
ar
X

iv
:1

91
0.

13
18

6v
3

 [
m

at
h.

L
O

]
 2

6
O

ct
 2

02
0

COMPLETION OF CHOICE

VASCO BRATTKA AND GUIDO GHERARDI

Abstract. We systematically study the completion of choice problems in the
Weihrauch lattice. Choice problems play a pivotal rôle in Weihrauch com-
plexity. For one, they can be used as landmarks that characterize important
equivalences classes in the Weihrauch lattice. On the other hand, choice prob-
lems also characterize several natural classes of computable problems, such
as finite mind change computable problems, non-deterministically computable
problems, Las Vegas computable problems and effectively Borel measurable
functions. The closure operator of completion generates the concept of total
Weihrauch reducibility, which is a variant of Weihrauch reducibility with total
realizers. Logically speaking, the completion of a problem is a version of the
problem that is independent of its premise. Hence, studying the completion
of choice problems allows us to study simultaneously choice problems in the
total Weihrauch lattice, as well as the question which choice problems can be
made independent of their premises in the usual Weihrauch lattice. The out-
come shows that many important choice problems that are related to compact
spaces are complete, whereas choice problems for unbounded spaces or closed

sets of positive measure are typically not complete.

Keywords: Weihrauch complexity, computable analysis, choice problems,
classes of computable problems.
MSC classifications: 03B30, 03D30, 03D78, 03F60.

Contents

1. Introduction 2
2. Precompleteness, Completeness and Retraceability 5
3. Total Weihrauch Reducibility 9
4. Completion, Totalization and Co-Completion 10
5. Choice Problems 16
6. Choice on Compact Spaces 17
7. Positive Choice 19
8. Choice on the Natural Numbers 21
9. Lowness 24
10. Choice on Euclidean Space 26
11. Choice on Baire Space 27
References 29

Date: October 27, 2020.

1

http://arxiv.org/abs/1910.13186v3

2 V. BRATTKA AND G. GHERARDI

1. Introduction

Choice problems play a crucial rôle in Weihrauch complexity. A recent survey
on the field can be found in [9]. A choice problem is a problem of the logical form

(∀ closed A ⊆ X)(A ∈ D =⇒ (∃x ∈ X)x ∈ A).

Here X is typically a computable metric space, the closed set A ⊆ X is typically
given by negative information in order to make the statement non-trivial, and the
premise D could be a property such as non-emptiness, sometimes combined with
additional properties, such as positive measure, connectedness, etc. The multi-
valued Skolem function of such a choice problem is a function of the form

CX :⊆ A−(X) ⇒ X,A 7→ A,

where A−(X) denotes the the space of closed subsets of X with respect to negative
information and dom(CX) = {A : A 6= ∅} is a particular D. If the domain is further
restricted to sets of positive measure or connected sets, then we denote the problem
by PCX and CCX , respectively. By KX we denote compact choice that considers
compact sets with respect to negative information. Many basic systems from reverse
mathematics [22] have certain choice problems as uniform counterparts. Also some
classes of problems that are computable in a certain sense can be characterized as
cones below certain choice problems in the Weihrauch lattice. The Table 1 gives a
survey on such correspondences (see [9] for further details).

choice problems reverse mathematics classes of problems
C1 RCA

∗
0 computable

KN BΣ0
1

CN IΣ0
1 finite mind change computable

C2N WKL
∗ non-deterministically computable

PC2N WWKL
∗ Las Vegas computable

CNN ATR0 effectively Borel measurable functions

Table 1. Weihrauch complexity and reverse mathematics

We assume that the reader is familiar with Weihrauch reducibility ≤W. The
statement f ≤W g roughly speaking expresses that the problem f can be computably
reduced to the problem g in the sense that each realizer of g computes a realizer
of f in a uniform way (see [9]). In [6] we have introduced the closure operator of
completion f 7→ f that induces total Weihrauch reducibility ≤tW by

f ≤tW g : ⇐⇒ f ≤W g.

Total Weihrauch reducibility ≤tW is a variant of the usual concept of Weihrauch
reducibility ≤W and it can be directly defined using total realizers [6]. Our main
motivation for studying this total variant of Weihrauch reducibility and the com-
pletion operator f 7→ f is that one can obtain a Brouwer algebra in this way. More

precisely, if the completion operator is combined with the closure operator f 7→ f̂

of parallelization, then the resulting lattice structure is a Brouwer algebra, i.e., a
model of some intermediate logic that, like in the case of the Medvedev lattice,
turns out to be Jankov logic [6].

Formally, the completion f : X ⇒ Y of a problem f :⊆ X ⇒ Y is defined by

f(x) :=

{
f(x) if x ∈ dom(f)
Y otherwise

,

COMPLETION OF CHOICE 3

TCNN

CNN

CNN

lim′

lim

L

L CR

CR

PCR

PCR

PC2N

PC2N

PCC[0,1]

PCC[0,1]

C2N

CC[0,1]

SORT

C
′
N

C
′
N

TCN

CN

CN

KN LPO

LPO
′

C2

C1

C0

WBWT2

(c)

K
′
N ∗ K′

N

(b)

(a)

(c) (a)

Figure 1. Basic problems and their completions in the Weihrauch lattice

i.e., by a totalization of f on the completions X,Y of the corresponding types.1

Logically, the completion f of a problem f can be seen as a way to make f inde-
pendent of its premise. For choice problems this means to consider them in the
form

(∀A ∈ A−(X))(∃x ∈ X)(A ∈ D =⇒ x ∈ A),

where the existence of x is now independent of the premise A ∈ D. If we use
intuitionistic logic, then we cannot just export the quantifier without changing the
meaning of the formula. Likewise, the computational content of the formula with
the exported quantifier is different from the original one.

1The completion of types has interesting independent applications and was recently introduced
and used by Dzhafarov [16] to show that a strong variant ≤sW of Weihrauch reducibility actually
forms a lattice structure.

4 V. BRATTKA AND G. GHERARDI

The main question that we study in this article is: which choice problems CX

and their variants are complete, i.e., when do we obtain CX ≡W CX?
Some examples of complete and incomplete choice problems are the following:

• Complete choice problems: Cn for n ≥ 1, KN, C2N , CC[0,1].
• Incomplete choice problems: C0,CN,CR,CNN ,PC2N ,PCC[0,1].

From the perspective of a complete problem its lower cones in the Weihrauch
lattice and in the total Weihrauch lattice coincide. Together with the notion of
completeness we also study the notion of co-completeness. For co-complete prob-
lems the upper cones in the two lattices coincide. Since many important problems
are either complete or co-complete or even both, we obtain very similar reducibility
relations between important choice problems in the usual and the total Weihrauch
lattice. The incomplete problems in Figure 1 are all shown in dashed boxes to-
gether with their completions. If we disregard the completions, then all relations
between any two problems shown in Figure 1 are the same for ordinary Weihrauch
reducibility ≤W and its total variant ≤tW, except those that involve the weak
Bolzano-Weierstraß theorem WBWT2 on the space {0, 1}.

However, a certain amount of expressiveness is lost by the transition from the
ordinary Weihrauch lattice to its total variant:

(1) Finite mind change computable problems and Las Vegas computable prob-
lems can be characterized as lower cones with Weihrauch reducibility ≤W,
but not with total Weihrauch reducibility ≤tW.

(2) Low problems can be characterized as lower cones with strong Weihrauch
reducibility ≤sW, but not with strong total Weihrauch reducibility ≤stW.

(3) Limit computable problems and non-deterministically computable prob-
lems can be characterized as lower cones for all mentioned reducibilities.

We provide a list of some references for some crucial reductions and separations
given in Figure 1. Several further references can be found in the survey [9].

(a) In Corollary 5.3 we prove that in general CX ≤sW CX ≤sW TCX ≡sW TCX

holds. In Theorem 11.6 we provide the necessary separations for X =
NN and in Corollary 8.3 the corresponding separations for X = N. The
reduction lim′ ≤W CNN follows, for instance, from [2, Theorem 7.7]. The
reduction TCN ≤W K

′
N∗K

′
N follows from Corollary 8.10 and Proposition 8.13.

(b) Neumann and Pauly introduced SORT and proved CN <W SORT<W lim
[21, Proposition 24]. This is improved by Corollary 8.16, which yields
CN ≤W SORT. The reduction SORT≤W K

′
N∗K

′
N follows from Corollary 8.10

and Proposition 8.13. The reduction CC[0,1]≤W SORT was proved in [12,
Proposition 16].

(c) The reduction CR ≤W L was proved in [2, Corollary 4.9, Theorem 8.7]. The

separation of L and L and, in fact, several other separations in the dia-
gram follow, sinceWBWT2 6≤W L by Proposition 9.5 andWBWT2 ≤W CN by
Proposition 8.8. The problemWBWT2 was introduced in [11]. By [8, Corol-
lary 11.11] we have BWT2 ≡sW LLPO

′ and henceWBWT2 ≤W BWT2 ≤W LPO
′.

In the following section 2 we continue the study of precomplete representations
that was started in [6]. We characterize represented spaces that admit total pre-
complete representations as spaces that allow computable multi-valued retractions
from their completions onto themselves. We call such spaces multi-retraceable. In
section 3 we briefly recall some basic facts about total Weihrauch reducibility that
were provided in [6]. In section 4 we continue the study of completion of prob-
lems that was started in [6] and we introduce the notion of co-completeness and
co-totality. In particular, we introduce a criterion that is sufficient to guarantee
co-completeness and co-totality for jumps of non-constant discrete functions. In

COMPLETION OF CHOICE 5

section 5 we start to study the main theme of this article, namely the completion
of choice problems. We formulate a number of results that hold for general choice
problems and in section 6 we focus on choice on compact spaces. While choice on
Cantor space, on non-empty finite spaces and connected choice on the unit interval
are complete, most other choice principles that we study are incomplete. In sec-
tion 7 we establish incompleteness of choice problems for sets of positive measure
and in section 8 we establish incompleteness of choice for natural numbers. In sec-
tion 9 we briefly discuss lowness and we show that the low problem L := J

−1 ◦ lim
is not complete. Finally, in section 10 we discuss variants of choice on Euclidean
space and in section 11 choice on Baire space.

2. Precompleteness, Completeness and Retraceability

We recall that a represented space (X, δ) is a set X together with a surjective
(partial) map δ :⊆ NN → X , called the representation of X . For the purposes of our
topic so-called precomplete representations are important. They were introduced
by Kreitz and Weihrauch [19] following the concept of a precomplete numbering
introduced by Eršov [17]. We recall some results on precomplete representations
from [6].

Definition 2.1 (Precompleteness). A representation δ :⊆ NN → X is called pre-
complete, if for any computable F :⊆ NN → NN there exists a total computable
G : NN → NN such that δF (p) = δG(p) for all p ∈ dom(F).

We recall that for two representations δ1, δ2 of the same set X we say that δ1 is
computably reducible to δ2, in symbols δ1 ≤ δ2, if and only if there is a computable
F :⊆ NN → NN such that δ1 = δ2F . We denote the corresponding equivalence by
≡.

For p ∈ NN we denote by p− 1 ∈ NN∪N∗ the sequence or word that is formed as
concatenation of p(0)− 1, p(1)− 1, p(2)− 1,... with the understanding that −1 = ε

is the empty word. If (X, δX) is a represented space, then the precompletion δ
℘
X of

δX is defined by δ
℘
X(p) := δX(p− 1) for all p ∈ NN such that p− 1 ∈ dom(δX). In

[6, Proposition 3.4] we proved that δ℘X is always precomplete and satisfies δ℘X ≡ δX .
There are also many natural examples for precomplete representations, for in-

stance it is not hard to see that the standard representation of a second-countable
T0–space is precomplete, if defined appropriately (see [23, Lemma 3.4.8 (6)]).

Example 2.2. For every second-countable T0–space X with a countable subbase
(Un)n∈N we can define a representation δX :⊆ NN → X by

δX(p) = x : ⇐⇒ {n ∈ N : x ∈ Un} = {n ∈ N : n+ 1 ∈ range(p)}.

The representation δX is precomplete.

We will also need the fact that other classes of functions can be extended to total
ones under precomplete representations. In [6] we have introduced the following
concept.

Definition 2.3 (Respect for precompleteness). We say that a set P of functions
F :⊆ NN → NN respects precompleteness, if for every precomplete representation δ

and any function F ∈ P there exists a total function G ∈ P such that δF (p) = δG(p)
for all p ∈ dom(F).

In [6, Proposition 3.6] we proved that the classes of computable, continuous,
limit computable, Borel measurable and non-uniformly computable partial func-
tions F :⊆ NN → NN respect precompleteness. Later in Corollaries 8.4 and 9.3
we are going to prove that functions that are computable with finitely many mind
changes and low functions do not respect precompleteness.

