in
[6] it was shown that CN is equivalent to the Baire Category Theorem, Banach’s
Inverse Mapping Theorem and several other theorems from functional analysis.
The following example shows that also many other classes that have been
considered can be characterized as classes of closed choice for certain spaces.

Example 3.2 We obtain C{0}≡W CS ≡W id, C{0,1}≡W LLPO and, more gen-
erally, C{0,1,...,n}≡W MLPOn+1.

Here MLPOn and LLPO = MLPO2 are taken from [34]. For n ≥ 1 we consider
MLPOn :⊆ NN

⇒ N as a multi-valued map with

dom(MLPOn) := {〈p1, ..., pn〉 : (∃i = 1, ..., n) pi = 0̂}

and

MLPOn〈p1, ..., pn〉 := {i : pi = 0̂}.

Since LLPO is not idempotent (see [7]), it follows that closed choice is not nec-
essarily idempotent. However, it is a straightforward observation that closed
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choice is always pointed, since X is always a co-c.e. closed subset of itself.

Lemma 3.3 (Pointedness) If X is a non-empty represented space, then CX

is pointed.

We get the following first result.

Proposition 3.4 (Products) Let X and Y be non-empty represented spaces.
We obtain CX

∐
CY ≤W CX × CY ≤W CX×Y .

Proof. As mentioned in the introduction, coproducts are reducible to prod-
ucts for all pointed functions. It is easy to prove that the Cartesian product
P : A−(X) × A−(Y ) → A−(X × Y ), (A,B) 7→ A × B is computable and we
obtain CX × CY = CX×Y ◦ P . Hence CX × CY ≤W CX×Y . ✷

We will see in Corollary 5.7 that the inverse of the first reduction does not
hold in general. Also the second reduction cannot be reversed in general, as the
following result shows. We denote by n̂ := nnn... ∈ NN the constant sequence
with value n.

Proposition 3.5 (Products of choice for finite spaces) Let A and B be
finite sets, each with at least two elements and equipped with the discrete rep-
resentation and topology. Then CA × CB <W CA×B.

Proof. We assume that A = {0, ..., n} and B = {0, ..., k} with n, k ≥ 1 and
we assume that A is represented by δA(n0̂) := n with dom(δA) = A × {0̂}.
Moreover, we assume ψA

−(p) = {i : i+1 6∈ range(p)} with range(p) ⊆ {0, ..., n+
1}. This representation is computably equivalent to the generic definition of
ψA
− given above. Analogous assumptions are made for the representations δB

and ψB
− and δA×B and ψA×B

− . We have CA × CB ≤W CA×B by Proposition 3.4.

Let us now assume that CA×B ≤W CA × CB holds. Then there are computable
functions H,K such that F = H〈id, GK〉 is a realizer of CA×B for any realizer
G of CA×CB. Now we consider 0̂ = 000... which represents ψA×B

− (0̂) = A×B.
Then (L,R) := [ψA

−, ψ
B
− ]K(0̂) is a pair of finite sets. 1 For all m and for all

p ∈ dom(ψA×B
− ) we have ψA×B

− (p) = ψA×B
− (0mp). Moreover, by continuity of

K and since A×B is finite, there is m ∈ N such that for all p ∈ dom(ψA×B
− ),

we obtain that (L′, R′) = [ψA
−, ψ

B
− ]K(0mp) implies L′ ⊆ L and R′ ⊆ R. By

continuity of H and since A×B is equipped with the discrete representation,
this m can be taken such that H〈0mp, q〉 is identical to H〈0̂, q〉 for any fixed
name q of an element of L′ × R′. Finally, since there are only finitely many

1 We are thankful to one of the referees for providing a version of this paragraph
that clarified and corrected the earlier version of it.
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such q, this m can be selected as satisfying this property for all those q. Hence,
for such m we obtain F (0mp) = H〈0̂, GK(0mp)〉. Since ψA×B

− is computably
equivalent to the representation ψm given by ψm(0

mp) := ψA×B
− (p), we can

assume without loss of generality that there are computable functions H,K
such that F = HGK is a realizer of CA×B for any realizer G of CA × CB.

LetMj $Mj−1 $ ... $M0 now be a strictly decreasing sequence of non-empty
subsets Mi ⊆ A×B. Due to continuity of K there is a monotone sequence of
words w0 ⊑ w1 ⊑ ... ⊑ wj such that ψA×B

− (pi) = Mi for pi := wi0̂ and such
that the sets (Li, Ri) := [ψA

−, ψ
B
− ]K(pi) are component wise monotone as well.

That is ∅ 6= Lj ⊆ Lj−1 ⊆ ... ⊆ L0 and ∅ 6= Rj ⊆ Rj−1 ⊆ ... ⊆ R0. The cardi-
nality of A×B is (n+1)(k+1) and hence the longest strictly decreasing chain
(Mi) of non-empty sets is one with length j + 1 = (n+1)(k+ 1). The longest
decreasing chain (Li, Ri) with the property that for each i < j the left compo-
nent or the right component is strictly decreasing, i.e. Li+1 $ Li or Ri+1 $ Ri,
has length n + k + 1. For n, k ≥ 1 we have that n + k + 1 < (n + 1)(k + 1).
Hence, there has to be at least one i < j such that (Li, Ri) = (Li+1, Ri+1). By
assumption there is some element x ∈Mi \Mi+1. For each element y ∈ Li×Ri

there is a realizer Gy of CA × CB with y = [δA, δB]GyK(pi+1) and by assump-
tion z := [δA, δB]HGyK(pi+1) ∈ Mi+1 and hence z 6= x. By continuity of
K there is an extension w of wi such that ψA×B

− (p) = {x} for p := w0̂ and
[ψA

−, ψ
B
− ]K(p) ⊆ (Li, Ri) (where the inclusion is meant component wise). Hence

any realizer G of CA×CB selects an element y = [δA, δB]GK(p) ∈ Li×Ri and
thus [δA, δB]HGK(p) 6= x in contrast to the fact that HGK is supposed to be
a realizer of CA×B. Contradiction! ✷

Alternatively, one could prove this result by considering the level of the re-
spective operations, a concept that has been introduced by Hertling [15]. For
one, one can prove directly MLPOn+1 ×MLPOk+1≤W LPO

n+k, which implies
that n + k is an upper bound on the level of MLPOn+1 × MLPOk+1. On the
other hand, LPO(n+1)(k+1)−1 can be reduced to any realizer of MLPO(n+1)(k+1)

(see Theorem 5.2.2 in [35]), which implies that the level ofMLPO(n+1)(k+1) is at
least (n+1)(k+1)−1. Since Hertling proved that the level is preserved down-
wards by Weihrauch reducibility, the desired result follows also from these
observations. We do not work out the details here. For the simplest case of
the set {0, 1} we get the following conclusion.

Corollary 3.6 C{0,1} × C{0,1}<W C{0,1}×{0,1}.

We will see, however, that for many infinite spaces we get a nicer behavior of
products. This is partially due to the following result.

Proposition 3.7 (Surjections) Let A and B be represented spaces and let
s :⊆ A → B be a computable surjection with a co-c.e. closed domain dom(s).
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Then CB ≤W CA.

Proof. If s :⊆ A → B is computable and dom(s) is co-c.e. closed in A, then
S : A−(B) → A−(A),M 7→ s−1(M) is computable too and if s is surjective,
then we obtain CB = s ◦ CA ◦ S, i.e. CB ≤W CA. ✷

As a consequence of this observation and Proposition 3.4 we obtain the fol-
lowing sufficient criterion for idempotency of choice.

Corollary 3.8 (Idempotency) Let A be a represented space. If there is a
computable surjection s : A → A2, then CA × CA ≡W CA×A≡W CA and, in
particular, CA is idempotent and hence also C

∗
A≡W CA.

Since the spaces N, {0, 1}N, NN and N×{0, 1}N admit computable and bijective
pairing functions, we get the following conclusion.

Corollary 3.9 The choice principles CN, C{0,1}N , CNN and CN×{0,1}N are idem-
potent.

We close this section with the following example that shows that in some
cases choice commutes with parallelization and finite parallelization and in
other cases it does not.

Example 3.10 We obtain Ĉ{0,1}≡W L̂LPO≡W C{0,1}N , but ĈN≡W lim<W CNN

and C
∗
N≡W CN ≡W CN∗, but C∗

{0,1}≡W LLPO
∗<W CN≡W C{0,1}∗ .

4 Choice on Computable Metric Spaces

In this section we want to study choice on certain large classes of computable
metric spaces. We recall that a computable metric space (X, d, α) is a separable
metric space (X, d) together with a numbering α : N → X of a countable dense
subset with respect to which the metric is computable. By a computable Polish
space we mean a computable metric space that is also complete. Usually, we
will assume that computable metric spaces are represented by their Cauchy
representations δX (see [36]). We use two different representation κ− and κ to
represent the set K(X) of compact subsets of a computable metric space X
(see [9] for details). Roughly speaking, a κ−–name of a compact set K ⊆ X is
a list of all finite covers of K by rational open balls, whereas a κ–name comes
with the additional requirement that all open balls in the cover actually have
non-empty intersection with K. That is, κ− provides negative information on
the set K (each cover allows to exclude points) and κ provides full information
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(each ball in the cover meets the set). By K−(X) and K(X) we denote the
set of compact subsets represented by κ− and κ, respectively. The compact
sets that are computable with respect to κ− and κ are called co-c.e. compact
and computably compact, respectively. We mention that a computable metric
space is computably compact in itself if and only if it is co-c.e. compact in
itself.

Computable Polish spaces X admit total computable and admissible repre-
sentations δ : NN → X (see, for instance, Corollary 4.4.12 in [2]) and com-
putably compact computable metric spaces X admit computable representa-
tions δ : {0, 1}N → X as we will prove next. Two representations δ1, δ2 of
the same set are said to be (computably) reducible to each other, in symbols
δ1 ≤ δ2, if there exists a computable function F :⊆ NN → NN such that
δ1 = δ2 ◦ F . Moreover, δ1 and δ2 are said to be (computably) equivalent, in
symbols δ1 ≡ δ2, if δ1 ≤ δ2 and δ2 ≤ δ1 hold. We recall that a representation of
a computable metric space is called computably admissible if it is computably
equivalent to the Cauchy representation of the space.

Proposition 4.1 Let X be a computably compact computable metric space.
Then there is a surjective computable map ϕ : {0, 1}N → X that is also com-
putably admissible.

