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On the number of independent orders

Kota Takeuchi* and Akito Tsuboif

Abstract

We investigate a model theoretic invariant 7" ,(T), which was in-

troduced by Shelah[1], and prove that &7 ,(T) is sub-additive. When

srd

k™ (T) is infinite, this gives the equality <™ ,(T) = x. (T, answering
a question in [I]. We apply the same proof method to analyze another
invariant «,(T"), and show that it is also sub-additive, improving a

result in [1].

1 Introduction

It is a basic fact that if a theory T is unstable then we can find an unstable
1-formula ¢(z,y) that witnesses the instability of 7. (Recall that a formula
@(x,y) is called a 1-formula if the length |z| of z is 1.) Similar situations are
true for some other properties of theories, such as TP, TP, TP, IP, IP,
and SOP. Namely, if a theory T has one of these properties, then we can
find a 1-formula witnessing the property. So, it is of interest to know whether
such a 1-formula exists as a witness for other important properties of 7. The
present paper deals with this kind of question, and we are concerned with
the number of independent definable orders existing in the monster model
MofT.

Shelah [I] defined three invariants s} (1), k7',(T) and &7,(T'), where m

inp
is a positive integer. The first, second, and third invariants are concerning

the number of independent partitions, independent orders, and independent
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strict orders existing in M™, respectively. In [1], it was shown that x[,(T)
does not change its value as m varies (at least if it is an infinite regular
cardinal). Then it was asked if a corresponding result holds for #f; (T') and

Kerd(T) ([T, Questions 7.5 and 7.9]). The question about xj, (T') was solved
in [4]. Although the terminology is different, Chernikov essentially proved
the inequality wj, "™ (T') < w7, (T) x k7, (T), which yields s, (T) = kj,,(T)

if w7 (T) is infinite. Furthermore, he conjectured that the invariant is sub-

additive, i.e. kj"(T) + 1 < wj (T) + &j5,(T). This conjecture arose in
connection with [6], in which it was shown that the dp-rank is sub-additive.
It is known that dp-rank coincides with the rank counting the number of
independent partitions under the assumption of NIP. Several other invariants
(€.8. Kedts Kset) introduced in [I] were studied in [5], and similar type of results

were obtained.

It seems however that x7,(T") has not been studied well, and there seems
to be no answer to Shelah’s question on 77,(7). Since it has been shown
that if 7" is NIP then &[',(T) = s2',(T"), there is no difference between those
two invariants under the assumption of NIP. Under the assumption of NIP,
in [2], the condition «[',(T) < n was characterized by using the notion of
collapse of indiscernible sequences. In this paper we examine how the value
k7 .(T) changes as m changes without any assumption on 7" (such as NIP).
We will prove that x7",(7") is sub-additive, which gives a positive answer to a
question by Shelah. The concept of mutually indiscernible sequences plays a
central role in our proof technique. We will also see that the same technique
can be applied when analyzing 7",(7T), and will prove that the invariant is
also sub-additive. This gives an improvement of a result in [I] on &7,(T),
when it is finite.

Now, we explain some details of 7' ,(T"). A complete theory T is said to
have the strict order property if there is a formula ¢(xq, . . ., Tm_1, Y0, - - -, Yn—1)
and parameters b; € M" (i € w) such that ® := {@(M,b;) : i € w} becomes
a strictly increasing sequence of uniformly defined definable sets of M™,
where p(M,b;) = {a € M™ : M |= ¢(a,b;)}. Let &g = {D; : i € w} and
®; = {F; : i € w} be two such strictly increasing sequences consisting of sub-
sets of M". We say @ and ®; are independent if (D; 1\ D;)N(E;+1\ E;) # 0,
for any (i,7) € w?. We can naturally define the independence among a larger
number of ®;’s. Then k7.,(7T) is defined as the minimum cardinal s for which
there is no family {®; : ¢ < k} of such independent sequences. (See Defini-

tion 2 for a more precise definition.) We put rgd(1) = sup,e,, cq(T). If



there is a (non-trivial) definable order < on M, then clearly T has the strict
order property, and s 4(T) > n + 1. Indeed, for an increasing sequence
ap < ap <--- €M, if welet X;; = {(bo,...,bp—1) € M™ : b; < a;}, then
U, ={X,,:j €w} (i <n) will witness x4(T) > n+ 1.

We investigate the invariants 7 ,(7T") and x4(T"), and prove the following:
Theorem A. k7"(T) +1 < k7 (T) + £"4(T).
Theorem B. Suppose £™(T) > w. Then kguq(T) = kL 4(T) = 7(T).
Theorem C. k{"(T) + 1 < s (T) + sy (T).