6 V. BRATTKA AND G. GHERARDI

If (X, δX) is a represented space, then its completion (X, δX) is defined by X :=
X ∪ {⊥}, where ⊥ 6∈ X and δX(p) := δ

℘
X(p) if p ∈ dom(δ℘X) and δX(p) := ⊥

otherwise. The concept of completion was introduced by Damir Dzhafarov in [16]
with a slightly different but equivalent construction. The construction used here was
introduced in [6]. We note that strictly speaking X does not only depend on X , but
also on the underlying representation. That is, the completions with respect to two
computably equivalent representations are not necessarily computably equivalent.

By a problem f :⊆ X ⇒ Y we mean a partial multi-valued map f :⊆ X ⇒ Y

on represented spaces (X, δX) and (Y, δY). We recall that composition of problems
f :⊆ X ⇒ Y and g :⊆ Y ⇒ Z is defined by

g ◦ f(x) := {z ∈ Z : (∃y ∈ f(x)) z ∈ g(y)}

for all x ∈ dom(g ◦ f) := {x ∈ dom(f) : f(x) ⊆ dom(g)}. For two problems f :⊆
X ⇒ Y and g :⊆ X ⇒ Z with identical source space X we define the juxtaposition
(f, g) :⊆ X ⇒ Y ×Z by (f, g)(x) := f(x)×g(x) and dom(f, g) := dom(f)∩dom(g).
If f, g :⊆ NN ⇒ NN are problems on Baire space, then we also call 〈f, g〉 := 〈 〉◦(f, g)
the juxtaposition of f and g.

We say that a function F :⊆ NN → NN is a realizer of f , if δY F (p) ∈ fδX(p)
for all p ∈ dom(fδX). We denote this by F ⊢ f . We say that f is computable if it
has a computable realizer. Other notions, such as continuity, Borel measurability
and so forth that are well-defined for functions F :⊆ NN → NN are transferred in
an analogous manner to problems f :⊆ X ⇒ Y .

We also need the notion of a (multi-valued) retraction. For Y ⊆ X we call
r : X ⇒ Y a retraction (onto Y), if r(x) = x for all x ∈ Y . Often retractions
are even single-valued. We call a represented space retraceable if it is a computable
retract of its own completion.

Definition 2.4 (Retraceability). A represented space (X, δX) is called multi-
retraceable if there is a computable retraction r : X ⇒ X , and (X, δX) is called
retraceable if there is a single-valued computable retraction r : X → X .

In [6, Corollary 3.10] we proved that δX is always precomplete and the injection

ι : X → X is a computable embedding. We recall that a computable embedding is a
map f : X → Y that is computable, injective and has a partial computable inverse.
A computable isomorphism is a computable embedding that is bijective.

Corollary 2.5 (Completion). For every represented space (X, δX) the completion
δX is a precomplete total representation and ι : X → X, x 7→ x is a computable
embedding.

Sometimes we will have to work with the double completion X , which is not
isomorphic to X, since it has an extra ⊥–element. However, there is always a com-

putable retraction r : X → X. In fact, we can prove the following characterizations
of multi-retraceable spaces.

Proposition 2.6 (Multi-retraceability). Let (X, δX) be a represented space. Then
the following are equivalent:

(1) X admits a precomplete total representation δ : NN → X with δ ≡ δX .
(2) All computable f :⊆ NN → X have total computable extensions g : NN → X.
(3) For all represented spaces Y and all computable f :⊆ Y ⇒ X there exists a

total computable g : Y ⇒ X with g(y) ⊆ f(y) for all y ∈ dom(f).
(4) X is multi-retraceable, i.e., there is a computable retraction r : X ⇒ X.

Proof. “(1)=⇒(2)” Let δ be a total and precomplete representation of X with
δ ≡ δX . Let F :⊆ NN → NN be a computable realizer of f :⊆ NN → X . Then there

COMPLETION OF CHOICE 7

exists a total computable G : NN → NN with δF (p) = δG(p) for all p ∈ dom(F),
since δ is precomplete. Since δ is total, G is actually a realizer of a function
g := δG : NN → X that extends f .
“(2)=⇒(3)” Let f :⊆ Y ⇒ X be computable for some represented space (Y, δY).
Then f has a computable realizer F :⊆ NN → NN. Then f ′ := δX ◦F :⊆ NN → X is
computable and by (2) it admits a total computable extension g′ : NN → X . Then
g := g′ ◦ δ−1

Y : Y ⇒ X is computable and satisfies g(y) ⊆ f(y) for all y ∈ dom(f).

“(3)=⇒(4)” If we apply (3) to the partial computable inverse ι−1 :⊆ X → X that
exists according to Corollary 2.5, then we obtain the desired computable retraction
r : X ⇒ X .
“(4)=⇒(1)” Let δX be the total completion of δX . Let R : NN → NN be a com-

putable realizer of a retraction r : X ⇒ X and let S :⊆ NN → NN be a computable
realizer of the embedding ι : X → X that exists according to Corollary 2.5. Then
δ := δX ◦ S ◦R is a total representation of X that extends δX |X . Hence δ ≡ δX |X .
On the other hand, δX |X ≡ δX by Corollary 2.5. We still need to prove that δ is

precomplete. Let F :⊆ NN → NN be a computable function. Since δX is precom-

plete by Corollary 2.5, it follows that there is a total computable G : NN → NN

with δX ◦ S ◦ R ◦ F (p) = δX ◦ G(p) for all p ∈ dom(S ◦ R ◦ F) = dom(F). We

note that S ◦ R ◦ F (p) ∈ dom(δX |X) and hence G(p) ∈ dom(δX |X). We obtain
δ ◦F (p) = δX ◦G(p) = δ ◦G(p) for all p ∈ dom(F), since δ is an extension of δX |X .
Thus δ is precomplete. �

This result shows that the notion of multi-retraceability only depends on the
equivalence class of δX , unlike the notion of completion X which also depends
on the explicit underlying representation. For multi-retraceable spaces X there is
not just a computable embedding ι : X → X , but also a computable retraction
r : X ⇒ X . Hence, these spaces are closer to being isomorphic to their own
completion than arbitrary represented spaces.

Since by Corollary 2.5 X is always a represented space with a total precomplete
representation, it follows that this space is an example of a retraceable space.

Corollary 2.7 (Retraction). For every represented space X there is a computable

retraction r : X → X, i.e., X is retraceable.

Proof. The representation δX of X is total. Hence the names of ⊥ with respect to

the representation δ
X

of X = X∪{⊥} are exactly those names p ∈ NN that contain

at most finitely many digits different from zero. Hence, a retraction r : X → X

can be realized basically by the map F :⊆ NN → NN, p 7→ p− 1, where the output
is filled up with zeros if not enough non-zero content in p becomes available. This

extends F to a total computable map. That is, names of the bottom element ⊥ ∈ X

are mapped to names of the bottom element ⊥′ ∈ X = X ∪{⊥′} and otherwise the
identity is realized, i.e., r|X = idX . Hence, r is a computable retraction. �

In particular, X is actually a retract of X in the topological sense.
By Proposition 2.6 multi-retraceability is a rather strong condition and we cannot

expect that too many spaces satisfy this condition. For instance, NN is not multi-
retraceable, since there are partial computable F :⊆ NN → NN that do not have
total computable extensions. This also shows that there are spaces that admit total
representations, but no representation that is total and precomplete simultaneously.
We assume that every represented space is endowed with the final topology of
the representation. The following result shows that multi-retraceable spaces are
necessarily compact (i.e., every open cover has a finite subcover; we do not require
Hausdorffness).

8 V. BRATTKA AND G. GHERARDI

Proposition 2.8 (Compactness). Let (X, δX) be a multi-retraceable space. Then
there is a representation δ : 2N → X such that δX ≡ δ. In particular, X is compact.

Proof. Let us assume that δX is precomplete and total. We consider the computable
partial map F :⊆ 2N → NN defined by

F (0k01n0+10k1+11n1+10k2+1...) := n0n1n2...

for all ni, ki ∈ N with i ∈ N. Since δX is precomplete, there is a total computable
G : NN → NN with δXF (p) = δXG(p) for all p ∈ dom(F). We let δ := δXG|2N .
This defines a total representation δ : 2N → X , since δX is total, and δ ≤ δX
holds by definition. For the inverse direction we consider the computable map
H : NN → 2N, p 7→ 1p(0)+101p(1)+101p(2)+1..., which satisfies δX = δH and hence
δ ≡ δX . This implies that δ is continuous with respect to the final topology of δX
and hence X = δ(2N) is compact. �

We note that the space 2N itself is not multi-retraceable by Proposition 2.6, since
not every computable function f :⊆ NN → 2N has a total computable extension.
Hence, compactness is far from being sufficient for multi-retraceability.

Since every space X is retraceable, it is also compact. We can say more in this
case. The spaces X are also connected and hence they can be seen as simultaneous
one-point compactification and connectification of X . However, topologically, this
is not all too interesting, as the topology of X is always the indiscrete topology. By
n̂ = nnn... ∈ NN we denote the constant sequence with value n ∈ N.

Proposition 2.9 (Indiscrete topology). Let X be a represented space. The topology
of X is {∅, X}.

Proof. On the one hand, the special point ⊥ ∈ X is a member of every non-empty
open set, as any prefix of a name of a point can be extended to a name of ⊥ by
extending it with zeros. More precisely, if U ⊆ X is open and non-empty, then there
exists a finite prefix w ∈ N∗ such that wNN ⊆ δ−1

X
(U) and hence ⊥ = δX(w0̂) ∈ U .

On the other hand, there are names p of ⊥ that start just with zeros and hence any
finite prefix of p can be extended to a name of any point in X . That is, if ⊥ ∈ U ,
then 0̂ ∈ δ−1

X
(U) and hence 0np ∈ δ−1

X
(U) for every p ∈ NN and a suitable n ∈ N.

Since for every x ∈ X there is some p with δX(0np) = x, it follows that x ∈ U .

Hence, the only possible non-empty open set is X. �

For many represented spaces X we cannot expect computable single-valued re-
tractions r : X → X to exist, not even multi-valued ones. Sometimes, there are at
least retractions with weaker computability properties and we give two examples.

Proposition 2.10 (Special retractions). Let (X, δX) be a represented space and
δX total. There are retractions with the given properties:

(1) r : N → N that is computable with finitely many mind changes,

(2) r : NN → NN that is limit computable,
(3) r : X → X that is limit computable.

Proof. (1) Given a name p of a point in N we generate a name of 0 ∈ N until we
find the first non-zero entry n+ 1 = p(i) for some i ∈ N, in which case we change
our mind to a name of n ∈ N. This describes a finite mind change computation of
a retraction r : N → N.
(2) Given a name p of a point in NN we generate a name of 0̂ ∈ NN that we overwrite
with all digits of p − 1 whenever we find non-zero content in p. This describes a

limit computation of a retraction r : NN → NN.
(3) Follows from (2) since δX is total. �

COMPLETION OF CHOICE 9

3. Total Weihrauch Reducibility

In this section we are going to recall the definition of Weihrauch reducibility
and of total Weihrauch reducibility, which was introduced in [6]. We write F ⊢t f ,
if F is a total realizer of f . We now recall the definition of ordinary and strong
Weihrauch reducibility on problems f, g, which is denoted by f ≤W g and f ≤sW g,
respectively, and we recall the two new concepts of total Weihrauch reducibility and
strong total Weihrauch reducibility, which are denoted by f ≤tW g and f ≤stW g,
respectively.

Definition 3.1 (Weihrauch reducibility). Let f :⊆ X ⇒ Y and g :⊆ U ⇒ V be
problems. We define:

(1) f ≤W g :⇐⇒ (∃ computable H,K :⊆ NN → NN)(∀G ⊢ g) H〈id, GK〉 ⊢ f .
(2) f ≤sW g :⇐⇒ (∃ computable H,K :⊆ NN → NN)(∀G ⊢ g) HGK ⊢ f .
(3) f ≤tW g :⇐⇒ (∃ computable H,K :⊆ NN → NN)(∀G ⊢t g) H〈id, GK〉 ⊢t f .
(4) f ≤stW g :⇐⇒ (∃ computable H,K :⊆ NN → NN)(∀G ⊢t g) HGK ⊢t f .

For (3) and (4) we assume that we replace each of the given representations of
X,Y, U and V by a computably equivalent precomplete representation of the cor-
responding set.

We call the reducibilities ≤W and ≤sW partial in order to distinguish them
from their total counterparts ≤tW and ≤stW. We note that precompleteness is
not required or relevant in the partial case, but it can be assumed without loss of
generality since the concept of partial (strong) Weihrauch reducibility is invariant
under computably equivalent representations [5, Lemma 2.11]. In [6, Corollary 4.3]
we have proved that due to precompleteness in the definition above also ≤tW and
≤stW are invariant under equivalent representations. We have also proved that the
definition does not depend on the choice of the precomplete representation in the
equivalence class and that it yields preorders ≤tW and ≤stW.

We have also proved in [6, Corollary 4.7] that the partial Weihrauch reductions
imply their total counterparts in the following sense.

Corollary 3.2 (Partial and total Weihrauch reducibility). Let f and g be problems.
Then f ≤W g =⇒ f ≤tW g and f ≤sW g =⇒ f ≤stW g.