Proof. Let (X, d, α) be a computably compact computable metric space. We
use a version δX :⊆ {0, 1}N → X of the Cauchy representation, defined as
follows

δX(01
n0+101n1+10...) := lim

i→∞
α(ni)

where dom(δX) contains only those sequences of the given type which, addi-
tionally, converge rapidly, i.e. such that d(α(ni), α(nj)) < 2−j for all i ≥ j.
It is known that there exists a computably proper and computably admissi-
ble representation δ :⊆ {0, 1}N → X that is a restriction of δX , see Corol-
lary 4.6 in [37]. Such a map is, in particular, computable and surjective and
the fact that it is computably proper implies that δ−1(K) is co-c.e. com-
pact for any co-c.e. compact K ⊆ X . If X itself is co-c.e. compact, then
A := dom(δ) = δ−1(X) is also co-c.e. compact. We claim that there is a total
computable map ι : {0, 1}N → {0, 1}N such that A ⊆ range(ι) ⊆ dom(δX). A
machine computing ι works as follows: given an input p ∈ {0, 1}N the machine
checks in steps longer and longer prefixes w of p for the property

w{0, 1}N ⊆ {0, 1}N \A. (2)

Since A is co-c.e. closed, this property is c.e. in w. As long as the property
cannot be verified, the machine simultaneously checks whether the input is of
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the form p = 01n0+101n1+10... and whether the property d(α(ni), α(nj)) < 2−j

is satisfied for all i ≥ j such that 01ni+10 is completely included in w. If the
latter property is positively verified, then the output is extended such that it
matches p up to the corresponding 01ni+10. If, at any time, property (2) is
positively verified, then it is clear that p 6∈ A and the processing of the input
is stopped and the output is extended just by infinitely many repetitions of
the last block 1ni+10 (if no block has been written at this stage, then an arbi-
trary block 01n0+1 is repeated infinitely often as output). If the input p is not
of the form p = 01n0+101n1+10..., then the test for property (2) will eventu-
ally be positive. It is clear that altogether this machine computes a function
ι : {0, 1}N → {0, 1}N such that A ⊆ range(ι) ⊆ dom(δX). This guarantees that
ϕ := δX ◦ ι is computable, total and surjective. Since dom(δ) = A ⊆ range(ι)
it follows that δ = ϕ ◦ ι−1. Since ι is computable, also ι−1 is computable (see
Corollary 6.7) and hence it follows that ϕ is computably admissible. ✷

Hence we obtain the following corollary. The first statement is a consequence
of Proposition 3.7 and the second statement a consequence of the previous
Proposition 4.1.

Corollary 4.2 Let X be a computable Polish space. Then CX ≤W CNN. If,
additionally, X is computably compact, then CX ≤W C{0,1}N .

We say that ι : A → B is a computable embedding, if ι is computable and
injective and its partial inverse ι−1 is computable too. Now we can use the
Embedding Theorem 3.7 from [8] in order to obtain the following proposition.

Proposition 4.3 Let A and B be computable metric spaces and let ι : A→ B
be a computable embedding such that range(ι) is co-c.e. closed in B. Then
CA ≤W CB.

Proof. From Theorem 3.7 in [8] it follows that for a computable embedding
ι : A→ B with co-c.e. closed range ι(A) the map J : A−(A) → A−(B),M 7→
ι(M) is computable. We obtain CA = ι−1 ◦ CB ◦ J and hence CA ≤W CB. ✷

We recall that a metric space is called perfect, if it has no isolated points.
In Proposition 6.2 in [8] it has been proved that any non-empty perfect com-
putable Polish space is rich, i.e. admits a computable embedding ι : {0, 1}N →
X and in this case range(ι) is automatically co-c.e. closed. Hence we obtain
the following corollary.

Corollary 4.4 Let X be a computable Polish space. If X is rich and, in par-
ticular, if X is non-empty and has no isolated points, then C{0,1}N ≤W CX .

12



Together with Corollary 4.2 we get the following corollary (which has essen-
tially been proved in [14] already).

Corollary 4.5 Let X be a computably compact metric space, which is non-
empty and has no isolated points, then C{0,1}N ≡W CX .

Thus, C{0,1}N can be identified with “compact choice” for a very large class of
compact spaces. In particular, we obtain the following corollary.

Corollary 4.6 C{0,1}N ≡W C[0,1]≡W C[0,1]N.

We would like to show that CN×C{0,1}N plays a similar role for locally compact
spaces as C{0,1}N does for compact spaces. The following lemma plays a role in
the proof of the next result and it is worth being formulated separately.

Lemma 4.7 Let K be a non-empty computably compact computable metric
space. Then CK :⊆ A−(K) ⇒ K has a total extension C

′
K : A−(K) ⇒ K with

CK ≡W C
′
K .

Proof. The set {A ∈ A−(K) : A = ∅} is c.e. open for co-c.e. compact K. Since
K is computably compact, we can assume by Proposition 4.1 without loss of
generality that K is represented by a total representation δ : {0, 1}N → K.
Hence CK can be extended to a suitable C

′
K as follows: a realizer F of CK is

modified to a map G such that never anything else but zeros and ones are
written on the output tape and as soon as the empty set is detected as input,
the output is just continued with constant zeros. In any other respect, the
map G behaves exactly as F . Due to totality of δ, this output of G is in the
domain of δ. The modification guarantees that the empty set as input leads
to some infinite output and non-empty sets are treated by G exactly as by
F . The construction shows that C′

K is reducible to CK . The reverse direction
follows since C

′
K is an extension of CK . ✷

We note that not every multi-valued operation has a total equivalent extension
(as robust division shows, see [26]).

Classically, a space X is called σ–compact or Kσ–space, if it can be written as
a countable union of compact sets. For many spaces this property is somewhat
weaker than local compactness, this holds in particular for represented Haus-
dorff spaces. The induced topology of every represented space is known to be
hereditarily Lindelöf (see Lemma 2.5 in [1]) and this means that if it is, ad-
ditionally, a Hausdorff space, then local compactness implies σ–compactness.
This is the reason why we speak about “locally compact choice” for short. We
say that X is a computable Kσ–space, if X is a computable metric space, such
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that there exists a computable sequence (Ki)i∈N of non-empty computably
compact sets with X =

⋃∞
i=0Ki.

Proposition 4.8 (Locally compact choice) Let X be a computable Kσ–
space. Then CX ≤W CN × C{0,1}N .

Proof. We consider the total extensions C′
Ki

of choice that exist according to
a uniform version of Lemma 4.7. Using a uniform version of Corollary 4.2, we
obtain

F := C
′
K0

× C
′
K1

× C
′
K2

× ...≤W Ĉ{0,1}N ≡W C{0,1}N .

Given a closed set A ⊆ X we can compute the sequence (A∩Kn)n∈N of co-c.e.
compact sets and hence we can enumerate the set {n ∈ N : A ∩ Kn = ∅}.
This implies that we can find an n such that A ∩ Kn 6= ∅ with the help of
CN. Moreover, F ((A ∩ Kn)n∈N) can be obtained with the help of C{0,1}N , as
indicated above. Altogether, this shows CX ≤W CN × C{0,1}N . ✷

This result can even be generalized to the case that theKσ–space is only co-c.e.
compact in the sense that the sequence (Ki)i∈N is only a computable sequence
of co-c.e. compact sets. However, in this case the uniform version of Lemma 4.7
needs some extra attention since the extensions C′

K might not always produce a
value in K (but only some infinite sequence). By Proposition 3.4 we have CN×
C{0,1}N ≤W CN×{0,1}N . On the other hand, we can apply the previous proposition
to the Kσ–space N × {0, 1}N (with Kn := {n} × {0, 1}N) and we get the
inverse reduction. We can also apply the previous proposition to Rk (with
Kn := [−n, n]k).

Corollary 4.9 CRk ≡W CR ≡W CN×{0,1}N ≡W CN × C{0,1}N for all k ≥ 1.

We mention that by the Theorem of Hurewicz (see Theorem 7.10 in [18]) any
Polish space which is not Kσ admits an embedding ι : NN → X such that
range(ι) is closed. Using relativized topological versions of Propositions 4.3
and 4.8 and Corollary 4.2 we obtain the following dichotomy.

Corollary 4.10 (Dichotomy) If X is a Polish space, then there is an oracle
such that either CX ≤W CR or CNN ≡W CX , relatively to that oracle (i.e. with
continuous reductions).

In other words, topologically the interval between CR and CNN is not inhabited
by choice principles of Polish spaces. It is not too hard to see that for many
computable metric spaces X that are not Kσ, such as RN, C[0, 1] and ℓp, there
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is a computable embedding ι : NN → X with a co-c.e. closed image. Hence we
get the following corollary of Proposition 4.3.

Corollary 4.11 CNN ≡W CRN ≡W Cℓp ≡W CC[0,1] for all computable real p ≥ 1.

The results mentioned so far in this section are mostly applicable to Polish
spaces. We mention two further examples for non-Polish spaces. Any sequence
(xn)n∈N inX can be seen as a surjection from N onto the range of the sequence.
Hence we obtain the following corollary.

Corollary 4.12 Let X be a represented space and let (xn)n∈N be a computable
sequence in X with R := {xn : n ∈ N}. Then CR ≤W CN.

This can, in particular, be applied to the rational numbers as a subspace of
Euclidean space.

Corollary 4.13 CQ ≡W CN, independently of whether Q is equipped with the
discrete representation and topology or with the Euclidean one.

The irrational numbers are computably homeomorphic to Baire space (with
respect to the Euclidean topology and via their continued fraction represen-
tation) and hence we get the following conclusion.

Corollary 4.14 CR\Q ≡W CNN.

5 Compact Choice, Quotients and Join-Irreducibility

The following theorem shows that any single-valued function f that can be
computed from compact choice and another function g can already be com-
puted from g alone. Thus, we can “divide” by compact choice in such a situ-
ation. This result generalizes Corollary 8.8 in [7].

Theorem 5.1 (Quotients) Let X be a represented space and Y be a com-
putable metric space and let g be a multi-valued function on represented spaces.
If f :⊆ X → Y is single-valued and f ≤W C{0,1}N × g, then f ≤W g.

Proof. We use the Cauchy representation δY for Y and canonical projections
πi : NN → NN with π1〈p, q〉 = p and π2〈p, q〉 = q. Now let f :⊆ X → Y be such
that f ≤W C{0,1}N × g. Hence there are computable functions H and K such
that K〈id, PH〉 is a realizer of f for any realizer P of C{0,1}N × g. Since H and
K are computable, as well as the Cartesian product on compact sets, it follows
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from Theorem 3.3 in [37] that there is a computable function S :⊆ NN → NN

with

κ−S〈p, q〉 = δYK〈{p} × 〈κ−π1H(p)× {q}〉〉

for all p ∈ dom(fδX) and suitable q. We now consider the function T :⊆ NN →
NN with T (p) = S〈p,Gπ2H(p)〉. Whenever G is a realizer of g, then T is a
realizer of the function F :⊆ X → K−(Y ), x 7→ {f(x)}. Hence, F ≤W g. If the
space Y is a computable metric space, then in : Y → K−(Y ), x 7→ {x} has a
computable inverse (see Lemma 6.4 in [5]) and it follows that f = in−1 ◦ F .
That implies f ≤W F . ✷

We note that this theorem can be generalized to larger classes of spaces Y .
The only property that is exploited is that the injection in : Y → K−(Y ) has
a computable inverse. We obtain some straightforward corollaries.

Corollary 5.2 Let X be a represented space and Y be a computable metric
space. If f :⊆ X → Y is single-valued and f ≤W C{0,1}N , then f is computable.

This is just Corollary 8.8 from [7]. Together with Corollary 4.9 we obtain the
following result, which is new.

Corollary 5.3 Let X be a represented space and Y be a computable metric
space. If f :⊆ X → Y is single-valued and f ≤W CR, then f ≤W CN.

