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INFINITESIMAL ANALYSIS WITHOUT THE AXIOM

OF CHOICE

KAREL HRBACEK AND MIKHAIL G. KATZ

Abstract. It is often claimed that analysis with infinitesimals
requires more substantial use of the Axiom of Choice than tradi-
tional elementary analysis. The claim is based on the observation
that the hyperreals entail the existence of nonprincipal ultrafil-
ters over N, a strong version of the Axiom of Choice, while the
real numbers can be constructed in ZF. The axiomatic approach
to nonstandard methods refutes this objection. We formulate a
theory SPOT in the st-∈-language which suffices to carry out
infinitesimal arguments, and prove that SPOT is a conservative
extension of ZF. Thus the methods of Calculus with infinitesimals
are just as effective as those of traditional Calculus. The conclu-
sion extends to large parts of ordinary mathematics and beyond.
We also develop a stronger axiomatic system SCOT, conservative
over ZF + ADC, which is suitable for handling such features as
an infinitesimal approach to the Lebesgue measure. Proofs of the
conservativity results combine and extend the methods of forcing
developed by Enayat and Spector.
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1. Introduction

Many branches of mathematics exploit the Axiom of Choice (AC)
to one extent or another. It is of considerable interest to gauge how
much the Axiom of Choice can be weakened in the foundations of
nonstandard analysis. Critics of analysis with infinitesimals often claim
that nonstandard methods require more substantial use of AC than
their standard counterparts. The goal of this paper is to refute such a
claim.

1.1. Axiom of Choice in Mathematics. We begin by consider-
ing the extent to which AC is needed in traditional non-infinitesimal
mathematics. Simpson [35] introduces a useful distinction between set-
theoretic mathematics and ordinary or non-set-theoretic mathematics.
The former includes such disciplines as general topology, abstract al-
gebra and functional analysis. It is well known that fundamental the-
orems in these areas require strong versions of AC. Thus

• Tychonoff’s Theorem in general topology is equivalent to full
AC (over Zermelo-Fraenkel set theory ZF).
• Prime Ideal Theorem asserts that every ring with unit has a

(two-sided) prime ideal. PIT is an essential result in abstract
algebra and is “almost” as strong as AC (it is equivalent over
ZF to Tychonoff’s Theorem for Hausdorff spaces). It is also
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equivalent to the Ultrafilter Theorem: Every proper filter over
a set S (i.e., in P(S)) can be extended to an ultrafilter.
• Hahn-Banach Theorem for general vector spaces is equivalent to

the statement that every Boolean algebra admits a real-valued
measure, a form of AC that is somewhat weaker than PIT.

Jech [20] and Howard and Rubin [15] are comprehensive references for
the relationships between these and many other forms of AC.

Researchers in set-theoretic mathematics have to accept strong forms
of AC as legitimate whether or not they use nonstandard methods. Our
concern here is with ordinary mathematics, which, according to Simp-
son, includes fields such as the Calculus, countable algebra, differential
equations, and real and complex analysis. It is often felt that results in
these fields should be effective in the sense of not being dependent on
AC. However, even these branches of mathematics cannot do entirely
without AC. There is a number of fundamental classical results that
rely on it; they include

• the equivalence of continuity and sequential continuity for real-
valued functions on R;
• the equivalence of the ε-δ definition and the sequential definition

of closure points for subsets of R;
• closure of the collection of Borel sets under countable unions

and intersections;
• countable additivity of Lebesgue measure.

Without an appeal to AC one cannot even prove that R is not a union
of countably many countable sets, or that a strictly positive function
cannot have vanishing Lebesgue integral (Kanovei and Katz [23]). How-
ever, these results follow already from ACC, the Axiom of Choice for
Countable collections, a weak version of AC that many mathemati-
cians use without even noticing.1 Nevertheless, it is true enough that
no choice is needed to define the real number system itself, or to develop
the Calculus and much of ordinary mathematics.

It has to be emphasized that objections to AC are not a matter
of ontology, but of epistemology. In other words, the issue is not the
existence of objects, but proof techniques and procedures. For better
or worse, many mathematicians nowadays believe that the objects of
interest to them can be represented by set-theoretic structures in a uni-
verse that satisfies ZFC, Zermelo-Fraenkel set theory with the Axiom
of Choice. Nevertheless, they may prefer results that are effective, that
is, do not use AC. For the purposes of this discussion, mathematical

1For example Halmos [10], p. 42; see [4], Sec. 5.7 for further discussion.
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results are effective if they can be proved in ZF. Much of ordinary
mathematics is effective in this sense.

We now consider whether nonstandard methods require anything
more. A common objection to infinitesimal methods in the Calculus
is the claim that the mere existence of the hyperreals2 implies the
existence of a nonprincipal ultrafilter U over N. The proof is simple:
Fix an infinitely large integer ν in ∗N \ N and define U ⊆ P(N) by
X ∈ U ←→ ν ∈ ∗X , forX ⊆ N. It is easy to see that U is a nonprincipal
ultrafilter over N. For example, if X ∪ Y ∈ U , then ν ∈ ∗(X ∪ Y ) =
∗X ∪ ∗Y , where the last step is by the Transfer Principle. Hence either
ν ∈ ∗X or ν ∈ ∗Y , and so X ∈ U or Y ∈ U . If X is finite, then X = ∗X ,
hence ν /∈ ∗X and so U is nonprincipal.

By the well-known result of Sierpiński [34] (see also Jech [20], Prob-
lem 1.10), U is a non-Lebesgue-measurable set (when subsets of N are
identified with real numbers in some natural way). In the celebrated
model of Solovay [36], ZF +ACC holds (even the stronger ADC, the
Axiom of Dependent Choice, holds there), but all sets of real numbers
are Lebesgue measurable, hence there are no nonprincipal ultrafilters
over N in this model. The existence of nonprincipal ultrafilters over N
requires a strong version of AC such as PIT; it cannot be proved in
ZF (or even ZF + ADC).

1.2. Countering the objection. How can such an objection be an-
swered? As in the case of the traditional mathematics, the key is to look
not at the objects but at the methods used. Currently there are two
popular ways to practice Robinson’s nonstandard analysis: the model-
theoretic approach and the axiomatic/syntactic approach. Analysis
with infinitesimals does not have to be based on hyperreal structures
in the universe of ZFC. It can be developed axiomatically; the mono-
graph by Kanovei and Reeken [24] is a comprehensive reference for such
approaches. Internal axiomatic presentations of nonstandard analysis,
such as IST or BST, extend the usual ∈-language of set theory by
a unary predicate st (st(x) reads x is standard). For reference, the
axioms of BST are stated in Section 7.

It is of course possible to weaken ZFC to ZF within BST or IST,
but this move by itself does not answer the above objection. It is easily
seen, by a modification of the argument given above for hyperreals, that
the theory obtained from BST or IST by replacing ZFC by ZF proves

2By the hyperreals we mean a proper elementary extension of the reals, i.e., a proper
extension that satisfies Transfer. The definite article is used merely for grammatical
correctness. Subsets of N can be identified with real numbers; see SP ⇒ SP

′ in
the proof of Lemma 2.4 for one way to do that.
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PIT (Hrbacek [16]). This argument uses the full strength of the prin-
ciples of Idealization and Standardization (see Section 7). However,
Calculus with infinitesimals can be fully carried out assuming much
less. Examination of texts such as Keisler [26] and Stroyan [40] reveals
that only very weak versions of these principles are ever used there. Of
course one has to postulate that infinitesimals exist (Nontriviality), but
stronger consequences of Idealization are not needed. As for Standard-
ization, these textbooks only explicitly postulate a special consequence
of it, namely, the following principle:

SP (Standard Part) Every limited real is infinitely close to a stan-
dard real;

see Keisler [26, 27], Axioms A - E. However, this is somewhat mis-
leading. Keisler does not develop the Calculus from his axioms alone;
they describe some properties of the hyperreals, but the hyperreals are
considered to be an extension of the field R of real numbers in the
universe of ZFC, and the principles of ZFC can be freely used. In
particular, the principle of Standardization is not an issue; it is auto-
matically satisfied for any formula. While Standardization for formulas
about integers appears innocuous, Standardization for formulas about
reals can lead to the existence of nonprincipal ultrafilters. On the other
hand, some instances of Standardization over the reals are unavoidable,
for example to prove the existence of the function f ′ (the derivative of
f) defined in terms of infinitesimals for a given real-valued function f
on R.

1.3. SPOT and SCOT. In the present text, we introduce a theory
SPOT in the st-∈-language, a subtheory of IST and BST, and we
show that SPOT proves Countable Idealization and enough Standard-
ization for the purposes of the Calculus. We use ∀ and ∃ as quantifiers
over sets and ∀st and ∃st as quantifiers over standard sets. The axioms
of SPOT are:

ZF (Zermelo - Fraenkel Set Theory)

T (Transfer) Let φ be an ∈-formula with standard parameters. Then

∀stx φ(x)→ ∀x φ(x).

O (Nontriviality) ∃ν ∈ N ∀stn ∈ N (n 6= ν).

SP′ (Standard Part)

∀A ⊆ N ∃stB ⊆ N ∀stn ∈ N (n ∈ B ←→ n ∈ A).

Our main result is the following.
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Theorem A The theory SPOT is a conservative extension of ZF.

Thus the methods used in the Calculus with infinitesimals do not
require any appeal to the Axiom of Choice.