This means that all positive results that hold for a partial version of Weihrauch
reducibility can be transferred to the corresponding total variant.

We note that the reducibilities ≤tW and ≤stW share similar properties as ≤W

and ≤sW when it comes to the preservation of computability or other properties.
We say that a class C of problems is preserved downwards by a reducibility ≤ for
problems if f ≤ g and g ∈ C imply f ∈ C. In [6, Proposition 4.9] we proved that
computability, continuity, limit computability, Borel measurability and non-uniform
computability are preserved downwards by ≤tW.

A class C of functions F :⊆ NN → NN constitutes a property of problems that
is preserved downwards by total Weihrauch reducibility if the following conditions
are satisfied: C contains the identity, is closed under composition with computable
functions, is closed under juxtaposition with the identity and C respects precom-
pleteness. Later we prove that finite mind change computability and Las Vegas
computability are not preserved downwards by ≤tW, whereas non-deterministic
computability is preserved downwards.

10 V. BRATTKA AND G. GHERARDI

4. Completion, Totalization and Co-Completion

In this section we recall the definition of the closure operation f 7→ f on (strong)
Weihrauch reducibility that was introduced in [6] and we prove some further prop-
erties of it. For the definition of the completion f we use the completion X of a
represented space.

Definition 4.1 (Completion). Let f :⊆ X ⇒ Y be a problem. We define the
completion of f by

f : X ⇒ Y , x 7→

{
f(x) if x ∈ dom(f)
Y otherwise

We note that the completion f is always pointed, i.e., it has a computable point
in its domain. This is because ⊥ ∈ X is always computable (as it has the constant
zero sequence as a name).

In [6, Lemma 5.2] we have proved that completion generates total Weihrauch
reducibility in the following sense.

Lemma 4.2 (Completion and total Weihrauch reducibility). For all problems f, g:

f ≤W g ⇐⇒ f ≤W g ⇐⇒ f ≤tW g and f ≤sW g ⇐⇒ f ≤sW g ⇐⇒ f ≤stW g.

Thus, we could define total Weihrauch reducibility also using the completion
operation and partial Weihrauch reducibility.

In [6, Proposition 5.4] we also proved that completion is a closure operator with

respect to ≤tW, i.e., f ≤tW f , f ≤tW f and f ≤tW g =⇒ f ≤tW g. An analogous
result holds for ≤stW.

It is clear that every f is strongly totally equivalent to its completion.

Corollary 4.3. f ≡stW f for every problem f .

In the study of total Weihrauch reducibility the degrees that have identical cones
with respect to partial and total Weihrauch reducibility play an important rôle.
Hence, we introduce a name for such degrees.

Definition 4.4 (Complete problems). A problem f is called complete if f ≡W f

and strongly complete if f ≡sW f .

It is straightforward to derive the following characterization of completeness,
which shows that from the perspective of a complete problem the lower cones in
the Weihrauch lattice and the total Weihrauch lattice are indistinguishable (see
also [6, Theorem 5.7]).

Proposition 4.5 (Completeness). Let g be a problem. Then the following hold:

(1) g complete ⇐⇒ (∀ problems f)(f ≤W g ⇐⇒ f ≤W g).
(2) g strongly complete ⇐⇒ (∀ problems f)(f ≤sW g ⇐⇒ f ≤sW g).

Examples of complete problems are abundant. In [6, Proposition 5.8] complete-
ness was proved, e.g., for the Turing jump operator J and and the binary sorting
problem SORT that was introduced and studied by Neumann and Pauly [21]. It
was also proved that problems such as WBWT2,ACCX ,PA and MLR (see [10] for
definitions) are complete. We will see many further examples in form of complete
choice problems that we study systematically in section 5.

Proposition 4.6 (Complete problems). The following problems are all strongly
complete:

(1) J : NN → NN, p 7→ p′,
(2) lim :⊆ NN → NN, 〈p0, p1, p2, ...〉 7→ limn→∞ pn,
(3) LPO : NN → {0, 1}, LPO(p) = 0 : ⇐⇒ (∃n ∈ N) p(n) = 0,

COMPLETION OF CHOICE 11

(4) SORT : 2N → 2N with

SORT(p) :=

{
0k1̂ if p contains exactly k ∈ N zeros

0̂ if p contains infinitely many zeros
.

(5) WBWT2 : 2N ⇒ 2N, p 7→ {q ∈ 2N : limn→∞ q(n) is a cluster point of p}.

These results show that the cones below the given problems are identical in
the total and partial Weihrauch lattices. It is known, for instance, that f is limit
computable if and only if f ≤W lim [9]. Hence, an analogous statement holds for
≤tW, since lim is complete.

One should not come to the incorrect conclusion that all functions are complete.
Here is a counter example, which is based on the fact that J−1 :⊆ NN → NN has no
computable points in its domain.

Example 4.7. J
−1 <W J

−1.

The operation of completion is somewhat related to totalization2. Totalization
is not a closure operator, but it is sometimes easier to handle because it does not
involve completions of spaces.

Definition 4.8 (Totalization). For every problem f :⊆ X ⇒ Y we denote by

Tf : X ⇒ Y, x 7→

{
f(x) if x ∈ dom(f)
Y otherwise

the total version or totalization of f .

If (X, δX) and (Y, δY) are represented spaces and f :⊆ X ⇒ Y is a problem, then
we call f r := δ−1

Y ◦f ◦δX :⊆ NN ⇒ NN the realizer version of f . It satisfies f r≡sW f

since f r has exactly the same realizers as f . So, f r can be seen as the Baire space
version of f . It is clear that totalization is closely related to the completion, as we
have the following obvious result.

Lemma 4.9 (Completion and totalization). f ≡sW Tf r holds for every problem
f :⊆ X ⇒ Y provided f r is formed with respect to the precompletions of the original
representations of X and Y .

Proof. We consider the represented spaces (X, δX) and (Y, δY). We obtain the

realizer version f
r
: NN ⇒ NN, given by

f
r
(p) = δ−1

Y
◦ f ◦ δX(p) =

{
(δ℘Y)

−1 ◦ f ◦ δ℘X(p) if p ∈ dom(f ◦ δ℘X)
NN otherwise

.

If f r = (δ℘Y)
−1 ◦ f ◦ δ℘X , then we obtain f ≡sW f

r
= Tf r. �

In other words, completion can be seen as a totalization of the realizer version
with respect to precomplete representations. More generally, the two operations of
completion and totalization coincide under certain relatively special assumptions.

Lemma 4.10 (Completion and totalization). Let f :⊆ X ⇒ Y be a problem. Then:

(1) f ≤sW Tf if X is multi-retraceable,
(2) Tf ≤sW f if Y is multi-retraceable.

Proof. We note that ιX : X → X, x 7→ x and ιY : Y → Y , y 7→ y are computable
by Corollary 2.5. If X is multi-retraceable, then by definition there is a computable
retraction rX : X ⇒ X . It is clear that ιY ◦ Tf ◦ rX(x) ⊆ f(x) for all x ∈ X and

hence f ≤sW Tf . If Y is multi-retraceable, then there is a computable retraction
rY : Y ⇒ Y . In this case we obtain rY ◦ f ◦ ιX(x) = Tf(x) for all x ∈ X and hence
Tf ≤sW f . �

2The totalization was studied by Brattka, Le Roux and Pauly (unpublished work 2012).

12 V. BRATTKA AND G. GHERARDI

The second condition can also be converted into a characterization of multi-
retraceability. This follows if one applies it to the partial computable function
f := ι−1

Y :⊆ Y → Y , since Tf : Y ⇒ Y is a retraction.

Corollary 4.11 (Multi-retraceability). A represented space Y is multi-retraceable

if and only if Tf ≤W f holds for all problems f :⊆ X ⇒ Y .

If a problem g is already total, then Tg = g and hence we obtain the following
characterization of completeness. The given conditions are necessary since g = f

satisfies them (because the completion X of any space X is retraceable by Corol-
lary 2.5).

Corollary 4.12 (Completeness). A problem f is complete if and only if f ≡W g

for some total problem g : X ⇒ Y on multi-retraceable spaces X and Y .

An analogous result holds for strong completeness and ≡sW. The character-
ization of completeness given in Proposition 4.5 suggests a dual notion of co-
completeness that we define together with the related notion of co-totality. From
the perspective of a co-complete problem the upper cones in the Weihrauch lattice
and the total Weihrauch lattice are indistinguishable.

Definition 4.13 (Co-completeness and co-totality). Let f be a problem.

(1) f is called co-complete if f ≤W g ⇐⇒ f ≤W g holds for all problems g.
(2) f is called co-total if f ≤W Tg ⇐⇒ f ≤W g holds for all problems g.

Likewise we define strongly co-complete and strongly co-total problems f with the
help of ≤sW instead of ≤W.

Due to Lemma 4.9 we obtain that co-totality implies co-completeness.

Corollary 4.14 (Co-completeness and co-totality). Every (strongly) co-total prob-
lem f :⊆ X ⇒ Y is (strongly) co-complete. If Y is multi-retraceable, then the
inverse implication holds true as well.

In Corollaries 8.12 and 11.5 we will see examples that witness that the inverse
implication does not hold in general. There is an obvious relation between co-
completeness of the completion and completeness.

Lemma 4.15 (Completeness and co-completeness). f co-complete =⇒ f complete
and f strongly co-complete =⇒ f strongly complete hold for every problem f .

There is a useful condition that implies strong co-completeness. We call a prob-
lem f :⊆ X ⇒ Y diverse if for all x ∈ dom(f) there exists a y ∈ dom(f) such that
f(x) ∩ f(y) = ∅.

Proposition 4.16 (Diversity). Every diverse problem f :⊆ X ⇒ Y is strongly
co-complete, and if the representation of Y is total, then f is also strongly co-total.

Proof. Let g :⊆ W ⇒ Z be an arbitrary problem. It is clear that f ≤sW g implies
f ≤sW g since g≤sW g. We now consider computable witnesses H,K :⊆ NN → NN

for f ≤sW g. Now, let us suppose that G ⊢ g holds with respect to the precomple-
tions of the underlying representations of W and Z, and let us assume that dom(G)
contains exactly all names of points in dom(g). Every total extension G′ of G sat-
isfies G′ ⊢ g and hence HG′K ⊢ f . Let G′ be such a total extension. We claim
that also HGK ⊢ f . Let us assume that this is not the case. Then there is some
name p of a point x ∈ dom(f) such that HGK(p) is not a name of a point in f(x).
If K(p) ∈ dom(G), then G′K(p) = GK(p). Since K(p) is a name of a point in
dom(g), this implies that HGK(p) = HG′K(p) is a name of a point in f(x), which
is a contradiction. This implies that K(p) 6∈ dom(G). But then there is a total

COMPLETION OF CHOICE 13

extension G′′ of G such that HG′′K(p) is a name of some point in f(y) for some
y ∈ dom(f) such that f(x) ∩ f(y) = ∅, since f is diverse. This is a contradiction
to HG′′K ⊢ f . Hence, the assumption was wrong and we actually have HGK ⊢ f .
This proves f ≤sW g and altogether f is strongly co-complete. Almost the same
proof shows that f is also strongly co-total, provided that the representation of Y
is total, since this ensures that the extensions G′ and G′′ select valid names. �

Since single-valued problems that are not constant are diverse, we obtain the
following corollary.

Corollary 4.17 (Single-valuedness). Let f :⊆ X → Y be a single-valued problem
that is not constant, then f is strongly co-complete, and if the representation of Y
is total, then f is also strongly co-total.

We note that constant computable problems f are not (strongly) co-complete
(except for the nowhere defined problems), because if p is a name of a point in the
domain of f , then there is a problem g that has no point in the domain that can be
computed from p and hence f 6≤W g, while f ≤W g. Likewise, id is not co-complete
and hence diversity is not sufficient for co-completeness in the non-strong case.

We close this section with some remarks on the completion of jumps. As a prepa-
ration we study composition. It is easy to see that the completion of a composition
is equal to the composition of the completions.

Lemma 4.18 (Composition). Let f :⊆ X ⇒ Y and g :⊆ Y ⇒ Z be problems.
Then g ◦ f = g ◦ f .

We recall that the jump f ′ :⊆ X ⇒ Y of a problem f :⊆ X ⇒ Y is defined
exactly as f , but the represented space (X, δX) on the input side is replaced by
X ′ = (X, δ′X), where δ′X := δX ◦ lim. The jump was defined in [8] and it is easy to
see that for problems of type f :⊆ NN ⇒ NN we have f ′ ≡sW f ◦ lim (see also [8,
Lemma 5.2] for the single-valued case). We can now draw some conclusions on the
completion of a jump. In particular, the jumps of strongly complete problems are
strongly complete, which yields many further examples of complete problems.

Proposition 4.19 (Jumps). f ′ ≤sW f
′
≡sW f ′ holds for all problems f . In partic-

ular, the jump f ′ of every strongly complete problem f is strongly complete again.