By exploiting the distributivity of the Weihrauch lattice discovered in [28], a
restricted version of Theorem 5.1 could be obtained, using coproducts instead
of products. Combined with the observation that coproducts are the suprema
in the Weihrauch lattice, and the usefulness of the decomposition into products
presented in Corollary 4.9, it seems sensible to explore whether any of our
principles of closed choice can be expressed as a supremum of other degrees.
The negative answer is a consequence of the next result. To formulate it, we
define the concept of join-irreducibility in the Weihrauch lattice.

Definition 5.4 (Join-irreducibility) A multi-valued function f on repre-
sented spaces is called join-irreducible, if f ≡W

∐
n∈N fn implies the existence

of an n0 ∈ N with f ≡W fn0.

We note that for finitely many fn, this is exactly the ordinary lattice theoretic
concept of join-irreducibility. For countably many fn, this concept might be
called σ–join-irreducibility (see [29]). However, this is also not quite appro-
priate since the coproduct

∐
n∈N fn is not necessarily the supremum of the

fn. This is correct for continuous reducibility, but not for the computable
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case. We refrain to introduce another name and call the above concept just
join-irreducibility, which is justified since we will basically only apply it in a
situation with finitely many fn.

If f :⊆ X ⇒ Y is a function between represented spaces, with representation
δ of X , then we define fA for each set A ⊆ NN as follows. We let (XA, δ|A)
be the represented space with XA := δ(A) and the restriction δ|A of δ to A.
Then fA :⊆ XA ⇒ Y is the restriction of f to the represented space (XA, δA).
That is, we obtain F |A ⊢ fA if F ⊢ f . Using this concept, we get the following
sufficient criterion for join-irreducibility.

Lemma 5.5 (Join-irreducibility) Let (X, δX) and Y be represented spaces.
Assume that for some multi-valued function f :⊆ X ⇒ Y the equivalence
f ≡W fA holds for each non-empty set A ⊆ NN that is clopen in dom(fδX).
Then f is join-irreducible.

Proof. Assume f ≤W
∐

n∈N fn. Then there exists a computable function N :⊆
NN → N with fN−1(n) ≤W fn and dom(N ) = dom(fδX). There has to be an
n0 ∈ N, so thatN−1(n0) 6= ∅, and due to continuity of N , this set is closed and
open in dom(fδX). Thus, by the assumption, we have f ≤W fN−1(n0)≤W fn0 .
The other direction is trivial. ✷

If we take away finitely many small open rational balls from N, {0, 1}N, NN

or R, respectively, such that the remainder is non-empty, then the remainder
is still large enough to simulate closed choice of the entire space within this
subspace. This is why closed choice for all these spaces satisfies the above
criterion for join-irreducibility.

Corollary 5.6 CN, C{0,1}N , CNN and CR are join-irreducible.

Another consequence is that the coproduct (i.e. the supremum) of CN and
C{0,1}N is strictly below the product.

Corollary 5.7 CN
∐
C{0,1}N <W CN × C{0,1}N .

This corollary also shows that the coproduct of two idempotent functions is
not necessarily idempotent (see Equation (1)).

Corollary 5.8 CN
∐
C{0,1}N is not idempotent.
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6 Unique Choice and Inversion

In this section we briefly discuss a variant of choice, which we call unique
choice. This is choice restricted to the special case of singletons. We only for-
mulate unique choice for Hausdorff spaces in order to guarantee that singletons
are closed.

Definition 6.1 (Unique Closed Choice) Let (X, δ) be a represented Haus-
dorff space. We consider the injection inX : X →֒ A−(X), x 7→ {x}. The partial
inverse UCX :⊆ A−(X) → X of this injection is called unique closed choice
operation of the space X .

Since unique choice UCX is a restriction of choice CX , it is clear that UCX ≤W CX

holds. In some cases we can say more. In case of N it turns out that unique
choice is not easier than full choice. The proof idea is very similar to the proof
idea of Proposition 3.3 in [6], where CN is reduced to finite choice. We only
describe it informally here.

Proposition 6.2 UCN ≡W CN.

Proof. It is clear that UCN ≤W CN. We prove CN ≤W UCN by an intuitive de-
scription of a suitable algorithm. Given an enumeration n0, n1, ... of the com-
plement of a set A ⊆ N, we choose c = 0 as starting candidate for a potential
element in A and we choose j = 0 as starting position to keep track of where
we have to change our mind. In steps i = 0, 1, ... we inspect the enumeration
ni in order to find the candidate c and simultaneously we start to generate
as output a negative description of {j} by enumerating all numbers k > j.
Whenever some i with c = ni is found, we choose as new candidate c the
minimal element c = min(N \ {n0, ..., ni}). Whenever that happens, we choose
j = max{i,m + 1} as new position, where m is the largest number that has
been produced on the output and now we start to produce as output a neg-
ative description of {j} by enumerating all numbers m + 1, ..., j − 1 (if there
are any) and then all numbers k > j, while we continue to inspect the se-
quence ni+1, ni+2, ... to find the new candidate c. If we continue like this, then
eventually we will find a candidate c that is actually in A and hence not in
the enumeration of the ni. The output will then be a negative description of
{j} for some number j that is larger than or equal to the last position in the
enumeration where we had to change our candidate. That is, the number j
together with the original enumeration n0, n1, ... allows to identify the candi-
date c. The number j can be obtained from the output with the help of unique
choice UCN. ✷
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In case of Baire space we formulate the following conjecture.

Conjecture 6.3 UCNN ≡W CNN.

On the other hand, unique choice UCNN is also not too simple. One can easily
see that lim≤W UCNN holds for the limit map

lim :⊆ NN → NN, 〈p0, p1, p2, ...〉 7→ lim
i→∞

pi

and with the methods of the next section it also follows that the cone below
UCNN is closed under composition. Hence, UCNN cannot be located on any finite
level of the Borel hierarchy. This can also be deduced from the fact that there
are co-c.e. closed singletons {p} ⊆ NN such that p is hyperarithmetical, but
not arithmetical (see Propositions 1.8.62 and 1.8.70 in [23]). We obtain the
following corollary as a direct consequence of Corollaries 5.2 and 5.3 and the
previous proposition and the observation that UCN≤W UCR holds.

Corollary 6.4 UC{0,1}N ≡W C{0} ≡W id and UCR≡W CN.

We will use the inversion and the graph map as follows

• InvX,Y :⊆ C(X, Y )× Y → X, (f, y) 7→ f−1(y), where
dom(InvX,Y ) := {(f, y) : f injective and y ∈ dom(f−1)}

• graphX,Y : C(X, Y ) → A−(X × Y ), f 7→ graph(f), where
graph(f) := {(x, y) ∈ X × Y : f(x) = y}.

For computable metric spaces X and Y the map graphX,Y is known to be
computable (see [5]). It turns out that the map InvX,Y is reducible to unique
choice of X .

Theorem 6.5 (Inversion operator) Let X and Y be computable metric
spaces. Then InvX,Y ≤W UCX .

Proof. In [5] we have established the formula

f−1(y) = in−1
X ◦ sec(graphX,Y (f), y),

where sec : A−(X × Y )× Y → X, (A, y) 7→ Ay := {x ∈ X : (x, y) ∈ A} is the
computable section map (see [5]). Altogether, this shows InvX,Y ≤W in−1

X =
UCX . ✷

As a corollary we get that in particular any specific inverse of a computable
map is reducible to unique choice. We can generalize this non-uniform result
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even to the case of non-injective maps and ordinary choice. We note that the
inverse f−1 :⊆ Y ⇒ X, y 7→ f−1{y} exists as a multi-valued map for any
single-valued f : X → Y .

Theorem 6.6 (Inversion) Let X and Y be computable metric spaces. If
f : X → Y is computable, then f−1≤W CX and if f is also injective, then
f−1≤W UCX .

Proof. If f : X → Y is computable, then F : A−(Y ) → A−(X), A 7→ f−1(A)
is computable too and we obtain

f−1(y) = CX ◦ F ◦ inY (y),

i.e. f−1 ≤ CX and if f is also injective, then we obtain f−1(y) = in−1
X ◦ F ◦

inY (y), i.e. f
−1≤W UCX . ✷

We mention that a multi-valued function f on represented spaces is called
weakly computable, if f ≤W C{0,1}N and f is called computable with finitely
many mind changes if it can be computed on a Turing machine that revises its
output at most finitely many times for each particular input. In Theorem 7.11
we will show that the latter is equivalent to f ≤W CN. We get the following
result as a corollary of Theorem 6.6 and Corollary 6.4.

Corollary 6.7 (Compact inversion) Let X and Y be computable metric
spaces and let X be computably compact. If f : X → Y is computable, then
f−1 is weakly computable, if f is also injective, then f−1 is even computable.

The second part of the statement was known as such (see, for instance, [5]).
The following corollary is also a consequence of Theorem 6.6 and Corollary 6.4.

Corollary 6.8 (Locally compact inversion) Let X be a computable Kσ–
space and let Y be a computable metric space. If f : X → Y is computable, then
f−1≤W CR and if f is also injective then f−1≤W CN, hence f

−1 is computable
with finitely many mind changes.

These results are not necessarily optimal. For instance, it is known that the
inverse of an injective computable map f : R → R is even computable. How-
ever, for this result one has to exploit additional properties of R, such as
connectedness properties (see [5]). We give some example that shows that the
inversion results do not hold true for arbitrary represented spaces. By R< we
denote the set of real numbers equipped with the left cut representation ρ<,
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which represents a real number x by an enumeration of all rational numbers
q < x (see [36]).

Example 6.9 Let R denote the real number represented with the Cauchy rep-
resentation and let R< denote the real number denoted with the left cut rep-
resentation. The identity f : R → R<, x 7→ x is computable and its inverse
f−1 : R< → R is known to be equivalent to lim (see Proposition 3.7 in [6] and
Exercise 8.2.12 in [36]). In particular, f−1 is not reducible to CR.

7 Choice on Baire Space and Non-Deterministic Computability

In this section we will compare the power of choice for certain spaces with
models of hypercomputation that have been considered. This approach to
classify models of hypercomputation in terms of Weihrauch reducibility has
been started in [27]. Here, the relevant models of hypercomputation are non-
deterministically computable functions and functions computable with revis-
ing computations in the sense of Martin Ziegler [38,39]. The latter ones are also
known as functions computable with finitely many mind-changes, for instance
in learning theory [11,12].

In [38] Martin Ziegler has introduced a concept of non-deterministically com-
putable functions. We generalize this concept to advice spaces that are subsets
of Baire space and we prove that this concept can be characterized by choice for
the advice space. This characterization yields some interesting consequences.

Definition 7.1 (Non-deterministic computability) Let (X, δX), (Y, δY )
be represented spaces and let A ⊆ NN. A function f :⊆ X ⇒ Y is said to be
non-deterministically computable with advice space A, if there exist two com-
putable functions F1, F2 :⊆ NN → NN such that 〈dom(fδX)× A〉 ⊆ dom(F2)
and for each p ∈ dom(fδX) the following hold:

(1) (∃r ∈ A) δSF2〈p, r〉 = 0,
(2) (∀r ∈ A)(δSF2〈p, r〉 = 0 =⇒ δY F1〈p, r〉 ∈ fδX(p)).

