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A premouse inheriting strong cardinals from V'

Farmer Schlutzenberg!

Abstract

We identify a premouse inner model L[E], such that for any coarsely iterable
background universe R modelling ZFC, L[E]® is a proper class premouse of R
inheriting all strong and Woodin cardinals from R. Moreover, for each a € OR,
L[E])®|a is (w, a)-iterable, via iteration trees which lift to coarse iteration trees
on RR.

We prove that (k + 1)-condensation follows from (k + 1)-solidity together
with (k,w; 4 1)-iterability (that is, roughly, iterability with respect to normal
trees). We also prove that a slight weakening of (k + 1)-condensation follows
from (k,w; + 1)-iterability (without the (k + 1)-solidity hypothesis).

The results depend on the theory of generalizations of bicephali, which we
also develop.
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1. Introduction

Consider fully iterable, sound premice M, N with M|p = N|p and pM = p =
pi\f . Under what circumstances can we deduce that either M < N or N < M?
This conclusion follows if p is a cutpoint of both models. By [2, Lemma 3.1],! the
conclusion also follows if p is a regular uncountable cardinal in V' and there is no
premouse with a superstrong extender. We will show that if M|[p™ = N||p*V
and M, N have a certain joint iterability property, then M = N.

The joint iterability property and the proof that M = N, is motivated by
the bicephalus argument of [3, §9]. Bicephali in [3] are structures B = (P, E, F),
where both (P, E) and (P, F) are active premice. If B is an iterable bicephalus
and there is no iterable superstrong premouse then E = F (see [3, §9] and
[12]); the proof is by comparison of B with itself. In §3 we consider a more
general form of bicephali, including, for example, the structure C' = (p, M, N),
where p, M, N are as at the end of the previous paragraph. If C is iterable, a
comparison of C' with itself will be used to show that M = N in this situation.
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1The paper [2] literally deals with premice with Jensen indexing, whereas we deal with
Mitchell-Steel indexing. However, the same result still holds.
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Hugh Woodin also noticed that generalizations of bicephali can be used in
certain fine structural arguments, probably before the author did; see [17]. The
bicephali used in [17] have more closure than those considered here, but of
course, the premice of [17] are long extender premice. So while there is some
overlap, it seems that things are quite different.

We will also consider bicephali (p’, M’; N’) in which M’ or N’ might fail
to be fully sound. However, we will assume that both M’ N’ project < p/,
are p’-sound, and M’, N’ agree below their common value for (p')™. If such a
bicehpalus is iterable, it might be that M’ # N’, but we will see that in this
situation, M’ is an ultrapower of some premouse by an extender in the extender
sequence EY "of N’ (here EY " includes the active extender of N’ ) or vice versa.

We will also prove similar results regarding cephalanzes, a blend of bicephali
and phalanxes. The presence of superstrong premice makes cephalanxes some-
what more subtle than bicephali.

We give two applications of these results. First, in §5, we consider proving
condensation from normal iterability. Let k < w, let H, M be k-sound premice,
7 : H — M be a near k-embedding?, pkH+1 <p< pkH, and suppose H is p-sound
and p < cr(m). We wish to prove the conclusion of (k 4 1)-condensation for
this embedding.®> The classical (phalanx-based) proof of condensation uses the
(k,w1,wr + 1)*-iterability of M (roughly, iterability for stacks of normal trees),
through its appeal to weak Dodd-Jensen. We would like to reduce this assump-
tion to (k,w; + 1)-iterability (roughly, iterability for normal trees). Given the
latter, and also assuming M is (k4 1)-solid, we will deduce the usual conclusion
of condensation. We will also prove a slight weakening of (k + 1)-condensation
from (k,w; 4+ 1)-iterability, without the extra solidity hypothesis. (As we are not
assuming (k,w, w1 + 1)*-iterability, it is natural to consider the circumstance
that M fails to be (k+1)-solid; see §7.* But note that the assumption that H is
p-sound entails that (H,pfl ,\p) is (k + 1)-solid.) Our proof makes substitutes
bicephali and cephalanxes for phalanxes, and avoids (weak) Dodd-Jensen.”%

Let W |= ZFC be coarsely iterable. Let N be the output of a (standard) fully
backgrounded L[E]-construction of W. Then N inherits the Woodin cardinals

2 Actually we will work with the more general class of k-lifting embeddings; see 2.1.

3 Approximately, that is, the “version ...with pkH+1 replacing pf” in [3, pp. 87-88], or [2,
Lemma 1.3], though this uses Jensen indexing, or [18, Theorem 9.3.2], though this uses Jensen
indexing and ¥*-fine structure.

4 Actually, the author has since shown that (k -+ 1)-solidity follows from (k,w; + 1)-
iterability. This result will appear in [7]. So the present paper together with [7] gives a
complete proof of (k + 1)-condensation from (k,w; + 1)-iterability.

5The way we have presented our proof, we do make use of the standard proof of condensa-
tion, in proving 2.13, but in circumstances in which Dodd-Jensen is not required. This appeal
to the standard proof can, however, be removed, by arranging things more inductively and
using the main structure of the proof of 5.2 to prove 2.13.

6Some of the key arguments involved here, and extensions thereof regarding solidity and
universality, were presented by the author at the 3rd Miinster conference on inner model
theory, the core model induction, and hod mice, in July 2015. Some notes of those talks,
taken by Schindler, can be seen in [6].



of W, meaning that every Woodin cardinal of W is Woodin in N. However, s
can be strong in W, but not strong in N. For example, if k is strong in W but
W has no measurable cardinal p > &, then N has no measurable cardinal > &
(see 6.1); in particular, x is not even measurable in N, let alone strong.

In [15], assuming that W is a (finely) iterable premouse with no largest
cardinal, Steel defined the local K°€-construction Kh)Wc of W, such that Kh)Wc
inherits both Woodin and strong cardinals from W. Along with requiring that
W be a premouse, an important feature used in ensuring that strong cardinals
are inherited is that the background extenders used to construct K\ do not
have to be W-total. As a consequence, when one lifts iteration trees on M to
iteration trees U on V, the tree & might have drops.

In §6, working with background theory ZF, given any transitive class W |=
ZFC which is (sufficiently) coarsely iterable, we identify a new form of L[E]-
construction C of W. Letting L[E] be the final model of C (as computed in
W), we show that (a) L[E] is a proper class premouse of W, outright definable
over W, (b) if k is strong (Woodin) in W, then & is strong (Woodin) in L[E], as
witnessed by E, and (c¢) noting that W might be proper class, if there is a (class)
function f : OR™ — W such that f(a) wellorders V)V for each o € OR"Y,
then L[E] is iterable, with iteration trees on L[E] lifting to (coarse, hence non-
dropping) trees on W. Thus, we achieve many of the properties of the the local
K°-construction, but with the advantages that W need not be a premouse, and
(even if W is a premouse) trees U on W resulting from lifting trees on L[E| are
coarse (and hence non-dropping).”

We finally remark that Steel’s local K°-construction seems to be more local
than C, and hence as one extra feature that it seems C might not: K} also

loc
inherits all A-strong cardinals of W, whenever A is a limit cardinal of W.

1.1. Notation and terminology
1.1.1. General

The universe N of a first-order structure M = (N,...) is denoted | M |.

We use the lexicographic order on [OR|<“: a < biff a # b and max(aAb) € b.
We sometimes identify elements of [OR]<% with strictly descending sequences
of ordinals. Let a € [OR]<* with a = {aq,...,ax_1} where a; > a;4; for all
i+ 1< k. We write a[j for {ao,...,a;_1}.

1.1.2. Premice

We deal with premice and related structures with Mitchell-Steel indexing,
but with extenders of superstrong type permitted on their extender sequence.
That is, a super-fine extender sequence Eisa sequence such that for each
o € dom(E), E is acceptable at a, and if E, # () then either:

- E, is a (k,«a) pre-extender over Jf and F, is the trivial completion of
E, [v(E,) and E, is not type Z, or

"The key ideas of the construction were presented by the author at the MAMLS 2014
meeting at Miami University.



- Jf has largest cardinal v and E, is a (k,v) pre-extender over jf and
ig. (k) = v =v(Ea),

and further, properties 2 and 3 of [16, Definition 2.4] hold. We then define
(potential) premice in terms of super-fine extender sequences, in the usual
manner, with the caveat that we consider a (potential) premouse to be an
amenable structure P = (JE,E, F), where F is the amenable coding of the
active extender F' of P, as described in [16, 2.9-2.10]. We may blur the distinc-
tion between F and F. Likewise for related terms, such as segmented-premouse
(see [12, §5]). See [8] for discussion of the modifications of the general theory
needed to deal with these changes.® We sometimes abbreviate premouse with
pm and segmented-premouse with seg-pm. A premouse extender is the active
extender of some premouse. ISC abbreviates “initial segment condition”.

Let P be a seg-pm. We write F¥' = F(P) for the active extender of P
(possibly F¥ = @), EF = E(P) for the extender sequence of P, excluding F¥,
and EY = E(P) = EF ~ FP. If FP # () we write In(FF) = OR”. We write
Q < P iff Q is an initial segment of P (that is, OR? < OR” and EY = (EF) ]
(OR? + 1)), and Q<P iff Q < P but Q # P. Given a limit o« < OR”, we
write Pla for the @ < P such that OR? = «, and P||a for its passivization
(lQ],E®,0). (So P||a is passive, and Pla is active iff (EY), # 0.) If P has a
largest cardinal §, lged(P) denotes §. If P is active, then v(P) = v(F¥) denote
the natural length of F¥ and +(P) = +(FF) denote max(lged(P), v(FF)). So if
P is an active premouse then ((P) = v(FF). Given also another seg-pm R and
an ordinal a < min(OR”, OR®), we write (P ~ R)|a iff Pla = R|a. We also
use such notation with more than two structures, and also with “||” replacing
“|”. We use similar notation for cephals; see 3.5.

Let P be an active seg-pm, F' = FF and if : P — Ult(P, F) the ultrapower
map. We say that F', or P, has superstrong type (or just is superstrong) iff
iL(cr(F)) < 1h(F). (So if F has superstrong type then if(cr(F)) is the largest
cardinal of P, and then P is a premouse iff the initial segment condition holds for
P.) In [12], all premice are assumed to be below superstrong type, but certain
results there (in particular, [12, 2.17, 2.20]) hold in our context, by the same
proofs, and when we cite these results, we literally refer to these generalizations.
This generalization will be covered more explicitly in [7]. (However, the proof
of [12, Theorem 5.3] does not go through at the superstrong level; Theorem 4.3
here generalizes that result at the superstrong level.)?

8The only significant difference in the basic definitions (other than super-fine extender
sequence) is that for k-maximal iteration tree T, one must replace the usual requirement that
IW(E]) < In(E]) for all @ < B, with the requirement that Ih(E7) < Ih(E]) for all @ < f.
However, we then get that 1h(E]) = lh(Eg—) iff « +1 =8 and E] is superstrong and M;Il
is active type 2 with largest cardinal CI‘(EZ;); in this case MZ+1 is active type 2 with ordinal
height 1h(E7), and so F(M(Z_Jrl) is the only possibility for EIJrl.

9The proof of Dodd-solidity for 1-sound, (0, w1, w1 +1)*-iterable premice (for Mitchell-Steel
indexing) does not immediately generalize, although it can be adapted to the superstrong
level with some further work; recall that Zeman [19] proves the analogous result for Jensen



1.1.8. Fine structure

Let M be a premouse. As in [16], €(M) denotes the squash M>% of M if
M is type 3, and otherwise denotes M (which is by definition amenable). If M
is non-type 3, we also define M4 = M, so in all cases, €o(M) = M4, Also in
general, €o(M )" denotes M. We will often blur the distinction between M
and €y(M).

The (fine structural) pm language £ is {&, =, E, F, F|}. We interpret £
over M (for seg-pms M) and over €y(M) (for premice M) in the usual manner.
M

Over M: EM = EM, F = ﬁM, if M is type 2 then Ffw is the trivial completion

of the largest non-type Z initial segment of FM, and otherwise Ff” = (. Over

Co(M): as above if M = &€y(M) is non-type 3, so suppose M is type 3. Then
L Co(M

ECo() — ECo(M) — gM [v(FM), and F v is the set of all restrictions FM [«

for « < v(FM), and FfO(M) = 0.

The language for the definability classes 13 and 1M is £, with these
classes interpreted over €5(M). Of course, most of the time, for type 3 premice
M, we deal with €o(M), but in special circumstances we need to deal directly
with M instead, interpreting £ over M as above (in these circumstances we use
simple embeddings and ultrapowers, as discussed below).

We also define the natural language £, of M: if M is passive, LM

nat nat —

L\{F,E\}; if M is type 1/2, Loa = £, and if M is type 3, LM, = £L\{F,}.

For the basic fine structural notions (soundness, solidity, r¥,+1, etc), we
follow Mitchell-Steel, as modified in [13, §5]. This modification involves three
things. The first (and main one) is that we drop the parameter u, of [3, §2],
defining p, 41 without reference to w,. (Recall ug/[ = an if n > 0 then uf‘{[ =
(pM, wM pM | uM ) where w,, is the set of n-solidity witnesses (in the sense
of [3]), pM, = pM | if pM | < pd, and p* ; = 0 otherwise.) The reader who
prefers the original fine structure simply need put wu,, into all r¥,,;; hulls and
rY, 41 theories. By [13], this change does not have any significant impact; it just
simplifies notation. The second is that, in the terminology of [3], we use only
pure theories, not generalized theories. Thus (comparing with [3, Definition
2.3.6]), if M is n-sound and w < pM | we define the predicate T2, where n > 1,
as the set of tuples (a,q,t) € €o(M) with o < pM and ¢ € €o(M) and t =
Th%n (U {q}), where this denotes the pure r3,, theory; see below. This also
has no significant impact, as explained in [3, Lemma 2.10]. The third is just
terminological: for the definition of (n + 1)-solidity for a structure N, we follow
[18], not [3]; this is discussed below.

As described in §2, we also use n-lifting embeddings where weak n-embeddings
are used classically (but this does not impact any basic definitions).

So, from now on we use the fine structural notions defined as in [13, §5].
Let n < w and let M be an n-sound premouse. For i < n + 1 we write 57/ =

indexing, which is at the superstrong level. However, in this paper we do not need to consider
Dodd-solidity.



(pM, ..., pM). Now suppose w < pM and let X C €y(P). Almost as in [12],
Hull}’; (X) denotes the restriction of (the predicates of ) €y(M) to the points
y € €o(M) such that for some r¥,, ;1 formula ¢ and ¥ € X <% y is the unique z €
Co(M) such that € (M) = ¢(&,z). (This is not exactly as in [12], because we
do not automatically put v} into the hull.) And cHullfyH(X ) is the transitive
collapse of this structure. Also, Thgn+1 (X) denotes the r¥, 11 theory of €y(M)
in parameters in X (that is, all pairs (¢, Z) such that ¢ is an r%,, 41 formula and
T e X<¥and € (M) = ¢(F)). This notation differs from [12], in that it denotes
a pure theory, not a generalized theory, in the terminology of [3]; we have no
need for generalized theories. If w < pM |, we then define T}, as stated above,
and define r¥, o from this as in [3].

Given q € [p}!]<% and a € g, the (n + 1)-solidity witness for (M, q, )
(or just for (q,a)) is w)t, = cHull) ; (e U {¢/, pM}) where ¢ = g\(a +1). A
generalized (n+ 1)-solidity witness for (M, g, «) is the obvious adapatation
from [18, §1.12]. A (generalized) (n + 1)-solidity witness for (M, q) is one
for (M,q, ), for some « € ¢; a witness for M is one for (M,p,%_l). We say
that (M,q) is (n + 1)-solid iff w)}’, € M for each o € q. We say that M is
(n + 1)-solid iff (M,p}. ) is (n + 1)-solid. * Given p € [pM |, pM], we say
that M is p-solid iff (M,pM ,\p) is (n + 1)-solid, and that M is p-sound iff
M is p-solid and M = Hullﬁil(p Upl 1). We say M is (n + 1)-sound iff M is

pM_-sound.!! For & € [pM. |, pM], the d-core of M is cHull2 | (6 U {72, }).

1.1.4. Extenders and ultrapowers

Our use of the term extender is standard for inner model theory. Extenders
need not be total over V', and need not yield wellfounded ultrapowers. We use
the term basically as in [12] (see its introduction), except that in §6 we must
also consider extenders over coarse structures.

Given an extender E over M, U = Ult(M, E) denotes the ultrapower of
M by E, computed using functions in M; this is formed directly, without any
squashing, whatever M is, and if M is an amenable structure, its predicates are
shifted piece-wise as usual. Such an ultrapower is called simple. We write i}/
for the ultrapower embedding i%/ : M — U. We may abbreviate i/ by ip. We
write ms(E) for the measure space of E; that is, the supremum of all x + 1 such
that x € dom(ig) and (supig“k) < Ih(E) (E might be long). If E is short and
k = cr(E), we say that E is weakly amenable (to M) iff P(k)NM = P(x)NU.
Note that if M is an iterable premouse, then by condensation, this is equivalent
to saying that M||x™™ = U|k*Y. Now suppose M is an n-sound premouse, F

10Regarding the (n+1)-solidity of M, this follows the (analogous) terminology of Zeman [18,
p.44, Definition prior to Lemma 1.12.5], but not that of Mitchell-Steel [3, Definition 2.8.2] and
(16, Definition 2.15]; Mitchell-Steel demands universality as one of the conditions for solidity,
whereas Zeman does not (and neither do we). In [18], see also its Lemma 5.1.7(c), the
paragraph following Corollary 5.1.8, Theorem 5.2.1, Lemma 9.2.14, and Theorem 9.3.1, which
treat the (n 4 1)-solidity of a structure M and (n + 1)-universality for (M, p%rl) separately.

1 The terminology (n + 1)-sound follows Mitchell-Steel, not Zeman, as Zeman does not
incorporate (n + 1)-solidity into (n + 1)-soundness.



is short and cr(E) < pM. Then Ult,, (M, E) denotes the degree n fine structural
ultrapower of M by E, and zfg" the ultrapower map. We may abbreviate z%[n
by i orig. Given a € [Ih(E)]<¢ and an r£M function f, [a, f]}" denotes the
object represented by the pair (a, f) in Ult, (M, E). Recall that if M is type
3, then Ult,, (M, E) = Ult,, (M3, E)"s4, If M is type 3 then we let €_1(M) =
(M), and for an extender E over €o(M), let Ult_1 (M, E) = Ulto(M, E).

1.1.5. Embeddings

Given structures X, Y, if context determines an obvious natural embedding
i: X —'Y, we sometimes write ixy for i.

Let M, N be segmented-premice. A simple embedding 7w : M — N is a
function 7w with dom(w) = | M| and cod(w) = | N |, such that 7 is ¢-elementary
with respect to L. (Note that if M is active then w(lged(M)) = lged(N), because
the amenable predicates for F™ and FV determine the largest cardinal.) If
M, N are type 3 premice, a squashed embedding 7 : M — N is, literally, an
r¥g-elementary function 7 : €o(M) — €o(N).

Let m: M — N be simple. If M is passive then then v, denotes 7. If M is
active then 1, : Ult(M, FM) — Ult(N, FV) denotes the embedding induced by
7 (via the Shift Lemma). Now let m : M — N be squashed (so M, N are type
3). Then ), : Ulto(M, FM) — Ultg(N, FY) denotes the embedding induced by
m. So w C v, in both cases.

Let m : M — N be simple or squashed. We say  is (i) v-preserving iff 7 is
simple or ¢ (v(FM)) = v(FY), (ii) v-high iff 7 is squashed and 9. (v(FM)) >
v(FN), (iil) v-low iff 7 is squashed and ¥ (v(FM)) < v(FY), (iv) i-preserving
iff either M, N are passive or ¥, («(FM)) = (FY), (v) c-preserving iff for all
a, o is a cardinal of M iff w(«) is a cardinal of N.

1.1 Remark. Let 7 : M — N be a squashed embedding (so M, N are type
3). Easy elementarity considerations show that if 7 is r3;-elementary then 7
is non-v-low, and if r¥s-elementary then v-preserving. Suppose 7 is v-low and
let v/ = ¢ (v(FM)). Then v/ < v(FY) is an N-cardinal, so by ISC, there
is N/ <N with FN' | o/ = FN | /. Note that we get an r¥g-elementary
7' €o(M) — €o(N') with the same graph as 7, and 7’ is v-preserving.

Let 7 : €o(M) — €o(N) be rXp-elementary where M, N are n-sound. We say
. (.) _ . .ﬁ- ( M ): N (..) — _ . .ﬂx (—;M ):
7 is (i) pny1-preserving iff w(p). ) = pl, 1, (ii) Pry1-preserving iff 7 (7,
Po'1, (ili) pj-preserving iff either m(p}') = p or [p}! = pi" and p} = py'].

1.1.6. Iteration trees and iterability

Let T be an iteration tree of length Ih(7) = A. The objects associated to T
we write as: tree order <7, drop-set 27 (the nodes where drops in model occur),
models M7, degrees degz:, embeddings izﬂ and zj;;g (defined where appropriate),
exit extenders E7 , exit models ex), = MJ|lh(E]), ultrapower domains M7,
(so if T is fine structural and d = degz;rl then M | = Ulty(M:7,, ET)), and

associated ultrapower maps i%} | : MxT, — MT | (so ZZTH 5= iZ:H 50 it ),

kI = cr(ET) and v] = v(E]). We write pred” (a 4 1) for the <7-predecessor



of a + 1, and given a <7 B, succ’ (o, ) denotes the least v € (a,S]7. If
Ih(T) =6 +1, then ML = M], b7 = [0,00]7 = [0,0]7, and if there is no drop
along b7 then i7 = iJ_ = iJ,, etc.

Let n < w and M be an n-sound premouse. The notion n-maximal itera-
tion tree 7 on M is defined basically as in [16, Definition 3.4], or [3, Definition
6.1.2], but we must adapt these definitions to superstrongs. That is, degg— =n
and for a +1 < Ih(T), letting k = £, we have: (i) Ih(E]) < Ih(E]) for all
B < a; (i) pred” (a+1) is the least 3 such that x < 1/2;; (iii) M7, is the largest
N < M such that E] measures P(x) N N; and (iv) deg” (a4 1) is the largest
d < w such that k < pg(M:7,) and either [0, + 1]7 drops or d < n. We will
also extend the notion n-mazimal iteration tree to trees on premouse-related
structures. An iteration tree is degree-maximal if n-maximal for some n < w.

For # < OR, the notions (n, #)-iteration strategy for and (n,0)-iterability of
M are as in [16, Definition 3.9] (but using n-maximality defined as above). For
(n, o, 0)*-iteration strategy and (n, «, §)*-iterable see [14, p. 1202]. 2

If T is padded, unless otherwise specified, if 3 = pred” (a +1) then EﬂT £ ().

2. Fine structural preliminaries

2.1 Definition. Let H, M be k-sound premice with pff pM > o We say an
embedding 7 : €y(H) — €o(M) is k-lifting iff 7 is r¥¢-elementary with respect
to the natural language £, of H (see §1) and if k > 0 then 7“TH C TM.

nat
A k-lifting embedding is similar to a Eék)—preserving embedding of [18]. Note

that H, M may have different natural languages; maybe £ C £M

nat -= ~nat-
2.2 Lemma. Let H, M,k be as in 2.1 and let 7w : €o(H) — €o(M). Then:

1. m is k-lifting iff for every r¥g11 formula ¢ € LH, and x € €y(H), if
€ (H) | ¢(x) then & (M) | ¢(n(z)).
2. If m is k-lifting and H, M have different types then k = 0, H is passive

and M is active.

3. If k > 0 and 7 is k-lifting then 7 is r¥g-elementary, (k — 1)-lifting, c-
preserving.

4. Suppose k > 1 and 7 is rXg-elementary. Then m is py_o-preserving and
pr—2-preserving, and if pH_, < pt then n(pf ) = p¥ \n(pf,) and
(supmpily) < pply < m(pfly).

5. If k>0 and 7 is v3y, elementary and py_1-preserving then w(pH) < pM.

12The relevant trees are stacks of degree-maximal trees, each of length < 6, starting with
n-maximal. The superscript-* has the effect that if in some round < «, a degree-maximal
tree is produced which has length 6, then the game stops there immediately, and (if it has
wellfounded models) player II has won.



6. The Shift Lemma holds with weak k- replaced by k-lifting, or by k-lifting
c-preserving.

Proof. Parts 1-3 are straightforward. For part 4, use (k — 1)-solidity witnesses
for py_1. For part 5 use the fact that if ¢ is a k-solidity witness for (H,pil),
then 7(t) is a generalized k-solidity witness for (M, w(pH)).

Part 6: We adopt the notation of [3, Lemma 5.2] (with n = k). Let F' = FN
and U = Ulty (M, F) and U = Ulty (M, FY). Define the map o : €o(U) — €4(U)
as there. It is straightforward to see that o is r¥;-elementary. Suppose k > 0.
Let us observe that o“TY C TY. Let t € TV, x € U and a < p{ with

t= Th?zk(oe U{z}). Let y € M and a € v(F)<¥ with = € Hullg(ig(y) Ua).

Let 8 < pM be such that 3 > cr(F) and z%;[(ﬁ) > a. Let u = Thi‘glc (BU{y}).

Then ¢ is easily computed from v’ = i}/ (u), and by commutativity, o(u') € T}/

It follows that o(t) € TV, as required. O

2.3 Remark. Clearly for k < w, any rX;i-elementary embedding is k-lifting.
The author does not know whether “weak k-” implies “k-lifting”, or vice versa.
We will not deal with weak k-embeddings in this paper.

Standard arguments show that the copying construction propagates k-lifting
c-preserving embeddings. (But this may be false for weak k-embeddings; see
[10].) Almost standard arguments show that k-lifting embeddings are propa-
gated. That is, suppose w : H — M is k-lifting, and let T be a k-maximal
iteration tree on H. We can define Y = 7T as usual, assuming it has well-
founded models. Let H, = M and M, = MY. Using the Shift Lemma as
usual, we get mo : Hy — M, for each o < 1h(T), and 7, is deg” (a)-lifting, and
if 7 is c-preserving, then so is m,. Let us just mention the extra details when m
fails to be c-preserving. In this case, k = 0 and H is passive. Suppose that EOT is
total over H, and let s = cr(E] ). Suppose that (x7)" < ORY but 7((x+)") is
not a cardinal of M. Then U drops in model at 1, but 7 does not. Note though
that rg(r) C M7Y and 7 : H — M;Y is O-lifting (even if M;¥ is active). So we
can still produce 7 : H — M via the Shift Lemma. This situation generalizes
to an arbitrary « in place of 0, when T does not drop in model along [0, «+ 1]
The other details are as usual. Moreover, if (i) [0, )7 drops in model or (ii)
deg” () < k — 2 or (iii) deg” (o) = k — 1 and 7 is pr_i-preserving, then m, is
a near deg” (a)-embedding; this uses the argument in [4].

2.4 Lemma. Let k>0, let m: H — M be k-lifting where H, M have the same
type, and let pkHJrl <p<pH. Then:

1. If pM  pM € rg(m) and p)f =supw“pl then 7 is a k-embedding.
2. If H is p-sound, m[p € M and 7 is not a k-embedding then H, m [pkH eM.