The result allows significant strengthenings. We let SN be the Stan-
dardization principle for st-∈-formulas with no parameters (see Sec-
tion 6). The principle allows Standardization of much more complex
formulas than SPOT alone.

Theorem B The theory SPOT + SN is a conservative extension
of ZF.

It is also possible to add some Idealization. We let BI′ be Bounded
Idealization (see Section 7) for ∈-formulas with standard parameters.

Theorem C The theory SPOT+B+BI′ is a conservative exten-
sion of ZF.

This is the theory BST with ZFC replaced by ZF, Standardization
weakened to SP and Bounded Idealization weakened to BI′; we denote
it BSPT′. This theory enables the applicability of some infinitesimal
techniques to arbitrary topological spaces. It also proves that there is
a finite set S containing all standard reals, a frequently used idea.

As noted above, some important results in elementary analysis and
elsewhere in ordinary mathematics require the Axiom of Countable
Choice. On the other hand, ACC entails no “paradoxical” conse-
quences, such as the existence of Lebesgue-non-measurable sets, or the
existence of an additive function on R different from fa : x 7→ ax for all
a ∈ R. Many mathematicians find ACC acceptable. These considera-
tions apply as well to the following stronger axiom.

ADC (Axiom of Dependent Choice) If R is a binary relation on a
set A such that ∀a ∈ A ∃a′ ∈ A (aRa′), then for every a ∈ A there
exists a sequence 〈an | n ∈ N〉 such that a0 = a and anRan+1 for all
n ∈ N.

This axiom is needed for example to prove the equivalence of the two
definitions of a well-ordering (Jech [21], Lemma 5.2):

(1) Every nonempty subset of a linearly ordered set (A,<) has a
least element.

(2) A has no infinite decreasing sequence a0 > a1 > . . . > an > . . ..

We denote by ZFc (“ZFC Lite”) the theory ZF + ADC. This
theory is sufficient for axiomatizing ordinary mathematics (and many
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SPOT SPOT+SN SCOT BSPT′ BSCT′ BST

∈-theory ZF ZF ZF+ADC ZF ZF+ADC ZFC
Transfer yes yes yes yes yes yes
Idealization countable countable countable standard

params
standard
params

full

Standardiz. SP SP;
standard
params

SC;
standard
params

SP SC full

Countable
st-∈
Choice

no no yes no yes Standard
-size
Choice

Table 1. Theories and their properties

results of set-theoretic mathematics as well). Let SCOT be the theory
obtained from SPOT by strengthening ZF to ZFc, SP to Countable
st-∈-Choice (CC), and adding SN; see Section 3.

Theorem D The theory SCOT is a conservative extension of ZFc.

In SCOT one can carry out most techniques used in infinitesimal
treatments of ordinary mathematics. As examples, we give a proof
of Peano’s Existence Theorem and an infinitesimal construction of
Lebesgue measure in Section 3. Thus the nonstandard methods used in
ordinary mathematics do not require any more choice than is generally
accepted in traditional ordinary mathematics.

Further related conservative extension theorems can be found in Sec-
tions 5, 6 and 7.

2. Theory SPOT and Calculus with infinitesimals

2.1. Some consequences of SPOT. The axioms of SPOT were
given in Section 1.3.

Lemma 2.1. The theory SPOT proves the following:

∀stn ∈ N ∀m ∈ N (m < n→ st(m)).

Proof. Given a standard n ∈ N and m < n, let A = {k ∈ N | k < m}.
By SP′ there is a standard B ⊆ N such that for all standard k, k ∈ B
iff k ∈ A iff k < m. The set B ⊆ N is bounded above by n (Transfer),
so it has a greatest element k0 (< is a well-ordering of N) , which
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is standard by Transfer. Now we have k0 < m and k0 + 1 ≮ m, so
k0 + 1 = m and m is standard. �

Lemma 2.2. (Countable Idealization) Let φ be an ∈-formula with ar-
bitrary parameters. The theory SPOT proves the following:

∀stn ∈ N ∃x ∀m ∈ N (m ≤ n → φ(m, x))←→ ∃x ∀stn ∈ N φ(n, x).

Proof. If ∀stn ∈ N φ(n, x), then, for every standard n ∈ N, ∀m ∈
N (m ≤ n→ φ(m, x)), by Lemma 2.1.

Conversely, assume ∀stn ∈ N ∃x ∀m ∈ N (m ≤ n → φ(m, x)). By
the Axiom of Separation of ZF, there is a set

S = {n ∈ N | ∃x ∀m ∈ N (m ≤ n→ φ(m, x))},

and the assumption implies that ∀stn ∈ N (n ∈ S).
Assume that S contains standard integers only. Then N \ S 6= ∅ by

the axiom O. Let ν be the least element of N\S. Then ν is nonstandard
but ν − 1 is standard, a contradiction.

Let µ be some nonstandard element of S. We have ∃x ∀m ∈ N (m ≤
µ → φ(m, x)); as n ≤ µ holds for all standard n ∈ N, we obtain
∃x ∀stn ∈ N φ(n, x). �

Countable Idealization easily implies the following more familiar
form. We use ∀st fin and ∃st fin as quantifiers over standard finite sets.

Corollary 2.3. Let φ be an ∈-formula with arbitrary parameters. The
theory SPOT proves the following: For every standard countable set A

∀stfina ⊆ A ∃x ∀y ∈ a φ(x, y)←→ ∃x ∀sty ∈ A φ(x, y).

The axiom SP′ is often stated and used in the form

(SP) ∀x ∈ R (x limited → ∃str ∈ R (x ≈ r))

where x is limited iff |x| ≤ n for some standard n ∈ N, and x ≈ r iff
|x− r| ≤ 1/n for all standard n ∈ N, n 6= 0. The unique standard real
number r is called the standard part of x or the shadow of x; notation
sh(x).

We note that in the statement of SP′, N can be replaced by any
countable standard set A.

Lemma 2.4. The statements SP′ and SP are equivalent (over ZF +
O + T).

Proof of Lemma 2.4. SP′ ⇒ SP: Assume x ∈ R is limited by a stan-
dard n0 ∈ N. Let A = {q ∈ Q | q ≤ x}. Applying SP′ with N replaced
by Q, we obtain a standard set B ⊆ Q such that ∀stq ∈ Q (q ∈ B ←→
q ∈ A). As ∀stq ∈ B (q ≤ n0) holds, the set B is bounded above (apply
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Transfer to the formula q ∈ B → q ≤ n0) and so it has a supremum
r ∈ R, which is standard (Transfer again). We claim that x ≈ r. If
not, then |x − r| > 1

n
for some standard n, hence either x < r − 1

n

or x > r + 1
n
. In the first case supB ≤ r − 1

n
and in the second,

supB ≥ r + 1
n
; either way contradicts supB = r.

SP⇒ SP′: The obvious idea is to represent the characteristic func-
tion of a set A ⊆ N by the binary expansion of a real number in [0, 1].
But some real numbers have two binary expansions and therefore cor-
respond to two distinct subsets of N. This is a source of technical
complications that we avoid by using decimal expansions instead.

Given A ⊆ N, let χA be the characteristic function of A. Define a

real number xA = Σ∞
n=0

χ(n)
10n+1 ; as 0 ≤ xA ≤

1
9
, there is a standard real

number r ≈ xA. Let r = Σ∞
n=0

an
10n+1 be the decimal expansion of r

where for every n there is k > n such that ak 6= 9. Note that if n is
standard, then there is a standard k with this property, by Transfer. If
χ(n) = an for all n, then A is standard and we let B = A. Otherwise
let n0 be the least n where χ(n) 6= an. From r ≈ xA it follows easily
that n0 is nonstandard. In particular, an ∈ {0, 1} holds for all standard
n, hence, by Transfer, for all n ∈ N. Let B = {n ∈ N | an = 1}. Then
B is standard and for all standard n ∈ N, n ∈ B iff an = 1 iff χ(n) = 1
iff n ∈ A. �

As explained in the Introduction, Standardization over uncountable
sets such as R, even for very simple formulas, implies the existence of
nonprincipal ultrafilters over N, and so it cannot be proved in SPOT

(consider a standard set U such that ∀stX (X ∈ U ←→ X ⊆ N ∧ ν ∈
X), where ν is a nonstandard integer). But we need to be able to
prove the existence of various subsets of R and functions from R to R
that arise in the Calculus and may be defined in terms of infinitesimals.
Unlike the undesirable example above, such uses generally involve Stan-
dardization for formulas with standard parameters.

An st-∈-formula Φ(v1, . . . , vn) is ∆st if it is of the form

Qst

1 x1 . . . Q
st

m xm ψ(x1, . . . , xm, v1, . . . , vn)

where ψ is an ∈-formula and Q stands for ∃ or ∀.

Lemma 2.5. Let Φ(v1, . . . , vn) be a ∆st formula with standard param-
eters. Then SPOT proves: ∀stS ∃stP ∀stv1, . . . , vn(

〈v1, . . . , vn〉 ∈ P ←→ 〈v1, . . . , vn〉 ∈ S ∧ Φ(v1, . . . , vn)
)
.