Here A ⊆ NN is considered as subspace of Baire space. Intuitively, the set A
serves as a set of possible advices that can give extra support to the compu-
tation. Any computation can be successful or it can fail, which is indicated by
the output of F2 (where “1” means the advice is recognized to fail after finite
time and “0” means the advice is successful in the long run). That is F2 can
be considered as a realizer of a function f2 :⊆ NN → S. The set

Ap := {r ∈ A : δSF2〈p, r〉 = 0} = {r ∈ A : f2〈p, r〉 = 0}
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is the set of successful advices for input p ∈ dom(fδX). Intuitively, F2 is a
method to recognize unsuccessful advices and F1 is a method to determine
the output of the computation for successful advices. The two conditions then
express intuitively that for each fixed admissible input the following hold:

(1) There exists a successful advice for this input.
(2) Each successful advice produces a correct output.

Functions that are non-deterministically computable in the sense of [38] are
non-deterministically computable with full Baire space NN as advice space 2 .
Now we can prove the following equivalence.

Theorem 7.2 (Non-deterministic computability) Let X and Y be rep-
resented spaces, A ⊆ NN and let f :⊆ X ⇒ Y be a multi-valued function.
Then the following are equivalent:

(1) f ≤W CA,
(2) f is non-deterministically computable with advice space A.

Proof. We consider the represented spaces (X, δX) and (Y, δY ). Let f be non-
deterministically computable with advice space A. Then there are computable
functions F1, F2 according to Definition 7.1. By type conversion and since
〈dom(fδX)× A〉 ⊆ dom(F2) we can transfer F2 into a computable function

h :⊆ NN → C(A, S), p 7→ (r 7→ δSF2〈p, r〉).

Hence, for each p ∈ dom(fδX) the function h(p) = χA\Ap
is a characteristic

function of the closed set Ap ∈ A−(A) of successful advices. Here h can also
be considered as computable function of type h :⊆ NN → A−(A), p 7→ Ap. By
condition (1) of Definition 7.1 we obtain that Ap 6= ∅ for any p ∈ dom(fδX) and
by condition (2) we obtain δY F1〈p,CAh(p)〉 ⊆ fδX(p). Let H be a computable
realizer of h. Then F1〈id, GH〉 is a realizer of f for any realizer G of CA and
hence f ≤W CA.

On the other hand, let f ≤W CA. Then any realizer G of CA computes some
realizer F of f , i.e. there are computable functions H,K such that for all re-
alizers G of CA there is some realizer F of f such that F (p) = K〈p,GH(p)〉
for all p ∈ dom(fδX). Now we describe maps F1, F2 :⊆ NN → NN that satisfy
the conditions of Definition 7.1 for f . For each p ∈ dom(fδX) the function
H computes a non-empty set Ap = ψA

−H(p) and by evaluation there exists a
computable function F2 such that δSF2〈p, r〉 = χA\Ap

(r) for all p ∈ dom(fδX)
and r ∈ A. That means to choose Ap as the set of successful advices. We can

2 The advice space is not made explicit in [38], but we conclude implicitly that the
advice space NN is meant.
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also choose F1 := K and verify the conditions (1) and (2) of Definition 7.1.
Firstly, it is clear that Ap 6= ∅ for all p ∈ dom(fδX) and hence F2 satisfies
condition (1). Secondly, for each r ∈ Ap there is a realizer G of CA such that
GH(p) = r and hence we obtain F1〈p, r〉 = K〈p,GH(p)〉 = F (p) for a real-
izer F of f . This implies δY F1〈p, r〉 ∈ fδX(p) and hence condition (2) holds as
well. Altogether f is non-deterministically computable with advice space A. ✷

The main benefit of this characterization of closed choice is that using it we can
easily prove the following theorem that shows that the advice for compositions
can be determined a priori and independently. We note that due to the fact
that Baire space admits a computable and bijective pairing function, we can
always consider A×B as subspace of Baire space for any two subspaces A,B
of Baire space.

Theorem 7.3 (Independent Choice) Let A,B ⊆ NN and let f and g be
multi-valued functions on represented spaces. If f ≤W CA and g≤W CB, then
f ◦ g≤W CA×B.

Proof. We consider represented spaces (X, δX), (Y, δY ) and (Z, δZ). Let now
f :⊆ Y ⇒ Z and g :⊆ X ⇒ Y be non-deterministically computable with ad-
vice spaces A and B, respectively. Due to Theorem 7.2 it suffices to show that
f ◦g is non-deterministically computable with advice space A×B. Intuitively,
we can choose an advice (r, s) ∈ A × B and use advice r for f and advice s
for g. More precisely, let f and g be non-deterministically computable using
computable functions F1, F2 and G1, G2 according to Definition 7.1, respec-
tively. We define H1 and H2 that witness non-deterministic computability of
f ◦ g with advice space A×B. We can define a computable H1 by

H1〈p, 〈r, s〉〉 := F1〈G1〈p, s〉, r〉

and there exists a computable H2 such that

δSH2〈p, 〈r, s〉〉 =




1 if δSG2〈p, s〉 = 1

δSF2〈G1〈p, s〉, r〉 otherwise

for all p ∈ dom(fgδX) and all (r, s) ∈ A × B. Such a computable H2 exists,
since δSG2〈p, s〉 = 0 implies that δYG1〈p, s〉 ∈ g(δX(p)) ⊆ dom(f). Now we
verify that H1 and H2 satisfy conditions (1) and (2) of Definition 7.1 for f ◦ g.
To this end, let p ∈ dom(fgδX).

By condition (1) for g there is an s ∈ B such that δSG2〈p, s〉 = 0 and hence by
condition (2) for g we obtain δYG1〈p, s〉 ∈ dom(f). Hence by condition (1) for
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f there is an r ∈ A such that δSF2〈G1〈p, s〉, r〉 = 0 and thus δSH2〈p, 〈r, s〉〉 = 0,
which shows that condition (1) also holds for fg.

Now let (r, s) ∈ A × B be such that δSH2〈p, 〈r, s〉〉 = 0. Then δSG2〈p, s〉 = 0
and δSF2〈G1〈p, s〉, r〉 = 0. Hence by conditions (2) for g and f we obtain
δYG1〈p, s〉 ∈ gδX(p) and hence δZF1〈G1〈p, s〉, r〉 ∈ fgδX(p), which proves
condition (2) for fg. ✷

We recall that we call a multi-valued function h on represented spaces closed
under composition if the principal ideal of h is closed under composition, i.e.
if f ≤W h and g≤W h implies f ◦ g≤W h (for f and g of appropriate type). It
is worth pointing out that closure under composition entails idempotency.

Proposition 7.4 Every multi-valued function f on represented spaces that is
closed under composition is also idempotent.

Proof. Let f :⊆ X ⇒ Y be a multi-valued function on represented spaces.
Then we have f×f = (f×idY )◦(idX×f) and f×idY ≤W f and idX×f ≤W f .
That is, if f is closed under composition, then f × f ≤W f . ✷

We get the following consequence of Theorem 7.3, which is a strengthening of
Corollary 3.8 for A ⊆ NN.

Corollary 7.5 (Closure under composition) Let A ⊆ NN be a subspace
of Baire space. If there is a computable surjection s : A→ A2, then CA×A≤W CA

and hence CA is closed under composition and idempotent.

In particular, we can apply this result in the following cases.

Corollary 7.6 The choice functions CN,C{0,1}N ,CNN,CN×{0,1}N and hence CR

are closed under composition and idempotent.

For most of these functions this was known. However, the proofs in [14] and
[7] for the case C{0,1}N are considerably more difficult whereas the Independent
Choice Theorem 7.3 has a simple proof and covers many cases simultaneously.
The results for CN×{0,1}N and CR seem to be new and are of independent in-
terest. Closure of non-deterministically computable functions for advice space
NN was observed in [38].

Now we want to prove that the class of (single-valued) functions below choice
for Baire space CNN is essentially the class of effectively Borel measurable
functions. It is known that there is no complete Borel measurable function,
since any particular function has to be Σ0

ξ–measurable in the Borel hierarchy
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for some countable ordinal ξ (see 1G.15 in [22]). Nevertheless, we will see
that choice of Baire space CNN is complete for Borel measurable functions in
a certain sense. We will say that a function f : X → Y on computable Polish
spaces X and Y is effectively Borel measurable, if its graph is an effective
Σ1

1–set (see Theorem 3E.5 in [22]). Here a subset A ⊆ X of a computable
Polish space X is called effective Σ1

1–set, if there exists a co-c.e. closed set
B ⊆ X × NN such that x ∈ A ⇐⇒ (∃p ∈ NN)(x, p) ∈ B. We will use once
again Theorem 7.2 for the proof.

Theorem 7.7 (Choice of Baire space) Let X and Y be computable Polish
spaces and let f : X → Y be a function. Then the following are equivalent:

(1) f ≤W CNN ,
(2) f is effectively Borel measurable.

Proof. By Theorem 7.2 it suffices to show that f is non-deterministically com-
putable with advice space NN if and only if it is effectively Borel measurable.
Since X and Y are Polish, we can assume that we have total computably ad-
missible representations δX and δY forX and Y , respectively (see, for instance,
Corollary 4.4.12 in [2]).

If f is non-deterministically computable with advice space NN, then there
are computable functions F1, F2 according to Definition 7.1. We obtain for all
(x, y) ∈ X × Y

f(x) = y

⇐⇒ (∃〈p, r〉 ∈ NN)(δX(p) = x, δSF2〈p, r〉 = 0 and δY F1〈p, r〉 = y).

Since all involved functions in the matrix of the formula are computable and
total, it follows that the matrix constitutes a co-c.e. closed subset ofX×Y ×NN

in the parameters (x, y, 〈p, r〉). Hence f is effectively Borel measurable.

Let now f be an effectively Borel measurable function. Then graph(f) is a
Σ1

1–set in the effective Borel hierarchy and there exists a co-c.e. closed set
A ⊆ X × Y × NN such that

f(x) = y ⇐⇒ (∃r ∈ NN)(x, y, r) ∈ A.

We devise a non-deterministic computation for f , by defining suitable com-
putable functions F1, F2 according to Definition 7.1. Firstly, there exists a
computable function F2 with δSF2〈p, 〈q, r〉〉 = χAc(δX(p), δY (q), r) and we de-
fine F1〈p, 〈q, r〉〉 := q. Then F1 is computable too and we obtain

(∃r ∈ NN) δSF2〈p, 〈q, r〉〉 = 0 ⇐⇒ (∃r ∈ NN)(δX(p), δY (q), r) ∈ A
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⇐⇒ fδX(p) = δY (q)

and if this condition holds, then we have δY F1〈p, 〈q, r〉〉 = δY (q) = fδX(p).
Altogether, this shows that F1, F2 satisfy the conditions of Definition 7.1. ✷

We note that CNN itself is not Borel measurable, which is not a contradiction,
since it is not a single-valued function defined on a Polish space. In contrast,
the domain of CNN corresponds to the set of ill-founded trees (i.e. trees with
at least one infinite branch), which is known to be Σ1

1–complete (see Theo-
rem 27.1 in [18]). We mention that the relativized version of the above proof
leads to the following corollary.