Proof. Part 1: This is fairly routine. By 2.2, we have w(pfl |) = pM . The
1Y 1-elementarity of 7 follows from this, together with the facts that 7 is k-
lifting, p)f € rg(m) and 7“p is unbounded in p}. Now let 7(q) = p2'. Then



pkH < g by 2.2, and ¢ < pkH by rXj elementarity. And 7 is px_1-preserving by
2.2 and r¥j41-elementarity. So 7 is a k-embedding.

Part 2: Suppose sup(m“pfl) < pM. We use a stratifaction of 131 truth like

in [3, §2]. Assuming familiarity with this, here is a sketch. Let oo = sup w“pf.
Then the theory ¢t = Thﬁ\ék(a U m(p)) is in M. Moreover, for any r¥1
formula ¢ and ¥ € p<*, we have H |= ¢(,p%, ) iff there is 3 < o such that
t1 (BUm(PH)) is “above” a witness to ¢(m(7), 7(PH, 1)) (see [3, §2]). So the
theory Thfzkﬂ(p UﬁkHH) is computable from ¢ and 7 [ p, so H € M. A little
more work gives 7 [ pfl € M, as desired.

Suppose now 7(piL ) = pM | but w(pf) # pM. Then 7(p) < pM, by 2.2.
Again t € M (t as above), as t is computed from a k-solidity witness. The rest
is the same.

Now suppose that k > 1 and 7(pf_|) # pM ,. By 2.2, then n(p}_ ;) < pi,.
We may assume o = pM = sup 7“pil.

CLAIM. Let ¢ be an r¥j formula, let z € H and 7 € a<¥. If M | ¢(7(z),7)
then there is e < pM |, with max(7) < ¢, such that the theory

ThY (U {n(z, 7 )})

T3k 1
is “above” a witness to o(m(x),7).

Proof. Let § < pi! be such that 7(d) > max(7). Let v = ThfIEk (fu{z}upt ).
Note then that for all £ € 5<%,

(o, (o, pil))) €v = (Y, (€ 2,51 ))) € v,

where v, (E, z,pt ) asserts ‘There is € < pj_1, with max(g) < g, such that the
r¥;_1 theory in parameters e U{z}Upt | is “above” a witness to o(&, z,p ).
(Here the assertion that ¢ < pg—1 does not require the parameter pkal. For note
that the assertion “u < px—1”, in the free variable 1, is r¥; without parameters,
because it is just the assertion “u € OR and there is ¢ € Ty such that ¢ is a
theory in parameters from @”.) But then the same fact holds regarding m(v),

and since 7 is k-liftng, this proves the claim. O
By (k —1)-solidity, u = Th%ki1 (pM  Um(pH ) is in M. Define ¢ as before.
By the claim, from u we compute ¢, so t € M. The rest is now as before. O

2.5 Definition. Let Q be a k-sound premouse. Let €0(Q) = €o(Q), and for
k>0, let €(Q) = (Q|lpx(Q),T"), where T = TthEk (pk UﬁkQ), and 7" is given
from T by substituting ﬁkQ for a constant symbol c. —

2.6 Definition. Let £ > 0. Let @ be a k-sound premouse with ka > w. We
say that (U,o0*) is k-suitable for Q iff (i) U,o* € Q||pg7 (i) U is a k-sound
premouse with p{ > w and (iii) o* : €,(U) — €4(Q) is To-elementary. —

10



2.7 Remark. Clearly, if (U, 0*) is k-suitable for @ then o* extends uniquely to

a pr-preserving k-lifting o : U — @, and moreover, sup a“pkU < ka. Conversely,

if 0 : U — Q is p-preserving k-lifting and sup o“pY < pg and o* = o [ (U||pY)

with o* € Q, then (U, 0*) is k-suitable for Q.

2.8 Lemma. Let k > 0. Then there is an t¥;41 formula @i such that for all
k-sound premice QQ with w < pg, and all U,0* € Q, we have

Q = ¢ (U, U*,ﬁkQ) < (U, 0%) is k-suitable for Q.

Proof. We assume k£ > 0 and leave the other case to the reader. The most

complex clause of p, says “There is o < pg such that letting t = TthZk (c UﬁkQ),

then for each 8 < p¥, letting u = Thgzk(ﬁ U pY), and letting ¢/, u’ be given
from ¢, u by substituting ﬁ,?,ﬁkU for the constant ¢, we have o*(u') C ¢'”. This
statement is r¥41. The rest is clear. O

2.9 Definition. Let m > 0 and let M be a segmented-premouse. Then M is
m~sound iff either m = 0 or M is an m-sound premouse. B

2.10 Definition. Let r > 0 and let R be an r-sound premouse. Then we say
that suitable condensation holds at (R, r) iff for every (H,n*), if (H,7*) is
r-suitable for R, H is (r + 1)-sound and cr(r) > p = pf, |, then either H < R,
or R|p is active with extender F' and H <« Ult(R|p, F).

Let m > 0 and let M be an m-sound segmented-premouse. We say that
suitable condensation holds below (M, m) iff for every R < M and r < w
such that either R< M or r < m, suitable condensation holds at (R,r). We say
that suitable condensation holds through (M,m) iff M is a premouse'?
and suitable condensation holds below and at (M, m). 4

The following lemma follows easily from 2.8:

2.11 Lemma. Let m > 0. Then there is an rllyax(m,1) formula ., such
that for all m-sound segmented-premice M, suitable condensation holds below
(M,m) iff M = V,,,(p™ ), where pM, = 0. Moreover, if M is a premouse,
then suitable condensation holds through (M, m) iff M = W1 (). 14

2.12 Remark. Our proof of condensation from normal iterability (5.2) will use
our analysis of bicephali and cephalanxes (§3). This analysis will depend on
the premice involved satisfying enough condensation, at levels lower in model or
degree. As we will only have normal iterability, we can’t appeal to the standard
condensation theorem for this. One could get arrange everything inductively,
proving condensation and analysing bicephali and cephalanxes simultaneously.
But it is simpler to use the following lemmas, which will be generalized by 5.2.

13We could have formulated this more generally for segmented-premice, but doing so would
have increased notational load, and we do not need such a generalization.
14This clause only adds something because we do not assume that M is (m 4 1)-sound.
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2.13 Lemma (Condensation for w-sound mice). Let h < m < w and H, M be
premice. Suppose H is (h + 1)-sound, M is (m + 1)-sound, M is (m,w; + 1)-
iterable, and either p%_H =w orm > h+5. Suppose m: H — M is h-lifting
Ph-preserving and cr(w) > p = pfl, . Then either H <A M or M|p is active with
H <« Ul(M|p,G).

Proof. Let m, etc, be a counterexample. Let 7* = 7 [ (H||p).

We claim H € M. Suppose not. By 2.4, 7w is an h-embedding, and p >
prt 1 Note 7(pf 1) < pil 1 \p (use generalized solidity witnesses). If w(pf’, ;) <
pﬁil\p we are done. Otherwise p,%_l Up,%_1 Crg(m), so H= M, contradiction.

We may assume p2 , = w, by replacing M with M = cHullnAfH(ﬁm): all
relevant facts pass to M as H € M, cr(m) > p and by 2.2(1). Now use almost
the usual condensation proof, but when comparing the phalanx (M, H, p) with
M, use an (m, h)-maximal tree on (M, H, p), m-maximal on M. As H € M, and
using fine structure in place of weak Dodd-Jensen, this gives contradiction. [

2.14 Lemma (Suitable condensation). Let M be an m-sound, (m,w; + 1)-
iterable segmented-premouse. Then suitable condensation holds below (M, m),
and if M is a premouse, through (M, m).

Proof. If M is not a pm, use 2.13. Suppose M is a pm. By 2.11, we may assume
pM. | = w, replacing M with cHull),, ;(5). Now argue as in 2.13. O

3. The bicephalus & the cephalanx

3.1 Definition. An exact bicephalus is a tuple B = (p, M, N) such that:
1. M and N are premice.
2. p < min(ORM, ORY) and p is a cardinal of both M and N.
3. M||p™™ = N||p*™.

4. M is p-sound and for some m € {—1} Uw, we have p} , < p. Likewise
for N and n € {-1} Uw.

We say B is non-trivial iff M # N. Write p? = pand MZ = M and N® = N,
and m?B,n® for the least m,n as above. Let (p*)? be p™ = p*tN. We say B
has degree (m?,n?). We say that B is sound iff M is m® + 1-sound and N
is n® + 1-sound. —

From now on we just say bicephalus instead of exact bicephalus. In connection
with bicephali of degree (m,n) with min(m,n) = —1, we need the following:

3.2 Definition. The terminology/notation (near) (—1)-embedding, (—1)-
lifting embedding, Ult_;, €_;, and degree (—1) iterability are defined by
replacing ‘—1’ with ‘0’. For n > —1 and appropriate premice M, the core
embedding &, (M) — €_1(M) is just the core embedding €, (M) — €o(M). -
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3.3 Definition. Let ¢ < w. A passive right half-cephalanx of degree ¢ is
a tuple B = (v, p, Q) such that:

1. @ is a premouse,
2. 7 is a cardinal of Q and 7*9 = p < ORC,

3. @ is ~y-sound,

S

PP <y < P9

An active right half-cephalanx (of degree ¢ = 0) isa B = (v, p, @) with:
1. @ is an active segmented-premouse,

2. ~ is the largest cardinal of Q and v < p = OR®.

A right half-cephalanx B is either a passive, or active, right half-cephalanx.
We write 72, pB, QB ¢P for v, p,Q,q as above. If B is active, we write SP =
RP =Ult(Q, FQ). If B is passive, we write S = Q. -

Note that if B = (v, p, @) is a right-half cephalanx, then B is active iff Q|p
is active. So it might be that B is passive but Q is active with p < OR.

3.4 Definition. Let m € {—1} Uw and ¢ < w. A cephalanx of degree (m,q)
is a tuple B = (v, p, M, Q) such that, letting B’ = (v, p, Q), we have:

1. (7, p, Q) is a right-half cephalanx of degree g,

2. M is a premouse,

©w

p=~" < ORM,

M||pt™M = §B||ptM,

.~

5. M is p-sound,
6. Py <P <Py

We say that B is active (passive) iff B’ is active (passive). 1° We write
~B, pB, etc, for v, p, etc. We write RP for RB/, if it is defined, and SZ for SB'
We say B is exact iff (p7)5” = p*™™ and B is sound iff M is (m -+ 1)-sound.

Suppose B is active. Let R = R®. We say B is non-trivial iff M 4 R. If
B is non-exact, let N¥ denote the N < R such that p™ = p™™ and pY = p,
and let n® denote the n € {—1} Uw such that pY,; = p < pX'.

Now suppose B is passive. We say B is non-trivial iff M 4 Q. Let NB
denote the N < @ such that pt™ = p™ and pY < p. Let n? be the n €
{—=1} Uw such that pﬁ’fl <p< pﬁ’B.

A pm-cephalanx is a cephalanx (7, p, M, Q) such that @ is a premouse. -

15Note that a passive cephalanx (v, p, M, Q) might be such that M and/or Q is/are active.
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3.5 Definition. A cephal is either a bicephalus or a cephalanx. Let B be a
cephal, and let M = MB.

A short extender E is weakly amenable to B iff cr(E) < p? and E is
weakly amenable to M.

For a < pP, let B|la = M||a, and for o < pB, let Bla = M|a and (a™)? =
(a™)M. We write P < B iff P < B||p®. Let C,a be such that o < p?, and
either C' is a segmented-premouse and a < ORY, or C is a cephal and a < pC.
Then we write (B ~ C)||a iff B|la = C||a. If also a < p? and either C is a
segmented-premouse or o < p¢, we use the same notation with “|” replacing
“||”. We also use similar notation with more than two structures.

A structure with the first order properties of a cephal or other related struc-
tures is wellfounded if each of the constituent models are wellfounded. -

We will consider ultrapowers and iterates of cephals, and also other related
structures, and hence the wellfoundedness of such iterates. Because of the sym-
metry of bicephali and partial symmetry of cephalanxes, we often state facts for
just one side of the symmetry, even when they hold for both. The proofs of the
next two lemmas are routine and omitted. In 3.6-3.12 below, the extender F
might be long.

3.6 Lemma. Let QQ be an active segmented-premouse. Let E be an extender
over Q with ms(E) < cr(FQ)+ 1. Let R = Ult(Q, F¥) and Q' = Ult(Q', F)
and R’ = Ult(Q', F?"). Then R’ = Ult(R,E) and the ultrapower embeddings

TR
commute. Moreover, 15 = 1/)1.%

3.7 Lemma. Let QQ be an active segmented-premouse. Let E be an extender
over Q with (cr(FQ)T)? < cr(E). Let R = Ult(Q,F?) and R* = Ult(R, E)
and Q' = Ult(Q, E). Then Ult(Q, FQ') = R* and the ultrapower embeddings
commute.'® Let 1 : R — R* be given by the Shift Lemma (applied toid : Q — Q
and i9). Then i = .

3.8 Definition. Let FE be a (possibly long) extender. For a seg-pm M, E is
reasonable for M iff E is over M and either M is passive or letting k = cr(F™),
iM is continuous at (k)M and if M E“s*T exists” then i} is continuous at
(k)M For a bicephalus B = (p, M, N), E is reasonable for B iff E is over
Bl|p, if m® < 0 then FE is reasonable for M, and if n® < 0 then F is reasonable
for N. For a cephalanx B = (v, p, M, @), E is reasonable for B iff E is over
Bl|p,'" if ¢® < 0 then E is reasonable for @, if m® < 0 then F is reasonable for
M, and if NB is defined and n® < 0 then E is reasonable for N 5. -

3.9 Lemma. Let Q be an active seg-pm, E reasonable for Q. Let Q' =
Ult(Q, E), R = Ut(Q, F?), R' = Ut(Q', F?), R* = Ult(R,E). Let k =
cr(FQ) and n = (kT1)Q. Further:

16Note that in the conclusion, it is Ult(Q, FQI)7 not Ult(Q’, FQI).
"Hence E is equivalent to an extender E’ with ms(E’) < v + 1.
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~ Ifn < ORY, let v = igr(n), v* = ik(v), n = z%(n) Then v* =igr (7).
~ Ifn=ORP, let v = ORE, v* = OR" andn = ORY'.
Then in either case, (R* ~ R')|v* and

iR oigr Q) =igm 0121 (Qn).

Moreover, let ¢ : R|y — R'|Y' be induced by the Shift Lemma with igq | (Q|n)
and igqr. Then ¢ = il (R]y).

Proof. Let G be the length ig (k) extender derived from E. Let j : Ult(Q, G) —
Ult(Q, E) be the factor embedding. Then cr(j) > (i&(k)*+)Ve since E is
reasonable. Apply 3.6 to GG, and then 3.7 to the extender derived from j. O

3.10 Definition. Let M be a type 3 premouse. The expansion of M is the
active segmented-premouse M, such that M,|cr(FM+) = M|cr(FM), and FM-
is the Jensen-indexed version of FM. That is, let FF = FM let p = cr(F), let
v = (uHM, let v/ = ip(y), let R = Ult(M, F™); then M,||OR(M,) = R|Y,
and FM- is the length ip(u) extender derived from ip. !

Combining [3, §9] with a simple variant of 3.9 one gets:

3.11 Fact. Let @ be a type 3 premouse. Let E be an extender over %9,
reasonable for ). Let Q. be the expansion of @, let U, = Ult(Q., F) and
U = Ulty(Q, E). Suppose U, is wellfounded. Then U is wellfounded and U, is its
expansion. Let i, : Q. — U, and ig : @ — U be the ultrapower maps (literally,
dom(i,) = Q. and dom(ig) = @*1). Then iy = i, [Q%, and i. = 1y, [ Q.

3.12 Remark. We will apply 3.9 and 3.11 when E is the extender of iteration
map izﬁ or z(’;z;, where («, 8]7 does not drop and deg” (a) = 0.

3.13 Definition (Ultrapowers of bicephali). Let B = (p, M, N) be a bicephalus
of degree (m,n) and F an extender reasonable for B. We have the ultrapower
map i = ig[’m : M — Ult,,(M, E), and j = zg" Let p/ = supi“p = supj“p
and define

Ult(B, E) = (o, Ult,, (M, E), Ult,,(N, E)). 4

3.14 Definition. Let B be a bicephalus. The associated augmented bi-
cephalus is the tuple B, = (p, M, N, M., N.) where if m > 0 then M, = M,
and otherwise M, is the expansion of M; likewise for N,. (Note that if m = —1
then M is type 3 and p = v(FM).) Let E reasonable for B. If m > 0 let

M = Ult,, (M, E); otherwise let M = Ult(M,, E). Likewise for N. We define
Ult(B., E) = Ult(B, E) ™ <J\7N> -

3.15 Lemma. Let B = (p, M,N) be a bicephalus of degree (m,n), B, =
(p, M, N, M,,N,), E reasonable for B, U = Ult(B, E) and U= Ult(B,, E) =
(pU,MU,NU,M, N) Leti = zg[m and j = ]{EVn If m > 0 let i, = i; otherwise
let iy : M, — M be the ultrapower map. Likewise j,. Ifﬁ is wellfounded then:
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(1) U is a bicephalus of degree (m,n) and U = U,.

(2) U is trivial iff B is trivial.

(3) i(pM 1 \p) = MY \pV.

(4) i [ (pT)E =7 I (p7)®P and i, j« are continuous/cofinal at (p*)B.18

(8) ix = | M.

(6) Suppose E is short and weakly amenable to B. Then MY is (m+1)-sound

iff M is (m + 1)-sound and cx(E) < pM_ . If MY is (m + 1)-sound then
U w U .
Pt = Supippl iy and phl g = i(ppq)-
Likewise regarding N,n, E.

Proof. Part (6) is by [12, 2.20], (3) is a standard calculation using generalized
solidity witnesses (see [18]), and (5) is by 3.11 ((5) is trivial when m > 0).

Part (4): Let W = Ult(B||(p*)5, E) and k : B||(p*)? — W the e ultrapower
map and p = k(p). We claim that (f): k =i.[(p*)? and M||(~+)M w.

If m < 0 this is immediate. If m > 0, then because (p*)? < pM, by [3, §6],
all functions forming the ultrapower MY with codomain (p)® are in fact in
Bl|(p™)®, which gives (1) Now (4) follows from (f).

Part ( ): By 3.11, M is the expansion of MY. We have pV < p and by (1),

M||(~+)M N||(~+)N If m > 0 then p < p,,(MY). The rest of (1) is routine.
Part (2): Assume M # N but m = n. By p-soundness, there is an r3,,11
formula ¢ and o < p with

M= oy \p. b 0) <= N =) 1\p: P, ).

Now i,j are r¥,,1-elementary, and by (}), i(«) = j(«); let o = i(a). So by
(3), we get MY # NV and in fact

U U U _NU
MY oM \pV. 02 ) = NYE -\ P ). O

3.16 Definition (Ultrapowers of cephalanxes). Let B = (v,p, M,Q) be a
cephalanx of degree (m q) and let F be reasonable for B. Let M’ = Ult,,,(M, E),
v = i¥™(~) and p/ = supiy ™“p. If B is active let Q' = Ult(Q, E) (re-
call the ultrapower Ult(Q, F) is simple; it might be that @ is type 3, and we
could have cr(E) = «.) If B is passive let Q' = Ult,(Q, E). Then we define

Ult(B, E) = (v, p', M',Q"). -

3.17 Lemma. In the context of 3.16, suppose that B is passive, and that U =
Ult(B, E) is wellfounded. Let i = ig[’m and j = zg Then:

18That is, if (o7)P € dom(i«) then i. is continuous there; if m > 0 and (p+)B = p}? then
p(])WU =supi“(pT)B; if m = —1 and (p1)B = OR(M,) then OR((MVY),) = supi. “(p+)B.
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(1) U is a passive cephalanz of degree (m,q).

(2) ilp=7jlp.

(3) If p € €(M) then p' = i(p); otherwise p’ = po(MVY). Likewise Q,j, QY.
(4) ilp) =1bi(p) = ¢’

(5) If p™ € dom(vy;) then v; is continuous at pt™ ; otherwise M is passive,
ORM = p*tM gnd OR(MY) = supi“ORM.

(6) i lp™™ =y [ptM.

(7) iPhaa\P) = P32\

(8) Suppose E is short and weakly amenable to B. Then MY is (m~+1)-sound
iff M is (m + 1)-sound and cr(E) < pM. . If MY is (m + 1)-sound then
P = supi“phl | and pMl), = i(pl,,).

(9) If B is non-exact then U is non-exact.

(10) If B is ezact (so NB = Q) but U is not, then 0 < n® < q.

(11) Suppose that B is non-trivial and that suitable condensation holds below
(Q,q). Let N = NP and n =n®. Then:
(¢) U is non-trivial,
(i) NY = Ult,s(N,E) and nY =n,
(#3) Parts (2)—~(8) hold with ‘M’ replaced by ‘N’ and ‘m’ by n’.

We also have j(quH\”y) = qufl\ﬂyU, but we won’t need this.

Proof. Parts (2)—(8) are much as in 3.15. (For (6), note that for A € P(p)N M,
the value of 1;(A) is determined by the values of 1;(A N «) for a < p; likewise
for ¢;(A).) So (1) follows. Part (9) follows from (5) and (6); part (10) is easy.

Part (11): Consider the case that B is exact. Part (iii) is as for M, so
consider (i) and (ii). As B is exact, N = Q. By the proof of 3.15, we have
Ult,(Q, E) # Ult,,,(M, E), so it suffices to see that

Un - Ultn(QvE) S’ QU = Ultq(QvE) = qu
so assume n < ¢. If n = —1 then U,, = Uy, so assume n > 0, so p € €y(Q) and
qu+1 §7<P:qu:pg+1 <P7?'

Let o : U, — U, be the natural factor map. Let j, : @ = U, and j, : Q = U,
be the ultrapower maps. Then o o j, = j4, 0 is Phyi1-preserving n-lifting and
cr(o) > p'. Also, U,, Uy are (n+ 1)-sound and pi}, = p’ = pgj_l.

Suppose ((p/)7)U» = ((p)")V« < cr(o). Then pn* = supo“pl», since
otherwise, using the previous paragraph and as in the proof of 2.4, we get
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U € Uq, collapsing ((p')*)Y in U,. So by 2.4, o is an n-embedding. But

an Uan C rg(o), so then U, = U,, which suffices.

Now suppose ((p/)*)V» < ((p')*)Vs. Then much as before, pn? > sup o“pUn.

Let o* = o [ (Unllpnr)- By 2.4 we get Uy, 0* € Uy and (U, 0*) is n-suitable for
U,. By suitable condensation below (@, ¢) and 2.11 and since U,|p’ is passive,
therefore U,, <« U,, which suffices.

If B is non-exact, so N <@, let U,, = Ult,, (N, E), consider the factor em-
bedding o : U,, = j(N) and show U,, < j(N). This completes the proof. O

3.18 Lemma. In the context of 3.16, suppose that B is active, and that U =

Ult(B, E) and RY are wellfounded. Let i = ig[’m and j = z(’E;) Then:
1) U is an active cephalanz of degree (m,0).
2) If p € €o(M) then p' =i(p); otherwise p' = po(MY).

4
5

U is exact iff B is exact.

(1)
(2)
(3) 3.17(2) and 3.17(4)~ (8) hold.
(4)
(9)

Suppose that B is non-exact and non-trivial and that suitable condensation

holds below (Q,0). Let N = NB and n =n®”. Then:
(i) U is non-trivial,
(ii) NU = Ult,s(N, E) and nYV =n,
(#3) Parts (2)—(3) hold with ‘M’ replaced by ‘N’ and ‘m’ by n’.
Proof. This follows from 3.9, 3.11 and the proof of 3.17.1° O

3.19 Lemma. Let C be a degree (m, k) cephal. If C is a bicephalus let B = C\;
otherwise let B = C. Let (Ey), .\ be a sequence of short extenders. Let By = B,
Bay1 = Ult(Ba, Ea), and B, be the direct limit at limit v. Suppose for each
a < A\, By is wellfounded and if o < X\ then E, is weakly amenable to B,.

If C is a bicephalus (passive cephalanz, active cephalanz, respectively) then
the conclusions of 3.15 (3.17, 3.18, respectively) apply to B and By, together
with the associated iteration maps, after deleting the sentence “Suppose E is
short and weakly amenable to B.” and replacing the phrase “cr(E) < p%Jrl”

with “cr(Ey) < pn]\fj_l for each o < ~”.

Proof. If C is a bicephalus, this mostly follows from 3.15, [12, 2.20] and 3.11
by induction. At limit stages, use [12, 2.20] directly to prove 3.15(6). To see
3.15(4), replace the iteration used to define C, with a single (possibly long)
extender E, and apply 3.15. The cephalanx cases are similar. o

191n 3.9 we set n = (kT 1)@, and the reader might wonder why we didn’t just use n = (k1)<.
We need the larger value here if @ has superstrong type.
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3.20 Definition (Iteration trees on bicephali). Let B = (p, M, N) be a bi-
cephalus of degree (m,n) and let n € OR\{0}. An iteration tree on B, of

length 7, is a pair 7 = (<T7 <Eo¢>0t+1<77 such that there are sequences

<Ba7Ma7Na> and <Bé+17MZZ+1,NZC+1>

a<n a+1<n’

of models, sequences of embeddings
<ia,87ja3>a,3<n and <7;Z+17j;+1>a+1<77’

sequences of ordinals <pa>a<n and <cra, Va, lhg, pz+1>a+l<n, sets B, M, N Cn

(specifying types and origins of structures), a function “deg” with domain 7
(specifying degrees), and a set 2 C 7 (specifying drops in model), such that:

1. <7 is an iteration tree order on 7, with the usual properties.
2. BO = (po, Mo, No) = B and deg(O) = (m, n) and ioo =1id and joo =id.
3. B, M, N are disjoint and for each o < 1, either

(a) o € # and B, = (pa, My, Ny) is a bicephalus of degree (m,n) =
deg(«), or

(b) a € A and B, = M, is a segmented-premouse and N, = (}, or
(¢) @« € A and B, = N, is a segmented-premouse and M, = (.

4. For each a+1 < n:

(i) Either B, € E4(My) or Eq € B, (Ny).

(i) cry = cr(Ey) and vy = v(E,) and lh, = 1h(E,).
(ili) For all 8 < a we have lhg < lh,.
(iv) pred” (a4 1) is the least 8 such that cro < vg.

Fixa+1<nand = predT(a +1) and s = cr,.

5. Suppose § € B and k < pg and E,, is total over Bg||pg. Then deg(a+1) =
(m,n) and

(PZ+1=M2+17N;+1) = Bz+1 = Bg and Byy1 = Ult(BerluE)a
igy1: MGy — May1 is the ultrapower map, ig41,o+1 = id and
i77a+1 = Z'j;_,’_l 9 Z%@ : M'Y — Ma_;,_l

for v <7 B; likewise for j,, etc.
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6.

Suppose that Eg € E4(Mpg). Suppose that either 8 ¢ £ (so 8 € #),
or k < pg and E, is not total over Bg||pg. Then we put o« +1 € #,
Not1 = Niyy = 0, and jj,, etc, are undefined. We set M}, ; I My
and deg(a + 1), etc, in the manner for degree-maximal trees. Let k =
deg(a+ 1). Then

Moy y1 = Ul (M7, Ey)

and i}, |, etc, are defined in the usual manner. We set B}, , = M}

at1 and

Ba—i—l = Moz-i—l-

. Suppose that Eg ¢ E4(Mg) (so Eg € E4(Ng)) and By+1 is not defined

through clause 5. Then we proceed symmetrically to clause 6 (interchang-
ing “M” with “N7).

a+1e P iff either § # M}, <Mgor ) # N:, ;< Ng.