Proof. We first prove f ′ ≤sW f
′
for problems of type f :⊆ NN ⇒ NN. For such

problems we have f ′≡sW f ◦ lim and hence f ′ ≡sW f ◦ lim = f ◦ lim by Lemma 4.18.
By Proposition 4.6 lim≡sW lim and hence lim is limit computable, i.e., it has a
realizer of the form lim ◦K with a computable K. This means that δ

NN ◦lim ◦K(p) ∈

lim ◦ δ
NN(p) for all p ∈ NN. We also consider f

r
= δ−1

NN
◦ f ◦ δ

NN and we obtain

f
r
◦ lim ◦K(p) = δ−1

NN
◦ f ◦ δ

NN ◦ lim ◦K(p) ∈ δ−1

NN
◦ f ◦ lim ◦ δ

NN(p) = (f ◦ lim)r(p),

which implies f ′≡sW f ◦ lim
r
≤sW f

r
◦ lim≡sW f

r′
≡sW f

′
. For a general problem

f :⊆ X ⇒ Y we also obtain f ′≤sW f
′
, since we can apply the result above to

f r :⊆ NN ⇒ NN, where we use that jumps and completions are monotone with

respect to ≤sW. This reduction also implies f
′
≤sW f

′
≤sW f

′
, since completion is

a closure operator. The inverse reduction holds for the same reason, i.e., f
′
≡sW f ′.

This shows that the jump f ′ of a strongly complete problem f ≡sW f is strongly
complete. �

This result requires strong completeness, since jumps are not monotone with
respect to ≤W in general. We also note that the jump of a total problem is an upper
bound of its completion, provided that the input space has a total representation.
This follows from Proposition 2.10 (3).

14 V. BRATTKA AND G. GHERARDI

Corollary 4.20. f ≤sW f ′ for every total problem f : X ⇒ Y such that X has a
total representation.

It follows from Theorem 11.6 that this result cannot be generalized to partial
problems. With the help of jumps we can also express a sufficient criterion that
guarantees co-completeness and co-totality for certain single-valued maps. We use
Sierpiński space S = {0, 1} that is represented by δS(p) = 0 : ⇐⇒ p = 0̂. We
mention that δS is an example of a precomplete total representation.

Proposition 4.21 (Single-valuedness). Let f :⊆ X → N, fS :⊆ X → S be single-
valued problems that are not constant. Then:

(1) f ′ is co-complete and co-total.
(2) f ′

S
is co-complete.

Proof. (1) It suffices to prove that f ′ is co-total as this implies co-completeness
by Corollary 4.14. Hence, let f ′ ≤W Tg hold for some problem g :⊆ W ⇒ Z via
computable H,K :⊆ NN → NN. We consider a name p of a point x ∈ dom(f ′), and
we let n := f ′(x). Then there is name r of a point in Z such that H〈p, r〉 is a name
of n. Hence by continuity of H , a finite prefix w ⊑ p is sufficient to guarantee that
any extension of w is mapped with r by H to n. Since f ′ is not constant, there is
a y ∈ dom(f ′) with k := f ′(y) 6= n and since we use the jump of a representation
for X ′, we have that there is a name q ∈ wNN of y. Suppose q is mapped by K to
a point outside of dom(g). Then there is a realizer G ⊢ Tg with GK(q) = r and
hence H〈q,GK(q)〉 = n, which is incorrect. Hence, all names q ∈ wNN of points
y ∈ dom(f ′) with f ′(y) 6= n are mapped by K to points inside of dom(g). With
a similar argument as before there is also some name s of a point in Z such that
H〈q, s〉 is a name of k and by continuity of H a finite prefix v of q is sufficient to
guarantee that H maps any extension of v with s to a name of k. We can assume
w ⊑ v. As before there cannot be any name t ∈ vNN of a point z ∈ dom(f ′) with
f ′(z) 6= k that is mapped by K to a point outside of dom(g). Altogether, there is
no name t ∈ vNN of some point z ∈ dom(f ′) whatsoever that is mapped by K to a
point outside of dom(g). Since there is a computable function F :⊆ NN → NN that
maps every name t of a point inside of dom(f ′) to a name F (t) ∈ vNN of the same
point, we obtain that H〈F,GKF 〉 ⊢ f ′ for every G ⊢ g, i.e., f ′≤W g. This proves
that f ′ is co-total.
(2) Let f ′

S
≤W g for some problem g :⊆ W ⇒ Z hold via computable functions

H,K :⊆ NN → NN. We consider a name p of a point x ∈ dom(f ′
S
) with f ′

S
(x) = 1.

Such a point must exist since f ′
S
is not constant. Let us assume that K(p) is a name

of a point outside of dom(g). Then there is a realizer G ⊢ g such that GK(p) = 0̂,
which is a name of ⊥ ∈ Z. NowH〈p,GK(p)〉 is a name of 1 ∈ S and by continuity of

H finite prefixes w ⊑ p and v ⊑ 0̂ suffice to ensure that H maps the corresponding
extensions to 1 ∈ S. We note that v ⊑ 0̂ can be extended to a name of any point in
Z, given the way Z is represented, and w ⊑ p can also be extended to a name of any
point in X ′, as we use the jump of a representation. Suppose now that q ∈ wNN

is a name of a point y ∈ dom(f ′
S
) such that f ′

S
(y) = 0 ∈ S. Such a point exists

since f ′
S
is not constant. Then there is a realizer G1 ⊢ g such that v ⊑ G1K(q)

and hence H〈q,G1K(q)〉 is a name of 1 ∈ S, which is incorrect. Hence all names
p of points x ∈ dom(f ′

S
) with f ′

S
(x) = 1 ∈ S are mapped by K to names K(p) of

points inside of dom(g). In particular there exists a name p of a point x ∈ dom(f ′
S
)

with f ′
S
(x) = 1 and a corresponding name r of a point in Z such that H〈p, r〉 = 1

and finite prefixes w ⊑ p and v ⊑ r suffice to ensure that H maps all extensions to
1 ∈ S. With a similar argument as above one can show that no name q ∈ wNN of a
point y ∈ dom(f ′

S
) with f ′

S
(y) = 0 can be mapped by K to a name K(q) of a point

outside of dom(g). Otherwise, there would be a realizer G2 ⊢ g with G2K(q) = r

COMPLETION OF CHOICE 15

and hence H〈q,G2K(q)〉 is a name of 1, which is incorrect. Hence altogether, each
name q ∈ wNN of a point in dom(f ′

S
) is mapped by K to a name K(q) of a point

inside of dom(g). Using a computable function F that maps any name p of a point
in dom(f ′

S
) to a name q ∈ wNN of the same point, we obtain that H〈F,GKF 〉 ⊢ f ′

S

for every G ⊢ g, i.e., f ′
S
≤W g. This proves that f ′

S
is co-complete. �

Using this result it is now easy to provide some interesting examples of co-
complete and co-total problems. We note that limN ≡sW id′N.

Corollary 4.22 (Co-complete and co-total problems).

(1) limN :⊆ NN → N, p 7→ limn→∞ p(n) is co-total and co-complete,
(2) LPO

′ : (NN)′ → {0, 1} is co-total and co-complete,
(3) LPO

′
S : (N

N)′ → S, p 7→ LPO(p) is co-complete.

In Corollary 8.12 we will see that LPO
′
S is not co-total. Hence co-totality and

co-completeness are actually not equivalent conditions and Proposition 4.21 (2)
cannot be strengthened to co-totality.

There is a useful characterization of LPO′ as the infinity problem. By

INF : NN → {0, 1}, p 7→

{
1 if p(n) = 0 for infinitely many n ∈ N

0 otherwise

we denote the infinity problem. By INFS : NN → S we denote the analogous problem
with output space S. These two problems were already studied under the names
isInfinite and isInfiniteS by Neumann and Pauly [21]. The following is easy to see.

Lemma 4.23 (Infinity problem). LPO
′ ≡sW INF and LPO

′
S ≡sW INFS.

Proof. Given p ∈ NN, we let K(p)〈n, k〉 = 0 if the word p(0)...p(n) contains the
digit 0 less than k times and K(p)〈n, k〉 = 1 otherwise. Then

(∀k ∈ N) (limK(p))(k) = lim
n→∞

K(p)〈n, k〉 6= 0

if and only if 0 appears infinitely often in p. Hence LPO
′ ◦K(p) = INF(p). Since

K is computable, this proves INF≤sW LPO
′ and INFS ≤sW LPO

′
S. Vice versa, given

p := 〈p0, p1, p2, ...〉 ∈ dom(lim) we can enumerate the numbers 1, 2, 3, ..., into K(p),
and for each 〈n, k〉 = 0, 1, 2, ... after the other we do the following: whenever we
find an i ≥ k such that pi(n) 6= 0, then we enumerate 0 into K(p), and only
in this case we move to the next 〈n, k〉. Hence K(p) contains infinitely many
zeros if and only if (∀n, k ∈ N)(∃i ≥ k) pi(n) 6= 0, which holds if and only if
(∀n ∈ N)(limi→∞ pi)(n) 6= 0, i.e., LPO′(p) = INF◦K(p). This proves LPO′ ≤sW INF

and LPO
′
S ≤sW INFS. �

In particular, we can conclude that INF is co-total and INFS is co-complete. INF
is clearly not limit computable, since

INF
−1{1} = {p ∈ N

N : (∀k ∈ N)(∃n ≥ k) p(n) = 0}

is known to be Π0
2–complete (see, e.g., [18, Exercise 23.1]).

Lemma 4.24. LPO
′ 6≤W lim.

It is also easy to see that there is a retraction r : NN → NN that is computable
with the help of INF. This is because INF can detect whether a name p of a point

in NN is actually a name of a point in NN, i.e., whether p(n) 6= 0 for infinitely many
n.

Lemma 4.25. There is a retraction r : NN → NN with r≤W LPO
′.

16 V. BRATTKA AND G. GHERARDI

5. Choice Problems

Choice principles form the backbone of the Weihrauch lattice, and many other
problems can be classified by proving their equivalence to a suitable choice prob-
lem [9]. Hence, it is important to understand which choice principles are complete
in order to see how the picture for the total Weihrauch lattice changes compared
to the partial version.

In order to recall the definition of choice we need to introduce the set A(X) of
closed subsets of a topological space X . Typically, we will consider computable
metric spaces (X, d, α) that are represented by their Cauchy representation [25, 9].
We denote by B(x, r) := {y ∈ X : d(x, y) < r} the open ball with center x ∈ X

and radius r ≥ 0. More specifically, we denote by B〈n,〈i,k〉〉 := B(α(n), i
k+1) a

basic open ball. A representation δA
−
(X) of the set A(X) can now be defined by

δA
−
(X)(p) := X \

⋃∞
n=0 Bp(n). We denote the represented space (A(X), δA

−
(X)) for

short by A−(X), where the “−” refers to negative information. The computable
points in A−(X) are known as co-c.e. closed sets and also as Π0

1–classes in the case
of X = NN. Since there are numbers n ∈ N with Bn = ∅, it is easy to see that the
representation δA

−
(X) is precomplete and it is also total.

Lemma 5.1. Let X be a computable metric space. Then δA
−
(X) is a precomplete

and total representation of A−(X). In particular, A−(X) is multi-retraceable.

The choice problem CX of a given space X is the problem of finding a point
in a given closed A ⊆ X . By choosing appropriate spaces X one obtains several
important Weihrauch degrees. There are ways of extending the definition of δA

−
(X)

to other represented spaces than computable metric ones [2]. We are not going
to use these extensions here, hence the following definition is typically used for
computable metric spaces X .

Definition 5.2 (Choice). The problem CX :⊆ A−(X) ⇒ X,A 7→ A, defined on
dom(CX) := {A : A 6= ∅} is called the choice problem of the represented space X .

Here the description A 7→ A of the map is to be read such that on the input
side A ∈ A−(X) is a point of the input space, whereas on the output side it is a
subset A ⊆ X of possible results. Many restrictions of the choice problem have
been considered. For instance, CCX denotes connected choice, i.e., CX restricted to
non-empty connected closed subsets A ⊆ X .

One of our goals is to understand the completions CX of choice problems. For-
tunately, the conditions given in Lemma 4.10 (1) are satisfied by Lemma 5.1 for all
choice principles of computable metric spaces. We even obtain the following.

Corollary 5.3 (Completion of choice). CX ≤sW CX ≤sW TCX ≡sW TCX for all
computable metric spaces X.

Proof. By Corollary 2.5 there is a computable embedding ι : X → X. Hence, we
obtain f := ι ◦TCX ≡sW TCX . Moreover, f : A−(X) ⇒ X has a total precomplete
representation on the input side by Lemma 5.1 and a total precomplete represen-
tation on the output side by Corollary 2.5. Hence, TCX is strongly complete by
Corollary 4.12 and Proposition 2.6. The reduction CX ≤sW TCX is obvious, the
other reductions follow since completion is a closure operator. �

An analogous statement holds true if CX is replaced by any restriction such as
CCX in all occurrences. The advantage of this result is that TCX is conceptually
simpler than CX , as it does only involve the original spaces and no completions.
We can also characterize the completion of the jump of choice.