Corollary 7.8 Let X and Y be Polish spaces represented by their Cauchy
representations and let f : X → Y be a function. Then the following are
equivalent:

(1) f ≤W CNN with respect to some oracle,
(2) f is Borel measurable.

Here, reducibility “with respect to some oracle” is equivalent to using the
continuous version of Weihrauch reducibility. Now we will consider another
model of hypercomputation, namely finitely revising computation as consid-
ered in [39] and as known as computation with finitely many mind changes
in learning theory [11]. A Turing machine that computes with finitely many
mind changes or that is finitely revising can erase its output tape at any stage
during its computation and start writing anew, however, this can be done only
finitely often, ensuring that the output is well-defined. In [39], the power of
finite revising was characterized in terms of an operator mapping one repre-
sentation into another. We will define this concept here using the discrete limit
lim∆ :⊆ NN → NN, 〈p0, p1, ...〉 7→ limi→∞ pi where the ∆ stands for the discrete
topology on NN and the limit on the right-hand side is taken with respect to
this topology. That is a sequence (pi)i∈N converges with respect to ∆ if and
only if it is eventually constant. Now we use the discrete limit to define a
discrete version of the jump of a representation (as equivalently considered in
[39]).

Definition 7.9 (Discrete jump) Let (X, δ) be a represented space. Then
we define the discrete jump of δ by δ∆ := δ ◦ lim∆.

It is easy to see that the following result holds (cf. Lemma 3.7 in [39]).

Proposition 7.10 (Computability with finitely many mind changes)
Let (X, δX) and (Y, δY ) be represented spaces and let f :⊆ X ⇒ Y be a multi-
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valued function. Then the following are equivalent:

(1) f is (δX , δY )–computable with finitely many mind changes,
(2) f is (δX , δ

∆
Y )–computable,

(3) f is (δ∆X , δ
∆
Y )–computable.

With this proposition we can produce the following characterization of the
discrete limit and the power of computations with finitely many mind changes
in terms of closed choice, showing that finite revision allows exactly to perform
closed choice in N.

Theorem 7.11 (Choice on natural numbers) Let f be a multi-valued func-
tion on represented spaces. Then the following are equivalent:

(1) f ≤W CN,
(2) f ≤W lim∆,
(3) f is computable with finitely many mind changes.

Proof. It is easy to see that CN is computable with finitely many mind changes.
Starting with n = 0, the machine outputs a δN name for n and searches for n
in the input at the same time. If the search is successful, the output is erased,
n is increased by 1, and the machine starts again. A valid input never causes
the machine to erase its output tape infinitely often, and an output can only
avoid erasion, if it is a valid result for CN. Moreover, being computable with
finitely many mind changes is preserved downwards by Weihrauch reducibility
(see Lemma 4.4 in [6]) and hence f ≤W CN implies that f is computable with
finitely many mind changes. Hence (1) implies (3).

Now we assume that f is of type f :⊆ X ⇒ Y for represented spaces
(X, δX) and (Y, δY ). If f is computable with finitely many mind changes, then
f has a computable (δX , δ

∆
Y )–realizer F by Proposition 7.10, which means

δY ◦ lim∆ F (p) ∈ fδX(p) for all p ∈ dom(δX). Hence f ≤W lim∆ and (3) im-
plies (2).

In order to prove that (2) implies (1) it suffices to shows lim∆ ≤W CN. we de-
scribe a machine computing a function G in the following: The input for G is a
sequence (pn)n∈N with pn ∈ NN. Now we start to test simultaneously pn = pn+j

for each n, j ∈ N. If a contradiction is found, we print n on the output tape. If
CN is applied to the output of G, the answer is an index n0, so that the initial
sequence is constant after n0. The remaining task is to output the n0th entry
of the sequence. ✷

We get the following corollary that shows that the discrete limit is equivalent
to choice on natural numbers.
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Corollary 7.12 lim∆ ≡W CN.

We close by mentioning that the class of operations characterized by choice
on Cantor space is also of independent interest. These functions have been
called weakly computable in [7] and basically the equivalence of (1) and (3)
below is the definition. With Theorem 7.2 we get a characterization of weakly
computable functions as non-deterministically computable ones with advice
space {0, 1}N.

Corollary 7.13 (Choice on Cantor space) Let f be a multi-valued func-
tion on represented spaces. Then the following are equivalent:

(1) f ≤W C{0,1}N ,
(2) f is non-deterministically computable with advice space {0, 1}N,
(3) f is weakly computable.

A surprising omission in our list of classes of computable functions character-
ized by closed choice of some space is the class of limit computable functions.
In light of Corollary 7.5 it seems that choice for most natural spaces will cor-
respond to classes of functions that are closed under composition, whereas the
class of limit computable functions is not closed under composition (see for
instance [3]). Thus, the following conjecture is plausible.

Conjecture 7.14 There is no represented space (X, δ) such that CX ≡W lim.

At least for Polish spaces (X, δ) this conjecture follows topologically from
Corollary 4.10. The closest we can get to a characterization of limit computable
functions by a choice principle of a Polish space is expressed in the following
result.

Corollary 7.15 (Parallelized choice on natural numbers) Let f be a
multi-valued function on represented spaces. Then the following are equiva-
lent:

(1) f ≤W ĈN,
(2) f is limit computable.

This follows from ĈN ≡ lim (see Example 3.10) and the fact that lim is com-
plete for limit computable functions, see for instance [3].
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8 A Uniform Low Basis Theorem

The choice of Cantor space C{0,1}N is known to be even not non-uniformly
computable, since there is a co-c.e. closed set A ⊆ {0, 1}N that has no com-
putable points (this can be seen, for instance, using the Kleene tree [19] or
Proposition V.5.25 in [24]). However, by the Low Basis Theorem of Jockusch
and Soare (see Theorem 2.1 in [16] or Proposition V.5.27 in [24]) any co-c.e.
closed set A ⊆ {0, 1}N has a low point, that is for computable w, the set

ψ
{0,1}N

− (w) always contains a low point. As shown in [6], this carries over to all
problems below CR: For every computable instance, there is a solution that
is low. We will demonstrate that this result even holds uniformly, after some
necessary definitions have been introduced.

Definition 8.1 (Turing jump operator) Let (Un)n∈N be a standard enu-
meration of the c.e. open subsets of Baire space NN. Define the jump operator
J : NN → NN by:

J(p)(n) =




1 if p ∈ Un

0 otherwise

Contrary to its behavior on Turing degrees, as a function on Baire space, the
jump is injective. It even admits a computable inverse J−1. In [4], for any
representation δ of some set X , a representation

∫
δ is defined by (

∫
δ)(p) =

δ(J−1(p)). Together with the operator ′ studied in [39], where a representation
δ′ is defined by δ′(p) = δ(lim p),

∫
forms a Galois connection, as shown in [4].

We define the low representation δ∨ := (
∫
δ)′ for any represented space (X, δ)

and if f :⊆ X ⇒ Y is a multi-valued map on represented spaces (X, δX)
and (Y, δY ), then f is called low computable, if f is (δX , δ

∨
Y )–computable. In

particular, we will be interested in the low representation δ∨{0,1}N = id{0,1}N ◦

J−1 ◦ lim of Cantor space and the low representation of Baire space δ∨NN =
J−1 ◦ lim, which we also denote by L.

Lemma 8.2 (Low points) A sequence p ∈ NN is low if and only if it has a
computable L–name.

Proof. By definition, a sequence p ∈ NN is called low, if its Turing jump is
Turing reducible to the halting problem, which is equivalent to J(p) being in
the class ∆0

2 of the arithmetical hierarchy (see Proposition IV.1.16 in [24]).
By Shoenfield’s Limit Lemma (see Proposition IV.1.17 in [24]), J(p) ∈ ∆0

2 if
any only if there exists a computable sequence q = 〈q0, q1, ...〉 ∈ NN such that
J(p) = limi→∞ qi = lim(q), i.e. if and only if p = L(q). ✷
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Analogously, p ∈ {0, 1}N is low if and only if it has a computable δ∨{0,1}N–name.
Now we can formulate and prove our uniform low basis theorem, which states
that, given an enumeration of the complement of a non-empty compact subset
A of {0, 1}N, we can compute a sequence converging to the jump of a point
p ∈ A.

Theorem 8.3 (Uniform Low Basis Theorem) C{0,1}N is low computable.

Proof. We describe a machine M that given a ψ
{0,1}N

− –name of a compact
set A ⊆ {0, 1}N produces a sequence (pm)m∈N converging to a

∫
id{0,1}N-name

of some element of A. The input of M is a list enumerating basic open sets
exhausting {0, 1}N \ A. The complement of the union of the first m of these
subsets shall be denoted Am. Likewise, for each n ∈ N, we let Um

n be the union
of the first m basic open subsets exhausting Un. Here, for simplicity, (Un)n∈N
is supposed to be a standard enumeration of the c.e. open subsets of Cantor
space {0, 1}N and the aforementioned results on the jump and integral are
used analogously for Cantor space.

The computation of each pm can be considered independently, and proceeds
as follows. For each n ∈ N, the machine M performs the following tests 3 in
the given order:

(1) Does Am ⊆ Um
n hold? If the answer is yes, the nth bit of pm is 1.

(2) Let K be the set of indexes i < n, so that the ith bit of pm is 0. Test
Am ⊆ Um

n ∪
⋃
i∈K

Um
i . If the answer is yes, the nth bit of pm is 1.

(3) Otherwise, the nth bit of pm is 0.

All operations are performed on a finite set of basic open sets, either obtained
from the input, or computable by definition. Therefore, each test is decidable.
We will first prove that the pm converge asm goes to infinity. This is equivalent
to showing that each bit of the pm changes only finitely many times.

The first test is monotone in m, as we have Am+1 ⊆ Am and Um
n ⊆ Um+1

n .
Thus, if for some m the nth bit of pm was set to 1 due to the first test, the
nth bit of all pm′ for m′ > m is 1, too.

Now consider the second test, and assume that all bits i with i < n remain
unchanged. Then, again by the same argument, once the second test yields
yes for some m, it will do so for all larger m′ as well. The only way for the
second test to change the corresponding bit from 1 to 0 is if some smaller bit
has been set from 0 to 1 previously.

3 Of course the first test could be subsumed by the second one; however, since their
interpretation is different, we prefer to mention the first test separately.
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An inductive argument concludes the proof of convergence: The first bit can
change at most once, from 0 to 1. All other bits n can change at most once for
each given configuration of the lower bits. If only finitely many changes of the
bits smaller than n are possible, then there will be only finitely many changes
of the nth bit.

It remains to show that the pm actually converge to a correct output w.
Basically, the first test ensures that the limit sequence w specifies a point
x ∈ A, while the second test ensures that w is a valid

∫
id{0,1}N-name, i.e.

w ∈ dom(J−1), in the first instance.