For every limit A < n, 2 N[0, \)r is finite, and A € A iff [0, \)7 C B; the

models M), etc, and embeddings i, , etc, are defined via direct limits,
and deg()) is the common value of deg(«) for all sufficiently large av <7 A.

For oo < 1h(T), #(c) denotes max(Z N [0, 7). =

3.21 Lemma. Let T be an iteration tree on a bicephalus of degree (m,n) and
let a < 1h(T). We write B, = B], etc. Then:

1.

o

If o +1 < Ih(T) then E, is weakly amenable to B, ;.

2. Ifa+1<1Ih(T) and a +1 ¢ A then E, is close to B}, .

3. B is closed downward under <7 and if « € M then A N[0,a]7 = 0.
4.

5. Ifae M, 0,alr N2 =10, deg(a) =m and B = B(«) then:

Ifa € A and [0,al7 N D =0 then m > 0.

— Mg is pg-sound, whereas M, 1is pg-solid but not pg-sound,
— Mg is the pg-core of M, and ig, is the pg-core embedding,

~ Pm+1 (Mﬂ) = pm-‘rl(MOt);
. M, M.,
~ i8a(Pm'11\PB) = Pmi1\Pp-

Suppose o € M and [0,a)7 drops in model or degree. Let k = deg” (cv).
Then the core embedding Ci11(My) — M, relates to T in the manner
usual for degree-maximal iteration trees.

Proof. Parts 1, 3 and 4 are easy. For part 2, use essentially the proof of [3,
6.1.5], combined with the following simple observation. Let £ + 1 < 1h(7) be
such that [0, £]7 does not drop in model and Ee = F(M¢). Let x = pred” (€+1).
Then [0, £ 4 1]7 does not drop in model and x is the least x’ € [0, £]7 such that
cr(F(M,)) = cre. We omit further details of the proof of part 2.

Parts 5 and 6 now follow as usual. O
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3.22 Definition (Iteration trees on cephalanxes). Let B be a cephalanx. The
notion of an iteration tree 7 on B is defined much as in 3.20. The key
differences are as follows. The models of the tree are all either cephalanxes or
segmented-premice?’, and if B is passive, then the models are all either cepha-
lanxes or premice. We write (Ma,iq0g) and (Qa, kap), etc, for the models and
embeddings above MB and QP respectively. We write By, = (Yo, Pa, Mo, Qo)
when B, is a cephalanx, and otherwise B, = M, # 0 or B, = Q. # 0, and
write 2 for the set of « such that B, = Qn. Let 1o, = t(F,). Other notation is
as in 3.20.
Let o+ 1 < 1h(7). Then:

~ Either E, € E; (M,) or Ea € E4(Qu).
Let x = cr,. Then:

— pred” (a+ 1) is the least 3 such that & < ¢4.
Suppose 5 € A. Then:

- If Eg € E;(Mp) and either pg < k or E, is not total over Mg then
a+1le.# and M, I Mg and Qat1 = 0.

- If Eg ¢ E(Mpg) and either pg < k or E, is not total over Q3 then
a+le2and Q) JQpand My =0.

Now suppose that k < pg and E, is total over Bg||pg (so k < vg). Then:
— Suppose either £ < v or Eg € E(Mpg). Then B}, = Bg.?!
— If k =73 and Eg ¢ Ey(Mg)** then Myiq =0 and Q= Q.2
The remaining details are like in 3.20. n

3.23 Lemma. Let T be an iteration tree on a cephalant B = (v, p, M, Q) of
degree (m,q) and let a+1 < 1h(T). Then parts 1-6 of 3.21, replacing ‘N’ with
‘2’ hold. Parts 3-6, replacing ‘A’ with ‘2’ , ‘M’ with ‘Q°, ‘m’ with ‘q’, ‘p’
with %y’, and ‘AN with ‘", hold.

201n fact, for the cephalanxes B we will produce — in the proof of 5.2) — the models of all
trees on B will be either cephalanxes or premice.

21Here if kK = vg (so Eg € E4(Mp)), one might wonder why we do not just set Mz, =0
and Q(”;Jrl = Qp- This might be made to work, but doing this, it seems that E, might not
be close to QF, ;-

22When this situation arises with one of the active cephalanxes we will produce, @ and Q 8
must be type 2 premice.

231n this situation it would have been possible to set B}, = Bg, and the reader might
object that we are dropping information unnecessarily here. But for the cephalanxes we will
produce, our proof of iterability would break down if we set B;, ,; = Bg, and it will turn out
that we have in fact carried sufficient information (at least, for our present purposes).
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Proof. This is mostly like 3.21. Part 4, when replacing ‘.#’ with ‘2’ etc, and

when ¢ = —1, follows easily from the iteration rules. For consider this situation
and suppose o+ 1 € 2 and § = pred’ (a+1) € Z but a+1 ¢ 27 . Since
¢ = —1, B is active, so OR? = p, so ORY* = pg, S0 Kk < pg, and since

a+1¢ 97, E, is total over Bg||pg, so k < v5. Therefore (since o + 1 ¢ %)
r =5 and Eg ¢ E, (Mg). Therefore E5 = F9 (as pg = OR?? and Qp||pp =
Mgllpg). But v(F9) < v, so tg = v, but by the iteration rules, x < tg, a
contradiction. (|

3.24 Definition. Let 7 be an iteration tree on a cephal B and o+ 1 < 1h(7).
We write ex/ for the active segmented-premouse P such that E] = FT if B is
a bicephalus then P < M or P < N, and if B is a cephalanx then P < M
or P<1QT. -

3.25 Definition. Let B be a cephal. A potential tree on B is a tuple

T = (<Tv <Ea>a+1<n> ;

such that if 7 is a limit then 7 is an iteration tree on B, and if n = v + 1 then
T |~ is an iteration tree on B, and T satisfies all requirements of 3.20, except
that we drop the requirement that B, be a cephal or premouse, and add the
requirement that M., N, Q~, Ult(M.,, FM>), Ult(N,, FN7), and Ult(Q.,, F9)
are all wellfounded (if defined). !

The next lemma is easy:

3.26 Lemma. Let T be a potential tree on a cephal B. Then T is an iteration
tree. Moreover, if a < 3 < 1h(T) and 8 € A7 then we can apply 5.19 to B, Bgs
and the sequence of extenders used along (o, f)7. Further, assume that if B is
an active cephalanz and lged(QP) < V(FQB) then QP is a premouse. Then
every model of T is either a cephal or a premouse.

3.27 Definition (Iterability for cephals). Let B be a bicephalus and o € OR.
The length 6 iteration game for B is defined in the obvious way: given
Tla+1with a4+ 1 < 6, player I must choose an extender E,, and given T [ A
for a limit A < 6, player IT must choose [0, A\]7. The first player to break one of
these rules or one of the conditions of 3.20 loses, and otherwise player II wins.

The iteration game for cephalanxes is defined similarly.

We say that a cephal B is a-iterable if there is a winning strategy for player
IT in the length « iteration game for B. B

3.28 Lemma. Let B be an (wy + 1)-iterable cephal of degree (m,k). Let T be
an iteration tree on B and a < In(T). Then:

~ Suppose MT £ 0. If o € BT let d = m; otherwise let d = deg” (o). Then
suitable condensation holds through (M, max(d,0)).
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~ Suppose B is a cephalanz and QT # 0. If o € B7 let d = k; otherwise
let d = deg” (). Then suitable condensation holds below (QT, max(d,0)),
and if either [0, o]y drops or @, QZ: are premice, then suitable condensa-

tion holds through (Q, max(d,0)).

Proof. If T is trivial, use 2.14 (for example, M is (m,w; + 1)-iterable). This
extends to longer trees 7 by 2.11 and the elementarity of the iteration maps. [

4. Analysis of iterable cephals

In this section we prove the main facts about iterable bicephali and cepha-
lanxes, which establish strong fine structural restrictions on them.

4.1 Definition. Let m < w and M a p-sound premouse with p%_H <p<pM
Let k < p, let H = cHull%H(fi UpM. ) and 7 : H — M the uncollapse.

Then M has an (m, p)-good core at « iff H||(kT)? = M||(xT)M, H is
r-sound, cr(m) = K, (k) > p and w(p2 \r) = p2, \k. In this context, let
H%ﬁ = H and let G%,H,p be the length p extender derived from 7. B

4.2 Remark. Note that if M has an (m, p)-good core at x then, with 7, H
as above, we have pM | < k, M is not (m + 1)-sound, G = GM _ is weakly

m,K,p
amenable to H, M = Ult,,(H,G) and ig"™ = 7.

4.3 Theorem. Let B = (p, M, N) be an (w1 + 1)-iterable non-trivial bicephalus.

Then B is not sound. Let m = m®P and n = n®. Then exactly one of the
following holds:

(a) N is active type 1 or type 3 with largest cardinal p, and letting k = cr(FY),
then m >0 and M has an (m, p)-good core at k, and GM . = FN|p.

m,r,p
(b) Vice versa.

Proof. We may assume ZFC, as we can work in an inner model which contains
B and is closed under an iteration strategy ¥ for B, such as HODp 5 or L[B, X].
So we may also assume B is countable. We mimic the self-comparison argument
used in [3, §9]. Fix an (w; + 1)-iteration strategy ¥ for B. We form a pair of
padded iteration trees (T,U) on B, each via X, by comparison. We will show
that the comparison terminates, using the ISC and some more. Examining the
circumstances under which the comparison terminates, we will show that B is
unsound, and the comparison produces an iterate B’ of B, also a cephal, such
that B’ has a good core. A new feature of the proof (in contrast to the classical
phalanx comparisons) is that we then need to show that the iteration map from
B to B’ cannot introduce this property, soB also has a good core.

The trees (7,U) may be padded, but for each a we will have either EJ # ()
or B4 # (). See §1.1.6 regarding padding and tree ordering. At stage a of the
comparison, given a € %7, we may set E] = (), and simultaneously declare
that, if T is to later use a non-empty extender, then letting 5 > « be least such
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that EﬂT # 0, we will have EﬂT e B (M]) = E+(Mg) Or instead, we may
declare that Eg— € E, (NT). Toward this, we define non-empty sets

My C {M],NITH\{0}.

We will require that if EﬂT # (), then Eg € EL(P) for some P € Sﬁg All
models in S)JTZ; will be non-empty.

We also define sets SﬂT C tg C {0, 1} for convenience. Let 0 € tg iff M[;r £,
and 1 € t] iff N] #0. Let 0 € S} iff M] € M}, and 1 € ST iff N € M.
(We will explicitly define either Sﬁg or ST, implicitly defining the other.)

The preceding definitions also extend to U.

We start with B = B = BY and S = {0,1} = S¥.

Suppose we have defined (7,U) | A for some limit A\. Then (7,U)[ A+ 1 is
determined by ¥, and SZ =limy<,» 57, and SY is likewise.

Now suppose we have defined (7,U) [a + 1 and S/ and SY%; we determine
what to do next (at stage «).

Let (F) = v(F) for F an extender, and 7(f)) = oo (with co > a for « € OR).

CASE 1. There is £ € OR such that for some Y € M7 and Z € MY, we have
€ <ORY NORZ and Y|¢ # Z|¢.

Let € be least such and v = the minimum value of min(Z(FY ), 7(FZ1))
over all choices of pairs (Y, Z) witnessing the choice of £ (there are at most 4).

SUBCASE 1.1. For some (Y, Z) witnessing the choice of £, Y|¢ and Z|¢ are both
active and v(FYI€) = y(FZ1€) = v.

Fix such Y, Z. We set E] = FYI¢ and EY = FZI%. This determines (7,U) |
a+2. Alsoset ST, =7, and SY , =4, .

SUBCASE 1.2. Otherwise.

Then take Y, Z witnessing the choice of ¢ and such that either (i) Y|¢ is
active, v(FY1¢) = v, and if Z|¢ is active then v(FZI¢) > v; or (ii) vice versa.

Say Y|¢ is active with v(FY1§) = v. Then we set ET = FY!¢ and FY = ().
This determines (7,U) [a+2. Set ST, | = t],,. Now suppose there is X € MY
with X|¢ active and v(FXI§) = v. Then X|¢ = Y€, so we must avoid setting
EY = FXIE at some 8> a. So we set MY | = {Z}, and set SY, | accordingly.
If there is no such X then set S¥,; = SY. (In any case, later extenders used in U
will be incompatible with E7.) The remaining cases are covered by symmetry.
CASE 2. Otherwise.

Then we stop the comparison at stage a.

This completes the definition of (T,U). For a < Ih(7T,U), let S7 (a) be the
largest 8 <7 « such that Sg— = {0,1}; here if « € %7 then B;— = BT, Let
SY(a) be likewise. For a+ 1 < 1h(T,U), let Ih, = 1h(ET) and v, = v(E]) if
E7 #(, and lh, = Ih(EY) and v, = v(EY) otherwise. (Note that if E7 # () #
EY then 1h(ET) = Ih(E%) and v(E]) = v(EY).)

Cram 1. Let o+ 1,8+ 1 < Ih(T,U). Then (i) if @ < B then lh, < lhg and
Vo < vg; and (ii) if E] # 0 # Eg{ then E7 v, # Eg{ [vg.
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Proof. Part (i) is by standard considerations together with the definition of
MU, in Subcase 1.2 above (which prevents having E¥,; = ET, for example).
Part (ii): If « +1 = 8+ 1, this is directly by construction, and if « +1 < 841,
use part (i) and the ISC as usual. O

CLAIM 2. The comparison terminates at some countable stage.
Proof. By the proof that standard comparison terminates, with Claim 1. o

So let « be such that the comparison stops at stage a.
Cra 3. card(S7) = card(S%) = 1 and M7 = MY,

Proof. If o € %7 then B] is non-trivial, by 3.26; likewise for &. So because
Case 2 attains at stage a, we do not have S7 = S¥ = {0,1}.

It is not true that (1) P< @ or Q< P for some P € M and Q € 9MY. For
suppose (1) holds; we may assume @ < P. Then @ is sound, so by 3.21, a € %4,
so by (1) and Case 2 hypothesis, card(S¥) = 1. Say SY = {0}. Let 3 = SY(a).
Then BY = BY and E] € E(NY) and EY = for all v € [, ). Let o0 = p4.
Then th; > (g"’)B%{. So P(o) N P = P(p) N BY, contradicting the fact that
M{ =Q<P.

Now suppose that S7 = {0,1} but card(S¥) = 1. Let § be least such
that M7 |6 # NT|5. Let Q € MY. Then Q <« M || = NT||5, so (f) holds,
contradiction. So card(S7) = card(S%) = 1, and because (1) fails, M/ =
mU. O

CLAIM 4. o € BT APBH.

Proof. Either T or U is non-padded cofinally in « (that is, if « = 84 1 then
either EﬂT # ) or Eg # ), and if « is a limit then either Eg # () for cofinally

many S < «, or EZ[;{ # () for cofinally many 8 < a). By this and Claim 3, we

get o ¢ BT N B, so assume that o ¢ %7 U ZY. Then standard calculations
using 3.21 give that 7,U use compatible extenders, a contradiction. O

By the previous claims, we can assume o € #7\%4, ST = {0} and SY =
{1}, so B = BJ is a bicephalus, o € AU, and M = NY; the other cases
are almost symmetric. We will show conclusion (a) of the theorem holds; under
symmetric assumptions (b) can hold instead. Let 8 = S7 (). Let p = p(B).
Then B = B] and for all v € [8,a), we have E] =0 # EY and (5%)% < In¥.

CLAIM 5. = 8+ 1 and lhlg = (ﬁ"’)é and Eg is type 1 or type 3.

Proof. Suppose not. Then by 3.21, N¥ is not p-sound (recall that if a > 8+ 1
and 1h,, = IhY then EY , is type 2). But by 3.21, M] is p-sound. So
MT # NY contradiction. O
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Let B = (5,M,N) = BT = BJ. Since E{ € E4(N), and % = (5)%,
Kf|(ﬁ+)§ projects to p, so ORN = (ﬁ+)§ and FN = EY. Let F = FN and
% = cr(F). Tt follows that (a) of the theorem holds regarding B; using the
iteration embeddings we will deduce that B is not sound, and (a) holds regarding

B. Note that either OR(M) > OR(N), or OR(M) = OR(N), N has superstrong
type and M is type 2; in either case m > 0. Also ORY = (pT)B and N is active
with F' = FN, a preimage of F. Let = cr(F); so k < p.

CLAIM 6. M is not m + 1-sound, so B is not sound.

Proof. Suppose M is m + 1-sound. Let z = 22, and ¢ = ¢} ;. By [12, 2.17],
z —pm_‘_1 and ¢ = pM. < p. Soke€ Hullerl(CUzUpm) Let z = 2}/, and
(= ¢M_ | By [12, 2.20], Z = i],(2) and (= supig, “C, so ¢ < pand

ifa(s) € Hul)  (CUZUAY). (1)

Let H = NY. Then M = NY = Ult,,(H,F) and ¢ = susz“CH, and since
¢ < p, therefore ¢ < &. Also, 7 = 25( m+1) But k ¢ rg(i F)

R ¢ Hull)l (CuzU ). (2)

But i, [ p = jd, | p, s0 i, (k) = &, contradicting lines (1) and (2). O

We can now complete the proof:
CrAmM 7. Conclusion (a) of the theorem holds.

Proof. Suppose N is type 1. Let p = pmH\p and H = cHullmH(n Up Upm)
and 7 : H — M the uncollapse. Then H = N U 7= j*l’{ H is F-sound and
letting g = pmH\n we have 7(¢) = p and pM = sup 7“pX and

HI|(&%)™ = M|(&")M = K[|z
We have k, H,7 as in (a ) let p = pM. \p. We show (supm“pf) = pM. Let

v < pM. We have (supﬂ"‘pg) = pM_ So letting i = i],,

M |= “There is 8 > i(y) with 8 € Hull,, 1 (% U {p, 7/ })

an 1%,,,1 assertion about i(7, &, p, pM), which pulls back to M, which suffices.
Som: H — M is an m-embedding. Let 7(p) = p. Let (H, )7<pH be

the natural stratification of Hulll (s U {p",5%}) (the uncollapsed hull), and
My = 7“Hy and 7y : Hy — Mz, be the restriction of 7. (For example if
m =0 and M is passive,

(v
H, =Hull"" (kU {p"'}).
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If M is active or m > 0 use the stratification of r¥,,, 41 truth described in [3, §2].
Note H, need not be transitive.) So H = U'y<pH H,,. For 7 large enough we have
k € H, and H., is transitive below (k7)#7, so 7, [ P(k) C 7, and in particular
k' = m(k) = my(k). For such v, let E, be the (short) (k, x’)-extender derived
from 7. Then H,, E, € M (as sup(m, “pHy < pM) and (Iit)H7 < (kH)M. Let
7y : Hy — M, and &' and E, be defined likewise over M (for large enough
v < pH). We have (H, ~ M)||(&+)#> and E, |5 C FY for each 7; the former
is because by 2.13, N E=“Lemma 2.13 holds for my proper segments”.

Now i“rg(m) C rg(7) since i = i, is an m-embedding and i(k, p) = (%, p).
So for all v < pX we have i(m(y)) € rg(7). And note that i(x’') = &’ and if
v < pH is sufficiently large and 7(5) = i(m(v)), then i(H,) = H5 and i(E,) =
E;. Also pM = supi“pM and ORY = supj“OR" and i,j are continuous at
(k)N = (k)M and j“FN C FN. Tt follows easily that (H., ~ M)||(x*)> and
E,1p C FY for all sufficiently large v < pfl. Therefore H||(xT)? = M||(xT)M
and FN | p is derived from 7.

So FN is weakly amenable to H, M = Ult,,(H, FY), and 7 = iAF/‘[;Vm (we
can factor w : H — M through Ult,,(H, FY), and v(FY) = p). So by [12],

T(zp 1) = Zprs but zpl\p = pyl i \p, and therefore 271 \rk = pfi_1\K, s0
H is k-sound. This completes the proof assuming that N is type 1.
If instead, N is type 3, then almost the same argument works. O
This completes the proof of the theorem. O

We now move on to analogues of 4.3 for cephalanxes.

4.4 Definition. Let B be a passive cephalanx of degree (m, ¢) and let N = NB.
We say that B has a good core iff m > 0 and N is active and letting F = FV,
k= cr(F) and v = v(F), we have: (i) ORY = p™™ (i) N is type 1 or 3, (iii)
M has an (m,v)-good core at «, (iv) G5, = F v, and (v) if N is type 1 then

H%H:Qandm:q. B

4.5 Theorem. Let B = (v, p, M, Q) be an (w1 + 1)-iterable, non-trivial, passive
cephalanx of degree (m,q). Then B has a good core, so B is not sound (that is,
M is not (m + 1)-sound).

Proof. The proof is based on that of 4.3. The main difference occurs in the rules
guiding the comparison. We may assume B is countable. We define padded
trees T,U on B, and sets S/, SY M7 9MY much as before. We start with
S =S¥ ={0,1}. At limit stages, proceed as in 4.3. Suppose we have defined
(T, U) Ta+1, ST and SY and if card(S7] ) = card(SY) = 1 then B] ¢ BY ¢4 B]
(otherwise the comparison has already terminated).

CASE 1. card(S]) = card(SY%) = 1.

Choose extenders as usual (as in 4.3).

Casg 2. ST ={0,1} and if S¥ = {0,1} then p] < p4.
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So BT is a cephalanx; let BT = (v7,p7 , M7 ,Q7) = B]. Let BY = BY.
We will have by induction that for every 8 < a, lhg < pT and lh% < p7T. Since
B is passive, B7 |p7 and BY|p” are well-defined premice.

SuBcaAsk 2.1. BT |p7 # BY|p7.
Choose extenders as usual.

Suppose BT |p7 = BY|p”. We say in T we move into M7 if either
[E] # 0 and E] € Ex(M7)] or [E] =0 and S7,, = {0}]. Likewise move
into Q7, and likewise with regard to U if S¥ = {0,1}. In each case below
we will move into some model in 7; we may do likewise for ¢. These choices
produce premice R, S from which to choose E7, EY, as in the proof of 4.3,%4,
given that R € S 4 R (for example, if S4 = {1} and in 7 we move into M7,
then R = M7 and S = QZ”). If R< S or S < R then we terminate the
comparison, saying the comparison terminates early. If BY is a cephalanx
and we do not move into any model in &/ and E¥ = () then we set S, ; = {0,1}.

SUBCASE 2.2. card(SY) =1 and B7 |p7 = BY|p”.

Let {P} =Y. If Q7 < P move into M7 in T if Q7 @ P move into Q7.
SUBCASE 2.3. ST = SY = {0,1} and B |p” = BY|p".

Let (4“1, o1, MY, QY) = BY. So p7 < p". Then:

~If Q7T = QY and p7 = p: Move into Q7 in T and MY in U.

~If QT = QY and p7 < p“: Move into M7 in T, and if also M7 |p¥ =
BY|p" then move into QY in U.

~ If Q7 «@Q¥: Move into M7 in T (note here p” < p* and Q7 < BY||p%).
~ If QY aQ7: Move into Q7 in 7 and MY in U (note here p7 < Y < pH).

~IFQT 4 QY 4 Q7: Move into Q7 in T; if also Q7 |p¥ = BY|p", move
into Q¥ in U.

The remaining cases are by symmetry. Define lh,, and v, as for 4.3.

CrAamM 1. Let a < 8 < Ih(T,U). Then (i) if 8+ 1 < Ih(T,U) then lh, < lhg
and v, < vg; and (ii) if S7 = {0,1} then lh, < pg.

Proof. By induction. Part (i) is as for 4.3. Part (ii): If there are cofinally many
o < B with ET, # ), use part (i) and rules of iteration trees. Otherwise, fix
a < B least with E7, = () for all o/ € [, 8). Note ST = {0,1}, and if there
is o € [a,8) with p] < lh,/, and o is least such, we move into a model of
Bl, =BT = B;— in 7 at stage o/, so SZ— # {0, 1}, contradiction. O

al T
It follows as before that the comparison terminates.

CLAIM 2. Let o < Ih(7,U). Then (i) the comparison does not terminate early at
stage «; (ii) if at stage «, in T we move into R, then for every § € («, h(T,U)),
we have R 4 S for all S € SJI%’

24That is, we also minimize on v(E), so if E] # 0 # EY then v(E]) = va = v(EY).
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Proof. By induction on «. Suppose for example that Subcase 2.2 attains at
stage o. We have P € Y.

Suppose Q7 < P, so in T we move into M7 . We have M7 |p7 = P|p” and
NT 9Q7 < Pand M7 # N7 and both M7, N7 project < p” and

MTY|((T)HM = NT([((pT )N

So M7 ¢ P and taking A least with M7 |A # N7 |\, we have p7 < X\ <
min(OR(M7), OR(NT)). So the comparison does not terminate early at stage
a, and as M7 projects < p7, forno B> ais M7 4 S € smg

Now suppose Q7 4 P, so in T we move into Q7. If a ¢ $Y then P = BY
is unsound. Otherwise there is § < « such that at stage J, in U we move into
P. In either case (by induction in the latter), P 1 Q7. So the comparison does
not terminate early at stage a. Let A be least with Q7 |\ # P|\. Then p7 < X
and since Q7 projects < ~7, there is no 8 > a such that Q7 « S € sm%

The proof is similar in the remaining subcases. O

Let « + 1 = 1h(7,U). As in the proof of 4.3, and by Claim 2, we have
card(ST) = card(SY¥) = 1 and a € BT ABY. We may assume a € B’ so
BT = (v/,p',M',Q’") is a cephalanx and BY is a non-sound pm. So P < BY
where {P} = M7 . But by Claim 2, P ¢ BY,s0 P = BY. Let 8= S7 (a).
Cramv 3. ST = {0}.

Proof. Suppose S] = {1}, s0 Q' = P = BY is 7/-sound. At stage 3, in T we
move into Q'. For all £ € [B, ), Eg =10, so Elg{ # 0, and p’ < lhe, because
By = Bg’|p'7 and therefore p’ < 1/?, because p’ is a cardinal of @’. But then
BY is not 7/-sound, contradicting the fact that Q' = BY. O

So M' =P =BY. Let N' = N].
CLAIM 4. OR(N') = ((p)H)M', N’ is active type 1 or type 3, a = B + 1,
EY = FN', and if N' is type 1 then B = Q'

Proof. Assume, for example, that Subcase 2.2 attains at stage 8. So N’ < Q' <
Bg’. We have M’ # N’, both M', N’ project < p’, and

MM = NNl

We have E] =0, so EY # () and note that EY € E, (N’) and lhzg > ((p")H)M'.
Since M’ = BY is p/-sound it follows that o = f+ 1 and Vg{ =y, so0 EZ[;{ is type
1 or type 3. Therefore N’|1h% projects to p’, so OR(N') = 1hzé’.