Proof. Let Φ(v1 . . . , vn) beQst

1 x1 . . . Q
st

m xm ψ(x1, . . . , xm, v1, . . . , vn) and
φ(v1 . . . , vn) be Q1 x1 . . . Qm xm ψ(x1, . . . , xm, v1, . . . , vn). By Transfer,
Φ(v1 . . . , vn) ←→ φ(v1 . . . , vn) for all standard v1 . . . , vn. The set P =
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{〈v1, . . . , vn〉 ∈ S | φ(v1, . . . , vn)} exists by the Separation Principle of
ZF, and has the required property. �

This result has twofold importance:

• The meaning of every predicate that for standard inputs is de-
fined by a Qst

1 x1 . . . Q
st

m xm ψ formula with standard parameters
is automatically extended to all inputs, where it it given by the
∈-formula Q1 x1 . . . Qm xm ψ.
• Standardization holds for all ∈-formulas with additional predi-

cate symbols, as long as all these additional predicates are de-
fined by ∆st formulas with standard parameters.

In BST all st-∈-formulas are equivalent to ∆st formulas (see Kanovei
and Reeken [24], Theorem 3.2.3). In SPOT the equivalence is true only
for certain classes of formulas, but they include definitions of all the
basic concepts of the Calculus and much beyond.

We recall that h ∈ R is infinitesimal iff 0 < |h| < 1
n

holds for all

standard n ∈ N, n > 0. We use ∀in and ∃in for quantifiers ranging over
infinitesimals and 0. The basic concepts of the Calculus have infini-
tesimal definitions that involve a single alternation of such quantifiers.
The following proposition strengthens a result in Vopěnka [41], p. 148.
It shows that the usual infinitesimal definitions of Calculus concepts
are ∆st. The variables x, y range over R and m,n, ℓ range over N\{0}.

Proposition 2.6. In SPOT the following is true: Let φ(x, y) be an
∈-formula with arbitrary parameters. Then ∀inh ∃ink φ(h, k)←→

∀stm ∃stn ∀x [ |x| < 1/n→ ∃y (|y| < 1/m ∧ φ(x, y)) ].

By duality, we also have: ∃inh ∀ink φ(h, k)←→

∃stm ∀stn ∃x [ |x| < 1/n ∧ ∀y (|y| < 1/m→ φ(x, y)) ].

Proof. The formula ∀inh ∃ink φ(h, k) means:

∀x [ ∀stn (|x| < 1/n)→ ∃y ∀stm (|y| < 1/m ∧ φ(x, y)) ],

where we assume that the variables m,n do not occur freely in φ(x, y).
Using Countable Idealization (Lemma 2.2), we rewrite this as

∀x [ ∀stn (|x| < 1/n)→ ∀stm ∃y ∀ℓ ≤ m (|y| < 1/ℓ ∧ φ(x, y)) ].

We now use the observation that ∀ℓ ≤ m (|y| < 1/ℓ) is equivalent
to |y| < 1/m, and the rules (α → ∀stv β) ←→ ∀stv (α → β) and
(∀stv β → α)←→ ∃stv (β → α), valid assuming that v is not free in α
(note that Transfer implies ∃n st(n)). This enables us to rewrite the
preceding formula as follows:

∀x ∀stm ∃stn [ |x| < 1/n→ ∃y (|y| < 1/m ∧ φ(x, y)) ].
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After exchanging the order of the first two universal quantifiers, we
obtain the formula

∀stm ∀x ∃stn [ |x| < 1/n→ ∃y |y| < 1/m ∧ φ(x, y)) ],

to which we apply (the dual form of) Countable Idealization to get

∀stm ∃stn ∀x ∃ℓ ≤ n [ |x| < 1/ℓ→ ∃y (|y| < 1/m ∧ φ(x, y)) ].

After rewriting ∃ℓ ≤ n [ |x| < 1/ℓ→ . . .] as [∀ℓ ≤ n ( |x| < 1/ℓ)→ . . .]
and replacing ∀ℓ ≤ n (|x| < 1/ℓ) by |x| < 1/n, we obtain

∀stm ∃stn ∀x [ |x| < 1/n→ ∃y (|y| < 1/m ∧ φ(x, y)) ],

proving the proposition. �

2.2. Mathematics in SPOT. We give some examples to illustrate
how infinitesimal analysis works in SPOT.

Example 2.7. If F is a standard real-valued function on an open
interval (a, b) in R and a, b, c, d are standard real numbers with c ∈
(a, b), we can define

(1) F ′(c) = d←→ ∀inh ∃ink

(
h 6= 0→

F (c+ h)− F (c)

h
= d+ k

)
.

Let Φ(F, c, d) be the formula on the right side of the equivalence in (1).
Lemma 2.5 establishes that the formula Φ is equivalent to a ∆st for-
mula, and φ(F, c, d) provided by the proof of Lemma 2.5 is easily seen
to be equivalent to the standard ε-δ definition of derivative. For any
standard F , the set F ′ = {〈c, d〉 | φ(F, c, d)} is standard; it is the
derivative function of F .

Proposition 2.6 generalizes straightforwardly to all formulas that
have the form Ah1 . . .Ahn Ek1 . . .Ekm φ(h1, . . . , k1, . . . , v1, . . .) or
Eh1 . . .Ehn Ak1 . . .Akm φ(h1, . . . , k1, . . . , v1, . . .) where each A is either
∀ or ∀in, and each E is either ∃ or ∃in. All such formulas are equivalent
to ∆st formulas.

Formulas of the form Q1h1 . . . Qnhn φ(h1, . . . , hn, v1, . . . , vk) where
each Q is either ∀ or ∀in or ∃ or ∃in, but all quantifiers over infinitesimals
are of the same kind (all existential or all universal), are also ∆st. As
an example, ∃inh ∀y ∃ink φ(h, k, x, y) is equivalent to

∃h ∀y ∃k ∀stm ∀stn (|h| < 1/m ∧ |k| < 1/n ∧ φ(h, k, x, y)).

The two quantifiers over standard elements of N can be replaced by a
single one:

∃h ∀y ∃k ∀stm (|h| < 1/m ∧ |k| < 1/m ∧ φ(h, k, x, y)),

and then moved to the front using Countable Idealization.
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Klein and Fraenkel proposed two benchmarks for a useful theory of
infinitesimals (see Kanovei et al. [22]):

• a proof of the Mean Value Theorem by infinitesimal techniques;
• a definition of the definite integral in terms of infinitesimals.

The theory SPOT easily meets these criteria. The usual nonstandard
proof of the Mean Value Theorem (Robinson [31], Keisler [26, 27]) uses
Standard Part and Transfer, and is easily carried out in SPOT. The
familiar infinitesimal definition of the Riemann integral for standard
bounded functions on a standard interval [a, b] also makes sense in
SPOT and can be expressed by a ∆st formula. In the next example
we outline a treatment inspired by Keisler’s use of hyperfinite Riemann
sums in [27].

Example 2.8. Riemann Integral.

We fix a positive infinitesimal h and the corresponding “hyperfinite
time line” T = {ti | i ∈ Z} where ti = i · h. Let f be a standard real-
valued function continuous on the standard interval [a, b]. Let ia, ib be
such that ia · h− h < a ≤ ia · h and ib · h < b ≤ ib · h + h. Then

(2)

∫ b

a

f(t) dt = sh
(
Σib

i=ia
f(ti) · h

)
.

It is easy to show that the value of the integral does not depend on the

choice of h. We thus have, for standard f, a, b, r :
∫ b

a
f(t) dt = r iff

∀inh ∃ink
(
Σib

i=ia
f(ti) · h = r + k

)
iff ∃inh ∃ink

(
Σib

i=ia
f(ti) · h = r + k

)
.

The formulas are of the form AE and EE respectively, and therefore
equivalent to ∆st formulas.

The approach generalizes easily to the Riemann integral of bounded
functions on [a, b]. We say that Th = 〈t′i〉

ib
i=ia

is an h- tagging on [a, b] if
i · h ≤ t′i ≤ (i+ 1) · h for all i = ia, . . . , ib− 1 and ib · h ≤ t′ib ≤ b. Then
for standard f, a, b, r

• f is Riemann integrable on [a, b] and
∫ b

a
f(x) dx = r iff

• ∀inh ∀Th ∃
ink

(
Σib

i=ia
f(t′i) · h = r + k

)
iff

• ∃inh ∀Th ∃
ink

(
Σib

i=ia
f(t′i) · h = r + k

)
.

These formulas are again equivalent to ∆st formulas (the first one is of
the form AAE and in the second one both quantifiers over standard
sets are existential).

The tools available in SPOT enable nonstandard definitions and
proofs in parts of mathematics that go well beyond the Calculus.
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Example 2.9. Fréchet Derivative. Given standard normed vector
spaces V and W , a standard open subset U of V , a standard function
f : U → W , a standard bounded linear operator A : V → W and a
standard x ∈ U ; A is the Fréchet derivative of f at x ∈ U iff

∀z ∀inh ∃ink

(
‖ z ‖V = h > 0→

‖ f(x + z)− f(x)− A · z ‖W
‖ z ‖V

= k

)
.

This definition is equivalent to a ∆st formula.

In Section 6 we show that Standardization for arbitrary formulas
with standard parameters can be added to SPOT and the resulting
theory is still conservative over ZF. This result enables one to dispose
of any concerns about the form of the defining formula.

3. Theory SCOT and Lebesgue measure

We recall (see Section 1.3) that SCOT is SPOT + ADC + SN +
CC, where the principle CC of Countable st-∈-Choice postulates the
following.

CC Let φ(u, v) be an st-∈-formula with arbitrary parameters. Then
∀stn ∈ N ∃x φ(n, x)→ ∃f (f is a function ∧ ∀stn ∈ Nφ(n, f(n)).

