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A premouse inheriting strong cardinals from V

Farmer Schlutzenberg1

Abstract

We identify a premouse inner model L[E], such that for any coarsely iterable
background universe R modelling ZFC, L[E]R is a proper class premouse of R
inheriting all strong and Woodin cardinals from R. Moreover, for each α ∈ OR,
L[E]R|α is (ω, α)-iterable, via iteration trees which lift to coarse iteration trees
on R.

We prove that (k + 1)-condensation follows from (k + 1)-solidity together
with (k, ω1 + 1)-iterability (that is, roughly, iterability with respect to normal
trees). We also prove that a slight weakening of (k + 1)-condensation follows
from (k, ω1 + 1)-iterability (without the (k + 1)-solidity hypothesis).

The results depend on the theory of generalizations of bicephali, which we
also develop.

Keywords: bicephalus, condensation, normal iterability, inner model, strong
cardinal
2010 MSC: 03E45, 03E55

1. Introduction

Consider fully iterable, sound premiceM,N with M |ρ = N |ρ and ρMω = ρ =
ρNω . Under what circumstances can we deduce that either M E N or N E M?
This conclusion follows if ρ is a cutpoint of both models. By [2, Lemma 3.1],1 the
conclusion also follows if ρ is a regular uncountable cardinal in V and there is no
premouse with a superstrong extender. We will show that ifM ||ρ+M = N ||ρ+N

and M,N have a certain joint iterability property, then M = N .
The joint iterability property and the proof that M = N , is motivated by

the bicephalus argument of [3, §9]. Bicephali in [3] are structures B = (P,E, F ),
where both (P,E) and (P, F ) are active premice. If B is an iterable bicephalus
and there is no iterable superstrong premouse then E = F (see [3, §9] and
[12]); the proof is by comparison of B with itself. In §3 we consider a more
general form of bicephali, including, for example, the structure C = (ρ,M,N),
where ρ,M,N are as at the end of the previous paragraph. If C is iterable, a
comparison of C with itself will be used to show that M = N in this situation.

Email address: farmer.schlutzenberg@gmail.com (Farmer Schlutzenberg)
1The paper [2] literally deals with premice with Jensen indexing, whereas we deal with

Mitchell-Steel indexing. However, the same result still holds.
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Hugh Woodin also noticed that generalizations of bicephali can be used in
certain fine structural arguments, probably before the author did; see [17]. The
bicephali used in [17] have more closure than those considered here, but of
course, the premice of [17] are long extender premice. So while there is some
overlap, it seems that things are quite different.

We will also consider bicephali (ρ′,M ′, N ′) in which M ′ or N ′ might fail
to be fully sound. However, we will assume that both M ′, N ′ project ≤ ρ′,
are ρ′-sound, and M ′, N ′ agree below their common value for (ρ′)+. If such a
bicehpalus is iterable, it might be that M ′ 6= N ′, but we will see that in this
situation, M ′ is an ultrapower of some premouse by an extender in the extender
sequence EN

′

+ of N ′ (here EN
′

+ includes the active extender of N ′) or vice versa.
We will also prove similar results regarding cephalanxes, a blend of bicephali

and phalanxes. The presence of superstrong premice makes cephalanxes some-
what more subtle than bicephali.

We give two applications of these results. First, in §5, we consider proving
condensation from normal iterability. Let k < ω, let H,M be k-sound premice,
π : H →M be a near k-embedding2, ρHk+1 ≤ ρ < ρHk , and suppose H is ρ-sound
and ρ ≤ cr(π). We wish to prove the conclusion of (k + 1)-condensation for
this embedding.3 The classical (phalanx-based) proof of condensation uses the
(k, ω1, ω1 + 1)∗-iterability of M (roughly, iterability for stacks of normal trees),
through its appeal to weak Dodd-Jensen. We would like to reduce this assump-
tion to (k, ω1 + 1)-iterability (roughly, iterability for normal trees). Given the
latter, and also assumingM is (k+1)-solid, we will deduce the usual conclusion
of condensation. We will also prove a slight weakening of (k + 1)-condensation
from (k, ω1+1)-iterability, without the extra solidity hypothesis. (As we are not
assuming (k, ω1, ω1 + 1)∗-iterability, it is natural to consider the circumstance
thatM fails to be (k+1)-solid; see §7.4 But note that the assumption that H is
ρ-sound entails that (H, pHk+1\ρ) is (k + 1)-solid.) Our proof makes substitutes
bicephali and cephalanxes for phalanxes, and avoids (weak) Dodd-Jensen.56

LetW |= ZFC be coarsely iterable. Let N be the output of a (standard) fully
backgrounded L[E]-construction of W . Then N inherits the Woodin cardinals

2Actually we will work with the more general class of k-lifting embeddings; see 2.1.
3Approximately, that is, the “version . . . with ρH

k+1
replacing ρHω ” in [3, pp. 87–88], or [2,

Lemma 1.3], though this uses Jensen indexing, or [18, Theorem 9.3.2], though this uses Jensen
indexing and Σ∗-fine structure.

4 Actually, the author has since shown that (k + 1)-solidity follows from (k, ω1 + 1)-
iterability. This result will appear in [7]. So the present paper together with [7] gives a
complete proof of (k + 1)-condensation from (k, ω1 + 1)-iterability.

5The way we have presented our proof, we do make use of the standard proof of condensa-
tion, in proving 2.13, but in circumstances in which Dodd-Jensen is not required. This appeal
to the standard proof can, however, be removed, by arranging things more inductively and
using the main structure of the proof of 5.2 to prove 2.13.

6Some of the key arguments involved here, and extensions thereof regarding solidity and
universality, were presented by the author at the 3rd Münster conference on inner model
theory, the core model induction, and hod mice, in July 2015. Some notes of those talks,
taken by Schindler, can be seen in [6].
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of W , meaning that every Woodin cardinal of W is Woodin in N . However, κ
can be strong in W , but not strong in N . For example, if κ is strong in W but
W has no measurable cardinal µ > κ, then N has no measurable cardinal ≥ κ
(see 6.1); in particular, κ is not even measurable in N , let alone strong.

In [15], assuming that W is a (finely) iterable premouse with no largest
cardinal, Steel defined the local Kc-construction KW

loc of W , such that KW
loc

inherits both Woodin and strong cardinals from W . Along with requiring that
W be a premouse, an important feature used in ensuring that strong cardinals
are inherited is that the background extenders used to construct KW

loc do not
have to be W -total. As a consequence, when one lifts iteration trees on M to
iteration trees U on V , the tree U might have drops.

In §6, working with background theory ZF, given any transitive class W |=
ZFC which is (sufficiently) coarsely iterable, we identify a new form of L[E]-
construction C of W . Letting L[E] be the final model of C (as computed in
W ), we show that (a) L[E] is a proper class premouse of W , outright definable
over W , (b) if κ is strong (Woodin) in W , then κ is strong (Woodin) in L[E], as
witnessed by E, and (c) noting thatW might be proper class, if there is a (class)
function f : ORW → W such that f(α) wellorders VWα for each α ∈ ORW ,
then L[E] is iterable, with iteration trees on L[E] lifting to (coarse, hence non-
dropping) trees on W . Thus, we achieve many of the properties of the the local
Kc-construction, but with the advantages that W need not be a premouse, and
(even if W is a premouse) trees U on W resulting from lifting trees on L[E] are
coarse (and hence non-dropping).7

We finally remark that Steel’s local Kc-construction seems to be more local
than C, and hence as one extra feature that it seems C might not: KW

loc also
inherits all λ-strong cardinals of W , whenever λ is a limit cardinal of W .

1.1. Notation and terminology

1.1.1. General

The universe N of a first-order structure M = (N, . . .) is denoted ⌊M⌋.
We use the lexicographic order on [OR]<ω: a < b iff a 6= b and max(a∆b) ∈ b.

We sometimes identify elements of [OR]<ω with strictly descending sequences
of ordinals. Let a ∈ [OR]<ω with a = {a0, . . . , ak−1} where ai > ai+1 for all
i+ 1 < k. We write a↾j for {a0, . . . , aj−1}.

1.1.2. Premice

We deal with premice and related structures with Mitchell-Steel indexing,
but with extenders of superstrong type permitted on their extender sequence.
That is, a super-fine extender sequence ~E is a sequence such that for each
α ∈ dom( ~E), ~E is acceptable at α, and if Eα 6= ∅ then either:

– Eα is a (κ, α) pre-extender over J
~E
α and Eα is the trivial completion of

Eα ↾ν(Eα) and Eα is not type Z, or

7The key ideas of the construction were presented by the author at the MAMLS 2014
meeting at Miami University.
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– J
~E
α has largest cardinal ν and Eα is a (κ, ν) pre-extender over J

~E
α and

iEα
(κ) = ν = ν(Eα),

and further, properties 2 and 3 of [16, Definition 2.4] hold. We then define
(potential) premice in terms of super-fine extender sequences, in the usual
manner, with the caveat that we consider a (potential) premouse to be an

amenable structure P = (J E
α ,E, F̃ ), where F̃ is the amenable coding of the

active extender F of P , as described in [16, 2.9–2.10]. We may blur the distinc-

tion between F and F̃ . Likewise for related terms, such as segmented-premouse
(see [12, §5]). See [8] for discussion of the modifications of the general theory
needed to deal with these changes.8 We sometimes abbreviate premouse with
pm and segmented-premouse with seg-pm. A premouse extender is the active
extender of some premouse. ISC abbreviates “initial segment condition”.

Let P be a seg-pm. We write FP = F (P ) for the active extender of P
(possibly FP = ∅), EP = E(P ) for the extender sequence of P , excluding FP ,
and EP+ = E+(P ) = EP ̂ FP . If FP 6= ∅ we write lh(FP ) = ORP . We write

Q E P iff Q is an initial segment of P (that is, ORQ ≤ ORP and EQ+ = (EP+) ↾
(ORQ + 1)), and Q ⊳ P iff Q E P but Q 6= P . Given a limit α ≤ ORP , we
write P |α for the Q E P such that ORQ = α, and P ||α for its passivization
(⌊Q⌋ ,EQ, ∅). (So P ||α is passive, and P |α is active iff (EP+)α 6= ∅.) If P has a
largest cardinal δ, lgcd(P ) denotes δ. If P is active, then ν(P ) = ν(FP ) denote
the natural length of FP , and ι(P ) = ι(FP ) denote max(lgcd(P ), ν(FP )). So if
P is an active premouse then ι(P ) = ν(FP ). Given also another seg-pm R and
an ordinal α ≤ min(ORP ,ORR), we write (P ∼ R)|α iff P |α = R|α. We also
use such notation with more than two structures, and also with “||” replacing
“|”. We use similar notation for cephals; see 3.5.

Let P be an active seg-pm, F = FP and iPF : P → Ult(P, F ) the ultrapower
map. We say that F , or P , has superstrong type (or just is superstrong) iff
iPF (cr(F )) < lh(F ). (So if F has superstrong type then iPF (cr(F )) is the largest
cardinal of P , and then P is a premouse iff the initial segment condition holds for
P .) In [12], all premice are assumed to be below superstrong type, but certain
results there (in particular, [12, 2.17, 2.20]) hold in our context, by the same
proofs, and when we cite these results, we literally refer to these generalizations.
This generalization will be covered more explicitly in [7]. (However, the proof
of [12, Theorem 5.3] does not go through at the superstrong level; Theorem 4.3
here generalizes that result at the superstrong level.)9

8The only significant difference in the basic definitions (other than super-fine extender

sequence) is that for k-maximal iteration tree T , one must replace the usual requirement that
lh(ET

α ) < lh(ET
β
) for all α < β, with the requirement that lh(ET

α ) ≤ lh(ET
β
) for all α < β.

However, we then get that lh(ET
α ) = lh(ET

β
) iff α+ 1 = β and ET

α is superstrong and M∗T
α+1

is active type 2 with largest cardinal cr(ET
α ); in this case MT

α+1
is active type 2 with ordinal

height lh(ET
α ), and so F (MT

α+1) is the only possibility for ET
α+1.

9The proof of Dodd-solidity for 1-sound, (0, ω1, ω1+1)∗-iterable premice (for Mitchell-Steel
indexing) does not immediately generalize, although it can be adapted to the superstrong
level with some further work; recall that Zeman [19] proves the analogous result for Jensen
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1.1.3. Fine structure

Let M be a premouse. As in [16], C0(M) denotes the squash M sq of M if
M is type 3, and otherwise denotes M (which is by definition amenable). If M
is non-type 3, we also define M sq = M , so in all cases, C0(M) = M sq. Also in
general, C0(M)unsq denotes M . We will often blur the distinction between M
and C0(M).

The (fine structural) pm language L is {∈̇, =̇, Ė, ˙̃F , Ḟ↓}. We interpret L
overM (for seg-pms M) and over C0(M) (for premice M) in the usual manner.

OverM : ĖM = EM ,
˙̃
F
M

= F̃M , ifM is type 2 then ḞM↓ is the trivial completion

of the largest non-type Z initial segment of FM , and otherwise ḞM↓ = ∅. Over
C0(M): as above if M = C0(M) is non-type 3, so suppose M is type 3. Then

ĖC0(M) = EC0(M) = EM ↾ν(FM ), and
˙̃
F

C0(M)

is the set of all restrictions FM ↾α

for α < ν(FM ), and Ḟ
C0(M)
↓ = ∅.

The language for the definability classes rΣM0 and rΣM1 is L, with these
classes interpreted over C0(M). Of course, most of the time, for type 3 premice
M , we deal with C0(M), but in special circumstances we need to deal directly
with M instead, interpreting L overM as above (in these circumstances we use
simple embeddings and ultrapowers, as discussed below).

We also define the natural language LMnat of M : if M is passive, LMnat =

L\{
˙̃
F, Ḟ↓}; if M is type 1/2, Lnat = L, and if M is type 3, LMnat = L\{Ḟ↓}.
For the basic fine structural notions (soundness, solidity, rΣn+1, etc), we

follow Mitchell-Steel, as modified in [13, §5]. This modification involves three
things. The first (and main one) is that we drop the parameter un of [3, §2],
defining pn+1 without reference to un. (Recall uM0 = ∅ an if n > 0 then uMn =
(pMn , w

M
n , ρ̃

M
n−1, u

M
n−1) where wn is the set of n-solidity witnesses (in the sense

of [3]), ρ̃Mn−1 = ρMn−1 if ρMn−1 < ρM0 , and ρ̃Mn−1 = 0 otherwise.) The reader who
prefers the original fine structure simply need put un into all rΣn+1 hulls and
rΣn+1 theories. By [13], this change does not have any significant impact; it just
simplifies notation. The second is that, in the terminology of [3], we use only
pure theories, not generalized theories. Thus (comparing with [3, Definition
2.3.6]), if M is n-sound and ω < ρMn , we define the predicate TMn , where n ≥ 1,
as the set of tuples (α, q, t) ∈ C0(M) with α < ρMn and q ∈ C0(M) and t =
ThMrΣn

(α ∪ {q}), where this denotes the pure rΣn theory; see below. This also
has no significant impact, as explained in [3, Lemma 2.10]. The third is just
terminological: for the definition of (n+1)-solidity for a structure N , we follow
[18], not [3]; this is discussed below.

As described in §2, we also use n-lifting embeddings where weak n-embeddings
are used classically (but this does not impact any basic definitions).

So, from now on we use the fine structural notions defined as in [13, §5].
Let n < ω and let M be an n-sound premouse. For i ≤ n + 1 we write ~pMi =

indexing, which is at the superstrong level. However, in this paper we do not need to consider
Dodd-solidity.

5



(pM1 , . . . , p
M
i ). Now suppose ω < ρMn , and let X ⊆ C0(P ). Almost as in [12],

HullMn+1(X) denotes the restriction of (the predicates of ) C0(M) to the points
y ∈ C0(M) such that for some rΣn+1 formula ϕ and ~x ∈ X<ω, y is the unique z ∈
C0(M) such that C0(M) |= ϕ(~x, z). (This is not exactly as in [12], because we
do not automatically put uMn into the hull.) And cHullMn+1(X) is the transitive

collapse of this structure. Also, ThMrΣn+1
(X) denotes the rΣn+1 theory of C0(M)

in parameters in X (that is, all pairs (ϕ, ~x) such that ϕ is an rΣn+1 formula and
~x ∈ X<ω and C0(M) |= ϕ(~x)). This notation differs from [12], in that it denotes
a pure theory, not a generalized theory, in the terminology of [3]; we have no
need for generalized theories. If ω < ρMn+1, we then define TMn+1 as stated above,
and define rΣn+2 from this as in [3].

Given q ∈ [ρM0 ]<ω and α ∈ q, the (n + 1)-solidity witness for (M, q, α)
(or just for (q, α)) is wMq,α = cHullMn+1(α ∪ {q′, ~pMn }) where q′ = q\(α + 1). A
generalized (n+1)-solidity witness for (M, q, α) is the obvious adapatation
from [18, §1.12]. A (generalized) (n + 1)-solidity witness for (M, q) is one
for (M, q, α), for some α ∈ q; a witness for M is one for (M,pMn+1). We say
that (M, q) is (n + 1)-solid iff wMq,α ∈ M for each α ∈ q. We say that M is

(n + 1)-solid iff (M,pMn+1) is (n + 1)-solid. 10 Given ρ ∈ [ρMn+1, ρ
M
n ], we say

that M is ρ-solid iff (M,pMn+1\ρ) is (n + 1)-solid, and that M is ρ-sound iff

M is ρ-solid and M = HullMn+1(ρ ∪ p
M
n+1). We say M is (n+ 1)-sound iff M is

ρMn+1-sound.
11 For δ ∈ [ρMn+1, ρ

M
0 ], the δ-core of M is cHullMn+1(δ ∪ {~pMn+1}).

1.1.4. Extenders and ultrapowers

Our use of the term extender is standard for inner model theory. Extenders
need not be total over V , and need not yield wellfounded ultrapowers. We use
the term basically as in [12] (see its introduction), except that in §6 we must
also consider extenders over coarse structures.

Given an extender E over M , U = Ult(M,E) denotes the ultrapower of
M by E, computed using functions in M ; this is formed directly, without any
squashing, whateverM is, and if M is an amenable structure, its predicates are
shifted piece-wise as usual. Such an ultrapower is called simple. We write iME
for the ultrapower embedding iME :M → U . We may abbreviate iME by iE . We
write ms(E) for the measure space of E; that is, the supremum of all κ+1 such
that κ ∈ dom(iE) and (sup iE“κ) < lh(E) (E might be long). If E is short and
κ = cr(E), we say that E isweakly amenable (toM) iff P(κ)∩M = P(κ)∩U .
Note that if M is an iterable premouse, then by condensation, this is equivalent
to saying that M ||κ+M = U |κ+U . Now suppose M is an n-sound premouse, E

10Regarding the (n+1)-solidity ofM , this follows the (analogous) terminology of Zeman [18,
p.44, Definition prior to Lemma 1.12.5], but not that of Mitchell-Steel [3, Definition 2.8.2] and
[16, Definition 2.15]; Mitchell-Steel demands universality as one of the conditions for solidity,
whereas Zeman does not (and neither do we). In [18], see also its Lemma 5.1.7(c), the
paragraph following Corollary 5.1.8, Theorem 5.2.1, Lemma 9.2.14, and Theorem 9.3.1, which
treat the (n+ 1)-solidity of a structure M and (n+ 1)-universality for (M,pMn+1

) separately.
11 The terminology (n + 1)-sound follows Mitchell-Steel, not Zeman, as Zeman does not

incorporate (n+ 1)-solidity into (n+ 1)-soundness.
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is short and cr(E) < ρMn . Then Ultn(M,E) denotes the degree n fine structural

ultrapower of M by E, and iM,n
E the ultrapower map. We may abbreviate iM,n

E

by iME or iE . Given a ∈ [lh(E)]<ω and an rΣ
˜

M
n function f , [a, f ]M,n

E denotes the
object represented by the pair (a, f) in Ultn(M,E). Recall that if M is type
3, then Ultn(M,E) = Ultn(M

sq, E)unsq. If M is type 3 then we let C−1(M) =
C0(M), and for an extender E over C0(M), let Ult−1(M,E) = Ult0(M,E).

1.1.5. Embeddings

Given structures X,Y , if context determines an obvious natural embedding
i : X → Y , we sometimes write iXY for i.

Let M,N be segmented-premice. A simple embedding π : M → N is a
function π with dom(π) = ⌊M⌋ and cod(π) = ⌊N⌋, such that π is Σ0-elementary
with respect to L. (Note that ifM is active then π(lgcd(M)) = lgcd(N), because
the amenable predicates for FM and FN determine the largest cardinal.) If
M,N are type 3 premice, a squashed embedding π : M → N is, literally, an
rΣ0-elementary function π : C0(M) → C0(N).

Let π : M → N be simple. If M is passive then then ψπ denotes π. If M is
active then ψπ : Ult(M,FM ) → Ult(N,FN ) denotes the embedding induced by
π (via the Shift Lemma). Now let π : M → N be squashed (so M,N are type
3). Then ψπ : Ult0(M,FM ) → Ult0(N,F

N ) denotes the embedding induced by
π. So π ⊆ ψπ in both cases.

Let π :M → N be simple or squashed. We say π is (i) ν-preserving iff π is
simple or ψπ(ν(F

M )) = ν(FN ), (ii) ν-high iff π is squashed and ψπ(ν(F
M )) >

ν(FN ), (iii) ν-low iff π is squashed and ψπ(ν(F
M )) < ν(FN ), (iv) ι-preserving

iff either M,N are passive or ψπ(ι(F
M )) = ι(FN ), (v) c-preserving iff for all

α, α is a cardinal of M iff π(α) is a cardinal of N .

1.1 Remark. Let π : M → N be a squashed embedding (so M,N are type
3). Easy elementarity considerations show that if π is rΣ1-elementary then π
is non-ν-low, and if rΣ2-elementary then ν-preserving. Suppose π is ν-low and
let ν′ = ψπ(ν(F

M )). Then ν′ < ν(FN ) is an N -cardinal, so by ISC, there
is N ′ ⊳ N with FN

′

↾ ν′ = FN ↾ ν′. Note that we get an rΣ0-elementary
π′ : C0(M) → C0(N

′) with the same graph as π, and π′ is ν-preserving.

Let π : C0(M) → C0(N) be rΣ0-elementary whereM,N are n-sound. We say
π is (i) pn+1-preserving iff π(pMn+1) = pNn+1, (ii) ~pn+1-preserving iff π(~pMn+1) =
~pNn+1, (iii) ρj-preserving iff either π(ρMj ) = ρNj or [ρMj = ρM0 and ρNj = ρN0 ].

1.1.6. Iteration trees and iterability

Let T be an iteration tree of length lh(T ) = λ. The objects associated to T
we write as: tree order<T , drop-set DT (the nodes where drops in model occur),
modelsMT

α , degrees degTα , embeddings iTαβ and i∗Tαβ (defined where appropriate),

exit extenders ET
α , exit models exTα = MT

α |lh(ET
α ), ultrapower domains M∗T

α+1

(so if T is fine structural and d = degTα+1 then MT
α+1 = Ultd(M

∗T
α+1, E

T
α )), and

associated ultrapower maps i∗Tα+1 : M∗T
α+1 → MT

α+1 (so i∗Tα+1,β = iTα+1,β ◦ i∗Tα+1),

κTα = cr(ET
α ) and ν

T
α = ν(ET

α ). We write predT (α+ 1) for the <T -predecessor

7



of α + 1, and given α <T β, succT (α, β) denotes the least γ ∈ (α, β]T . If
lh(T ) = θ + 1, then MT

∞ =MT
θ , bT = [0,∞]T = [0, θ]T , and if there is no drop

along bT then iT = iT0∞ = iT0θ, etc.
Let n ≤ ω and M be an n-sound premouse. The notion n-maximal itera-

tion tree T on M is defined basically as in [16, Definition 3.4], or [3, Definition
6.1.2], but we must adapt these definitions to superstrongs. That is, degT0 = n
and for α + 1 < lh(T ), letting κ = κTα , we have: (i) lh(ET

β ) ≤ lh(ET
α ) for all

β < α; (ii) predT (α+1) is the least β such that κ < νTβ ; (iii)M∗T
α+1 is the largest

N EMT
β such that ET

α measures P(κ)∩N ; and (iv) degT (α+ 1) is the largest

d ≤ ω such that κ < ρd(M
∗T
α+1) and either [0, α + 1]T drops or d ≤ n. We will

also extend the notion n-maximal iteration tree to trees on premouse-related
structures. An iteration tree is degree-maximal if n-maximal for some n ≤ ω.

For θ ≤ OR, the notions (n, θ)-iteration strategy for and (n, θ)-iterability of
M are as in [16, Definition 3.9] (but using n-maximality defined as above). For
(n, α, θ)∗-iteration strategy and (n, α, θ)∗-iterable see [14, p. 1202]. 12

If T is padded, unless otherwise specified, if β = predT (α+1) then ET
β 6= ∅.

2. Fine structural preliminaries

2.1 Definition. Let H,M be k-sound premice with ρHk , ρ
M
k > ω. We say an

embedding π : C0(H) → C0(M) is k-lifting iff π is rΣ0-elementary with respect
to the natural language LHnat of H (see §1) and if k > 0 then π“THk ⊆ TMk . ⊣

A k-lifting embedding is similar to a Σ
(k)
0 -preserving embedding of [18]. Note

that H,M may have different natural languages; maybe LHnat ( LMnat.

2.2 Lemma. Let H,M, k be as in 2.1 and let π : C0(H) → C0(M). Then:

1. π is k-lifting iff for every rΣk+1 formula ϕ ∈ LHnat and x ∈ C0(H), if
C0(H) |= ϕ(x) then C0(M) |= ϕ(π(x)).

2. If π is k-lifting and H,M have different types then k = 0, H is passive
and M is active.

3. If k > 0 and π is k-lifting then π is rΣk-elementary, (k − 1)-lifting, c-
preserving.

4. Suppose k > 1 and π is rΣk-elementary. Then π is pk−2-preserving and
ρk−2-preserving, and if ρHk−1 < ρH0 then π(pHk−1) = pMk−1\π(ρ

H
k−1) and

(supπ“ρHk−1) ≤ ρMk−1 ≤ π(ρHk−1).

5. If k > 0 and π is rΣk elementary and pk−1-preserving then π(pHk ) ≤ pMk .

12The relevant trees are stacks of degree-maximal trees, each of length ≤ θ, starting with
n-maximal. The superscript-∗ has the effect that if in some round < α, a degree-maximal
tree is produced which has length θ, then the game stops there immediately, and (if it has
wellfounded models) player II has won.
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6. The Shift Lemma holds with weak k- replaced by k-lifting, or by k-lifting
c-preserving.

Proof. Parts 1–3 are straightforward. For part 4, use (k − 1)-solidity witnesses
for pk−1. For part 5 use the fact that if t is a k-solidity witness for (H, pHk ),
then π(t) is a generalized k-solidity witness for (M,π(pHk )).

Part 6: We adopt the notation of [3, Lemma 5.2] (with n = k). Let F̄ = F N̄

and Ū = Ultk(M̄, F̄ ) and U = Ultk(M,FN ). Define the map σ : C0(Ū) → C0(U)
as there. It is straightforward to see that σ is rΣk-elementary. Suppose k > 0.
Let us observe that σ“T Ūk ⊆ TUk . Let t ∈ T Ūk , x ∈ Ū and α < ρŪk with

t = ThŪrΣk
(α ∪ {x}). Let y ∈ M̄ and a ∈ ν(F̄ )<ω with x ∈ HullŪk (i

M̄
F̄
(y) ∪ a).

Let β < ρM̄k be such that β ≥ cr(F̄ ) and iM̄
F̄
(β) ≥ α. Let u = ThM̄rΣk

(β ∪ {y}).

Then t is easily computed from u′ = iM̄
F̄
(u), and by commutativity, σ(u′) ∈ TUk .

It follows that σ(t) ∈ TUk , as required.

2.3 Remark. Clearly for k < ω, any rΣk+1-elementary embedding is k-lifting.
The author does not know whether “weak k-” implies “k-lifting”, or vice versa.
We will not deal with weak k-embeddings in this paper.

Standard arguments show that the copying construction propagates k-lifting
c-preserving embeddings. (But this may be false for weak k-embeddings; see
[10].) Almost standard arguments show that k-lifting embeddings are propa-
gated. That is, suppose π : H → M is k-lifting, and let T be a k-maximal
iteration tree on H . We can define U = πT as usual, assuming it has well-
founded models. Let Hα = MT

α and Mα = MU
α . Using the Shift Lemma as

usual, we get πα : Hα →Mα for each α < lh(T ), and πα is degT (α)-lifting, and
if π is c-preserving, then so is πα. Let us just mention the extra details when π
fails to be c-preserving. In this case, k = 0 and H is passive. Suppose that ET

0 is
total over H , and let κ = cr(ET

0 ). Suppose that (κ+)H < ORH but π((κ+)H) is
not a cardinal ofM . Then U drops in model at 1, but T does not. Note though
that rg(π) ⊆M∗U

1 and π : H →M∗U
1 is 0-lifting (even if M∗U

1 is active). So we
can still produce π1 : H1 → M1 via the Shift Lemma. This situation generalizes
to an arbitrary α in place of 0, when T does not drop in model along [0, α+1]T .
The other details are as usual. Moreover, if (i) [0, α]T drops in model or (ii)
degT (α) ≤ k − 2 or (iii) degT (α) = k − 1 and π is pk−1-preserving, then πα is
a near degT (α)-embedding; this uses the argument in [4].

2.4 Lemma. Let k ≥ 0, let π : H →M be k-lifting where H,M have the same
type, and let ρHk+1 ≤ ρ ≤ ρHk . Then:

1. If pMk−1, p
M
k ∈ rg(π) and ρMk = supπ“ρHk then π is a k-embedding.

2. If H is ρ-sound, π ↾ρ ∈M and π is not a k-embedding then H, π ↾ρHk ∈M .

Proof. Part 1: This is fairly routine. By 2.2, we have π(pHk−1) = pMk−1. The
rΣk+1-elementarity of π follows from this, together with the facts that π is k-
lifting, pMk ∈ rg(π) and π“ρHk is unbounded in ρMk . Now let π(q) = pMk . Then
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pHk ≤ q by 2.2, and q ≤ pHk by rΣk elementarity. And π is ρk−1-preserving by
2.2 and rΣk+1-elementarity. So π is a k-embedding.

Part 2: Suppose sup(π“ρHk ) < ρMk . We use a stratifaction of rΣk+1 truth like
in [3, §2]. Assuming familiarity with this, here is a sketch. Let α = supπ“ρHk .

Then the theory t = ThMrΣk
(α ∪ π(~pHk )) is in M . Moreover, for any rΣk+1

formula ϕ and ~γ ∈ ρ<ω, we have H |= ϕ(~γ, ~pHk+1) iff there is β < α such that

t ↾ (β ∪ π(~pHk )) is “above” a witness to ϕ(π(~γ), π(~pHk+1)) (see [3, §2]). So the

theory ThHrΣk+1
(ρ ∪ ~pHk+1) is computable from t and π ↾ ρ, so H ∈ M . A little

more work gives π ↾ρHk ∈M , as desired.
Suppose now π(pHk−1) = pMk−1 but π(pHk ) 6= pMk . Then π(pHk ) < pMk , by 2.2.

Again t ∈M (t as above), as t is computed from a k-solidity witness. The rest
is the same.

Now suppose that k > 1 and π(pHk−1) 6= pMk−1. By 2.2, then π(pHk−1) < pMk−1.

We may assume α = ρMk = supπ“ρHk .

Claim. Let ϕ be an rΣk formula, let x ∈ H and ~γ ∈ α<ω. If M |= ϕ(π(x), ~γ)
then there is ε < ρMk−1, with max(~γ) < ε, such that the theory

ThMrΣk−1
(ε ∪ {π(x, ~pHk−1)})

is “above” a witness to ϕ(π(x), ~γ).

Proof. Let δ < ρHk be such that π(δ) > max(~γ). Let v = ThHrΣk
(δ ∪{x}∪ ~pHk−1).