To elaborate this, assume A ⊆ Un for some n ∈ N. Then for every
∫
id{0,1}N-

name w with J−1(w) ∈ A obviously w(n) = 1 has to be true. On the other
hand, for x /∈ A, there is some neighborhood U of A with x /∈ U . It is possible
to choose U as c.e. open (for instance by choosing the complement of some
sufficiently small clopen basic neighborhood of x), thus, there is an n ∈ N
with A ⊆ Un, but x /∈ Un. Thus, having w(n) = 1 for each n ∈ N with A ⊆ Un

for a (
∫
id)-name w is both necessary and sufficient to ensure J−1(w) ∈ A.

In the next step, we have to show that A ⊆ Un already guarantees the existence
of an m ∈ N with Am ⊆ Um

n . The other direction is trivial. As A ⊆ Un is
equivalent to Ac ∪ Un = {0, 1}N, the basic open sets exhausting Ac and Un

are an open cover of {0, 1}N. Since {0, 1}N is compact, there has to be a finite
subcover. Thus, there is some m ∈ N, so that the first m basic open sets in the
ψ−-name of A together with the first m basic open sets listed for Un already
cover {0, 1}N, that is fulfills Am ⊆ Um

n , which concludes this part of the proof.

Now we have to show that the second test ensures that the limit sequence w
is in the domain of

∫
id{0,1}N . This amounts to proving


 ⋂

i∈N,w(i)=1

Ui


 \


 ⋃

j∈N,w(j)6=1

Uj


 6= ∅.

We note that this difference is automatically a singleton, if non-empty, since
any two distinct points can be separated by two c.e. open sets. We will use
the abbreviations X := {i ∈ N | w(i) = 1 due to the first test}, Y := {i ∈
N | w(i) = 1 due to the second test} and Z := {i ∈ N | w(i) = 0}, and
U c
i := {0, 1}N \ Ui. With this, we have to show:

(⋂

i∈X

Ui

)
∩


⋂

j∈Y

Uj


 ∩


⋂

k∈Z

U c
k


 6= ∅.
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Taking into consideration our results on the first test, this simplifies to:

A ∩


⋂

j∈Y

Uj


 ∩


⋂

k∈Z

U c
k


 6= ∅.

Assume that already A∩

(
⋂

k∈Z
U c
k

)
= ∅ would hold. By the finite intersection

property in compact spaces, this implies the existence of a (smallest) k0 ∈ N

with A ∩

(
⋂

k∈Z,k≤k0

U c
k

)
= ∅. Rearranging the expression yields A ⊆ Uk0 ∪

⋃
k∈Z,k<k0

Uk, so the second test would have been triggered for k0, so k0 /∈ Z

follows. This contradicts the assumption, so we have A ∩

(
⋂

k∈Z
U c
k

)
6= ∅.

Now we choose some x ∈ A ∩

(
⋂

k∈Z
U c
k

)
. Assume x /∈

⋂
j∈Y

Uj . There has to

be some j0 ∈ Y with x /∈ Uj0. Now j0 ∈ Y implies A ⊆ Uj0 ∪
⋃

k∈Z,k<j0

Uk.

According to the choice of x, we have x ∈ A, but x /∈
⋃

k∈Z,k<j0

Uk. This implies

x ∈ Uj0 , contradicting the assumption. Thus, we have:

A ∩


⋂

k∈Z

U c
k


 = A ∩


⋂

j∈Y

Uj


 ∩


⋂

k∈Z

U c
k


 .

As the set on the left is non-empty, so is the set on the right. With that
we know that our Limit-machine always produces a valid output, that is the
jump of some element. We have already established that any valid output is
necessarily correct, and thereby the proof is complete. ✷

As a corollary of this uniform result we get the known version of the Low Basis
Theorem.

Corollary 8.4 (Low Basis Theorem of Jockusch and Soare) Any non-
empty co-c.e. closed set A ⊆ {0, 1}N contains a low point.

The property that computable instances always admit low solutions is pre-
served under Weihrauch reducibility, as pointed out in [6]. We will now show
that this property also holds uniformly. This observation invites the question
where L = J−1◦lim is placed in the Weihrauch lattice. We will start the answer
with an obvious corollary to Theorem 8.3, which will then be extended.

Corollary 8.5 C{0,1}N ≤sW L.
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Now we will lift this observation from compact to locally compact choice. This
involves again the same idea as the proof of Proposition 4.8, albeit in a new
disguise as the following lemma:

Lemma 8.6 Let β be a representation of Cantor space {0, 1}N, and let δN
be the standard representation of N. If the multi-valued function C{0,1}N :⊆

A−({0, 1}
N) ⇒ {0, 1}N is (ψ

{0,1}N

− , β)–computable, then the multi-valued func-

tion CN×{0,1}N :⊆ A−(N × {0, 1}N) ⇒ N × {0, 1}N is (ψ
N×{0,1}N

− , (δN × β)∆)–
computable.

Proof. We describe a machine solving the latter task. Given a ψ
N×{0,1}N

− -name
of a closed set A ⊆ N × {0, 1}N, it produces a sequence (pm)m∈N. Again we
use Am to denote the complement of the union of the first m basic open sets
listed in the input.

As ({n} × {0, 1}N) ∩ Am = ∅? is decidable and we have Am 6= ∅, we can
compute nm = min{n ∈ N | ({n} × {0, 1}N) ∩ Am 6= ∅}. Using these values,
the output sequence shall be of the form pm = 〈δ−1

N (nm), qnm
〉. Note that nm

will be eventually constant as m goes to infinity, hence the same is true for
the pm.

The values qnm
are computed as follows. A machine computing C{0,1}N :⊆

(A−({0, 1}N), ψ
{0,1}N

− ) ⇒ ({0, 1}N, β) is simulated on input denoting
pr2(({nm} × {0, 1}N) ∩ A) for k steps, as long as ({nm} × {0, 1}N) ∩ Ak 6= ∅
for k ∈ N. If a k is reached with ({nm} × {0, 1}N) ∩Ak = ∅, the sequence qnm

will be continued by 0s.

If nm has reached its final value for m0, then qnm0
will be a β-name for some

w with nm0 ×w ∈ A; this is sufficient to ensure that the overall output of the
described computation is a (δN × β)∆-name of nm0 × w ∈ A. ✷

As a consequence we obtain that L is strictly above locally compact choice.

Theorem 8.7 CN×{0,1}N ≤sW L and L 6≤W CN×{0,1}N .

Proof. To show the reduction, we make use of Theorem 8.3 together with
Lemma 8.6 and the observation that β∨∆ ≡ β∨ for any representation β. To
see L 6≤W CN×{0,1}N , observe that L is single-valued. Therefore, the assumption
of the contrary together with Corollary 5.3 would imply L≤W CN. By tran-
sitivity and Corollary 8.5 we get C{0,1}N ≤W CN. As shown in [6], the latter is
wrong, providing the sought contradiction. ✷
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As J−1 is computable, the upper bound L = J−1 ◦ lim≤W lim is obtained
directly. As lim maps some computable inputs to non-low outputs, we even
have L <W lim. With this, we have determined precisely the place of J−1 ◦ lim
in the diagram provided in Figure 1.

A question regarding the Weihrauch degree of L that is left open by the results
presented so far is its behavior under products. Remarkable consequences of
the following answers are that the low real numbers do not form a field, and
that the integral does not commute with products.

Theorem 8.8 L<W L× L.

Proof. By a result of Spector (see [30] or Proposition V.2.26 in [24]) there
are sequences a, b ∈ {0, 1}N, so that both a and b are low, but 〈a, b〉 is not
low. Since a and b are low, J(a) and J(b) are Turing reducible to the halt-
ing problem, there are computable sequences 〈a0, a1, ...〉 and 〈b0, b1, ...〉 with
limi→∞ ai = J(a) and limi→∞ bi = J(b). Then (〈a0, a1, ...〉, 〈b0, b1, ...〉) is com-
putable, and we have (J−1 ◦ lim×J−1 ◦ lim)(〈a0, a1, ...〉, 〈b0, b1, ...〉) = (a, b).
Thus, (J−1 ◦ lim)× (J−1 ◦ lim) can map a computable input to an output that
is not low. ✷

In other words, this means that L is not idempotent. However, it has a dif-
ferent property. We call a function T :⊆ NN

⇒ NN a jump operator, if for
all computable functions F :⊆ NN → NN there exists a computable function
G :⊆ NN → NN such that F ◦ T = T ◦G. This notion has been introduced in
[10] (for single-valued functions) and using this terminology the following has
been proved in [4].

Lemma 8.9 The limit lim and the inverse of the Turing jump J−1 are jump
operators and hence L is also a jump operator.

Now we can formulate our main characterization of low computability.

Theorem 8.10 (Low computability) Let f be a multi-valued function on
represented spaces. Then the following are equivalent:

(1) f ≤sW L,
(2) f is low computable.

Proof.We consider the represented spaces (X, δX) and (Y, δY ). If f :⊆ X ⇒ Y
is low computable, then there is a computable realizer F such that δ∨Y ◦F (p) ∈
fδX(p) for all p ∈ dom(fδX). Since δ

∨
Y ◦ F = δY ◦ L ◦ F , this means that

L ◦ F is a (δX , δY )–realizer of f and hence f ≤sW L. If, on the other hand,
f ≤sW L, then there are computable functions H,K such that F = HLK
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is a (δX , δY )–realizer of f . By Lemma 8.9 there is a computable function L
such thatHL = LL and hence F = LLK and LK is a (δX , δ

∨
Y )–realizer of f . ✷

Next we want to show that certain choice principles are cylinders. We recall
that a multi-valued map f on represented spaces is called a cylinder, if id ×
f ≤sW f . For cylinders f we have g≤sW f ⇐⇒ g≤W f (see [7]). It has already
been proved in [7] that C{0,1}N is a cylinder, here we present another proof that
can be directly transferred to CN×{0,1}N.

Proposition 8.11 C{0,1}N and CN×{0,1}N are cylinders.

Proof. There is a computable embedding

ι : NN → {0, 1}N, p 7→ 01p(0)+101p(1)+1...

and using this embedding we get idNN(p) = ι−1 ◦ C{0,1}N ◦ in{0,1}N ◦ ι(p) and
hence idNN ≤sW C{0,1}N . The proofs of Propositions 3.4 and 3.7 even show strong
Weihrauch reducibility. Hence, using a computable surjective pairing function
π : {0, 1}N → {0, 1}N × {0, 1}N one obtains

idNN × C{0,1}N ≤sW C{0,1}N × C{0,1}N ≤sW C{0,1}N×{0,1}N ≤sW C{0,1}N .

Hence C{0,1}N is a cylinder. The fact that CN×{0,1}N is a cylinder can be proved
analogously. ✷

Together with Propositions 4.8 and 8.11, Corollary 4.9 and Theorems 8.7 and
8.10 we obtain the following corollary.

Corollary 8.12 If X is a computable Kσ–space, then CX is low computable.

This applies, in particular, to CN, C{0,1}N and CR. We also obtain the following
generalization of the non-uniform Low Basis Theorem of Jockusch and Soare.
The case CR was already treated as Theorem 4.7 in [6].