The set N can be replaced by any standard countable set A. We
consider also the principle SC of Countable Standardization.

SC (Countable Standardization) Let ψ(v) be an st-∈-formula with
arbitrary parameters. Then

∃stS ∀stn (n ∈ S ←→ n ∈ N ∧ ψ(n)).

Lemma 3.1. The theory SPOT + CC proves SC.

Proof. Let φ(n, x) be the formula “(ψ(n) ∧ x = 0) ∨ (¬ψ(n) ∧ x = 1)”.
If f is a function provided by CC, let A = {n ∈ N | f(n) = 0}. By
SP there is a standard set S such that, for all standard n ∈ N, n ∈ S
iff n ∈ A iff ψ(n) holds. �

We introduce an additional principle CCst.

CCst Let φ(u, v) be an st-∈-formula with arbitrary parameters.
Then

∀stn ∈ N ∃stxφ(n, x)→ ∃stF (F is a function ∧ ∀stn ∈ Nφ(n, F (n)).

The principle CCst

R is obtained from CCst by restricting the range
of the variable x to R.

Lemma 3.2. The theory SPOT + CC proves CCst

R .
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Proof. First use the principle CC to obtain a function f : N → R
such that ∀stn ∈ N (f(n) ∈ R ∧ st(f(n)) ∧ φ(n, f(n)). Next define a
relation r ⊆ N × N by 〈n,m〉 ∈ r iff m ∈ f(n). By Lemma 3.1, SC
holds. By SC there is a standard R ⊆ N × N such that 〈n,m〉 ∈ R
iff 〈n,m〉 ∈ r holds for all standard 〈n,m〉. Now define F : N→ R by
F (n) = {m | 〈n,m〉 ∈ R}. The function F is standard and, for every
standard n, the sets F (n) and f(n) have the same standard elements.
As they are both standard, it follows by Transfer that F (n) = f(n). �

The full principle CCst can conservatively be added to SCOT; see
Proposition 5.6.

A useful consequence of SC is the ability to carry out external in-
duction.

Lemma 3.3. (External Induction) Let φ(v) be an st-∈-formula with
arbitrary parameters. Then SPOT + SC proves the following:

[φ(0) ∧ ∀stn ∈ N (φ(n)→ φ(n+ 1))→ ∀stnφ(n) ].

Proof. SC yields a standard set S ⊆ N such that ∀stn ∈ N (n ∈ S ←→
φ(n)). We have 0 ∈ S and ∀stn ∈ N (n ∈ S → n + 1 ∈ S). Then
∀n ∈ N (n ∈ S → n + 1 ∈ S) by Transfer, and S = N by induction.
Hence ∀stn ∈ Nφ(n) holds. �

In Example 3.6 it is convenient to use the language of external collec-
tions. Let φ(v) be an st-∈-formula with arbitrary parameters. We use

dashed curly braces to denote the external collection x ∈ A | φ(x) .

We emphasize that this is merely a matter of convenience; writing
z ∈ x ∈ A | φ(x) is just another notation for φ(z).

Standardization in BST implies the existence of a standard set S
such that ∀stz (z ∈ S ←→ z ∈ x ∈ A | φ(x) ). We do not have

Standardization over uncountable sets in SCOT, but one important
case can be proved.

Lemma 3.4. Let φ(v) be an st-∈-formula with arbitrary parameters.

Then SCOT proves that inf st r ∈ R | φ(r) exists.

The notation indicates the greatest standard s ∈ R such that s ≤ r
for all standard r with the property φ(r) (+∞ if there is no such r).

Proof. Consider S = q ∈ Q | ∃str ∈ R (q ≥ r ∧ φ(r)) . As Q is

countable, the principle SC implies that there is a standard set S such
that ∀q ∈ Q (q ∈ S ←→ q ∈ S). Therefore inf S exists (+∞ if S = ∅)

and it is what is meant above by inf st r ∈ R | φ(r) . �

We give two examples of mathematics in SCOT.
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Example 3.5. Peano Existence Theorem. Peano’s Theorem as-
serts that every first-order differential equation of the form y′ = f(x, y)
has a solution (not necessarily a unique one) satisfying the initial con-
dition y(0) = 0, under the assumption that f is continuous in a neigh-
borhood of 〈0, 0〉. The infinitesimal proof begins by constructing the
sequences

x0 = 0, xk+1 = xk + h where h > 0 is infinitesimal;

y0 = 0, yk+1 = yk + h · f(xk, yk).

One then shows that there is N ∈ N such that xk, yk are defined
for all k ≤ N , a = st(xN) > 0, and for some standard M > 0,
|yk| ≤ M · a holds for all k ≤ N . The desired solution is a stan-
dard function Y : [0, a] → R such that for all standard x ∈ [0, a], if
x ≈ xk, then Y (x) ≈ yk. On the face of it one needs Standardization
over R to obtain this function, but in fact SC suffices. Consider the
countable set A = (Q × Q) ∩ ([0, a] × [−M · a,M · a]). By SC, there
is a standard Z ⊆ A such that for all standard 〈x, y〉, 〈x, y〉 ∈ Z iff
∃k ≤ N (x ≈ xk ∧ (y ≈ yk ∨ y ≥ yk). Define a standard function Y0
on Q ∩ [0, a] by Y0(x) = inf{y | 〈x, y〉 ∈ Z}. It is easy to verify that
Y0 is continuous on Q ∩ [0, a] and that its extension Y to a continuous
function on [0, a] is the desired solution.

Example 3.6. Lebesgue measure. In a seminal paper [29] Loeb
introduced measures on the external power set of ∗R which became
known as Loeb measures, and used them to construct the Lebesgue
measure on R. Substantial use of external collections is outside the
scope of this paper (see Subsection 8.7), but it is possible to eliminate
the intermediate step and give an infinitesimal definition à la Loeb of
the Lebesgue measure in internal set theory. We outline here how to
construct the Lebesgue outer measure on R in SCOT.

Let T be a hyperfinite time line (see Example 2.8) and let E ⊆ R be
standard. A finite set A ⊆ T covers E if

∀t ∈ T (∃stx ∈ E (t ≈ x)→ t ∈ A).

We define µµµ by setting

(3) µµµ(E) = inf st r ∈ R | r ≈ |A| · h for some A that covers E .

The collection whose infimum needs to be taken is external, but the
existence of the infimum is justified by Lemma 3.4. It is easy to see
that the value of µµµ(E) is independent of the choice of the infinitesimal
h in the definition of T. Thus the external function µµµ can be defined for
standard E ⊆ P(R) by an st-∈-formula with no parameters (preface



16 KAREL HRBACEK AND MIKHAIL G. KATZ

the formula on the right side of (3) by ∀inh or ∃inh). The principle
SN (see Subsection 1.3 and Section 6) yields a standard function m on
P(R) such that m(E) = µµµ(E) for all standard E ⊆ R. We prove that
m is σ-subadditive.

Let E =
⋃∞

n=0En where E and the sequence 〈En | n ∈ N〉 are
standard. If Σ∞

n=0m(En) = +∞ the claim is trivial, so we assume
that m(En) = rn ∈ R for all n. Fix a standard ε > 0. For every
standard n ∈ N there exists A such that φ(n,A): “A covers En ∧
|A| · h < rn + ε/2n+1” holds. By Countable st-∈-Choice there is a
sequence 〈An | n ∈ N〉 such that for all standard n φ(n,An) holds. By
Countable Idealization (“Overspill”) there is a nonstandard ν ∈ N such
that |An| · h < rn + ε/2n+1 holds for all n ≤ ν. We let A =

⋃ν

n=0An.
Clearly A is finite and covers E. Thus for r = sh(|A| · h) we obtain
m(E) ≤ r and

|A| · h ≤ Σν
n=0|An| · h < Σν

n=0rn + ε.

Since the sequence Σ∞
n=0rn converges, we have sh(Σν

n=0rn) = Σ∞
n=0rn

and m(A) ≤ Σ∞
n=0rn + ε. As this is true for all standard ε > 0, we

conclude that m(E) ≤ Σ∞
n=0rn = Σ∞

n=0m(En). �

For closed intervals [a, b], m([a, b]) = b − a: Compactness of [a, b]
implies that ∀t ∈ T ∩ [a, b] ∃stx ∈ E (t ≈ x). Thus if A covers [a, b]
then A ⊇ T∩ [a, b]; and for A = T∩ [a, b] one sees easily that |A| · h ≈
(b− a). With more work, one can show that m(E) coincides with the
conventionally defined Lebesgue outer measure of E for all standard
E ⊆ R. See Hrbacek [17] Section 3 for more details and other equivalent
nonstandard definitions of the Lebesgue outer measure.3 One can define
Lebesgue measurable sets from m in the usual way. One can also define
Lebesgue inner measure for standard E by

µ−(E) =supst r ∈ R | r ≈ |A| · h for some A such that

∀t ∈ T (t ∈ A→ ∃stx ∈ E (t ≈ x))

and prove that a standard bounded E ⊆ R is Lebesgue measurable iff
m(E) = m−(E), and the common value is the Lebesgue measure of E;
see Hrbacek [18].

3In [17] Remark (3) on page 22 it is erroneously claimed that the statement m1(A) =
r is equivalent to an internal formula. The existence of the function m1 there follows
from Standardization, just as in the case of m above.
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4. Conservativity of SPOT over ZF

In this section we apply forcing techniques to prove conservativity of
SPOT over ZF.