Note then that for all ~ξ ∈ δ<ω,

(ϕ, (~ξ, x, ~pHk−1)) ∈ v =⇒ (ψϕ, (~ξ, x, ~p
H
k−1)) ∈ v,

where ψϕ(~ξ, x, ~p
H
k−1) asserts ‘There is ε < ρk−1, with max(~ξ) < ε, such that the

rΣk−1 theory in parameters ε∪{x}∪~pHk−1 is “above” a witness to ϕ(~ξ, x, ~pHk−1)’.

(Here the assertion that ε < ρk−1 does not require the parameter ρHk−1. For note
that the assertion “u̇ < ρk−1”, in the free variable u̇, is rΣk without parameters,
because it is just the assertion “u̇ ∈ OR and there is t ∈ Tk−1 such that t is a
theory in parameters from u̇”.) But then the same fact holds regarding π(v),
and since π is k-liftng, this proves the claim.

By (k−1)-solidity, u = ThMrΣk−1
(ρMk−1∪π(~p

H
k−1)) is in M . Define t as before.

By the claim, from u we compute t, so t ∈M . The rest is now as before.

2.5 Definition. Let Q be a k-sound premouse. Let C̃0(Q) = C0(Q), and for

k > 0, let C̃k(Q) = (Q||ρk(Q), T ′), where T = ThQrΣk
(ρk ∪ ~p

Q
k ), and T ′ is given

from T by substituting ~pQk for a constant symbol c. ⊣

2.6 Definition. Let k ≥ 0. Let Q be a k-sound premouse with ρQk > ω. We

say that (U, σ∗) is k-suitable for Q iff (i) U, σ∗ ∈ Q||ρQk , (ii) U is a k-sound

premouse with ρUk > ω and (iii) σ∗ : C̃k(U) → C̃k(Q) is Σ0-elementary. ⊣
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2.7 Remark. Clearly, if (U, σ∗) is k-suitable for Q then σ∗ extends uniquely to

a ~pk-preserving k-lifting σ : U → Q, and moreover, supσ“ρUk < ρQk . Conversely,

if σ : U → Q is ~pk-preserving k-lifting and supσ“ρUk < ρQk and σ∗ = σ ↾(U ||ρUk )
with σ∗ ∈ Q, then (U, σ∗) is k-suitable for Q.

2.8 Lemma. Let k ≥ 0. Then there is an rΣk+1 formula ϕk such that for all
k-sound premice Q with ω < ρQk , and all U, σ∗ ∈ Q, we have

Q |= ϕk(U, σ
∗, ~pQk ) ⇐⇒ (U, σ∗) is k-suitable for Q.

Proof. We assume k > 0 and leave the other case to the reader. The most
complex clause of ϕk says “There is α < ρQk such that letting t = ThQrΣk

(α∪~p Qk ),

then for each β < ρUk , letting u = ThUrΣk
(β ∪ ~p Uk ), and letting t′, u′ be given

from t, u by substituting ~pQk , ~p
U
k for the constant c, we have σ∗(u′) ⊆ t′”. This

statement is rΣk+1. The rest is clear.

2.9 Definition. Let m ≥ 0 and let M be a segmented-premouse. Then M is
m-sound iff either m = 0 or M is an m-sound premouse. ⊣

2.10 Definition. Let r ≥ 0 and let R be an r-sound premouse. Then we say
that suitable condensation holds at (R, r) iff for every (H, π∗), if (H, π∗) is
r-suitable for R, H is (r + 1)-sound and cr(π) ≥ ρ = ρHr+1, then either H ⊳ R,
or R|ρ is active with extender F and H ⊳Ult(R|ρ, F ).

Let m ≥ 0 and let M be an m-sound segmented-premouse. We say that
suitable condensation holds below (M,m) iff for every R E M and r < ω
such that either R ⊳M or r < m, suitable condensation holds at (R, r). We say
that suitable condensation holds through (M,m) iff M is a premouse13

and suitable condensation holds below and at (M,m). ⊣

The following lemma follows easily from 2.8:

2.11 Lemma. Let m ≥ 0. Then there is an rΠmax(m,1) formula Ψm such
that for all m-sound segmented-premice M , suitable condensation holds below
(M,m) iff M |= Ψm(~pMm−1), where ~pM−1 = ∅. Moreover, if M is a premouse,
then suitable condensation holds through (M,m) iff M |= Ψm+1(~p

M
m ).14

2.12 Remark. Our proof of condensation from normal iterability (5.2) will use
our analysis of bicephali and cephalanxes (§3). This analysis will depend on
the premice involved satisfying enough condensation, at levels lower in model or
degree. As we will only have normal iterability, we can’t appeal to the standard
condensation theorem for this. One could get arrange everything inductively,
proving condensation and analysing bicephali and cephalanxes simultaneously.
But it is simpler to use the following lemmas, which will be generalized by 5.2.

13We could have formulated this more generally for segmented-premice, but doing so would
have increased notational load, and we do not need such a generalization.

14This clause only adds something because we do not assume that M is (m + 1)-sound.
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2.13 Lemma (Condensation for ω-sound mice). Let h ≤ m < ω and H,M be
premice. Suppose H is (h + 1)-sound, M is (m + 1)-sound, M is (m,ω1 + 1)-
iterable, and either ρMm+1 = ω or m ≥ h + 5. Suppose π : H → M is h-lifting
~ph-preserving and cr(π) ≥ ρ = ρHh+1. Then either H EM or M |ρ is active with
H ⊳Ult(M |ρ,G).

Proof. Let π, etc, be a counterexample. Let π∗ = π ↾(H ||ρHh ).
We claim H ∈ M . Suppose not. By 2.4, π is an h-embedding, and ρ ≥

ρMh+1. Note π(p
H
h+1) ≤ pMh+1\ρ (use generalized solidity witnesses). If π(pHh+1) <

pMh+1\ρ we are done. Otherwise ρMh+1 ∪ p
M
h+1 ⊆ rg(π), so H =M , contradiction.

We may assume ρMm+1 = ω, by replacing M with M̄ = cHullMm+1(~pm): all
relevant facts pass to M̄ as H ∈ M , cr(π) ≥ ρ and by 2.2(1). Now use almost
the usual condensation proof, but when comparing the phalanx (M,H, ρ) with
M , use an (m,h)-maximal tree on (M,H, ρ), m-maximal onM . As H ∈M , and
using fine structure in place of weak Dodd-Jensen, this gives contradiction.

2.14 Lemma (Suitable condensation). Let M be an m-sound, (m,ω1 + 1)-
iterable segmented-premouse. Then suitable condensation holds below (M,m),
and if M is a premouse, through (M,m).

Proof. IfM is not a pm, use 2.13. SupposeM is a pm. By 2.11, we may assume
ρMm+1 = ω, replacing M with cHullMm+1(~p

M
m ). Now argue as in 2.13.

3. The bicephalus & the cephalanx

3.1 Definition. An exact bicephalus is a tuple B = (ρ,M,N) such that:

1. M and N are premice.

2. ρ < min(ORM ,ORN ) and ρ is a cardinal of both M and N .

3. M ||ρ+M = N ||ρ+N .

4. M is ρ-sound and for some m ∈ {−1} ∪ ω, we have ρMm+1 ≤ ρ. Likewise
for N and n ∈ {−1} ∪ ω.

We say B is non-trivial iffM 6= N . Write ρB = ρ andMB =M and NB = N ,
and mB, nB for the least m,n as above. Let (ρ+)B be ρ+M = ρ+N . We say B
has degree (mB, nB). We say that B is sound iff M is mB + 1-sound and N
is nB + 1-sound. ⊣

From now on we just say bicephalus instead of exact bicephalus. In connection
with bicephali of degree (m,n) with min(m,n) = −1, we need the following:

3.2 Definition. The terminology/notation (near) (−1)-embedding, (−1)-
lifting embedding, Ult−1, C−1, and degree (−1) iterability are defined by
replacing ‘−1’ with ‘0’. For n > −1 and appropriate premice M , the core
embedding Cn(M) → C−1(M) is just the core embedding Cn(M) → C0(M). ⊣
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3.3 Definition. Let q < ω. A passive right half-cephalanx of degree q is
a tuple B = (γ, ρ,Q) such that:

1. Q is a premouse,

2. γ is a cardinal of Q and γ+Q = ρ < ORQ,

3. Q is γ-sound,

4. ρQq+1 ≤ γ < ρQq .

An active right half-cephalanx (of degree q = 0) is a B = (γ, ρ,Q) with:

1. Q is an active segmented-premouse,

2. γ is the largest cardinal of Q and γ < ρ = ORQ.

A right half-cephalanx B is either a passive, or active, right half-cephalanx.
We write γB, ρB, QB, qB for γ, ρ,Q, q as above. If B is active, we write SB =
RB = Ult(Q,FQ). If B is passive, we write SB = Q. ⊣

Note that if B = (γ, ρ,Q) is a right-half cephalanx, then B is active iff Q|ρ
is active. So it might be that B is passive but Q is active with ρ < ORQ.

3.4 Definition. Let m ∈ {−1}∪ω and q < ω. A cephalanx of degree (m, q)
is a tuple B = (γ, ρ,M,Q) such that, letting B′ = (γ, ρ,Q), we have:

1. (γ, ρ,Q) is a right-half cephalanx of degree q,

2. M is a premouse,

3. ρ = γ+M < ORM ,

4. M ||ρ+M = SB
′

||ρ+M ,

5. M is ρ-sound,

6. ρMm+1 ≤ ρ < ρMm .

We say that B is active (passive) iff B′ is active (passive). 15 We write
γB, ρB, etc, for γ, ρ, etc. We write RB for RB

′

, if it is defined, and SB for SB
′

.

We say B is exact iff (ρ+)S
B

= ρ+M , and B is sound iff M is (m+ 1)-sound.
Suppose B is active. Let R = RB. We say B is non-trivial iff M ⋪ R. If

B is non-exact, let NB denote the N ⊳ R such that ρ+N = ρ+M and ρNω = ρ,
and let nB denote the n ∈ {−1} ∪ ω such that ρNn+1 = ρ < ρNn .

Now suppose B is passive. We say B is non-trivial iff M 5 Q. Let NB

denote the N E Q such that ρ+N = ρ+M and ρNω ≤ ρ. Let nB be the n ∈

{−1} ∪ ω such that ρN
B

n+1 ≤ ρ < ρN
B

n .
A pm-cephalanx is a cephalanx (γ, ρ,M,Q) such that Q is a premouse. ⊣

15Note that a passive cephalanx (γ, ρ,M,Q) might be such that M and/or Q is/are active.
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3.5 Definition. A cephal is either a bicephalus or a cephalanx. Let B be a
cephal, and let M =MB.

A short extender E is weakly amenable to B iff cr(E) < ρB and E is
weakly amenable to M .

For α ≤ ρB, let B||α =M ||α, and for α < ρB, let B|α =M |α and (α+)B =
(α+)M . We write P ⊳ B iff P ⊳ B||ρB. Let C,α be such that α ≤ ρB, and
either C is a segmented-premouse and α ≤ ORC , or C is a cephal and α ≤ ρC .
Then we write (B ∼ C)||α iff B||α = C||α. If also α < ρB and either C is a
segmented-premouse or α < ρC , we use the same notation with “|” replacing
“||”. We also use similar notation with more than two structures.

A structure with the first order properties of a cephal or other related struc-
tures is wellfounded if each of the constituent models are wellfounded. ⊣

We will consider ultrapowers and iterates of cephals, and also other related
structures, and hence the wellfoundedness of such iterates. Because of the sym-
metry of bicephali and partial symmetry of cephalanxes, we often state facts for
just one side of the symmetry, even when they hold for both. The proofs of the
next two lemmas are routine and omitted. In 3.6–3.12 below, the extender E
might be long.

3.6 Lemma. Let Q be an active segmented-premouse. Let E be an extender
over Q with ms(E) ≤ cr(FQ) + 1. Let R = Ult(Q,FQ) and Q′ = Ult(Q′, E)
and R′ = Ult(Q′, FQ

′

). Then R′ = Ult(R,E) and the ultrapower embeddings
commute. Moreover, iRE = ψ

i
Q
E
.

3.7 Lemma. Let Q be an active segmented-premouse. Let E be an extender
over Q with (cr(FQ)+)Q < cr(E). Let R = Ult(Q,FQ) and R∗ = Ult(R,E)
and Q′ = Ult(Q,E). Then Ult(Q,FQ

′

) = R∗ and the ultrapower embeddings
commute.16 Let ψ : R → R∗ be given by the Shift Lemma (applied to id : Q→ Q

and iQE). Then iRE = ψ.

3.8 Definition. Let E be a (possibly long) extender. For a seg-pm M , E is
reasonable forM iff E is overM and eitherM is passive or letting κ = cr(FM ),
iME is continuous at (κ+)M , and if M |=“κ++ exists” then iME is continuous at
(κ++)M . For a bicephalus B = (ρ,M,N), E is reasonable for B iff E is over
B||ρ, if mB ≤ 0 then E is reasonable for M , and if nB ≤ 0 then E is reasonable
for N . For a cephalanx B = (γ, ρ,M,Q), E is reasonable for B iff E is over
B||ρ,17 if qB ≤ 0 then E is reasonable for Q, if mB ≤ 0 then E is reasonable for
M , and if NB is defined and nB ≤ 0 then E is reasonable for NB. ⊣

3.9 Lemma. Let Q be an active seg-pm, E reasonable for Q. Let Q′ =
Ult(Q,E), R = Ult(Q,FQ), R′ = Ult(Q′, FQ

′

), R∗ = Ult(R,E). Let κ =
cr(FQ) and η = (κ++)Q. Further:

16Note that in the conclusion, it is Ult(Q,FQ′

), not Ult(Q′, FQ′

).
17Hence E is equivalent to an extender E′ with ms(E′) ≤ γ + 1.
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– If η < ORQ, let γ = iQR(η), γ
∗ = iRE(γ), η

′ = iQE(η). Then γ∗ = iQ′R′(η′).

– If η = ORQ, let γ = ORR, γ∗ = ORR
∗

and η′ = ORQ
′

.

Then in either case, (R∗ ∼ R′)|γ∗ and

iRE ◦ iQR ↾(Q|η) = iQ′R′ ◦ iQE ↾(Q|η).

Moreover, let ψ : R|γ → R′|γ′ be induced by the Shift Lemma with iQQ′ ↾ (Q|η)
and iQQ′ . Then ψ = iRE ↾(R|γ).

Proof. Let G be the length iE(κ) extender derived from E. Let j : Ult(Q,G) →

Ult(Q,E) be the factor embedding. Then cr(j) > (iQG(κ)
++)UG since E is

reasonable. Apply 3.6 to G, and then 3.7 to the extender derived from j.

3.10 Definition. Let M be a type 3 premouse. The expansion of M is the
active segmented-premouse M∗ such that M∗|cr(FM∗) = M |cr(FM ), and FM∗

is the Jensen-indexed version of FM . That is, let F = FM , let µ = cr(F ), let
γ = (µ+)M , let γ′ = iF (γ), let R = Ult(M,FM ); then M∗||OR(M∗) = R|γ′,
and FM∗ is the length iF (µ) extender derived from iF . ⊣

Combining [3, §9] with a simple variant of 3.9 one gets:

3.11 Fact. Let Q be a type 3 premouse. Let E be an extender over Qsq,
reasonable for Q. Let Q∗ be the expansion of Q, let U∗ = Ult(Q∗, E) and
U = Ult0(Q,E). Suppose U∗ is wellfounded. Then U is wellfounded and U∗ is its
expansion. Let i∗ : Q∗ → U∗ and i0 : Q→ U be the ultrapower maps (literally,
dom(i∗) = Q∗ and dom(i0) = Qsq). Then i0 = i∗ ↾Q

sq, and i∗ = ψi0 ↾Q∗.

3.12 Remark. We will apply 3.9 and 3.11 when E is the extender of iteration
map iTαβ or i∗Tαβ , where (α, β]T does not drop and degT (α) = 0.

3.13 Definition (Ultrapowers of bicephali). Let B = (ρ,M,N) be a bicephalus
of degree (m,n) and E an extender reasonable for B. We have the ultrapower

map i = iM,m
E : M → Ultm(M,E), and j = iN,nE . Let ρ′ = sup i“ρ = sup j“ρ

and define
Ult(B,E) = (ρ′,Ultm(M,E),Ultn(N,E)). ⊣

3.14 Definition. Let B be a bicephalus. The associated augmented bi-
cephalus is the tuple B∗ = (ρ,M,N,M∗, N∗) where if m ≥ 0 then M∗ = M ,
and otherwise M∗ is the expansion of M ; likewise for N∗. (Note that if m = −1
then M is type 3 and ρ = ν(FM ).) Let E reasonable for B. If m ≥ 0 let

M̃ = Ultm(M,E); otherwise let M̃ = Ult(M∗, E). Likewise for Ñ . We define

Ult(B∗, E) = Ult(B,E) ̂
〈
M̃, Ñ

〉
. ⊣

3.15 Lemma. Let B = (ρ,M,N) be a bicephalus of degree (m,n), B∗ =

(ρ,M,N,M∗, N∗), E reasonable for B, U = Ult(B,E) and Ũ = Ult(B∗, E) =

(ρU ,MU , NU , M̃ , Ñ). Let i = iM,m
E and j = jN,nE . If m ≥ 0 let i∗ = i; otherwise

let i∗ :M∗ → M̃ be the ultrapower map. Likewise j∗. If Ũ is wellfounded then:
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(1 ) U is a bicephalus of degree (m,n) and Ũ = U∗.

(2 ) U is trivial iff B is trivial.

(3 ) i(pMm+1\ρ) = pM
U

m+1\ρ
U .

(4 ) i∗ ↾(ρ
+)B = j∗ ↾(ρ

+)B and i∗, j∗ are continuous/cofinal at (ρ+)B .18

(5 ) i∗ = ψi ↾M∗.

(6 ) Suppose E is short and weakly amenable to B. Then MU is (m+1)-sound
iff M is (m+ 1)-sound and cr(E) < ρMm+1. If MU is (m+ 1)-sound then

ρM
U

m+1 = sup i“ρMm+1 and pM
U

m+1 = i(pMm+1).

Likewise regarding N,n,E.

Proof. Part (6) is by [12, 2.20], (3) is a standard calculation using generalized
solidity witnesses (see [18]), and (5) is by 3.11 ((5) is trivial when m ≥ 0).

Part (4): Let W = Ult(B||(ρ+)B, E) and k : B||(ρ+)B →W the ultrapower

map and ρ̃ = k(ρ). We claim that (†): k = i∗ ↾(ρ
+)B and M̃ ||(ρ̃+)M̃ =W .

If m ≤ 0 this is immediate. If m > 0, then because (ρ+)B ≤ ρMm , by [3, §6],
all functions forming the ultrapower MU with codomain (ρ+)B are in fact in
B||(ρ+)B , which gives (†). Now (4) follows from (†).

Part (1): By 3.11, M̃ is the expansion of MU . We have ρU ≤ ρ̃ and by (†),

M̃ ||(ρ̃+)M̃ = Ñ ||(ρ̃+)Ñ . If m ≥ 0 then ρ̃ < ρm(MU ). The rest of (1) is routine.
Part (2): Assume M 6= N but m = n. By ρ-soundness, there is an rΣm+1

formula ϕ and α < ρ with

M |= ϕ(pMm+1\ρ, ~p
M
m , α) ⇐⇒ N |= ¬ϕ(pNm+1\ρ, ~p

N
m, α).

Now i, j are rΣm+1-elementary, and by (†), i(α) = j(α); let α′ = i(α). So by
(3), we get MU 6= NU and in fact

MU |= ϕ(pM
U

m+1\ρ
U , ~pM

U

m , α′) ⇐⇒ NU |= ¬ϕ(pN
U

m+1\ρ
U , ~pN

U

m , α′).

3.16 Definition (Ultrapowers of cephalanxes). Let B = (γ, ρ,M,Q) be a
cephalanx of degree (m, q) and let E be reasonable for B. LetM ′ = Ultm(M,E),

γ′ = iM,m
E (γ) and ρ′ = sup iM,m

E “ρ. If B is active let Q′ = Ult(Q,E) (re-
call the ultrapower Ult(Q,E) is simple; it might be that Q is type 3, and we
could have cr(E) = γ.) If B is passive let Q′ = Ultq(Q,E). Then we define
Ult(B,E) = (γ′, ρ′,M ′, Q′). ⊣

3.17 Lemma. In the context of 3.16, suppose that B is passive, and that U =
Ult(B,E) is wellfounded. Let i = iM,m

E and j = iQE. Then:

18That is, if (ρ+)B ∈ dom(i∗) then i∗ is continuous there; if m ≥ 0 and (ρ+)B = ρM
0

then

ρM
U

0
= sup i“(ρ+)B ; if m = −1 and (ρ+)B = OR(M∗) then OR((MU )∗) = sup i∗“(ρ+)B .
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(1 ) U is a passive cephalanx of degree (m, q).

(2 ) i↾ρ = j ↾ρ.

(3 ) If ρ ∈ C0(M) then ρ′ = i(ρ); otherwise ρ′ = ρ0(M
U ). Likewise Q, j,QU .

(4 ) ψi(ρ) = ψj(ρ) = ρ′.

(5 ) If ρ+M ∈ dom(ψi) then ψi is continuous at ρ+M ; otherwise M is passive,
ORM = ρ+M and OR(MU ) = sup i“ORM .

(6 ) ψi ↾ρ
+M = ψj ↾ρ

+M .

(7 ) i(pMm+1\ρ) = pM
U

m+1\ρ
′.

(8 ) Suppose E is short and weakly amenable to B. Then MU is (m+1)-sound
iff M is (m+ 1)-sound and cr(E) < ρMm+1. If MU is (m+ 1)-sound then

ρM
U

m+1 = sup i“ρMm+1 and pM
U

m+1 = i(pMm+1).

(9 ) If B is non-exact then U is non-exact.

(10 ) If B is exact (so NB = Q) but U is not, then 0 ≤ nB < q.

(11 ) Suppose that B is non-trivial and that suitable condensation holds below
(Q, q). Let N = NB and n = nB. Then:

(i) U is non-trivial,

(ii) NU = UltnB (N,E) and nU = n,

(iii) Parts (2 )–(8 ) hold with ‘M ’ replaced by ‘N ’ and ‘m’ by ‘n’.

We also have j(pQq+1\γ) = pQ
U

q+1\γ
U , but we won’t need this.

Proof. Parts (2)–(8) are much as in 3.15. (For (6), note that for A ∈ P(ρ)∩M ,
the value of ψi(A) is determined by the values of ψi(A ∩ α) for α < ρ; likewise
for ψj(A).) So (1) follows. Part (9) follows from (5) and (6); part (10) is easy.

Part (11): Consider the case that B is exact. Part (iii) is as for M , so
consider (i) and (ii). As B is exact, N = Q. By the proof of 3.15, we have
Ultn(Q,E) 6= Ultm(M,E), so it suffices to see that

Un = Ultn(Q,E) E QU = Ultq(Q,E) = Uq,

so assume n < q. If n = −1 then Un = Uq, so assume n ≥ 0, so ρ ∈ C0(Q) and

ρQq+1 ≤ γ < ρ = ρQq = ρQn+1 < ρQn .

Let σ : Un → Uq be the natural factor map. Let jn : Q → Un and jq : Q → Uq
be the ultrapower maps. Then σ ◦ jn = jq, σ is ~pn+1-preserving n-lifting and

cr(σ) > ρ′. Also, Un, Uq are (n+ 1)-sound and ρUn

n+1 = ρ′ = ρ
Uq

n+1.

Suppose ((ρ′)+)Un = ((ρ′)+)Uq < cr(σ). Then ρ
Uq
n = supσ“ρUn

n , since
otherwise, using the previous paragraph and as in the proof of 2.4, we get
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Un ∈ Uq, collapsing ((ρ′)+)Uq in Uq. So by 2.4, σ is an n-embedding. But

ρ
Uq

n+1 ∪ p
Uq

n+1 ⊆ rg(σ), so then Un = Uq, which suffices.

Now suppose ((ρ′)+)Un < ((ρ′)+)Uq . Then much as before, ρ
Uq
n > supσ“ρUn

n .
Let σ∗ = σ ↾(Un||ρUn

n ). By 2.4 we get Un, σ
∗ ∈ Uq and (Un, σ

∗) is n-suitable for
Uq. By suitable condensation below (Q, q) and 2.11 and since Uq|ρ′ is passive,
therefore Un ⊳ Uq, which suffices.

If B is non-exact, so N ⊳ Q, let Un = Ultn(N,E), consider the factor em-
bedding σ : Un → j(N) and show Un E j(N). This completes the proof.

3.18 Lemma. In the context of 3.16, suppose that B is active, and that U =
Ult(B,E) and RU are wellfounded. Let i = iM,m

E and j = iQE. Then:

(1 ) U is an active cephalanx of degree (m, 0).

(2 ) If ρ ∈ C0(M) then ρ′ = i(ρ); otherwise ρ′ = ρ0(M
U ).

(3 ) 3.17(2 ) and 3.17(4 )– (8 ) hold.

(4 ) U is exact iff B is exact.

(5 ) Suppose that B is non-exact and non-trivial and that suitable condensation
holds below (Q, 0). Let N = NB and n = nB. Then:

(i) U is non-trivial,

(ii) NU = UltnB (N,E) and nU = n,

(iii) Parts (2 )–(3 ) hold with ‘M ’ replaced by ‘N ’ and ‘m’ by ‘n’.

Proof. This follows from 3.9, 3.11 and the proof of 3.17.19

3.19 Lemma. Let C be a degree (m, k) cephal. If C is a bicephalus let B = C∗;
otherwise let B = C. Let 〈Eα〉α<λ be a sequence of short extenders. Let B0 = B,
Bα+1 = Ult(Bα, Eα), and Bγ be the direct limit at limit γ. Suppose for each
α ≤ λ, Bα is wellfounded and if α < λ then Eα is weakly amenable to Bα.

If C is a bicephalus (passive cephalanx, active cephalanx, respectively) then
the conclusions of 3.15 (3.17, 3.18, respectively) apply to B and Bλ, together
with the associated iteration maps, after deleting the sentence “Suppose E is
short and weakly amenable to B.” and replacing the phrase “cr(E) < ρMm+1”

with “cr(Eα) < ρMα

m+1 for each α < γ”.

Proof. If C is a bicephalus, this mostly follows from 3.15, [12, 2.20] and 3.11
by induction. At limit stages, use [12, 2.20] directly to prove 3.15(6). To see
3.15(4), replace the iteration used to define Cγ with a single (possibly long)
extender E, and apply 3.15. The cephalanx cases are similar.

19In 3.9 we set η = (κ++)Q, and the reader might wonder why we didn’t just use η = (κ+)Q.
We need the larger value here if Q has superstrong type.
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3.20 Definition (Iteration trees on bicephali). Let B = (ρ,M,N) be a bi-
cephalus of degree (m,n) and let η ∈ OR\{0}. An iteration tree on B, of

length η, is a pair T =
(
<T , 〈Eα〉α+1<η

)
such that there are sequences

〈Bα,Mα, Nα〉α<η and
〈
B∗
α+1,M

∗
α+1, N

∗
α+1

〉
α+1<η

,

of models, sequences of embeddings

〈iαβ , jαβ〉α,β<η and
〈
i∗α+1, j

∗
α+1

〉
α+1<η

,

sequences of ordinals 〈ρα〉α<η and
〈
crα, να, lhα, ρ

∗
α+1

〉
α+1<η

, sets B,M ,N ⊆ η

(specifying types and origins of structures), a function “deg” with domain η
(specifying degrees), and a set D ⊆ η (specifying drops in model), such that:

1. <T is an iteration tree order on η, with the usual properties.

2. B0 = (ρ0,M0, N0) = B and deg(0) = (m,n) and i00 = id and j00 = id.

3. B,M ,N are disjoint and for each α < η, either

(a) α ∈ B and Bα = (ρα,Mα, Nα) is a bicephalus of degree (m,n) =
deg(α), or

(b) α ∈ M and Bα =Mα is a segmented-premouse and Nα = ∅, or

(c) α ∈ N and Bα = Nα is a segmented-premouse and Mα = ∅.

4. For each α+ 1 < η:

(i) Either Eα ∈ E+(Mα) or Eα ∈ E+(Nα).

(ii) crα = cr(Eα) and να = ν(Eα) and lhα = lh(Eα).

(iii) For all β < α we have lhβ ≤ lhα.

(iv) predT (α+ 1) is the least β such that crα < νβ.

Fix α+ 1 < η and β = predT (α+ 1) and κ = crα.

5. Suppose β ∈ B and κ < ρβ and Eα is total overBβ||ρβ . Then deg(α+1) =
(m,n) and

(ρ∗α+1,M
∗
α+1, N

∗
α+1) = B∗

α+1 = Bβ and Bα+1 = Ult(B∗
α+1, E),

i∗α+1 :M∗
α+1 → Mα+1 is the ultrapower map, iα+1,α+1 = id and

iγ,α+1 = i∗α+1 ◦ iγβ :Mγ →Mα+1

for γ ≤T β; likewise for j∗α+1 etc.
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6. Suppose that Eβ ∈ E+(Mβ). Suppose that either β /∈ B (so β ∈ M ),
or κ < ρβ and Eα is not total over Bβ ||ρβ . Then we put α + 1 ∈ M ,
Nα+1 = N∗

α+1 = ∅, and j∗α+1, etc, are undefined. We set M∗
α+1 E Mβ

and deg(α + 1), etc, in the manner for degree-maximal trees. Let k =
deg(α+ 1). Then

Mα+1 = Ultk(M
∗
α+1, Eα)

and i∗α+1, etc, are defined in the usual manner. We set B∗
α+1 =M∗

α+1 and
Bα+1 =Mα+1.

7. Suppose that Eβ /∈ E+(Mβ) (so Eβ ∈ E+(Nβ)) and Bα+1 is not defined
through clause 5. Then we proceed symmetrically to clause 6 (interchang-
ing “M” with “N”).

8. α+ 1 ∈ D iff either ∅ 6=M∗
α+1 ⊳ Mβ or ∅ 6= N∗

α+1 ⊳ Nβ .

9. For every limit λ < η, D ∩ [0, λ)T is finite, and λ ∈ B iff [0, λ)T ⊆ B; the
models Mλ, etc, and embeddings iα,λ, etc, are defined via direct limits,
and deg(λ) is the common value of deg(α) for all sufficiently large α <T λ.

For α < lh(T ), B(α) denotes max(B ∩ [0, α]T ). ⊣

3.21 Lemma. Let T be an iteration tree on a bicephalus of degree (m,n) and
let α < lh(T ). We write Bα = BT

α , etc. Then:

1. If α+ 1 < lh(T ) then Eα is weakly amenable to B∗
α+1.

2. If α+ 1 < lh(T ) and α+ 1 /∈ B then Eα is close to B∗
α+1.

3. B is closed downward under <T and if α ∈ M then N ∩ [0, α]T = ∅.

4. If α ∈ M and [0, α]T ∩ D = ∅ then m ≥ 0.

5. If α ∈ M , [0, α]T ∩ D = ∅, deg(α) = m and β = B(α) then:

– Mβ is ρβ-sound, whereas Mα is ρβ-solid but not ρβ-sound,

– Mβ is the ρβ-core of Mα and iβα is the ρβ-core embedding,

– ρm+1(Mβ) = ρm+1(Mα),

– iβα(p
Mβ

m+1\ρβ) = pMα

m+1\ρβ.

6. Suppose α ∈ M and [0, α]T drops in model or degree. Let k = degT (α).
Then the core embedding Ck+1(Mα) → Mα relates to T in the manner
usual for degree-maximal iteration trees.

Proof. Parts 1, 3 and 4 are easy. For part 2, use essentially the proof of [3,
6.1.5], combined with the following simple observation. Let ξ + 1 < lh(T ) be
such that [0, ξ]T does not drop in model and Eξ = F (Mξ). Let χ = predT (ξ+1).
Then [0, ξ+1]T does not drop in model and χ is the least χ′ ∈ [0, ξ]T such that
cr(F (Mχ′)) = crξ. We omit further details of the proof of part 2.