Now suppose further that N’ is type 1; we want to see that B = Q. We
have ' < Bg and cr(FN') =4/ and p,(Q') <+’ and

PH)NQ =PH)NN"

So it suffices to see that predu(a) = . We may assume that 1h¥ = p’ for

some § < 3. Then p’ is a cardinal of Blé{, so Q' 4 BY, s0Q = Blé{. So Bg is
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~'-sound, so there is a unique § such that lh? = p/, and moreover, Ef;’ is type 3
and 8 = § + 1. Therefore pred”(a) = 3, as required. O

To complete the proof, one can now argue like in Claim 7 of 4.3. o

4.6 Remark. We next counsider active cephalanxes B = (v, p, M, Q). Here
things are more subtle, for two reasons. First, if Q) is type 3 then QZ: can fail the
ISC; this complicates comparison termination. Second, if ) is superstrong then
comparison termination is complicated further, and more importantly, we do not
see how to show B has a good core (4.15), nor how to rule out the possibility that
B is exact and M is sound with p} 11 = p. It is easy enough to illustrate how
the latter might occur. Let @ be a sound superstrong pm and x = cr(F?) and .J
be a sound pm with J||(x7 )7 = Q|(xT1)? and p, ., = (kT)? = (k1) < pol.
Let M = Ult,,(J, F9) and B = (v, p, M, Q), where p = OR? and ~ = lged(Q).
Suppose M is wellfounded. Then B is an exact, sound cephalanx. (We have
pM. . = p < pM and M is (m + 1)-sound, and B is exact because zi,gn and
ng are continuous at (k7+)7.) It seems J, Q might arise as iterates of a single
mouse, so it seems B might be iterable.

4.7 Definition. Let 7 be an iteration tree on an active cephalanx B and
a+1 < 1h(T). We say o is T-special iff « € 7 and E] = F(Q7). !

4.8 Lemma. Let T be an iteration tree on an active cephalanx B and o <
IW(T). Then:

(a) If o € B then QT has superstrong type iff Q does.
(b) If (QB) =B then 2 = 0.
Suppose also that a + 1 < 1h(T). Then:

(¢) If o is T-special then a+1 € BT and pred” (a+1) is the least ¢ € [0, o]
such that either ¢ = a or cr(F(QT)) < cr(il).

EQ
(d) If B is a pm-cephalanz and ex] is not a premouse then o is T -special (so
ex! = Q7)) and Q is type 3.

Proof. For (a), recall that in T, we only form simple ultrapowers of QP and its
images. O

4.9 Lemma. Let T be an iteration tree on an active pm-cephalanxz B = (v, p, M, Q).
Let a < 8 <Ih(T). Let A =1h]. Then either:

1. B¢ BT and either (i) \ < OR(B;—) and X is a cardinal of BZ;, or (it)
B =a+1, ET has superstrong type, \ = OR(BBT) and Bg is an active
type 2 premouse; or

2. B € B7 and either (i) A < p(BBT) and X\ is a cardinal of BZ;, or (i1)
B =a+1, ET has superstrong type, \ = p(BBT), and letting e = predT(ﬁ),

T — BT)
crg =v(B2).
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Therefore if Ih) < lh;— then 1h” is a cardinal of exg.

Proof. If 8 = a+ 1 it is straightforward to prove the conclusion. Now suppose
B>a+1. If A< th;H it is straightforward, so suppose A = th;H. Then since
the lemma held for 8 = a + 1, either EZ;H is type 2, in which case things are

straightforward, or a+1 is T-special, so letting u = CILr1 and x = predT(a+2),
we have that B*Iz = BZ is a cephalanx and p < W(BI), which implies that

(e

A < p(Bl,,) and X is a cardinal of B ,. The rest is clear. O

4.10 Definition. Let B = (v, p, M, Q) be an active cephalanx of degree (m,0).
We say that B is exceptional iff (i) B is exact, (ii) @ has superstrong type,
and (iii) either p2, , = p or M is not y-sound. -

4.11 Lemma. Let M be an m-sound premouse and let pn]\f_,_l <~y <pM. Then
M is y-sound iff M = Hull%Jrl(v UM uphh.

Proof. This follows from [12, 2.17]. O

4.12 Lemma. Let B, B’ be active cephalanzes such that B’ is an iterate of B.
Then B’ is exceptional iff B is exceptional.

Proof. By 3.26, 4.8(a) and 4.11 and [12, 2.20]. 0

4.13 Definition. Let B = (v, p, M, Q) be an active cephalanx of degree (m,0).
Then B has an exceptional core iff @ has superstrong type and the following
holds. Let F = F@, k= cr(F), X = i%“(x™)?, m/ = max(m, 0),

H = cHull)!,, (X UzM  uphh,

7+ H — M the uncollapse. Then 7“(x*)# = X and H||(x* )7 = M|(xtT)M.
_|

4.14 Lemma. Let B = (v, p, M, Q) be an active pm-cephalanz of degree (m,0).
Suppose B has an exceptional core. Let F,k,m', H,m be as in 4.13. Then:

1. M =Ulty (H,F) and 7 = ig’m/ is an m’-embedding.

2. m(zp41) = 21 and T(pg  \(5T)T) = pll\p.

3. pH < (kM) < pl and H is (vT) -sound.

4. If pB 1 = (k)" then pM ., = p and H,M are (m + 1)-sound.
5. If pH | <k then pZ = pM. | and M is not (m + 1)-sound.

6. If M = Hull)!,  (aUzM , UpM) where a < p and a is least such, then
a € rg(m).
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Proof. Part 1: If m’ = —1 this is easy, so suppose m = m’ > 0. The uncollapse
map 7 : H — M is a near m-embedding. Let m(z) = 2z}, ;. We have

H=HullZ (1) U{zpd}), (3)

and H||(kT )7 = M|(k*T)M, so H collapses (k)M and H ¢ M. It follows
that 7 is an m-embedding. Now

M = Hulln]\f+1(’y+M U {Z%.;_l,ﬁ%})a (4)

Let M’ = Ult,,(H, F) and 7’ = 2™ and o : M’ — M the natural factor map.
Then 7’ is an m-embedding and o is m-lifting and o o 7’ = 7, and since 7 is an
m-embedding, in fact so is o. But cr(o) > 1h(F) = v and 2}/, € rg(0), so
by line (4), M’ = M and o = id.

Parts 2-4: If m = —1 this is trivial, so suppose m = m’ > 0. By [12] and
part 1, 2 = zH .| (where 7(2) = z},,), so by 4.11 and line (3) above, H is
(k) -sound and pf  ,\(xT)# = 2\(k1), so

m(pl \)T) =20 \p=ph 0 \p,

since M is p-sound. The rest follows from [12].

Part 5: Because pgﬂ < Kk, we have m > 0. Since Q@ is a type 3 premouse
(as B is a pm-cephalanx) and M||(xTH)M = H||(k*T)H, F is close to H, so
pM. . = pH | < k. Suppose M is (m + 1)-sound, so M = Hull}r | (x UM, ).
Then M = Hull)!, ,(rg(r) Ugq) some ¢ € v<¥. But the generators of F are
unbounded in 7, a contradiction.

Part 6: Suppose there is o < p such that

M = Hull)) ; (a U2 uphh. (5)

Let a be least such. Note that o > -, since @ is a premouse and F has
superstrong type. Now if a > = then « is a successor. For if not, then since
a < p, there is a surjection f: vy — « in M, so there is £ < a with

f € Huu%’-{-l ({55 Z%—l—laﬁ%})a

but then max(£ + 1,7) < « suffices in place of «, a contradiction.
Since m is cofinal in p = y™™ and = is r¥,, 4 1-elementary and w(zf, ) =
zM. |, the existence of « reflects to H, in that there is 8 < (k™) such that

H=Haul, (BUzf, Ut

Let 8 be least such. As above, either § < k or § = + 1 for some (. If 5 < k
then note a = v = w(k). So suppose 8 = ¢+ 1 > k. We claim 7(8) = «. For

¢ HUHan’H(C U anirl upl),

and this non-membership is an rIl,, . assertion in these parameters, which
therefore lifts to M and 7((), ete, so w(8) < a. Conversely, because

H = Hullyy, ( (C+ 1) Uz, Up),
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we get m¢H = Hull), ., (7“(¢ + 1) UzM ; UpM) is unbounded in p = M but
v < 7((), so

M C LY (¢ 1) Uzh Ui,
so m(B) > a. O

4.15 Definition. Let B = (v, p, M, @) be an active cephalanx. We say B has
a good core iff the following statements ((a)—(c)) hold:

(a) B has degree (m,0) with m > 0.
(b) Either

(i) B is exact, and let F = F%; or

(ii) B is non-exact, and letting N = N2, we have ORY = pt™™ and N
is active type 1 or 3; let F = IV,

(¢) Let kK = cr(F) and v = v(F'). Then

(i) M has an (m,v)-good core at x, and GM, = F|v.

(ii) Suppose case (ii) above holds and N is type 1; so & = . Then:
— If Q is type 2 then Hn]‘fﬁ =Q.

— Suppose Q is not type 2, nor superstrong. Let y = cr(F?). Then

M has an (m,v)-good core at pu, and G) = F9. 4

4.16 Remark. It seems that B might have an exceptional non-good core.

4.17 Theorem. Let B = (v, p, M, Q) be an (w1 +1)-iterable, non-trivial, active
pm-cephalanz, of degree (m,q). Then:

— If B is exceptional then B has an exceptional core (see 4.13, 4.14).

— If B is non-exceptional then m > 0 and B has a good core (see 4.15), so
B is not sound (i.e. M is not (m + 1)-sound).

Proof. Suppose first that B is exact and @ is superstrong, but B is not excep-
tional. Then p} | <y < (y7TH)M = p™ < pM and M is y-sound, as is Q.
Note then that m > 0, since otherwise ORY = pM = pM = ((pM, )*)M. So
C = (v, M, Q) is a non-trivial bicephalus, and note that C is (w; + 1)-iterable.
So by 4.3, M has an (m,~)-good core corresponding to F'?, and because B is
exact, this implies that B has a good core (4.15). So we may now assume that:

If B is exact and @ is superstrong, then B is exceptional. (6)

Under this assumption, the proof is based on that of 4.5. The main differ-
ences occur in the rules guiding the comparison, the proof that the comparison
terminates, and when B is exceptional. We may assume B is countable.

We define 7,4 on B and sets S/, SY, M7 MY, much as before. (But if Q
is type 1 or 3 then S # {1} # SY for all o) If S] = {0,1} and B],, = B]
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and ST, ; = {0}, we say that (in 7) we move into M at stage a. We never
move into Q7 ; that is, if a € &7 then S] # {1}. Likewise for U. Also, we
allow a such that E] = () = EY, but only when we move into M or MY at
stage . If we move into M in at stage o, we will have E] = () and either
FY = ) or EY = F(QT). Likewise for . We will not move into both M
(in 7) and MY (in U) at stage a. If @ € B7 and Ih(ET) > p(B]) (that is,
ET € B4 (MT)\E4+(QT)), then we will have S7 = {0}, so there is some 3 < «
such that BZ; = BJ and at stage 3 we move into Mg— = M. Likewise for U.

Suppose we have defined (7,U) [ a + 1, ST and S¥. Suppose there are
A € M and B € MY such that A £ B 4 A; otherwise the comparison
terminates at stage a. We next determine what to do at stage a. In certain
cases we implicitly specify two segmented-premice A, B, with A ¢ B 4 A, from
which to select EJ, EY. We then find the least disagreement between A, B,
and then minimize on «(F), rather than v(F), when selecting extenders. (For
example, if E7 # () # EY then (] = 4.)

Let B7 = BT, M7 = M, etc. If ST = {0’;}’ then we will have by

[e2R]

induction that (}) for every 8 < a, if E;— # 0 then Thy < p”T and LZ; <47, and
if Eg{ # () then 1th < pT. Likewise regarding pt,7¥ if S¥ = {0,1}. We leave
the maintenance of (1) to the reader.

We say that « is (7,U)-unusual iff S7 = {0, 1} and either

(i) there is £ < a such that F(QT) [v(F(QT)) = Elg{ [u?, or
(i) there are & < & < « such that

7052514—15

Sg; ={0,1} and Eg; =0and B = F(Qg;) and Sg;_,_l = {0},
- S¢ ={0,1} and B¢ =0 and E/ = F(Q¥) and S¢ | = {0},

- crg = V(Bg;)-

In case (i)/(ii) we say that « is type (i)/(ii). We define (U, T )-unusual sym-
metrically.

CASE 1. v is both (7,U)- and (U, T )-unusual.
We terminate the comparison here with unusual failure 1. (We will show
that this can not occur.)

From now on, we assume that « is not both (7,U)- and (4, T )-unusual.
CASsE 2. Either:

~ card(S7) = card(SY) = 1, or
~ ST =1{0,1} and B7||p” # BY||p” and if S¥ = {0,1} then p7 < p¥, or
~ SY =10,1} and BY||p" # BT ||p* and if ST = {0, 1} then p“ < p7.

Select extenders by least disagreement and minimization on «(E) (there is
no moving into models).
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Case 3. ST ={0,1}, B7||p” = BY||p” and if S¥ = {0,1} then p7 < p“.
SUBCASE 3.1. « is (T,U)-unusual (hence not (U, T )-unusual).

If BY|p7 is active, we terminate with unusual failure 2 (we will show this
cannot occur). Otherwise, in 7 we move into M7, and we set E] = () = EY
and SY, , = SY.

SUBCASE 3.2. a is (U, T )-unusual (hence not (7,U)-unusual).
We terminate with unusual failure 3. (We will show this cannot occur.)

SUBCASE 3.3. « is neither (7,U)- nor (U, T )-unusual.
If Q7 < BY then in T we move into M7, and we set EY = F(Q7).
If Q7 4 BY then we select extenders from Q7 and BY.?°
CASE 4. SY = {0,1}, BY||p" = BT ||p* and if ST = {0,1} then p“ < p7.
We have subcases 4.1-4.3 analogous to 3.1-3.3.
CasE 5. SY ={0,1} = S7, and B7||p” = BY||p" (so pT = p*).
SUBCASE 5.1. « is either (7,U)-unusual or (U, T )-unusual.
We terminate with unusual failure 4. (We will show this cannot occur.)
SUBCASE 5.2. Otherwise.
If Q7 # QY, we select extenders from Q7 and QY.%°
If Q7 = QY, either

— in 7 we move into M7, and set EY = F(Q7) = F(QY), or
~ in U we move into MY, and set E] = F(Q7) = F(QY).*"
This completes the rules of comparison. Given a < 1h(7,U) such that

a € BT but ST = {0}, we set movin’ (o) = the 3 <7 « such that B] = B;—

and at stage 3, in T we move into Mg— = MZ Likewise for movin¥.

By Claim 1(7) below, the comparison does not terminate unusually. By
Claim 1(4), no two extenders used in 7 and U are equivalent to each other. If
B is active and Q type 3 then Q7 might fail the ISC, so this needs an argument.

Cram 1. Let n < 1h(7,U). Then:
1. If Q is type 1/3 then ST # {1} # SY for all a < 7.
2. If Q is type 1/2 then for every a < n, M|, Q7 are premice (or empty).
3. Foralla+1 < n:

251t might be that BY|OR(QT) is active with extender E and «(F(Q7)) > «(E), in which
case Eg- =( and Eg = E. In this case we keep SZ—Jrl = {0, 1}. If E is superstrong, we could
end up with F(Q7) active on some S € 93?1(;{+1.

26Here it would have been equivalent to set E] = F(Q7) and E¥ = F(QY). We don’t
do this because if Q is type 2, it seems it might break the rule that we minimize on ¢(E)
before selecting extenders - albeit in a trivial manner. (Suppose Q is type 2. Then so are
Q7 and QY. Suppose t(QT) = v(QT) < v(QY) = L(QH), so ET = F(QT) and EY = § and
Sg+1 = {0,1}. Since Q7 is type 2, we have BZ;HOR(Q“) is well-defined and is passive, so
we end up with E] =@ and EY,, = F(Q").)

2"We choose a side randomly. We could have specified one, but at a loss of symmetry.
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FY = [« is either (T,U)- or (U, T)-unusual).
FY <= [« is either (T,U)- or (U, T)-unusual).

(c) If we move into M at stage o then B/ ||p] = BY||p] and E] =0
and [either EY = () or EY = F(Q7)] and if S¥ = {0, 1} then p7 < pY.

(d) If a € B7 and EI € Ey (M])\E4+(QT) then ST = {0}.

[e3

4. Forall a+1,8+1 <7, if E] # 0 # EY then ET [v] # EY [/4.
5. Let a < n be (T,U)-unusual. Then:

(i) Q is type 3 and Q7 is not a premouse.
(ii) « is not (U, T)-unusual.
(iii) Case 3 of the comparison rules attains at stage o and B ||p] =
BY|pT is passive.
(iv) For all B € [a,n), if B3 € %7 then cr(F(Qg)) #~J, and if 3 € B4
then cr(F(QY)) # 7.
(v) Suppose « is type (i), as witnessed by &. Then:

(a) @ is not superstrong,

(b) Eg=®anda:§+1,

(c) g <7,

(d) the trivial completion of Eé” [1/? is a type 3 premouse extender,?®
(vi) Suppose that « is type (ii), as witnessed by &, &;. Then:
Q is superstrong,
B is exact,

)
)
(c) M7 =BZ,
)
)

6. Likewise for (U, T )-unusual a < n.
7. The comparison does not terminate unusually at any stage o < 7.

Proof. We prove all parts together by simultaneous induction on 7.

Parts 1, 2, 3a, 3c, 3d: by the rules of comparison and for normal trees.
Part 4: Suppose otherwise. Then by part 2 and the rules of comparison,
is type 3, so part 1 applies. Let (o, 8) be the lexicographically least counterex-
ample (with a + 1,841 < 7). Let A =1h..

Suppose that thBA = ). So EJ = EY, so by the rules of extender selection,
a # . So suppose a < f (the other case is almost symmetric). The rules
give some § € [a, B) with EY # (); let & be least such and let G = E¥. Then

28Recall that a premouse extender is the active extender of some premouse.
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Ih(G) = A = 1h%, so G has superstrong type, t7 = +(G) and § = a but E7 # G.
Let ¢ = pred”(a + 1). By 4.9, a +1 € #4 and cr(G) = y(BY). So a is not U-
special, so G is a premouse extender. Note # = a+1 and F(QY, ) = EZB’{ =ET.
Standard extender factoring arguments (for example, see [12, §5]) now show that
there is o/ < a such that E7, = G. But (o/, @) <jex (@, 8), contradiction.

So we may assume that A = thZ < 1h%; so @ < B. Then exzé’ is not a

premouse because, letting v = v], we have v < lhz; and lhz; is a cardinal of

eng, but EZ[;{ v ¢ eng. So B is U-special. But then S is (U, T )-unusual (of type
(). So by induction (with parts 6 and 7, as 8+ 1 < n), 8 is not (T ,U)-unusual.
Note then that, by induction, in the rules of comparison, Subcase 4.1 of Case 4
attains at stage 3, so Eg = (), a contradiction.

Part 5: Let o < n be (T,U)-unusual. So SJ = {0,1}. Let BT = B,
MT = M7, etc. Let F = F(QT) and p = cr(F).

CASE 1. ais (7,U)-unusual of type (i).

Parts (i), (v)(c): Let us show 1th < p7 = Ih(F). Suppose not. Then
lh? = p7 =1h(F) and EY = F. Tt follows that ET # () for some § € [£,q).
Let § be least such and G = Eg—. As in part 4, G is a superstrong premouse
extender also used in U, contradicting part 4.

Since lh? < pT, Q7 is not a premouse, so Q is type 3. It easily follows that
lh? < ~T, since if v is a successor cardinal in Q then Q7 is a premouse.

Part (v)(a) (Q is not superstrong): Suppose otherwise. Then because Q7
is not a premouse, there is § <7 « such that Q7 is a premouse and cr(j7,) =
W(Bg) (otherwise jg, is continuous at v2 and Q7 is a premouse). So Q7 fails
the ISC. So E? is not a premouse extender and ¢ is U-special. But then F(Qzé’)
has superstrong type, so Y = p”, a contradiction.

Part (v)(b) (Eg =0, =¢&+1): Wehaveip(u) > p7, so Bé”+1|pT =Q7||p”.
Now suppose there is § € [¢,a) such that EJ # (). Fix the least such with
6+1 <75 o Lete =pred’(64+1). Soec e %7 and k = al < AT If
k < v(F(QT)) then v(F) > u?, contradiction. So x > v(F(Q7)). But then
as before, Eg is a premouse extender used in both 7,U, a contradiction. The
desired conclusions follow.

Part (v)(d): By an extender factoring as before; otherwise there is § < &
such that Eg’{ is a premouse extender also used in 7T, a contradiction.

Part (i) (a is not (U, T)-unusual): Suppose otherwise. Then ST = {0,1} =
S so « is type (i) with respect to both kinds of unusualness (directly by
definition). But by part (v) and symmetry, therefore o = £ + 1 with EgT =0
(by (T,U)-unusualness of type (i)), but EZ— # (0 (by (U, T)-unusualness of type
(1)), a contradiction.

Part (iii) (Case 3 attains and B7||p7 = BY[p”): This is because « is
non-(U, T)-unusual, S7 = {0,1} and since by part (v) and its proof, we have
QT|pT = BY|pT and pT < ip(p) = it (n).

Part (iv): We have u = cr(Q7) < 7. If a € Y then cr(F(QY)) # ~T
since « = £ + 1 and 1hzé’ < pT < i*™(u). Moreover, p7 is a cardinal in MY, so
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if 3> a and Eg £ () then p7 < L(Eg), which easily gives that if 3+ 1 € B4
then cr(F(QZg)) #~J. And at stage o, in 7 we move into M7, so the rest is
similar.

CASE 2. ais (T, Z/{) unusual of type (ii).
Let Fp = (Q&)) EY, o = cr(Fy), Fy = F(Q4) = E], 1 = cr(Fy).
Part (ii) (o is not (U, T )-unusual): By deﬁnition of (T,U)-unusual type (ii),

S = {0}.

Part (vi)(a) (Q is superstrong): Suppose not. Let § € [, &1) be least such
that 6 + 1 <y &. Let G = E¥ and 0 = cr(G). Then 0 < py < ig(f), so
1 & rg (i, ), but 1 = cr(F(QY)), so p1 € rg(j, ), contradiction.

Part( i)(c) (M*T:Bg;): Letﬁ<awithEZ;7é(Z), so B #&. It <&
then L,@ < (Fp) by (1), and ¢(Fp) = p1 as Q is superstrong. As Sg;+1 = {0},
pg; < Lﬁ if B > &. This suffices.

Parts (i), (iii), (vi)(d): These are easy consequences of the fact that @ is
superstong and « type (ii) (in particular, Q7 fails the ISC, so is not a premouse).

Part (iv): much like in the type (i) case.

Part (vi)(b) (B is exact): We have & € Y and cr(F(QY))) = 1 = «(Eg).

Let ¢ = pred” (& + 1). Since i, € rg(j(zj’&), it is easy to see that either:

(1) éo+1<y & (soe,&+1€ PBY) and cr(F(Qzéi)+1)) = p1 and cr(F(QY)) =
Lo = cr(EZE’({)), or
(2) o+2<u & (so&+2€PY) and cx(F(QY ,)) = py and £,&o + 1 € BY
and v(BY) = po = cr(EY) and v(B¢ | ,) = 1 and B¢ | = F(Q¥ ).
We claim that (1) holds, so suppose (2) holds. Now EY # ) just by definition,
as ¢ = pred”(¢ +1). We have Mg‘é’il = BY and by the normality rules,
cr(EM) v(BY) < 1(EY), and since Q is superstrong, therefore EY ¢ E (QY).
So by part 3d, ST = {0}, so there is &’ < ¢ with BY = BY, where at stage ¢’
we move into Mg = MY in U. Note that & is not (U, T)-unusual, by part (iv)
and since v(BY) = po = cr(F (QT)) And €’ is not (T,U)-unusual (type (ii))
as SY ={0,1}. So by 3a and 3c, ET— F(QY) and EY = (). But then & + 1 is

e

U, 'T) unusual, so B¢ | =0 # F(QY ), contradiction.

Since E¢! is total over BY, (u0++)Q€To < (uot)B and Q7 ~ Bg’)||(u0++)Q€To.
Let Uy = Ult(ng,Fo) Since k = ?(fo is continuous at (MO‘H‘)QETO, then
(1t H)Y0 < (T Por and Uy ~ BY )| (s ).

.
Suppose B is not exact. By 3.26, neither is BT So (p1tH)Meo < (g tT)Vo

and (M5 ~ Uy ~ B£0+1)||(M1++)Mﬁo but by non-triviality, Mg A Up. So
76 BY . We have E£ = and S&,—H = {0} and M&H_1 =M. So

(uﬁ*)M?o > (1) = (TP = ()P > (g M,

contradiction.
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Part (vi)(e): Arguing as just above, we have pf] = (uo™ )3 = (MO‘H‘)QETO
and (QZ; ~ ex?0 ~ BY)||ug. By exactness on both sides, this easily gives the
claimed agreement between M. and MY.

Part 6 is symmetric.

Part 3b: Suppose a + 1 < n and « is (7,U)-unusual. By part 5, Case 3
attains, o is non-(U, T)-unusual, and M¥|p7 is passive, so Subcase 3.1 attains
and E] =0 = EY.

Part 7 follows similarly from part 5. O

CLAIM 2. Suppose Q is type 3, ={0,1}, ET = F( ?1)7 & +1€ % and
ch; =7 where ¢ = pred” (¢, + 1). Then & + 1 is (T,U)-unusual of type (ii).

Proof. Suppose not. Note that ET € E, (M7 )\E(QT), so & = movin” (¢)

exists. If B = F(Qg;) then & + 1 is (7,U)-unusual type (11) But if B¢ =0
then, as Eg; =0, & is (T,U)-unusual, so by Claim 1(5) (iv) 750 # cr(F ( “)
contradiction. O

CLAIM 3. The comparison terminates at some countable stage.

Proof. We may assume that @ is type 3, since otherwise every extender used in
(T,U) is a premouse extender and the usual argument works.

Suppose (7 ,U) reaches length w; + 1. Let 7 € OR be large, o : X — V;, be
elementary with X countable transitive and everything relevant in rg(p). Let
u = cr(o). Let W = BIIHWI = Buzf1||w1. As is routine, either i[wl OT i, 18
defined, if i/, is defined then (/ﬁ)MI = ("W and (M] ~ W)]|(p™)" and
Z:Wl C p and likewise if jlw , is defined. Likewise for U.

Let &y be least such that Eg; # 0 and kK <7 &+ 1 <7 w1, and « likewise for
U. Let us assume that &y < a; otherwise it is symmetric. Let ¢ = Lg— < LT As
usual, EgT0 lo=EY ..

SUBCLAIM 3.1. We have:

1

(a) The trivial completion of EgT0 [Vg; is a premouse extender.

(b) & < a and Lz; <M and I/g; < V¥ and lhz; < 1nY.

u

(c) EY Vgo ¢ ext!, so ex¥ is not a premouse and « is U-special.

Proof. Part (a): We have I/g; < VM because LETO < M and by compatibility.
So part (a) follows from standard extender factoring (otherwise we get some
premouse extender which factors into E7 ,» used in both T, U; cf. [12, §5]).