2 Preliminaries

Let L be a language and T' a complete L-theory with an infinite model. We
work in a monster model M = T with a very big saturation. For a set
A C M, L(A) denotes the language obtained from L by augmented by the
constants for elements in A. Finite tuples in M are denoted by a,b,... .
The letters x,y, ... are used to denote finite tuples of variables. The length
of x is denoted by |z|. Formulas are denoted by ¢,,.... For a formula ¢
and a condition (x), we write ¢!f *) to denote the formula ¢ if (¥) is true,
and — if (x) is false. In this paper, we are mainly interested in formulas of
the form ¢(z,b), where b is a parameter from M. If |x| = m, this formula
o(z,b) (or ¢(x,y)) will be called an m-formula. The definable set defined by
(x,b) in M is denoted by p(M,b).

Standard set-theoretic notation will be used.

Definition 1. Let x be a (finite or infinite) cardinal. Let (p;(z;y;))icx be a
sequence of formulas, and (b; ;)iex jew @ sequence of tuples, where |b; ;| = |y
for all 4, j.

1. The pair ((wi(@;¥i))ien, (bij)ien jew) Will be called an ird-pattern of
width , if it satisfies:

(a) for any n € w®, {p;(x,b; ;)T V=70 i € k, j € w} is consistent.

2. The pair ((pi(2;Yi))ien, (bij)ienjew) Will be called an srd-pattern of
width x, if it satisfies:

(a) for any n € w*, {p;(x;b;;)TU27D) 1§ € g, j € w} is consistent,
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(b) for each i € k and j € w, (M, b; ;) T (M, b; j1i).

Definition 2. Let % € {ird, srd}. «7*(7) is the minimum cardinal x such
that (in 7T") there is no *-pattern of width x witnessed by m-formulas y;(z; y;)
(1 € k). We write k"(T') = oo, if there is no such k. Also k(T is defined as

Supméw '%T (T) .

Remark 3. 1. 4(T) > 1 if and only if there is an unstable formula
o(z,y) with |x| =m. kya(T) > 1 if and only if T is unstable.

2. kI(T) > 1 if and only if there is a p(x,y) with |x| = m having the
strict order property. kga(T) > 1 if and only if T has the strict order
property.

If kK < KI1,(T), then there are xk-many ¢;’s and a set B = (b; )iex jew
satisfying the conditions (a) and (b) of the item 2 in Definition[Il The condi-
tion (b) states that each ¢; defines a strict order on M™, and the condition
(a) states that the orders defined by ¢;’s are independent. If £ (T) = oo,
then there is a set {y;(x,y;) : ¢ < |T|"} witnessing the conditions. So, by
choosing an infinite subset of |T'|*, we can assume ; = ¢ for all i < w. Con-
versely, if kg.q(T) > w and if the witnessing formulas satisfy p; = ¢ (i < w),
then by compactness, we see that there are arbitrarily many independent
strict orders. Notice also that if k7',(T") = oo then T" has the independence

property.

Example 4. Let T be the theory of N = (N,0,1,+,-). Let ¢(z,v0,41) be
the formula asserting that the exponent of the yo-th prime in the prime fac-
torization of x is smaller than y;. Then, for each i, ®; := {p(M, 1, j)}; forms
an increasing sequence of definable sets. Moreover, ®,’s are independent, so

we have k! ,(T) = .

Indiscernibility is a substantial concept in modern model theory. In our
paper [3], a couple of results concerning the existence of an indiscernible tree
are presented. Here in this paper, the notion of mutual indiscernibility is
important.

Definition 5. A set {B; : i < k} of indiscernible sequences is said to be mu-
tually indiscernible over A if for every i < k, the sequence B; is indiscernible
over AUU, ;.. Bj-



The following proposition is simple to prove, but plays an important role
in our argument.

Proposition 6. For each i < k, let B; = (b;j);ew be an infinite sequence
of tuples of the same length. Let T'((X;)i<x) be a set of formulas, where
Xi = (%) jew (1 < k) and |z; ;| = |b;j|. We assume the following property
forT:

(*) if Bl is an infinite subsequence of B; (i < k) then (B))i<x realizes
T'((Xi)icx)-

Then, for any set A, we can find {C; :i < k} = T((X})i<x) that is mutually
indiscernible over A.

The following observation, shown by Proposition [f] is a key in our proof
of Theorem

Remark 7. Let Z denote Z or Z U {Zo0}. Then, there is an srd-pattern of
width x witnessed by a sequence (p;(x; y;))iex of formulas if and only if there
are tuples a and b; ; (i € k,j € Z) with the following properties:

1. Foralli e k and j < k € Z, p;(M,b; ;) C oi(M,b;);
2. {B; :i € k} is mutually indiscernible, where B; = (b; ;) ez;
3. Foralli € k and j € Z, M = ¢;(a,b; ;) if and only if j > 0.