Proposition 5.4 (Completion of jumps of choice). C
′
X ≡sW CX

′
holds for every

computable metric space X.

COMPLETION OF CHOICE 17

Proof. We have C
′
X ≤sW CX

′
by Proposition 4.19. We need to prove the inverse

reduction. Given a name p = 〈p0, p1, p2, ...〉 such that lim(p) exists, we can compute
K(p) that replaces all numbers 0 in p by a fixed number k + 1 such that Bk = ∅.
Then also lim(K(p)− 1) exists and if lim(p)− 1 ∈ dom(δA

−
(X)), then

δA
−
(X)(lim(p)− 1) = δA

−
(X)(lim(K(p)− 1)).

In the case that lim(p) − 1 is only a finite word, lim(K(p) − 1) is a name of some

set. Since a realizer of CX
′
with such an input p can produce any name of a point

in X as an output, the reduction also works in this case. Altogether, this proves

CX
′
≤sW C

′
X . �

Again, an analogous statement holds if CX is replaced by any restriction of it.

6. Choice on Compact Spaces

Even though the assumptions of Lemma 4.10 (2) are not satisfied in many cases,
we can often even prove TCX ≤sW CX using a computable multi-valued retraction
r : A−(X) ⇒ dom(CX). We illustrate this with choice on Cantor space 2N.

Proposition 6.1 (Choice on Cantor space). C2N ≡sW C2N ≡sW TC2N .

Proof. We consider X = 2N. By Corollary 5.3 it suffices to prove TCX ≤sW CX .
Firstly, we note that the set

B := {〈k, 〈n0, ..., nk〉〉 ∈ N : Bn0
∪ ... ∪Bnk

= X}

is computable, as we can easily check whether there is a point x ∈ X that is
not covered by Bn0

∪ ... ∪ Bnk
. Hence, given a list p ∈ NN of balls Bp(i) with

A = X \
⋃

i∈N
Bp(i) we can check for every i ∈ N whether Bp(0) ∪ ... ∪Bp(i−1) 6= X

and Bp(0)∪...∪Bp(i) = X . SinceX is compact, this test will eventually be positive if
and only if A = ∅. As soon as this happens, we modify p to q such that q(j) := p(j)
for j < i and q(j) := p(i − 1) for j ≥ i − 1 (where we assume that Bp(−1) = ∅
if i = 0). The map p 7→ q is a computable realizer for a multi-valued retraction
r : A−(X) ⇒ dom(CX) onto the non-empty sets, i.e., r(A) = A for A 6= ∅ and
r(∅) 6= ∅. Such a retraction is all what is needed to prove TCX ≤sW CX . �

The problems f ≤W C2N have been characterized in [2] exactly as the non-deter-
ministically computable problems. Hence we obtain the following by Lemma 4.2.

Corollary 6.2 (Non-deterministic computability). Non-deterministic computabil-
ity is preserved downwards by total Weihrauch reducibility.

This proof of Proposition 6.1 can be seen as a prototype of a completeness
proof for a choice principle and several other choice principles can be proved to be
complete in a similar manner. There are three essential points that one needs to
check: whether the spaceX is compact, whether a suitable set B ⊆ N is computable
and whether there is a suitable computable retraction r. This is the case, for
instance, for all non-empty finite spaces X = n = {0, ..., n − 1} with n ∈ N with
essentially the same proof as above.

Proposition 6.3 (Finite choice). Cn ≡sW Cn ≡sW TCn for all n ≥ 1.

We note that the above proof does not work in case of n = 0 = ∅, since then
there is no possible retraction r. In this case we have C0 ≡sW C1, which one can
easily check directly. We can conclude from this result that the principles Cn form
a strictly increasing chain with respect to total Weihrauch reducibility (as they do
with respect to partial Weihrauch reducibility by [24, Theorem 5.4]).

Corollary 6.4. Cn <tW Cn+1 for all n ≥ 1.

18 V. BRATTKA AND G. GHERARDI

In the following we use the parallelization f̂ of a problem f and the finite par-
allelization f∗ in a purely non-technical way. Hence we refer the reader to [9] for
the definitions. The choice principle C2 is also known as LLPO and hence Propo-
sition 6.3 shows that LLPO is strongly complete. We could also use the fact that
the parallelization of a complete problem is complete (by [6, Proposition 6.3]) to

derive Proposition 6.1, as is known that C2N ≡sW Ĉ2 [5, Theorem 8.5]. Likewise it is
known that the compact choice principle KN can be characterized by KN ≡sW C

∗
2 [8,

Proposition 10.9], which we take as the definition of KN for the purposes of this
article, and hence, with the help of the fact that finite parallelization and jumps
preserves (strong) completeness (by [6, Proposition 6.3] and Proposition 4.19), we
arrive at the following conclusion.

Corollary 6.5. KN ≡sW KN and K
′
N ≡sW K

′
N.

The proof of Proposition 6.1 can also be transferred to the case of connected
choice.

Proposition 6.6 (Connected choice). CC[0,1] ≡sW CC[0,1] ≡sW TCC[0,1].

Proof. We proceed as in the proof of Proposition 6.1 withX = [0, 1]. By Lemma 4.10
and analogously to Corollary 5.3 it suffices to prove TCC[0,1] ≤sW CC[0,1]. For
m = 〈k, 〈n0, ..., nk〉〉 ∈ N we define l(m) := sup{x ∈ [0, 1] : [0, x] ⊆ Bn0

∪ ... ∪Bnk
}

and r(m) := inf{y ∈ [0, 1] : [y, 1] ⊆ Bn0
∪ ...∪Bnk

}. Here we assume l(m) := 0 and
r(m) := 1 if the respective sets are empty. Then the set

B := {m ∈ N : l(m) ≤ r(m)}

is computable, as the values l(m) and r(m) can be computed as rational numbers.
Hence, given a list p ∈ NN of balls Bp(i) with A = X \

⋃
i∈N

Bp(i) we generate
a list q of numbers of open rational intervals [0, l(m)) and (r(m), 1] with m =
〈i, 〈p(0), ..., p(i)〉〉 as long as l(m) ≤ r(m) and we indefinitely continue with the last
rational intervals with this property if eventually l(m) > r(m) (which means that
A = ∅). Due to compactness of [0, 1] it is guaranteed that q is a name of the set
A, if this set A is a non-empty closed and connected set and it is a name of some
other non-empty closed and connected set, otherwise. That is The map p 7→ q is
a computable realizer for a multi-valued retraction r : A−([0, 1]) ⇒ dom(CC[0,1])
with r(A) = A for non-empty connected A ⊆ [0, 1], and r(A) is some non-empty
connected subset of [0, 1] otherwise. Such a retraction is all what is needed to prove
TCC[0,1]≤sW CC[0,1]. �

Some important choice problems are also co-complete. We prove a rather tech-
nical but fairly general result about restrictions of choice first.

Proposition 6.7. Let D ⊆ A−[0, 1] be such that [a, b] ∈ D and C[0,1]|D ≤W C[a,b]|D
for all [a, b] ⊆ [0, 1] with a < b. Then C[0,1]|D is co-complete and co-total.

Proof. Without loss of generality, we assume that D contains only non-empty sets.
We prove that C[0,1]|D is co-total. By Corollary 4.14 it follows that it is also
co-complete. Let g :⊆ (X, δX) ⇒ (Y, δY) be some problem. We assume that
C[0,1]|D ≤W Tg is witnessed by computable H,K :⊆ NN → NN. Let G ⊢ Tg and let
p be a name of [0, 1]. Then H〈p,GK(p)〉 determines a real number x with precision
ε < 1

3 after reading only a finite prefix of w ⊑ p. We now consider the set

A := {J ∈ D : (∃p ∈ wNN)(δA
−
([0,1])(p) = J and δXK(p) 6∈ dom(g))}.

We claim that there is some [a, b] ⊆ [0, 1] with a < b and such that for all J ⊆ [a, b]
with J ∈ D we have J 6∈ A. Let us assume the contrary. Then for I0 := [0, 13] and

I1 := [23 , 1] there are Ji ⊆ Ii with Ji ∈ D such that Ji ∈ A for i ∈ {0, 1}. This

COMPLETION OF CHOICE 19

implies that there are names pi ∈ wNN of Ji for i ∈ {0, 1} such that K(pi) is not
a name of a point in dom(g). Hence, there is a realizer G1 of Tg with GK(p) =
G1K(p) = G1K(pi) for i ∈ {0, 1}. This is a contradiction since the distance between
I0 and I1 is 1

3 . Hence, we have proved the claim and there is a [a, b] ⊆ [0, 1] with
the desired properties. That means that K,H also witness C[a,b]|D ≤W g, where we
use that δA

−
([0,1])|wNN ≡ δA

−
([0,1]). This implies C[0,1]|D ≤W C[a,b]|D ≤W g, which

means that C[0,1]|D is co-total. �

This result can be readily applied to several important variants of choice. In par-
ticular, we obtain the following. We note that C2N ≡sW C[0,1] by [2, Corollary 4.6].

Corollary 6.8. C2N and CC[0,1] are co-complete and co-total.

7. Positive Choice

In this section we want to study PCX , which is CX restricted to sets of positive
measures. This requires that we have a fixed Borel measure on X and we are mostly
interested in the cases X = 2N, X = [0, 1] and X = R. In the first case we use
the uniform measure µ and in the second and third case the Lebesgue measure
λ. It is known that PC2N ≡sW PC[0,1] ≡sW WWKL (see [7, Proposition 8.2] for these
results and the definition of WWKL). By PCCX we denote the restriction of PCX to
connected sets. The following observation is a direct consequence of Proposition 6.7.

Corollary 7.1. PC2N and PCC[0,1] are co-complete and co-total.

The following result allows us to show that neither PC2N nor PCC[0,1] are com-
plete.

Proposition 7.2. PCC[0,1] 6≤W PC[0,1].

Proof. We consider the problem

P : A−[0, 1] ⇒ [0, 1], A 7→

{
A if A = [a, b] ⊆ [0, 1] with a < b

[0, 1] otherwise

Clearly, P ≤W PCC[0,1] and hence it suffices to show P 6≤W PC[0,1]. In [7, Propo-
sition 15.1] we proved CC[0,1] 6≤W PC[0,1] and literally the same proof can be used
to show P 6≤W PC[0,1]. This is because the proof does only exploit the values of
CC[0,1] on non-singleton intervals and the fact that CC[0,1] is also somehow defined
on singletons. In both respects, P behaves like CC[0,1]. The fact that the output

is considered on [0, 1] instead of [0, 1] also causes no changes, since we only exploit
outputs that are actually in [0, 1]. �

As a consequence of this result we obtain that positive choice is actually not
complete.

Corollary 7.3. PC2N <W PC2N and PCC[0,1] <W PCC[0,1].

The problems f ≤W PC2N have been characterized in [7] exactly as the Las Vegas
computable problems f . Hence we obtain the following by Corollary 4.3.

Corollary 7.4 (Las Vegas computability). Las Vegas computability is not preserved
downwards by (strong) total Weihrauch reducibility.

Now we want to prove that PCC[0,1] 6≤W PCR holds. For this purpose it is useful
to use fractality as a property. We recall that a problem f is called a fractal [8], if
there is a problem F :⊆ NN ⇒ NN such that F ≡W f and F |A ≡W F holds for every
clopen A ⊆ NN with A ∩ dom(F) 6= ∅. If F can be chosen to be total, then f is
called a total fractal and if we can replace ≡W by ≡sW, then we speak of a strong
(total) fractal. In [7, Lemma 15.5] it was proved that CC[0,1] is a total fractal. We
follow the lines of that proof to obtain the following result.

20 V. BRATTKA AND G. GHERARDI

Lemma 7.5. PCC[0,1] is a strong total fractal.