Part (b): If LE =Y then ET EY contradlctlng Claim 1(4). So LETO <M,
so £ < a. We have 1/5 <. But VZ # ¥ by Claim 1(4). So I/g; < 4. We
have Th] < 1h¥%. Suppose I/ = X\ = 1h¥. Let P = ex and § = lged(P) =
lgcd(ex5 ). Then ET ¢ P. Since ug < V¥ and by part (a), therefore P is not a
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premouse. So « is U-special, so Lg; < 6=« But Lg; >dasd = lgcd(exgo), a
contradiction. So lhg <Y,
Part (c): 1hET0 is a cardinal of P = ex and EZ— ¢ P, by 4.9 and agreement
SO

between models of 7 and U. Since I/g; < v] and by part (a), P fails the ISC,
and so « is U-special. O

Let ¢ <y a be largest such that F(QY) | v(F(QY)) satisfies the ISC. Let
&1+1 =min((e, afy). So Eé’{l # 0 but &; is not U-special. Let Fy = F(QY); then
EgT0 [1/57; = Fy [v(Fp). Let d be least such that EY # 0 and §y+1 <7 0+1 <7 w;.
Let 1; = min(LZé{1 ,1]). Extender factoring gives EY [1; = Eg [tq.

SUBCLAIM 3.2. (a) exléf1 is a premouse, (b) § > & and ] > Llé{l and v] > ug
and 1h] > lh?17 (c) BT [Vg ¢ ex], so ex/ fails the ISC and § is T-special.

Proof. Like Subclaim 3.1 and because &; is not U-special. O
SuBCLAIM 3.3. QY = Qlé{lﬂ, so EY is equivalent to EZE”1 o Eg;

Proof. Suppose not. Fix 7' least with E,LY’/ #@Pand &+ 1<y v +1 <y a. Fix
v least with E,Z— # 0 and v+ 1 <7 0 and F(Q?{H) [V(F(Q?Y—H)) fails the ISC.
T

Then both ex,7Y— and GXZ/ are premice, and extender factoring gives ex,7Y— = eX},

contradiction.
SUBCLAIM 3.4. @ is superstrong and & + 1 is (U, T )-unusual type (ii).

Proof. Let pg = p = cr(EgTO) = cr(QY). Recall Fy = F(QY). Let py =
cr(E]) = cr(EZE’{l). As Mgﬁl = BY, we have pu; < ¥ <ip, (o). And as § is

T-special, we have §g + 1 = predT(5 +1) <74 and
p = cr(F(Q])) = ifs(cr(F9)) = if ¢, 41 (cr(F9)),

SO 1 € rg(il})goﬂ). But p1 > po, S0 g1 > iZL—o,ﬁo-i-l(/LO)' But EZ; is equivalent
to Fy, so putting things together, iz:o,foﬂ(/‘o) =p1 = =ig,(uo)-

It follows that QY and Q are superstrong, QY is therefore a premouse,

v(Fy) = p1 = V(Eg;) and engO =QY = ?0 (and BY = Bé’(’), though maybe
e > &o). Therefore in U, we move into Mg) at stage &y, and Eg; = F(Q?O), and
72540 = H1-

Let ¢ <7 4 be largest such that F(QT) | v(Q) satisfies the ISC. Since
Q is superstrong, Q7 is a superstrong premouse, so ¥(Q7) = 77. By the
claims above, v, = V(E?1 ) and in fact QZ; = exlg’{l, and hence Qg = engl (and
BZ; = B£T17 though maybe ¢ > &), and in T, we move into Mg at stage &;.

We have therefore established that & + 1 is (U, T)-unusual of type (ii), as
witnessed by &, &;. O
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By the last subclaim and rules of comparison, E571+1 =0 = E?ﬁl, and in
U, we move into M | at stage & +1. So & +2 € 4" and MY, = MY |,
so note OR(QY ;) < ¢ = lh(Eg:“) or OR(QY , ) < ¢ =1h(E¢ ,,), whichever
extender is defined. But EY = F(QY) and o > & + 1, s0 a > & + 1, but
by Subclaim 3.3, QY = Qzélﬁ_l, so Ih(EY) < ¢, a contradiction, completing the
proof that comparison terminates. O

We now analyse the manner in which the comparison terminates. Let a+1 =
Ih(7,U). Let BT = B], etc. We say that the comparison terminates early

(']

if « =+ 1 for some 8 and EﬂT =)= Eg We begin with the non-exceptional
case:

CLAIM 4. Suppose that B is non-exceptional. Then:
—a€ BTABY and card(ST) = card(SY) = 1 and M7 = MH.
— m >0 and the cephalanx C' € {B7, B} has a good core.

Proof. Note that (x) either B is non-exact or @ is non-superstrong, because B
is non-exceptional and by line (6). So if any 8 is (7,U)- or (U, T )-unusual, by
Claim 1, it is type (i).

Suppose that card(SY) = 2, so M7 = {Z} with Z <« BY. So Z is sound,
a € BT, f = movin’ (a) is defined and M7 = Z = Mlg— So either (a)
FY = F(Qg) or (b) [ =&+ 1is (T,U)-unusual type (i) and E? is equivalent
to F(QZ;)] If B,Bg— are non-exact then since they are non-trivial, MBT #+
NBS 4 BY, contradicting that Mlg— = M7 a«BY. If B, Bg— are exact, so @, QE
non-superstrong, then note that we get enough agreement that ((pZ)*)MﬁT =
((pz;)*)Bgﬂ, which again gives a contradiction. Likewise card(S7) = 1.

So card(S7) = card(SY) = 1. Likewise M7 = IMY. We have o € BT U BY
as usual. Suppose a € BT N B4. Let BT = movin’ (o) and Y = movin¥ (a).
Then 87 # Y, so suppose A7 < Y. Then Ez— = () for all ¥ > 57, and hence
A4 is (U, T)-unusual, hence type (i) (see above), so g4 = ¢ + 1 and EET # 0,
contradiction.

So a € BT ABY and we may assume o € B7\ABY. So ST = {0} and letting
M7 ={Z}y =94, Z = M7 = BY is unsound. We need to show that m > 0
and BT has a good core. Let § = movinT(a). Basically as above, EWT =0 +# Eﬁ
for all v > .

CASE L. B is (T,U)-unsual (equivalently, E] = () = EY).

So 8 =&+ 1is type (i), E? is equivalent to F(Q7), and Q is type 3 but not
superstrong. We have BY = BY, | and S§ = 84, and (M7 ~ BY, ))|p".
Suscask L.1. M7 # BY, .

Then Egﬁrl £ ( and pT < lhzﬁﬂrl and p7 is a successor cardinal of Bgﬂ. So
pT < Lllé{ 41- Since M T is pT -sound, it follows that there is exactly one ordinal §
such that 6 > f+1and 6§ +1 <y o, and in fact 6 +1 = a. So exz(;’ is a premouse,
as a ¢ 4. Since M7 is pT-sound, therefore § = § + 1 and Egﬂ is type 1 or
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type 3, with thgJr1 = ((pT)")M” . 1t follows that m > 0 and B7 is non-exact,
and letting F™* = F(NBT) and k* = cr(F*), we have Egﬂ = F* and M7 has
an (m, p7)-good core at k*, and Gn]\f: o =F Ip7 and H,,I‘{[Z = B:¥. Also,
if F* is type 1 then pred”(a) = 41 and B+ 1 ¢ ZY and BY = Bgﬂ, and
M7 has an (m,~7)-good core at cr(F(Q7)), etc. So B” has a good core.
Suscase 1.2. M7 = Z = BY, ;.

This is a simplification of the previous case, but here, the comparison ter-
minates early (so a =+ 1), and BT, B are exact.

Cask II. § is not (7, U)-unusual (so EY = F’ where F' = F(QT)).
SuBcask II.1. @ is not superstrong.

So F’ does not have superstrong type. Things work much as in the previous
case, but there are a couple more possibilities, which we just outline. If B is
exact then @ = 8+ 1, and F’ is the last extender used in /. If B is non-exact
then a = S+ 2 and like above, F™* = F(NBT) is type 1 or type 3 and is the last
extender used in ¢/. Here if B is non-exact with N8 is type 1 and Q7 type 2
then Q7 = B¢,

SuBCASE I1.2. @) is superstrong.

So F' has superstrong type, so by (x) above, B is non-exact. Things work
much as before, but there are some extra details, which we just illustrate in an
example case. Let ¢ = pred(3 + 1). Note first that if 5+ 1 € % then p7 <

4.1, by Claim 2 and non-exactness. Now &' = cr(F’) < and (k)T <
WY Suppose for example that ((x/)*)Q” = Ih¥. Then EY is type 2 and BH, =
ex4, and OR(B[LB’H) = OR(Q7) aunclBg’+1 is active type 2, so Eg_H = F(Bg+l).
Note that (Q7 ~ BY ,)||((k")TH)?", so by 3.7,

T !
(UL(QT, F') ~ BY o)ll((yT)FH) @),

and so Egﬁrz = F(NBT) (the extender Egﬁrz must exist in the first place, by
non-exactness). We leave the remaining details to the reader.

O

We can now complete the proof in the non-exceptional case:

CLAIM 5. If B is non-exceptional then m > 0 and B has a good core.

Proof. Suppose B is non-exceptional. By the previous claim, m > 0 and we
have an iterate B’ of B with a good core. But then the proof of Claim 7 of 4.3
shows that B also has a good core. O

We now prove corresponding claims for the exceptional case.

CLAIM 6. Suppose B is exceptional. Then one of B7, BY is a cephalanx with
an exceptional core.

Proof. We first observe:
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SUBCLAIM 6.1. Suppose the comparison terminates early (so « = 8 4+ 1 where
8 is unusual). Then 3 is type (ii), B is exact, SY = {0} = S7, and the final
models of the comparison are M7 = MY,

Proof. The fact that g is type (ii) and B exact, is because B is exceptional
and Claim 1. So (pF)M” = (p™)M" where p = p7, by Claim 1(5) (vi)(e). But
M7, MY project < p, so MT A MY 4 MT. O

Now we consider a few cases:

Case L. Either (a) S7 = {0} = S¥ and MY <« M7, or (b) ST = {0,1}.

This case is covered by the next case and symmetry.

CasE II. Either (a) S7 = {0} = SY and M7 <« M“ or (b) SY = {0,1}.

Note that given either (a) or (b), S7 = {0} and M7 «BY. So M7 is sound,
soa € BT. Let B = movin” (a). Because pp1(M7T) < p7 and M7 « BY, U
does not use any extender E with p7 < lh(E). So if 3 is (T,U)-unusual (so
type (ii)) then MT<1MZB’{ = Méﬂ_l = BY and a = B+ 1, contradicting Subclaim
6.1. So (let) EY = F' = F(QT). Similarly, 8+ 1 is not (U, 7 )-unusual. So
by Claim 2, if 8+ 1 € 2 then p7 < g4 |, so BY,,|p7 is well-defined. Let
# = cr(F') and e = pred” (8 + 1). We split into two subcases:

SuBcask IL1. BY,|p7 is active.

Then 8+ 1 ¢ 2%, BY,, is type 2, p7 = OR(BY,,), (v7)?" = OR(BH,),
EY = F(B{,), EY,, = F(BY,,), and a = S +2. Let R = B, and G =
FR = EY and U = Ulty(R, G). Then (xH)V = (x*)?" = OR" and

(U~ QT)||(x*)?",

but (k7 )V > (k7H)Q" because BT is exact and M7 < BY and by 3.9.

Let HaU and h € {—1}Uw with pf, | = (vT)7 < (kTH)H = (kT)@7 < pH.
Let H* =iY,(H); so H* < Ultg(U, F’). Note ¥, is continuous at (FL+)QT.

We claim that Ult,(H, F') < H*. For if h = —1 then by continuity, in fact
Ult_1(H, F') = H*, so suppose h > 0. Let

o:Ult,(H,F') — H*

be the factor map o([a, f]5") = i% (f)(a). Arguing like in §2, we get that
H,o € Ultg(U, F') and the hypotheses of 2.13 hold for H,o,h, H*. By 2.13
(and its first order nature), R |=“Lemma 2.13 holds for my proper segments”.
Therefore Ulty,(H, F') < H*, as desired.

So Ult(H, F') <« BY,,. But (pT)H)Ven(HF) — (pTYF)YM7 50 h = m and
M7 = Ult,(H, F'). Tt easily follows that B7 has an exceptional core, and with
X,m' as in 4.13,

H = cHull™ (X UM UM,
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SUBCASE II.2. B[LB’+1|pT is passive.

Then a = S+ 1,s0 MT aBY,, = BY. Let R = B}, If « € #" then
k < y(R), so (kT1)f is well-defined. In any case, k is not the largest cardinal
of R. We have (k7)F = (x)Q" and (R ~ Q)||(xtH)Q" . If (kTH)R > (kT)@7
then a simplification of the argument in the previous subcase works. Suppose
then that (kt)E = (kt+)Q". Because M7 < BY, it is easy enough to see
that o ¢ B4, so R is a premouse. If R is active type 3, then (k7)E < v(FE),

because if (k)" = v(F®) then OR(BY, ) = ((pT)H)M” | a contradiction. Let

d = deg (B +1). Then i, is discontinuous at (x7)%, and so (v)* = pf,
so d > 0. Let r < d be such that pZ, ; = (x7)® < p'. Then arguing like in the
previous subcase, but using 3.28 instead of 2.13,

MT =Ult,(R,F')aBY,,

and B7 has an exceptional core (with m = r).

Case III. 87 = {0} = SY and M7 = MY but the comparison does not termi-
nate early.
Then a € BT ABY; assume o € BT\AB. Let § = movin” ().

SUBCLAIM 6.2. § is not (7,U)-unusual.

Proof. Suppose otherwise, so (8 is type (ii) and Eg— = EZB’{ = (). Since the
comparison does not terminate early and M7 is p7 -sound, we have E% L 7A0=
E,(L—l and a = S+ 2 and

.
p" =vf < = ((p")HM .

So p7 is not the largest cardinal in M7, so is also not in Mé” So ex%’ q Mg’, SO

(M < ((pT)"’)Mﬁu, contradicting Claim 1(5) (vi)(e). O

So BY = F' = F(QT).
SUBCLAIM 6.3. 8+ 1 is not (U, T)-unusual.

Proof. This is like the proof of Subclaim 6.2. O

By the subclaim and Claim 2, (1) if 8+ 1 € %Y then p7 < P4, and (2)
one of the following holds:

(a) a=p+1.
b) a=pB+2and Ih%, , = p7 and EY,, is type 2.
B+1 B+1

(c) a=p+2,1% = ((p")")M" and BY,, is (i) type 1 or (ii) type 3.

. T :
(d) aa=p8+3, lhzgle = pT, B4, is type 2, lhngr2 = ((pT)"H)M" and EY, is
(i) type 1 or (ii) type 3.
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The same general argument works in each case, but the details vary. We just
discuss cases (a), (b), (¢)(i) and sketch (d)(i). In each case let & = pred” (8 +1)
and R = B;ﬁl and x = cr(F’). Note that if m = —1 then case (a) attains.

Consider case (a). Since S¥ = {0}, R is a premouse. Let d = deg"(a). So
R is d-sound and MY = Ulty(R, F’). Clearly d > m. We claim that d > m (so
Ris (m+ 1)-sound) and pf | = (k) < pB. For if pf .| > (k7)* then

P (MY) > p7 > ppia (M7,

and if pf | < K then pp41(MY) < p” and MY is y7-sound, so B7 is not
exceptional, contradicting 4.12.

Let U; = Ult;(R, F'), so MY = U,. Note kt+R = x+t+87 and (p7)+Um =
(pT)+MT, but p%”;_l =p7, 50 Uy ¢ M7 = Uy, so arguing like in the proof of
2.13, U,, = Uy and the factor map o : Uy, — Uy is the identity (this does not
use condensation). Letting 7 = zF, and H = R, then H, m are as in 4.13.

Now consider case (b). Note that R = ex¥, is active type 2 and OR® =
(kT)P BT Note that deg" (B +2) = m and cr(FR) =calf,,, so pred? (3 +2) =
predl’{(a +1) and B, = B3, and degu(a +1) = m. Let H = BY_|. Then
Ult,, (H, F') = M7 and letting 7 = zF, , then H, 7 are as in 4.13.

Now consider case (c¢)(i).
SUBCLAIM 6.4. In case (c)(i), EY is the “preimage” of Egﬂ under zgzil and
WY = (k)87
Proof. We have ex4 < R and (k)8 = (I€+)ex% = (kMR = (k)™ <. We
have (k7 H)E > (k)8 and if B+1 € B then (k+H)E > (k*+)B”; the latter
is because eX%Jrl 2 M7 and eX%Jrl projects < p7. Let P<< Rand p € {-1}Uw
with

ph < (5977 < (vTHPT = (5797 < pf
(so P is p-sound). By condensation, like before, UP = Ult, (P, F’) < Méﬂrl.
But ((p7) ")V = ((p7)")M", and as V., = pT, therefore UPP = ex%’le
So P is type 1, p =0, ORF = (n++)BT, and EY = FP. Now ’/3+1 is

continuous at (K ) . So if P<R then Zﬁ+1 is continuous at ORY’ | so z};l’frl(P) =
exif, ) (or ¢;(P) = ex,, where j = if{,). If P = R then Ult,(P, F') = M},
(even if 0 < deg” (8 +1)). O

Since FY = F¥ and cr(FF) = cr(F'), pred”(¢ + 1) = £ and B, = R and
deg” (e +1) = deg”(B+1). Also, pred” (3 + 2) =fB+1andm=deg¥(B+2) =
degt (e +1). Using this, and letting H = BY, |, we get Ult,,(H, F') = M7 and
letting m = zF, , then H, 7 are as in 4.13.

Finally cons1der case (d)(i). For illustration, assume that 3+ 2 ¢ %Y. Let
x = pred”(8 4 2) and S = BEZ{_Q and ¢ = deg" (3 +2). A combination of the
preceding arguments gives the following:
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— ext is the (type 2) preimage of ex% 41 under igzil,

pred”(e +1) = y and BY, = S and deg” (e + 1) = ¢,

ext! ,1 is the (type 1) preimage of exllé{ 4o under the map o defined below,
— e =pred’(e 4+ 2) and deg (e + 2) = 0,
~ B+1=rpred”(8+3) and m = deg" (8 +3) = 0.

Let J = BY, and H = BY,,. Then also, Ult.(J,F') = BY,, and letting
o =iy, then o(ext, ) = extf,, (as mentioned above), and Ulty(H, F') = MT,
etc.

Cases (c)(ii) and (d)(ii) are fairly similar to the preceding cases. However,
while in the preceding cases there is always some ¢ < p” such that

T —
M7 =Hal,  (Cu{pM, M ),

there is no such ¢ in (c)(ii) and (d)(ii).
There is just one case left:

CASE IV. The comparison terminates early (so by Subclaim 6.1, S7 = {0} = S¥
and M7 = MY).

We may assume that « is (7, U)-unusual (type (ii)). Let {o < & < a =& +1
witness this. So B = F' = F(Q"). We have M = M. Let H = M. Then
Ult,(H, F') = M7 = MY etc. O

Since we now have an iterate B’ of B with an exceptional core, the next
claim completes the proof of the theorem:

CLAIM 7. Suppose that B is exceptional and let B’ be a cephalanx non-dropping
iterate of B. If B’ has an exceptional core then so does B.

Proof. The proof is similar to 4.3, but with some extra argument. We assume
that m > 0 and leave the other case to the reader (the main distinction in that
case is that even though m = —1, all ultrapower embeddings are at least r3;
elementary). Fix H,k, F, X and 7 : H - M asin 4.13. Let B’ = (v/,p/, M', Q")
and fix H', k', F/, X', 7’ as in 4.13 for B’. Suppose B’ has an exceptional core.
Leti: M — M’ and j : Q — Q' be the iteration maps. So j = i [ (B|[y*M).
Note i(r, i, 2. 1) = (m',ﬁ%/,znj\ﬁl), and for a < v we have X Na €
Bl|y*M and

(X Na)=X"Ni(a). (7)

From these facts, and because X' = (/)t™ Nrg(xn’), it is easy to see that
X =yt N rg(r). It remains to see H||xTtH = M|x++M.

Let Y = rg(m) NyT+M. Let 0 = i¥ and Z = rg(o) NyT+M. Tt suffices to
see that Y = Z. Let Y’,0’, Z’ be defined analogously from B’. Because B’ has
an exceptional core, Lemma 4.14 applies, and Y’ = Z’ follows. We will use this
to deduce that Y = Z, by breaking Y and Z into unions of small pieces, and
considering how they move under the iteration map 1.
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SuBCLAIM 7.1. For any a < v**M  we have a € YV iff i(a) € Y.

Proof. If a € Y then i(a) € Y’ because i“X C X’ and i(2)1,,) = zf‘,fjrl
Suppose a ¢ Y. For 8 <™ and § < pM let Y3 5 be the set of all £ < yF+M
such that
¢ € Hull) (X N @)Uzl uphh),

as witnessed by some theory below Thi\ém (SU{pM1). (See [3, §2], in particular,
the stratification of r¥,,,1 described there, for more details. If m = 0 this
needs to be interpreted appropriately; for example, if M is passive and ORM
is divisible by w?, that the r¥; fact should hold in M|§.) Then Yz € M.
Define Yy 5 analogously over M'. Let I = pM x ~+M - Using line (7), we get
i(Ygs) =Y/ and note Y = (g 5)e71(Yp,5). The fact that i(a) ¢ Y’

i(8),i(8)
follows easily. o

SUBCLAIM 7.2. For any a < "™ we have a € Z iff i(a) € Z'.

Proof. Let a < 4t*M, Let 8 < xTtM with a < o(B). Fix a surjection
f:etM = Bin M. So o(f) : v — o(B) is a surjection in M, and note that
rg(o)No(B) =o(f)“X.

Now we claim that i(o(f)) = o’(i(f)). For let C be the prewellorder of
k™M corresponding to f (so (6,) € C iff f(§) < f(g)). Then it suffices to
see that i(o(C)) = o’(i(C))). But this holds by continuity at k™ and because
i(o(D)) =o' (i(D)) for all D € P(x) N M.

So let ' = i(f) and §' = i(B) = rg(f'). Then o/(8") = 1a(i(o(f)), 50
i(a) < o’'(B'). Therefore i(a) € Z" iff i(a) € o' (f')“X' iff i(r) € i(o(f))“X".

But we have X' = Js_,+n (X N3J). So a € Z iff o € o(f)“X iff there
is & < 4™ such that a € o(f)“(X Nd) iff there is &' < i(y)™™ such that
i(a) €i(o(f)“X'Nd) iff i(a) € i(o(f))“X" iff i(a) € Z', as desired. O

Clearly by the subclaims, we have Y = Z, as desired.
This completes the proof of the claim, and hence the theorem. O

5. Condensation from solidity and normal iterability

By (k+1)-condensation?®, if H, M are (k+ 1)-sound premice such that M is
(k,w1,w+1)*-iterable and 7 : H — M a near k-embedding with cr(7) > p where
p = pity1, then (xCon) either H < M or [M|p is active and H <Ult(M|p, FMley].

We now prove that (k,w; + 1)-iterability suffices for this result. In our
proof, we will replace the phalanx used in the standard proof with a cephal, and
avoid Dodd-Jensen. We will in fact prove a partial analogue of the more refined
version [18, Theorem 9.3.2] (but for Mitchell-Steel indexing, with superstrongs).

29Ct. [3, pp. 87-88] or [18, Theorem 9.3.2].
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We do not achieve a full analogue here, because in the case that H ¢ M we
encounter an obstacle in connection with exceptional cephalanxes. So in this
sense we do not quite prove full condensation. However, if assume also that M
is (k + 1)-solid, we can deduce the full analogous conclusion.?"

5.1 Definition. Let M be a k-sound premouse and C,i\il < p < pM. The
p-solid-core of M is H = cHullQ/{H(p Uzt Upy'), and the p-solid-core map
is the uncollapse map m: H — M. B

The p-solid-core map is a k-embedding, since H ¢ M and by 2.4.

5.2 Theorem (Condensation from solidity). Let M be a k-sound, (k,wy +1)-
iterable premouse. Let H be a p-sound premouse with p € [pkHH,pkH) an H-

cardinal; let y = card™ (p). Let w: H — M be k-lifting with cr(m) > p. Then:
1. If H ¢ M then:

(a) CIEH = C%A <p and T‘—(ZEH) = 2%17

(b) H is the p-solid-core of M and 7 is the p-solid-core map,

(C) pkH+1 % [’va)a

(d) if pfloy = p and p™ < p™ then M|p is active with a superstrong
extender with critical point k and p,ﬁl < (kMM < p,

(e) pkH+1 > p]]g\{q:

(f) if M is (k + 1)-solid then pfl | = prl,,

(9) if pkH_,’_1 = p%_l then H is the p-core of M, m is the p-core map and

H \_ M

T(Pr+1) = Prs1-

2. If H € M then exactly one of the following holds:

(a) HaM, or

(b) M|p is active with extender F and H «Ult(M|p, F), or

(c) M|p is passive, N = M|p*tH is active type 1 and H = Ult,(Q, F™),
where Q < M is such that vT9 = p and pgﬂ =7< p,;Q, or

(d) k =0 and H,M are active type 2 and M|p is active with a type 2
extender F and letting R = Ult(M|p, F), then N = R|p™ is active
type 1 and H = Ultg(M|p, FN).

5.3 Remark. If we assume further that H, M are (k+ 1)-sound, it is now easy
to conclude that (xCon) (stated above) holds. In fact, it suffices to assume that
if H¢ M then M is p-sound, and if H € M then H is (k + 1)-sound.

Proof.

30Tt will in fact be shown in [7] that M is (k + 1)-solid (from (k,w; + 1)-iterability), so the
two papers together will prove the full result.
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CLAIM 1. We may assume:
— H, M have the same type,
— if H, M are passive and k = 0 then 7 is cofinal, and hence
— m is c-preserving.

Proof. Suppose that H, M have different types. Then k = 0, H is passive and
M is active. Here M might an unsquashed or squashed premouse. In either
case, note that m : H — M’ = M||ORM is still O-lifting, and M’ is w-sound

with pM" = ORM'. If part (2) (of the conclusion of Theorem 5.2) holds for
m: H — M’, then it also holds for 7 : H — M, so we are done. So suppose part
(1) holds for w : H — M’. Then because M’ is 1-sound, by parts (1)(f),(g), in
fact H = M’ and 7 = id. But p/ < p{f, contradicting that pM = ORM'.

Now suppose that H, M are passive and k = 0 but 7“OR is bounded in
ORM. Let M’ = M||sup7“OR¥. Note that 7 : H — M’ is also 0-lifting, and
is cofinal in ORM/7 and M’ is w-sound. And M’ < M, since otherwise M|ORM/
is active, but then M’ = ZFC™, which contradicts the fact that

rg(r) = Hull}" (p U {m(pi)})

is cofinal in M’. Again if part (2) holds for 7 : H — M’, then we are done, so
suppose part (1) holds. As M’ is 1-sound, then H = M’ and 7 = id, so H <M,
so we are done. O

From now on we make the assumptions stated in Claim 1. Using 2.4, we get:
Cramv 2. If p™ = pt™ or pfl | <~ then H ¢ M and 7 is a k-embedding.
An easy calculation using the p-soundness of H gives (cf. [12, 2.17]):

Cram 3. ¢ < pand pfl \p =z \p.
CrLamM 4. If H ¢ M and (1)(a),(c) hold then so do (1)(b), (e), (f),(g).