Parts 5 and 6 now follow as usual.
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3.22 Definition (Iteration trees on cephalanxes). Let B be a cephalanx. The
notion of an iteration tree T on B is defined much as in 3.20. The key
differences are as follows. The models of the tree are all either cephalanxes or
segmented-premice20, and if B is passive, then the models are all either cepha-
lanxes or premice. We write (Mα, iαβ) and (Qα, kαβ), etc, for the models and
embeddings above MB and QB respectively. We write Bα = (γα, ρα,Mα, Qα)
when Bα is a cephalanx, and otherwise Bα = Mα 6= ∅ or Bα = Qα 6= ∅, and
write Q for the set of α such that Bα = Qα. Let ια = ι(Eα). Other notation is
as in 3.20.

Let α+ 1 < lh(T ). Then:

– Either Eα ∈ E+(Mα) or Eα ∈ E+(Qα).

Let κ = crα. Then:

– predT (α+ 1) is the least β such that κ < ιβ .

Suppose β ∈ B. Then:

– If Eβ ∈ E+(Mβ) and either ρβ < κ or Eα is not total over Mβ then
α+ 1 ∈ M and M∗

α+1 EMβ and Qα+1 = ∅.

– If Eβ /∈ E+(Mβ) and either ρβ < κ or Eα is not total over Qβ then
α+ 1 ∈ Q and Q∗

α+1 E Qβ and Mα+1 = ∅.

Now suppose that κ < ρβ and Eα is total over Bβ ||ρβ (so κ ≤ γβ). Then:

– Suppose either κ < γβ or Eβ ∈ E+(Mβ). Then B
∗
α+1 = Bβ.

21

– If κ = γβ and Eβ /∈ E+(Mβ)
22 then Mα+1 = ∅ and Q∗

α+1 = Qβ.
23

The remaining details are like in 3.20. ⊣

3.23 Lemma. Let T be an iteration tree on a cephalanx B = (γ, ρ,M,Q) of
degree (m, q) and let α+1 < lh(T ). Then parts 1–6 of 3.21, replacing ‘N ’ with
‘Q’, hold. Parts 3–6, replacing ‘M ’ with ‘Q’ , ‘M ’ with ‘Q’, ‘m’ with ‘q’, ‘ρ’
with ‘γ’, and ‘N ’ with ‘M ’, hold.

20In fact, for the cephalanxes B we will produce – in the proof of 5.2) – the models of all
trees on B will be either cephalanxes or premice.

21Here if κ = γβ (so Eβ ∈ E+(Mβ)), one might wonder why we do not just set M∗
α+1

= ∅
and Q∗

α+1
= Qβ . This might be made to work, but doing this, it seems that Eα might not

be close to Q∗
α+1

.
22When this situation arises with one of the active cephalanxes we will produce, Q and Qβ

must be type 2 premice.
23In this situation it would have been possible to set B∗

α+1
= Bβ , and the reader might

object that we are dropping information unnecessarily here. But for the cephalanxes we will
produce, our proof of iterability would break down if we set B∗

α+1 = Bβ , and it will turn out
that we have in fact carried sufficient information (at least, for our present purposes).
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Proof. This is mostly like 3.21. Part 4, when replacing ‘M ’ with ‘Q’, etc, and
when q = −1, follows easily from the iteration rules. For consider this situation
and suppose α + 1 ∈ Q and β = predT (α + 1) ∈ B but α + 1 /∈ DT . Since
q = −1, B is active, so ORQ = ρ, so ORQβ = ρβ , so κ < ρβ , and since
α + 1 /∈ DT , Eα is total over Bβ||ρβ , so κ ≤ γβ . Therefore (since α + 1 /∈ B)

κ = γβ and Eβ /∈ E+(Mβ). Therefore Eβ = FQβ (as ρβ = ORQβ and Qβ||ρβ =
Mβ||ρβ). But ν(FQβ ) ≤ γβ , so ιβ = γβ , but by the iteration rules, κ < ιβ , a
contradiction.

3.24 Definition. Let T be an iteration tree on a cephal B and α+ 1 < lh(T ).
We write exTα for the active segmented-premouse P such that ET

α = FP , if B is
a bicephalus then P EMT

α or P E NT
α , and if B is a cephalanx then P EMT

α

or P E QT
α . ⊣

3.25 Definition. Let B be a cephal. A potential tree on B is a tuple

T =
(
<T , 〈Eα〉α+1<η

)
,

such that if η is a limit then T is an iteration tree on B, and if η = γ + 1 then
T ↾ γ is an iteration tree on B, and T satisfies all requirements of 3.20, except
that we drop the requirement that Bγ be a cephal or premouse, and add the
requirement that Mγ , Nγ , Qγ , Ult(Mγ , F

Mγ ), Ult(Nγ , F
Nγ ), and Ult(Qγ , F

Qγ )
are all wellfounded (if defined). ⊣

The next lemma is easy:

3.26 Lemma. Let T be a potential tree on a cephal B. Then T is an iteration
tree. Moreover, if α < β < lh(T ) and β ∈ BT then we can apply 3.19 to Bα, Bβ
and the sequence of extenders used along (α, β]T . Further, assume that if B is

an active cephalanx and lgcd(QB) < ν(FQ
B

) then QB is a premouse. Then
every model of T is either a cephal or a premouse.

3.27 Definition (Iterability for cephals). Let B be a bicephalus and α ∈ OR.
The length θ iteration game for B is defined in the obvious way: given
T ↾α+ 1 with α+ 1 < θ, player I must choose an extender Eα, and given T ↾λ
for a limit λ < θ, player II must choose [0, λ]T . The first player to break one of
these rules or one of the conditions of 3.20 loses, and otherwise player II wins.

The iteration game for cephalanxes is defined similarly.
We say that a cephal B is α-iterable if there is a winning strategy for player

II in the length α iteration game for B. ⊣

3.28 Lemma. Let B be an (ω1 + 1)-iterable cephal of degree (m, k). Let T be
an iteration tree on B and α < lh(T ). Then:

– Suppose MT
α 6= ∅. If α ∈ BT let d = m; otherwise let d = degT (α). Then

suitable condensation holds through (MT
α ,max(d, 0)).
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– Suppose B is a cephalanx and QT
α 6= ∅. If α ∈ BT let d = k; otherwise

let d = degT (α). Then suitable condensation holds below (QT
α ,max(d, 0)),

and if either [0, α]T drops or Q,QT
α are premice, then suitable condensa-

tion holds through (QT
α ,max(d, 0)).

Proof. If T is trivial, use 2.14 (for example, MB is (m,ω1 + 1)-iterable). This
extends to longer trees T by 2.11 and the elementarity of the iteration maps.

4. Analysis of iterable cephals

In this section we prove the main facts about iterable bicephali and cepha-
lanxes, which establish strong fine structural restrictions on them.

4.1 Definition. Let m < ω and M a ρ-sound premouse with ρMm+1 ≤ ρ ≤ ρMm .

Let κ < ρ, let H = cHullMm+1(κ ∪ ~pMm+1) and π : H →M the uncollapse.
Then M has an (m, ρ)-good core at κ iff H ||(κ+)H = M ||(κ+)M , H is

κ-sound, cr(π) = κ, π(κ) ≥ ρ and π(pHm+1\κ) = pMm+1\κ. In this context, let
HM
m,κ = H and let GMm,κ,ρ be the length ρ extender derived from π. ⊣

4.2 Remark. Note that if M has an (m, ρ)-good core at κ then, with π,H
as above, we have ρMm+1 ≤ κ, M is not (m + 1)-sound, G = GMm,κ,ρ is weakly

amenable to H , M = Ultm(H,G) and iH,mG = π.

4.3 Theorem. Let B = (ρ,M,N) be an (ω1+1)-iterable non-trivial bicephalus.
Then B is not sound. Let m = mB and n = nB. Then exactly one of the
following holds:

(a) N is active type 1 or type 3 with largest cardinal ρ, and letting κ = cr(FN ),
then m ≥ 0 and M has an (m, ρ)-good core at κ, and GMm,κ,ρ = FN ↾ρ.

(b) Vice versa.

Proof. We may assume ZFC, as we can work in an inner model which contains
B and is closed under an iteration strategy Σ for B, such as HODB,Σ or L[B,Σ].
So we may also assume B is countable. We mimic the self-comparison argument
used in [3, §9]. Fix an (ω1 + 1)-iteration strategy Σ for B. We form a pair of
padded iteration trees (T ,U) on B, each via Σ, by comparison. We will show
that the comparison terminates, using the ISC and some more. Examining the
circumstances under which the comparison terminates, we will show that B is
unsound, and the comparison produces an iterate B′ of B, also a cephal, such
that B′ has a good core. A new feature of the proof (in contrast to the classical
phalanx comparisons) is that we then need to show that the iteration map from
B to B′ cannot introduce this property, soB also has a good core.

The trees (T ,U) may be padded, but for each α we will have either ET
α 6= ∅

or EU
α 6= ∅. See §1.1.6 regarding padding and tree ordering. At stage α of the

comparison, given α ∈ BT , we may set ET
α = ∅, and simultaneously declare

that, if T is to later use a non-empty extender, then letting β > α be least such
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that ET
β 6= ∅, we will have ET

β ∈ E+(M
T
α ) = E+(M

T
β ). Or instead, we may

declare that ET
β ∈ E+(N

T
α ). Toward this, we define non-empty sets

M
T
β ⊆ {MT

β , N
T
β }\{∅}.

We will require that if ET
β 6= ∅, then ET

β ∈ E+(P ) for some P ∈ M
T
β . All

models in M
T
β will be non-empty.

We also define sets ST
β ⊆ tTβ ⊆ {0, 1} for convenience. Let 0 ∈ tTβ iffMT

β 6= ∅,

and 1 ∈ tTβ iff NT
β 6= ∅. Let 0 ∈ ST

β iff MT
β ∈ M

T
β , and 1 ∈ ST

β iff NT
β ∈ M

T
β .

(We will explicitly define either MT
β or ST

β , implicitly defining the other.)
The preceding definitions also extend to U .
We start with BT

0 = B = BU
0 and ST

0 = {0, 1} = SU
0 .

Suppose we have defined (T ,U) ↾λ for some limit λ. Then (T ,U) ↾λ + 1 is
determined by Σ, and ST

λ = limα<T λ S
T
α , and S

U
λ is likewise.

Now suppose we have defined (T ,U) ↾α + 1 and ST
α and SU

α ; we determine
what to do next (at stage α).

Let ν̃(F ) = ν(F ) for F an extender, and ν̃(∅) = ∞ (with∞ > α for α ∈ OR).

Case 1. There is ξ ∈ OR such that for some Y ∈ M
T
α and Z ∈ M

U
α , we have

ξ ≤ ORY ∩ORZ and Y |ξ 6= Z|ξ.
Let ξ be least such and ν = the minimum value of min(ν̃(FY |ξ), ν̃(FZ|ξ))

over all choices of pairs (Y, Z) witnessing the choice of ξ (there are at most 4).

Subcase 1.1. For some (Y, Z) witnessing the choice of ξ, Y |ξ and Z|ξ are both
active and ν(FY |ξ) = ν(FZ|ξ) = ν.

Fix such Y, Z. We set ET
α = FY |ξ and EU

α = FZ|ξ. This determines (T ,U)↾
α+ 2. Also set ST

α+1 = tTα+1 and SU
α+1 = tUα+1.

Subcase 1.2. Otherwise.
Then take Y, Z witnessing the choice of ξ and such that either (i) Y |ξ is

active, ν(FY |ξ) = ν, and if Z|ξ is active then ν(FZ|ξ) > ν; or (ii) vice versa.
Say Y |ξ is active with ν(FY |ξ) = ν. Then we set ET

α = FY |ξ and EU
α = ∅.

This determines (T ,U)↾α+2. Set ST
α+1 = tTα+1. Now suppose there is X ∈ M

U
α

with X |ξ active and ν(FX|ξ) = ν. Then X |ξ = Y |ξ, so we must avoid setting
EU
β = FX|ξ at some β > α. So we set MU

α+1 = {Z}, and set SU
α+1 accordingly.

If there is no suchX then set SU
α+1 = SU

α . (In any case, later extenders used in U
will be incompatible with ET

α .) The remaining cases are covered by symmetry.

Case 2. Otherwise.
Then we stop the comparison at stage α.

This completes the definition of (T ,U). For α < lh(T ,U), let ST (α) be the
largest β ≤T α such that ST

β = {0, 1}; here if α ∈ BT then BT
β = BT

α . Let

SU(α) be likewise. For α + 1 < lh(T ,U), let lhα = lh(ET
α ) and να = ν(ET

α ) if
ET
α 6= ∅, and lhα = lh(EU

α ) and να = ν(EU
α ) otherwise. (Note that if ET

α 6= ∅ 6=
EU
α then lh(ET

α ) = lh(EU
α ) and ν(E

T
α ) = ν(EU

α ).)

Claim 1. Let α + 1, β + 1 < lh(T ,U). Then (i) if α < β then lhα ≤ lhβ and
να < νβ ; and (ii) if ET

α 6= ∅ 6= EU
β then ET

α ↾να 6= EU
β ↾νβ .
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Proof. Part (i) is by standard considerations together with the definition of
M

U
α+1 in Subcase 1.2 above (which prevents having EU

α+1 = ET
α , for example).

Part (ii): If α+1 = β+1, this is directly by construction, and if α+1 < β+1,
use part (i) and the ISC as usual.

Claim 2. The comparison terminates at some countable stage.

Proof. By the proof that standard comparison terminates, with Claim 1.

So let α be such that the comparison stops at stage α.

Claim 3. card(ST
α ) = card(SU

α ) = 1 and M
T
α = M

U
α .

Proof. If α ∈ BT then BT
α is non-trivial, by 3.26; likewise for U . So because

Case 2 attains at stage α, we do not have ST
α = SU

α = {0, 1}.
It is not true that (†) P ⊳ Q or Q ⊳ P for some P ∈ M

T
α and Q ∈ M

U
α . For

suppose (†) holds; we may assume Q⊳P . Then Q is sound, so by 3.21, α ∈ BU ,
so by (†) and Case 2 hypothesis, card(SU

α ) = 1. Say SU
α = {0}. Let β = SU(α).

Then BU
β = BU

α and ET
β ∈ E+(N

U
β ) and E

U
γ = ∅ for all γ ∈ [β, α). Let ̺ = ρUβ .

Then lhTβ ≥ (̺+)B
U

β . So P(̺) ∩ P = P(̺) ∩ BU
β , contradicting the fact that

MU
β = Q ⊳ P .

Now suppose that ST
α = {0, 1} but card(SU

α ) = 1. Let δ be least such
that MT

α |δ 6= NT
α |δ. Let Q ∈ M

U
α . Then Q ⊳ MT

α ||δ = NT
α ||δ, so (†) holds,

contradiction. So card(ST
α ) = card(SU

α ) = 1, and because (†) fails, M
T
α =

M
U
α .

Claim 4. α ∈ BT ∆BU .

Proof. Either T or U is non-padded cofinally in α (that is, if α = β + 1 then
either ET

β 6= ∅ or EU
β 6= ∅, and if α is a limit then either ET

β 6= ∅ for cofinally

many β < α, or EU
β 6= ∅ for cofinally many β < α). By this and Claim 3, we

get α /∈ BT ∩ BU , so assume that α /∈ BT ∪ BU . Then standard calculations
using 3.21 give that T ,U use compatible extenders, a contradiction.

By the previous claims, we can assume α ∈ BT \BU , ST
α = {0} and SU

α =

{1}, so B̃ = BT
α is a bicephalus, α ∈ N U , and MT

α = NU
α ; the other cases

are almost symmetric. We will show conclusion (a) of the theorem holds; under

symmetric assumptions (b) can hold instead. Let β = ST (α). Let ρ̃ = ρ(B̃).

Then B̃ = BT
β and for all γ ∈ [β, α), we have ET

γ = ∅ 6= EU
γ and (ρ̃+)B̃ ≤ lhUγ .

Claim 5. α = β + 1 and lhUβ = (ρ̃+)B̃ and EU
β is type 1 or type 3.

Proof. Suppose not. Then by 3.21, NU
α is not ρ̃-sound (recall that if α > β + 1

and lhUβ+1 = lhUβ then EU
β+1 is type 2). But by 3.21, MT

α is ρ̃-sound. So

MT
α 6= NU

α , contradiction.
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Let B̃ = (ρ̃, M̃ , Ñ) = BT
α = BT

β . Since EU
β ∈ E+(Ñ), and lhUβ = (ρ̃+)B̃,

Ñ |(ρ̃+)B̃ projects to ρ̃, so ORÑ = (ρ̃+)B̃ and F Ñ = EU
β . Let F̃ = F Ñ and

κ̃ = cr(F̃ ). It follows that (a) of the theorem holds regarding B̃; using the
iteration embeddings we will deduce that B is not sound, and (a) holds regarding

B. Note that either OR(M̃) > OR(Ñ), or OR(M̃) = OR(Ñ), Ñ has superstrong

type and M̃ is type 2; in either case m ≥ 0. Also ORN = (ρ+)B and N is active

with F = FN , a preimage of F̃ . Let κ = cr(F ); so κ < ρ.

Claim 6. M is not m+ 1-sound, so B is not sound.

Proof. Suppose M is m+ 1-sound. Let z = zMm+1 and ζ = ζMm+1. By [12, 2.17],

z = pMm+1 and ζ = ρMm+1 ≤ ρ. So κ ∈ HullMm+1(ζ ∪ z ∪ ~p
M
m ). Let z̃ = zM̃m+1 and

ζ̃ = ζM̃m+1. By [12, 2.20], z̃ = iT0α(z) and ζ̃ = sup iT0α“ζ, so ζ̃ ≤ ρ̃ and

iT0α(κ) ∈ HullM̃m+1(ζ̃ ∪ z̃ ∪ ~p
M̃
m ). (1)

Let H̃ = N∗U
α . Then M̃ = NU

α = Ultm(H̃, F̃ ) and ζ̃ = sup iH̃
F̃
“ζH̃ , and since

ζ̃ ≤ ρ̃, therefore ζ̃ ≤ κ̃. Also, z̃ = iH̃
F̃
(zH̃m+1). But κ̃ /∈ rg(iH̃

F̃
), so

κ̃ /∈ HullM̃m+1(ζ̃ ∪ z̃ ∪ ~p
M̃
m ). (2)

But iT0α ↾ρ = jT0α ↾ρ, so i
T
0α(κ) = κ̃, contradicting lines (1) and (2).

We can now complete the proof:

Claim 7. Conclusion (a) of the theorem holds.

Proof. Suppose N is type 1. Let p̃ = pM̃m+1\ρ̃ and H̃ = cHullM̃m+1(κ̃ ∪ p̃ ∪ ~pM̃m )

and π̃ : H̃ → M̃ the uncollapse. Then H̃ = N∗U
α , π̃ = j∗Uα , H̃ is κ̃-sound and

letting q̃ = pH̃m+1\κ̃, we have π̃(q̃) = p̃ and ρM̃m = sup π̃“ρH̃m and

H̃ ||(κ̃+)H̃ = M̃ ||(κ̃+)M̃ = Ñ ||(κ̃+)Ñ .

We have κ,H, π as in (a); let p = pMm+1\ρ. We show (supπ“ρHm) = ρMm . Let

γ < ρMm . We have (sup π̃“ρH̃m) = ρM̃m . So letting i = iT0α,

M̃ |= “There is β > i(γ) with β ∈ Hullm+1(κ̃ ∪ {p̃, ~pM̃m })”,

an rΣm+1 assertion about i(γ, κ, p, pMm ), which pulls back to M , which suffices.
So π : H → M is an m-embedding. Let π(pH) = p. Let 〈Hγ〉γ<ρHm

be

the natural stratification of HullHm+1(κ ∪ {pH , ~pHm}) (the uncollapsed hull), and
Mπ(γ) = π“Hγ and πγ : Hγ → Mπ(γ) be the restriction of π. (For example if
m = 0 and M is passive,

Hγ = Hull
H|γ
1 (κ ∪ {pH}).
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IfM is active orm > 0 use the stratification of rΣm+1 truth described in [3, §2].
NoteHγ need not be transitive.) SoH =

⋃
γ<ρHγ

Hγ . For γ large enough we have

κ ∈ Hγ and Hγ is transitive below (κ+)Hγ , so πγ ↾P(κ) ⊆ π, and in particular
κ′ = π(κ) = πγ(κ). For such γ, let Eγ be the (short) (κ, κ′)-extender derived
from πγ . Then Hγ , Eγ ∈ M (as sup(πγ“ρ

H
m) < ρMm ) and (κ+)Hγ < (κ+)M . Let

π̃γ : H̃γ → M̃γ and κ̃′ and Ẽγ be defined likewise over M̃ (for large enough

γ < ρH̃m). We have (H̃γ ∼ M̃)||(κ̃+)H̃γ and Ẽγ ↾ ρ̃ ⊆ F Ñ for each γ; the former

is because by 2.13, Ñ |=“Lemma 2.13 holds for my proper segments”.
Now i“rg(π) ⊆ rg(π̃) since i = iT0α is an m-embedding and i(κ, p) = (κ̃, p̃).

So for all γ < ρHm, we have i(π(γ)) ∈ rg(π̃). And note that i(κ′) = κ̃′ and if

γ < ρHm is sufficiently large and π̃(γ̃) = i(π(γ)), then i(Hγ) = H̃γ̃ and i(Eγ) =

Ẽγ̃ . Also ρM̃m = sup i“ρMm and ORÑ = sup j“ORN and i, j are continuous at

(κ+)N = (κ+)M and j“FN ⊆ F Ñ . It follows easily that (Hγ ∼M)||(κ+)Hγ and
Eγ ↾ρ ⊆ FN for all sufficiently large γ < ρHm. Therefore H ||(κ+)H =M ||(κ+)M

and FN ↾ρ is derived from π.
So FN is weakly amenable to H , M = Ultm(H,FN ), and π = iM,m

FN (we
can factor π : H → M through Ultm(H,FN ), and ν(FN ) = ρ). So by [12],
π(zHm+1) = zMm+1, but z

M
m+1\ρ = pMm+1\ρ, and therefore zHm+1\κ = pHm+1\κ, so

H is κ-sound. This completes the proof assuming that N is type 1.
If instead, N is type 3, then almost the same argument works.

This completes the proof of the theorem.

We now move on to analogues of 4.3 for cephalanxes.

4.4 Definition. Let B be a passive cephalanx of degree (m, q) and let N = NB.
We say that B has a good core iff m ≥ 0 and N is active and letting F = FN ,
κ = cr(F ) and ν = ν(F ), we have: (i) ORN = ρ+M , (ii) N is type 1 or 3, (iii)
M has an (m, ν)-good core at κ, (iv) GMm,κ,ν = F ↾ν, and (v) if N is type 1 then

HM
m,κ = Q and m = q. ⊣

4.5 Theorem. Let B = (γ, ρ,M,Q) be an (ω1+1)-iterable, non-trivial, passive
cephalanx of degree (m, q). Then B has a good core, so B is not sound (that is,
M is not (m+ 1)-sound).

Proof. The proof is based on that of 4.3. The main difference occurs in the rules
guiding the comparison. We may assume B is countable. We define padded
trees T ,U on B, and sets ST

α , S
U
α ,M

T
α ,M

U
α , much as before. We start with

ST
0 = SU

0 = {0, 1}. At limit stages, proceed as in 4.3. Suppose we have defined
(T ,U)↾α+1, ST

α and SU
α and if card(ST

α ) = card(SU
α ) = 1 then BT

α 5 BU
α 5 BT

α

(otherwise the comparison has already terminated).

Case 1. card(ST
α ) = card(SU

α ) = 1.
Choose extenders as usual (as in 4.3).

Case 2. ST
α = {0, 1} and if SU

α = {0, 1} then ρTα ≤ ρUα .
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So BT
α is a cephalanx; let BT = (γT , ρT ,MT , QT ) = BT

α . Let BU = BU
α .

We will have by induction that for every β < α, lhT
β ≤ ρT and lhUβ ≤ ρT . Since

B is passive, BT |ρT and BU |ρT are well-defined premice.

Subcase 2.1. BT |ρT 6= BU |ρT .
Choose extenders as usual.

Suppose BT |ρT = BU |ρT . We say in T we move into MT if either
[ET
α 6= ∅ and ET

α ∈ E+(M
T )] or [ET

α = ∅ and ST
α+1 = {0}]. Likewise move

into QT , and likewise with regard to U if SU
α = {0, 1}. In each case below

we will move into some model in T ; we may do likewise for U . These choices
produce premice R,S from which to choose ET

α , E
U
α , as in the proof of 4.3,24,

given that R 5 S 5 R (for example, if SU
α = {1} and in T we move into MT ,

then R = MT and S = QU). If R E S or S E R then we terminate the
comparison, saying the comparison terminates early. If BU is a cephalanx
and we do not move into any model in U and EU

α = ∅ then we set SU
α+1 = {0, 1}.

Subcase 2.2. card(SU
α ) = 1 and BT |ρT = BU |ρT .

Let {P} = M
U
α . If Q

T E P move into MT in T ; if QT 6E P move into QT .

Subcase 2.3. ST
α = SU

α = {0, 1} and BT |ρT = BU |ρT .
Let (γU , ρU ,MU , QU ) = BU . So ρT ≤ ρU . Then:

– If QT = QU and ρT = ρU : Move into QT in T and MU in U .

– If QT = QU and ρT < ρU : Move into MT in T , and if also MT |ρU =
BU |ρU then move into QU in U .

– If QT ⊳ QU : Move into MT in T (note here ρT < ρU and QT ⊳ BU ||ρU ).

– If QU ⊳QT : Move into QT in T and MU in U (note here ρT ≤ γU < ρU ).

– If QT 5 QU 5 QT : Move into QT in T ; if also QT |ρU = BU |ρU , move
into QU in U .

The remaining cases are by symmetry. Define lhα and να as for 4.3.

Claim 1. Let α < β < lh(T ,U). Then (i) if β + 1 < lh(T ,U) then lhα ≤ lhβ
and να < νβ ; and (ii) if ST

β = {0, 1} then lhα ≤ ρTβ .

Proof. By induction. Part (i) is as for 4.3. Part (ii): If there are cofinally many
α′ < β with ET

α′ 6= ∅, use part (i) and rules of iteration trees. Otherwise, fix
α < β least with ET

α′ = ∅ for all α′ ∈ [α, β). Note ST
α = {0, 1}, and if there

is α′ ∈ [α, β) with ρTα < lhα′ , and α′ is least such, we move into a model of
BT
α′ = BT

α = BT
β in T at stage α′, so ST

β 6= {0, 1}, contradiction.

It follows as before that the comparison terminates.

Claim 2. Let α < lh(T ,U). Then (i) the comparison does not terminate early at
stage α; (ii) if at stage α, in T we move into R, then for every β ∈ (α, lh(T ,U)),
we have R ⋪ S for all S ∈ M

U
β .

24That is, we also minimize on ν(E), so if ET
α 6= ∅ 6= EU

α then ν(ET
α ) = να = ν(EU

α ).
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Proof. By induction on α. Suppose for example that Subcase 2.2 attains at
stage α. We have P ∈ M

U
α .

Suppose QT E P , so in T we move into MT . We have MT |ρT = P |ρT and
NT E QT E P and MT 6= NT and both MT , NT project ≤ ρT and

MT ||((ρT )+)M
T

= NT ||((ρT )+)N
T

.

So MT 5 P and taking λ least with MT |λ 6= NT |λ, we have ρT < λ ≤
min(OR(MT ),OR(NT )). So the comparison does not terminate early at stage
α, and as MT projects ≤ ρT , for no β > α is MT ⊳ S ∈ M

U
β .

Now suppose QT 5 P , so in T we move into QT . If α /∈ BU then P = BU

is unsound. Otherwise there is δ < α such that at stage δ, in U we move into
P . In either case (by induction in the latter), P ⋪ QT . So the comparison does
not terminate early at stage α. Let λ be least with QT |λ 6= P |λ. Then ρT < λ
and since QT projects ≤ γT , there is no β > α such that QT ⊳ S ∈ M

U
β .

The proof is similar in the remaining subcases.

Let α + 1 = lh(T ,U). As in the proof of 4.3, and by Claim 2, we have
card(ST

α ) = card(SU
α ) = 1 and α ∈ BT ∆BU . We may assume α ∈ BT , so

BT
α = (γ′, ρ′,M ′, Q′) is a cephalanx and BU

α is a non-sound pm. So P E BU
α

where {P} = M
T
α . But by Claim 2, P ⋪ BU

α , so P = BU
α . Let β = ST (α).

Claim 3. ST
α = {0}.

Proof. Suppose ST
α = {1}, so Q′ = P = BU

α is γ′-sound. At stage β, in T we
move into Q′. For all ξ ∈ [β, α), ET

ξ = ∅, so EU
ξ 6= ∅, and ρ′ < lhξ, because

B′|ρ′ = BU
β |ρ

′, and therefore ρ′ ≤ νUξ , because ρ
′ is a cardinal of Q′. But then

BU
α is not γ′-sound, contradicting the fact that Q′ = BU

α .

So M ′ = P = BU
α . Let N

′ = NT
α .

Claim 4. OR(N ′) = ((ρ′)+)M
′

, N ′ is active type 1 or type 3, α = β + 1,
EU
β = FN

′

, and if N ′ is type 1 then B∗U
α = Q′.

Proof. Assume, for example, that Subcase 2.2 attains at stage β. So N ′ E Q′ E

BU
β . We have M ′ 6= N ′, both M ′, N ′ project ≤ ρ′, and

M ′||((ρ′)+)M
′

= N ′||((ρ′)+)N
′

.

We have ET
β = ∅, so EU

β 6= ∅ and note that EU
β ∈ E+(N

′) and lhUβ ≥ ((ρ′)+)M
′

.

Since M ′ = BU
α is ρ′-sound it follows that α = β+1 and νUβ = ρ′, so EU

β is type

1 or type 3. Therefore N ′|lhU
β projects to ρ′, so OR(N ′) = lhUβ .

Now suppose further that N ′ is type 1; we want to see that B∗U
α = Q′. We

have Q′ E BU
β and cr(FN

′

) = γ′ and ρω(Q
′) ≤ γ′ and

P(γ′) ∩Q′ = P(γ′) ∩N ′.

So it suffices to see that predU(α) = β. We may assume that lhUδ = ρ′ for
some δ < β. Then ρ′ is a cardinal of BU

β , so Q
′ ⋪ BU

β , so Q
′ = BU

β . So BU
β is
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γ′-sound, so there is a unique δ such that lhUδ = ρ′, and moreover, EU
δ is type 3

and β = δ + 1. Therefore predU (α) = β, as required.

To complete the proof, one can now argue like in Claim 7 of 4.3.

4.6 Remark. We next consider active cephalanxes B = (γ, ρ,M,Q). Here
things are more subtle, for two reasons. First, if Q is type 3 then QT

α can fail the
ISC; this complicates comparison termination. Second, if Q is superstrong then
comparison termination is complicated further, and more importantly, we do not
see how to show B has a good core (4.15), nor how to rule out the possibility that
B is exact and M is sound with ρMm+1 = ρ. It is easy enough to illustrate how
the latter might occur. Let Q be a sound superstrong pm and κ = cr(FQ) and J
be a sound pm with J ||(κ++)J = Q|(κ++)Q and ρJm+1 = (κ+)Q = (κ+)J < ρJm.

Let M = Ultm(J, FQ) and B = (γ, ρ,M,Q), where ρ = ORQ and γ = lgcd(Q).
Suppose M is wellfounded. Then B is an exact, sound cephalanx. (We have

ρMm+1 = ρ < ρMm and M is (m + 1)-sound, and B is exact because iJ,m
FQ and

iQ
FQ are continuous at (κ++)J .) It seems J,Q might arise as iterates of a single
mouse, so it seems B might be iterable.