Theorem 4.1. The theory SPOT is a conservative extension of ZF:
If θ is an ∈-sentence, then (SPOT ⊢ θ ) implies that (ZF ⊢ θ ).

Theorem 4.1 = Theorem A is an immediate consequence of the fol-
lowing proposition.

Proposition 4.2. Every countable model M = (M,∈M) of ZF has a
countable extension M

∗ = (M∗,∈∗, st) to a model of SPOT in which
M is the class of all standard sets.

Proof of Theorem 4.1. Suppose SPOT ⊢ θ but ZF 0 θ, where θ
is an ∈-sentence. Then the theory ZF + ¬θ is consistent, therefore it
has a countable model M, by Gödel’s Completeness Theorem. Using
Proposition 4.2 one obtains its extension M

∗ � SPOT, so in particular
M

∗ � θ and, by Transfer in M
∗, M � θ. This is a contradiction. �

The rest of this section is devoted to the proof of Proposition 4.2.

4.1. Forcing according to Enayat and Spector. We combine the
forcing notion used by Enayat [8] to construct end extensions of models
of arithmetic, with the one used by Spector in [38] to produce extended
ultrapowers of models M of ZF by an ultrafilter U ∈M.

In this subsection we work in ZF, define our forcing notion and prove
its basic properties. The next subsection deals with generic extensions
of countable models of ZF and the resulting extended ultrapowers.
The general reference to forcing and generic models in set theory is
Jech [21].

The set of all natural numbers is denoted N and letters m,n, k, ℓ are
reserved for variables ranging over N. The index set over which the
ultrapowers will eventually be constructed is denoted I. In this section
we assume I = N. A subset p of N is called unbounded if ∀m ∃n ∈
p (n ≥ m) and bounded if it is not unbounded. Of course unbounded
is the same as infinite, and bounded is the same as finite. We use
this terminology with a view to Section 7, where the construction is
generalized to I = Pfin(A) for any infinite set A. The notation ∀aai ∈ p
(for almost all i ∈ p) means ∀i ∈ p \ c for some bounded c.

As usual, the symbol V denotes the universe of all sets, and Vα (α
ranges over ordinals) are the ranks of the von Neumann cumulative
hierarchy. We let F be the class of all functions with domain I. The
notation ∅k stands for the k-tuple 〈∅, . . . , ∅〉.
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Definition 4.3. Let P = {p ⊆ I | p is unbounded}. For p, p′ ∈ P we
say that p′ extends p (notation: p′ ≤ p) iff p′ ⊆ p.

Let Q = {q ∈ F | ∃k ∈ N ∀i ∈ I (q(i) ⊆ Vk ∧ q(i) 6= ∅)}. The
number k is the rank of q. We note that q(i) for each i ∈ I, and q
itself, are sets, but Q is a proper class. We let 1̄ = q where q(i) = {∅}
for all i ∈ I; 1̄ is the only q ∈ Q of rank 0.

The forcing notion H is defined as follows: H = P×Q and 〈p′, q′〉 ∈ H
extends 〈p, q〉 ∈ H (notation: 〈p′, q′〉 ≤ 〈p, q〉) iff p′ extends p, rank q′ =
k′ ≥ k = rank q, and for almost all i ∈ p′ and all 〈x0, . . . , xk′−1〉 ∈ q

′(i),
〈x0, . . . , xk−1〉 ∈ q(i). Every 〈p, q〉 ∈ H extends 〈p, 1̄〉.

The poset P is used to force a generic filter over I as in Enayat [8],
and H forces an extended ultrapower of V by the generic filter U forced
by P. It is a modification of the forcing notion from Spector [38], with
the difference that in [38] U is not forced but assumed to be a given
ultrafilter in V.

A set D ⊆ P is dense in P if for every p ∈ P there is p′ ∈ D
such that p′ extends p. We note that for any set S ⊆ I, the set
DS = {p ∈ P | p ⊆ S ∨ p ⊆ I \ S} is dense in P.

Similarly, a class E ⊆ H is dense in H if for every 〈p, q〉 ∈ H there
is 〈p′, q′〉 ∈ E such that 〈p′, q′〉 ≤ 〈p, q〉.

The forcing language L has a constant symbol ž for every z ∈ V
(which we identify with z when no confusion threatens), and a constant

symbol Ġn for each n ∈ N. Given an ∈-formula φ(w1, . . . , wr, v1, . . . , vs),
we define the forcing relation 〈p, q〉 
 φ(ž1, . . . , žr, Ġn1

, . . . , Ġns
) for

〈p, q〉 ∈ H by meta-induction on the logical complexity of φ. We use
¬,∧ and ∃ as primitives and consider the other logical connectives
and quantifiers as defined in terms of these. Usually, we suppress the
explicit listing in φ of the constant symbols ž for the elements of V.

Definition 4.4. (Forcing relation.)

(1) 〈p, q〉 
 ž1 = ž2 iff z1 = z2.
(2) 〈p, q〉 
 ž1 ∈ ž2 iff z1 ∈ z2.
(3) 〈p, q〉 
 Ġn1

= Ġn2
iff rank q = k > n1, n2 and

∀aai ∈ p ∀〈x0, . . . , xk−1〉 ∈ q(i) (xn1
= xn2

).

(4) 〈p, q〉 
 Ġn1
∈ Ġn2

iff rank q = k > n1, n2 and
∀aai ∈ p ∀〈x0, . . . , xk−1〉 ∈ q(i) (xn1

∈ xn2
).

(5) 〈p, q〉 
 Ġn = ž iff 〈p, q〉 
 ž = Ġn iff rank q = k > n and
∀aai ∈ p ∀〈x0, . . . , xk−1〉 ∈ q(i) (xn = z).

(6) 〈p, q〉 
 ž ∈ Ġn iff rank q = k > n and
∀aai ∈ p ∀〈x0, . . . , xk−1〉 ∈ q(i) (z ∈ xn).
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(7) 〈p, q〉 
 Ġn ∈ ž iff rank q = k > n and
∀aai ∈ p ∀〈x0, . . . , xk−1〉 ∈ q(i) (xn ∈ z).

(8) 〈p, q〉 
 ¬φ(Ġn1
, . . . , Ġns

) iff rank q = k > n1, . . . , ns and there

is no 〈p′, q′〉 extending 〈p, q〉 such that 〈p′, q′〉 
 φ(Ġn1
, . . . , Ġns

).
(9) 〈p, q〉 
 (φ ∧ ψ)(Ġn1

, . . . , Ġns
) iff

〈p, q〉 
 φ(Ġn1
, . . . , Ġns

) and 〈p, q〉 
 ψ(Ġn1
, . . . , Ġns

).
(10) 〈p, q〉 
 ∃v ψ(Ġn1

, . . . , Ġns
, v) iff rank q = k > n1, . . . , ns and

for every 〈p′, q′〉 extending 〈p, q〉 there exist 〈p′′, q′′〉 extending

〈p′, q′〉 and m ∈ N such that 〈p′′, q′′〉 
 ψ(Ġn1
, . . . , Ġns

, Ġm).

Lemma 4.5. (Basic properties of forcing)

(1) If 〈p, q〉 
 φ and 〈p′, q′〉 extends 〈p, q〉, then 〈p′, q′〉 
 φ.
(2) No 〈p, q〉 forces both φ and ¬φ.
(3) Every 〈p, q〉 extends to 〈p′, q′〉 such that 〈p′, q′〉 
 φ or
〈p′, q′〉 
 ¬φ.

(4) If 〈p, q〉 
 φ and p′ \ p is bounded, then 〈p′, q〉 
 φ.

Proof. (1) - (3) are immediate from the definition of forcing and (4)
can be proved by induction on the complexity of φ. �

The following proposition establishes a relationship between this
forcing and ultrapowers.

Proposition 4.6. (“ Loś’s Theorem”) Let φ(v1, . . . , vs) be an ∈-formula
with parameters from V.
Then 〈p, q〉 
 φ(Ġn1

, . . . , Ġns
) iff rank q = k > n1, . . . , ns and

∀aai ∈ p ∀〈x0, . . . , xk−1〉 ∈ q(i) φ(xn1
, . . . , xns

).

Proof. For atomic formulas (cases (1) - (7)) the claim is immediate
from the definition. Case (9) is also trivial (union of two bounded sets
is bounded).

Case (8): Let c = {i ∈ p | ∀〈x0, . . . , xk−1〉 ∈ q(i) ¬φ(xn1
, . . . , xns

)}.
We need to prove that 〈p, q〉 
 ¬φ, iff p \ c is bounded.

Assume that 〈p, q〉 
 ¬φ and p\c is unbounded. We let p′ = p\c and
q′(i) = {〈x0, . . . , xk−1〉 ∈ q(i) | φ(xn1

, . . . , xns
)} for i ∈ p′, q′(i) = {∅k}

for i ∈ I \ p′. Then 〈p′, q′〉 ∈ H extends 〈p, q〉 and, by the inductive
assumption, 〈p′, q′〉 
 φ, a contradiction.

Conversely, assume 〈p, q〉 1 ¬φ and p \ c is bounded. Then there
is 〈p′, q′〉 of rank k′ extending 〈p, q〉 such that 〈p′, q′〉 
 φ. By the
inductive assumption, there is a bounded set d such that

∀i ∈ (p′ \ d) ∀〈x0, . . . , xk′−1〉 ∈ q
′(i) φ(xn1

, . . . , xns
).