Proof. 7 is a k-embedding. So (b) follows from Claim 3 and (a). Part (e):
Let & = pl,. If P(k)" = P(k)M then (e) is clear. If P(k)¥ # P(xk)M then
by (c), k = p, so because H ¢ M, (e) holds. Part (f): As ppl, < pfl,, we
get ppt | = piy by [12, 2.17) and (a). Part (g): Suppose ppt, = pf,;. We
have pff | < p. If ppty = pfly = p then as H ¢ M, and by the solidity of
pkHJrl = pkHH\p, we then have p,ﬁl = ﬁ(pkHH). Suppose p,ﬁl = p,{{r1 =K < p,
so by (¢), K < 7. So P(k)™ = P(k)", so ppt | < w(pf.,), and so using the
solidity of pjl. | \p, we get m(pi!,\p) = ppl,\p, and since 7 | p = id, we get
m(pfl 1) = pit |- Now (g) easily follows. O

There are two main cases overall.

CasE 1. ptH = ptM,
We show (1). It suffices to prove (1) (a),(c), (d), by Claim 4. Part (d) is
trivial by case hypothesis. By claims above, H ¢ M, 7 is a k-embedding, and

49



¢f1y < p. Using generalized solidity witnesses and as P(p)" = P(p)™, (a)
follows. For part (c), we show 7 = p. Suppose v < p. So p is an H-cardinal but
non-M-cardinal, and p < cr(7). So p = yTH and 7(p) = y*M = p*M. But as
ptH = ptM this contradicts condensation for w-sound mice (2.13).

Casg 2. ptH < ptM,

Let n = ptH. Either (I) cr(n) = p, or (II) cr(n) = n < pk, or (III)
n = pl = p{f and cr(r) does not exist.

Assume (III) holds. Then by Claim 1 and case hypothesis, H, M are ac-
tive and p is an M-cardinal. Letting u = cr(FH), then cr(F™) = u < p and
(wHH = ()M and 7 | () = id. It follows that H, M are type 3 (con-
sider the amenable predicate E coding F¥ and its cofinality in (H|(u*)H) x
HJ||OR, and likewise for M; we get E C EM and a contradiction to the fact
that OR” < ORM). So n = pif = pfl = v(F7) < v(FM), and F¥ [ C FM.
So by the ISC, if M|n is passive then H < M, and if M|n is active then
H aUlt(M|n, FMI"), but as pil 1 < n, the latter is impossible.

From now on we assume either (I) or (II) holds, so cr(w) exists. We will
produce an iterable cephal C' and use it to deduce the required facts. If M|p is
passive then let .J < M be least with p/ < p and n < OR’. 1f M]|p is active and
n < ptY where U, = Ult(M|p, FM1P), Tet J < U, be least with n < OR’ and
pl = p. Otherwise leave J undefined. We may assume H # J (otherwise (2)
holds). This ensures the cephal C' defined next is non-trivial.

If p is an M-cardinal, let C' = (p, H, J), a bicephalus. Here the fact that
H||n = J||n, and hence n = (p*)”, follows from condensation for w-sound mice
(2.13). If p is a non-M-cardinal (so v < p < M) let C = (v, p, H, Q), where
Q < M is least with p < OR® and p@ = ~; here C is a cephalanx, by 2.13.

CLAM 5. C'is a non-trivial, (w; + 1)-iterable cephal.
Assume this claim for now; we will use it to finish the proof.
CLAIM 6. Suppose that either:

(i) pis a cardinal of M, so C = (p, H, J) is a bicephalus; or

(ii) p is not a cardinal of M and C = (v,p, H,Q) is a passive cephalanx,
OR”’ =7 and J is type 3.

Then (1) holds.
Proof. Note N¢ = J in case (ii). Using 4.3/4.5, and as H # J and J is sound,
note OR’ =1, J is type 1/3, and letting F = F” and k = cr(F), we have x <
(in case (i), v = p; in case (ii), J is type 3), the k-core N of H is k-sound, and
NI(x")Y = H||(+F)" = M||(x")™ (8)
(so F is weakly amenable to N) and H = Ultx(N, F). It follows that p’, <
pry < phpy <k <7v,s0 H¢ M and m is a k-embedding. Now ¢}, < k since
N is k-sound. But then by line (8) and as w,ig’k preserve generalized solidity
witnesses, we get zgk(z,i\;l) =zl and 21, = w(zfL ) and (M, = (L, =
¢y, giving (a). Since pff; < ¢, <~ we have (c), and (d) is trivial. O
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CLAIM 7. Suppose p is a non-M-cardinal, C' = (v, p, H, Q) is a passive cephalanx
(so N¢ =J), and if OR’ = 5 then J is non-type 3. Then (2)(c) holds.

Proof. Using 4.5, OR” =1, J is type 1, p?,; = cr(F7) = v < p? and H =
Ulty(Q, F7), and since J < @Q, therefore pkH+1 = pE_H =~ <p. O

CLAIM 8. Suppose p is a non-M-cardinal and C' is an active cephalanx. Then
either (1) or (2)(d) holds.

Proof. We have C' = (v, p, H, Q) where Q = M|p is active. Let F = F?. Apply
4.17 to C. If C is non-exceptional then C has a good core, and as before either
pry <~ and (1) holds, or pf,; =~ and (2)(d) holds.

Now suppose that C' is exceptional, so C' has an exceptional core. Let

K = cHullf, (X Uzl uplh),

where X is defined as in 4.13. Let k = cr(F). By 4.14, K is k™% -sound, and
Py < TR Since kT = M therefore K ¢ M. Since Q € M and

ThY, . (Pri1 UkT) can be computed from F© and Th, (5., Up),

k41 k41

it follows that H ¢ M, so w is a k-embedding, as is z?k So we must verify (1).

SuBcLAM 8.1. If pf, | = k™ then (1) holds.

Proof. The argument here is similar to that used to illustrate the failure of
solidity for long extender premice. By 4.14, we have pkH+1 = p and ig’k(pkKH) =
pkH+1 and both K, H are (k + 1)-sound. Moreover,

p%l < W(pkHJrl) “{p
because K ¢ M and by the calcuation above. Since H is (k + 1)-solid, therefore
pi‘ﬁl\p = W(pkHJrl). But for a < p,

M
T3k 41

a<p < Thy,  (t(5})Ue) €M, 9)

because (in the case that o = p) H ¢ M, and (in the case that o < p) cr(n) =
p = pity- But line (9) gives pt, = 7(pfl 1)~ (p).
Now z[! ; = pl,; and ¢[' | = p, and (1)(a),(c), (d) follow. O

Note that in the above case, M is not (k + 1)-solid.
SuBcLAM 8.2. If pff, | <k < ([ then (1) holds.

Proof. Suppose pkK-',-l < k. Then C,ﬁl < kTE | as otherwise,

Thi (P?H Uﬁgﬂ) €K,

k41
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impossible. So r < ¢, < kT s0 2L | =K (2f,) and (1| = supik “¢L .
by [12, 2.20]. So v < Cﬁ_l < p. So to verify (a), it suffices to see

Th%kﬂ(ﬂ(z/ﬂl) U C/il Uﬁquw) ¢ M,

so suppose otherwise. Then because F@ € M, we get

Thi

K K | =K
131 Qg1 U 2 UDy ) € M.

But P(k)% = P(k)M, so the above theory is in K, a contradiction.
We also have pfl; < ppyq < £, s0 (c) holds and (d) is trivial. O

SuBcLAM 8.3. If (£, < & then (1) holds.
Proof. This follows as before since P(x)% = P (k) = P(k)M. O
This completes the proof of the claim. O

Sketch of Proof of Claim 5. The basic approach is to lift iteration trees on C
to iteration trees on M. There are some details here that one must be careful
with. For illustration, we assume that C = (v, p, H, M |p) is an active cephalanx.
The other cases are similar (the bicephalus case a little different, but simpler).
Recall that we have already reduced to the case that 7 is c-preserving. In order
to keep focus on the main points, we assume that 7 is in fact c-v-preserving
(see [9]). This will allow us to inductively maintain that all lifting maps we
encounter are c-t-preserving, keeping the copying process smooth. (If instead, 7
is not v-preserving, one should just combine the copying process to follow with
that given in [9]. In the next section we do provide details of a copying process,
with resurrection, which incorporates those extra details.)

For a tree 7 on C and a + 1 < Ih(T), we say T lift-drops at « + 1 iff
a+1e 27 pred” (a+1) € 7 and [0, + 1]7 does not drop in model.

If T lift-drops at a + 1 then @Q is type 2, and letting 5 = predT(a +1), we
have Eg— = F(Q%—) and cr(jgjaﬂ) = 1gcd(Q[73—).

Let ¥ be a (k, w1 +1)-iteration strategy for M. Consider building an iteration
tree 7 on C, and lifting this to a k-maximal tree & on M, via ¥, inductively on
(7). Having defined (T,U) [ A+ 1, then for each o < A, letting By, Moy, Qo
be the models of T, and S, = MY, and W, = i4 (Q) when [0, )y N ZY =0,
we will have also defined embeddings 7, and o, such that:

1. <rT(A+1) =<y (A+1). The drop structure of & matches that of T,
except for the following exceptions:

— Ifa € A7 then [0, afyy does not drop in model or degree (so deg” () =
— If T lift-drops at « then U drops in model at a.

Moreover, if o ¢ %7 then degu(a) > degT(Q)-

2. Suppose o € #A7. Then:
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— o €o(My) = €(Sy) is c-i-preserving k-lifting, and

— 04 : Qo — W, is an Yp-elementary simple embedding.
Moreover, o, C mq.
3. Suppose a € .# 7. Then:
— Tt €o(My) —= €o(Sy) is c-t-preserving deg” (a)-lifting, and
— 04 1s undefined.
4. Suppose a € 27. Then:
— Tq is undefined, and
— 04 €0(Qu) = €o(Sa) is c-i-preserving deg” ()-lifting.

5. Suppose a < \. Let 8 € (a, \]. If ET € Ey (M) let 1, = 1, ; otherwise
let Yo = 95,. Let 7 € {mg,03}. Then

woz rlhz Q T a.Ild T(Lz) = ’(/Ja(Lz) — ]/u'

6. Suppose a < A and let § = pred” (a4 1) = pred (o + 1).

(a) Suppose 7 drops in model at o+ 1. Then so does U. If a+1 € .#7
then ¢s(M:T,) =S4, and
Mot 005k = iety 0 vs [ €o(MiT).
If a+1€ 27 then v5(Q5,) = S, and

Oa+1 OJZL = ZZ+1 s TQ:O(QZIQ-

(b) Suppose T lift-drops at a + 1. Then U drops in model at o + 1 (but
[0, 0]+ does not drop in model or degree), Si4, =it (Q) = W5 and
Oa+1 Ojgoﬂrl = iiﬁl 00s.

7. fa < Xand a <7 8 < X and («, 8]7 neither drops in model nor lift-drops,
then:

— If Mg is defined then 7g o iz:ﬁ = il(;{ﬁﬁ 0 Mq.
— If Qp is defined then og o j7 3 =4 50 04.

This completes the inductive hypotheses.

We now start the construction. We start with 7y = 7 and o9 = id. Since
cr(m) = p, we have o9 C mg.

Now let E) = EI be given. We define F) = EY by copying in the usual
manner. That is:

(i) Suppose Ey € E4(My). Then:
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- If B\ = F(Mk) then F) = F(SA)
- If B, 75 F(M)\) then I\ = 1/)7”\ (E)\)

(ii) Suppose Ex ¢ E4(My); so Ex € E4(Qx). Then:

- If E\x = F(Q,) and [0, 7 does not drop or lift-drop then F\ =
F(Wy).

- If Ex = F(Q)) and [0, A]7 drops or lift-drops then F)\ = F(S)).

- If By # F(Q)\) then F) = Q/JUA(EX).

The agreement hypotheses and the fact that 7w and o are c-t-preserving (if
defined) ensures that this choice of F) is legitimate.
Let 8 = pred” (A4 1) and x = cr]. We consider only the case that

Be B and k < W(BZ;) and T does not drop in model at A + 1. (10)

For otherwise it is routine to propagate the inductive hypotheses, except maybe
for the t-preservation of the embeddings. But we give the details for (-preservation
in the case we consider, and it is similar in general. So suppose line (10) holds.
We have 8 = pred” (X + 1) by property 5.

CAsE L. A+1€ #7.

In this case [0, A+1]y, does not drop in model or degree; this is because 7 is c-
preserving and because if Eg = F(Qg) then x < W(B;—). By 2.2 and properties
2 and 5, we can apply (essentially)?! the Shift Lemma to (7, | ex]) and
(o8, [ex}j), to produce mx11 and oyy1. For the latter, we have

UﬁZQﬁ%WﬁdSﬁZS;JA,

and we set s
oxir(a, FIZ) = [a(a), os ()7

It follows easily that oy11 C mx41-

Now ¢-preservation for 41 is immediate because this embedding is simple.
We verify that my11 is ¢-preserving. This is immediate unless H is type 3, so
assume this. So Mg, Sg, M1, Sx4+1 are also type 3, so t-preservation just means
v-preservation here. Write vMs = v(FMs) and v°¢ likewise. Write ¢3 = Yrg
and ¥y likewise. Write 1/1%7 ALl = 1/11; it and 1/)%) ap1 likewise. By induction,

75 is v-preserving; that is, 15 (v*#) = 195, We must see that 71 is also; that
is, that
Paa () =y,
But note that
Uat1 0%f a1 = ¥4 a1 0 Vs

31'We say essentially because if Q is type 3, og is a simple embedding, not an embedding
between squashed premice.
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So if i;;)/\_kl and i%)/\_ﬂ are also v-preserving, then so is my4;. This holds in
particular if k£ > 0, by elementarity considerations. So suppose k = 0. Then

M1 = Ultg(Mg, Ey),
and note that
Ult(My3,, FM1) = Uly(Ult(ME, FM?), Ey),

and the ultrapower maps commute, and a straightforward calculation with ex-
tenders show that

$f g s UM, FMe) — Ult(M32,, Y
(which, recall, is defined via the Shift Lemma) coincides with the resulting Ex-
ultrapower map. Likewise for w% A1

Now let 1 = cof™? (vMs). Then v5(u) = cof*# (15 (1M8)) = cof*# (155).

By the preceding remarks, if k # p then 1/12;7 ap1 and w%” a+1 are continuous
at vMe and v respectively, so by commutativity, 7y is v-preserving. So
suppose k = p, so ma(k) = cof*#(158). Let f € Mg with f : k — M5 be
cofinal. Write fMe = f. So

98 = s (fMe) : mp(k) — 5%
is also cofinal. Let fM»+1 = 1/12;7>\+1(fM5) and f9+1 be likewise, so commuta-
tivity gives 11 (fM 1) = f9+1. Note then that
pMrm — SUp 8 A+1 “yMs — sup fMHl “K
and likewise
V531 = sup i%y)\ﬂ “w95 = sup M1 “mg(k).

Since Yx41(k) = ma(k), therefore

Orpr (VML) = sup [Py (k) = sup [ g (r) = v,

as desired.
The remaining properties for this case are established as usual.

CaseIL A+1e.47.

This case is routine, using the fact that Eg € E; (Mjg).
CasE I A+ 1€ 27,

So T lift-drops at A + 1, and so Eg = F(Qp) and cr] = v(Bg). Therefore
F3 = F(Wp) and cif = o5(v(Bg)) is the largest cardinal of Ws. Therefore

S§\+1 = WB < S,@,
and in particular, & drops in model at A + 1. This is precisely enough to define
ox+1- Everything else is routine in this case.

This completes the propagation of the properties to (7,U) [ A + 2.

For limit A, everything is routine.

This completes the sketch of the proof that C is iterable, and so the proof
of the theorem. O
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6. A premouse inner model inheriting strong cardinals

Let W & ZFC be an iterable transitive model. In this section we define
a proper class premouse L[E]" of W which inherits all Woodin and strong
cardinals from W. (See §1 for some introduction to this and a comparison with
Steel’s local K°-construction of [15].) The construction allows certain types of
partial background extenders. However, all background extenders will be total
in some ultrapower of W, and moreover, assuming enough AC, we will be able
to lift iteration trees on L[E]" to (non-dropping) iteration trees on W. The
model L[E]" is also outright definable over W.

Let us first point out that a fully backgrounded construction can fail to
inherit strong cardinals:

6.1 Remark. Assume ZFC and suppose « is strong but there is no measurable
cardinal > k. Let (Na),<or be a fully backgrounded L[E|-construction;
suppose that this does not break down, so produces a model L[E] = Nor of
height OR. Then we claim that E has no extenders with index > x, and hence s
is certainly not strong in L[E]. For let ¢ € OR be such that L[E]|x = N¢. Then
we claim there is no o > ¢ such that N, is active, which suffices. For suppose
otherwise and let a be least such. Since ORY¢ =  is a cardinal, we have a > (.
So a = B+ 1 where 3 = OR™ > k and Ng = J5(N¢). Let u = cr(FNs+1),
Since the construction is fully backgrounded, u is measurable, so u < k. Since
Nz = Jp(N¢) and by coherence, it easily follows there is v < u such that
N¢ = Je(Nely). But then note that p,(Ngy1) < v < p < k, contradicting the
tact that No = L[E]|x.

Of course if the background construction does not make unusual demands
on background extenders, then L[E]|x is closed under #’s. In this case, note
that extenders F in V with cr(F) = k do not cohere L[E].

Instead of using rank to measure the strength of extenders, we use:

6.2 Definition. Let F be an extender. The strength of F, denoted str(FE), is
the largest p such that H, C Ult(V, E). =

So str(F) is always a cardinal. The backgrounding we use is described as
follows (in the definition, we imagine we are working inside W as mentioned
earlier):

6.3 Definition. Assume ZFC. Let A < OR 4 1. An ultra-backgrounded
construction (of length ) is a sequence (S,), . such that:

1. Each S, is a premouse.
2. Given a limit 8 < A, Sg = liminf,<3 S,.
3. Given f = a + 1 < A, either:

(a) For each n < w, €,(S,) is (n + 1) universal and €, 11(S,) is (n+ 1)-
solid, and Sy11 = J(€,(S4)); 0
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(b) S, is passive and there is F' and an extender G such that S,41 =
(Sa, F) and F [v(F) C G and str(G) > v(F); or
(¢) ais a limit, S, has a largest cardinal p, and there is an extender G
such that letting x = cr(G), we have:
i. str(G) > p,
ii. k < p<ig(k),
iii. pis a cardinal in ig(Sy),
iv. (Sa ~ic(Sa))||OR(Sq),
V. Sa_;,_l < Z'G(Sa),
vi. pw(Sa-l-l) =P
vii. OR(S,) = (pt)5a+1. .

6.4 Definition. Suppose that V is a premouse (and ZFC holds). A pm-ultra-
backgrounded construction is a sequence (S,),, as in 6.3, except that in
(3b) and (3c) we also require that G € EV and v(G) is a cardinal. 4

6.5 Remark. When we refer to, for example, 6.4(3c), we mean the analogue
of 6.3(3c) for 6.4. We will mostly work explicitly with ultra-backgrounded con-
structions; the adaptation to pm-ultra-backgrounded is mostly obvious, so we
mostly omit it. For all definitions to follow, we either implicitly or explicitly
make the pm-ultra-backgrounded analogue, denoted by the prefix pm-.

6.6 Definition. Let C = (S,),., be an ultra-backgrounded construction. Let
B < A. Then we say that 3, or Sg, is C-standard iff 6.3(2), (3a) or (3b) holds
(for B). We say that § is C-strongly standard iff 6.3(3c) does not hold. Given
also n < w, we say that (8,n) is C-relevant iff either (i) 8 is C-standard, or
(ii) 8 = a+1 and pp(Nat1) = pu(Nat1). n

Clearly C-strongly standard implies C-standard. The next lemma is routine:

6.7 Lemma. Let C = (S,) be an ultra-backgrounded construction. Let (8,n)

be C-relevant. Let p be a cardinal of Sg such that p < pgﬂ. Let P <.Sg be such
that pL = p. Then there is a < B such that €o(P) = €, (Sa).

6.8 Remark. It follows that if 6.3(3c) holds, there is £ such that S,41 =
s (SEG(C)), because « is a limit and p is a cardinal of ig(S,).

6.9 Lemma. Let C = (S,) be an ultra-backgrounded construction. Suppose
that Sa+1 is active type 1 or type 3 and py(Sat1) = V(F(Sat1)). Then o+ 1
is C-standard, so F(Sq+1) is backgrounded by a V -extender.

Proof. Suppose not and let « be the least counterexample. Let p be the largest
cardinal of S,. By 6.7, S,|p = Sp for some limit 5 < a. Let G be as in 6.3(3c)
for So11. So Ult(V, Q) satisfies “the lemma holds for i;(C | 8)”, and note that
it (p) > p, and i%(Sq)|ig(p) = i%(Ss) and p is a cardinal of i%(Sg). So by 6.7,

Sat+1 = wa(S.iYg(QB)) for some . But because Sy11 is type 1 or 3 and by the
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ISC, it follows that S}yZ(Crﬂ ) is already fully sound, so Sq41 = S;E(Crﬂ ). But then
since Ult(V, G) thinks the lemma holds for i¥%(C | 8), therefore Ult(V,G) =y
is i (C | B)-standard”. So there is H € Ult(V, G) such that in Ult(V,G) =“H
is a p-strong extender” and F [v C H, where F' = Fa+! and v = v(F). But
since G is p-strong, so is H (in V), and since v < p (as F is type 1 or 3), H
backgrounds F' in V', so a + 1 is C-standard, a contradiction. O

6.10 Definition. Let C = (S,,) be an ultra-backgrounded construction. Sup-
pose that o + 1 is not C-standard, and let p = p,,(Sa+1). An extender G is a
C-nice witness for a + 1 iff G witnesses 6.3(3c), ig(cr(G)) > p, and S,41 is
i(C)-strongly standard (in Ult(V, G)). !

6.11 Lemma. Let C = (S,) be an ultra-backgrounded construction. Suppose
that a + 1 is not C-standard and let p = py,(Sa+1). Then there is a C-nice
witness for o+ 1.

Let G be a C-nice witness for a + 1. Then:

— If cx(GQ) < p then str(G) is the the least cardinal > p.
~ If cx(GQ) = p then str(G) = p*.

— If condensation for w-sound mice holds for all proper segments of S, then
p is not measurable in Ult(V, G).

Proof. Because V is linearly iterable and a + 1 is not C-standard, there is an
extender H witnessing 6.3(3¢) and such that Ult(V, H) =4 is iz (C)-strongly
standard”, where & is defined as in 6.8. Letting G = iy (H)o H, then G is a nice
witness (Sa+1 <ig(Sa) because in Ult(V, H), ig(H) coheres i (S,) enough).
Now let G be a nice witness. The facts regarding str(G) are easy. Suppose
F is a measure on p in U = Ult(V, G). Then by condensation, Sa41 <% (Sa+1),
contradicting the niceness of G. O

For pm-ultra-backgrounding, we need to modify the notion of nice witness
a little:

6.12 Definition. Suppose V is a premouse and let C = (S,) be a pm-ultra-
backgrounded construction. Suppose that a + 1 is not pm-C-standard, and let
P = pw(Sa+1). The pm-C-nice witness for « + 1 is the extender G such
that, letting G be the least witness to 6.4(3¢) (that is, the witness with 1h(G1)
minimal), either:

(i) Set1 is pm-ig, (C)-strongly standard and G = G, or

(ii) Sa+1 is not pm-ig, (C)-strongly standard and letting G2 be the least wit-
ness to 6.4(3c) for (ig,(C), Sa+t1), then G = G2 0 Gy. 4

6.13 Lemma. Suppose V is a premouse and let C = (S,) be a pm-ultra-
backgrounded construction. Suppose that o + 1 is not pm-C-standard, let p =
Pw(Sat1) and let G be the pm-C-nice witness for a+ 1. Suppose that conden-
sation for w-sound mice holds for all proper segments of So. Then:
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— Sat1 s pm-ig(C)-strongly standard.
- p is not measurable in Ut(V, G), so ig(cr(G)) > p.
— If 6.12(3) attains and p is not a cardinal then v(G) = pT.

— If 6.12(i) attains p is a cardinal then either v(G) = p, or G is type 1 and
cr(G) = p.

— If 6.12(ii) attains then p is a cardinal and letting G1,G2 be as there,
v(Gy) = cr(G2) = p and Gy is type 1.

Proof. By coherence and the ISC, and using condensation as in 6.11. O

We now introduce what is, at least assuming global choice, a natural maximal
ultra-backgrounded construction:

6.14 Definition. The ultra-stack construction is the sequence (R,),-or
such that Ry = V,,, the sequence is continuous at limits, and for each a <
OR we have the following. Let p = OR(R,). Then R,y; is the stack of all
sound premice R such that R, < R and pf = p and R = QW(S’S) for some
ultra-backgrounded construction C and v < 1h(C), assuming this stack forms a
premouse (if it does not, the construction not well-defined). !

In order to prove that the ultra-stack construction inherits strong and Woodin
cardinals, we will need to prove that certain pseudo-premice are in fact premice,
just like in [3]. So we make one further definition:

6.15 Definition. Let A < OR. An ultra-backgrounded pseudo-construct-
ion (of length )\ +2) is a sequence C = (S4), 5, such that:

— C[ A+ 1is an ultra-backgrounded construction and S) is passive,

— For some F, Sx11 = (S, F) is an active pseudo-premouse, and there is
an extender G such that F [v(F) C G and str(G) > v(F). !

6.16 Definition. An almost normal iteration tree U on a premouse P is an
iteration tree as defined in [1],3 such that for all a + 1 < 8 + 1 < 1h(U), we
have v(ET) < V(Eg) !

6.17 Remark. It is easy to see that if P is a normally iterable premouse then
P is iterable with regard to almost normal trees.

We can now state the main theorem of this section:

6.18 Theorem. Assume ZF. Let W |= ZFC be a transitive class, and suppose
there is an (w1 + 1)-iteration strategy for W for arbitrary coarse trees. Then:

32The only difference between these and normal trees is that it is not required that 1h(E7) <
Ih(ET) for a < .
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(a) If X € ORY and C = (S,) <, € W = “C is an ultra-backgrounded con-
struction” and n < w, then €,(Sy) exists and is (n,wy,w; + 1)*-iterable,
and therefore €,(Sy) is (n + 1)-universal and €,11(Sqa) is (n + 1)-solid.

(b) The wultra-stack construction of W is well-defined. Let L[E] be its final
model.

(c) If there is a class wellorder <™ of W then L[E] is (0, w1, w1 +1)*-iterable.®?
(d) W =%k is strong” iff L[E] | “k is strong”.
(e) If W =% is Woodin” then L[E] |=“§ is Woodin”.

6.19 Theorem. Let W = ZFC be a premouse (possibly proper class) which is

(w, w1, w1 + 1)*-iterable. Then the conclusions of 6.18 hold, with ultra replaced
by pm-ultra.

6.20 Remark. Part (d) also holds for A-strong cardinals , for A C OR such
that A is a class of L[E]. (Here k is A-strong iff for every 7 there is an n-strong
extender G such that i¢c(A)Nn=AnNn.)

However, (d) does not seem to hold for local strength: it seems that we
might have k being n-strong (some n € OR) but L[E] E=“k is not n-strong”.

Proof. Each part will depend on the sufficient iterability of certain structures,
which we will establish in Claim 5 below. We first reduce everything to that
iterability. We write <R77>7760RW for the ultra-stack construction of W.

CrAM 1. Work in W. Let n € OR. Then:
(i) R, is well-defined.
(ii) There is an ultra-backgrounded construction C = (Sa) <, with Sy = R,,.