4.7 Definition. Let T be an iteration tree on an active cephalanx B and
α+ 1 < lh(T ). We say α is T -special iff α ∈ BT and ET

α = F (QT
α ). ⊣

4.8 Lemma. Let T be an iteration tree on an active cephalanx B and α <
lh(T ). Then:

(a) If α ∈ BT then QT
α has superstrong type iff Q does.

(b) If ι(QB) = γB then Q = ∅.

Suppose also that α+ 1 < lh(T ). Then:

(c) If α is T -special then α+1 ∈ BT and predT (α+1) is the least ε ∈ [0, α]T
such that either ε = α or cr(F (QT

ε )) < cr(iTεα).

(d) If B is a pm-cephalanx and exTα is not a premouse then α is T -special (so
exTα = QT

α ) and Q is type 3.

Proof. For (a), recall that in T , we only form simple ultrapowers of QB and its
images.

4.9 Lemma. Let T be an iteration tree on an active pm-cephalanx B = (γ, ρ,M,Q).
Let α < β < lh(T ). Let λ = lhT

α . Then either:

1. β /∈ BT and either (i) λ < OR(BT
β ) and λ is a cardinal of BT

β , or (ii)

β = α + 1, ET
α has superstrong type, λ = OR(BT

β ) and BT
β is an active

type 2 premouse; or

2. β ∈ BT and either (i) λ < ρ(BT
β ) and λ is a cardinal of BT

β , or (ii)

β = α+1, ET
α has superstrong type, λ = ρ(BT

β ), and letting ε = predT (β),

crTα = γ(BT
ε ).
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Therefore if lhTα < lhTβ then lhTα is a cardinal of exTβ .

Proof. If β = α+ 1 it is straightforward to prove the conclusion. Now suppose
β > α+1. If λ < lhTα+1 it is straightforward, so suppose λ = lhTα+1. Then since
the lemma held for β = α + 1, either ET

α+1 is type 2, in which case things are

straightforward, or α+1 is T -special, so letting µ = crTα+1 and χ = predT (α+2),
we have that B∗T

α+2 = BT
χ is a cephalanx and µ < γ(BT

χ ), which implies that

λ < ρ(BT
α+2) and λ is a cardinal of BT

α+2. The rest is clear.

4.10 Definition. Let B = (γ, ρ,M,Q) be an active cephalanx of degree (m, 0).
We say that B is exceptional iff (i) B is exact, (ii) Q has superstrong type,
and (iii) either ρMm+1 = ρ or M is not γ-sound. ⊣

4.11 Lemma. Let M be an m-sound premouse and let ρMm+1 ≤ γ < ρMm . Then

M is γ-sound iff M = HullMm+1(γ ∪ zMm+1 ∪ ~p
M
m ).

Proof. This follows from [12, 2.17].

4.12 Lemma. Let B,B′ be active cephalanxes such that B′ is an iterate of B.
Then B′ is exceptional iff B is exceptional.

Proof. By 3.26, 4.8(a) and 4.11 and [12, 2.20].

4.13 Definition. Let B = (γ, ρ,M,Q) be an active cephalanx of degree (m, 0).
Then B has an exceptional core iff Q has superstrong type and the following
holds. Let F = FQ, κ = cr(F ), X = iQF “(κ

+)Q, m′ = max(m, 0),

H = cHullMm′+1(X ∪ zMm+1 ∪ ~p
M
m ),

π : H →M the uncollapse. Then π“(κ+)H = X and H ||(κ++)H =M |(κ++)M .
⊣

4.14 Lemma. Let B = (γ, ρ,M,Q) be an active pm-cephalanx of degree (m, 0).
Suppose B has an exceptional core. Let F, κ,m′, H, π be as in 4.13. Then:

1. M = Ultm′(H,F ) and π = iH,m
′

F is an m′-embedding.

2. π(zHm+1) = zMm+1 and π(pHm+1\(κ
+)H) = pMm+1\ρ.

3. ρHm+1 ≤ (κ+)H < ρHm and H is (κ+)H-sound.

4. If ρHm+1 = (κ+)H then ρMm+1 = ρ and H,M are (m+ 1)-sound.

5. If ρHm+1 ≤ κ then ρHm+1 = ρMm+1 and M is not (m+ 1)-sound.

6. If M = HullMm′+1(α ∪ zMm+1 ∪ ~p
M
m ) where α < ρ and α is least such, then

α ∈ rg(π).
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Proof. Part 1: If m′ = −1 this is easy, so suppose m = m′ ≥ 0. The uncollapse
map π : H →M is a near m-embedding. Let π(z̄) = zMm+1. We have

H = HullHm+1((κ
+)H ∪ {z̄, ~pHm}), (3)

and H ||(κ++)H = M |(κ++)M , so H collapses (κ++)M and H /∈ M . It follows
that π is an m-embedding. Now

M = HullMm+1(γ
+M ∪ {zMm+1, ~p

M
m }), (4)

Let M ′ = Ultm(H,F ) and π′ = iH,mF and σ : M ′ → M the natural factor map.
Then π′ is an m-embedding and σ is m-lifting and σ ◦ π′ = π, and since π is an
m-embedding, in fact so is σ. But cr(σ) ≥ lh(F ) = γ+M and zMm+1 ∈ rg(σ), so
by line (4), M ′ =M and σ = id.

Parts 2–4: If m = −1 this is trivial, so suppose m = m′ ≥ 0. By [12] and
part 1, z̄ = zHm+1 (where π(z̄) = zMm+1), so by 4.11 and line (3) above, H is
(κ+)H -sound and pHm+1\(κ

+)H = z̄\(κ+)H , so

π(pHm+1\(κ
+)H) = zMm+1\ρ = pMm+1\ρ,

since M is ρ-sound. The rest follows from [12].
Part 5: Because ρHm+1 ≤ κ, we have m ≥ 0. Since Q is a type 3 premouse

(as B is a pm-cephalanx) and M ||(κ++)M = H ||(κ++)H , F is close to H , so
ρMm+1 = ρHm+1 ≤ κ. Suppose M is (m+ 1)-sound, so M = HullMm+1(κ ∪ ~pMm+1).

Then M = HullMm+1(rg(π) ∪ q) some q ∈ γ<ω. But the generators of F are
unbounded in γ, a contradiction.

Part 6: Suppose there is α < ρ such that

M = HullMm′+1(α ∪ zMm+1 ∪ ~p
M
m ). (5)

Let α be least such. Note that α ≥ γ, since Q is a premouse and F has
superstrong type. Now if α > γ then α is a successor. For if not, then since
α < ρ, there is a surjection f : γ → α in M , so there is ξ < α with

f ∈ HullMm′+1({ξ, z
M
m+1, ~p

M
m }),

but then max(ξ + 1, γ) < α suffices in place of α, a contradiction.
Since π is cofinal in ρ = γ+M and π is rΣm′+1-elementary and π(zHm+1) =

zMm+1, the existence of α reflects to H , in that there is β < (κ+)H such that

H = HullHm′+1(β ∪ zHm+1 ∪ ~p
H
m).

Let β be least such. As above, either β ≤ κ or β = ζ + 1 for some ζ. If β ≤ κ
then note α = γ = π(κ). So suppose β = ζ + 1 > κ. We claim π(β) = α. For

ζ /∈ HullHm′+1(ζ ∪ z
H
m+1 ∪ ~p

H
m),

and this non-membership is an rΠm′+1 assertion in these parameters, which
therefore lifts to M and π(ζ), etc, so π(β) ≤ α. Conversely, because

H = HullHm′+1((ζ + 1) ∪ zHm+1 ∪ ~p
H
m),
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we get π“H = HullMm′+1(π“(ζ +1)∪ zMm+1 ∪ ~p
M
m ) is unbounded in ρ = γ+M , but

γ ≤ π(ζ), so
γ+M ⊆ HullMm′+1(π(ζ + 1) ∪ zMm+1 ∪ ~p

M
m ),

so π(β) ≥ α.

4.15 Definition. Let B = (γ, ρ,M,Q) be an active cephalanx. We say B has
a good core iff the following statements ((a)–(c)) hold:

(a) B has degree (m, 0) with m ≥ 0.

(b) Either

(i) B is exact, and let F = FQ; or

(ii) B is non-exact, and letting N = NB, we have ORN = ρ+M and N
is active type 1 or 3; let F = FN .

(c) Let κ = cr(F ) and ν = ν(F ). Then

(i) M has an (m, ν)-good core at κ, and GMm,κ,ν = F ↾ν.

(ii) Suppose case (ii) above holds and N is type 1; so κ = γ. Then:

– If Q is type 2 then HM
m,κ = Q.

– Suppose Q is not type 2, nor superstrong. Let µ = cr(FQ). Then
M has an (m, γ)-good core at µ, and GMm,µ,γ = FQ. ⊣

4.16 Remark. It seems that B might have an exceptional non-good core.

4.17 Theorem. Let B = (γ, ρ,M,Q) be an (ω1+1)-iterable, non-trivial, active
pm-cephalanx, of degree (m, q). Then:

– If B is exceptional then B has an exceptional core (see 4.13, 4.14).

– If B is non-exceptional then m ≥ 0 and B has a good core (see 4.15), so
B is not sound (i.e. M is not (m+ 1)-sound).

Proof. Suppose first that B is exact and Q is superstrong, but B is not excep-
tional. Then ρMm+1 ≤ γ ≤ (γ++)M = ρ+M ≤ ρMm and M is γ-sound, as is Q.

Note then that m ≥ 0, since otherwise ORM = ρM−1 = ρMm = ((ρMm+1)
+)M . So

C = (γ,M,Q) is a non-trivial bicephalus, and note that C is (ω1 + 1)-iterable.
So by 4.3, M has an (m, γ)-good core corresponding to FQ, and because B is
exact, this implies that B has a good core (4.15). So we may now assume that:

If B is exact and Q is superstrong, then B is exceptional. (6)

Under this assumption, the proof is based on that of 4.5. The main differ-
ences occur in the rules guiding the comparison, the proof that the comparison
terminates, and when B is exceptional. We may assume B is countable.

We define T ,U on B and sets ST
α , S

U
α ,M

T
α ,M

U
α , much as before. (But if Q

is type 1 or 3 then ST
α 6= {1} 6= SU

α for all α.) If ST
α = {0, 1} and BT

α+1 = BT
α
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and ST
α+1 = {0}, we say that (in T ) we move into MT

α at stage α. We never
move into QT

α ; that is, if α ∈ BT then ST
α 6= {1}. Likewise for U . Also, we

allow α such that ET
α = ∅ = EU

α , but only when we move into MT
α or MU

α at
stage α. If we move into MT

α in at stage α, we will have ET
α = ∅ and either

EU
α = ∅ or EU

α = F (QT
α ). Likewise for U . We will not move into both MT

α

(in T ) and MU
α (in U) at stage α. If α ∈ BT and lh(ET

α ) > ρ(BT
α ) (that is,

ET
α ∈ E+(M

T
α )\E+(Q

T
α )), then we will have ST

α = {0}, so there is some β < α
such that BT

β = BT
α and at stage β we move into MT

β =MT
α . Likewise for U .

Suppose we have defined (T ,U) ↾ α + 1, ST
α and SU

α . Suppose there are
A ∈ M

T
α and B ∈ M

U
α such that A 5 B 5 A; otherwise the comparison

terminates at stage α. We next determine what to do at stage α. In certain
cases we implicitly specify two segmented-premice A,B, with A 5 B 5 A, from
which to select ET

α , E
U
α . We then find the least disagreement between A,B,

and then minimize on ι(E), rather than ν(E), when selecting extenders. (For
example, if ET

α 6= ∅ 6= EU
α then ιTα = ιUα .)

Let BT = BT
α , M

T = MT
α , etc. If ST = {0, 1}, then we will have by

induction that (†) for every β < α, if ET
β 6= ∅ then lhTβ ≤ ρT and ιTβ ≤ γT , and

if EU
β 6= ∅ then lhUβ ≤ ρT . Likewise regarding ρU , γU if SU = {0, 1}. We leave

the maintenance of (†) to the reader.
We say that α is (T ,U)-unusual iff ST = {0, 1} and either

(i) there is ξ < α such that F (QT )↾ν(F (QT )) = EU
ξ ↾νUξ , or

(ii) there are ξ0 < ξ1 < α such that

– α = ξ1 + 1,

– ST
ξ0

= {0, 1} and ET
ξ0

= ∅ and EU
ξ0

= F (QT
ξ0
) and ST

ξ0+1 = {0},

– SU
ξ1

= {0, 1} and EU
ξ1

= ∅ and ET
ξ1

= F (QU
ξ1
) and SU

ξ1+1 = {0},

– crTξ1 = γ(BT
ξ0
).

In case (i)/(ii) we say that α is type (i)/(ii). We define (U , T )-unusual sym-
metrically.

Case 1. α is both (T ,U)- and (U , T )-unusual.
We terminate the comparison here with unusual failure 1. (We will show

that this can not occur.)

From now on, we assume that α is not both (T ,U)- and (U , T )-unusual.

Case 2. Either:

– card(ST ) = card(SU ) = 1, or

– ST = {0, 1} and BT ||ρT 6= BU ||ρT and if SU = {0, 1} then ρT ≤ ρU , or

– SU = {0, 1} and BU ||ρU 6= BT ||ρU and if ST = {0, 1} then ρU ≤ ρT .

Select extenders by least disagreement and minimization on ι(E) (there is
no moving into models).
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Case 3. ST = {0, 1}, BT ||ρT = BU ||ρT and if SU = {0, 1} then ρT < ρU .

Subcase 3.1. α is (T ,U)-unusual (hence not (U , T )-unusual).
If BU |ρT is active, we terminate with unusual failure 2 (we will show this

cannot occur). Otherwise, in T we move into MT , and we set ET
α = ∅ = EU

α

and SU
α+1 = SU

α .

Subcase 3.2. α is (U , T )-unusual (hence not (T ,U)-unusual).
We terminate with unusual failure 3. (We will show this cannot occur.)

Subcase 3.3. α is neither (T ,U)- nor (U , T )-unusual.
If QT E BU then in T we move into MT , and we set EU

α = F (QT ).
If QT 5 BU then we select extenders from QT and BU .25

Case 4. SU = {0, 1}, BU ||ρU = BT ||ρU and if ST = {0, 1} then ρU < ρT .
We have subcases 4.1–4.3 analogous to 3.1–3.3.

Case 5. SU = {0, 1} = ST , and BT ||ρT = BU ||ρU (so ρT = ρU ).

Subcase 5.1. α is either (T ,U)-unusual or (U , T )-unusual.
We terminate with unusual failure 4. (We will show this cannot occur.)

Subcase 5.2. Otherwise.
If QT 6= QU , we select extenders from QT and QU .26

If QT = QU , either

– in T we move into MT , and set EU
α = F (QT ) = F (QU ), or

– in U we move into MU , and set ET
α = F (QT ) = F (QU).27

This completes the rules of comparison. Given α < lh(T ,U) such that
α ∈ BT but ST

α = {0}, we set movinT (α) = the β ≤T α such that BT
α = BT

β

and at stage β, in T we move into MT
β =MT

α . Likewise for movinU .
By Claim 1(7) below, the comparison does not terminate unusually. By

Claim 1(4), no two extenders used in T and U are equivalent to each other. If
B is active and Q type 3 then QT

α might fail the ISC, so this needs an argument.

Claim 1. Let η ≤ lh(T ,U). Then:

1. If Q is type 1/3 then ST
α 6= {1} 6= SU

α for all α < η.

2. If Q is type 1/2 then for every α < η, MT
α , QT

α are premice (or empty).

3. For all α+ 1 < η:

25It might be that BU |OR(QT ) is active with extender E and ι(F (QT )) > ι(E), in which
case ET

α = ∅ and EU
α = E. In this case we keep ST

α+1
= {0, 1}. If E is superstrong, we could

end up with F (QT ) active on some S ∈ MU
α+1

.
26Here it would have been equivalent to set ET

α = F (QT ) and EU
α = F (QU ). We don’t

do this because if Q is type 2, it seems it might break the rule that we minimize on ι(E)
before selecting extenders - albeit in a trivial manner. (Suppose Q is type 2. Then so are
QT and QU . Suppose ι(QT ) = ν(QT ) < ν(QU ) = ι(QU ), so ET

α = F (QT ) and EU
α = ∅ and

SU
α+1 = {0, 1}. Since QT is type 2, we have BT

α+1|OR(QU ) is well-defined and is passive, so

we end up with ET
α = ∅ and EU

α+1
= F (QU ).)

27We choose a side randomly. We could have specified one, but at a loss of symmetry.
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(a) ET
α = ∅ = EU

α =⇒ [α is either (T ,U)- or (U , T )-unusual].

(b) ET
α = ∅ = EU

α ⇐= [α is either (T ,U)- or (U , T )-unusual].

(c) If we move into MT
α at stage α then BT

α ||ρ
T
α = BU

α ||ρ
T
α and ET

α = ∅
and [either EU

α = ∅ orEU
α = F (QT

α )] and if SU
α = {0, 1} then ρTα ≤ ρUα .

(d) If α ∈ BT and ET
α ∈ E+(M

T
α )\E+(Q

T
α ) then S

T
α = {0}.

4. For all α+ 1, β + 1 < η, if ET
α 6= ∅ 6= EU

β then ET
α ↾νTα 6= EU

β ↾νUβ .

5. Let α < η be (T ,U)-unusual. Then:

(i) Q is type 3 and QT
α is not a premouse.

(ii) α is not (U , T )-unusual.

(iii) Case 3 of the comparison rules attains at stage α and BT
α ||ρ

T
α =

BU
α |ρ

T
α is passive.

(iv) For all β ∈ [α, η), if β ∈ BT then cr(F (QT
β )) 6= γTα , and if β ∈ BU

then cr(F (QU
β )) 6= γTα .

(v) Suppose α is type (i), as witnessed by ξ. Then:

(a) Q is not superstrong,

(b) ET
ξ = ∅ and α = ξ + 1,

(c) lhUξ < γTα ,

(d) the trivial completion of EU
ξ ↾νUξ is a type 3 premouse extender,28

(vi) Suppose that α is type (ii), as witnessed by ξ0, ξ1. Then:

(a) Q is superstrong,

(b) B is exact,

(c) M∗T
α = BT

ξ0
,

(d) F (QT
α ) = ET

ξ1
◦ EU

ξ0
.

(e) MT
α ||((ρTα )

+)M
T

α =MU
α ||((ρ

T
α )

+)M
U

α .

6. Likewise for (U , T )-unusual α < η.

7. The comparison does not terminate unusually at any stage α < η.

Proof. We prove all parts together by simultaneous induction on η.
Parts 1, 2, 3a, 3c, 3d: by the rules of comparison and for normal trees.
Part 4: Suppose otherwise. Then by part 2 and the rules of comparison, Q

is type 3, so part 1 applies. Let (α, β) be the lexicographically least counterex-
ample (with α+ 1, β + 1 < η). Let λ = lhTα .

Suppose that lhUβ = λ. So ET
α = EU

β , so by the rules of extender selection,
α 6= β. So suppose α < β (the other case is almost symmetric). The rules
give some δ ∈ [α, β) with EU

δ 6= ∅; let δ be least such and let G = EU
δ . Then

28Recall that a premouse extender is the active extender of some premouse.
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lh(G) = λ = lhUβ , so G has superstrong type, ιTα = ι(G) and δ = α but ET
α 6= G.

Let ε = predU (α+ 1). By 4.9, α+ 1 ∈ BU and cr(G) = γ(BU
ε ). So α is not U-

special, so G is a premouse extender. Note β = α+1 and F (QU
α+1) = EU

β = ET
α .

Standard extender factoring arguments (for example, see [12, §5]) now show that
there is α′ < α such that ET

α′ = G. But (α′, α) <lex (α, β), contradiction.

So we may assume that λ = lhT
α < lhUβ ; so α < β. Then exUβ is not a

premouse because, letting ν = νTα , we have ν < lhT
α and lhTα is a cardinal of

exUβ , but E
U
β ↾ν /∈ exUβ . So β is U-special. But then β is (U , T )-unusual (of type

(i)). So by induction (with parts 6 and 7, as β+1 < η), β is not (T ,U)-unusual.
Note then that, by induction, in the rules of comparison, Subcase 4.1 of Case 4
attains at stage β, so EU

β = ∅, a contradiction.

Part 5: Let α < η be (T ,U)-unusual. So ST
α = {0, 1}. Let BT = BT

α ,
MT =MT

α , etc. Let F = F (QT ) and µ = cr(F ).

Case 1. α is (T ,U)-unusual of type (i).
Parts (i), (v)(c): Let us show lhUξ < ρT = lh(F ). Suppose not. Then

lhUξ = ρT = lh(F ) and EU
ξ = F . It follows that ET

δ 6= ∅ for some δ ∈ [ξ, α).

Let δ be least such and G = ET
δ . As in part 4, G is a superstrong premouse

extender also used in U , contradicting part 4.
Since lhUξ < ρT , QT is not a premouse, so Q is type 3. It easily follows that

lhUξ < γT , since if γ is a successor cardinal in Q then QT is a premouse.

Part (v)(a) (Q is not superstrong): Suppose otherwise. Then because QT

is not a premouse, there is δ <T α such that QT
δ is a premouse and cr(jTδα) =

γ(BT
δ ) (otherwise j

T
0α is continuous at γB and QT is a premouse). So QT fails

the ISC. So EU
ξ is not a premouse extender and ξ is U-special. But then F (QU

ξ )

has superstrong type, so lhUξ = ρT , a contradiction.

Part (v)(b) (ET
ξ = ∅, α = ξ+1): We have iF (µ) > ρT , soBU

ξ+1|ρ
T = QT ||ρT .

Now suppose there is δ ∈ [ξ, α) such that ET
δ 6= ∅. Fix the least such with

δ + 1 ≤T α. Let ε = predT (δ + 1). So ε ∈ BT and κ = crTδ ≤ γTε . If
κ < ν(F (QT

ε )) then ν(F ) > νUξ , contradiction. So κ ≥ ν(F (QT
ε )). But then

as before, ET
δ is a premouse extender used in both T ,U , a contradiction. The

desired conclusions follow.
Part (v)(d): By an extender factoring as before; otherwise there is δ < ξ

such that EU
δ is a premouse extender also used in T , a contradiction.

Part (ii) (α is not (U , T )-unusual): Suppose otherwise. Then ST
α = {0, 1} =

SU
α , so α is type (i) with respect to both kinds of unusualness (directly by

definition). But by part (v) and symmetry, therefore α = ξ + 1 with ET
ξ = ∅

(by (T ,U)-unusualness of type (i)), but ET
ξ 6= ∅ (by (U , T )-unusualness of type

(i)), a contradiction.
Part (iii) (Case 3 attains and BT ||ρT = BU |ρT ): This is because α is

non-(U , T )-unusual, ST
α = {0, 1} and since by part (v) and its proof, we have

QT ||ρT = BU |ρT and ρT < iF (µ) = i∗Uα (µ).
Part (iv): We have µ = cr(QT

α ) < γTα . If α ∈ BU then cr(F (QU
α)) 6= γTα

since α = ξ + 1 and lhUξ < ρT < i∗Uα (µ). Moreover, ρT is a cardinal in MU
α , so
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if β ≥ α and EU
β 6= ∅ then ρT ≤ ι(EU

β ), which easily gives that if β + 1 ∈ BU

then cr(F (QU
β )) 6= γTα . And at stage α, in T we move into MT , so the rest is

similar.

Case 2. α is (T ,U)-unusual of type (ii).
Let F0 = F (QT

ξ0
) = EU

ξ0
, µ0 = cr(F0), F1 = F (QU

ξ1
) = ET

ξ1
, µ1 = cr(F1).

Part (ii) (α is not (U , T )-unusual): By definition of (T ,U)-unusual type (ii),
SU
α = {0}.
Part (vi)(a) (Q is superstrong): Suppose not. Let δ ∈ [ξ0, ξ1) be least such

that δ + 1 ≤U ξ1. Let G = EU
δ and θ = cr(G). Then θ ≤ µ1 < iG(θ), so

µ1 /∈ rg(jU0ξ1), but µ1 = cr(F (QU
ξ1
)), so µ1 ∈ rg(jU0ξ1), contradiction.

Part (vi)(c) (M∗T
α = BT

ξ0
): Let β < α with ET

β 6= ∅, so β 6= ξ0. If β < ξ0
then ιTβ ≤ ι(F0) by (†), and ι(F0) = µ1 as Q is superstrong. As ST

ξ0+1 = {0},

ρTξ0 ≤ ιTβ if β > ξ0. This suffices.
Parts (i), (iii), (vi)(d): These are easy consequences of the fact that Q is

superstong and α type (ii) (in particular, QT
α fails the ISC, so is not a premouse).

Part (iv): much like in the type (i) case.
Part (vi)(b) (B is exact): We have ξ1 ∈ BU and cr(F (QU

ξ1
)) = µ1 = ι(EU

ξ0
).

Let ε = predU(ξ0 + 1). Since µ1 ∈ rg(jU0ξ1), it is easy to see that either:

(1) ξ0 +1 ≤U ξ1 (so ε, ξ0+1 ∈ BU ) and cr(F (QU
ξ0+1)) = µ1 and cr(F (QU

ε )) =

µ0 = cr(EU
ξ0
), or

(2) ξ0 + 2 ≤U ξ1 (so ξ0 + 2 ∈ BU ) and cr(F (QU
ξ0+2)) = µ1 and ε, ξ0 + 1 ∈ BU

and γ(BU
ε ) = µ0 = cr(EU

ξ0
) and γ(BU

ξ0+1) = µ1 and EU
ξ0+1 = F (QU

ξ0+1).

We claim that (1) holds, so suppose (2) holds. Now EU
ε 6= ∅ just by definition,

as ε = predU (ξ0 + 1). We have M∗U
ξ0+1 = BU

ε and by the normality rules,

cr(EU
ξ0
) = γ(BU

ε ) < ι(EU
ε ), and since Q is superstrong, therefore EU

ε /∈ E+(Q
U
ε ).

So by part 3d, ST
ε = {0}, so there is ε′ < ε with BU

ε′ = BU
ε , where at stage ε′

we move into MU
ε′ =MU

ε in U . Note that ε′ is not (U , T )-unusual, by part (iv)
and since γ(BU

ε ) = µ0 = cr(F (QT
ξ0
)). And ε′ is not (T ,U)-unusual (type (ii))

as SU
ε′ = {0, 1}. So by 3a and 3c, ET

ε′ = F (QU
ε ) and E

U
ε′ = ∅. But then ξ0 + 1 is

(U , T )-unusual, so EU
ξ0+1 = ∅ 6= F (QU

ξ0+1), contradiction.

Since EU
ξ0

is total overBU
ε , (µ0

++)Q
T

ξ0 ≤ (µ0
++)B

U

ε and (QT
ξ0

∼ BU
ε )||(µ0

++)Q
T

ξ0 .

Let U0 = Ult(QT
ξ0
, F0). Since k = i

QT

ξ0

F0
is continuous at (µ0

++)Q
T

ξ0 , then

(µ1
++)U0 ≤ (µ1

++)B
T

ξ0+1 and (U0 ∼ BU
ξ0+1)||(µ1

++)U0 .

Suppose B is not exact. By 3.26, neither is BT
ξ0
. So (µ1

++)M
T

ξ0 < (µ1
++)U0

and (MT
ξ0

∼ U0 ∼ BU
ξ0+1)||(µ1

++)M
T

ξ0 , but by non-triviality, MT
ξ0

⋪ U0. So

MT
ξ0

⋪ BU
ξ0+1. We have ET

ξ0
= ∅ and ST

ξ0+1 = {0} and MT
ξ0+1 =MT

ξ0
. So

(µ1
++)M

T

ξ0 ≥ (µ1
++)ex

T

ξ1 = (µ1
++)B

U

ξ1 = (µ1
++)B

U

ξ0+1 > (µ1
++)M

T

ξ0 ,

contradiction.
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Part (vi)(e): Arguing as just above, we have µ′′
0 = (µ0

++)B
U

ε = (µ0
++)Q

T

ξ0

and (QT
ξ0

∼ exUξ0 ∼ BU
ε )||µ

′′
0 . By exactness on both sides, this easily gives the

claimed agreement between MT
α and MU

α .

Part 6 is symmetric.
Part 3b: Suppose α + 1 < η and α is (T ,U)-unusual. By part 5, Case 3

attains, α is non-(U , T )-unusual, and MU
α |ρ

T
α is passive, so Subcase 3.1 attains

and ET
α = ∅ = EU

α .
Part 7 follows similarly from part 5.

Claim 2. Suppose Q is type 3, SU
ξ1

= {0, 1}, ET
ξ1

= F (QU
ξ1
), ξ1 + 1 ∈ BT and

crTξ1 = γTε where ε = predT (ξ1 + 1). Then ξ1 + 1 is (T ,U)-unusual of type (ii).

Proof. Suppose not. Note that ET
ε ∈ E+(M

T
ε )\E+(Q

T
ε ), so ξ0 = movinT (ε)

exists. If EU
ξ0

= F (QT
ξ0
) then ξ1 + 1 is (T ,U)-unusual type (ii). But if EU

ξ0
= ∅

then, as ET
ξ0

= ∅, ξ0 is (T ,U)-unusual, so by Claim 1(5) (iv) γTξ0 6= cr(F (QU
ξ1
)),

contradiction.

Claim 3. The comparison terminates at some countable stage.

Proof. We may assume that Q is type 3, since otherwise every extender used in
(T ,U) is a premouse extender and the usual argument works.

Suppose (T ,U) reaches length ω1 + 1. Let η ∈ OR be large, ̺ : X → Vη be
elementary with X countable transitive and everything relevant in rg(̺). Let
µ = cr(̺). Let W = BT

ω1
||ω1 = BU

ω1
||ω1. As is routine, either iTµω1

or jTµω1
is

defined, if iTµω1
is defined then (µ+)M

T

µ = (µ+)W and (MT
µ ∼ W )||(µ+)W and

iTµω1
⊆ ̺ and likewise if jTµ,ω1

is defined. Likewise for U .

Let ξ0 be least such that ET
ξ0

6= ∅ and κ <T ξ0 +1 <T ω1, and α likewise for

U . Let us assume that ξ0 ≤ α; otherwise it is symmetric. Let ι = ιTξ0 ≤ ιTα . As

usual, ET
ξ0
↾ ι = EU

α ↾ ι.

Subclaim 3.1. We have:

(a) The trivial completion of ET
ξ0
↾νTξ0 is a premouse extender.

(b) ξ0 < α and ιTξ0 < ιUα and νTξ0 < νUα and lhTξ0 < lhU
α .

(c) EU
α ↾νTξ0 /∈ exUα , so exUα is not a premouse and α is U-special.

Proof. Part (a): We have νTξ0 ≤ νUα because ιTξ0 ≤ ιUα and by compatibility.
So part (a) follows from standard extender factoring (otherwise we get some
premouse extender which factors into ET

ξ0
, used in both T ,U ; cf. [12, §5]).

Part (b): If ιTξ0 = ιUα then ET
ξ0

= EU
α , contradicting Claim 1(4). So ιTξ0 < ιUα ,

so ξ0 < α. We have νTξ0 ≤ νUα . But νTξ0 6= νUα by Claim 1(4). So νTξ0 < νUα . We

have lhTξ0 ≤ lhUα . Suppose lhTξ0 = λ = lhUα . Let P = exUα and δ = lgcd(P ) =

lgcd(exTξ0). Then E
T
ξ0
/∈ P . Since νTξ0 < νUα and by part (a), therefore P is not a
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premouse. So α is U-special, so ιTξ0 < δ = ιUα . But ιTξ0 ≥ δ as δ = lgcd(exTξ0), a

contradiction. So lhTξ0 < lhUα .

Part (c): lhTξ0 is a cardinal of P = exUα and ET
ξ0
/∈ P , by 4.9 and agreement

between models of T and U . Since νTξ0 < νTα and by part (a), P fails the ISC,
and so α is U-special.

Let ε <U α be largest such that F (QU
ε ) ↾ ν(F (Q

U
ε )) satisfies the ISC. Let

ξ1+1 = min((ε, α]U ). So E
U
ξ1

6= ∅ but ξ1 is not U-special. Let F0 = F (QU
ε ); then

ET
ξ0
↾νTξ0 = F0 ↾ν(F0). Let δ be least such that ET

δ 6= ∅ and ξ0+1 <T δ+1 <T ω1.