Proof. In [4, Proposition 3.6] it was proved that PCC[0,1]≡sW B
−
I , where

B
−
I :⊆ R< × R> → R, (a, b) 7→ [a, b]

with dom(B−
I) := {(a, b) ∈ R2 : a < b}. (PCC[0,1] was called C

−
I in [4].) Here R<

and R> are represented by representations ρ< and ρ> as limits of increasing and
decreasing sequences of rational number, respectively [25]. We consider the problem
G :⊆ NN ⇒ NN that maps every name of a pair (a, b) ∈ R< ×R> with a < b to any
name of any point y ∈ R with a ≤ y ≤ b and that is undefined for other inputs.
Then G = (B−

I)
r ≡sW B

−
I . There is a computable function K : NN → NN that maps

every pair 〈p, q〉 ∈ NN, where p, q ∈ NN are interpreted as sequences (an)n and (bn)n
of rational numbers, to a pair 〈p′, q′〉 that satisfies the following conditions: p′ and
q′ encode increasing and decreasing sequences (cn)n and (dn)n of rational numbers,
respectively, with cn < dn and if (an)n and (bn)n are also increasing and decreasing,
respectively, with an < bn and supn∈N an ≤ infn∈N bn, then cn = an and dn = bn
for all n ∈ N. Such a computable K can be realized by going through the sequences
(an)n and (bn)n and as long as a0 ≤ a1 ≤ ... ≤ ak and b0 ≥ b1 ≥ ... ≥ bk and ak < bk
we choose ci := ai and di := bi for i = 0, ..., k and as soon as one of the conditions is
violated, we just continue with the last consistent pair (in the case that there is no
such pair, we use ci := 0 and di := 1). Then F := GK :⊆ NN ⇒ NN is an extension
of G, which is only undefined if the input is a name of a pair (a, b) ∈ R< × R>

with a = b. We also have F ≡sW G≡sW B
−
I ≡sW PCC[0,1]. Hence, it suffices to show

that F : NN ⇒ NN is a strong total fractal. In fact, we claim that F
r
≤sW F

r
|A for

every clopen A := wNN ⊆ NN. Let u := w − 1. Then u determines a finite prefix
v of K(uNN) of the same length as u and this prefix encodes a rational interval
[a, b] with a < b; if u = v = ε, then we assume [a, b] := [0, 1]. Now we can use a
computable bijective map T : R → (a, b) and its computable inverse T−1 to reduce

F
r
to F

r
|A. Hence, F

r
and F are strong total fractals. �

Using this lemma we can apply a choice elimination result by Le Roux and
Pauly [20, Theorem 2.4] to obtain the following corollary. We use the compositional
product of problems defined by f ∗ g := max≤W

{f0 ◦ g0 : f0 ≤W f, g0 ≤W g} [8, 14].

Corollary 7.6. PCC[0,1] 6≤W PCR.

Proof. By [7, Corollary 6.4, Proposition 7.4] we have PCR ≡W PC2N ∗ CN. Hence,
PCC[0,1] ≤W PCR would imply PCC[0,1]≤W PC2N by [20, Theorem 2.4], since PCC[0,1]

is a total fractal by Lemma 7.5. This contradicts Proposition 7.2. �

This implies in particular PC2N 6≤W PCR. In [4, Proposition 3.8] it was proved
that PCC[0,1] ≤W CN holds. This implies that PCC[0,1] is not a total fractal (since
otherwise PCC[0,1]≤W id would follow by [20, Theorem 2.4], which is incorrect as

PCC[0,1] is not computable). The cited reduction also implies PCC[0,1]≤W CN. How-
ever, by Lemma 7.5 and [20, Theorem 2.4] we obtain the following conclusion.

Corollary 7.7. PCC[0,1] 6≤W CN.

In order to get some upper bounds on PC2N and in order to separate it from C2N

it is useful to consider the negligibility problem, i.e., the characteristic function of
sets of measure zero:

NEG : A−(2
N) → {0, 1}, A 7→

{
1 if µ(A) = 0
0 otherwise

.

It is easy to see that the negligibility problem is equivalent to LPO
′.

COMPLETION OF CHOICE 21

Lemma 7.8 (Negligibility). LPO
′ ≡sW NEG.

Proof. We note that µ : A−(2
N) → R> is computable (see also [7, Lemma 2.7]),

where R> denotes the set of upper reals that are represented as an infimum of a
decreasing sequence of rational numbers. Since the identity ι : R> → R, x 7→ x is
limit computable, i.e., ι≤sW lim, and LPO can be used to decide equality on the
reals, we obtain a computable K : A−(2

N) ⇒ NN such that NEG = LPO ◦ lim ◦K.
This proves NEG≤sW LPO

′.
For the other direction we use Lemma 4.23 and we prove INF≤sW NEG. Given

a sequence p ∈ NN, we want to find out whether there are infinitely many n ∈ N

with p(n) = 0. Hence we compute a name K(p) of the set A with A = 2N \⋃k
i=0 1

i0NN, provided that we find k ∈ N ∪ {∞} many zeros in p. Then µ(A) =
0 ⇐⇒ k = ∞ ⇐⇒ INF(p) = 1. Hence INF = NEG ◦ δA

−
(2N) ◦K, which proves

INF≤sW NEG. �

The negligibility problem can be used to reduce TPC2N to PC
′′
2N and in conse-

quence to separate PC2N from C2N .

Corollary 7.9 (Positive choice). PC2N <W PC2N ≤W TPC2N <W C2N and we have
TPC2N ≤W PC

′′
2N .

Proof. By Corollary 7.3 we have PC2N <W PC2N . By the remark after Corollary 5.3
we obtain PC2N ≤W TPC2N . Clearly TPC2N ≤W PC

′′
2N , as NEG can be used to de-

cide whether the input of TPC2N is in its domain, and Lemma 7.8 implies that
NEG≤W LPO

′ ≤W lim′. By [7, Corollary 14.9] it is known that C2N 6≤W PC
′′
2N . Hence,

TPC2N <W TC2N ≡W C2N by Proposition 6.1. �

In particular, this result shows that TPC2N and PC2N are probabilistic in the
sense defined in [7].

8. Choice on the Natural Numbers

In this section we study choice on natural numbers. Since limN ≡sW CN, we get
the following conclusion from Corollary 4.22.

Corollary 8.1. CN is co-complete and co-total.

On the other hand, CN is not complete. Since it is known by [8, Theorem 7.12]
that f ≤W CN holds if and only if f is computable with finitely many mind changes,
it suffices to show that CN is not computable with finitely many mind changes in
order to conclude that CN <W CN holds.

Proposition 8.2 (Choice on natural numbers). CN is limit computable and not
computable with finitely many mind changes, and TCN is not even limit computable.

Proof. CN is computable with finitely many mind changes and hence, in particular,
limit computable. By Corollary 4.3 we have CN ≡stW CN. Since limit computability
is preserved downwards by total Weihrauch reducibility [6, Proposition 4.9], it

follows that CN is limit computable. We prove that CN is not computable with
finitely many mind changes. This implies that TCN is also not computable with
finitely many mind changes by Corollary 5.3. Since the output space of TCN is N,
this implies that TCN is not even limit computable by [8, Proposition 13.10]. Let us
assume the contrary and let us consider a Turing machine that computes CN with
finitely many mind changes. Upon input of a name of N ∈ A−(N), the machine
eventually has to produce a natural number n0 as output after seeing only a finite
prefix of the input. After this finite prefix the input can be modified to a name of
the set N \ {n0}, in which case the machine has to change its mind and produce a
new output n1 6= n0 after seeing a longer prefix of the input. Now one can change

22 V. BRATTKA AND G. GHERARDI

the input to an input of N \ {n0, n1}, in which case the machine has to change its
mind again and it has to produce an output n2 6∈ {n0, n1}. This process can be
continued inductively and it produces a name of co-infinite (possibly empty) set

A ∈ A−(N) upon which the given machine has to change its mind infinitely often.
Since A ∈ dom(CN), the machine does not operate with finitely many mind changes
on a valid input. �

Proposition 8.2 implies that for the space X = N the choice principle CX , its
completion and its totalization lead to three different degrees.

Corollary 8.3 (Choice on natural numbers). CN <W CN <W TCN.

This also means that finite mind change computability is not preserved down-
wards by total Weihrauch reducibility and by a contrapositive version of the rea-
soning used for the proof of [6, Proposition 4.9], it follows that finite mind change
computability does not respect precompleteness.

Corollary 8.4. Finite mind change computability is not preserved downwards by
(strong) total Weihrauch reducibility and does not respect precompleteness.

As TCN ≤W T lim is easy to see, Propositions 8.2 and 4.6 imply the following.

Corollary 8.5. lim≡sW lim<W T lim.

Since lim≡sW J by [2, Lemma 8.9] and TJ = J, this also proves that f 7→ Tf is
not a closure operator with respect to ≤W.

We mention that the given proof of Proposition 8.2 does not change in presence
of any oracle. Hence, CN is not finite mind change computable with respect to any
oracle and hence not even reducible to CN with respect to the continuous version
of Weihrauch reducibility. Using a jump inversion property [12, Theorem 11] and
Proposition 5.4 this yields the following corollary.

Corollary 8.6. C
′
N <W C

′
N ≡sW CN

′
.

Alternatively, we could also prove Proposition 8.2 by showing that CN is a total
fractal. This fact is useful by itself and will be used later.

Lemma 8.7. CN is a strong total fractal.

Proof. We consider the representation δ of A−(N) given by δ(p) := N\range(p−1).
It is easy to see that we have δ ≡ δA

−
(N). We consider F : NN ⇒ NN defined by

F (p) :=

{
(δ℘

N
)−1 ◦ CN ◦ δ℘(p) if p ∈ dom(CN ◦ δ℘)

NN otherwise

As explained in the proof of Lemma 4.9 we have F ≡sW CN. If w := a0...ak ∈ N∗

and hence A := wNN is a clopen set, then we can also prove that F ≤sW F |A. We
define K(p) such that the prefix w is filled up with a word v that contains all
numbers up to m := max{a0, ..., ak}+1 and then for all numbers i ≥ 2 in range(p)
the number i + m − 1 is added, i.e., K(p) = wvq with q(n) := p(n) + m − 1 if
p(n) ≥ 2 and q(n) = p(n) if p(n) ≤ 1. Together with a computable function H

with H(r)(n) := max(0, r(n)−m+ 1) the function K witnesses F ≤sW F |A. �

It is worth noting that there is also a specific interesting problem below CN that
is not below CN. We recall that the Bolzano-Weierstraß theorem on the two point
space {0, 1} is defined by BWT2 : 2N ⇒ {0, 1}, p 7→ {i : i is a cluster point of
p}. This problem was studied in [8]. Above we have already introduced the weak
version WBWT2 : 2N ⇒ 2N of it that has been studied in [10].

Proposition 8.8 (Weak Bolzano-Weierstraß theorem). We have WBWT2 ≤W CN

and WBWT2 6≤W CN.

COMPLETION OF CHOICE 23

Proof. Given a binary sequence p ∈ 2N, we generate a list K(p) of all natural
numbers n = 0, 1, 2, ... as long as we see zeros in p. Whenever we see a one in p,
then we repeat the previous digit on the output (or zero, if no output has been
written yet). That is we compute a name K(p) of a set A ⊆ N which is empty
if and only if p contains infinitely many zeros. Given a point n ∈ CN(A) together
with p we try to check whether the set represented by K(p) contains n. As long as
n has not been removed from this set, we build an infinite binary sequence q ∈ 2N

that consists of digits 1. In the moment where we find that n is removed from the
set represented by K(p), we change to producing digits 0. That will happen if and
only if A is empty, i.e., if and only if p contains infinitely many zeros. In this case
the output is of the form q = 1k0̂. In the case that A is not empty, q = 1̂. In
any case, we have that limi→∞ q(i) is a cluster point of p, i.e., q ∈ BWT2(p). This
proves WBWT2 ≤W CN.

It is easy to see that WBWT2 6≤W CN, as BWT2 ≤W limN ∗WBWT2 and BWT2

is not limit computable by [8, Proposition 12.5], whereas limN ∗CN ≡W CN by [8,
Proposition 3.8] and [2, Corollary 7.6] and CN is limit computable. �

As a direct corollary we can conclude that WBWT2 is not co-complete.

Corollary 8.9. WBWT2 is not co-complete.

There are also specific interesting problems that are below TCN and not below
CN, and problems that are below CN ∗CN and not below TCN. The problem CN ∗CN

belongs to a class that is interesting by itself and that was already studied by
Neumann and Pauly [21].

Corollary 8.10. CN ∗ CN ≡W CN ∗ TCN ≡W CN ∗ SORT≡W CN ∗ LPO′.

Proof. The equivalences CN ∗TCN ≡W CN ∗ SORT≡W CN ∗ INFS were proved in [21,
Corollary 30]. We note that INFS ≡W LPO

′
S by Lemma 4.23 and LPO

′ ≤W LPO ∗
LPO

′
S ≤W CN ∗ INFS. This proves CN ∗ LPO

′ ≡W CN ∗ INFS, as LPOS ≤sW LPO and
CN ∗ CN ≡W CN. It is clear that CN ≤W TCN implies CN ∗ CN ≤W CN ∗ TCN. By
Proposition 2.10 there is a retraction N → N that is computable with finitely many
mind changes and by Corollary 2.5 there is a computable injection ι : A−(N) →

A−(N). This implies TCN ≤W CN ∗ CN and hence CN ∗ TCN ≡W CN ∗ CN as CN ∗
CN ≡W CN. �

As a corollary we obtain the following.

Corollary 8.11. We obtain

(1) LPO
′ ≤W CN ∗ CN, but LPO

′ 6≤W TCN.
(2) LPO

′
S ≤W TCN, but LPO

′
S 6≤W CN.

Proof. LPO
′ ≤W CN ∗ CN holds by Corollary 8.10. Since LPO

′ is co-total by Corol-
lary 4.22, it follows that LPO

′ 6≤W TCN holds, since otherwise LPO
′ ≤W CN would

follow, which is false as LPO′ is not limit computable by Lemma 4.24. LPO′
S ≤W TCN

was proved in [21, Proposition 24]. Since LPO
′
S is co-complete by Corollary 4.22, it

follows that LPO
′
S 6≤W CN holds, since otherwise LPO

′
S ≤W CN would follow, which

is false as LPO′ ≤W CN ∗ LPO′
S. �

As a direct corollary we obtain that LPO′
S is not co-total.