In the equivalence above, we can also assume the following condition in ad-
dition to 1 —3.

4. {B; 4 i€ k}U{B;_ :i € k} is mutually indiscernible over a, i.e. B; ;
is indiscernible over {a}U B; - UlJ,; By and B _ is indiscernible over
{a} U BZ‘,_;_ U Uz’;ﬁz Bi’7 where Bi,—l— = (bi,j)jZO and BL_ = (bi,j>j<0-

Remark 8. Let (D;);er be an increasing sequence of sets in M™, where I is
a linearly ordered set. Then the following sequences are also increasing:

1. (D; N D)iey, where D is a subset of M™;

2. (n(D;))ier, where m : M™ — M™ is the projection (xg,...,Tn_1) —

(LUZ‘O, e ,$im71).



3 Main Results

In the following theorem, k, kg and k1 are arbitrary cardinals, but the inter-
esting case is when they are finite.

Theorem 9. Let k, kg and k1 be cardinals such that k+1 = kg+ k1. Suppose
that there is an srd-pattern of width k with formulas ;(x;y;) (i € k), where
x = xox1. Then, there is | € {0,1} for which we can find formulas ¥;(x;;y.)
(1 € k) witnessing the definition of srd-pattern of width k.

Proof. Let Z = 7Z U {£oo} and choose b;; (i € k,j € Z) and a satisfying
the conditions 1 — 4 in Remark [ We write a in the form a = aga;, where
lag| = |xo| and |a;1| = |z1]. For n € Z*, let

An(l’o,a,l) = {gpi(xo,al, bLj)iijn(i) 1€ I{,j c Z}
Then choose a maximal F' C k satisfying the following property:

(*) For any n € Z" with supp(n) C F (i.e.,, n(i) =0if i ¢ F), Ay (o, 1) is
consistent.

There are two complementary cases:

Case 1: Suppose |F| > ko. In this case the proof is straightforward for
[ = 0, since the formulas ¢;(xo;21y;) (i € F) and the tuples ¢;; = a1b;;
(1 € F,j € w) form an srd-pattern of width kge.

Case 2: Suppose |F| < kg. Then the set x \ F has the cardinality > &;.
Without loss of generality, we can assume k; C x \ F. In this case, for any
a € Ky, the extension F'U {a} D F does not satisfy (x). Namely, there is
n with supp(n) C F U {a}, for which the set A, (x,a1) is inconsistent. Fix
a € Ky for a while. Since {y;(M,a1,b;;) : j € Z} is a strictly increasing
sequence for each i, we can choose 19 € Z and m € Z \ {0} such that the
subset

{@i(o, ax, bi,no(i))a —pi(wo, ay, bi,no(i)—1> cie I}
U {Qpa (IO> ay, boc,m)a _‘<,0a(1'0> ay, ba,m—l)}
U {pi(wo, a1, bip), ~0i(x0, a1,0-1) i € &\ (FU{a})}

of A, is inconsistent. Since the other case is similar and in fact easier, we
assume m > 0. Then, by compactness, and since {B; ; : i € K} U{B;_ :



i € Kk} is mutually indiscernible over a, we can find finite sets Fy C F' and
Fy C g\ (FU{a}) such that

Ya(wo) = {@i(x0, a1, b)), ~i(T0, a1, b po(iy—1) : 1 € Fo}
U {@a(0, a1, ba,00); 70a(To, a1, ba0)}
U{@i(zo, a1, bi00), 70i(x0, a1,b; —o) 17 € F1}

Now, let
B* := {bi;}icrjez U {bi—co ticw\F U {bi oo tick\F

Then the parameters appearing in X, (x¢), other than B*, are a; and b,.
(The definition of B* does not depend on « and hereafter we work with the
language L(B*).) So we write X, as X, (¢, a1, ba). By preparing a variable
2o With |z4| = |ba,;], let ¥, (20, 21, 2o) be the formula A X, (o, 21, z4). Recall
that the set 3, (o, a1, b 0) is inconsistent. However, the set ¥, (x¢, a1, b —1)
is consistent, by our choice of F' and the condition (). By the condition 4 in
Remark [7], this means that ¢/ (2o, a1, b, ;) is consistent if and only if j < 0.
So, if we define

¢a(I1, Za) = (3%) ¢(/1(x07 T, Za)v

COé,j = bOé,—j—].)

then we have
M ): wa(alaca,j) <~ ] 2 0.