(ili) Let C = (S4),<, be an ultra-backgrounded construction such that R, =
S for some 8 < A. Then for all a € [3,)], we have R, = S,|p and
Pw(Sa) > p, and if B < a then p is a cardinal of S,,.

(iv) Let C = (Sq4) <y and C' = (S))) . be ultra-backgrounded constructions
such that R, = Sg = S}, for some 8 < X and § < X'. Suppose p,(Sx) =
p. Suppose there is § < A" such that €,(S;) = €, (Sx). Then
Co (@1,

is also an ultra-backgrounded construction.

33The class wellorder <" need not be a class of W. It is only used to allow us to select
background extenders canonically when copying iteration trees to W.

60



Proof. The proof is by induction on n. When n = 0 it is easy.

Suppose 7 is a limit. Clearly R, is well-defined, giving part (i). Part (ii):
Let (pa)¢.., enumerate the infinite cardinals of R,. Note that by induction,
n =~ and R¢ = R,|ps and there is an ultra-backgrounded construction C¢ =
<S£a>ag,\5 with Re = Sey,. Also by induction (applying part (iv)), we can
merge these constructions into a single ultra-backgrounded construction C with
last model R,,. That is, we set

C=(Col[0,X0)) " (CyiT(Ag, A1]) ™ -,

— — R”
where S1y; = Sox, = R, N, etc.

For the next two parts, the proof is identical in the limit and successor cases:
Part (iii): Suppose otherwise and let C = (S4),«, be a counterexample of

minimal length. Let k < w be such that €;(S,) exists and pf_";l < p. In Claim
5 we will show that

€r(Sq) is (k,w1,w; + 1)*-iterable in (the background) V. (11)

It follows (iterating this) that &,,(S,) exists, hence is w-sound, and p,,(Sq) < p.
But then the existence of C contradicts the maximality of .S, (with respect to
mice projecting to p,,(Sa)).

Part (iv): This follows easily from the definitions (noting that in 6.3, we
do not require the V-extenders to cohere the construction C (i.e., the sequence
of models); the only kind of coherence required is with respect to individual
models S,,).

Now suppose that n =& + 1.

Part (i): Suppose not. Then it is easy to see that we have ultra-backgrounded
constructions

€= (Sudazn ™ (5 comns

and

C= <Sﬂt>a§)\’ - <S£

and p € OR such that letting M’ = S and N’ = S%:

>,\'<agAE

-~ M =¢,(M") and N = &,(N’) both exist,

- pi =p=0l,

— Sy = M||pt™ = N||p™™ = M'||p™" = N'||[p™N", but
~ M # N.

It follows that C = (p, M, N) is a sound, non-trivial bicephalus. In Claim 5
below, we will show that

C'is (w1 + 1)-iterable in (the background) V, (12)

contradicting 4.3.
Part (ii): This is much as in the limit case, but by merging constructions
which end in mice projecting to p. O
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It easily follows (from Claim 5) that:

CrAamM 2. Work in W. Then L[E|] = Rogr is well-defined, and the cardinal
segments of L[E] are exactly the models R, for o € OR.

So we have reduced (b) to Claim 5. We next reduce (d) and (e). The fact
that every strong cardinal of L[E] is strong in W is by 6.9. So suppose that
either x is strong in W or § is Woodin in W; we want to see that x is strong
in L[E] or 6 Woodin in L[E] respectively. The key to the strong case is the
following claim.

CramM 3. Work in W. Let 7 be a cardinal of L[E] and R, be such that 7 =
OR®e. Then there is y > 7 such that if F is any extender with arbitrary critical
point and str(F') > x then ip(R,)|p = Ra.-

Proof. Let x be such that there is an ultra-backgrounded construction C € H,
with last model R, (using Claim 1), and such that #, includes background
extenders witnessing the clauses of 6.3 for C. It is straightforward to see that
x works. O

6.21 Remark. Note that Claim 3 can fail for fully backgrounded L[E]-con-
structions, by the last paragraph of 6.1. The key difference is that any mice
projecting < 7 which are added by ir(C) (when F is strong enough) are, by
definition, added to the ultra-stack construction; this, however, is not true of
fully backgrounded constructions (the extenders used in the construction of
these projecting mice might be total in Ult(V, F'), but partial in V).

Using the claim, together with a slight variant of the proof of [3, Lemma
11.4], one can show that strength and Woodinness in W is absorbed by L[E],
as witnessed by restrictions of extenders in W. The details of the argument
relating to the uniqueness of the next extender are somewhat different, so we
describe the differences. We will not reproduce all the details or definitions from
that text, so the reader should have it in hand.

Let 7 be a cardinal of L[E], and F € W be a W-extender with

cr(F) < 7 <ip(cr(F)) and ip(L[E])|T = L[E]|r.

We get these as usual from Woodinness, and by the preceding claim, we also
get them with cr(F) = & if K < 7 and & is strong in W. We adopt now the
notation “p” and “G” of [3, Lemma 11.4].

Cram 4. [3, Lemma 11.4] holds for all p < 7 such that G is not type Z.

Therefore, if W =%k is strong” then L[E] =k is strong”, and if W =40 is
Woodin” then L[E] =46 is Woodin”, and these facts are witnessed by restrictions
of extenders in W.

Proof. Recall that the proof is by induction on p. Let
o : U(L[E], G) — Ult(L[E], F)

be the natural factor map. Let £ = (pﬂUlt(LUE]’G). By Claim 5, condensation
holds for segments of L[E], and so because of the existence of o, either:

62



(i) L[E]|p is passive and Ult(L[E], G)||¢ = L[E]||¢, or
(ii) L[E]|p is active and Ult(L[E], G)||¢ = Ult(L[E], FEEP)| €.

Suppose first that p is a cardinal of L[E], and so (i) holds. Then there is an
ultra-backgrounded construction with last model P = (L[E]||{, G). It follows
that pL = p, so P is fully sound, and therefore that P <I L[E].

Now suppose that p is not a cardinal of L[E]. Let v = card“®(p). If p
is not a generator of F' then the previous argument adapts easily. So suppose
p is a generator of F. So cr(c) = p = (yF)UHLELEG)  In this case it seems
that there might not be an ultra-backgrounded construction with last model
ULt(L[E], G)||¢. Let G’ be the trivial completion of F' | (p + 1). Let & =
(pt)U(EELG)  Then Ult(L[E],G")||¢ = L[E]||¢' and ~ is the largest cardinal
of LIE]||¢'. So there is an ultra-backgrounded construction with last model
L[E]||¢’. Let P = (L[E]||¢',G"). Then there is a pseudo-ultra-backgrounded
construction with last model P. By Claim 5 below, P is (0,ws,w; + 1)*-iterable
in W. So by [3, §10] (combined with the generalization of the latter using the
weak Dodd-Jensen property), P is a premouse. Therefore either G € E, or
L[E]|p is active and G € E(Ult(L[E]|p, FLElIP)), as required. O

The following claim completes the proof of the theorem, as it establishes the
iterability we have used above, and part (c). Most of the rest of the paper is
devoted to its proof; we focus on one representative case of it:

CLAIM 5. We have:

(i) For any A € OR" and ultra-backgrounded construction C = (Sa)q<y of
W, and n < w, €,(S%) exists and is (n,ws,w; + 1)*-iterable.

(ii) The bicephalus C' defined in the proof of Claim 1 is (wy + 1)-iterable.

(iii) For any ultra-backgrounded pseudo-construction of W, with last model
P, Pis (0,wy,w; + 1)*-iterable.

(iv) If there is a class wellorder <" of W then L[E] is (0,w,w; + 1)*-iterable.

Proof. We focus on the the iterability of C' = (p®, M, N) (part (ii)); parts (i)
and (iii) are mostly simplifications of this. At the end we state some adaptations
used for (iv). The main difference between the present iterability proof and that
for a standard L[E]-construction is in the resurrection process. The details of
this process will be dealt with in a manner similar to that in [10], and moreover,
the resurrection process of [10] will need to be folded into the present one. We
follow the iterability proof of [10] closely. In one regard, the present proof is
slightly simpler: in [10], arbitrary standard trees were considered, whereas here
we deal with a more restricted class (roughly, normal) of trees.

In the pm-ultra-backgrounded setting, i.e. the proof of 6.19, the natural
adaptation of the proof to follow lifts a tree on C' to an almost normal tree U on
W. We leave the verification of this to the reader. Likewise, its adaptation to
stacks of normal trees on €,,(SS$) and P (parts (i) and (iii)) produces stacks of
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almost normal trees on W. This ensures that we only use the (w,wy,w; + 1)*-
iterability of W in this context. We ensure that this works by our arrangement
of the proof to follow, which increases the work involved a little. For the adap-
tations to 6.19, one should use background extenders G with 1h(G) minimal
(when witnessing 6.4(3b)), and use pm-nice witnesses (but when the pm-nice
witness is as in 6.12(ii), one must use the two extenders G; and Gs in U).

Let 3y be an iteration strategy for W. We will describe a strategy 3¢ for
player I in the (w; + 1)-iteration game on C. Let T be an iteration tree on C'
which is via ¥¢. Then we will have inductively constructed a tree U on W, via
Yw, such that T lifts to U (in a manner to be specified), and if 7 has limit
length, we will use Xy (U) to define X (T).

We say that an iteration tree V on W is neat iff V is non-overlapping and
strMa (EY) < strM& (Egj) for o < B. The tree U may use padding, but the tree
V given by removing all padding from I/ will be neat. (So in the adaptation to
the proof of 6.19, V would be almost normal.)

We will have Ih(&) > 1h(T), but Ih(Uf) > Ih(T) is possible. For each node
a of T, (a,0) will be a node of U, and the model MY, will correspond directly
to B]. However, there may also be a further finite set of nodes (a,i) of U,
and models MY, associated to initial segments of M or N/ . For indexing,
let OR™ = OR X w; we order OR™ lexicographically. We index the nodes of U
with elements of a set dom(f) € OR”, such that for some sequence (ka) , <)
of integers k, > 1, we have (o, i) € dom(U) iff @ < Ih(T) and i < k. So if
Ih(7) > 1 then dom(Yf) is not closed downward under <.

For notational convenience we allow U to use padding. If E = EY, = () we
consider strMo’ (E) = OR(MY,); we do allow pred”(3,j) = (a, i) in this case.

We make some preparations. Let a < 1h(7). Write B, = BY, M, = M,
ete. If o € BT let (g, ng) = deg’ () = (mo,no). If o € AT let my =
deg” (o). If a € #T let ng = deg” (a). If [0, )7 does not drop in model, then:

— If M, # () then 9, denotes Ui (p9), (soif p© < pd!, which is the main
case of interest here, then ¥, = il (p“)).

~ If N, # ) then J, denotes ir (p©).

Recall here that if « € %7 then p(B]) = supil, “p” = supj], “p", but these
iteration maps can be discontinuous at p© and we can have p(B]) < 9, and
p(BT) < ¥4. 3 We say that a is .#-stable iff M, # () and [0, a]7 does not
drop and cr(iga) < ¥g for all § € [0,a)7. We define .4 -stable analogously.
Note that if a € .#7 is .#-stable then p© < p)! and i& is discontinuous at p¢,
where 3 = max([0,a)7 N %) (since then in fact p(BBT) < cr(iga) < g, and in
particular p(B;—) < po(Mp)). We are only interested in v, for .#-stable a.

34 Actually, if @ € BT then ¥o = Ua and My ||(03)Me = No||(0F)Ne, but this is not
important.
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Let Coi = 4 4;(C) and To; = 1h(Cai). Let Coi = i% o;(C) and Ty =
lh(@ai). When we say, for example, C,;-standard we literally mean C,;-standard

in MY%. Let stry; = strMa (E%.). We will also associate later an ordinal
Savi S Strai-

We make some arrangements to help us choosing background extenders for
U (recall we do not assume AC in V). We have W = ZFC. Fix ¢ € OR" with
(C,(E € VEW and such that VSW < W for a sufficiently large k. In particular,

whenever W has a background extender for SS or Sg, then V§W has one too.
Let <* € W be a wellorder of V. Given (8,7) € dom(U) we write <}, =
ilé{o,ﬁj(<*)- We will use <j; in determining Egj. Let & C MLZ;{J be a non-
empty collection of Mé’j—extenders. Let sp = mingege strMé; (E). Then the

*-least element of & is the <} -least £/ € & such that strMb (E) = soand E is
Mitchell-minimal such; that is, & N Ult(M é’g, E) = (. Given a property ¢, the
x-least extender E such that ¢(E) means x-least element of {E | p(E)}.

Let 1 ¢ OR (here “” means undefined). Let &, ¢ € (ORU{1})2\{(1,1)} and
let £ = (5,5) and ( = (c,Z). For v € OR let max(vy,?1) = max(f,v) = 7. We
write £ < Ciff 1 € € and max(g) < max(f) and if 1 € ¢ then max(g) < max(f).
Clearly this order is wellfounded.

6.22 Definition. Let D be a premouse and v < OR”. The ~-dropdown
sequence of D is the sequence o = ((D;,;)),.,, of maximum length such if
v = ORP then o = ), and if v < OR® then Dy = M|y, and for each i < n,
0; = pw(D;), and if i + 1 < n then D, is the least A such that D; <A< D and
pf, < 51

Suppose M, # () and let v < OR(M,). The (T, ,vy)-dropdown sequence
7 of M, is defined as follows. Let o be the v-dropdown sequence of M. Then:

a) I « 1s -stable and v, < “ an o<y then
if v is .#-stable and ¥, < ORMe and (97)M 35 th

T=0c" <(Ma7190t)7 (MO” O)> ;

(b) otherwise 7 =0~ ((My,0)).

If N, # 0 then for v < OR(N,,), we define the (T, o, y)-dropdown sequence
of N, analogously. -

6.23 Remark. Suppose a+1 < Ih(7) and E] € E (M,,). Let 7* = ((M;, 0;)) <,
be the reverse of the (T, a,1h(ET))-dropdown sequence 7 (the same sequence
but in reversed order). Note that My = M, M, = ex], oj, = 0 and 0} < 0},
for all i +1 < n/. Note that if 8+ 1 < Ih(7) and o = pred” (8 + 1) then

MEL = M; for some i <n/.

3580 9o < (94)Me < g; for cach i < lh(o).
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6.24 Remark. We now give a sketch of the resurrection process and the mean-
ing of U 1[(6,0), (6,ks — 1)]. Figures 1 and 2 depict various features discussed
here, under certain further simplifying assumptions, but they incorporate more
details which will be explained later. In Figure 1 it happens that we do not
need to take ultrapowers at even stages of the resurrection (see below), so there
the diagram looks more like standard resurrection, although there can be ultra-
powers taken at odd stages (see below).

For simplicity, we assume for the duration of the sketch that § € .#Z7 is
non-.Z-stable, but in other cases things are similar. Then we will have ks =
2us + 1 where the reversed (T, 0, 1h(Es))-dropdown sequence is ((Ms;, 05:))
If us > 0, then the extenders

i<ug®

U U U
EJO? Eélv s 7E6,2u571

will facilitate the resurrection process used to find a background extender E*
into which we can embed Fs, and then we will set

Efy, = E*#0.

It is possible that Ef;’g = () for j < 2us. The resurrection will yield for each
i < ug, a sound model €, (Rs,+1), constructed (by an ultrabackgrounded con-
struction) in M 125/)121. 41, and a fully elementary

7041 0 Co(Mig1) = Co(Rs,i41),

and will also yield Qs,+1, constructed at a standard stage in M(Z;{Qi 42> With
Cu(Qs,i+1) = €u(Rs,i+1), and thus, we also embed M1 into Qsiy1. If i < us
and EY,, # 0, then M; is type 3 and g;11 = v(M;), and it happens that the
standard resurrection process fails to yield an appropriate model Rs ;1. That
is, we will have already found Qg; € Mgf% and o : €(M;) — €x(Qsi). So
M, 1 ¢ M = dom(o), so o does not act directly on M, 1. If ¢ is non-v-high
then ¥, (M;41) < Qs;, in which case we can set Efs/,lm' = 0 and €, (Rsit1) =
Yo (M;11) (this is basically the standard resurrection process). But if o is v-
high, then t,(M;4+1) is not a stage of the construction in MOZj{Qi; in this case
we set ngzi to be a background extender for F'(Qs;), and this will actually
ensure that an appropriate Rs;41 appears in M(Z;{Qiﬂ (with €, (Rs+1) either
= 19y (M;41) or some variant thereof). We will write ss52; = v(F(Qs;)) here; if
Eg/{% = () then we set 88,2i = 8§,2i+1- If i < us and Eg/,l2i+1 }é @, then R57i+1
was constructed by a non-standard stage in M(Z{{Qi 41, and E{;/,{zi 1 is then selected
witnessing 6.3(3c) for Rs 41, yielding an appropriate Qs 2i4+1 in Mg,{zi+2v and we
proceed with the next step of resurrection (uncoring) there. In this case we set
$5.2i41 = Puw(Rs,i+1). This eventually leads (including in the case that us = 0)
to a model Q5 = @s,2u;s € Mffzu& and 0-lifting embedding

5 Colex] ) = €o(Q5)-
If 75 is non-v-low then we set Eg’)’%s = E* to be an appropriate background for

F(Q3), and ss.2u;, = v(Q3), whereas if 7} is v-low and v/ = zbﬁg(ug—) then we
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Crmgyq1(Qs+1,0) o

Qs0 Qs1 Qs2
L] L] L]
mg0 0 0
750 751 T2
Cms (Qso
ms )- ¢, (Rs1 : Cu(Rs2 ; S54 =

/ \ . v(Qs2) > ss3

M, TS50 T > \atEl
e st | _ Y1862 = ss3
-7 = puw(Rs2)

M, Ts2 _ /I"

\/ -7 /

\ - , -

\ /// W
Maz\\‘ T = 1sso = ss

7 - = pw(Rs1)

Vv~ L - _-"
052 17, _-I

/ ///

/ -

V- -
0s1 1~ ~

Figure 1: Dropdown resurrection and associated objects, in the case that § € .#7 is non-
M -stable, us = 2, and all models are non-type 3. Vertical lines indicate ordinals, with
height roughly corresponding to ordinal rank. Solid arrows denote embeddings (7s¢ etc),
with domains and codomains denoted by large bullets (except that the domain is literally the
squash). Small bullets indicate the positions of labelled ordinals (gs1 etc). Dashed arrows
indicate trajectories under embeddings. The bases of the dotted half-arrows indicate approx-
imately the critical points of msq, 7;850, T(g"lo, 7'(‘;"20 respectively; the main point here is that
Cr(ng?Jrl) > 552i+1. Curved dashed arrows indicate positions of wth projecta pi)r of models
N. Dotted horizontal lines indicate agreement between models Ni, No strictly below that
ordinal ¢; that is, Ni||a = Na||a. (If o < ss4 then in fact, « is also a cardinal of both models
and so Nija = Naja.) Note €u(Rsi+1) = €uw(Qs,i+1). Note s51 < ss2 and ss3 < ss4, but

S$53 = Ss4 is possible. Note that because exg- is non-type 3, we have ssq = v(Qs2)-

do likewise but with Q" < Q5 instead of Q}, where Q' is chosen as in 1.1 with
respect to m5. This completes the sketch of resurrection.

We now proceed with the details. We first state some intentions, introduce
more notation, and state hypotheses (L1)-(L12), to be maintained by induction
on initial segments of (7,U). Let a < Ih(T). If M, # 0 we will define:

~ Dao € {Ca0,Cao},
Aqo = 1Th(Dao),

— £a0 < Ao,

- (Mao,mao) = (Ma,ma) and Qq0 = SDao

5040 ’

and a c-preserving mqo-lifting w0 1 €o(Mao) = €moo(Qao)

such that:
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$54 =

v(Qs2)

R = €, (Rs1) "

Figure 2: Dropdown resurrection and associated objects, in the case that § € .#7 is non-
M -stable, us = 2, E(;MJ #  for each j < 4, and Mg, is non-type 3; hence, Ms; is type 3
and v(Ms;) = 05,41 for i = 0,1. Notation is as in Figure 1; also, an open circle denotes
the height of a squashed premouse, which is also the domain or codomain of o or Tg"lo, Note
o= 7;850 o mso and 1,2) is defined as in Subsubcase 3.2.2 in the inductive construction of U to
follow (so T2 = 7Z’°¢7r51 [€0(Ms2)). Note that ssg < s51 < ss52 < s53 < ssa (because E(Zg”g #0
for each j < 4). Note that the models €5 (Qs50) and €y, (Qs41,0) have been omitted from

this figure, though they are present in Figure 1. Note that we again have ssq = v(Qs2)
because Mgy = ox; is non-type 3.
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(L1) If v is . -stable then Dyg = Cuo and &up = iz&o,ao()\c) and

Tao © i(L = Z'1610,010 [ € (M),
so if p@ < pd! then mao(Va) = iy 40(P%)-
(L2) If v is non-.#-stable then £, is Dyo-standard.

If N, # 0 we will define ﬁ)ao, ﬁao, an, @ao and T, analogously (and
maintain analogous properties).

Now suppose a4+ 1 < 1h(7).

Suppose that E, € Ey(M,). Let ((Mai, 0ai))i<,, be the reverse of the
(T, a,Ih(E,))-dropdown sequence of M,. Then k, = 2u, + 1. Fix i < u,. Let
Mai = Mo if My, = M, and my; = w otherwise (in fact we already defined
Moo and mqo above). If ¢ > 0 then for each j € {2i — 1,2i} we will define:

]D)aj € {Cajaéaj}u
- Aaj = ]*h(]D)aj)v
- gaj < Aozja

]D)Q i— Da 7
- Ryi = Sf ’22,711 and Qai =5.*% and

Ea,2i
— a c-preserving mgy;-lifting embedding 74 : € (Mai) = €, (Qui)
such that:

(L3) if 0 < i < ug then &y 2; is Dy 2-standard and either:

= € (Rai) = Gy (Qai), or

— M is non-standard (in W), the hypothesis of Definition 6.22(a) holds
for the (T, o, 1h(E,))-dropdown (that is, a is .#-stable and (9} )Me <
lh(Ea)7 50 My1 = Mayo = Ma)7 1 =1, Doo = (Con = (Cal = ]D)Ozlu
Ma1 = Mao = Mo = Mo and € 11(Qa1) = €o(Ra1) = €o(Qao) is
fully sound.

For m < n <my; let
Tgim : Q:n(Qaz) — Q:m(Qaz)

be the core embedding. Let Q¥ = Qqn, and m = mgq,,, and

mr  Colex]) — €o(QL),

* _ _mO0
T = Taua e} Taug -

If 7% is v-low then let @), be derived from 7 as in 1.1, and otherwise let
Q!, = Q%. Let ¢, be the set of infinite ex/-cardinals k < v(E). Fix k € c,.
Let i, be the largest ¢ such that gn; < k. Let ¢ = i4,. Let mqy, be the least m
such that either
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— My; = M, and m = my, or

- pm+1(Mai) S K.

Let My, = My;. We define the c-preserving m-lifting embedding
Tak - €0(1\4&1%) — €ma~ (Qai)

by Tox = T © Tas, Where n = mq; and m = mq,. lf a € AT and k < po and
(kT)Ba < 1h(E) then we also define Ny = Na, Nk = Na, and Taw = Tao-

Now suppose instead that E € E4(N,)\E4(M,). Then we make symmetric
definitions by analogy to the preceding ones. (So for example, we let o be the
(T, a,1h(E))-dropdown sequence of N, and set u, + 1 = lh(o), and for i < u,
we define N,; and n.;, and also define Em-, @om etc.)

Let w) = 7w} or w) =7, whichever is defined. Let gm- = (€ui, Em-), where if
Em- is undefined then Em» = (€ui» 1), etc.

We now list the remaining inductive hypotheses:
(L4) Let 841 < In(7) and @ = pred” (8 +1). Then:

(a) If B+ 1 is .#-stable or .4 -stable then pred”(8 + 1,0) = (o, 0).

(b) Suppose 3+ 1 € .#7 is non-.#-stable and let i < u, be such that
Mp, | = My; and if « is .#-stable then i > 1.36 Then

pred? (3 +1,0) = (o, 24).

(c) Likewise if 3+ 1 € 47 is non-.4 -stable.

(L5) Let @ < 8 < 1h(T) and j < k, and k < kg with 8 or k a successor, and
(v, 5) = pred” (B, k). Then:

(a) &k < il&{j”gk(faj)-
(b) If k is odd then &g < i} 5 (Enj).
(c) If k is even and k > 0 then either:
i. (a,j) = (B,k —1), so j is odd and &g, < iz,’yleﬁk(f_;g) where
(7,£) = pred”(a, j), or
ii. €pr < igj,ﬂk(faj)'
(d) Suppose k = 0; so o = pred” (8) and j = 2i is even (by part (L4)
above). Then

(Dgo, Do, £80) = inj, 50(Pajs Parjy €aj)

36Note that if £ € .#7 is is non-.#-stable but all & <7 ¢ are .#-stable, then £ = 8 + 1
for some 3, and letting @ = prch(ﬁ + 1), then « is .#-stable (so [0, a]7 does not drop in
model), and if 7 does not drop in model at 3 + 1 then ¥, < cr(Eg) and Eg is Mq-total, so

WMo < 1h(Ba), s0 Ma1 = Mao = Ma = Mj, ;.
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and if Mg # () then

T U Maimg . _Maimg U .
T0 Ol = 45,30 © Tai O Mai = Tgq 0 145,80 © Mavis

and if Ng # () then 70 0 j57 is likewise.
(L6) Let v <7 A < 1h(T) with A a limit and such that:

— (e, A]7 does not drop in model,

—if o € A7 then A € A7,

— if a is .4 -stable then ) is .#-stable,
— if a is A -stable then X is A -stable.

Then:

(ar, 0) <y (A, 0),
~ (0, 0) <y (B,1) <y (A,0) iff i =0 and o <7 8 <7 )],

- 7:Z(;L{O,)\O (DO‘()? ]]50405 5010) = (DAOa IB))\07 g)\o)v
— if M, # 0 then letting m = m, and n = m,,

T U mn . .mn _ U
TX0 O lax = 200,00 ©Ta0 ©Tad = Txo © %a0,00 © Ta0;

likewise if N, # 0.
(L7) If a« € A7 then 7a0 | pa = Tao | Par- 7
(L8) Let o < B < 1h(T) and o < 8/ < 1h(T) and & € ¢q. Then:

-IfE, € Eﬂ‘r/[‘l and 0 <7 < u, then T;ZMO 0 Tai | Qayit1 C wlk; likewise
otherwise.

— If oy is defined then ma, | (k1) ax

If 7o is defined then 7y, [ (k1)Ner

If w0 is defined then w}, C mgp.

%
wy.

*
o

If 7o is defined then w} C 7go.

— If mpo and 7gro are both defined then they agree over ex! (not just

over (ex! )% = dom(w})).

We write w, for the restriction of mq11,0 Or Tat1,0 tO exz: (not just

(ex])%9), whichever is defined. Then moreover:

- Weo = Ua+1<lh(T) wq 18 a function.