20 KAREL HRBACEK AND MIKHAIL G. KATZ

But (p \ c) ∪ d is a bounded set, so there exist i ∈ (p′ ∩ c) \ d. For
such i and 〈x0, . . . , xk′−1〉 ∈ q′(i) one has both ¬φ(xn1

, . . . , xns
) and

φ(xn1
, . . . , xns

), a contradiction.
Case (10):

Let c = {i ∈ p | ∀〈x0, . . . , xk−1〉 ∈ q(i) ∃v ψ(xn1
, . . . , xns

, v)}. We need
to prove that 〈p, q〉 
 ∃v ψ iff p \ c is bounded.

Assume that 〈p, q〉 
 ∃v ψ and p \ c is unbounded. We let p′ = p \ c
and q′(i) = {〈x0, . . . , xk−1〉 ∈ q(i) | ¬ ∃v ψ(xn1

, . . . , xns
, v)} for i ∈ p′;

q′(i) = {∅k} for i ∈ I \ p′. Then 〈p′, q′〉 extends 〈p, q〉 and, by the
definition of 
, there exist 〈p′′, q′′〉 extending 〈p′, q′〉 with rank q′′ = k′′,

and m < k′′ such that 〈p′′, q′′〉 
 ψ(Ġn1
, . . . , Ġns

, Ġm). By the inductive
assumption, there is a bounded set d such that

∀i ∈ (p′′ \ d) ∀〈x0, . . . , xk′′−1〉 ∈ q
′′(i) ψ(xn1

, . . . xns
, xm).

Hence

∀i ∈ (p′′ \ d) ∀〈x0, . . . , xk′′−1〉 ∈ q
′′(i) ∃v ψ(xn1

, . . . xns
, v).

But i ∈ p′′ \ d implies i ∈ p′; this contradicts the definition of q′.
Assume that p \ c is bounded. By the Reflection Principle in ZF

there is a least von Neumann rank Vα such that for all i ∈ c and all
〈x0, . . . , xk−1〉 ∈ q(i) there exists v ∈ Vα such that ψ(xn1

, . . . xns
, v).

Let 〈p′, q′〉 be any condition extending 〈p, q〉 and let k′ = rank q′. We
let p′′ = p′ ∩ c and

q′′(i) ={〈x0, . . . , xk′−1, xk′〉 |

〈x0, . . . , xk′−1〉 ∈ q
′(i) ∧ ψ(xn1

, . . . xns
, xk′) ∧ xk′ ∈ Vα}

for i ∈ p′′, q′′(i) = {∅k′} otherwise. Then 〈p′′, q′′〉 extends 〈p′, q′〉 and, by

the inductive assumption, 〈p′′, q′′〉 
 ψ(Ġn1
, . . . , Ġns

, Ġk′). This proves
that 〈p, q〉 
 ∃v ψ. �

We observe that if q is in Q and ℓ < k = rank q, then q ↾ ℓ defined
by (q ↾ ℓ)(i) = {〈x0, . . . , xℓ−1〉 | ∃xℓ, . . . , xk−1 〈x0, . . . , xk−1〉 ∈ q(i)} is
in Q.

Corollary 4.7. If rank q = k > n1, . . . , ns, 〈p
′, q′〉 extends 〈p, q〉 and

〈p′, q′〉 
 φ(Ġn1
, . . . , Ġns

), then 〈p′, q′ ↾k〉 extends 〈p, q〉 and 〈p′, q′ ↾k〉 

φ(Ġn1

, . . . , Ġns
).

Lemma 4.8. Let z ∈ V. For every 〈p, q〉 there exist 〈p, q′〉 extending

〈p, q〉 and m < k′ = rank q′ such that 〈p, q′〉 
 ž = Ġm.

Proof. Let q′(i) = {〈x0, . . . , xk−1, xk〉 | 〈x0, . . . , xk−1〉 ∈ q(i) ∧ xk = z},
and m = k, k′ = k + 1. �
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We write 〈p, q〉 
 ž = Ġm as 〈p, q〉 
 z = Ġm, and 〈p, q〉 
 ž ∈ Ġm

as 〈p, q〉 
 z ∈ Ġm. We say that 〈p, q〉 decides φ if 〈p, q〉 
 φ or
〈p, q〉 
 ¬φ. The following lemma is needed for the proof that the
extended ultrapower satisfies SP.

Lemma 4.9. For every 〈p, q〉 and m < k = rank q there is 〈p′, q′〉 that

extends 〈p, q〉 and is such that for every n ∈ N, 〈p′, q′〉 decides n ∈ Ġm.

Proof. We first construct a sequence 〈〈pn, qn〉 | n ∈ N〉 such that
〈p0, q0〉 = 〈p, q〉 and for each n, rank qn = k, pn+1 ⊂ pn, 〈pn+1, qn+1〉
extends 〈pn, qn〉, and 〈pn+1, qn+1〉 decides n ∈ Ġm.

Given pn, let c = {i ∈ pn | ∀〈x0, . . . , xk−1〉 ∈ qn(i) (n ∈ xm)}. If
c is unbounded, we let p′n+1 = c and qn+1 = qn. Otherwise pn \ c is
unbounded and we let p′n+1 = pn \ c and qn+1(i) = {〈x0, . . . , xk−1〉 ∈
qn(i) | n /∈ xm} for i ∈ p′n+1, qn+1(i) = {∅k} otherwise. We obtain
pn+1 from p′n+1 by omitting the least element of p′n+1. Proposition 4.6

implies that 〈pn+1, qn+1〉 decides n ∈ Ġm.
Let in be the least element of pn. We define 〈p′, q′〉 as follows: i ∈ p′

iff i ∈ pn and q′(i) = qn(i), where in ≤ i < in+1; q
′(i) = {∅k} otherwise.

It is clear from the construction and Proposition 4.6 that 〈p′, q′〉 ∈ H,

it extends 〈p, q〉, and it decides n ∈ Ġm for every n ∈ N. �

4.2. Extended ultrapowers. In this subsection we define the ex-
tended ultrapower of a countable model of ZF by a generic filter U ,
prove some fundamental properties of this structure, and conclude that
it is a model of SPOT.

We take Zermelo-Fraenkel set theory as our metatheory, but the
proof employs very little of its powerful machinery. Subsection 8.5
explains how the proof given below can be converted into a finitistic
proof.

We use ω for the set of natural numbers in the metatheory, and r, s
as variables ranging over ω. A set S is countable if there is a mapping
of ω onto S.

Let M = (M,∈M) be a countable model of ZF. Concepts defined
in Subsection 4.1 make sense in M and all results of 4.1 hold in M.
When M is understood, we use the notation and terminology from 4.1
for the concepts in the sense of M; thus N for NM, “unbounded” for
“unbounded in the sense of M”, P for PM, 
 for “
 in the sense of
M”, etc. The model M need not be well-founded externally, and ω is
isomorphic to an initial segment of N which may be proper.

Definition 4.10. U ⊆M is a filter on P if

(1) M � “p ∈ P” for every p ∈ U ;



22 KAREL HRBACEK AND MIKHAIL G. KATZ

(2) If p ∈ U and M � “p′ ∈ P ∧ p extends p′”, then p′ ∈ U ;
(3) For eny p1, p2 ∈ U there is p ∈ U such that M � “p extends p1 ∧

p extends p2”.

A filter U on P is M-generic if for every D ∈ M such that M �

“D is dense in P” there is p ∈ U for which p ∈M D.

Since P has only countably many dense subsets in M, M-generic
filters are easily constructed by recursion. Let 〈pr | r ∈ ω〉 be an
enumeration of P and 〈Dr | r ∈ ω〉 be an enumeration of all dense
subsets of P in M. Let q0 = p0 and for each s ∈ ω let qs+1 = pr
for the least r such that M � “pr extends qs ∧ pr ∈ Ds”.Then let
U = {p ∈M | M � “p ∈ P ∧ qs extends p” for some s ∈ ω}.
M-generic filters G ⊆ M × M on H are defined and constructed

analogously.

Lemma 4.11. If G is an M-generic filter on H, then U = {p ∈ P |
∃q 〈p, q〉 ∈ G} is an M-generic filter on P.

Proof. In M: if D is dense in P, then {〈p, q〉 | p ∈ D ∧ q ∈ Q} is dense
in H. �

We now define the extended ultrapower of M by U ; we follow closely
the presentation in Spector [38].

Let Ω = {m ∈ M | M � “m ∈ N”}. We define binary relations =∗

and ∈∗ on Ω as follows:
m =∗ n iff there exists 〈p, q〉 ∈ G such that rank q = k > m, n and

〈p, q〉 
 Ġm = Ġn;
m ∈∗ n iff there exists 〈p, q〉 ∈ G such that rank q = k > m, n and
〈p, q〉 
 Ġm ∈ Ġn.

It is easily seen from the definition of forcing and Proposition 4.6
that =∗ is an equivalence relation on Ω, and a congruence relation with
respect to ∈∗. We denote the equivalence class of m ∈ Ω in the relation
=∗ by Gm, define Gm ∈

∗ Gn iff m ∈∗ n, and let N = {Gm | m ∈ Ω}.
The extended ultrapower of M by U is the structure N = (N,∈∗).

There is a natural embedding j of M into N defined as follows: By
Lemma 4.8 for every z ∈ M there exist 〈p, q〉 ∈ G and m < rank q

such that 〈p, q〉 
 z = Ġm. We let j(z) = Gm and often identify j(z)
with z. It is easy to see that the definition is independent of the choice
of representative from Gm, and that j is an embedding of M into N.