Let ι1 = min(ιUξ1 , ι
T
δ ). Extender factoring gives ET

δ ↾ ι1 = EU
ξ1
↾ ι1.

Subclaim 3.2. (a) exUξ1 is a premouse, (b) δ > ξ1 and ιTδ > ιUξ1 and νTδ > νUξ1
and lhTδ > lhUξ1 , (c) E

T
δ ↾νUξ1 /∈ exTδ , so exTδ fails the ISC and δ is T -special.

Proof. Like Subclaim 3.1 and because ξ1 is not U-special.

Subclaim 3.3. QU
α = QU

ξ1+1, so E
U
α is equivalent to EU

ξ1
◦ ET

ξ0
.

Proof. Suppose not. Fix γ′ least with EU
γ′ 6= ∅ and ξ1 + 1 <U γ′ + 1 ≤U α. Fix

γ least with ET
γ 6= ∅ and γ + 1 <T δ and F (QT

γ+1) ↾ ν(F (Q
T
γ+1)) fails the ISC.

Then both exTγ and exUγ′ are premice, and extender factoring gives exTγ = exTγ′ ,
contradiction.

Subclaim 3.4. Q is superstrong and ξ1 + 1 is (U , T )-unusual type (ii).

Proof. Let µ0 = µ = cr(ET
ξ0
) = cr(QU

ε ). Recall F0 = F (QU
ε ). Let µ1 =

cr(ET
δ ) = cr(EU

ξ1
). As M∗U

ξ1+1 = BU
ε , we have µ1 ≤ γUε ≤ iF0(µ0). And as δ is

T -special, we have ξ0 + 1 = predT (δ + 1) ≤T δ and

µ1 = cr(F (QT
δ )) = iT0δ(cr(F

Q)) = iT0,ξ0+1(cr(F
Q)),

so µ1 ∈ rg(iTµ0,ξ0+1). But µ1 > µ0, so µ1 ≥ iTµ0,ξ0+1(µ0). But ET
ξ0

is equivalent

to F0, so putting things together, iTµ0,ξ0+1(µ0) = µ1 = γUε = iF0(µ0).

It follows that QU
ε and Q are superstrong, QU

ε is therefore a premouse,
ν(F0) = µ1 = ν(ET

ξ0
) and exTξ0 = QU

ε = QU
ξ0

(and BU
ε = BU

ξ0
, though maybe

ε > ξ0). Therefore in U , we move into MU
ξ0

at stage ξ0, and E
T
ξ0

= F (QU
ξ0
), and

γUξ0 = µ1.

Let ϕ <T δ be largest such that F (QT
ϕ ) ↾ ν(Q

T
ϕ ) satisfies the ISC. Since

Q is superstrong, QT
ϕ is a superstrong premouse, so ν(QT

ϕ ) = γTϕ . By the

claims above, γTϕ = ν(EU
ξ1
) and in fact QT

ϕ = exUξ1 , and hence QT
ξ1

= exUξ1 (and

BT
ϕ = BT

ξ1
, though maybe ϕ > ξ1), and in T , we move into MT

ξ1
at stage ξ1.

We have therefore established that ξ1 + 1 is (U , T )-unusual of type (ii), as
witnessed by ξ0, ξ1.
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By the last subclaim and rules of comparison, ET
ξ1+1 = ∅ = EU

ξ1+1, and in

U , we move into MU
ξ1+1 at stage ξ1 + 1. So ξ1 + 2 ∈ M U and MU

ξ1+2 = MU
ξ1+1,

so note OR(QU
ξ1+1) < ζ = lh(ET

ξ1+2) or OR(QU
ξ1+1) < ζ = lh(EU

ξ1+2), whichever

extender is defined. But EU
α = F (QU

α) and α ≥ ξ1 + 1, so α > ξ1 + 1, but
by Subclaim 3.3, QU

α = QU
ξ1+1, so lh(EU

α ) < ζ, a contradiction, completing the
proof that comparison terminates.

We now analyse the manner in which the comparison terminates. Let α+1 =
lh(T ,U). Let BT = BT

α , etc. We say that the comparison terminates early
if α = β + 1 for some β and ET

β = ∅ = EU
β . We begin with the non-exceptional

case:

Claim 4. Suppose that B is non-exceptional. Then:

– α ∈ BT ∆BU and card(ST ) = card(SU ) = 1 and M
T = M

U .

– m ≥ 0 and the cephalanx C ∈ {BT , BU} has a good core.

Proof. Note that (∗) either B is non-exact or Q is non-superstrong, because B
is non-exceptional and by line (6). So if any β is (T ,U)- or (U , T )-unusual, by
Claim 1, it is type (i).

Suppose that card(SU ) = 2, so M
T = {Z} with Z ⊳ BU . So Z is sound,

α ∈ BT , β = movinT (α) is defined and MT = Z = MT
β . So either (a)

EU
β = F (QT

β ) or (b) [β = ξ + 1 is (T ,U)-unusual type (i) and EU
ξ is equivalent

to F (QT
β )]. If B,BT

β are non-exact then since they are non-trivial, MT
β 6=

NBT

β ⊳ BU , contradicting that MT
β = MT ⊳ BU . If B,BT

β are exact, so Q,QT
β

non-superstrong, then note that we get enough agreement that ((ρTβ )
+)M

T

β =

((ρTβ )
+)B

U

β+1 , which again gives a contradiction. Likewise card(ST ) = 1.

So card(ST ) = card(SU ) = 1. Likewise M
T = M

U . We have α ∈ BT ∪ BU

as usual. Suppose α ∈ BT ∩ BU . Let βT = movinT (α) and βU = movinU (α).
Then βT 6= βU , so suppose βT < βU . Then ET

γ = ∅ for all γ ≥ βT , and hence

βU is (U , T )-unusual, hence type (i) (see above), so βU = ξ + 1 and ET
ξ 6= ∅,

contradiction.
So α ∈ BT ∆BU and we may assume α ∈ BT \BU . So ST = {0} and letting

M
T = {Z} = M

U , Z = MT = BU is unsound. We need to show that m ≥ 0
and BT has a good core. Let β = movinT (α). Basically as above, ET

γ = ∅ 6= EU
γ

for all γ > β.

Case I. β is (T ,U)-unsual (equivalently, ET
β = ∅ = EU

β ).

So β = ξ+1 is type (i), EU
ξ is equivalent to F (QT ), and Q is type 3 but not

superstrong. We have BU
β = BU

β+1 and SU
β = SU

β+1 and (MT ∼ BU
β+1)|ρ

T .

Subcase I.1. MT 6= BU
β+1.

Then EU
β+1 6= ∅ and ρT < lhUβ+1 and ρT is a successor cardinal of BU

β+1. So

ρT ≤ ιUβ+1. Since M
T is ρT -sound, it follows that there is exactly one ordinal δ

such that δ ≥ β+1 and δ+1 ≤U α, and in fact δ+1 = α. So exUδ is a premouse,
as α /∈ BU . Since MT is ρT -sound, therefore δ = β + 1 and EU

β+1 is type 1 or
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type 3, with lhU
β+1 = ((ρT )+)M

T

. It follows that m ≥ 0 and BT is non-exact,

and letting F ∗ = F (NBT

) and κ∗ = cr(F ∗), we have EU
β+1 = F ∗, and MT has

an (m, ρT )-good core at κ∗, and GM
T

m,κ∗,ρT
= F ∗ ↾ ρT and HMT

m,κ∗ = B∗U
α . Also,

if F ∗ is type 1 then predU (α) = β + 1 and β + 1 /∈ BU and B∗U
α = BU

β+1, and

MT has an (m, γT )-good core at cr(F (QT )), etc. So BT has a good core.

Subcase I.2. MT = Z = BU
β+1.

This is a simplification of the previous case, but here, the comparison ter-
minates early (so α = β + 1), and BT , B are exact.

Case II. β is not (T ,U)-unusual (so EU
β = F ′ where F ′ = F (QT )).

Subcase II.1. Q is not superstrong.
So F ′ does not have superstrong type. Things work much as in the previous

case, but there are a couple more possibilities, which we just outline. If B is
exact then α = β + 1, and F ′ is the last extender used in U . If B is non-exact

then α = β+2 and like above, F ∗ = F (NBT

) is type 1 or type 3 and is the last

extender used in U . Here if B is non-exact with NBT

is type 1 and QT type 2
then QT = B∗U

α .

Subcase II.2. Q is superstrong.
So F ′ has superstrong type, so by (∗) above, B is non-exact. Things work

much as before, but there are some extra details, which we just illustrate in an
example case. Let ε = predU(β + 1). Note first that if β + 1 ∈ BU then ρT <

ρUβ+1, by Claim 2 and non-exactness. Now κ′ = cr(F ′) < ιUε and ((κ′)+)Q
T

≤

lhUε . Suppose for example that ((κ′)+)Q
T

= lhUε . Then E
U
ε is type 2 and B∗U

β+1 =

exUε , and OR(BU
β+1) = OR(QT ) and BU

β+1 is active type 2, so EU
β+1 = F (BU

β+1).

Note that (QT ∼ BU
ε+1)||((κ

′)++)Q
T

, so by 3.7,

(Ult(QT , F ′) ∼ BU
β+2)||((γ

T )++)Ult(QT ,F ′),

and so EU
β+2 = F (NBT

) (the extender EU
β+2 must exist in the first place, by

non-exactness). We leave the remaining details to the reader.

We can now complete the proof in the non-exceptional case:

Claim 5. If B is non-exceptional then m ≥ 0 and B has a good core.

Proof. Suppose B is non-exceptional. By the previous claim, m ≥ 0 and we
have an iterate B′ of B with a good core. But then the proof of Claim 7 of 4.3
shows that B also has a good core.

We now prove corresponding claims for the exceptional case.

Claim 6. Suppose B is exceptional. Then one of BT , BU is a cephalanx with
an exceptional core.

Proof. We first observe:
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Subclaim 6.1. Suppose the comparison terminates early (so α = β + 1 where
β is unusual). Then β is type (ii), B is exact, SU = {0} = ST , and the final
models of the comparison are MT =MU .

Proof. The fact that β is type (ii) and B exact, is because B is exceptional

and Claim 1. So (ρ+)M
T

= (ρ+)M
U

where ρ = ρT , by Claim 1(5) (vi)(e). But
MT ,MU project ≤ ρ, so MT ⋪MU ⋪MT .

Now we consider a few cases:

Case I. Either (a) ST = {0} = SU and MU ⊳ MT , or (b) ST = {0, 1}.
This case is covered by the next case and symmetry.

Case II. Either (a) ST = {0} = SU and MT ⊳ MU , or (b) SU = {0, 1}.
Note that given either (a) or (b), ST = {0} and MT ⊳BU . So MT is sound,

so α ∈ BT . Let β = movinT (α). Because ρm+1(M
T ) ≤ ρT and MT ⊳ BU , U

does not use any extender E with ρT < lh(E). So if β is (T ,U)-unusual (so
type (ii)) then MT ⊳MU

β =MU
β+1 = BU and α = β+1, contradicting Subclaim

6.1. So (let) EU
β = F ′ = F (QT ). Similarly, β + 1 is not (U , T )-unusual. So

by Claim 2, if β + 1 ∈ BU then ρT < ρUβ+1, so B
U
β+1|ρ

T is well-defined. Let

κ = cr(F ′) and ε = predU(β + 1). We split into two subcases:

Subcase II.1. BU
β+1|ρ

T is active.

Then β + 1 /∈ BU , BU
β+1 is type 2, ρT = OR(BU

β+1), (κ
+)Q

T

= OR(B∗U
β+1),

EU
ε = F (B∗U

β+1), E
U
β+1 = F (BU

β+1), and α = β + 2. Let R = B∗U
β+1 and G =

FR = EU
ε and U = Ult0(R,G). Then (κ+)U = (κ+)Q

T

= ORR and

(U ∼ QT )||(κ++)Q
T

,

but (κ++)U > (κ++)Q
T

because BT is exact and MT ⊳ BU and by 3.9.

LetH⊳U and h ∈ {−1}∪ω with ρHh+1 = (κ+)H < (κ++)H = (κ++)Q
T

≤ ρHh .

Let H∗ = iUF ′(H); so H∗ ⊳Ult0(U, F
′). Note iUF ′ is continuous at (κ+)Q

T

.
We claim that Ulth(H,F

′) E H∗. For if h = −1 then by continuity, in fact
Ult−1(H,F

′) = H∗, so suppose h ≥ 0. Let

σ : Ulth(H,F
′) → H∗

be the factor map σ([a, f ]H,hF ′ ) = iUF ′(f)(a). Arguing like in §2, we get that
H,σ ∈ Ult0(U, F

′) and the hypotheses of 2.13 hold for H,σ, h,H∗. By 2.13
(and its first order nature), R |=“Lemma 2.13 holds for my proper segments”.
Therefore Ulth(H,F

′) E H∗, as desired.

So Ulth(H,F
′) ⊳ BU

β+2. But ((ρT )+)Ulth(H,F
′) = ((ρT )+)M

T

, so h = m and

MT = Ulth(H,F
′). It easily follows that BT has an exceptional core, and with

X,m′ as in 4.13,

H = cHullM
T

m′+1(X ∪ zM
T

m+1 ∪ ~p
MT

m ).
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Subcase II.2. BU
β+1|ρ

T is passive.

Then α = β + 1, so MT ⊳ BU
β+1 = BU . Let R = B∗U

α . If α ∈ BU then

κ < γ(R), so (κ++)R is well-defined. In any case, κ is not the largest cardinal

of R. We have (κ+)R = (κ+)Q
T

and (R ∼ Q)||(κ++)Q
T

. If (κ++)R > (κ++)Q
T

then a simplification of the argument in the previous subcase works. Suppose

then that (κ++)R = (κ++)Q
T

. Because MT ⊳ BU , it is easy enough to see
that α /∈ BU , so R is a premouse. If R is active type 3, then (κ+)R < ν(FR),

because if (κ+)R = ν(FR) then OR(BU
β+1) = ((ρT )+)M

T

, a contradiction. Let

d = degU (β + 1). Then i∗Uβ+1 is discontinuous at (κ++)R, and so (κ+)R = ρRd ,

so d > 0. Let r < d be such that ρRr+1 = (κ+)R < ρRr . Then arguing like in the
previous subcase, but using 3.28 instead of 2.13,

MT = Ultr(R,F
′) ⊳ BU

β+1

and BT has an exceptional core (with m = r).

Case III. ST = {0} = SU and MT = MU but the comparison does not termi-
nate early.

Then α ∈ BT ∆BU ; assume α ∈ BT \BU . Let β = movinT (α).

Subclaim 6.2. β is not (T ,U)-unusual.

Proof. Suppose otherwise, so β is type (ii) and ET
β = EU

β = ∅. Since the

comparison does not terminate early and MT is ρT -sound, we have EU
β+1 6= ∅ =

ET
β+1 and α = β + 2 and

ρT = νUβ < lhU
β = ((ρT )+)M

T

.

So ρT is not the largest cardinal in MT , so is also not in MU
β . So exUβ ⊳M

U
β , so

((ρT )+)M
T

< ((ρT )+)M
U

β , contradicting Claim 1(5) (vi)(e).

So EU
β = F ′ = F (QT ).

Subclaim 6.3. β + 1 is not (U , T )-unusual.

Proof. This is like the proof of Subclaim 6.2.

By the subclaim and Claim 2, (1) if β + 1 ∈ BU then ρT < ρUβ+1, and (2)
one of the following holds:

(a) α = β + 1.

(b) α = β + 2 and lhUβ+1 = ρT and EU
β+1 is type 2.

(c) α = β + 2, lhU
β+1 = ((ρT )+)M

T

and EU
β+1 is (i) type 1 or (ii) type 3.

(d) α = β + 3, lhU
β+1 = ρT , EU

β+1 is type 2, lhUβ+2 = ((ρT )+)M
T

and EU
β+2 is

(i) type 1 or (ii) type 3.
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The same general argument works in each case, but the details vary. We just
discuss cases (a), (b), (c)(i) and sketch (d)(i). In each case let ε = predU (β+1)
and R = B∗U

β+1 and κ = cr(F ′). Note that if m = −1 then case (a) attains.

Consider case (a). Since SU = {0}, R is a premouse. Let d = degU (α). So
R is d-sound and MU = Ultd(R,F

′). Clearly d ≥ m. We claim that d > m (so
R is (m+ 1)-sound) and ρRm+1 = (κ+)R < ρRm. For if ρRm+1 > (κ+)R then

ρm+1(M
U ) > ρT ≥ ρm+1(M

T );

and if ρRm+1 ≤ κ then ρm+1(M
U) < ρT and MU is γT -sound, so BT is not

exceptional, contradicting 4.12.

Let Ui = Ulti(R,F
′), so MU = Ud. Note κ++R = κ++BT

and (ρT )+Um =

(ρT )+M
T

, but ρUm

m+1 = ρT , so Um /∈ MT = Ud, so arguing like in the proof of
2.13, Um = Ud and the factor map σ : Um → Ud is the identity (this does not

use condensation). Letting π = iR,mF ′ and H = R, then H, π are as in 4.13.

Now consider case (b). Note that R = exUε , is active type 2 and ORR =

(κ+)B
T

. Note that degU (β + 2) = m and cr(FR) = crUβ+1, so predU (β + 2) =

predU (ε + 1) and B∗U
ε+1 = B∗U

β+2 and degU(ε + 1) = m. Let H = BU
ε+1. Then

Ultm(H,F ′) =MT and letting π = iH,mF ′ , then H, π are as in 4.13.
Now consider case (c)(i).

Subclaim 6.4. In case (c)(i), EU
ε is the “preimage” of EU

β+1 under i∗Uβ+1 and

lhUε = (κ++)B
T

.

Proof. We have exUε E R and (κ+)B
T

= (κ+)ex
U

β = (κ+)R = (κ+)ex
U

ε < lhUε . We

have (κ++)R ≥ (κ++)B
T

and if β+1 ∈ BU then (κ++)R > (κ++)B
T

; the latter
is because exUβ+1 6EMT and exUβ+1 projects ≤ ρT . Let P E R and p ∈ {−1}∪ω
with

ρPp+1 ≤ (κ+)B
T

< (κ++)B
T

= (κ++)P ≤ ρPp

(so P is p-sound). By condensation, like before, UP,p = Ultp(P, F
′) E MU

β+1.

But ((ρT )+)U
P,p

= ((ρT )+)M
T

, and as νUβ+1 = ρT , therefore UP,p = exUβ+1.

So P is type 1, p = 0, ORP = (κ++)B
T

, and EU
ε = FP . Now i∗Uβ+1 is

continuous at (κ+)B
T

. So if P ⊳R then i∗Uβ+1 is continuous at ORP , so i∗Uβ+1(P ) =

exUβ+1 (or ψj(P ) = exUβ+1 where j = i∗Uβ+1). If P = R then Ultp(P, F
′) = MU

β+1

(even if 0 < degU (β + 1)).

Since EU
ε = FP and cr(FP ) = cr(F ′), predU(ε + 1) = ε and B∗U

ε+1 = R and

degU (ε+1) = degU (β+1). Also, predU (β+2) = β+1 and m = degU (β+2) =
degU (ε+ 1). Using this, and letting H = BU

ε+1, we get Ultm(H,F ′) =MT and

letting π = iH,mF ′ , then H, π are as in 4.13.
Finally consider case (d)(i). For illustration, assume that β + 2 /∈ BU . Let

χ = predU (β + 2) and S = B∗U
β+2 and c = degU (β + 2). A combination of the

preceding arguments gives the following:
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– exUε is the (type 2) preimage of exUβ+1 under i∗Uβ+1,

– predU (ε+ 1) = χ and B∗U
ε+1 = S and degU (ε+ 1) = c,

– exUε+1 is the (type 1) preimage of exUβ+2 under the map σ defined below,

– ε = predU (ε+ 2) and degU (ε+ 2) = 0,

– β + 1 = predU (β + 3) and m = degU (β + 3) = 0.

Let J = BU
ε+1 and H = BU

ε+2. Then also, Ultc(J, F
′) = BU

β+2 and letting

σ = iJ,cF ′ , then σ(exUε+1) = exUβ+2 (as mentioned above), and Ult0(H,F
′) =MT ,

etc.
Cases (c)(ii) and (d)(ii) are fairly similar to the preceding cases. However,

while in the preceding cases there is always some ζ < ρT such that

MT = HullM
T

m+1(ζ ∪ {~pMm , z
M
m+1}),

there is no such ζ in (c)(ii) and (d)(ii).

There is just one case left:

Case IV. The comparison terminates early (so by Subclaim 6.1, ST = {0} = SU

and MT =MU).
We may assume that α is (T ,U)-unusual (type (ii)). Let ξ0 < ξ1 < α = ξ1+1

witness this. So ET
ξ1

= F ′ = F (QU ). We have MU =MT . Let H =MT
ξ0
. Then

Ultm(H,F ′) =MT =MU etc.

Since we now have an iterate B′ of B with an exceptional core, the next
claim completes the proof of the theorem:

Claim 7. Suppose that B is exceptional and let B′ be a cephalanx non-dropping
iterate of B. If B′ has an exceptional core then so does B.

Proof. The proof is similar to 4.3, but with some extra argument. We assume
that m ≥ 0 and leave the other case to the reader (the main distinction in that
case is that even though m = −1, all ultrapower embeddings are at least rΣ1

elementary). Fix H,κ, F,X and π : H →M as in 4.13. Let B′ = (γ′, ρ′,M ′, Q′)
and fix H ′, κ′, F ′, X ′, π′ as in 4.13 for B′. Suppose B′ has an exceptional core.
Let i : M → M ′ and j : Q → Q′ be the iteration maps. So j = i ↾ (B||γ+M ).
Note i(κ, ~pMm , z

M
m+1) = (κ′, ~pM

′

m , zM
′

m+1), and for α < γ+M , we have X ∩ α ∈
B||γ+M and

i(X ∩ α) = X ′ ∩ i(α). (7)

From these facts, and because X ′ = (γ′)+M
′

∩ rg(π′), it is easy to see that
X = γ+M ∩ rg(π). It remains to see H ||κ++H =M |κ++M .

Let Y = rg(π) ∩ γ++M . Let σ = iMF and Z = rg(σ) ∩ γ++M . It suffices to
see that Y = Z. Let Y ′, σ′, Z ′ be defined analogously from B′. Because B′ has
an exceptional core, Lemma 4.14 applies, and Y ′ = Z ′ follows. We will use this
to deduce that Y = Z, by breaking Y and Z into unions of small pieces, and
considering how they move under the iteration map i.
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Subclaim 7.1. For any α < γ++M , we have α ∈ Y iff i(α) ∈ Y ′.

Proof. If α ∈ Y then i(α) ∈ Y ′ because i“X ⊆ X ′ and i(zMm+1) = zM
′

m+1.
Suppose α /∈ Y . For β < γ+M and δ < ρMm let Yβ,δ be the set of all ξ < γ++M

such that
ξ ∈ HullMm+1((X ∩ β) ∪ zMm+1 ∪ ~p

M
m ),

as witnessed by some theory below ThMrΣm
(δ∪{~pMm }). (See [3, §2], in particular,

the stratification of rΣm+1 described there, for more details. If m = 0 this
needs to be interpreted appropriately; for example, if M is passive and ORM

is divisible by ω2, that the rΣ1 fact should hold in M |δ.) Then Yβ,δ ∈ M .
Define Y ′

β,δ analogously over M ′. Let I = ρMm × γ+M . Using line (7), we get
i(Yβ,δ) = Y ′

i(β),i(δ), and note Y ′ =
⋃

(β,δ)∈I i(Yβ,δ). The fact that i(α) /∈ Y ′

follows easily.

Subclaim 7.2. For any α < γ++M , we have α ∈ Z iff i(α) ∈ Z ′.

Proof. Let α < γ++M . Let β < κ++M with α < σ(β). Fix a surjection
f : κ+M → β in M . So σ(f) : γ+M → σ(β) is a surjection in M , and note that
rg(σ) ∩ σ(β) = σ(f)“X .

Now we claim that i(σ(f)) = σ′(i(f)). For let C be the prewellorder of
κ+M corresponding to f (so (δ, ε) ∈ C iff f(δ) ≤ f(ε)). Then it suffices to
see that i(σ(C)) = σ′(i(C)). But this holds by continuity at κ+M and because
i(σ(D)) = σ′(i(D)) for all D ∈ P(κ) ∩M .

So let f ′ = i(f) and β′ = i(β) = rg(f ′). Then σ′(β′) = rg(i(σ(f))), so
i(α) < σ′(β′). Therefore i(α) ∈ Z ′ iff i(α) ∈ σ′(f ′)“X ′ iff i(α) ∈ i(σ(f))“X ′.

But we have X ′ =
⋃
δ<γ+M i(X ∩ δ). So α ∈ Z iff α ∈ σ(f)“X iff there

is δ < γ+M such that α ∈ σ(f)“(X ∩ δ) iff there is δ′ < i(γ)+M
′

such that
i(α) ∈ i(σ(f))“(X ′ ∩ δ′) iff i(α) ∈ i(σ(f))“X ′ iff i(α) ∈ Z ′, as desired.

Clearly by the subclaims, we have Y = Z, as desired.
This completes the proof of the claim, and hence the theorem.

5. Condensation from solidity and normal iterability

By (k+1)-condensation29, if H,M are (k+1)-sound premice such thatM is
(k, ω1, ω+1)∗-iterable and π : H →M a near k-embedding with cr(π) ≥ ρ where
ρ = ρHk+1, then (∗Con) either H EM or [M |ρ is active and H⊳Ult(M |ρ, FM|ρ)].

We now prove that (k, ω1 + 1)-iterability suffices for this result. In our
proof, we will replace the phalanx used in the standard proof with a cephal, and
avoid Dodd-Jensen. We will in fact prove a partial analogue of the more refined
version [18, Theorem 9.3.2] (but for Mitchell-Steel indexing, with superstrongs).

29Cf. [3, pp. 87–88] or [18, Theorem 9.3.2].
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We do not achieve a full analogue here, because in the case that H /∈ M we
encounter an obstacle in connection with exceptional cephalanxes. So in this
sense we do not quite prove full condensation. However, if assume also that M
is (k + 1)-solid, we can deduce the full analogous conclusion.30

5.1 Definition. Let M be a k-sound premouse and ζMk+1 ≤ ρ ≤ ρMk . The

ρ-solid-core of M is H = cHullMk+1(ρ∪ z
M
k+1 ∪ ~p

M
k ), and the ρ-solid-core map

is the uncollapse map π : H →M . ⊣

The ρ-solid-core map is a k-embedding, since H /∈M and by 2.4.

5.2 Theorem (Condensation from solidity). Let M be a k-sound, (k, ω1 + 1)-
iterable premouse. Let H be a ρ-sound premouse with ρ ∈ [ρHk+1, ρ

H
k ) an H-

cardinal; let γ = cardM (ρ). Let π : H →M be k-lifting with cr(π) ≥ ρ. Then:

1. If H /∈M then:

(a) ζHk+1 = ζMk+1 ≤ ρ and π(zHk+1) = zMk+1,

(b) H is the ρ-solid-core of M and π is the ρ-solid-core map,

(c) ρHk+1 /∈ [γ, ρ),

(d) if ρHk+1 = ρ and ρ+H < ρ+M then M |ρ is active with a superstrong

extender with critical point κ and ρMk+1 ≤ (κ+)M < ρ,

(e) ρHk+1 ≥ ρMk+1,

(f ) if M is (k + 1)-solid then ρHk+1 = ρMk+1,

(g) if ρHk+1 = ρMk+1 then H is the ρ-core of M , π is the ρ-core map and

π(pHk+1) = pMk+1.

2. If H ∈M then exactly one of the following holds :

(a) H ⊳M , or

(b) M |ρ is active with extender F and H ⊳Ult(M |ρ, F ), or

(c) M |ρ is passive, N =M |ρ+H is active type 1 and H = Ultk(Q,F
N),

where Q ⊳M is such that γ+Q = ρ and ρQk+1 = γ < ρQk , or

(d) k = 0 and H,M are active type 2 and M |ρ is active with a type 2
extender F and letting R = Ult(M |ρ, F ), then N = R|ρ+H is active
type 1 and H = Ult0(M |ρ, FN).

5.3 Remark. If we assume further that H,M are (k+1)-sound, it is now easy
to conclude that (∗Con) (stated above) holds. In fact, it suffices to assume that
if H /∈M then M is ρ-sound, and if H ∈M then H is (k + 1)-sound.

Proof.

30It will in fact be shown in [7] that M is (k+1)-solid (from (k, ω1 + 1)-iterability), so the
two papers together will prove the full result.
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Claim 1. We may assume:

– H,M have the same type,

– if H,M are passive and k = 0 then π is cofinal, and hence

– π is c-preserving.

Proof. Suppose that H,M have different types. Then k = 0, H is passive and
M is active. Here M might an unsquashed or squashed premouse. In either
case, note that π : H → M ′ = M ||ORM is still 0-lifting, and M ′ is ω-sound

with ρM
′

ω = ORM
′

. If part (2) (of the conclusion of Theorem 5.2) holds for
π : H →M ′, then it also holds for π : H →M , so we are done. So suppose part
(1) holds for π : H → M ′. Then because M ′ is 1-sound, by parts (1)(f),(g), in

fact H =M ′ and π = id. But ρH1 < ρH0 , contradicting that ρM
′

ω = ORM
′

.
Now suppose that H,M are passive and k = 0 but π“ORH is bounded in

ORM . Let M ′ = M || supπ“ORH . Note that π : H → M ′ is also 0-lifting, and

is cofinal in ORM
′

, and M ′ is ω-sound. And M ′ ⊳M , since otherwise M |ORM
′

is active, but then M ′ |= ZFC
−, which contradicts the fact that

rg(π) = HullM
′

1 (ρ ∪ {π(pH1 )})

is cofinal in M ′. Again if part (2) holds for π : H → M ′, then we are done, so
suppose part (1) holds. As M ′ is 1-sound, then H =M ′ and π = id, so H ⊳M ,
so we are done.

From now on we make the assumptions stated in Claim 1. Using 2.4, we get:

Claim 2. If ρ+H = ρ+M or ρHk+1 < γ then H /∈M and π is a k-embedding.

An easy calculation using the ρ-soundness of H gives (cf. [12, 2.17]):

Claim 3. ζHk+1 ≤ ρ and pHk+1\ρ = zHk+1\ρ.

Claim 4. If H /∈M and (1)(a),(c) hold then so do (1)(b), (e), (f),(g).

Proof. π is a k-embedding. So (b) follows from Claim 3 and (a). Part (e):
Let κ = ρHk+1. If P(κ)H = P(κ)M then (e) is clear. If P(κ)H 6= P(κ)M then

by (c), κ = ρ, so because H /∈ M , (e) holds. Part (f): As ρMk+1 ≤ ρHk+1, we

get ρMk+1 = ρHk+1 by [12, 2.17] and (a). Part (g): Suppose ρMk+1 = ρHk+1. We

have ρHk+1 ≤ ρ. If ρMk+1 = ρHk+1 = ρ then as H /∈ M , and by the solidity of

pHk+1 = pHk+1\ρ, we then have pMk+1 = π(pHk+1). Suppose ρMk+1 = ρHk+1 = κ < ρ,

so by (c), κ < γ. So P(κ)M = P(κ)H , so pMk+1 ≤ π(pHk+1), and so using the

solidity of pHk+1\ρ, we get π(pHk+1\ρ) = pMk+1\ρ, and since π ↾ ρ = id, we get

π(pHk+1) = pMk+1. Now (g) easily follows.

There are two main cases overall.

Case 1. ρ+H = ρ+M .
We show (1). It suffices to prove (1) (a),(c), (d), by Claim 4. Part (d) is

trivial by case hypothesis. By claims above, H /∈ M , π is a k-embedding, and
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ζHk+1 ≤ ρ. Using generalized solidity witnesses and as P(ρ)H = P(ρ)M , (a)
follows. For part (c), we show γ = ρ. Suppose γ < ρ. So ρ is an H-cardinal but
non-M -cardinal, and ρ ≤ cr(π). So ρ = γ+H and π(ρ) = γ+M = ρ+M . But as
ρ+H = ρ+M this contradicts condensation for ω-sound mice (2.13).