Corollary 8.12. LPO
′
S is not co-total.

Completeness can also be used as a separation tool, as we illustrate with the
following result. Basically, the point is that an incomplete problem cannot be
factorized into complete problems. We use that C′

N ≡W C
′
N ∗ C′

N holds; this is easy
to see and was already stated in the proof of [12, Proposition 21].

24 V. BRATTKA AND G. GHERARDI

Proposition 8.13. K
′
N<W K

′
N ∗ K′

N <W C
′
N and CN ∗ CN ≤W K

′
N ∗ K′

N.

Proof. The first reduction is obvious, the second reduction follows as KN ≤sW CN and
C
′
N∗C

′
N ≡W C

′
N. The reduction CN∗CN ≤W K

′
N∗K

′
N holds, as CN ≤W K

′
N by [15, Propo-

sition 7.2], completion is a closure operator and K
′
N is complete by Corollary 6.5. Let

us assume that K′
N ∗K′

N ≤W K
′
N holds, then SORT≤W CN ∗ SORT ≤ CN ∗CN ≤W K

′
N

follows by Corollary 8.10, in contradiction to [12, Propositions 16 and 20]. Hence,
the first reduction is strict. The second reduction is strict, as K

′
N is complete by

Corollary 6.5, C′
N is not complete by Corollary 8.6 and the compositional product

preserves completeness by [6, Proposition 7.6]. �

Altogether we obtain the following reduction chain for some of the discussed
classes.

Corollary 8.14. TCN <W CN ∗ CN <W C
′
N.

Proof. The reduction TCN ≤W CN ∗CN was proved in the proof of Corollary 8.10 as
well as CN ∗ CN ≡W CN ∗ LPO

′. Since LPO
′ ≤W C

′
N and C

′
N ≡W C

′
N ∗ C

′
N, we obtain

CN ∗ LPO
′ ≤W CN ∗ C

′
N ≡W C

′
N. The strictness of the first reduction follows from

Corollary 8.11 and the strictness of the second reduction from Proposition 8.13. �

Since CN is not complete, the cone below CN in the Weihrauch lattice differs
from the cone below CN and hence it is important to check how this impacts on
separation results. An important separation is CC[0,1] 6≤W CN [4, Proposition 4.9].

This was strengthened to CC[0,1] 6≤W K
′
N in [12, Proposition 20]. With the help of

Corollary 6.8 we can strengthen the separation in another direction.

Corollary 8.15. CC[0,1] |W TCN.

Here TCN 6≤W CC[0,1] follows since CC[0,1] is limit computable and TCN is not
by Proposition 8.2. Since CC[0,1]≤W SORT by [12, Proposition 16], we obtain
SORT 6≤W TCN. Since SORT is also limit computable, we obtain TCN 6≤W SORT and
SORT |W TCN. This was also proved by Neumann and Pauly [21, Proposition 24].
In this context it is interesting to note that CN ≤W SORT holds.

Corollary 8.16. CN ≤sW SORT.

Proof. Neumann and Pauly [21, Proposition 24] proved CN ≤W SORT and the proof
even shows CN ≤sW SORT (see also [12, Proposition 12]). Since completion is a
closure operator and by Proposition 4.6 we obtain CN ≤sW SORT≡sW SORT. �

9. Lowness

Proposition 2.10 can also be used to prove that CN is not low. We recall that a
problem f :⊆ X ⇒ Y is called low, if it has a realizer of the form F = L ◦G with
some computable G :⊆ NN → NN and L := J

−1 ◦ lim. Lowness was studied, for
instance, in [2, 1]. By [2, Theorem 8.10] f is low if and only if f ≤sW L. Likewise,

f is called low2, if f ≤sW L2, where L2 := J
−1 ◦ J−1 ◦ lim ◦ lim.

Corollary 9.1. CN is low2 but not low.

Proof. We first prove that CN is not low. By Proposition 2.10 there is a retraction
r : N → N that is computable with finitely many mind changes and together
with Corollary 2.5 we obtain TCN ≤sW r ◦ CN. Since r is computable with finitely
many mind changes, it is in particular limit computable, and since TCN is not
limit computable by Proposition 8.2, it follows that CN cannot be low since the
composition of a limit computable problem with a low problem is limit computable
by [2, Corollary 8.16].

COMPLETION OF CHOICE 25

Neumann and Pauly [21, Corollary 32] proved lim ∗ lim ∗SORT≡W lim ∗ lim, and
since lim ∗ lim≡W lim′ is a cylinder, we obtain lim′ ∗SORT≤sW lim′. By [10, Propo-

sition 14.16] this implies that SORT is low2. By Corollary 8.16 we have CN ≤sW SORT,
which implies CN is also low2. �

By [2, Corollary 8.14] we have CN ≤sW L and hence CN ≤sW L. Hence Corol-
lary 9.1 implies that L is not strongly complete.

Corollary 9.2 (Low map). L<sW L.

This in turn implies that lowness is not preserved downwards by total Weihrauch
reducibility.

Corollary 9.3. Lowness is not preserved downwards by (strong) total Weihrauch
reducibility and does not respect precompleteness.

Proof. By [2, Theorem 8.10] f is low if and only f ≤sW L. By Corollary 9.2 it

follows that L is not low and since L≡stW L, it follows that strong total Weihrauch
reducibility does not preserve lowness. Hence total Weihrauch reducibility also does
not preserve lowness. By the reasoning used for the proof of [6, Proposition 4.9],
one can conclude that lowness would preserve strong total Weihrauch reducibility if
it did respect precompleteness (in the strong case one does not need closure under
juxtaposition with the identity, which is not given for low functions by Lemma 9.4).
Hence, lowness does not respect precompleteness. �

We mention that L is not a cylinder.

Lemma 9.4. L and L are not cylinders.

Proof. By [2, Theorem 8.8] we have L<sW L×L = (L× id)◦(id×L). By [2, Proposi-
tion 8.16] low problems are closed under composition. Hence id×L≡sW L×id cannot
be low, i.e., id × L 6≤sW L and hence L is not a cylinder. By [6, Proposition 6.19]
this implies that L is also not a cylinder. �

Finally, we prove that L is not complete, i.e., L<W L. We even prove a more
general result.

Proposition 9.5. WBWT2 6≤W L.

Proof. By ϕ we denote a Gödel numbering of all computable functions ϕn :⊆ N → N.
For every problem f :⊆ NN ⇒ Y we denote by fϕ :⊆ N ⇒ Y its Gödelization de-
fined by fϕ(n) := f(ϕn) with dom(fϕ) := {n ∈ N : ϕn total and ϕn ∈ dom(f)}.
By the universal Turing machine theorem one obtains fϕ≤W f . Hence, it suffices
to show W := WBWT2ϕ 6≤W L in order to prove our claim. We prove that W ≤W L

implies B := BWT2ϕ ≤W lim. But the latter implies (B̂WT2)ϕ ≤W B̂≤W lim, where
the first reduction holds by the smn-theorem. But this is a contradiction, since it is

known that B̂WT2 ≡W WKL
′ [8, Corollaries 11.6, 11.7 and 11.12] and hence by the

relativized Kleene tree construction WKL
′ and thus B̂WT2 have computable inputs

with no limit computable solution. We now show that W ≤W L implies B≤W lim.
To this end, let H,K :⊆ NN → NN be computable functions such that H〈id, GK〉 is
a realizer for W whenever G is a realizer for L = J

−1 ◦ lim. Up to extension the only
realizer of L is L itself, hence we can assume G = L. By the smn-theorem there are
two computable functions r0, r1 : N → N such that JLK(ϕn)(ri〈n, k〉) = 1 if and
only if H〈ϕn, LK(ϕn)〉(m) = i for all m ≥ k. Intuitively speaking, ri inspects the
outcome of H〈ϕn, LK(ϕn)〉 with respect to the question whether it is eventually
constant with value i, which is possible if the Turing jump of LK(ϕn) is known,
since q 7→ H〈ϕn, q〉 is computable uniformly in n. Now JL = lim and hence the
inner reduction function K also witnesses the reduction B≤W lim. More precisely,

26 V. BRATTKA AND G. GHERARDI

given an input 〈n, q〉 the corresponding outer reduction function H ′ only has to
search for some (i, k) with i ∈ {0, 1} and k ∈ N such that q(ri〈n, k〉) = 1 and
output (a name of) i in this case. Such a function H ′ is clearly computable and
satisfies H ′〈n, limK(ϕn)〉 ∈ B(n). �

We obtain the following corollary with Proposition 8.8 and Corollary 8.16.

Corollary 9.6. L is not complete, CN 6≤W L and SORT 6≤W L.

10. Choice on Euclidean Space

By Lemma 8.7 CN is a total fractal. This fact allows us to give a very simple
proof of the following result.

Proposition 10.1 (Choice on Euclidean space). CR <W CR and PCR <W PCR.

Proof. Let us assume that CR ≤W CR. Then we obtain

CN ≤W CR ≤W CR ≡W C2N ∗ CN,

where the first reduction holds since CN ≤W CR and completion is a closure operator
and the last mentioned equivalence is known [8, Example 4.4 (2)]. By the choice
elimination principle [20, Theorem 2.4] it follows that CN ≤W CN ≤W C2N , which is
known to be false [4, Corollary 4.2]. PCR <W PCR can be proved analogously, since
PCR ≡W PC2N ∗ CN by [7, Corollary 6.4, Proposition 7.4]. �

Analogously, one could also prove CN <W CN. As a corollary of the proof of
Proposition 10.1 we also obtain the following separation, which is also a consequence
of Corollary 9.6.

Corollary 10.2. CN 6≤W CR.

Since f × g≤sW f×g by [6, Proposition 6.3] and using Proposition 6.1 we obtain

CR ≤sW C2N × CN ≤sW C2N × CN≤sW C2N × CN

and one could ask whether the inverse reduction holds too. The following choice
and completion elimination principle is quite useful and can be used to prove that
this is not so. It has some similarities to the displacement principle formulated
in [13, Theorem 8.3, Corollary 8.4] and shows that if the completion of a problem g

can compute another problem f together with C2, then the uncompleted problem
by itself can already compute f .

Proposition 10.3 (Depletion). f × C2 ≤W g =⇒ f ≤W g holds for all problems
f, g. An analogous property holds for ≤sW instead of ≤W in both instances.

Proof. If f is nowhere defined, then the statement holds obviously. Hence, let f be
defined somewhere. We consider g :⊆ X ⇒ Y and g : X ⇒ Y . Let p ∈ NN be a
name of some point x ∈ dom(f) and let q ∈ NN be a computable name of the set
{0, 1} ∈ A−({0, 1}). Let f × C2 ≤W g be witnessed by some computable functions
H,K. Let us assume that K〈p, q〉 is a name of a point outside of dom(g). Then

a realizer G of g can produce any value on this input, for instance, GK〈p, q〉 = 0̂.

Then H〈〈p, q〉, 0̂〉 = 〈s, t〉 where s is a name of a point in f(x) and i = t(0) ∈ {0, 1}.
Since H is continuous, there are finite prefixes w ⊑ p and v ⊑ q that suffice to
produce the value i = t(0). Moreover, there is a name q′ of {i − 1} with v ⊑ q′,
and there is a realizer G of g that produces a value r = GK〈p, q′〉 that starts with
sufficiently many zeros (which is possible with respect to the representation δY)
such that H〈〈p, q′〉, r〉 = 〈s′, t′〉 with the same i = t′(0) as above. But in this case
the result is incorrect. Hence, the assumption was incorrect and K〈p, q〉 is always a
δX–name of a point in dom(g) for every name p of a point in dom(f) and the fixed

COMPLETION OF CHOICE 27

computable q. Hence K ′ with K ′(p) := K〈p, q〉 − 1 is a name of the same point
with respect to δX and H ′〈p, r〉 := π1 ◦ H〈〈p, q〉, r − 1〉 is a computable function
such that K ′ and H ′ witness f ≤W g. The proof for ≤sW is analogous. �

One application of Proposition 10.3 shows that CN × C2N ≤W CR would imply
CN ≤W CR, which is false by Corollary 10.2. An analogous observation holds for
PCR.

Corollary 10.4. CR <W C2N × CN and PCR <W PC2N × CN.

This corollary provides natural examples of problems such that the product of
the respective completions is stronger than the completion of the products. The
existence of such examples was already proved in [6, Lemma 6.9]. Another con-
clusion that we can draw from Proposition 10.3 is that every incomplete problem
above C2 has a completion that is not idempotent. We recall that a problem f is
called idempotent if f × f ≡W f holds.

Corollary 10.5 (Idempotency and completeness). If f is incomplete and C2 ≤W f ,

then f is not idempotent.