Corollary 8.13 (Low Basis Theorem) IfX is a computableKσ–space, then
any non-empty co-c.e. closed set A ⊆ X contains a low point.

Together with Corollary 7.13 and Theorem 7.11 we obtain that the class of
low computable functions contains several others.

Corollary 8.14 Any multi-valued function f on represented spaces that is
computable with finitely many mind changes or weakly computable is also low
computable.
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We mention that one gets consequences as the following.

Corollary 8.15 The Brouwer Fixed Point Theorem BFT is low computable.

Here, BFT : C([0, 1]n, [0, 1]n) ⇒ [0, 1]n is the multi-valued map with BFT(f) :=
{x ∈ [0, 1]n : f(x) = x}. In [6] it was already proved that any computable
function f : [0, 1]n → [0, 1]n has a low fixed point and that the Brouwer Fixed
Point Theorem is weakly computable. The above property is a uniform version
of the former fact. The benefit of having uniform results is highlighted by the
following result.

An interesting property of the class of low computable functions is that if they
are composed with limit computable functions from the left, then one obtains
a limit computable function again. This is in contrast to the fact that the limit
computable functions themselves are not closed under composition.

Proposition 8.16 (Composition) Let f :⊆ X ⇒ Y and g :⊆ Y ⇒ Z be
multi-valued functions on represented spaces. If f is low computable and g
is limit computable, then g ◦ f is limit computable. If f and g are both low
computable, then g ◦ f is low computable.

Proof. We use the represented spaces (X, δX), (Y, δY ) and (Z, δZ). We exploit
the fact that integral and derivative of representations form a Galois connec-
tion (see [4]). That g is limit computable means that it is (δY , δ

′
Z)–computable,

which is equivalent to g being (
∫
δY , δZ)–computable and that f is low com-

putable means that it is (δX , δ
∨
Y )–computable, which is equivalent to f being

(
∫
δX ,

∫
δY )–computable. It follows that g ◦ f is (

∫
δX , δZ)–computable, which

is equivalent to g ◦ f being limit computable. Analogously, if f and g are both
low computable, then it follows that g ◦ f is (

∫
δX ,

∫
δZ)–computable, which is

equivalent to g ◦ f being low computable. ✷

It can easily be seen that the composition g ◦ f of a limit computable f even
with a g that is computable with finitely many mind changes is not necessarily
limit computable. The class of low computable functions is the largest known
class with the stability property expressed in Proposition 8.16.

We note that L cannot be closed under composition by Theorem 8.8 and
Proposition 7.4. Hence strict Weihrauch reducibility cannot be replaced by
ordinary Weihrauch reducibility in Theorem 8.10.
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9 The Jump Topology

Connecting to the results of Section 7, it seems reasonable to inquire whether
other interesting Weihrauch degrees can be characterized by restrictions of the
limit operation lim of Baire space NN. Since all such restrictions are single-
valued, neither C{0,1}N nor CR can be equivalent to such an operation, as their
Weihrauch degrees do not contain any single-valued functions by Corollar-
ies 5.2 and 5.3. In the remainder of this section, we will study the limit op-
erator limJ with respect to the initial topology of the jump J . Like lim∆ we
will consider this operation as an operation with respect to Baire space (with
the identity as standard representation).

Initially, we suspected that limJ might be equivalent to L = J−1◦ lim, but this
is only true topologically, as we will show in Theorem 9.10. Computationally,
the contrary result is given below (see Theorem 9.6). It turned out that the
initial topology of the jump is identical to the Π–topology studied by Miller
[21, Chapter IV].

Theorem 9.1 The initial topology of J is generated by the co-c.e. closed sets
(that is identical to the Π–topology).

Proof. As every basic set of the form wNN for some finite w is co-c.e. closed,
every set that is open in the ordinary Baire topology is also open in the Π–
topology. Now consider the preimage:

J−1(wNN) =


 ⋂

i<|w|,w(i)=1

Ui


 ∩


 ⋂

j<|w|,w(j)=0

U c
j


 .

In the Π–topology, this is an intersection of finitely many open sets, and
therefore open. As the Baire topology is generated by sets of the form wNN,
this shows that the jump J is continuous with the Π–topology on its domain
and the Baire topology on its codomain. This is equivalent to the inclusion of
the initial topology of J in the Π–topology.

For the other inclusion, fix some co-c.e. closed set U c
n. We have

U c
n =

⋃

w∈Nn

J−1(w0NN),

so U c
n is open in the initial topology of the jump. This concludes the proof. ✷

A sequence (pn)n∈N in NN converges to p ∈ NN regarding the Π–topology, if
(J(pn))n∈N converges to J(p) in Baire space. The limit value p cannot be left
out here: There is a sequence (pn)n∈N, so that (J(pn))n∈N converges in Baire
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space, but not to some element of the range of J , as the range of J is not
closed in Baire space. The above description of the convergence relation of the
Π–topology implies

limJ = J−1 ◦ lim ◦JN = L ◦ JN,

with JN〈p0, p1, p2, ...〉 := 〈J(p0), J(p1), J(p2), ...〉.

In order to understand the computability aspects of limJ , we would like to
know which points are limits of computable sequences with respect to the
Π–topology. We introduce a name for these points.

Definition 9.2 A point p ∈ NN is called limit computable in the jump, if there
is a computable sequence (pn)n∈N in NN such that limn→∞ J(pn) = J(p).

Here the limit is understood with respect to the ordinary Baire topology and
by continuity of J−1 we automatically obtain limn→∞ pn = p. Some necessary
properties of points p that are limit computable in the jump are clear. For
one, they are limit computable and secondly they are in the closure of the set
of computable points with respect to the Π–topology. These points are called
unavoidable following Kalantari and Welch (see [17] and [21]).

Another observation is that all limit computable 1-generics are limit com-
putable in the jump. We recall that a point p ∈ NN is called 1–generic, if
for all n ∈ N there exists a finite word w ⊑ p such that either wNN ⊆ Un

or wNN ∩ Un = ∅ (see [23]). Here (Un)n∈N denotes the computable standard
enumeration of all c.e. open subsets of Baire space that was used to define the
Turing jump J . The definition directly implies the following observation.

Lemma 9.3 The Turing jump operator J : NN → NN is continuous in p ∈ NN

if and only if p is 1–generic.

Using this lemma, we obtain the following sufficient condition for limit com-
putability in the jump.

Proposition 9.4 If p is 1–generic and limit computable, then p is limit com-
putable in the jump.

Proof. If p is limit computable, then there is a computable sequence (pn)n∈N
that converges to p. If p is 1–generic, then (J(pn))n∈N also converges to J(p)
according to Lemma 9.3. This means that p is limit computable in the jump. ✷
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It is known that there is a 1–generic and limit computable p ∈ NN (see The-
orem 1.8.52 in [23]). Moreover, a 1–generic cannot be computable (see for in-
stance Proposition XI.2.3 in [25]). Hence, it follows that limJ maps some com-
putable input to a non-computable output and hence it is not non-uniformly
computable.

It will follow from Proposition 9.11 below that points which are non-computable
and limit computable in the jump are not necessarily 1–generic. However, they
seem to share a lot of properties with the class of limit computable 1–generics.
As one such property we prove that points which are limit computable in the
jump do not bound diagonally non-computable functions. A total function
f : N → N is called diagonally non-computable if f(i) 6= ϕi(i) for all i ∈ N
(that means either ϕi(i) does not exist or otherwise the two values are not
equal). Here ϕ denotes some standard Gödel numbering of the partial com-
putable functions g :⊆ N → N. Diagonally non-computable functions are, in
particular, not computable. As we will show below, our following proposition
is related to the known result that 1–generics do not bound diagonally non-
computable functions (due to Demuth and Kučera, see Corollary 9 in [13]).
The proof is inspired by Nies (see Exercise 4.1.6 in [23]).

Proposition 9.5 Let f be diagonally non-computable and let p be limit com-
putable in the jump. Then f 6≤T p.

Proof. Let f be diagonally non-computable and let p be limit computable in
the jump. Let us assume that f ≤T p. Then there is a computable function
F :⊆ NN → NN such that F (p) = f and there is a computable sequence
(pn)n∈N which converges to p in the Π–topology. Since F is computable, there
is a Turing machine M that computes F . Let us denote by FM(r)(n) the n–th
symbol written by this machine M upon input r, irrespectively of whether
r ∈ dom(F ). Then the set

U := {r ∈ NN : (∃i ∈ N) (FM(r)(i) = ϕi(i) and i ∈ dom(ϕi))}

is c.e. open and since f = F (p) is diagonally non-computable, it follows that
p 6∈ U . Since (pn)n∈N converges to p in the Π–topology and the complement
of U is open in the Π–topology by Theorem 9.1, it follows that pn 6∈ U for all
n ≥ m with some fixed m ∈ N. Since f = F (p) is total and (pn)n∈N converges
to p, there must be an n ≥ m for each i ∈ N such that FM (pn)(i) exists. Since
(pn)n∈N is computable, we can even find such an n effectively, i.e. there is a
computable function s : N → N such that FM(ps(i))(i) exists and s(i) ≥ m
for all i ∈ N. Since ps(i) 6∈ U , we obtain FM(ps(i))(i) 6= ϕi(i). But that means
that g(i) := FM(ps(i))(i) defines a total computable function g : N → N that
is diagonally non-computable, which is a contradiction! ✷
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From this result we can directly conclude that choice on Cantor space C{0,1}N

is not reducible to limJ . A function f is called two-valued diagonally non-
computable if it is diagonally non-computable and range(f) ⊆ {0, 1}. It is
known that the set of all such functions is co-c.e. closed in Cantor space
{0, 1}N (see Fact 1.8.31 in [23]).

Theorem 9.6 We obtain C{0,1}N 6≤W limJ .

Proof. Let us assume to the contrary that C{0,1}N ≤W limJ . Then there are
computable functions H,K such that H〈p, limJ K(p)〉 ∈ C{0,1}Nψ−(p) for all p
in the domain of the right-hand side. It is known and easy to see that the set

A := {f ∈ {0, 1}N : f is two-valued diagonally non-computable}

is a co-c.e. closed set. Hence, there is a computable p such that A = ψ−(p)
and we obtain that f := H〈p, limJ K(p)〉 is diagonally non-computable. Hence
K(p) is computable and q := limJ K(p) is limit computable in the jump. More-
over, f ≤T q, which contradicts Proposition 9.5. ✷

Next we prove that limJ is low computable.

Theorem 9.7 We obtain limJ <sW L.