Case 2. ρ+H < ρ+M .
Let η = ρ+H . Either (I) cr(π) = ρ, or (II) cr(π) = η < ρH0 , or (III)

η = ρHk = ρH0 and cr(π) does not exist.
Assume (III) holds. Then by Claim 1 and case hypothesis, H,M are ac-

tive and ρ is an M -cardinal. Letting µ = cr(FH), then cr(FM ) = µ < ρ and
(µ+)H = (µ+)M and π ↾ (µ+)H = id. It follows that H,M are type 3 (con-
sider the amenable predicate EH coding FH and its cofinality in (H |(µ+)H)×
H ||ORH , and likewise for M ; we get EH ⊆ EM , and a contradiction to the fact
that ORH < ORM ). So η = ρHk = ρH0 = ν(FH) < ν(FM ), and FH ↾ η ⊆ FM .
So by the ISC, if M |η is passive then H ⊳ M , and if M |η is active then
H ⊳Ult(M |η, FM|η), but as ρHk+1 < η, the latter is impossible.

From now on we assume either (I) or (II) holds, so cr(π) exists. We will
produce an iterable cephal C and use it to deduce the required facts. If M |ρ is
passive then let J ⊳M be least with ρJω ≤ ρ and η ≤ ORJ . If M |ρ is active and
η < ρ+Uρ where Uρ = Ult(M |ρ, FM|ρ), let J ⊳ Uρ be least with η ≤ ORJ and
ρJω = ρ. Otherwise leave J undefined. We may assume H 6= J (otherwise (2)
holds). This ensures the cephal C defined next is non-trivial.

If ρ is an M -cardinal, let C = (ρ,H, J), a bicephalus. Here the fact that
H ||η = J ||η, and hence η = (ρ+)J , follows from condensation for ω-sound mice
(2.13). If ρ is a non-M -cardinal (so γ < ρ < γ+M ), let C = (γ, ρ,H,Q), where
Q ⊳M is least with ρ ≤ ORQ and ρQω = γ; here C is a cephalanx, by 2.13.

Claim 5. C is a non-trivial, (ω1 + 1)-iterable cephal.

Assume this claim for now; we will use it to finish the proof.

Claim 6. Suppose that either:

(i) ρ is a cardinal of M , so C = (ρ,H, J) is a bicephalus; or

(ii) ρ is not a cardinal of M and C = (γ, ρ,H,Q) is a passive cephalanx,
ORJ = η and J is type 3.

Then (1) holds.

Proof. Note NC = J in case (ii). Using 4.3/4.5, and as H 6= J and J is sound,
note ORJ = η, J is type 1/3, and letting F = F J and κ = cr(F ), we have κ < γ
(in case (i), γ = ρ; in case (ii), J is type 3), the κ-core N of H is κ-sound, and

N ||(κ+)N = H ||(κ+)H =M ||(κ+)M (8)

(so F is weakly amenable to N) and H = Ultk(N,F ). It follows that ρMk+1 ≤

ρHk+1 ≤ ρNk+1 ≤ κ < γ, so H /∈ M and π is a k-embedding. Now ζNk+1 ≤ κ since

N is κ-sound. But then by line (8) and as π, iN,kF preserve generalized solidity

witnesses, we get iN,kF (zNk+1) = zHk+1 and zMk+1 = π(zHk+1) and ζMk+1 = ζHk+1 =

ζNk+1, giving (a). Since ρHk+1 ≤ ζHk+1 < γ we have (c), and (d) is trivial.
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Claim 7. Suppose ρ is a non-M -cardinal, C = (γ, ρ,H,Q) is a passive cephalanx
(so NC = J), and if ORJ = η then J is non-type 3. Then (2)(c) holds.

Proof. Using 4.5, ORJ = η, J is type 1, ρQk+1 = cr(F J) = γ < ρQk and H =

Ultk(Q,F
J), and since J E Q, therefore ρHk+1 = ρQk+1 = γ < ρ.

Claim 8. Suppose ρ is a non-M -cardinal and C is an active cephalanx. Then
either (1) or (2)(d) holds.

Proof. We have C = (γ, ρ,H,Q) where Q =M |ρ is active. Let F = FQ. Apply
4.17 to C. If C is non-exceptional then C has a good core, and as before either
ρHk+1 < γ and (1) holds, or ρHk+1 = γ and (2)(d) holds.

Now suppose that C is exceptional, so C has an exceptional core. Let

K = cHullHk+1(X ∪ zHk+1 ∪ ~p
H
k ),

where X is defined as in 4.13. Let κ = cr(F ). By 4.14, K is κ+K-sound, and
ρKk+1 ≤ κ+K . Since κ++K = κ++M , therefore K /∈M . Since Q ∈M and

ThKrΣk+1
(~pKk+1 ∪ κ

+K) can be computed from FQ and ThHrΣk+1
(~pHk+1 ∪ ρ),

it follows that H /∈M , so π is a k-embedding, as is iK,kF . So we must verify (1).

Subclaim 8.1. If ρKk+1 = κ+K then (1) holds.

Proof. The argument here is similar to that used to illustrate the failure of
solidity for long extender premice. By 4.14, we have ρHk+1 = ρ and iK,kF (pKk+1) =

pHk+1 and both K,H are (k + 1)-sound. Moreover,

pMk+1 ≤ π(pHk+1) ̂ 〈ρ〉

because K /∈M and by the calcuation above. Since H is (k+1)-solid, therefore
pMk+1\ρ = π(pHk+1). But for α ≤ ρ,

α < ρ ⇐⇒ ThMrΣk+1
(π(~pHk+1) ∪ α) ∈M, (9)

because (in the case that α = ρ) H /∈M , and (in the case that α < ρ) cr(π) =
ρ = ρHk+1. But line (9) gives pMk+1 = π(pHk+1) ̂ 〈ρ〉.

Now zHk+1 = pHk+1 and ζHk+1 = ρ, and (1)(a),(c), (d) follow.

Note that in the above case, M is not (k + 1)-solid.

Subclaim 8.2. If ρKk+1 ≤ κ < ζKk+1 then (1) holds.

Proof. Suppose ρKk+1 ≤ κ. Then ζKk+1 < κ+K , as otherwise,

ThKrΣk+1
(ρKk+1 ∪ ~p

K
k+1) ∈ K,
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impossible. So κ < ζKk+1 < κ+K , so zHk+1 = iKF (zKk+1) and ζHk+1 = sup iKF “ζKk+1,

by [12, 2.20]. So γ < ζHk+1 < ρ. So to verify (a), it suffices to see

ThMrΣk+1
(π(zHk+1) ∪ ζ

H
k+1 ∪ ~p

M
k ) /∈M,

so suppose otherwise. Then because FQ ∈M , we get

ThKrΣk+1
(ζKk+1 ∪ z

K
k+1 ∪ ~p

K
k ) ∈M.

But P(κ)K = P(κ)M , so the above theory is in K, a contradiction.
We also have ρHk+1 ≤ ρKk+1 ≤ κ, so (c) holds and (d) is trivial.

Subclaim 8.3. If ζKk+1 ≤ κ then (1) holds.

Proof. This follows as before since P(κ)K = P(κ)H = P(κ)M .

This completes the proof of the claim.

Sketch of Proof of Claim 5. The basic approach is to lift iteration trees on C
to iteration trees on M . There are some details here that one must be careful
with. For illustration, we assume that C = (γ, ρ,H,M |ρ) is an active cephalanx.
The other cases are similar (the bicephalus case a little different, but simpler).
Recall that we have already reduced to the case that π is c-preserving. In order
to keep focus on the main points, we assume that π is in fact c-ν-preserving
(see [9]). This will allow us to inductively maintain that all lifting maps we
encounter are c-ι-preserving, keeping the copying process smooth. (If instead, π
is not ν-preserving, one should just combine the copying process to follow with
that given in [9]. In the next section we do provide details of a copying process,
with resurrection, which incorporates those extra details.)

For a tree T on C and α + 1 < lh(T ), we say T lift-drops at α + 1 iff
α+ 1 ∈ QT , predT (α+ 1) ∈ BT and [0, α+ 1]T does not drop in model.

If T lift-drops at α+ 1 then Q is type 2, and letting β = predT (α + 1), we
have ET

β = F (QT
β ) and cr(jTβ,α+1) = lgcd(QT

β ).
Let Σ be a (k, ω1+1)-iteration strategy forM . Consider building an iteration

tree T on C, and lifting this to a k-maximal tree U on M , via Σ, inductively on
lh(T ). Having defined (T ,U) ↾λ + 1, then for each α ≤ λ, letting Bα,Mα, Qα
be the models of T , and Sα = MU

α , and Wα = iU0α(Q) when [0, α]U ∩ DU = ∅,
we will have also defined embeddings πα and σα, such that:

1. <T ↾ (λ + 1) = <U ↾ (λ + 1). The drop structure of U matches that of T ,
except for the following exceptions:

– If α ∈ BT then [0, α]U does not drop in model or degree (so degU(α) =
k).

– If T lift-drops at α then U drops in model at α.

Moreover, if α /∈ BT then degU (α) ≥ degT (α).

2. Suppose α ∈ BT . Then:
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– πα : C0(Mα) → C0(Sα) is c-ι-preserving k-lifting, and

– σα : Qα →Wα is an Σ0-elementary simple embedding.

Moreover, σα ⊆ πα.

3. Suppose α ∈ M T . Then:

– πα : C0(Mα) → C0(Sα) is c-ι-preserving degT (α)-lifting, and

– σα is undefined.

4. Suppose α ∈ QT . Then:

– πα is undefined, and

– σα : C0(Qα) → C0(Sα) is c-ι-preserving degT (α)-lifting.

5. Suppose α < λ. Let β ∈ (α, λ]. If ET
α ∈ E+(M

T
α ) let ψα = ψπα

; otherwise
let ψα = ψσα

. Let τ ∈ {πβ , σβ}. Then

ψα ↾ lh
T
α ⊆ τ and τ(ιTα ) = ψα(ι

T
α ) = νUα .

6. Suppose α < λ and let δ = predT (α+ 1) = predU (α+ 1).

(a) Suppose T drops in model at α+1. Then so does U . If α+1 ∈ M T

then ψδ(M
∗T
α+1) = S∗U

α+1 and

πα+1 ◦ i
∗T
α+1 = i∗Uα+1 ◦ ψδ ↾C0(M

∗T
α+1).

If α+ 1 ∈ QT then ψδ(Q
∗T
α+1) = S∗U

α+1 and

σα+1 ◦ j
∗T
α+1 = i∗Uα+1 ◦ ψδ ↾C0(Q

∗T
α+1).

(b) Suppose T lift-drops at α+ 1. Then U drops in model at α+ 1 (but
[0, δ]U does not drop in model or degree), S∗U

α+1 = iU0δ(Q) =Wδ and

σα+1 ◦ j
T
δ,α+1 = i∗Uα+1 ◦ σδ.

7. If α < λ and α <T β ≤ λ and (α, β]T neither drops in model nor lift-drops,
then:

– If Mβ is defined then πβ ◦ iTα,β = iUα,β ◦ πα.

– If Qβ is defined then σβ ◦ jTα,β = iUα,β ◦ σα.

This completes the inductive hypotheses.
We now start the construction. We start with π0 = π and σ0 = id. Since

cr(π0) = ρ, we have σ0 ⊆ π0.
Now let Eλ = ET

λ be given. We define Fλ = EU
λ by copying in the usual

manner. That is:

(i) Suppose Eλ ∈ E+(Mλ). Then:
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– If Eλ = F (Mλ) then Fλ = F (Sλ).

– If Eλ 6= F (Mλ) then Fλ = ψπλ
(Eλ).

(ii) Suppose Eλ /∈ E+(Mλ); so Eλ ∈ E+(Qλ). Then:

– If Eλ = F (Qλ) and [0, λ]T does not drop or lift-drop then Fλ =
F (Wλ).

– If Eλ = F (Qλ) and [0, λ]T drops or lift-drops then Fλ = F (Sλ).

– If Eλ 6= F (Qλ) then Fλ = ψσλ
(Eλ).

The agreement hypotheses and the fact that πλ and σλ are c-ι-preserving (if
defined) ensures that this choice of Fλ is legitimate.

Let β = predT (λ+ 1) and κ = crTλ . We consider only the case that

β ∈ B
T and κ ≤ γ(BT

β ) and T does not drop in model at λ+ 1. (10)

For otherwise it is routine to propagate the inductive hypotheses, except maybe
for the ι-preservation of the embeddings. But we give the details for ι-preservation
in the case we consider, and it is similar in general. So suppose line (10) holds.
We have β = predU (λ+ 1) by property 5.

Case I. λ+ 1 ∈ BT .
In this case [0, λ+1]U does not drop in model or degree; this is because πλ is c-

preserving and because if Eβ = F (Qβ) then κ < γ(BT
β ). By 2.2 and properties

2 and 5, we can apply (essentially)31 the Shift Lemma to (πβ , ψλ ↾ exTλ ) and
(σβ , ψλ ↾ex

T
λ ), to produce πλ+1 and σλ+1. For the latter, we have

σβ : Qβ → Wβ ⊳ Sβ = S∗
λ+1,

and we set
σλ+1([a, f ]

Qβ

Eλ
) = [ψλ(a), σβ(f)]

Sβ

Fλ
.

It follows easily that σλ+1 ⊆ πλ+1.
Now ι-preservation for σλ+1 is immediate because this embedding is simple.

We verify that πλ+1 is ι-preserving. This is immediate unless H is type 3, so
assume this. SoMβ , Sβ,Mλ+1, Sλ+1 are also type 3, so ι-preservation just means
ν-preservation here. Write νMβ = ν(FMβ ) and νSβ likewise. Write ψβ = ψπβ

and ψλ+1 likewise. Write ψT
β,λ+1 = ψiT

β,λ+1
and ψU

β,λ+1 likewise. By induction,

πβ is ν-preserving; that is, ψβ(ν
Mβ ) = νSβ . We must see that πλ+1 is also; that

is, that
ψλ+1(ν

Mλ+1) = νSλ+1 .

But note that
ψλ+1 ◦ ψ

T
β,λ+1 = ψU

β,λ+1 ◦ ψβ.

31We say essentially because if Q is type 3, σβ is a simple embedding, not an embedding
between squashed premice.
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So if iTβ,λ+1 and iUβ,λ+1 are also ν-preserving, then so is πλ+1. This holds in
particular if k > 0, by elementarity considerations. So suppose k = 0. Then

Mλ+1 = Ult0(Mβ , Eλ),

and note that

Ult(M sq
λ+1, F

Mλ+1) = Ult(Ult(M sq
β , F

Mβ ), Eλ),

and the ultrapower maps commute, and a straightforward calculation with ex-
tenders show that

ψT
β,λ+1 : Ult(M sq

β , F
Mβ ) → Ult(M sq

λ+1, F
Mλ+1)

(which, recall, is defined via the Shift Lemma) coincides with the resulting Eλ-
ultrapower map. Likewise for ψU

β,λ+1.

Now let µ = cofMβ (νMβ ). Then ψβ(µ) = cofSβ (ψβ(ν
Mβ )) = cofSβ (νSβ ).

By the preceding remarks, if κ 6= µ then ψT
β,λ+1 and ψU

β,λ+1 are continuous

at νMβ and νSβ respectively, so by commutativity, πλ+1 is ν-preserving. So
suppose κ = µ, so πβ(κ) = cofSβ (νSβ ). Let f ∈ Mβ with f : κ → νMβ be
cofinal. Write fMβ = f . So

fSβ = ψβ(f
Mβ ) : πβ(κ) → νSβ

is also cofinal. Let fMλ+1 = ψT
β,λ+1(f

Mβ ) and fSλ+1 be likewise, so commuta-

tivity gives ψλ+1(f
Mλ+1) = fSλ+1. Note then that

νMλ+1 = sup iβ,λ+1“ν
Mβ = sup fMλ+1“κ

and likewise
νSλ+1 = sup iUβ,λ+1“ν

Sβ = sup fSλ+1“πβ(κ).

Since ψλ+1(κ) = πβ(κ), therefore

ψλ+1(ν
Mλ+1) = sup fSλ+1“ψλ+1(κ) = sup fSλ+1“πβ(κ) = νSλ+1 ,

as desired.
The remaining properties for this case are established as usual.

Case II. λ+ 1 ∈ M T .
This case is routine, using the fact that Eβ ∈ E+(Mβ).

Case III. λ+ 1 ∈ QT .
So T lift-drops at λ + 1, and so Eβ = F (Qβ) and crTλ = γ(Bβ). Therefore

Fβ = F (Wβ) and crUλ = σβ(γ(Bβ)) is the largest cardinal of Wβ . Therefore

S∗
λ+1 =Wβ ⊳ Sβ ,

and in particular, U drops in model at λ+ 1. This is precisely enough to define
σλ+1. Everything else is routine in this case.

This completes the propagation of the properties to (T ,U)↾λ+ 2.
For limit λ, everything is routine.
This completes the sketch of the proof that C is iterable, and so the proof

of the theorem.
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6. A premouse inner model inheriting strong cardinals

Let W |= ZFC be an iterable transitive model. In this section we define
a proper class premouse L[E]W of W which inherits all Woodin and strong
cardinals from W . (See §1 for some introduction to this and a comparison with
Steel’s local Kc-construction of [15].) The construction allows certain types of
partial background extenders. However, all background extenders will be total
in some ultrapower of W , and moreover, assuming enough AC, we will be able
to lift iteration trees on L[E]W to (non-dropping) iteration trees on W . The
model L[E]W is also outright definable over W .

Let us first point out that a fully backgrounded construction can fail to
inherit strong cardinals:

6.1 Remark. Assume ZFC and suppose κ is strong but there is no measurable
cardinal µ > κ. Let 〈Nα〉α≤OR be a fully backgrounded L[E]-construction;
suppose that this does not break down, so produces a model L[E] = NOR of
height OR. Then we claim that E has no extenders with index ≥ κ, and hence κ
is certainly not strong in L[E]. For let ζ ∈ OR be such that L[E]|κ = Nζ. Then
we claim there is no α ≥ ζ such that Nα is active, which suffices. For suppose
otherwise and let α be least such. Since ORNζ = κ is a cardinal, we have α > ζ.
So α = β + 1 where β = ORNβ > κ and Nβ = Jβ(Nζ). Let µ = cr(FNβ+1).
Since the construction is fully backgrounded, µ is measurable, so µ ≤ κ. Since
Nβ = Jβ(Nζ) and by coherence, it easily follows there is γ < µ such that
Nζ = Jκ(Nζ |γ). But then note that ρω(Nβ+1) ≤ γ < µ ≤ κ, contradicting the
fact that Nζ = L[E]|κ.

Of course if the background construction does not make unusual demands
on background extenders, then L[E]|κ is closed under #’s. In this case, note
that extenders E in V with cr(E) = κ do not cohere L[E].

Instead of using rank to measure the strength of extenders, we use:

6.2 Definition. Let E be an extender. The strength of E, denoted str(E), is
the largest ρ such that Hρ ⊆ Ult(V,E). ⊣

So str(E) is always a cardinal. The backgrounding we use is described as
follows (in the definition, we imagine we are working inside W as mentioned
earlier):

6.3 Definition. Assume ZFC. Let λ ≤ OR + 1. An ultra-backgrounded
construction (of length λ) is a sequence 〈Sα〉α<λ such that:

1. Each Sα is a premouse.

2. Given a limit β < λ, Sβ = lim infα<β Sα.

3. Given β = α+ 1 < λ, either:

(a) For each n < ω, Cn(Sα) is (n+1)-universal and Cn+1(Sα) is (n+1)-
solid, and Sα+1 = J (Cω(Sα)); or
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(b) Sα is passive and there is F and an extender G such that Sα+1 =
(Sα, F ) and F ↾ν(F ) ⊆ G and str(G) ≥ ν(F ); or

(c) α is a limit, Sα has a largest cardinal ρ, and there is an extender G
such that letting κ = cr(G), we have:

i. str(G) ≥ ρ,

ii. κ ≤ ρ ≤ iG(κ),

iii. ρ is a cardinal in iG(Sα),

iv. (Sα ∼ iG(Sα))||OR(Sα),

v. Sα+1 ⊳ iG(Sα),

vi. ρω(Sα+1) = ρ,

vii. OR(Sα) = (ρ+)Sα+1 . ⊣

6.4 Definition. Suppose that V is a premouse (and ZFC holds). A pm-ultra-
backgrounded construction is a sequence 〈Sα〉α<λ as in 6.3, except that in
(3b) and (3c) we also require that G ∈ EV and ν(G) is a cardinal. ⊣

6.5 Remark. When we refer to, for example, 6.4(3c), we mean the analogue
of 6.3(3c) for 6.4. We will mostly work explicitly with ultra-backgrounded con-
structions; the adaptation to pm-ultra-backgrounded is mostly obvious, so we
mostly omit it. For all definitions to follow, we either implicitly or explicitly
make the pm-ultra-backgrounded analogue, denoted by the prefix pm-.

6.6 Definition. Let C = 〈Sα〉α<λ be an ultra-backgrounded construction. Let
β < λ. Then we say that β, or Sβ, is C-standard iff 6.3(2), (3a) or (3b) holds
(for β). We say that β is C-strongly standard iff 6.3(3c) does not hold. Given
also n ≤ ω, we say that (β, n) is C-relevant iff either (i) β is C-standard, or
(ii) β = α+ 1 and ρn(Nα+1) = ρω(Nα+1). ⊣

Clearly C-strongly standard implies C-standard. The next lemma is routine:

6.7 Lemma. Let C = 〈Sα〉 be an ultra-backgrounded construction. Let (β, n)

be C-relevant. Let ρ be a cardinal of Sβ such that ρ ≤ ρ
Sβ
n . Let P ⊳ Sβ be such

that ρPω = ρ. Then there is α < β such that C0(P ) = Cω(Sα).

6.8 Remark. It follows that if 6.3(3c) holds, there is ξ such that Sα+1 =

Cω(S
iG(C)
ξ ), because α is a limit and ρ is a cardinal of iG(Sα).

6.9 Lemma. Let C = 〈Sα〉 be an ultra-backgrounded construction. Suppose
that Sα+1 is active type 1 or type 3 and ρω(Sα+1) = ν(F (Sα+1)). Then α + 1
is C-standard, so F (Sα+1) is backgrounded by a V -extender.

Proof. Suppose not and let α be the least counterexample. Let ρ be the largest
cardinal of Sα. By 6.7, Sα|ρ = Sβ for some limit β < α. Let G be as in 6.3(3c)
for Sα+1. So Ult(V,G) satisfies “the lemma holds for iVG(C↾β)”, and note that
iVG(ρ) > ρ, and iVG(Sα)|i

V
G(ρ) = iVG(Sβ) and ρ is a cardinal of iVG(Sβ). So by 6.7,

Sα+1 = Cω(S
iVG(C↾β)
γ ) for some γ. But because Sα+1 is type 1 or 3 and by the
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ISC, it follows that S
iVG(C↾β)
γ is already fully sound, so Sα+1 = S

iVG(C↾β)
γ . But then

since Ult(V,G) thinks the lemma holds for iVG(C ↾ β), therefore Ult(V,G) |=“γ
is iVG(C ↾β)-standard”. So there is H ∈ Ult(V,G) such that in Ult(V,G) |=“H
is a ρ-strong extender” and F ↾ ν ⊆ H , where F = FSα+1 and ν = ν(F ). But
since G is ρ-strong, so is H (in V ), and since ν ≤ ρ (as F is type 1 or 3), H
backgrounds F in V , so α+ 1 is C-standard, a contradiction.

6.10 Definition. Let C = 〈Sα〉 be an ultra-backgrounded construction. Sup-
pose that α + 1 is not C-standard, and let ρ = ρω(Sα+1). An extender G is a
C-nice witness for α + 1 iff G witnesses 6.3(3c), iG(cr(G)) > ρ, and Sα+1 is
iG(C)-strongly standard (in Ult(V,G)). ⊣

6.11 Lemma. Let C = 〈Sα〉 be an ultra-backgrounded construction. Suppose
that α + 1 is not C-standard and let ρ = ρω(Sα+1). Then there is a C-nice
witness for α+ 1.

Let G be a C-nice witness for α+ 1. Then:

– If cr(G) < ρ then str(G) is the the least cardinal ≥ ρ.

– If cr(G) = ρ then str(G) = ρ+.

– If condensation for ω-sound mice holds for all proper segments of Sα then
ρ is not measurable in Ult(V,G).

Proof. Because V is linearly iterable and α + 1 is not C-standard, there is an
extender H witnessing 6.3(3c) and such that Ult(V,H) |=“ξ is iH(C)-strongly
standard”, where ξ is defined as in 6.8. Letting G = iH(H)◦H , then G is a nice
witness (Sα+1 ⊳ iG(Sα) because in Ult(V,H), iH(H) coheres iH(Sα) enough).

Now let G be a nice witness. The facts regarding str(G) are easy. Suppose
F is a measure on ρ in U = Ult(V,G). Then by condensation, Sα+1 ⊳ i

U
F (Sα+1),

contradicting the niceness of G.

For pm-ultra-backgrounding, we need to modify the notion of nice witness
a little:

6.12 Definition. Suppose V is a premouse and let C = 〈Sα〉 be a pm-ultra-
backgrounded construction. Suppose that α + 1 is not pm-C-standard, and let
ρ = ρω(Sα+1). The pm-C-nice witness for α + 1 is the extender G such
that, letting G1 be the least witness to 6.4(3c) (that is, the witness with lh(G1)
minimal), either:

(i) Sα+1 is pm-iG1(C)-strongly standard and G = G1, or

(ii) Sα+1 is not pm-iG1(C)-strongly standard and letting G2 be the least wit-
ness to 6.4(3c) for (iG1(C), Sα+1), then G = G2 ◦G1. ⊣

6.13 Lemma. Suppose V is a premouse and let C = 〈Sα〉 be a pm-ultra-
backgrounded construction. Suppose that α + 1 is not pm-C-standard, let ρ =
ρω(Sα+1) and let G be the pm-C-nice witness for α + 1. Suppose that conden-
sation for ω-sound mice holds for all proper segments of Sα. Then:
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– Sα+1 is pm-iG(C)-strongly standard.

– ρ is not measurable in Ult(V,G), so iG(cr(G)) > ρ.

– If 6.12(i) attains and ρ is not a cardinal then ν(G) = ρ+.

– If 6.12(i) attains ρ is a cardinal then either ν(G) = ρ, or G is type 1 and
cr(G) = ρ.

– If 6.12(ii) attains then ρ is a cardinal and letting G1, G2 be as there,
ν(G1) = cr(G2) = ρ and G2 is type 1.

Proof. By coherence and the ISC, and using condensation as in 6.11.

We now introduce what is, at least assuming global choice, a natural maximal
ultra-backgrounded construction:

6.14 Definition. The ultra-stack construction is the sequence 〈Rα〉α≤OR

such that R0 = Vω, the sequence is continuous at limits, and for each α <
OR we have the following. Let ρ = OR(Rα). Then Rα+1 is the stack of all
sound premice R such that Rα ⊳ R and ρRω = ρ and R = Cω(S

C
γ ) for some

ultra-backgrounded construction C and γ < lh(C), assuming this stack forms a
premouse (if it does not, the construction not well-defined). ⊣

In order to prove that the ultra-stack construction inherits strong andWoodin
cardinals, we will need to prove that certain pseudo-premice are in fact premice,
just like in [3]. So we make one further definition:

6.15 Definition. Let λ < OR. An ultra-backgrounded pseudo-construct-
ion (of length λ+ 2) is a sequence C = 〈Sα〉α<λ+2 such that:

– C↾λ+ 1 is an ultra-backgrounded construction and Sλ is passive,

– For some F , Sλ+1 = (Sλ, F ) is an active pseudo-premouse, and there is
an extender G such that F ↾ν(F ) ⊆ G and str(G) ≥ ν(F ). ⊣

6.16 Definition. An almost normal iteration tree U on a premouse P is an
iteration tree as defined in [1],32 such that for all α + 1 < β + 1 < lh(U), we
have ν(ET

α ) ≤ ν(ET
β ). ⊣

6.17 Remark. It is easy to see that if P is a normally iterable premouse then
P is iterable with regard to almost normal trees.

We can now state the main theorem of this section:

6.18 Theorem. Assume ZF. Let W |= ZFC be a transitive class, and suppose
there is an (ω1 + 1)-iteration strategy for W for arbitrary coarse trees. Then:

32The only difference between these and normal trees is that it is not required that lh(ET
α ) <

lh(ET
β
) for α < β.
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(a) If λ ∈ ORW and C = 〈Sα〉α≤λ ∈ W |=“C is an ultra-backgrounded con-
struction” and n < ω, then Cn(Sα) exists and is (n, ω1, ω1 + 1)∗-iterable,
and therefore Cn(Sα) is (n+ 1)-universal and Cn+1(Sα) is (n+ 1)-solid.

(b) The ultra-stack construction of W is well-defined. Let L[E] be its final
model.

(c) If there is a class wellorder <W ofW then L[E] is (0, ω1, ω1+1)∗-iterable.33

(d) W |=“κ is strong” iff L[E] |=“κ is strong”.

(e) If W |=“δ is Woodin” then L[E] |=“δ is Woodin”.

6.19 Theorem. Let W |= ZFC be a premouse (possibly proper class) which is
(ω, ω1, ω1 + 1)∗-iterable. Then the conclusions of 6.18 hold, with ultra replaced
by pm-ultra.

6.20 Remark. Part (d) also holds for A-strong cardinals κ, for A ⊆ OR such
that A is a class of L[E]. (Here κ is A-strong iff for every η there is an η-strong
extender G such that iG(A) ∩ η = A ∩ η.)

However, (d) does not seem to hold for local strength: it seems that we
might have κ being η-strong (some η ∈ OR) but L[E] |=“κ is not η-strong”.

Proof. Each part will depend on the sufficient iterability of certain structures,
which we will establish in Claim 5 below. We first reduce everything to that
iterability. We write 〈Rη〉η∈ORW for the ultra-stack construction of W .

Claim 1. Work in W . Let η ∈ OR. Then:

(i) Rη is well-defined.

(ii) There is an ultra-backgrounded construction C = 〈Sα〉α≤λ with Sλ = Rη.

(iii) Let C = 〈Sα〉α≤λ be an ultra-backgrounded construction such that Rη =
Sβ for some β ≤ λ. Then for all α ∈ [β, λ], we have Rη = Sα|ρ and
ρω(Sα) ≥ ρ, and if β < α then ρ is a cardinal of Sα.

(iv) Let C = 〈Sα〉α≤λ and C′ = 〈S′
α〉α≤λ′ be ultra-backgrounded constructions

such that Rη = Sβ = S′
β′ for some β ≤ λ and β′ ≤ λ′. Suppose ρω(Sλ) =

ρ. Suppose there is ξ < λ′ such that Cω(S
′
ξ) = Cω(Sλ). Then

C ̂ (C′ ↾(ξ′, λ′])

is also an ultra-backgrounded construction.

33The class wellorder <W need not be a class of W . It is only used to allow us to select
background extenders canonically when copying iteration trees to W .
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Proof. The proof is by induction on η. When η = 0 it is easy.
Suppose η is a limit. Clearly Rη is well-defined, giving part (i). Part (ii):

Let 〈ρα〉ξ<γ enumerate the infinite cardinals of Rη. Note that by induction,
η = γ and Rξ = Rη|ρξ and there is an ultra-backgrounded construction Cξ =
〈Sξα〉α≤λξ

with Rξ = Sξλξ
. Also by induction (applying part (iv)), we can

merge these constructions into a single ultra-backgrounded construction C with
last model Rη. That is, we set

C = (C0 ↾ [0, λ0)) ̂ (C1 ↾(λ
′
0, λ1]) ̂ . . . ,

where S1λ′
0
= S0λ0 = Rη|ℵ

Rη

1 , etc.
For the next two parts, the proof is identical in the limit and successor cases:
Part (iii): Suppose otherwise and let C = 〈Sα〉α≤λ be a counterexample of

minimal length. Let k < ω be such that Ck(Sα) exists and ρ
Sα

k+1 < ρ. In Claim
5 we will show that

Ck(Sα) is (k, ω1, ω1 + 1)∗-iterable in (the background) V. (11)

It follows (iterating this) that Cω(Sα) exists, hence is ω-sound, and ρω(Sα) < ρ.
But then the existence of C contradicts the maximality of Sη (with respect to
mice projecting to ρω(Sα)).