Proposition 4.12. (The Fundamental Theorem of Extended Ultrapow-
ers) Let φ(v1, . . . , vs) be an ∈-formula with parameters from M .
If Gn1

, . . . , Gns
∈ N , then the following statements are equivalent:

(1) N � φ(Gn1
, . . . , Gns

).
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(2) There is some 〈p, q〉 ∈ G such that 〈p, q〉 
 φ(Ġn1
, . . . , Ġns

)
holds in M.

(3) There exists some 〈p, q〉 ∈ G with rank q = k > n1, . . . , ns such
that M � ∀i ∈ p ∀〈x0, . . . , xk−1〉 ∈ q(i) φ(xn1

, . . . , xns
).

Proof. Statement (3) is just a reformulation of (2) using Proposition 4.6
plus the fact that if d is bounded, then 〈p, q〉 ∈ G implies 〈(p\d), q〉 ∈ G.
(Observe that D = {〈p′, q′〉 | 〈p′, q′〉 ≤ 〈p, q〉 ∧ p′ ≤ (p \ d)} is dense
in 〈p, q〉; for the definition of “dense in” see the sentence preceding
Lemma 5.3.)

The equivalence of (1) and (2) is the Forcing Theorem. It is proved
as usual, by induction on the logical complexity of φ. The cases v1 = v2
and v1 ∈ v2 follow immediately from the definitions of =∗ and ∈∗, and
the conjunction is immediate from (3) in the definition of a filter.

We consider next the case where φ is of the form ¬ψ. First assume
that N � ¬ψ(Gn1

, . . . , Gns
). Lemma 4.5 (3), implies that there ex-

ists 〈p, q〉 ∈ G such that either 〈p, q〉 
 ψ(Ġn1
, . . . , Ġns

) or 〈p, q〉 

¬ψ(Ġn1

, . . . , Ġns
). In the first case N � ψ(Gn1

, . . . , Gns
) by the induc-

tive assumption; a contradiction. Hence 〈p, q〉 
 ¬ψ(Ġn1
, . . . , Ġns

).
Assume that N 2 ¬ψ(Gn1

, . . . , Gns
); then N � ψ(Gn1

, . . . , Gns
)

and the inductive assumption yields 〈p′, q′〉 ∈ G such that 〈p′, q′〉 

ψ(Gn1

, . . . , Ġns
). There can thus be no 〈p, q〉 ∈ G such that 〈p, q〉 


¬ψ(Ġn1
, . . . , Ġns

).
Finally, we assume that φ(u1, . . . , vs) is of the form ∃wψ(u1, . . . , vs, w).

If N � φ(Gn1
, . . . , Gns

) then N � ψ(Gn1
, . . . , Gns

, Gm) for some m ∈
Ω. By the inductive assumption there is some 〈p, q〉 ∈ G such that
〈p, q〉 
 ψ(Ġn1

, . . . , Ġns
, Ġm) and hence, by the definition of forcing,

〈p, q〉 
 ∃wψ(Ġn1
, . . . , Ġns

, w).
Conversely, if 〈p, q〉 ∈ G and 〈p, q〉 
 ∃w ψ(Ġn1

, . . . , Ġns
, w), then

by the definition of forcing there are 〈p′, q′〉 ∈ G and m ∈ Ω such

that 〈p′, q′〉 
 ψ(Ġn1
, . . . , Ġns

, Ġm). By the inductive assumption, N �

ψ(Gn1
, . . . , Gns

, Gm) holds, and hence N � φ(Gn1
, . . . , Gns

). �

Corollary 4.13. The embedding j is an elementary embedding of M

into N.

Corollary 4.14. The structure N satisfies ZF.

Proposition 4.15. The structure N̂ = (N,∈∗,M) satisfies the princi-
ples of Transfer, Nontriviality and Standard Part.

Proof. Transfer is Corollary 4.13.
Working in M, for every 〈p, q〉 with rank q = k define q′ of rank k+1

by q′(i) = {〈x0, . . . , xk−1, xk〉 | 〈x0, . . . , xk−1〉 ∈ q(i) ∧ xk = i} and
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note that 〈p, q′〉 extends 〈p, q〉. By M-genericity of G some such 〈p, q′〉
belongs to G. It is easily seen from the Fundamental Theorem that Gk

is an integer in N and that N � “Gk 6= n” for all n ∈ Ω. Hence O

holds in N̂.
It remains to prove the Standard Part principle. Let Gm ∈ N . By

Lemma 4.9 there is 〈p, q〉 ∈ G which decides n ∈ Ġm for all n ∈ Ω.

The set E = {n ∈ Ω | 〈p, q〉 
 n ∈ Ġm} is definable in M, hence there
is e ∈ M such that M � “n ∈ e” iff n ∈ E iff N � “n ∈ Gm”. Thus
N̂ � “ st(e) ∧ ∀stν ∈ N (ν ∈ e←→ ν ∈ Gm)”. �

This proves Proposition 4.2, and hence Theorem A. �

5. Conservativity of SCOT over ZFc

In this section we show that if ZF is replaced by ZFc, the Standard
Part principle can be strengthened to Countable st-∈-Choice.

We recall that ZFc implies ACC; this provides enough choice to
prove that the ordinary ultrapower of a countable model M of ZFc
by an M-generic filter U on P satisfies  Loś’s Theorem and thus yields
an elementary extension of M. A proof that every countable model
M = (M,∈M) of ZFc has an extension to a model of SPOT + SC

in which M is the class of all standard sets can be obtained by a
straightforward adaptation of the arguments in Enayat’s paper [8], in
particular, of the proofs of Theorems B and C there. Essentially, all
one has to do is to replace countable models of second-order arithmetic
by countable models of ZFc. We followed this approach in an early
version of the present paper.

Another proof of conservativity of SCOT over ZFc was suggested
to us by Kanovei in a private communication. Its basic idea is to use
forcing to add to M a mapping of ω1 onto R without adding any reals.
In the resulting generic extension there are nonprincipal ultrafilters over
N, and one can take an ultrapower of M by one of them to obtain an
extension that satisfies SCOT. However, this method does not seem
adequate for handling Idealization over uncountable sets in Section 7.

We first outline the simplification of the forcing that is possible in
the presence of ACC, and then use it to prove that, assuming M is a

countable model of ZFc, the structure N̂ from Proposition 4.15 satisfies
also CC and SN. The proof can be viewed as a warm-up for similar
but more complex arguments of the following sections.

We work in ZFc. Given I = N and q ∈ Q of rank k, ACC guar-
antees the existence of a function f such that ∀i ∈ I (f(i) ∈ q(i)); let
q̂(i) = {f(i)} where f(i) = 〈f0(i), . . . , fk−1(i)〉. For any 〈p, q〉 ∈ H
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the condition 〈p, q̂ 〉 extends 〈p, q〉. We could replace Q by Q̃ = {q̃ ∈
F | ∃k ∀i ∈ I (q̃(i) ∈ Vk)}. But there is no need at all for the symbols

Ġk, k ∈ N, and Spector’s component Q of the forcing notion H, if our
forcing language allows names for all f ∈ F (see below for details).

On the other hand, Standardization and Countable st-∈-Choice, un-
like Transfer and Idealization, deal with st-∈-formulas, so we need to
extend our definition of the forcing relation to such formulas.

The forcing notion we use in this section is P. The forcing language L̃
has a constant symbol f̌ for every function f ∈ F (the check is usually
suppressed). Forcing is defined for arbitrary st-∈-formulas. Only the
following clauses in the definiton of the forcing relation are necessary:

Definition 5.1. (Simplified forcing.)
(1’) p 
 f1 = f2 iff ∀aai ∈ p (f1(i) = f2(i)).
(2’) p 
 f1 ∈ f2 iff ∀aai ∈ p (f1(i) ∈ f2(i)).
(8) p 
 ¬φ iff there is no p′ extending p such that p′ 
 φ.
(9) p 
 (φ ∧ ψ) iff p 
 φ and p 
 ψ.
(10’) p 
 ∃v ψ iff for every p′ extending p there exist p′′ extending p′

and a function f ∈ F such that p′′ 
 ψ(f).
(11)
〈p, q〉 
 st(f) iff ∃x ∀aai ∈ p (f(i) = x) iff ∀aai, i′ ∈ p (f(i) = f(i′)).

The basic properties of forcing from Lemma 4.5 remain valid, but
Proposition 4.6 (“ Loś’s Theorem”) of course holds only for ∈-formulas,
in the form p 
 φ(f1, . . . , fr) iff ∀aai ∈ p φ(f1(i), . . . , fr

(i)).
We now take Zermelo-Fraenkel set theory as our metatheory. Let M

be a countable model of ZFc, U an M-generic filter on P ∈ M , and
N = (N,∈∗) the ultrapower of M by U . If M � “f ∈ F”, then [f ]U
is the equivalence class of f modulo U . We identify x ∈ M with [cx]U
where cx is the constant function on I with value x in the sense of M,

and let N̂ = (N,∈∗,M).
Proposition 4.12 takes the following form.

Proposition 5.2. Let φ(u1, . . . , ur) be an st-∈-formula with parame-
ters from M . If M � “f1, . . . , fr ∈ F”, then the following statements
are equivalent:

(1) N̂ � φ([f1]U , . . . , [fr]U).
(2) There is some p ∈ U such that p 
 φ(f1, . . . , fr) holds in M.