Since this is true for all a € ky, it follows that ((Ya)ack,, (Carj)acn,jez)
satisfies the condition 3 in Remark [l The condition 2 is easily shown, since
the sequences (¢, j)jez (o € K1) are mutually indiscernible over B*. Finally
the condition 1 follows from Remark [§ Hence, ((¢a)ack,, (Ca.j)acni.jez) IS an
srd-pattern of width k. O

Corollary 10. 1. k&7™(T) + 1 < k™y(T) + k24(T).

2. If k(T is infinite, then k™y(T) = k1 4(T) = kga(T).

Proof. We only prove the first item. We can assume '3 " (T) is finite, since

the infinite case is easier. By way of a contradiction, we assume &"{"(T) +
1 > &I(T) + KLq(T). Then there must be an srd-pattern of width x :=
KT 4 k2q(T) — 1 witnessed by (m + n)-formulas. By Theorem [0 using

the equation x + 1 = k4 (T) + K 4(T), we would have (i) the existence



of an srd-pattern of width s} (7") by m-formulas, or (ii) the existence of
an srd-pattern of width 7 ,(7") by n-formulas. In either case, we reach a
contradiction. O

The above argument can be applied to show the corresponding result
for k(7). The following theorem on I(T") gives an improvement of [I]
Theorem 7.10]. (In that book he investigated x!(7") when it is infinite.) In
the following theorem, k, ko and k; are any cardinals as before.

Theorem 11. Assume k+ 1 = kg + k1. Suppose that there is an ird-pattern
of width k with formulas ;(z;y;) (i € k), where © = xox1. Then, there is
I € {0,1} for which we can find formulas v¥;(x;;yl) (i € k) witnessing an
ird-pattern of width ;.

Proof. The outline of the proof is quite similar to that of Theorem [0l How-
ever, for completeness, the details of the proof are provided. In the present
proof, our linear order Z has the form Z = 7Z_ +Z+ 7., where both Z_ and
7. are copies of Z, and the order is defined so that Z_ < Z < Z...

Choose b;; (i € k,j € Z) and a = apa; satisfying the conditions 1 — 4 in
Remark [7l Then for n € Z*, consider the set A, (o, a;), which is defined in
the same way as in the proof of previous theorem. Again, choose a maximal
F' C k satistying the following property:

(**) For any n € Z* with supp(n) C F, A,(x¢, a1) is consistent.

Case 1: Suppose |F| > kg. The proof is straightforward as the previous
theorem so we skip this case.

Case 2: Suppose |F| < kg. Without loss of generality, we can assume
k1 C Kk \ F. In this case, for any a € k1, there is n with supp(n) C F U{a},
for which the set A, (x¢,a1) is inconsistent. By compactness, we can choose
finite sets Fy C F, F; C k\ (FU{a}), and U;,0; C Z (i € Fo U Fy U {a})
with the following properties:

1. U; < O;, for any 1;
3. The following set ¥, (x¢) is inconsistent:
{—i(zo, a1, bi5) i € Fo,j € Ui} U{wi(xo, a1, bi5) i € Fo, j € Os}
U{—¢@a(T0,a1,b;;) : 7 € Us} U{@al(zo,01,b;5) : j € Oa}
U{—mpi(zo,al, biJ—) 1€ Fl,j c UZ} U {api(xo,al,bi,j) 11 € Fl,j c Oz}

8



If U, <0 < O, holds, then ¥, must be consistent, by our choice of F. So,
since the other case is similarly proven, we can assume U} := {j € U, : 0 <
j} # 0. Moreover U, is assumed to be chosen so that |UJ| is minimum.

Since {B; 4 :i € k} U{B; _ :i € k} is mutually indiscernible over a, we
can assume

e U,0,CZ (i€ F);
e U, CZ_, O;CZy (i€r\(FU{a}));
e U, ={jelU,:j<0}CcZ,U={0,....k—2,k—1} C Z;
e O, CZy.
Now, let
B :={bj:ieF,jeZU{b,;:i€r\F,jeZ UZ}

Then the parameters appearing in 3, (%), other than B*, are a; and (ba, ;) jcy+-
So we write X, as (%o, a1, (baj)jer). Let ¥ (0,21, 2,) be the formula
A 2o (20, 1, 20). Recall that the set X, (2o, a1, (ba,;)jer) is inconsistent. How-

.....

! (20, a1, ¢ ) 1s consistent if and only if j < 0. The rest of the proof is
almost identical with that of srd-case. O

From this theorem we deduce the following corollary. The item 2 is es-
sentially shown in [1].

Corollary 12. 1. &™(T)+1 < k(T) 4 &1y(T).

2. If k(T is infinite, then kK4(T) = kiy(T) = kKia(T).
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