Part (iv): This follows easily from the definitions (noting that in 6.3, we
do not require the V -extenders to cohere the construction C (i.e., the sequence
of models); the only kind of coherence required is with respect to individual
models Sα).

Now suppose that η = ξ + 1.
Part (i): Suppose not. Then it is easy to see that we have ultra-backgrounded

constructions
C = 〈Sα〉α≤λ′ ̂

〈
SC

α

〉
λ′<α≤λC

and
C̃ = 〈Sα〉α≤λ′ ̂

〈
SC̃

α

〉
λ′<α≤λC̃

and ρ ∈ OR such that letting M ′ = SC

λC and N ′ = SC̃

λC̃
:

– M = Cω(M
′) and N = Cω(N

′) both exist,

– ρMω = ρ = ρNω ,

– Sλ′ =M ||ρ+M = N ||ρ+N =M ′||ρ+M
′

= N ′||ρ+N
′

, but

– M 6= N .

It follows that C = (ρ,M,N) is a sound, non-trivial bicephalus. In Claim 5
below, we will show that

C is (ω1 + 1)-iterable in (the background) V, (12)

contradicting 4.3.
Part (ii): This is much as in the limit case, but by merging constructions

which end in mice projecting to ρ.
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It easily follows (from Claim 5) that:

Claim 2. Work in W . Then L[E] = ROR is well-defined, and the cardinal
segments of L[E] are exactly the models Rα for α ∈ OR.

So we have reduced (b) to Claim 5. We next reduce (d) and (e). The fact
that every strong cardinal of L[E] is strong in W is by 6.9. So suppose that
either κ is strong in W or δ is Woodin in W ; we want to see that κ is strong
in L[E] or δ Woodin in L[E] respectively. The key to the strong case is the
following claim.

Claim 3. Work in W . Let τ be a cardinal of L[E] and Rα be such that τ =
ORRα . Then there is χ > τ such that if F is any extender with arbitrary critical
point and str(F ) ≥ χ then iF (Rα)|ρ = Rα.

Proof. Let χ be such that there is an ultra-backgrounded construction C ∈ Hχ

with last model Rα (using Claim 1), and such that Hχ includes background
extenders witnessing the clauses of 6.3 for C. It is straightforward to see that
χ works.

6.21 Remark. Note that Claim 3 can fail for fully backgrounded L[E]-con-
structions, by the last paragraph of 6.1. The key difference is that any mice
projecting < τ which are added by iF (C) (when F is strong enough) are, by
definition, added to the ultra-stack construction; this, however, is not true of
fully backgrounded constructions (the extenders used in the construction of
these projecting mice might be total in Ult(V, F ), but partial in V ).

Using the claim, together with a slight variant of the proof of [3, Lemma
11.4], one can show that strength and Woodinness in W is absorbed by L[E],
as witnessed by restrictions of extenders in W . The details of the argument
relating to the uniqueness of the next extender are somewhat different, so we
describe the differences. We will not reproduce all the details or definitions from
that text, so the reader should have it in hand.

Let τ be a cardinal of L[E], and F ∈W be a W -extender with

cr(F ) < τ ≤ iF (cr(F )) and iF (L[E])|τ = L[E]|τ.

We get these as usual from Woodinness, and by the preceding claim, we also
get them with cr(F ) = κ if κ < τ and κ is strong in W . We adopt now the
notation “ρ” and “G” of [3, Lemma 11.4].

Claim 4. [3, Lemma 11.4] holds for all ρ < τ such that G is not type Z.
Therefore, if W |=“κ is strong” then L[E] |=“κ is strong”, and if W |=“δ is

Woodin” then L[E] |=“δ is Woodin”, and these facts are witnessed by restrictions
of extenders in W .

Proof. Recall that the proof is by induction on ρ. Let

σ : Ult(L[E], G) → Ult(L[E], F )

be the natural factor map. Let ξ = (ρ+)Ult(L[E],G). By Claim 5, condensation
holds for segments of L[E], and so because of the existence of σ, either:
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(i) L[E]|ρ is passive and Ult(L[E], G)||ξ = L[E]||ξ, or

(ii) L[E]|ρ is active and Ult(L[E], G)||ξ = Ult(L[E], FL[E]|ρ)||ξ.

Suppose first that ρ is a cardinal of L[E], and so (i) holds. Then there is an
ultra-backgrounded construction with last model P = (L[E]||ξ,G). It follows
that ρPω = ρ, so P is fully sound, and therefore that P E L[E].

Now suppose that ρ is not a cardinal of L[E]. Let γ = cardL[E](ρ). If ρ
is not a generator of F then the previous argument adapts easily. So suppose
ρ is a generator of F . So cr(σ) = ρ = (γ+)Ult(L[E],G). In this case it seems
that there might not be an ultra-backgrounded construction with last model
Ult(L[E], G)||ξ. Let G′ be the trivial completion of F ↾ (ρ + 1). Let ξ′ =
(ρ+)Ult(L[E],G′). Then Ult(L[E], G′)||ξ′ = L[E]||ξ′ and γ is the largest cardinal
of L[E]||ξ′. So there is an ultra-backgrounded construction with last model
L[E]||ξ′. Let P = (L[E]||ξ′, G′). Then there is a pseudo-ultra-backgrounded
construction with last model P . By Claim 5 below, P is (0, ω1, ω1+1)∗-iterable
in W . So by [3, §10] (combined with the generalization of the latter using the
weak Dodd-Jensen property), P is a premouse. Therefore either G ∈ E, or
L[E]|ρ is active and G ∈ E(Ult(L[E]|ρ, FL[E]|ρ)), as required.

The following claim completes the proof of the theorem, as it establishes the
iterability we have used above, and part (c). Most of the rest of the paper is
devoted to its proof; we focus on one representative case of it:

Claim 5. We have:

(i) For any λ ∈ ORW and ultra-backgrounded construction C = 〈Sα〉α≤λ of

W , and n < ω, Cn(S
C

λ ) exists and is (n, ω1, ω1 + 1)∗-iterable.

(ii) The bicephalus C defined in the proof of Claim 1 is (ω1 + 1)-iterable.

(iii) For any ultra-backgrounded pseudo-construction of W , with last model
P , P is (0, ω1, ω1 + 1)∗-iterable.

(iv) If there is a class wellorder <W of W then L[E] is (0, ω1, ω1+1)∗-iterable.

Proof. We focus on the the iterability of C = (ρC ,M,N) (part (ii)); parts (i)
and (iii) are mostly simplifications of this. At the end we state some adaptations
used for (iv). The main difference between the present iterability proof and that
for a standard L[E]-construction is in the resurrection process. The details of
this process will be dealt with in a manner similar to that in [10], and moreover,
the resurrection process of [10] will need to be folded into the present one. We
follow the iterability proof of [10] closely. In one regard, the present proof is
slightly simpler: in [10], arbitrary standard trees were considered, whereas here
we deal with a more restricted class (roughly, normal) of trees.

In the pm-ultra-backgrounded setting, i.e. the proof of 6.19, the natural
adaptation of the proof to follow lifts a tree on C to an almost normal tree U on
W . We leave the verification of this to the reader. Likewise, its adaptation to
stacks of normal trees on Cn(S

C
α) and P (parts (i) and (iii)) produces stacks of
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almost normal trees on W . This ensures that we only use the (ω, ω1, ω1 + 1)∗-
iterability of W in this context. We ensure that this works by our arrangement
of the proof to follow, which increases the work involved a little. For the adap-
tations to 6.19, one should use background extenders G with lh(G) minimal
(when witnessing 6.4(3b)), and use pm-nice witnesses (but when the pm-nice
witness is as in 6.12(ii), one must use the two extenders G1 and G2 in U).

Let ΣW be an iteration strategy for W . We will describe a strategy ΣC for
player II in the (ω1 + 1)-iteration game on C. Let T be an iteration tree on C
which is via ΣC . Then we will have inductively constructed a tree U on W , via
ΣW , such that T lifts to U (in a manner to be specified), and if T has limit
length, we will use ΣW (U) to define ΣC(T ).

We say that an iteration tree V on W is neat iff V is non-overlapping and

strM
V

α (EV
α ) ≤ strM

V

β (EV
β ) for α < β. The tree U may use padding, but the tree

V given by removing all padding from U will be neat. (So in the adaptation to
the proof of 6.19, V would be almost normal.)

We will have lh(U) ≥ lh(T ), but lh(U) > lh(T ) is possible. For each node
α of T , (α, 0) will be a node of U , and the model MU

α0 will correspond directly
to BT

α . However, there may also be a further finite set of nodes (α, i) of U ,
and models MU

αi associated to initial segments of MT
α or NT

α . For indexing,
let OR∗ = OR × ω; we order OR∗ lexicographically. We index the nodes of U
with elements of a set dom(U) ⊆ OR∗, such that for some sequence 〈kα〉α<lh(T )

of integers kα ≥ 1, we have (α, i) ∈ dom(U) iff α < lh(T ) and i < kα. So if
lh(T ) > 1 then dom(U) is not closed downward under <.

For notational convenience we allow U to use padding. If E = EU
αi = ∅ we

consider strM
U

αi(E) = OR(MU
αi); we do allow predU (β, j) = (α, i) in this case.

We make some preparations. Let α < lh(T ). Write Bα = BT
α , Mα = MT

α ,
etc. If α ∈ BT let (mα, nα) = degT (α) = (m0, n0). If α ∈ M T let mα =
degT (α). If α ∈ N T let nα = degT (α). If [0, α]T does not drop in model, then:

– If Mα 6= ∅ then ϑα denotes ψiT0α(ρ
C), (so if ρC < ρM0 , which is the main

case of interest here, then ϑα = iT0α(ρ
C)).

– If Nα 6= ∅ then ϑ̃α denotes ψjT0α(ρ
C).

Recall here that if α ∈ BT then ρ(BT
α ) = sup iT0α“ρ

C = sup jT0α“ρ
C , but these

iteration maps can be discontinuous at ρC and we can have ρ(BT
α ) < ϑα and

ρ(BT
α ) < ϑ̃α.

34 We say that α is M -stable iff Mα 6= ∅ and [0, α]T does not
drop and cr(iTβα) < ϑβ for all β ∈ [0, α)T . We define N -stable analogously.

Note that if α ∈ M T is M -stable then ρC < ρM0 and iT0β is discontinuous at ρC ,

where β = max([0, α)T ∩BT ) (since then in fact ρ(BT
β ) ≤ cr(iTβα) < ϑβ , and in

particular ρ(BT
β ) < ρ0(Mβ)). We are only interested in ϑα for M -stable α.

34Actually, if α ∈ BT then ϑα = ϑ̃α and Mα||(ϑ
+
α )Mα = Nα||(ϑ

+
α )Nα , but this is not

important.
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Let Cαi = iU00,αi(C) and Γαi = lh(Cαi). Let C̃αi = iU00,αi(C̃) and Γ̃αi =

lh(C̃αi). When we say, for example, Cαi-standard we literally meanCαi-standard
in MU

αi. Let strαi = strM
U

αi(EU
αi). We will also associate later an ordinal

sαi ≤ strαi.
We make some arrangements to help us choosing background extenders for

U (recall we do not assume AC in V ). We have W |= ZFC. Fix ξ ∈ ORW with

C, C̃ ∈ VWξ and such that VWξ 4k W for a sufficiently large k. In particular,

whenever W has a background extender for SC
α or SC̃

α, then VWξ has one too.

Let <∗ ∈ W be a wellorder of VWξ . Given (β, j) ∈ dom(U) we write <∗
βj =

iU00,βj(<
∗). We will use <∗

βj in determining EU
βj . Let E ⊆ MU

βj be a non-

empty collection of MU
βj-extenders. Let s0 = minE∈E strM

U

βj (E). Then the

∗-least element of E is the <∗
βj-least E ∈ E such that strM

U

βj (E) = s0 and E is

Mitchell-minimal such; that is, E ∩ Ult(MU
βj , E) = ∅. Given a property ϕ, the

∗-least extender E such that ϕ(E) means ∗-least element of {E
∣∣ ϕ(E)}.

Let ↑ /∈ OR (here “↑” means undefined). Let ~ξ, ~ζ ∈ (OR∪{↑})2\{(↑, ↑)} and

let ~ξ = (ξ, ξ̃) and ~ζ = (ζ, ζ̃). For γ ∈ OR let max(γ, ↑) = max(↑, γ) = γ. We

write ~ξ < ~ζ iff ↑ ∈ ~ξ and max(~ξ) ≤ max(~ζ) and if ↑ ∈ ~ζ then max(~ξ) < max(~ζ).
Clearly this order is wellfounded.

6.22 Definition. Let D be a premouse and γ ≤ ORD. The γ-dropdown
sequence of D is the sequence σ = 〈(Di, δi)〉i<n of maximum length such if

γ = ORD then σ = ∅, and if γ < ORD then D0 = M |γ, and for each i < n,
δi = ρω(Di), and if i+1 < n then Di+1 is the least A such that Di ⊳ A ⊳D and
ρAω < δi.

SupposeMα 6= ∅ and let γ ≤ OR(Mα). The (T , α, γ)-dropdown sequence
τ of Mα is defined as follows. Let σ be the γ-dropdown sequence of Mα. Then:

(a) if α is M -stable and ϑα < ORMα and (ϑ+α )
Mα ≤ γ 35 then

τ = σ ̂ 〈(Mα, ϑα), (Mα, 0)〉 ;

(b) otherwise τ = σ ̂ 〈(Mα, 0)〉.

If Nα 6= ∅ then for γ ≤ OR(Nα), we define the (T , α, γ)-dropdown sequence
of Nα analogously. ⊣

6.23 Remark. Suppose α+1 < lh(T ) andET
α ∈ E+(Mα). Let τ

∗ = 〈(Mi, ̺i)〉i≤n′

be the reverse of the (T , α, lh(ET
α ))-dropdown sequence τ (the same sequence

but in reversed order). Note that M0 = Mα, Mn′ = exTα , ̺
′
0 = 0 and ̺′i < ̺′i+1

for all i + 1 ≤ n′. Note that if β + 1 < lh(T ) and α = predT (β + 1) then
M∗T
β+1 =Mi for some i ≤ n′.

35So ϑα < (ϑ+α )Mα ≤ ̺i for each i < lh(σ).
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6.24 Remark. We now give a sketch of the resurrection process and the mean-
ing of U ↾ [(δ, 0), (δ, kδ − 1)]. Figures 1 and 2 depict various features discussed
here, under certain further simplifying assumptions, but they incorporate more
details which will be explained later. In Figure 1 it happens that we do not
need to take ultrapowers at even stages of the resurrection (see below), so there
the diagram looks more like standard resurrection, although there can be ultra-
powers taken at odd stages (see below).

For simplicity, we assume for the duration of the sketch that δ ∈ M T is
non-M -stable, but in other cases things are similar. Then we will have kδ =
2uδ+1 where the reversed (T , δ, lh(Eδ))-dropdown sequence is 〈(Mδi, ̺δi)〉i≤uδ

.
If uδ > 0, then the extenders

EU
δ0, E

U
δ1, . . . , E

U
δ,2uδ−1

will facilitate the resurrection process used to find a background extender E∗

into which we can embed Eδ, and then we will set

EU
δ,2uδ

= E∗ 6= ∅.

It is possible that EU
δj = ∅ for j < 2uδ. The resurrection will yield for each

i < uδ, a sound model Cω(Rδ,i+1), constructed (by an ultrabackgrounded con-
struction) in MU

δ,2i+1, and a fully elementary

πδ,i+1 : C0(Mi+1) → Cω(Rδ,i+1),

and will also yield Qδ,i+1, constructed at a standard stage in MU
δ,2i+2, with

Cω(Qδ,i+1) = Cω(Rδ,i+1), and thus, we also embed Mi+1 into Qδ,i+1. If i < uδ
and EU

δ,2i 6= ∅, then Mi is type 3 and ̺i+1 = ν(Mi), and it happens that the
standard resurrection process fails to yield an appropriate model Rδ,i+1. That
is, we will have already found Qδi ∈ MU

δ,2i and σ : C0(Mi) → C0(Qδi). So

Mi+1 /∈ M sq
i = dom(σ), so σ does not act directly on Mi+1. If σ is non-ν-high

then ψσ(Mi+1) ⊳ Qδi, in which case we can set EU
δ,2i = ∅ and Cω(Rδ,i+1) =

ψσ(Mi+1) (this is basically the standard resurrection process). But if σ is ν-
high, then ψσ(Mi+1) is not a stage of the construction in MU

α,2i; in this case

we set EU
δ,2i to be a background extender for F (Qδi), and this will actually

ensure that an appropriate Rδ,i+1 appears in MU
δ,2i+1 (with Cω(Rδ,i+1) either

= ψσ(Mi+1) or some variant thereof). We will write sδ,2i = ν(F (Qδi)) here; if
EU
δ,2i = ∅ then we set sδ,2i = sδ,2i+1. If i < uδ and EU

δ,2i+1 6= ∅, then Rδ,i+1

was constructed by a non-standard stage inMU
δ,2i+1, and E

U
δ,2i+1 is then selected

witnessing 6.3(3c) for Rδ,i+1, yielding an appropriate Qδ,2i+1 inMU
δ,2i+2, and we

proceed with the next step of resurrection (uncoring) there. In this case we set
sδ,2i+1 = ρω(Rδ,i+1). This eventually leads (including in the case that uδ = 0)
to a model Q∗

δ = Qδ,2uδ
∈MU

δ,2uδ
and 0-lifting embedding

π∗
δ : C0(ex

T
δ ) → C0(Q

∗
δ).

If π∗
δ is non-ν-low then we set EU

δ,2uδ
= E∗ to be an appropriate background for

F (Q∗
δ), and sδ,2uδ

= ν(Q∗
δ), whereas if π∗

δ is ν-low and ν′ = ψπ∗
δ
(νTδ ) then we
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̺δ1

̺δ2

Mδ2

Mδ1

Mδ

Cmδ
(Qδ0)

sδ0 = sδ1
= ρω(Rδ1)

Cω(Rδ1)

Qδ0

sδ2 = sδ3
= ρω(Rδ2)

Qδ1

Cω(Rδ2)

Qδ2

sδ4 =
ν(Qδ2) ≥ sδ3

Cmδ+1
(Qδ+1,0)

πδ0

τ
mδ0

δ0

πδ1

τω0
δ1

πδ2

τω0
δ2

Figure 1: Dropdown resurrection and associated objects, in the case that δ ∈ M T is non-
M -stable, uδ = 2, and all models are non-type 3. Vertical lines indicate ordinals, with
height roughly corresponding to ordinal rank. Solid arrows denote embeddings (πδ0 etc),
with domains and codomains denoted by large bullets (except that the domain is literally the
squash). Small bullets indicate the positions of labelled ordinals (̺δ1 etc). Dashed arrows
indicate trajectories under embeddings. The bases of the dotted half-arrows indicate approx-

imately the critical points of πδ0, τ
mδ0

δ0
, τω0

δ1
, τω0

δ2
respectively; the main point here is that

cr(τω0
δ,i+1

) ≥ sδ,2i+1. Curved dashed arrows indicate positions of ωth projecta ρNω of models

N . Dotted horizontal lines indicate agreement between models N1, N2 strictly below that
ordinal α; that is, N1||α = N2||α. (If α < sδ4 then in fact, α is also a cardinal of both models
and so N1|α = N2|α.) Note Cω(Rδ,i+1) = Cω(Qδ,i+1). Note sδ1 < sδ2 and sδ3 ≤ sδ4, but

sδ3 = sδ4 is possible. Note that because exT
δ

is non-type 3, we have sδ4 = ν(Qδ2).

do likewise but with Q′ ⊳ Q∗
δ instead of Q∗

δ, where Q
′ is chosen as in 1.1 with

respect to π∗
δ . This completes the sketch of resurrection.

We now proceed with the details. We first state some intentions, introduce
more notation, and state hypotheses (L1)–(L12), to be maintained by induction
on initial segments of (T ,U). Let α < lh(T ). If Mα 6= ∅ we will define:

– Dα0 ∈ {Cα0, C̃α0},

– ∆α0 = lh(Dα0),

– ξα0 < ∆α0,

– (Mα0,mα0) = (Mα,mα) and Qα0 = SDα0

ξα0
,

– and a c-preserving mα0-lifting πα0 : C0(Mα0) → Cmα0(Qα0)

such that:
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M
sq
δ

̺δ1

̺δ2

Mδ2

Mδ1

Mδ

sδ0
= ν(Qδ0)

Q
sq
δ0

R̄ = Cω(Rδ1)
unsq

sδ1
= ρω(R̄)

R̄sq

sδ2
= ν(Qδ1)

Q
sq
δ1

Cω(Rδ2)

sδ3

= ρ
Rδ2
ω

Qδ2

sδ4 =
ν(Qδ2)

σ

πδ1
τω0
δ1

ψ̂

τω0
δ2

Figure 2: Dropdown resurrection and associated objects, in the case that δ ∈ M T is non-
M -stable, uδ = 2, EU

δj
6= ∅ for each j < 4, and Mδ2 is non-type 3; hence, Mδi is type 3

and ν(Mδi) = ̺δ,i+1 for i = 0, 1. Notation is as in Figure 1; also, an open circle denotes
the height of a squashed premouse, which is also the domain or codomain of σ or τω0

δ1
. Note

σ = τ
mδ0

δ0
◦ πδ0 and ψ̂ is defined as in Subsubcase 3.2.2 in the inductive construction of U to

follow (so πδ2 = ψ̂◦ψπδ1 ↾C0(Mδ2)). Note that sδ0 < sδ1 < sδ2 < sδ3 < sδ4 (because EU
δj

6= ∅

for each j < 4). Note that the models Cmδ
(Qδ0) and Cmδ+1 (Qδ+1,0) have been omitted from

this figure, though they are present in Figure 1. Note that we again have sδ4 = ν(Qδ2)
because Mδ2 = exT

δ
is non-type 3.
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(L1) If α is M -stable then Dα0 = Cα0 and ξα0 = iU00,α0(λ
C) and

πα0 ◦ i
T
0α = iU00,α0 ↾C0(M),

so if ρC < ρM0 then πα0(ϑα) = iU00,α0(ρ
C).

(L2) If α is non-M -stable then ξα0 is Dα0-standard.

If Nα 6= ∅ we will define D̃α0, ∆̃α0, ξ̃α0, Q̃α0 and π̃α0 analogously (and
maintain analogous properties).

Now suppose α+ 1 < lh(T ).
Suppose that Eα ∈ E+(Mα). Let 〈(Mαi, ̺αi)〉i≤uα

be the reverse of the
(T , α, lh(Eα))-dropdown sequence of Mα. Then kα = 2uα + 1. Fix i ≤ uα. Let
mαi = mα if Mαi = Mα and mαi = ω otherwise (in fact we already defined
Mα0 and mα0 above). If i > 0 then for each j ∈ {2i− 1, 2i} we will define:

– Dαj ∈ {Cαj, C̃αj},

– ∆αj = lh(Dαj),

– ξαj < ∆αj ,

– Rαi = S
Dα,2i−1

ξα,2i−1
and Qαi = S

Dα,2i

ξα,2i
, and

– a c-preserving mαi-lifting embedding παi : C0(Mαi) → Cmαi
(Qαi)

such that:

(L3) if 0 < i ≤ uα then ξα,2i is Dα,2i-standard and either:

– Cmαi
(Rαi) = Cmαi

(Qαi), or

– M is non-standard (in W ), the hypothesis of Definition 6.22(a) holds
for the (T , α, lh(Eα))-dropdown (that is, α is M -stable and (ϑ+α )

Mα ≤
lh(Eα), so Mα1 = Mα0 = Mα), i = 1, Dα0 = Cα0 = Cα1 = Dα1,
mα1 = mα0 = mα = m0 and Cm0+1(Qα1) = C0(Rα1) = C0(Qα0) is
fully sound.

For m ≤ n ≤ mαi let
τnmαi : Cn(Qαi) → Cm(Qαi)

be the core embedding. Let Q∗
α = Qαuα

and m = mαuα
and

π∗
α : C0(ex

T
α ) → C0(Q

∗
α),

π∗
α = τm0

αuα
◦ παuα

.

If π∗
α is ν-low then let Q′

α be derived from π∗
α as in 1.1, and otherwise let

Q′
α = Q∗

α. Let cα be the set of infinite exTα -cardinals κ < ν(E). Fix κ ∈ cα.
Let iακ be the largest i such that ̺αi ≤ κ. Let i = iακ. Let mακ be the least m
such that either
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– Mαi =Mα and m = mα, or

– ρm+1(Mαi) ≤ κ.

Let Mακ =Mαi. We define the c-preserving mακ-lifting embedding

πακ : C0(Mακ) → Cmακ
(Qαi)

by πακ = τnmαi ◦ παi, where n = mαi and m = mακ. If α ∈ BT and κ < ρα and
(κ+)Bα < lh(E) then we also define Nακ = Nα, nακ = nα, and π̃ακ = π̃α0.

Now suppose instead that E ∈ E+(Nα)\E+(Mα). Then we make symmetric
definitions by analogy to the preceding ones. (So for example, we let σ be the
(T , α, lh(E))-dropdown sequence of Nα, and set uα + 1 = lh(σ), and for i ≤ uα
we define Nαi and nαi, and also define ξ̃αi, Q̃αi, etc.)

Let ω∗
α = π∗

α or ω∗
α = π̃∗

α, whichever is defined. Let
~ξαi = (ξαi, ξ̃αi), where if

ξ̃αi is undefined then ~ξαi = (ξαi, ↑), etc.
We now list the remaining inductive hypotheses:

(L4) Let β + 1 < lh(T ) and α = predT (β + 1). Then:

(a) If β + 1 is M -stable or N -stable then predU (β + 1, 0) = (α, 0).

(b) Suppose β + 1 ∈ M T is non-M -stable and let i ≤ uα be such that
M∗
β+1 =Mαi and if α is M -stable then i ≥ 1.36 Then

predU (β + 1, 0) = (α, 2i).

(c) Likewise if β + 1 ∈ N T is non-N -stable.

(L5) Let α ≤ β < lh(T ) and j < kα and k < kβ with β or k a successor, and

(α, j) = predU (β, k). Then:

(a) ~ξβk ≤ iUαj,βk(
~ξαj).

(b) If k is odd then ~ξβk < iUαj,βk(
~ξαj).

(c) If k is even and k > 0 then either:

i. (α, j) = (β, k − 1), so j is odd and ~ξβk < iUγℓ,βk(
~ξγℓ) where

(γ, ℓ) = predU (α, j), or

ii. ~ξβk < iUαj,βk(
~ξαj).

(d) Suppose k = 0; so α = predT (β) and j = 2i is even (by part (L4)
above). Then

(Dβ0, D̃β0, ~ξβ0) = iUαj,β0(Dαj , D̃αj , ~ξαj)

36Note that if ξ ∈ M T is is non-M -stable but all α <T ξ are M -stable, then ξ = β + 1
for some β, and letting α = predT (β + 1), then α is M -stable (so [0, α]T does not drop in
model), and if T does not drop in model at β + 1 then ϑα ≤ cr(Eβ) and Eβ is Mα-total, so

(ϑ+α )Mα ≤ lh(Eα), so Mα1 =Mα0 = Mα =M∗
β+1

.
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and if Mβ 6= ∅ then

πβ0 ◦ i
∗T
β = iUαj,β0 ◦ τ

mαimβ

αi ◦ παi = τ
mαimβ

β0 ◦ iUαj,β0 ◦ παi,

and if Nβ 6= ∅ then π̃β0 ◦ j∗Tβ is likewise.

(L6) Let α <T λ < lh(T ) with λ a limit and such that:

– (α, λ]T does not drop in model,

– if α ∈ BT then λ ∈ BT ,

– if α is M -stable then λ is M -stable,

– if α is N -stable then λ is N -stable.

Then:

– (α, 0) <U (λ, 0),

– (α, 0) ≤U (β, i) ≤U (λ, 0) iff [i = 0 and α ≤T β ≤T λ],

– iUα0,λ0(Dα0, D̃α0,
~ξα0) = (Dλ0, D̃λ0, ~ξλ0),

– if Mα 6= ∅ then letting m = mα and n = mλ,

πλ0 ◦ i
T
αλ = iUα0,λ0 ◦ τ

mn
α0 ◦ πα0 = τmnλ0 ◦ iUα0,λ0 ◦ πα0,

– likewise if Nα 6= ∅.

(L7) If α ∈ BT then πα0 ↾ρα = π̃α0 ↾ρα.
37

(L8) Let α < β < lh(T ) and α < β′ < lh(T ) and κ ∈ cα. Then:

– If Eα ∈ EMα

+ and 0 ≤ i < uα then τmαi0
αi ◦ παi ↾̺α,i+1 ⊆ ω∗

α; likewise
otherwise.

– If πακ is defined then πακ ↾(κ
+)Mακ ⊆ ω∗

α.

– If π̃ακ is defined then π̃ακ ↾(κ
+)Nακ ⊆ ω∗

α.

– If πβ0 is defined then ω∗
α ⊆ πβ0.

– If π̃β0 is defined then ω∗
α ⊆ π̃β0.

– If πβ0 and π̃β′0 are both defined then they agree over exTα (not just
over (exTα )

sq = dom(ω∗
α)).

We write ωα for the restriction of πα+1,0 or π̃α+1,0 to exTα (not just
(exTα )

sq), whichever is defined. Then moreover:

– ω∞ =
⋃
α+1<lh(T ) ωα is a function.

37Note then that if α + 1 < lh(T ) then for all κ ∈ cα ∩ ρα such that (κ+)Bα < lhTα , we
have πακ = πα0 and π̃ακ = π̃α0, so πακ ↾ (κ+)Bα = π̃ακ ↾ (κ+)Bα .
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(L9) The tree given by removing padding from U is neat. Moreover, given
α + 1, β + 1 < lh(T ) and j ≤ 2uα and k ≤ 2uβ, and letting (α, j) + 1 be
the successor of (α, j) in dom(U), we have

(a) if (α, j) < (β, k) then [sαj ≤ sβk and if EU
αj 6= ∅ then sαj < sβk],

(b) if EU
αj 6= ∅ then either:

– (i) cr(EU
αj) < sαj , (ii) strαj is the least MU

αj-cardinal ≥ sαj , and

(iii) predU ((α, j) + 1) is the least (γ, ℓ) such that cr(EU
αj) < sγℓ,

or

– (i) cr(EU
αj) = sαj , (ii) strαj = (s+αj)

MU

αj , (iii) sαj is not measur-

able in MU
(α,j)+1, (iv) j is odd.

(L10) Let α+ 1 < lh(T ) and i < uα. Then:

– If EU
α,2i 6= ∅ then [Qαi is type 3, ν(Qαi) is a limit cardinal of Qαi,

and sα,2i = ν(Qαi) < ORQαi < sα,2i+1],

– if EU
α,2i = ∅ then sα,2i = sα,2i+1,

– sα,2i+1 = ρω(Rα,i+1) = ρω(Qα,i+1),

– sα,2i, sα,2i+1 are cardinals ofQα,i, Cω(Rα,i+1), Cω(Qα,i+1), andQα,i+1,

– Qαi|ρ = Cω(Rα,i+1)|ρ = Cω(Qα,i+1)|ρ = Qα,i+1|ρ where ρ = sα,2i+1.