Proof. We use the computable standard enumeration (Un)n∈N of c.e. open
subsets Un ⊆ NN that was used to define the Turing jump operator J . By
Um
n we denote the union of the first m basic clopen balls in the union that

constitutes Un. We define a function F : NN → NN by F 〈p0, p1, p2, ...〉 :=
〈q0, q1, q2, ...〉 with

q〈k,m〉(n) :=




1 if pk ∈ Um

n

0 otherwise

Since the property pk ∈ Um
n is decidable in the input sequence and the pa-

rameters k, n,m, it follows that F is computable. We claim that limJ =
L ◦ F . Let (pk)k∈N and p be such that limk→∞ J(pk) = J(p). Then also
limk→∞ pk = p. Let (qi)i∈N be the corresponding output of F . Let us as-
sume that J(p)(n) = 1 for some n ∈ N, i.e. p ∈ Un. Then p ∈ Um

n for all
sufficiently large m and hence pk ∈ Um

n for all sufficiently large k,m. This
implies that q〈m,k〉(n) = 1 for sufficiently large 〈m, k〉. Let us now assume that
J(p)(n) = 0, i.e. p 6∈ Un. Since the complement of Un is co-c.e. closed and
hence open in the Π–topology, this implies that pk 6∈ Un for all sufficiently
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large k. In particular, pk 6∈ Um
n for all m and all sufficiently large k. This im-

plies that q〈m,k〉(n) = 0 for all sufficiently large 〈m, k〉. Altogether, this means
L ◦ F 〈p0, p1, p2, ...〉 = J−1 ◦ lim〈q0, q1, q2, ...〉 = p, as desired. By Theorem 9.6
the reduction is strict. ✷

As a corollary we obtain the following.

Corollary 9.8 All p ∈ NN which are limit computable in the jump are also
low.

This is another property that points which are limit computable in the jump
share with limit computable 1–generics (see Proposition XI.2.3.2 in [25]). An-
other straightforward observation is the following.

Corollary 9.9 We obtain lim∆<W limJ <W lim.

Since the corresponding topologies are included in each other in the converse
order, each limit operation in this sequence is just a restriction of the next
one. This implies the positive part of the reduction chain. The first reduction
is strict, since lim∆ is non-uniformly computable and limJ is not (as observed
after Proposition 9.4). The second reduction is strict since C{0,1}N is reducible
to lim, but not to limJ (by Theorem 9.6).

In light of Theorem 9.7 it might be surprising that topologically limJ turns
out to be equivalent to L.

Theorem 9.10 We obtain limJ ≡sW L with respect to some oracle.

Proof. By Theorem 9.7 it is clear that limJ ≤sW L. We need to show the
reverse reduction with respect to some oracle.

Let (Ui)i∈N be the standard enumeration of c.e. open sets used to define the
jump operator J . Given a finite word w = w0...wn ∈ N∗ we use the sets

Aw,i :=




Ui if wi 6= 0

NN \ Ui otherwise

for all i = 0, ..., n. Moreover, we set Aw :=
⋂n

i=0Aw,i. Now we define inductively
a function f : N∗ → NN by f(ε) := 0̂ for the empty word ε and for w :=
w0...wn+1 we select f(w) ∈ Aw if Aw 6= ∅ and f(w) := f(w0...wn) otherwise.
By the Axiom of Choice such a function f exists and we use it as an oracle in
the following. Given a sequence p = 〈p0, p1, p2, ...〉 ∈ dom(L) we let

F (p) := 〈q0, q1, q2, ...〉 with qi := f(pi[i]),
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where pi[j] = pi(0)...pi(j) denotes the prefix of pi of length j + 1. It is clear
that F is computable in the oracle f .

We claim that limJ F (p) = L(p) for all p ∈ dom(L). Given a sequence p =
〈p0, p1, p2, ...〉 ∈ dom(L) it follows that the sequence (pi)i∈N converges to JL(p)
in the usual Baire topology. We consider (qi)i∈N with qi = f(pi[i]) as above.
Let n ∈ N. Then there is an i ≥ n such that

pj(m) = 1 ⇐⇒ L(p) ∈ Um

for all j ≥ i and m ≤ n. In this situation Api[n] 6= ∅ since L(p) ∈ Api[n] and
hence qj ∈ Api[n] for all j ≥ i by definition of f . In particular,

qj ∈ Un ⇐⇒ L(p) ∈ Un

for all j ≥ i. This means that (qj)j∈N converges to L(p) in the Π–topology and
hence limJ F (p) = L(p). ✷

As a last result on limit computability in the limit we prove that this class of
points is closed under total computable functions.

Proposition 9.11 Let p, q ∈ NN be such that F (p) = q for some total com-
putable function F : NN → NN. If p is limit computable in the jump, then q is
limit computable in the jump too.

Proof. Let F : NN → NN be some total computable function such that
F (p) = q. Hence JF is limit computable and hence there exists a computable
G :⊆ NN → NN such that JF = GJ by Lemma 8.9. If p is limit computable in
the jump, then there is a computable sequence (pn)n∈N such that (J(pn))n∈N
converges to J(p). Since G is continuous, we obtain that (GJ(pn))n∈N con-
verges to GJ(p), which implies that (JF (pn))n∈N converges to JF (p). Since F
is computable, it follows that (F (pn))n∈N is computable and this means that
q = F (p) is limit computable in the jump. ✷

From this result it follows that p which are non-computable and limit com-
putable in the jump are not necessarily 1–generic. For instance, for each limit
computable 1–generic p we have that 〈0̂, p〉 is limit computable in the jump
and non-computable, but it is not 1–generic, since no finite prefix proves that
it does belong to the co-c.e. closed set {〈0̂, q〉 : q ∈ NN}. So far, we have no
example of a point that is limit-computable in the jump and not below a 1–
generic with respect to truth-table reducibility. It would be useful to clarify
the relation between 1–generics and points that are limit computable in the
jump somewhat further.
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The Π–topology shows further interesting behavior. If p is computable in Baire
space, then it is isolated regarding the Π–topology, that is the singletons {p}
with computable p are clopen. We characterize the singletons {p} that are
clopen in the Π–topology.

Lemma 9.12 Let p ∈ NN. Then {p} is clopen in the Π–topology if and only
if {p} is co-c.e. closed in Baire space.

Proof. Since the Π–topology includes the ordinary Baire topology, it is clear
that all singletons {p} are closed in the Π–topology. If {p} is co-c.e. closed in
Baire space, then {p} is also open in the Π–topology (since this topology is
generated by the co-c.e. closed sets). Let now {p} be open in the Π–topology.
Then there is a finite prefix w ⊑ J(p) such that {p} = J−1(wNN). Similarly
to the proof of Theorem 9.1 we obtain

{p} = J−1(wNN) =


 ⋂

i<|w|,w(i)=1

Ui


 ∩


 ⋂

j<|w|,w(j)=0

U c
j


 .

However, in this case the open sets Ui with w(i) = 1 can be replaced by clopen
balls, since {p} is a singleton. Altogether, this implies that {p} can be writ-
ten as a finite intersection of co-c.e. closed sets and hence it is co-c.e. closed. ✷

It is easy to see that there are co-c.e. closed singletons {p} with non-computable
p ∈ NN. Co-c.e. closed singletons {p} can even be such that p is not arithmeti-
cal (see Propositions 1.8.62 and 1.8.70 in [23]). Lemma 9.12 implies that the
set of computable points is open in the Π–topology, although not effectively so.
In general, a set O is c.e. open in the Π–topology, if and only if it is effectively
Fσ in Baire space, in turn, a set A is co-c.e. closed in the Π–topology, if and
only if it is effectively Gδ in Baire space. In particular, the Martin-Löf random
points form a c.e. open set (and a proper subset of the open set of avoidable
points). While the Π–topology makes everything easier when considering sets,
it makes everything more complicated when considering points: a point is Tur-
ing reducible to the n–th jump of the empty set in Baire space if and only if
it has a name in the Π–space that is Turing reducible to the n+1–st jump of
the empty set. This contrary behavior of points and sets is based on the fact
that points are mapped forwards and sets are mapped backwards.

We close by mentioning another property of the Turing jump J . The Galois
connection between the Turing jump J and the limit lim cannot be extended
to the continuous category. That is, we get the following counterexample,
which shows that the inverse J−1 is not a “topological jump operator” (see
Lemma 8.9).

Proposition 9.13 There exists a total continuous function F : NN → NN
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such that there is no continuous function G :⊆ NN → NN with FJ−1 = J−1G.

Proof. Let c, d ∈ NN be such that c is computable and {d} is not co-c.e.
closed. Then according to Lemma 9.12 {c} is clopen and {d} is not clopen
in the Π–topology. Since by Theorem 9.1 the Π–topology is just the initial
topology of the jump J , which is injective, it follows that {J(c)} is clopen and
{J(d)} is not clopen in range(J) with respect to the ordinary Baire topology.
Now we define a continuous map F : NN → NN by

F (p) := c+ |d− p|

for all p ∈ NN, where all arithmetic operations are meant pointwise. It is clear
that F is continuous with F−1{c} = {d}. Let us now assume that some map
G :⊆ NN → NN has the property FJ−1 = J−1G. In particular dom(G) =
range(J) in this situation. Then we obtain

G−1{J(c)} = (J−1G)−1{c} = (FJ−1)−1{c} = {J(d)}.

That is, although the set {J(c)} is clopen in range(J) = dom(J−1), its preim-
age under G is not clopen in dom(G) = range(J) and hence G cannot be
continuous. ✷

10 Conclusions

We summarize some of the results that we have obtained in tables and figures.
Figure 1 extends the results provided in [6, Figure 6]. Here 0 denotes the
Weihrauch degree of the nowhere defined functions and one obtains as 0∗

the degree of all pointed computable multi-valued functions on represented
spaces. The table below gives a list of some classes of multi-valued functions on
represented spaces that can be characterized by choice for certain spaces. The
given topological counterparts are at least correct for computable Polish spaces
and in some cases they have only been proved for single-valued functions.

The notion “weakly computable with finitely many mind changes” has not
been used before and is an ad hoc creation just for the purposes of this table.
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ĈN ≡ lim ≡ J ≡ L̂PO

CNN ≡ CRN ≡ Cℓ2 ≡ CC[0,1] ≡ CR\Q

weakly computable

limit computable

effectively Borel measurable

Countable Choice

Baire Choice

low representation

Compact Choice

Locally Compact Choice

Binary Choice

C{0} ≡ UC{0,1}N ∈ 0∗ (pointed)

Discrete Choice

C{0,1}

CN ≡ CQ ≡ UCN ≡ UCR ≡ lim∆

LPO

C
∗
{0,1} LPO

∗

C{0,1}N

∐
CN

L = J−1 ◦ lim

C{0,1}N ≡ Ĉ{0,1} ≡ C[0,1] ≡ C[0,1]N

CR ≡ C{0,1}N × CN

C∅ ∈ 0 (nowhere defined)

computable

✬

✫

✩

✪
computable with finitely

✬

✫

✩

✪many mind changes

J−1

✛

✛

❄

❄ ❄

❄

❄

❄

❄

❄

❄

❄

❄

✬

✫

✩

✪

✬

✫

✩

✪

❄

✬

✫

✩

✪

lim ◦ lim ◦... ◦ lim

❄

❄

limJ = J−1 ◦ lim ◦JN✲

Fig. 1. Closed choice in the Weihrauch lattice
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Choice Class of functions (topologically)

C{0} computable (continuous)

CN computable with finitely many mind changes (piecewise continuous)

C{0,1}N weakly computable (upper semi-continuous compact-valued selectors)

CN×{0,1}N weakly computable with finitely many mind changes

ĈN limit computable (Σ0
2–measurable)

CNN effectively Borel measurable (Borel measurable)
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