37Note then that if a4+ 1 < 1h(T) then for all & € cq N pa such that (k1)Be < 1h7 we

have Tax = Tao and Tax = Ta0, SO Tax | (k1) Be = Fay [ (kT)Be.
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(L9) The tree given by removing padding from U is neat. Moreover, given
a+1,8+1<Ih(T) and j < 2u, and k < 2ug, and letting («, j) + 1 be
the successor of (o, j) in dom(U), we have

(a) if (a,j) < (B, k) then [sq; < spr and if EY; # 0 then sq; < spz),
(b) if EY; # 0 then either:
— (i) er(EY;) < sqj, (il) stry; is the least M{-cardinal > s,;, and
(iii) pred”((e, 7) + 1) is the least (7, ) such that cr(BY;) < sye,
or
— (i) cr(BY)) = sqj, (ii) stra; = (S;Lj)Mgi, (iii) 84, is not measur-
able in Mé/«{x,j)+17 (iv) j is odd.

(L10) Let o+ 1 < 1h(7) and i < uq. Then:

- If Eg)% # () then [Qq; is type 3, ¥(Qq;) is a limit cardinal of Qs
and sq.2; = V(Qui) < OR%* < Sa,2i+1]s

— if EY,; = 0 then s4,2; = Sa,2i41,

— Sa,2i+1 = Pu(Ra,it1) = Pu(Qa,it1),

— Sa,2is Sa,2i+1 are cardinals of Qi €uw(Ra,it1), €w(Qait1), and Qu it1,

= Quilp = €u(Raiv1)lp = €u(Qaiv1)|p = Qajit1]p Where p = sq 2i11.

(L11) Let o < B < Ih(7T) and ¢ < ug. Then:
— Sa2us — V(Q;); let v = V(Q/a)a 38
= Qully = Qillv = €y (Qaa) I,

- v< pmm(Qﬁi)v
& @, and &, (Qp:) agree about cardinals < v.

L12) Let a+1 < 1h(7) and suppose that E, € E, (M,). Then EY # () and
( + a,2Uq

SUP Woo “V) < 82w, = V(Q) < weo (V).

Now suppose also that u, > 0. Let v = supg,, Vg. Note that

ﬂ§9a1<9a2<---<gaua<yl—-

(Here if u, < 1 and « is a limit we could have v = I/Z;) Let i < u, and
let j € {2i,2i+1}. If EY; # () then

SUP Woo “Oait1 < Saj < WoolOayit+1)-

38 Recall that if w}, is non-v-low then Q) = Q¥ and if w}, is v-low and v/ = P (vT') then
[Q, <Q% and FQa [v/ = FQ& [/ and v/ = 1(Q,)].

39 If v = (y")@Q% then it seems possible that N = Cimgy1(Qa+1,0)|v is active with an
extender G, in which case of course Q% |v # N, but Q% ||OR(QL) = Ult(NV, G)||OR(QL).
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We now begin the construction. Recall that C' = (p©, M, N) was defined
in the proof of Claim 1 of 6.18, as were C, X\, M’ = S’fc, M = ¢&,(M'), and
likewise C etc. We have deg” (0) = (1o, no) = the degree of C; that is, either

— mp =0 and M is type 3 with v(M) = p©, or
—mg > 0and py 41 < p < i,

and likewise for ng, N. We have My = M and Ng = N. Let Doy = C and
€0 = A% and
700 : €o(Mo) — €y (Qoo)

be the core embedding. (Recall that M, N are fully sound, but M may or may
not be C-standard, and Qqy = S’SC may or may not be sound, and likewise
N,Dj; in the notation that assumes 1 < 1h(7), the core embedding is 754 °.)
We define ﬁ)oo, EOO, oo analogously. Then mqg | po = id = 7o | po, which gives
inductive hypothesis (L7) (for (7 [1,U [ (0,1))), and the others are trivial as
(7 11)=1=1hU[(0,1)).

Now let A be a limit ordinal and suppose that the inductive hypotheses hold
of TTAand U [ (N 0); we will define U | (A, 1) and T [ (A + 1) and verify that
the hypotheses still hold. Note that ¢ [ (A, 0) has limit length and is cofinally
non-padded. Let ¢ = Xy (U [ (A, 0)).

We can define Xp/(7 | ) as the unique branch b such that for eventually
all @ € b, we have («,0) € c¢. For by inductive hypotheses (L5)a—(L5)c, there
are only boundedly many (5,k) € ¢ with &k > 0, so by hypothesis (L4), this
branch is well-defined and 7T-cofinal. Similarly, there are only finitely many
drops in model along b, and there are unique choices for myg, etc, maintaining
the inductive hypotheses.

We now move to the successor case. Suppose that the inductive hypotheses
hold for T [d + 1 and U [ (4,1). We will define U [ (6 + 1,1) and show that they
hold for 7T 1d+2 and U [ (6 4+ 1,1). Note that this step involves the use of just
one extender in 7, and finitely many in U.

CASE 1. us = 0 and Ms # 0 and E; € EY* (so E5 = F(Mj)).
SUBCLAIM 5.1. &5¢ is Dso-standard.

Proof. Suppose otherwise. Then by induction with (L2), ¢ is .#-stable.
Now & € #7. For suppose § € .#7 and let 8 = max(%’ N[0,4]7). Then

p(Bs) < cx(ifs) < po(Mp),
so p© < pdt. But then 95 = iJ5(p%) < po(Ms), and
(95)"" < OR(Ms) = Ih(Ej),

so us > 0, by 6.22, contradiction.

So 6 € A7 . Note then that by 6.22 and since us = 0, we have 95 > OR™Ms
so M is type 3 with p¢ = v(M). But then by 6.9, A€ is C-standard, so by (L1),
&so is Dso-standard. This completes the proof of the subclaim. O
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Let A\ = supg4 th;. Then A < pps(M;s), 80 T50“N C pymy (Qso), but 750°° |

Pms (Q50) = 1d7 S0
Wi A =m0 | A (13)

If w} is non-v-low then set EY = the *-least extender E* € MY witnessing
6.3(3b) for (Dso, @s0); and as required by (L11), set ss0 = v(Qs0) in this case.
Suppose now that wj is v-low. In particular, Es is type 3. Let v/ = ¢, ()
and Q' < Qs be as in 1.1. By 6.7 and 6.9, and as v/ is a Qso-cardinal, we get
Q' = SPJO for some Dyso-standard . Let E4) be the +-least E* € MY witnessing

6.3(3b) for Q', and ss50 = v?". Note that in both cases, by *-minimality, strso
is the least M(%—cardinal p > Ss0-

Let k = cr5T and o = predT(é—i— 1) and i = in,. Note that My, , = M, and
Mar = Ms+1 and N§ | = Nk and nax = net1 (with each of these equalities,
it is included that the object on the left is defined iff the one on the right is).
We can and do set pred” (6 4+ 1,0) = («, 2i), by properties (L9)~(L12). The
identities of Ds11 9, ]13)5+170, £54+1,05 g(m,o are determined by property (L5)d. We
define 7541,0 and/or Ts41,0 as usual.

It is straightforward and mostly routine to show that the inductive hypothe-
ses are maintained, and we leave this mostly to the reader, just making a cou-
ple of remarks. Consider the verification of (L2) at 6 + 1 in the case that
Ms41 # 0 and [0, + 1] does not drop, and « is .#-stable, but § + 1 is not. So
Yo < cr(Es) and note that E, € B, (M,), 9o < v(E,), and (9})Me <1h(E,).
So by 6.22, u, > 0, and since ¥, < cr(Es) but Es is M,-total, (L4)b implies
pred? (6 + 1,0) = (o, 2), and by (L3), a2 is Dag-standard. Considering the
definition of (Ds41,0,&s5+1,0) given by (L5)d, this yields (L2) (in the case under
consideration). Hypothesis (L.11) is pretty standard, but we remark that if exg
is type 1 or 3 (hence Q% has the same type) and v/ = v(F(Q})) = (y+)® (some
), then we can only expect Qf||v' = Qst1,0/[V, because 6.3(3b) only gives
that F(Q%) v/ C E¥ v/, so while Q}|v/ is passive, it might be that Qs1,0|v/
is active with an extender F’. 4 Regarding (L8), by line (13), and because
wy € ms41,0 and/or wy C Ts41,0, we have maintained the well-definedness of
Weo. And regarding (L12), the fact, for example if w511 is defined, that

weo (V] ) = ms11,0(v] ) = s50

follows from our choice of E* (this is why we use )’ when w¥ is v-low).
CASE 2. us = 0 and Es ¢ B} (so E5 = F(N;)).
By symmetry with the previous case.

CASE 3. us > 0 and Es € EM and if 6 is .#-stable and 95 < ORMs then
Ih(E5) < (9F)Ms.

401f F’ = @, then standard arguments with condensation show that Qs 0|\
Q511N where N = OR(Qf); if F/ # 0, standard arguments show that Qsy1 0|\
Ult(Qs+1,0/|\, F)||N. Analogously (and irrespective of the type of ex] ), if Q51 0l i

]

passive, it seems that Q:S+1 ol\ might be active.
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Let o = ps51; then g is a cardinal of Ms, so o < po(Ms) and if § is .4 -stable
then o < ¥5. We will first determine U [ ((9,2) + 1) and the associated objects
(that is, through MY, Dsa, £s2, Qs1, a1, ete); this splits into various subcases.

SUBCASE 3.1. ¢ < po(Ms).

Set EY) = 0; so pred”(5,1) = (6,0) and MY = MY and i%f 5, = id. Set
Ds1 = Dso. Let o : €(Ms) — €o(Qs0) be ¢ = 7'(;850 omso. Let R = o(Ms1).
Set ss0 = ss1 = (o) = pZ. Note ¢(p) is a cardinal of Q40 (as ms0 and ng“o are
c-preserving). Moreover, if €59 is non-Dgp-standard then p(0) < p,(Qs0); for by
non-standardness, (L1) and (L2), § is .#-stable and ¢ = 750, and since p < U5,
therefore ¢ (o) < ms0(¥s) = p%¥%°. So we can fix & = &1 with €(R) = QW(S?‘”).

So Rs1 = Sg‘sll = S?‘SO. We set

51 = @ [ Co(Ms1) : Co(Ms1) = €o(R) = €y (Rs1)-

We now define Eg’l, Mgg, Dso, &s2, and hence Q51 = Sg“;. Recall we want
&s2 to be Dga-standard and €, (Qs1) = €, (Rs1)-

Now if & is Dgi-standard we set E¥ = ) (so pred?(5,2) = (3,1) etc),
Ds2 = Ds1 and Es2 = &1

Suppose that £s51 is non-Dgi-standard. So Rgp is sound. Let Eg”l be the
x-least G € My, which is a Dgsi-nice witness for Rs1. Let p = cr(G). (Note we
can) let (,j) = pred(4,2) be least < (d,1) such that p < 4, if such exists;
otherwise u = ss1 and (o, j) = (6,2). If E, € E4(M,) then let F = D,; and
(¢ = &qj, and if 20 = j then let P = Qq4, and if 20 — 1 = j then P = R;.
Otherwise let F = ﬁ)aj, ¢= Eaj and P = @ai or P= }N%m-. Let f = iZj,52-

By properties (L10),(L11), (P ~ R)|u, and note that Plu = SY for some
F-standard v < ¢. Since G is a nice witness, f(u) > ¢(g), so Rs1 < f(Plu),
and note that ¢(p) is a cardinal of f(P|u). We set Dsa = f(IF), and let &s2
be the £ < f({) such that €4(R) = Qﬁw(S?”). Because G is a nice witness,
the agreement between MY and Ult(MY, G) implies that s is strongly Dio-
standard (note that this only depends on Sg‘;? in MY or in Ult(M¥ , G), not on
the relevant constructions themselves).

SUBCASE 3.2. 9 = po(M5).

So Mjs is active type 3. Let E = FMs and Q = Q50 and F = F? and
v=v(F). Let v: €y(Ms) — €(Q) be v = 75p°% 0 ms0. Let 1 = ..
SUBSUBCASE 3.2.1. v is non-v-high; that is, ¢(o) < v.

Proceed as in Subcase 3.1, but using ¢ = v instead.

SUBSUBCASE 3.2.2. v is v-high; that is, ¥(g) > v.

Here we proceed basically as in [10]. Let E%) be the *-least witness to 6.3(3b)
for (Dso, Q) and set sso = v. Let T’ be the putative iteration tree on C' of the
form (T 10+1) " E. Then Ms; <1€0(M6T_|;1). Let a = pred”’ (0+1) and k = cr(E)
and i = 7,,.. We set predu(é, 1) = (o, 2i); as in Case 1 this works. Let F,(, P, f
be defined from («, 2¢) as in Subcase 3.1. For notational specificity, let us assume
that E, € E;(M,); the other case is likewise, but instead of P = Q;, we have
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P = Qai, ete. So P = Qui = S (as j = 2i). We have Mo, = Mq; and
K < pma,. (Max) and & < po(Ms),

Taw * €Co(Max) = €, (P) and v : €o(Ms) — Co(Q).

Let x = (kT)Ms = (k)Mo We have (and let) M = M, ||x = Ms|x. We have
Tar [ X =V X = wWeo [ X Let & = man(k) = v(k) = cr(F) and

X' = SUP Tax “X = SUP VX = SUP Weo “X-

Then k' < pm,, (P) is a cardinal of P and @ and (letting) P = P|[x’ = Q||X’,
then P has largest cardinal &', and there is v < ¢ which is D, o;-standard with

P= SE)‘*’%. Let #: M — P be T = ma. [ M. So 7 is cofinal ¥;-elementary. Let
U = Ulto(M, E) = Ulto(M, E [ v(E))

and 1 : U — Ulto(P, F | v) be induced from 7 and v via the Shift Lemma.
41 S0 1) is cofinal ¥q-elementary and ) o il = il{fpj o7 and v C v (and note
rg(v) C Qlv). We have P € MY,,. Let ¢/ : Ulto(P,F | v) — f(P) be the
natural factor map; that is, for ¢ € P and generators a € v<%,

u

¥ (la,g1f) = [0, 9]

(recalling that F [ v C E(;“O). So v’ is Yg-elementary and c-preserving and
z//oz'l{fhj = fIPandcr(¢) > v. Let ¢y = 0. So vy : U — f(P), and
11 is also ¥g-elementary c-preserving, commutes, and v C 11, and of course
M;5||ORMs 9 U and ¢ = v(E) is a cardinal of U.

SUBCLAIM 5.2. 91(0) > v = v(F) = ss0.

Proof. We have v = v(F) = sso by definition. If ' = ((+)*)? then in fact
() > v, because in fact 1) C ¥ = 1),,, and by subsubcase hypothesis, 1)(g) > v.
So suppose X' < ((k/)7)?. Let P* = Q|((x")7)?, so P = (P*)||x/, so noting
that PT € MY,;, we have f(P) = (f(P))|f(x'). Let ¢ : U — f(PT) be
1/11" = inc o 91, where inc denotes inclusion. Then wf' is also Xg-elementary
c-preserving, and 1, wf' have the same graph. But 1/11" =00 (¥ |U), where

o: Ultg(PT,F) — f(PT)

is the natural factor map. Since 1(p) > v by subsubcase hypothesis, therefore
ﬂ’f(@) > v, as desired. -

Let Ds; = f(F) and R = 1 (Ms;). Then R< f(P) and R = S’?‘“ for some
& < f(7); let &1 be this €. Let w51 = 11 [€o(Ms1) (a fully elementary map).

“INote here that if x' < ((x/)T)¥60 then F | v is not weakly amenable to P, and the
ultrapower would be different if we used the full F' (with generators through ORQ)7 and
actually if F' is of supertstrong type, it is not clear how it should even be defined.
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Now if £ is Dgsi-standard, we set Eg”l = (, etc. Otherwise, proceed as in
Subcase 3.1 to define Eg’l etc. In either case, ss0 = v < ¥1(0) = ss1, by
Subclaim 5.2.

This completes the definition of U | (d,2) in all subcases. We now proceed
in general for Case 3, to determine U | (6 + 1,1) etc. If us = 1 then we have
already determined

0 R _
wy =ms =751 oTs1 s exy — Q5 = Q1.

Here w} is ¥i-elementary and so non-v-low, by 1.1. So Q§ = Q3 and (following
(L11)) we set EY, be the x-least background for Q%, and ss2 = v(F(Q3)).

Now s51 = pu(Rs1) = pu(Qs1) < ss2. We claim that if EY # () then
Ss1 < Sg2. For otherwise s51 = s52, which implies Rs1 = Qs1 is type 1 or type
3, but then by 6.9, &51 is Dgi-standard, so Ef;’{l = (), contradiction. (Also if
EY £ (0 = EY, then ss0 < ¥1(0) = 851 < 852, by Subclaim 5.2.) The remaining
definitions and propagation of inductive hypotheses are like in Case 1.

If us > 1 then we next repeat the preceding subcases, working with Mso,
ms1, ete, in place of Ms1, ms0, etc. We iterate this until producing wj, @5 and
Egzug (as above, w} is non-v-low). This completes the definition of U [ (0 +1, 1).

CASE 4. us > 0 and Fs ¢ Eﬂ\r/[‘s and if § is .4 -stable and 95 < OR™® then
Ih(Es) < (95)Ns.

By symmetry.

CASE 5. us > 0and E5 € Eﬂ\r/[‘s and ¢ is .#-stable and 95 < ORM5 and (195{)]‘/[5 <
Ih(Es).

This case proceeds mostly like the preceding cases, but the first step is a
little different. Recall that here the reversed (7,0, 1h(Es))-dropdown sequence
begins with (Ms,0), (Ms,¥s), and since § is A -stable, (Dso, Es0) = iffo)éo(C, 26,
and recall that my < w and M is fully sound and either

~ mo =0 and M = 5% is type 3 with v(M) = p©, or
- M= €m0+1(S§C) is fully sound with p%ﬁl =p¢ < p%ﬁ.

We set E(Z;’{O = 0 and Dg; = Dsg, &s1 = 50, Ms1 = Mso = Mg = My, etc, so
Rs1 = Qs0- (We also set £51 = 1.) We will set

860 = 851 = pgm = ’%{0,50(/’0) = ’%{O,M(Pc) = g (U5).

If &1 is Dsp-standard then we also set E% = (), etc. Suppose otherwise. So A®
is non-C-standard, Rs1 = Qg0 = ig’o)él(M), and these models are w-sound. So
pC < pd' (by 6.9). We set EY = the x-least Ds1-nice witness G for Rs1, set
pred”(8,2),F, f like usual, set Dsy = f(F), and set &2 to be the & such that
Rs1 = €&, (5’?52). So either way, £so is Dgo-standard. After this we proceed as
before.

CASE 6. Otherwise (equivalently, us > 0 and Es ¢ E_]\:{“ and ¢ is .4 -stable and
95 < OR™ and (9])N° < 1h(E;)).

By symmetry.
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This completes the proof of part (ii) of Claim 5. In the proof of part (iv),

we need substitutes C,; for C,; and <[,; for <, (there is, however, no C,;

to consider, and we do not need the notation D,; or ]ﬁ)aj). We have the class
wellorder <" of W (which, however, need not be a class of W itself). Given
v € ORY  let C"W be the <" -least ultra-backgrounded construction of W with
last model RXV . We only define £, in the case that [0, a]7 drops in model (but
we always define &,; when j > 0).

Suppose [0, a]7r does not drop. In this case we determine C,o only after
selecting E7. We will have Q0 = L[I['E]Mg0 and o0 : My — Qo is elementary
and 740 000, = i) 40- Let v be least such that mao(In(E])) < ity ,0(OR(R,)).
Then we set Cao = i 40(C""). So in MY, Cao has last model L[E]|¢ for some
L[E]-cardinal ¢, and 7o (lh(E])) < C.

If [0, a7 drops or j > 0, then C,; is defined basically as before (though it
is more standard, because there is no @aj etc).

Now consider <j,;. Let f =iff ,;. (Note that f(<") need not make sense,
since <" need not be a W-class.) Given z,y € Mozfj, set ¥ <i,; y iff either (i)
rank(z) < rank(y), or (i) [rank(z) = rank(y) and letting 5 < OR" be least
such that z,y € f(V,@W), and letting <o be the <"-least wellorder of VI@W, then
(z,y) € f(<o)]. Clearly </,; is a wellorder of MY; we use this in place of <},;
when selecting Egj.

The rest is straightforward. This completes the proof of the theorem. O

6.25 Remark. Suppose W |= ZFC is an iterable premouse. Let L[E]" be the
output of the pm-ultra stack construction of W. Then we have the usual partial
converse to the fact that L[E]" inherits Woodins. That is, let § be Woodin in
L[E]. Then W |4 is generic for the extender algebra of L[E] at d, and d is Woodin
in L[E][W|d].

The natural analogue of [5, Theorem 3.2] also holds for ultra-backgrounded
constructions, and hence for the ultra-stack construction, assuming that exten-
ders cohere the relevant iteration strategy:

6.26 Theorem. Assume ZFC and let M be a countable, k-sound, (k,OR)-
iterable premouse, and X be a (k, OR)-iteration strategy for M. Suppose that
ig(X) =X UW(V, E for every short V-extender E.

Let C = (Sa) <, be an ultra-backgrounded construction. Then there is § < A
and (Ta),<¢ such that (i) To is a successor length tree via ¥ with So < M,
(i) if @ < € and So = MTe then b7~ drops in model, (iii) if € < X then b’ does
not drop in model.

Moreover, either:

(a) there is some ultra-backgrounded construction C, with last model Sy, such
that T/{C exists and b7> does not drop in model, or
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(b) the ultra-stack construction (Ra),cor 15 well-defined, and there is a length
OR tree U on M, via X, such that Ror = M (U).

Proof. The proof is like that of [5, Theorem 3.2]; there are also variants of this
argument in [11, §5] and elsewhere. Let C be an ultra-backgrounded construc-
tion. One constructs 7, by induction on o < A, until reaching either A\ or some
appropriate £ < A. The induction is straightforward except for when either S,
is active or « is non-standard, so we consider these cases.

CASE 1. S, is active and « is standard.

So So = (S, F) where S = Sg. Let F* be a background for F' (as in 6.3).
Let k : Ultg(S, F) — j(S) be the natural factor map; so v(F) < cr(k). Let
j =i%. and k = cr(j). We have T = T3 with S < ML; since « is measurable

and M countable, Ih(7) > & + 1. We may assume that 1h(G) < OR® for all
extenders G used in 7. Then j(5) < M| and by assumption, j(7) is via X.
Note 7' (k+1) < j(T) and j([0, £]7) = [0, (%)l (1), and [0, k)7 € [0, 5 (K)]j¢7),
so K <jc1) j(k). We have ii(;()ﬁ) [ P(k) C j, by the proof of termination of
comparison; in particular, k = cr(ii (Z’()ﬁ)
so (kH)MET = (k)MI | Clearly 0 = (k+)S < (k7)) and and S)0 = ML)|6.
Let v+ 1 = suced M) (k, j(k)) and E = E27). Then cr(E) = & and E [v(E) is
derived from j. Let v = min(v(E), v(F)). Then

). Note [0, j(x)];(7) has no drops > &,

En (M) x [V]<) = F .

SUBCASE 1.1. (kT)M{ =6 = (k*)S.

So E, F are compatible; that is, E|v = F [v. By the ISC for (S, F'), T does
not use any extender of index < OR® which is compatible with F.
SUBSUBCASE 1.1.1. j(S)||OR® = S.

Then T, j(7T) use the same extenders with index < OR?®. So by the previous
paragraph, OR® < Ih(E). If In(E) = OR®, then E)7) = E = F, so0 (S, F) <
M so To = §(T) [ (v + 1) is as desired. If In(E) > OR®, then by the ISC
applied to exZ-Y(T), and since S = e><JV‘(7—)||OR“‘;7 we get (S, F) < ex%(T), S0 we can
set To = 3(T) (7 + 1) with some 7.

SUBSUBCASE 1.1.2. j(S)||OR® # S.

Then F is type 1 or 3. Let v/ = v(F). By condensation arguments using k,
J(S)|v' is active with an extender G and S = Ult(j(S)|v', G)||A. It follows that

there is o/ such that 7' (v +1) < j(T) and E7, = G, but »/ < Ih(E?{"). Like
before, 1h(F) > v/, so Ih(E) > v/ (as 1h(G) = v'). So by the ISC applied to
exjyl(T), with respect to v/, and since lh(G) =/, (S, F) < M,Z,—H, which suffices.
SUBCASE 1.2. (kT)M{ > 0 = (k)5

Then cr(k) = 6, so F is type 1. We now argue with subsubcases much as
before, but using the (proofs of) [11, Theorems 4.11, 4.12, 4.15] in place of the

ISC. (In [11], premice are always assumed to be below a superstrong. But the
proofs adapt routinely to the superstrong setting.)
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This completes the construction of 7, in this case.

CASE 2. Now suppose instead that « is non-C-standard. So a =  + 1, and
letting p = pu(Sa), and T = T3, we have Sz = S,||(p1)% < MT. Let G be a
nice witness for S, and j = zg Then S, < j(Salp), s0 S, < MgéT), and since
J(T) is via X, this suffices to yield 7.

This completes the inductive construction of the trees 7.

Now suppose there is no ultra-stack construction as in part (a) of the the
“moreover” clause of the theorem. Then for every ultra-backgrounded con-

struction C and every a < 1h(C), 7L exists and if SS = 7o then b7e drops in
model. But then note that no ultra-backgrounded construction can break down;
that is, for each n < w, €,,(SS) is (n+1)-universal and €,,;1(S%) is (n+1)-solid.

Let (Ra),cor be the ultra-stack construction. We show by induction on «
that R, is well-defined and sound, and for each o € OR, there is a tree U, via
¥ such that R, < MY, and by taking U, of minimal length, then U, < Us for
a < (. This suffices, because then U = |J,cor Ua is as desired.

So suppose R, is defined and we have U, with R, < Mf;{oa. Let C be an
ultra-backgrounded construction with S§ = R,,.

Now R, <MY=, For suppose R, = M%=. Then because (a) fails, b= drops in
model, so R, is not sound. Let R = €, (M) (this exists and in fact R < Mg“
for some £). So R 4 R,. But R, = SE is produced by ultra-backgrounded
construction, so R is also, so by maximality of the ultra-stack construction,
R < R, a contradiction.

So Ry <MY=, Now consider the sound premice R which project to OR* and
form the stack R,4+1 above R,. These R are produced by ultra-backgrounded
construction, and R, < R, so we get Tg such that R < M7%, and note U, < Tg,
and it easily follows that R < MY« giving well-definedness of R,1. And note
we get either Uy 11 = Uy, or Usr1 = Uy~ (E) where 1h(E) = OR(Rq41).

Limit stages are easy. This completes the proof. O

7. Questions

Since condensation follows from solidity and normal iterability, we ask:

— Let m < w and let M be an m-sound, (m,w; + 1)-iterable premouse. Is
M (m + 1)-universal? Is M (m + 1)-solid?

— Let M be a 1-sound (0,w; + 1)-iterable premouse. Is M Dodd-solid?

We conjecture that the answer in each case is “yes”,*? at least if M has no
superstrong initial segments. However, it appears less clear how to prove these
things than it is condensation; if one attempts an approach similar to the proof
of condensation (from normal iterability) then, at least naively, structures arise

42The author has since confirmed this conjecture, including superstrongs; see [7].
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similar to bicephali B, but the premice involved may fail to be p(B)-sound.
Such generalizations of cephalanxes also arise. This lack of soundness makes
the analysis of these structures less clear than those considered in this paper.

One also uses (0, wy, w1 + 1)*-iterability of pseudo-premice to prove that they

satisfy the ISC. It seems that one might get around this by avoiding pseudo-
premice entirely (in the proof of 6.18), using bicephali and cephalanxes instead.

Extra difficulties also seem to arise here with superstrong premice.

43
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