(L11) Let α < β < lh(T ) and i ≤ uβ. Then:

– sα,2uα
= ν(Q′

α); let ν = ν(Q′
α),

38

– Q′
α||ν = Q∗

α||ν = Cmβi
(Qβi)||ν,39

– ν < ρmβi
(Qβi),

– Q∗
α, Q

′
α and Cmβi

(Qβi) agree about cardinals < ν.

(L12) Let α+1 < lh(T ) and suppose that Eα ∈ E+(Mα). Then E
U
α,2uα

6= ∅ and

supω∞“νTα ≤ sα,2uα
= ν(Q′

α) ≤ ω∞(νTα ).

Now suppose also that uα > 0. Let ν̄ = supβ<α ν
T
β . Note that

ν̄ ≤ ̺α1 < ̺α2 < . . . < ̺αuα
≤ νTα .

(Here if uα ≤ 1 and α is a limit we could have ν̄ = νTα .) Let i < uα and
let j ∈ {2i, 2i+ 1}. If EU

αj 6= ∅ then

supω∞“̺α,i+1 ≤ sαj ≤ ω∞(̺α,i+1).

38 Recall that if ω∗
α is non-ν-low then Q′

α = Q∗
α and if ω∗

α is ν-low and ν′ = ψω∗
α
(νTα ) then

[Q′
α ⊳ Q

∗
α and FQ′

α ↾ν′ = FQ∗
α ↾ν′ and ν′ = ν(Q′

α)].
39 If ν = (γ+)Q

∗
α then it seems possible that N = Cmα+1(Qα+1,0)|ν is active with an

extender G, in which case of course Q∗
α|ν 6= N , but Q∗

α||OR(Q∗
α) = Ult(N,G)||OR(Q∗

α).
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We now begin the construction. Recall that C = (ρC ,M,N) was defined
in the proof of Claim 1 of 6.18, as were C, λC, M ′ = SC

λC , M = Cω(M
′), and

likewise C̃ etc. We have degT (0) = (m0, n0) = the degree of C; that is, either

– m0 = 0 and M is type 3 with ν(M) = ρC , or

– m0 ≥ 0 and ρMm0+1 ≤ ρC < ρMm0
,

and likewise for n0, N . We have M0 = M and N0 = N . Let D00 = C and
ξ00 = λC and

π00 : C0(M0) → Cm0(Q00)

be the core embedding. (Recall that M,N are fully sound, but M may or may
not be C-standard, and Q00 = SC

λC may or may not be sound, and likewise
N,D; in the notation that assumes 1 < lh(T ), the core embedding is τωm0

00 .)

We define D̃00, ξ̃00, π̃00 analogously. Then π00 ↾ρ0 = id = π̃00 ↾ρ0, which gives
inductive hypothesis (L7) (for (T ↾ 1,U ↾ (0, 1))), and the others are trivial as
lh(T ↾1) = 1 = lh(U ↾(0, 1)).

Now let λ be a limit ordinal and suppose that the inductive hypotheses hold
of T ↾ λ and U ↾ (λ, 0); we will define U ↾ (λ, 1) and T ↾ (λ + 1) and verify that
the hypotheses still hold. Note that U ↾ (λ, 0) has limit length and is cofinally
non-padded. Let c = ΣV (U ↾(λ, 0)).

We can define ΣM (T ↾ λ) as the unique branch b such that for eventually
all α ∈ b, we have (α, 0) ∈ c. For by inductive hypotheses (L5)a–(L5)c, there
are only boundedly many (β, k) ∈ c with k > 0, so by hypothesis (L4), this
branch is well-defined and T -cofinal. Similarly, there are only finitely many
drops in model along b, and there are unique choices for πλ0, etc, maintaining
the inductive hypotheses.

We now move to the successor case. Suppose that the inductive hypotheses
hold for T ↾δ + 1 and U ↾(δ, 1). We will define U ↾(δ + 1, 1) and show that they
hold for T ↾δ + 2 and U ↾ (δ + 1, 1). Note that this step involves the use of just
one extender in T , and finitely many in U .

Case 1. uδ = 0 and Mδ 6= ∅ and Eδ ∈ EMδ

+ (so Eδ = F (Mδ)).

Subclaim 5.1. ξδ0 is Dδ0-standard.

Proof. Suppose otherwise. Then by induction with (L2), δ is M -stable.
Now δ ∈ BT . For suppose δ ∈ M T and let β = max(BT ∩ [0, δ]T ). Then

ρ(Bβ) ≤ cr(iTβδ) < ρ0(Mβ),

so ρC < ρM0 . But then ϑδ = iT0δ(ρ
C) < ρ0(Mδ), and

(ϑ+δ )
Mδ ≤ OR(Mδ) = lh(Eδ),

so uδ > 0, by 6.22, contradiction.
So δ ∈ BT . Note then that by 6.22 and since uδ = 0, we have ϑδ ≥ ORMδ ,

so M is type 3 with ρC = ν(M). But then by 6.9, λC is C-standard, so by (L1),
ξδ0 is Dδ0-standard. This completes the proof of the subclaim.
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Let λ = supβ<δ lh
T
β . Then λ ≤ ρmδ

(Mδ), so πδ0“λ ⊆ ρmδ
(Qδ0), but τ

mδ0
δ0 ↾

ρmδ
(Qδ0) = id, so

ω∗
δ ↾λ = πδ0 ↾λ. (13)

If ω∗
δ is non-ν-low then set EU

δ0 = the ∗-least extender E∗ ∈MU
δ0 witnessing

6.3(3b) for (Dδ0, Qδ0); and as required by (L11), set sδ0 = ν(Qδ0) in this case.
Suppose now that ω∗

δ is ν-low. In particular, Eδ is type 3. Let ν′ = ψω∗

δ
(νTδ )

and Q′ ⊳ Qδ0 be as in 1.1. By 6.7 and 6.9, and as ν′ is a Qδ0-cardinal, we get
Q′ = SDδ0

γ for some Dδ0-standard γ. Let EU
δ0 be the ∗-least E∗ ∈MU

δ0 witnessing

6.3(3b) for Q′, and sδ0 = νQ
′

. Note that in both cases, by ∗-minimality, strδ0
is the least MU

δ0-cardinal ρ ≥ sδ0.

Let κ = crTδ and α = predT (δ+1) and i = iακ. Note that M
∗
δ+1 =Mακ and

mακ = mδ+1 and N∗
δ+1 = Nακ and nακ = nδ+1 (with each of these equalities,

it is included that the object on the left is defined iff the one on the right is).
We can and do set predU (δ + 1, 0) = (α, 2i), by properties (L9)–(L12). The

identities of Dδ+1,0, D̃δ+1,0, ξδ+1,0, ξ̃δ+1,0 are determined by property (L5)d. We
define πδ+1,0 and/or π̃δ+1,0 as usual.

It is straightforward and mostly routine to show that the inductive hypothe-
ses are maintained, and we leave this mostly to the reader, just making a cou-
ple of remarks. Consider the verification of (L2) at δ + 1 in the case that
Mδ+1 6= ∅ and [0, δ+1]T does not drop, and α is M -stable, but δ+1 is not. So
ϑα ≤ cr(Eδ) and note that Eα ∈ E+(Mα), ϑα < ν(Eα), and (ϑ+α )

Mα ≤ lh(Eα).
So by 6.22, uα > 0, and since ϑα ≤ cr(Eδ) but Eδ is Mα-total, (L4)b implies
predU (δ + 1, 0) = (α, 2), and by (L3), ξα2 is Dα2-standard. Considering the
definition of (Dδ+1,0, ξδ+1,0) given by (L5)d, this yields (L2) (in the case under
consideration). Hypothesis (L11) is pretty standard, but we remark that if exTδ
is type 1 or 3 (hence Q′

δ has the same type) and ν′ = ν(F (Q′
δ)) = (γ+)Q

′

δ (some
γ), then we can only expect Q′

δ||ν
′ = Qδ+1,0||ν′, because 6.3(3b) only gives

that F (Q′
δ) ↾ ν

′ ⊆ EU
δ ↾ ν′, so while Q′

δ|ν
′ is passive, it might be that Qδ+1,0|ν′

is active with an extender F ′. 40 Regarding (L8), by line (13), and because
ω∗
δ ⊆ πδ+1,0 and/or ω∗

δ ⊆ π̃δ+1,0, we have maintained the well-definedness of
ω∞. And regarding (L12), the fact, for example if πδ+1,0 is defined, that

ω∞(νTδ ) = πδ+1,0(ν
T
δ ) ≥ sδ0

follows from our choice of E∗ (this is why we use Q′ when ω∗
δ is ν-low).

Case 2. uδ = 0 and Eδ /∈ EMδ

+ (so Eδ = F (Nδ)).
By symmetry with the previous case.

Case 3. uδ > 0 and Eδ ∈ EMδ

+ and if δ is M -stable and ϑδ < ORMδ then
lh(Eδ) < (ϑ+δ )

Mδ .

40If F ′ = ∅, then standard arguments with condensation show that Qδ+1,0||λ
′ =

Q′
δ
||λ′, where λ′ = OR(Q′

δ
); if F ′ 6= ∅, standard arguments show that Qδ+1,0||λ

′ =

Ult(Qδ+1,0||λ
′, F ′)||λ′. Analogously (and irrespective of the type of exT

δ
), if Q′

δ+1,0
|ν′ is

passive, it seems that Q′
δ+1,0

|λ′ might be active.
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Let ̺ = ̺δ1; then ̺ is a cardinal of Mδ, so ̺ ≤ ρ0(Mδ) and if δ is M -stable
then ̺ ≤ ϑδ. We will first determine U ↾ ((δ, 2) + 1) and the associated objects
(that is, through MU

δ2, Dδ2, ξδ2, Qδ1, πδ1, etc); this splits into various subcases.

Subcase 3.1. ̺ < ρ0(Mδ).
Set EU

δ0 = ∅; so predU (δ, 1) = (δ, 0) and MU
δ1 = MU

δ0 and iUδ0,δ1 = id. Set

Dδ1 = Dδ0. Let ϕ : C0(Mδ) → C0(Qδ0) be ϕ = τmδ0
δ0 ◦ πδ0. Let R = ϕ(Mδ1).

Set sδ0 = sδ1 = ϕ(̺) = ρRω . Note ϕ(̺) is a cardinal of Qδ0 (as πδ0 and τmδ0
δ0 are

c-preserving). Moreover, if ξδ0 is non-Dδ0-standard then ϕ(̺) ≤ ρω(Qδ0); for by
non-standardness, (L1) and (L2), δ is M -stable and ϕ = πδ0, and since ̺ ≤ ϑδ,
therefore ϕ(̺) ≤ πδ0(ϑδ) = ρQδ0

ω . So we can fix ξ = ξδ1 with C0(R) = Cω(S
Dδ1

ξ ).

So Rδ1 = SDδ1

ξδ1
= SDδ0

ξ . We set

πδ1 = ϕ↾C0(Mδ1) : C0(Mδ1) → C0(R) = Cω(Rδ1).

We now define EU
δ1, M

U
δ2, Dδ2, ξδ2, and hence Qδ1 = SDδ2

ξδ2
. Recall we want

ξδ2 to be Dδ2-standard and Cω(Qδ1) = Cω(Rδ1).
Now if ξδ1 is Dδ1-standard we set EU

δ1 = ∅ (so predU (δ, 2) = (δ, 1) etc),
Dδ2 = Dδ1 and ξδ2 = ξδ1.

Suppose that ξδ1 is non-Dδ1-standard. So Rδ1 is sound. Let EU
δ1 be the

∗-least G ∈ Mδ1 which is a Dδ1-nice witness for Rδ1. Let µ = cr(G). (Note we
can) let (α, j) = predU (δ, 2) be least ≤ (δ, 1) such that µ < sαj , if such exists;
otherwise µ = sδ1 and (α, j) = (δ, 2). If Eα ∈ E+(Mα) then let F = Dαj and
ζ = ξαj , and if 2i = j then let P = Qαi, and if 2i − 1 = j then P = Rαi.

Otherwise let F = D̃αj , ζ = ξ̃αj and P = Q̃αi or P = R̃αi. Let f = iUαj,δ2.

By properties (L10),(L11), (P ∼ R)|µ, and note that P |µ = SF
γ for some

F-standard γ < ζ. Since G is a nice witness, f(µ) > ϕ(̺), so Rδ1 ⊳ f(P |µ),
and note that ϕ(̺) is a cardinal of f(P |µ). We set Dδ2 = f(F), and let ξδ2
be the ξ < f(ζ) such that C0(R) = Cω(S

Dδ2

ξ ). Because G is a nice witness,

the agreement between MU
δ2 and Ult(MU

δ1, G) implies that ξδ2 is strongly Dδ2-
standard (note that this only depends on SDδ2

ξδ2
in MU

δ2 or in Ult(MU
δ1, G), not on

the relevant constructions themselves).

Subcase 3.2. ̺ = ρ0(Mδ).
So Mδ is active type 3. Let E = FMδ and Q = Qδ0 and F = FQ and

ν = ν(F ). Let υ : C0(Mδ) → C0(Q) be υ = τmδ0
δ0 ◦ πδ0. Let ψ = ψυ.

Subsubcase 3.2.1. υ is non-ν-high; that is, ψ(̺) ≤ ν.
Proceed as in Subcase 3.1, but using ϕ = ψ instead.

Subsubcase 3.2.2. υ is ν-high; that is, ψ(̺) > ν.
Here we proceed basically as in [10]. Let EU

δ0 be the ∗-least witness to 6.3(3b)
for (Dδ0, Q) and set sδ0 = ν. Let T ′ be the putative iteration tree on C of the

form (T ↾δ+1)̂E. ThenMδ1⊳C0(M
T ′

δ+1). Let α = predT
′

(δ+1) and κ = cr(E)

and i = iακ. We set predU (δ, 1) = (α, 2i); as in Case 1 this works. Let F, ζ, P, f
be defined from (α, 2i) as in Subcase 3.1. For notational specificity, let us assume
that Eα ∈ E+(Mα); the other case is likewise, but instead of P = Qαi, we have
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P = Q̃αi, etc. So P = Qαi = S
Dα,2i

ζ (as j = 2i). We have Mακ = Mαi and
κ < ρmακ

(Mακ) and κ < ρ0(Mδ),

πακ : C0(Mακ) → Cmακ
(P ) and υ : C0(Mδ) → C0(Q).

Let χ = (κ+)Mδ = (κ+)Mακ . We have (and let) M̄ =Mακ||χ =Mδ|χ. We have
πακ ↾χ = υ ↾χ = ω∞ ↾χ. Let κ′ = πακ(κ) = υ(κ) = cr(F ) and

χ′ = supπακ“χ = sup υ“χ = supω∞“χ.

Then κ′ < ρmακ
(P ) is a cardinal of P and Q and (letting) P̄ = P ||χ′ = Q||χ′,

then P̄ has largest cardinal κ′, and there is γ ≤ ζ which is Dα,2i-standard with

P̄ = S
Dα,2i
γ . Let π̄ : M̄ → P̄ be π̄ = πακ ↾M̄ . So π̄ is cofinal Σ1-elementary. Let

Ū = Ult0(M̄, E) = Ult0(M̄, E ↾ν(E))

and ψ̄ : Ū → Ult0(P̄ , F ↾ ν) be induced from π̄ and υ via the Shift Lemma.
41 So ψ̄ is cofinal Σ1-elementary and ψ̄ ◦ iM̄E = iP̄F↾ν ◦ π̄ and υ ⊆ ψ̄ (and note

rg(υ) ⊆ Q|ν). We have P̄ ∈ MU
α,2i. Let ψ′ : Ult0(P̄ , F ↾ ν) → f(P̄ ) be the

natural factor map; that is, for g ∈ P̄ and generators a ∈ ν<ω,

ψ′([a, g]P̄F↾ν) = [a, g]
MU

αj

EU
δ0

(recalling that F ↾ ν ⊆ EU
δ0). So ψ′ is Σ0-elementary and c-preserving and

ψ′ ◦ iP̄F↾ν = f ↾ P̄ and cr(ψ′) ≥ ν. Let ψ1 = ψ′ ◦ ψ̄. So ψ1 : Ū → f(P̄ ), and
ψ1 is also Σ0-elementary c-preserving, commutes, and υ ⊆ ψ1, and of course
Mδ||ORMδ E Ū and ̺ = ν(E) is a cardinal of Ū .

Subclaim 5.2. ψ1(̺) > ν = ν(F ) = sδ0.

Proof. We have ν = ν(F ) = sδ0 by definition. If χ′ = ((κ′)+)Q then in fact
ψ̄(̺) > ν, because in fact ψ̄ ⊆ ψ = ψυ, and by subsubcase hypothesis, ψ(̺) > ν.
So suppose χ′ < ((κ′)+)Q. Let P̄+ = Q|((κ′)+)Q, so P̄ = (P̄+)||χ′, so noting
that P̄+ ∈ MU

α,2i, we have f(P̄ ) = (f(P̄+))||f(χ′). Let ψ+
1 : Ū → f(P̄+) be

ψ+
1 = inc ◦ ψ1, where inc denotes inclusion. Then ψ+

1 is also Σ0-elementary
c-preserving, and ψ1, ψ

+
1 have the same graph. But ψ+

1 = σ ◦ (ψ ↾ Ū), where

σ : Ult0(P̄
+, F ) → f(P̄+)

is the natural factor map. Since ψ(̺) > ν by subsubcase hypothesis, therefore
ψ+
1 (̺) > ν, as desired.

Let Dδ1 = f(F) and R = ψ1(Mδ1). Then R ⊳ f(P̄ ) and R = SDδ1

ξ for some
ξ < f(γ); let ξδ1 be this ξ. Let πδ1 = ψ1 ↾C0(Mδ1) (a fully elementary map).

41Note here that if χ′ < ((κ′)+)Qδ0 then F ↾ ν is not weakly amenable to P̄ , and the
ultrapower would be different if we used the full F (with generators through ORQ), and
actually if F is of supertstrong type, it is not clear how it should even be defined.
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Now if ξ is Dδ1-standard, we set EU
δ1 = ∅, etc. Otherwise, proceed as in

Subcase 3.1 to define EU
δ1 etc. In either case, sδ0 = ν < ψ1(̺) = sδ1, by

Subclaim 5.2.

This completes the definition of U ↾ (δ, 2) in all subcases. We now proceed
in general for Case 3, to determine U ↾ (δ + 1, 1) etc. If uδ = 1 then we have
already determined

ω∗
δ = π∗

δ = τω0δ1 ◦ πδ1 : exTδ → Q∗
δ = Qδ1.

Here ω∗
δ is Σ1-elementary and so non-ν-low, by 1.1. So Q′

δ = Q∗
δ and (following

(L11)) we set EU
δ2 be the ∗-least background for Q∗

δ, and sδ2 = ν(F (Q∗
δ)).

Now sδ1 = ρω(Rδ1) = ρω(Qδ1) ≤ sδ2. We claim that if EU
δ1 6= ∅ then

sδ1 < sδ2. For otherwise sδ1 = sδ2, which implies Rδ1 = Qδ1 is type 1 or type
3, but then by 6.9, ξδ1 is Dδ1-standard, so EU

δ1 = ∅, contradiction. (Also if
EU
δ0 6= ∅ = EU

δ1, then sδ0 < ψ1(̺) = sδ1 ≤ sδ2, by Subclaim 5.2.) The remaining
definitions and propagation of inductive hypotheses are like in Case 1.

If uδ > 1 then we next repeat the preceding subcases, working with Mδ2,
πδ1, etc, in place of Mδ1, πδ0, etc. We iterate this until producing ω∗

δ , Q
∗
δ and

EU
δ,2uδ

(as above, ω∗
δ is non-ν-low). This completes the definition of U ↾(δ+1, 1).

Case 4. uδ > 0 and Eδ /∈ EMδ

+ and if δ is N -stable and ϑδ < ORNδ then
lh(Eδ) < (ϑ+δ )

Nδ .
By symmetry.

Case 5. uδ > 0 and Eδ ∈ EMδ

+ and δ is M -stable and ϑδ < ORMδ and (ϑ+δ )
Mδ ≤

lh(Eδ).
This case proceeds mostly like the preceding cases, but the first step is a

little different. Recall that here the reversed (T , δ, lh(Eδ))-dropdown sequence
begins with (Mδ, 0), (Mδ, ϑδ), and since δ is M -stable, (Dδ0, ξδ0) = iU00,δ0(C, λ

C),
and recall that m0 < ω and M is fully sound and either

– m0 = 0 and M = SC

λC is type 3 with ν(M) = ρC , or

– M = Cm0+1(S
C

λC) is fully sound with ρMm0+1 = ρC < ρMm0
.

We set EU
δ0 = ∅ and Dδ1 = Dδ0, ξδ1 = ξδ0, mδ1 = mδ0 = mδ = m0, etc, so

Rδ1 = Qδ0. (We also set ξ̃δ1 = ↑.) We will set

sδ0 = sδ1 = ρRδ1
ω = iU00,δ0(ρ

C) = iU00,δ1(ρ
C) = ψπδ0

(ϑδ).

If ξδ1 is Dδ1-standard then we also set EU
δ1 = ∅, etc. Suppose otherwise. So λC

is non-C-standard, Rδ1 = Qδ0 = iU00,δ1(M), and these models are ω-sound. So

ρC < ρM0 (by 6.9). We set EU
δ1 = the ∗-least Dδ1-nice witness G for Rδ1, set

predU (δ, 2),F, f like usual, set Dδ2 = f(F), and set ξδ2 to be the ξ such that
Rδ1 = Cω(S

Dδ2

ξ ). So either way, ξδ2 is Dδ2-standard. After this we proceed as
before.

Case 6. Otherwise (equivalently, uδ > 0 and Eδ /∈ EMδ

+ and δ is N -stable and

ϑδ < ORNδ and (ϑ+δ )
Nδ ≤ lh(Eδ)).

By symmetry.
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This completes the proof of part (ii) of Claim 5. In the proof of part (iv),

we need substitutes C′
αj for Cαj and <′

αj for <∗
αj (there is, however, no C̃αj

to consider, and we do not need the notation Dαj or D̃αj). We have the class
wellorder <W of W (which, however, need not be a class of W itself). Given
γ ∈ ORW , let CγW be the <W -least ultra-backgrounded construction ofW with
last model RWγ . We only define ξα0 in the case that [0, α]T drops in model (but
we always define ξαj when j > 0).

Suppose [0, α]T does not drop. In this case we determine Cα0 only after

selecting ET
α . We will have Qα0 = L[E]M

U

α0 and πα0 :Mα → Qα0 is elementary
and πα0 ◦ iT0α = iU00,α0. Let γ be least such that πα0(lh(E

T
α )) < iU00,α0(OR(Rγ)).

Then we set Cα0 = iU00,α0(C
γW ). So inMU

α0, Cα0 has last model L[E]|ζ for some

L[E]-cardinal ζ, and πα0(lh(ET
α )) < ζ.

If [0, α]T drops or j > 0, then Cαj is defined basically as before (though it

is more standard, because there is no C̃αj etc).
Now consider <∗

αj . Let f = iU00,αj . (Note that f(<W ) need not make sense,

since <W need not be a W -class.) Given x, y ∈ MU
αj , set x <

′
αj y iff either (i)

rank(x) < rank(y), or (ii) [rank(x) = rank(y) and letting β < ORW be least
such that x, y ∈ f(VWβ ), and letting <0 be the <W -least wellorder of VWβ , then

(x, y) ∈ f(<0)]. Clearly <′
αj is a wellorder of MU

αj; we use this in place of <∗
αj

when selecting EU
αj .

The rest is straightforward. This completes the proof of the theorem.

6.25 Remark. Suppose W |= ZFC is an iterable premouse. Let L[E]W be the
output of the pm-ultra stack construction ofW . Then we have the usual partial
converse to the fact that L[E]W inherits Woodins. That is, let δ be Woodin in
L[E]. ThenW |δ is generic for the extender algebra of L[E] at δ, and δ is Woodin
in L[E][W |δ].

The natural analogue of [5, Theorem 3.2] also holds for ultra-backgrounded
constructions, and hence for the ultra-stack construction, assuming that exten-
ders cohere the relevant iteration strategy:

6.26 Theorem. Assume ZFC and let M be a countable, k-sound, (k,OR)-
iterable premouse, and Σ be a (k,OR)-iteration strategy for M . Suppose that
iE(Σ) = Σ↾Ult(V,E for every short V -extender E.

Let C = 〈Sα〉α≤λ be an ultra-backgrounded construction. Then there is ξ ≤ λ

and 〈Tα〉α≤ξ such that (i) Tα is a successor length tree via Σ with Sα E MTα
∞ ,

(ii) if α < ξ and Sα =MTα
∞ then bTα drops in model, (iii) if ξ < λ then bTξ does

not drop in model.
Moreover, either:

(a) there is some ultra-backgrounded construction C, with last model Sλ, such

that T C

λ exists and bT
C

λ does not drop in model, or
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(b) the ultra-stack construction 〈Rα〉α∈OR is well-defined, and there is a length
OR tree U on M , via Σ, such that ROR =M(U).

Proof. The proof is like that of [5, Theorem 3.2]; there are also variants of this
argument in [11, §5] and elsewhere. Let C be an ultra-backgrounded construc-
tion. One constructs Tα by induction on α ≤ λ, until reaching either λ or some
appropriate ξ < λ. The induction is straightforward except for when either Sα
is active or α is non-standard, so we consider these cases.

Case 1. Sα is active and α is standard.
So Sα = (S, F ) where S = Sβ. Let F ∗ be a background for F (as in 6.3).

Let k : Ult0(S, F ) → j(S) be the natural factor map; so ν(F ) ≤ cr(k). Let
j = iVF∗ and κ = cr(j). We have T = Tβ with S E MT

∞; since κ is measurable

and M countable, lh(T ) ≥ κ + 1. We may assume that lh(G) ≤ ORS for all

extenders G used in T . Then j(S) EM
j(T )
∞ , and by assumption, j(T ) is via Σ.

Note T ↾(κ+1) E j(T ) and j([0, κ]T ) = [0, j(κ)]j(T ), and [0, κ)T ⊆ [0, j(κ)]j(T ),

so κ <j(T ) j(κ). We have i
j(T )
κ,j(κ) ↾ P(κ) ⊆ j, by the proof of termination of

comparison; in particular, κ = cr(i
j(T )
κ,j(κ)). Note [0, j(κ)]j(T ) has no drops ≥ κ,

so (κ+)M
j(T )
∞ = (κ+)M

T

κ . Clearly θ = (κ+)S ≤ (κ+)M
T

κ and and S|θ =M
j(T )
∞ ||θ.

Let γ + 1 = succj(T )(κ, j(κ)) and E = E
j(T )
γ . Then cr(E) = κ and E ↾ ν(E) is

derived from j. Let ν = min(ν(E), ν(F )). Then

E ∩ ((MT
κ ||θ)× [ν]<ω) = F ↾ν.

Subcase 1.1. (κ+)M
T

κ = θ = (κ+)S .
So E,F are compatible; that is, E ↾ν = F ↾ν. By the ISC for (S, F ), T does

not use any extender of index < ORS which is compatible with F .

Subsubcase 1.1.1. j(S)||ORS = S.
Then T , j(T ) use the same extenders with index < ORS . So by the previous

paragraph, ORS ≤ lh(E). If lh(E) = ORS , then E
j(T )
γ = E = F , so (S, F ) E

M
j(T )
γ , so Tα = j(T ) ↾ (γ + 1) is as desired. If lh(E) > ORS , then by the ISC

applied to ex
j(T )
γ , and since S = ex

j(T )
γ ||ORS , we get (S, F ) ⊳ ex

j(T )
γ , so we can

set Tα = j(T )↾(γ′ + 1) with some γ′.

Subsubcase 1.1.2. j(S)||ORS 6= S.
Then F is type 1 or 3. Let ν′ = ν(F ). By condensation arguments using k,

j(S)|ν′ is active with an extender G and S = Ult(j(S)|ν′, G)||λ. It follows that

there is γ′ such that T ↾(γ′ + 1) E j(T ) and ET
γ′ = G, but ν′ < lh(E

j(T )
γ′ ). Like

before, lh(E) ≥ ν′, so lh(E) > ν′ (as lh(G) = ν′). So by the ISC applied to

ex
j(T )
γ , with respect to ν′, and since lh(G) = ν′, (S, F ) EMT

γ′+1, which suffices.

Subcase 1.2. (κ+)M
T

κ > θ = (κ+)S .
Then cr(k) = θ, so F is type 1. We now argue with subsubcases much as

before, but using the (proofs of) [11, Theorems 4.11, 4.12, 4.15] in place of the
ISC. (In [11], premice are always assumed to be below a superstrong. But the
proofs adapt routinely to the superstrong setting.)
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This completes the construction of Tα in this case.

Case 2. Now suppose instead that α is non-C-standard. So α = β + 1, and
letting ρ = ρω(Sα), and T = Tβ , we have Sβ = Sα||(ρ+)Sα E MT

∞. Let G be a

nice witness for Sα and j = iVG. Then Sα ⊳ j(Sα|ρ), so Sα ⊳ M
j(T )
∞ , and since

j(T ) is via Σ, this suffices to yield Tα.

This completes the inductive construction of the trees Tα.
Now suppose there is no ultra-stack construction as in part (a) of the the

“moreover” clause of the theorem. Then for every ultra-backgrounded con-

struction C and every α < lh(C), T C
α exists and if SC

α =M
T C

α
∞ then bT

C

α drops in
model. But then note that no ultra-backgrounded construction can break down;
that is, for each n < ω, Cn(S

C
α) is (n+1)-universal and Cn+1(S

C
α) is (n+1)-solid.

Let 〈Rα〉α∈OR be the ultra-stack construction. We show by induction on α
that Rα is well-defined and sound, and for each α ∈ OR, there is a tree Uα via
Σ such that Rα ⊳ M

Uα
∞ , and by taking Uα of minimal length, then Uα E Uβ for

α < β. This suffices, because then U =
⋃
α∈OR Uα is as desired.

So suppose Rα is defined and we have Uα with Rα E MUα
∞ . Let C be an

ultra-backgrounded construction with SC

λ = Rα.
Now Rα⊳M

Uα
∞ . For suppose Rα =MUα

∞ . Then because (a) fails, bUα drops in
model, so Rα is not sound. Let R = Cω(M

Uα
∞ ) (this exists and in fact R ⊳MUα

ξ

for some ξ). So R 6E Rα. But Rα = SC

λ is produced by ultra-backgrounded
construction, so R is also, so by maximality of the ultra-stack construction,
R E Rα, a contradiction.

So Rα⊳M
Uα
∞ . Now consider the sound premice R which project to ORRα and

form the stack Rα+1 above Rα. These R are produced by ultra-backgrounded
construction, and Rα ⊳ R, so we get TR such that R EMTR

∞ , and note Uα ⊳ TR,
and it easily follows that R EMUα

∞ , giving well-definedness of Rα+1. And note
we get either Uα+1 = Uα, or Uα+1 = Uα ̂ 〈E〉 where lh(E) = OR(Rα+1).

Limit stages are easy. This completes the proof.

7. Questions

Since condensation follows from solidity and normal iterability, we ask:

– Let m < ω and let M be an m-sound, (m,ω1 + 1)-iterable premouse. Is
M (m+ 1)-universal? Is M (m+ 1)-solid?

– Let M be a 1-sound (0, ω1 + 1)-iterable premouse. Is M Dodd-solid?

We conjecture that the answer in each case is “yes”,42 at least if M has no
superstrong initial segments. However, it appears less clear how to prove these
things than it is condensation; if one attempts an approach similar to the proof
of condensation (from normal iterability) then, at least näıvely, structures arise

42The author has since confirmed this conjecture, including superstrongs; see [7].
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similar to bicephali B, but the premice involved may fail to be ρ(B)-sound.
Such generalizations of cephalanxes also arise. This lack of soundness makes
the analysis of these structures less clear than those considered in this paper.

One also uses (0, ω1, ω1+1)∗-iterability of pseudo-premice to prove that they
satisfy the ISC. It seems that one might get around this by avoiding pseudo-
premice entirely (in the proof of 6.18), using bicephali and cephalanxes instead.
Extra difficulties also seem to arise here with superstrong premice.43
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