In particular, this means that our incomplete choice problems are not idempo-
tent. By [6, Proposition 6.19] a problem that is incomplete has a completion which
is not a cylinder. We recall that a problem f is called a cylinder if f ≡sW id× f .

Corollary 10.6. CN, CR, PCC[0,1], PC2R , PCR and CNN are not idempotent and not
cylinders.

Here the statement for CNN already uses CNN <W CNN , which is only proved in
Theorem 11.6.

11. Choice on Baire Space

Next we want to study the choice problem on Baire space CNN . For this purpose
we consider the wellfounded tree problem, i.e., the characteristic function of the
singleton with the empty set as its member:

WFT : A−(N
N) → {0, 1}, A 7→

{
1 if A = ∅
0 otherwise

.

By [3, Theorem 5.2] the set {∅} ⊆ A−(N
N) is equivalent to the set of wellfounded

trees that is known to be Π1
1–complete. By WFTS : A−(N

N) → S we denote the
wellfounded tree problem with target space S.

We start with proving that for every closed set A ⊆ NN that is given with
respect to the jump representation, we can compute a closed set B ⊆ NN such that
π1(B) = A. Here π1 : NN → NN, 〈p, q〉 7→ p.

Proposition 11.1 (Projections). There following problem is computable:

P : A−(N
N)′ ⇒ A−(N

N), A 7→ {B : π1(B) = A}

Proof. Given A ∈ A−(N
N)′ we can compute by [11, Proposition 3.6], [8, Proposi-

tion 9.2] a (possibly empty) sequence (pi)i∈N of points pi ∈ NN such that A is the
set of cluster points of A. We now start to generate a list of all balls nNN with
n ∈ N as output while we inspect the sequence (pi)i∈N in stages i = 0, 1, 2, We
say that a pi is fresh if it has no common non-empty prefix with any other previous
pj , j < i. If, in stage i, we encounter some fresh pi, then we select some k ∈ N such
that 〈pi(0), k〉NN was not yet enumerated as output and we skip the correspond-
ing ball on the output side (while we continue to enumerate all other balls nNN).
Additionally we enumerate all balls of the form 〈pi(0), k〉nNN with n ∈ N. If at
some later stage j, we encounter some pj that is not fresh, but that has a prefix in

28 V. BRATTKA AND G. GHERARDI

common with pi of length greater or equal than 2, then we select an l ∈ N such that
〈pi(0), k〉〈pi(1), l〉NN was not yet enumerated, we skip this ball on the output side
and we additionally start enumerating all balls of the form 〈pi(0), k〉〈pi(1), l〉nNN

with n ∈ N. We continue like this inductively. Whenever a non-fresh pi has a
prefix in common with an already enumerated pj that is longer than the depth of
the corresponding sequence of balls that is enumerated on the output side, then
we propagate the corresponding enumeration to the next deeper layer. As a result
of this, the enumeration of balls on the output side describes the complement of
a closed set B ⊆ NN such that π1(B) is the set of cluster points of (pi)i∈N, i.e.,
π1(B) = A. �

If B ∈ P (A) then B = ∅ ⇐⇒ A = ∅. Hence we obtain the following corollary.

Corollary 11.2 (Jump of wellfoundedness). WFT
′ ≡sW WFT and WFT

′
S ≡sW WFTS.

Now we can easily derive the following completeness and co-completeness prop-
erties of the wellfoundedness problem.

Corollary 11.3 (Wellfoundedness).

(1) WFT is strongly complete, co-total and co-complete,
(2) WFTS is strongly complete and co-complete.

Proof. We first prove both statements on strong completeness. The space A−(N
N)

is multi-retraceable by Lemma 5.1. Hence there is a computable multi-valued re-

traction r : A−(NN) ⇒ A−(N
N). By Corollary 2.5 the identity ι : NN → NN is

a computable embedding. Altogether this shows that WFT≤sW WFT, i.e., WFT

is strongly complete. Also the representation δS is easily seen to be precomplete
and total and hence S is multi-retraceable too by Proposition 2.6. Hence WFTS

is strongly complete by Corollary 4.12. Co-totality and co-completeness of WFT

and co-completeness of WFTS follow from Proposition 4.21 with the help of Corol-
lary 11.2. �

Here we are in particular interested in the co-completeness and co-totality results,
since they help us to establish the following result by an interesting bootstrapping
argument.

Proposition 11.4 (Wellfoundedness).

(1) WFTS ≤W TCNN and WFTS 6≤W CNN ,
(2) WFT≤W CNN ∗ TCNN and WFT 6≤W TCNN .

Proof. It is easy to see that WFTS ≤W TCNN : given A ∈ A−(N
N) we determine a

point p ∈ TCNN(A) and we check whether p ∈ A. If not, then we will eventually rec-
ognize that, in which case A = ∅. If A 6= ∅, then the search will never terminate, but
this is sufficient to compute WFTS(A) ∈ S. The identity ι : S → {0, 1} is easily seen
to be equivalent to LPO and WFT = ι ◦WFTS. Hence the function f : NN → {0, 1}
with f := WFT ◦ δA

−
(NN) satisfies WFT≡W f ≤W LPO ∗ WFTS ≤W CNN ∗ TCNN .

On the other hand, f is not Borel measurable by [3, Theorem 5.2] (essentially,
since the set of wellfounded trees is Π1

1–complete and hence not Borel). Hence
WFT≡W f 6≤W CNN by [2, Theorem 7.7] (this theorem says that the single-valued
functions g : X → Y on complete computable metric spacesX,Y with g≤W CNN are
exactly the effectively Borel measurable g.) SinceWFT is co-total by Corollary 11.3,

WFT 6≤W CNN implies WFT 6≤W TCNN . Now suppose that WFTS ≤W CNN . Since
WFTS is co-complete by Corollary 11.3, this would imply WFTS ≤W CNN , which, as
above, leads to WFT≤W LPO ∗WFTS ≤W CNN ∗CNN ≡W CNN , where the last equiva-
lence holds by [2, Corollary 7.6]. Since WFT 6≤W CNN , we obtain WFTS 6≤W CNN . �

COMPLETION OF CHOICE 29

We can also conclude that WFTS is not co-total, since otherwise WFTS ≤W CNN

would follow.

Corollary 11.5. WFTS is not co-total.

Proposition 11.4 leads to the following classification of choice problems related
to choice on Baire space.

Theorem 11.6 (Choice on Baire space). We obtain:
CNN <W CNN <W TCNN <W CNN ∗ CNN ≡W CNN ∗ TCNN .

Proof. By Corollary 5.3 the reductions CNN ≤W CNN ≤W TCNN are clear and this im-
plies CNN ∗CNN ≤W CNN ∗TCNN . By Proposition 2.10 there is a limit computable re-

traction r : NN → NN and lim≤W CNN holds by [2, Example 3.10]. By Corollary 2.5

the identity ι : A−(N
N) → A−(NN) is a computable embedding. Altogether, this

implies TCNN ≤W CNN ∗ CNN . Since CNN ≡W CNN ∗ CNN by [2, Corollary 7.6], this in

turn implies CNN ∗TCNN ≤W CNN ∗CNN ∗CNN ≡W CNN ∗CNN . The separation statements
in CNN <W TCNN <W CNN ∗CNN follow from Proposition 11.4. If we had CNN ≤W CNN ,
then CNN ∗ CNN ≤W CNN ∗ CNN ≡W CNN would follow, which is not correct. �

By Corollary 4.17 we obtain the following conclusion on single-valued functions.
We note that for constant f one can easily prove the statement directly.

Corollary 11.7 (Single-valuedness). LetX,Y be complete computable metric spaces

and f : X → Y a function. Then f ≤sW CNN ⇐⇒ f ≤sW CNN ⇐⇒ f ≤sW TCNN .

By [2, Theorem 7.7] the first given condition is exactly satisfied for the effectively
Borel measurable functions f .

Question 11.8. Can we replace ≤sW by ≤W in Corollary 11.7?

References

[1] Vasco Brattka. A Galois connection between Turing jumps and limits. Logical Methods in
Computer Science, 14(3:13):1–37, August 2018.

[2] Vasco Brattka, Matthew de Brecht, and Arno Pauly. Closed choice and a uniform low basis
theorem. Annals of Pure and Applied Logic, 163:986–1008, 2012.

[3] Vasco Brattka and Guido Gherardi. Borel complexity of topological operations on computable
metric spaces. Journal of Logic and Computation, 19(1):45–76, 2009.

[4] Vasco Brattka and Guido Gherardi. Effective choice and boundedness principles in com-
putable analysis. The Bulletin of Symbolic Logic, 17(1):73–117, 2011.

[5] Vasco Brattka and Guido Gherardi. Weihrauch degrees, omniscience principles and weak
computability. The Journal of Symbolic Logic, 76(1):143–176, 2011.

[6] Vasco Brattka and Guido Gherardi. Weihrauch goes Brouwerian. The Journal of Symbolic
Logic, (to appear), 2020.

[7] Vasco Brattka, Guido Gherardi, and Rupert Hölzl. Probabilistic computability and choice.
Information and Computation, 242:249–286, 2015.

[8] Vasco Brattka, Guido Gherardi, and Alberto Marcone. The Bolzano-Weierstrass theorem is
the jump of weak Kőnig’s lemma. Annals of Pure and Applied Logic, 163:623–655, 2012.

[9] Vasco Brattka, Guido Gherardi, and Arno Pauly. Weihrauch complexity in computable anal-
ysis. Accepted for publication, 2020.

[10] Vasco Brattka, Matthew Hendtlass, and Alexander P. Kreuzer. On the uniform computational

content of computability theory. Theory of Computing Systems, 61(4):1376–1426, 2017.
[11] Vasco Brattka, Matthew Hendtlass, and Alexander P. Kreuzer. On the uniform computational

content of the Baire category theorem. Notre Dame Journal of Formal Logic, 59(4):605–636,
2018.

[12] Vasco Brattka, Rupert Hölzl, and Rutger Kuyper. Monte Carlo computability. In Herib-
ert Vollmer and Brigitte Vallée, editors, 34th Symposium on Theoretical Aspects of Com-
puter Science (STACS 2017), volume 66 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 17:1–17:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

30 V. BRATTKA AND G. GHERARDI

[13] Vasco Brattka, Stéphane Le Roux, Joseph S. Miller, and Arno Pauly. Connected choice and
the Brouwer fixed point theorem. Journal of Mathematical Logic, 19(1):1–46, 2019.

[14] Vasco Brattka and Arno Pauly. On the algebraic structure of Weihrauch degrees. Logical
Methods in Computer Science, 14(4:4):1–36, 2018.

[15] Vasco Brattka and Tahina Rakotoniaina. On the uniform computational content of Ramsey’s
theorem. Journal of Symbolic Logic, 82(4):1278–1316, 2017.

[16] Damir D. Dzhafarov. Joins in the strong Weihrauch degrees. Mathematical Research Letters,
26(3):749–767, 2019.

[17] Ju. L. Eršov. Theory of numberings. In Edward R. Griffor, editor, Handbook of Computability
Theory, volume 140 of Studies in Logic and the Foundations of Mathematics, pages 473–503.
Elsevier, Amsterdam, 1999.

[18] Alexander S. Kechris. Classical Descriptive Set Theory, volume 156 of Graduate Texts in
Mathematics. Springer, Berlin, 1995.

[19] Christoph Kreitz and Klaus Weihrauch. Theory of representations. Theoretical Computer
Science, 38:35–53, 1985.

[20] Stéphane Le Roux and Arno Pauly. Finite choice, convex choice and finding roots. Logical
Methods in Computer Science, 11(4):4:6, 31, 2015.

[21] Eike Neumann and Arno Pauly. A topological view on algebraic computation models. Journal
of Complexity, 44(Supplement C):1–22, 2018.

[22] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Perspectives in Logic, Associ-
ation for Symbolic Logic. Cambridge University Press, Poughkeepsie, second edition, 2009.

[23] Klaus Weihrauch. Computability, volume 9 of EATCS Monographs on Theoretical Computer
Science. Springer, Berlin, 1987.

[24] Klaus Weihrauch. The TTE-interpretation of three hierarchies of omniscience principles. In-
formatik Berichte 130, FernUniversität Hagen, Hagen, September 1992.

[25] Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.

Faculty of Computer Science, Universität der Bundeswehr München, Germany and

Department of Mathematics & Applied Mathematics, University of Cape Town, South

Africa3

Email address: Vasco.Brattka@cca-net.de

Dipartimento di Filosofia e Comunicazione, Università di Bologna, Italy

Email address: Guido.Gherardi@unibo.it

3Vasco Brattka has received funding from the National Research Foundation of South Africa

	1. Introduction
	2. Precompleteness, Completeness and Retraceability
	3. Total Weihrauch Reducibility
	4. Completion, Totalization and Co-Completion
	5. Choice Problems
	6. Choice on Compact Spaces
	7. Positive Choice
	8. Choice on the Natural Numbers
	9. Lowness
	10. Choice on Euclidean Space
	11. Choice on Baire Space
	References