Corollaries 4.13 and 4.14 and Proposition 4.15 remain valid in this
modified setting. For ∈-formulas Proposition 5.2 is just a fancy way to
state the ordinary  Loś’s Theorem, but for st-∈-formulas it provides a

useful handle on the behavior of N̂.
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We need the following corollary (which can also be proved more te-
diously directly from the definition of the forcing relation). The state-
ment “D ⊆ P is dense in p” means that ∀p′′ ≤ p ∃p′ ≤ p′′ (p′ ∈ D).

Lemma 5.3. If p 
 ∀stm ∈ Nφ(m), then the set Dm = {p′ ∈ P | p′ 

φ(m)} is dense in p for every m ∈ N.

Proof. We show that the claim holds in every model M of ZFc. For
every p′′ ≤ p in M there is an M-generic filter U such that p′′ ∈ U . By

Proposition 5.2 N̂ � ∀stmφ(m), so M � “m ∈ N” implies N̂ � φ(m).
By 5.2 again, there exists p′ ∈ U such that p′ 
 φ(m). We can take
p′ ≤ p′′. �

Lemma 5.4. Let φ(u, v) be an st-∈-formula with parameters from L̃..
Then ZFc proves the following: If p 
 ∀stm ∃v φ(m, v), then there
is p′ ∈ P and a sequence 〈fm | m ∈ N〉 such that p′ extends p and
p′ 
 φ(m, fm) for every m ∈ N.

Proof. By Lemma 5.3, the set Dm = {p′ ∈ P | p′ 
 ∃v φ(m, v)} is
dense in p for each m ∈ N. Clause (10’) in the definition of simplified
forcing implies that also the set Em = {p′ ∈ P | ∃f ∈ F p′ 
 φ(m, f)}
is dense in p. We let

〈m′, p′〉R〈m′′, p′′〉 iff p′′ ⊂ p′ ⊆ p ∧ m′′ = m′+1 ∧ p′ ∈ Em′ ∧ p′′ ∈ Em′′ .

Applying ADC to the relation R we obtain a sequence 〈pm | m ∈ N〉
such that p0 ⊆ p and, for each m, pm+1 ⊂ pm and ∃f ∈ F (pm 


φ(m, f)). We next use ACC to obtain a sequence 〈fm | m ∈ N〉 such
that pm 
 φ(m, fm). Note that the Reflection Principle of ZF provides
a set A = Vα such that for all m,

(∃f ∈ F pm 
 φ(m, f))→ (∃f ∈ F ∩A pm 
 φ(m, f)).

As in the proof of Lemma 4.9, let im be the least element of pm and
let p′ =

⋃∞

m=0 pm ∩ (im+1 \ im). Then for every m the set p′ \ pm is
bounded, hence p′ 
 φ(m, fm). �

Proposition 5.5. If M satisfies ZFc, then N̂ satisfies CC.

Proof. Assume that N̂ � ∀stm ∃v φ(m, v). Then there is p ∈ U such
that p 
 ∀stm ∃v φ(m, v). By Lemma 5.4 there is p′ ∈ U and a sequence
〈fm | m ∈ N〉 such that p′ 
 φ(m, fm) for every m ∈ N.

We define a function g on I by g(i) = {〈m, fm(i)〉 | m ∈ N}.
Recall that ǧ is the name for g in the forcing language. By  Loś’s
Theorem, p′ 
 “ǧ is a function with domain N”, and, for every m ∈ N,

p′ 
 ǧ(m) = fm. We conclude that N̂ � “ǧ is a function with domain

N”, and N̂ � ∀stm ∈ Nφ(m, ǧ(m)). �
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Proposition 5.6. If M satisfies ZFc, then N̂ satisfies CCst.

Proof. The assumption N̂ � ∀stm ∃stv φ(m, v) implies that we can take
fm = cxm

in Lemma 5.4 and the proof of Proposition 5.5. For the
function g on I defined by g(i) = {〈m, xm〉 | m ∈ N} we then have

N̂ � “ǧ is standard”. �

Let p, p′ ∈ P and let γ be an increasing mapping of p′ onto p; we
extend γ to I = N by defining γ(a) = 0 for a ∈ I \ p.

Lemma 5.7. p 
 φ(f1, . . . , fr) iff p′ 
 φ(f1 ◦ γ, . . . , fr ◦ γ).

Proof. This follows by induction on the cases in the definition of simpli-
fied forcing, using the observation that the mapping p′′ → p′ ∩ γ−1[p′′]
is an isomorphism of the posets ({p′′ ∈ P | p′′ ≤ p},≤) and ({p′′ ∈ P |
p′′ ≤ p′},≤). �

Corollary 5.8. Let φ be an st-∈-formula with parameters from V.
Then p 
 φ iff p′ 
 φ.

Proposition 5.9. The structure N̂ satisfies the principle of Standard-
ization for st-∈-formulas with no parameters.

Proof. For standard x, N̂ � φ(x) iff p 
 φ(x) for every p ∈ P. The
right side is expressible by an ∈-formula. �

This completes the proof of Theorem D.

Another principle that can be added to SCOT is Dependent Choice
for st-∈-formulas.

DC Let φ(u, v) be an st-∈-formula with arbitrary parameters.
If B is a set, b ∈ B and ∀x ∈ B ∃y ∈ B φ(x, y), then there is a sequence
〈bn | n ∈ N〉 such that b0 = b and ∀stn ∈ N (bn ∈ B ∧ φ(bn, bn+1)).

Theorem 5.10. SCOT + DC is a conservative extension of ZFc.

Proof. We show that DC holds in the structure N̂.
Let M � “b, B ∈ F” and p 
 b ∈ B ∧ ∀x ∈ B ∃y ∈ B φ(x, y). We

now let A = {〈p′, f ′〉 | p′ ≤ p ∧ p′ 
 f ′ ∈ B}, note that 〈p, b〉 ∈ A,
and define R on A by 〈p′, f ′〉R〈p′′, f ′′〉 iff p′′ ≤ p′ ∧ p′′ 
 φ(f ′, f ′′).

It is clear from the properties of forcing that for every 〈p′, f ′〉 ∈ A
there is 〈p′′, f ′′〉 ∈ A such that 〈p′, f ′〉R〈p′′, f ′′〉. Using ADC we obtain
a sequence 〈〈pn, fn〉 | n ∈ N〉 such that p0 ≤ p, f0 = b, and for all n ∈ N
〈pn, fn〉 ∈ A, pn+1 ≤ pn, and pn+1 
 φ(fn, fn+1).

The rest of the proof imitates the arguments in the last paragraphs
of the proofs of Lemma 5.4 and Proposition 5.5. �
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6. Standardization for parameter-free formulas

In this section we prove that the structure N̂ = (N,∈∗,M) satisfies
the principle of Standardization for parameter-free formulas assuming
only that the model M satisfies ZF. Explicitly, the principle postulates:

SN Let φ(v) be an st-∈-formula with no parameters. Then

∀stA ∃stS ∀stx (x ∈ S ←→ x ∈ A ∧ φ(x)).

Lemma 6.1. The principle SN is equivalent to Standardization for
st-∈-formulas with standard parameters.

Proof. Given φ(v, p1, . . . , pℓ) where p1, . . . , pℓ are standard, we let P =
{〈p1, . . . , pℓ〉} and apply SN to the formula ψ(w) with no parameters
expressing “∃w1, . . . , wℓ (w = 〈v, w1, . . . , wℓ〉 ∧ φ(v, w1, . . . , wℓ))” and to
the standard set A×P . We get a standard S such that for all standard
inputs 〈x, y1, . . . , yℓ〉 ∈ S ←→ 〈x, y1, . . . , yℓ〉 ∈ A×P ∧ φ(x, y1, . . . , yℓ)
holds. The set T = {x ∈ A | 〈x, p1, . . . , pℓ〉 ∈ S} standardizes
φ(v, p1, . . . , pℓ). �

With the exception of the last proposition, in this section we work in
ZF. As in Section 5, we begin with extending forcing to st-∈-formulas.

We add the following clauses to Definition 4.4:
(11) 〈p, q〉 
 st(z) for every z ∈ V.

(12) 〈p, q〉 
 st(Ġn) iff rank q = k > n and

∃x ∀aai ∈ p ∀〈x0, . . . , xk−1〉 ∈ q(i) (xn = x) or, equivalently,

∀aai, i′ ∈ p ∀〈x0, . . . , xk−1〉 ∈ q(i) ∀〈x
′
0, . . . , x

′
k−1〉 ∈ q(i

′) (xn = x′n).

The basic properties of forcing from Lemma 4.5 in Subsection 4.1
remain valid, but “ Loś’s Theorem” does not hold for st-∈-formulas.
However, Proposition 4.6 is instrumental in the proof of Lemma 4.9.
The technical lemma that follows is a simple consequence of Proposi-
tion 4.6 for forcing of ∈-formulas, but it remains valid even for forcing
of st-∈-formulas.

Definition 6.2. For σ = 〈n1, . . . , ns〉 where n1, . . . , ns < k are mutu-
ally distinct let πk

σ : Vk → Vs be the “projection” of Vk onto Vs:

πk
σ(〈x0, . . . , xk−1〉) = 〈xn1

, . . . , xns
〉.

For q ∈ Q of rank k, q ↾σ of rank s is defined by (q ↾σ)(i) = πk
σ[q(i)].

Lemma 6.3. Let φ be an st-∈-formula with parameters from V.
Assume that rank q1 = k1, σ1 = 〈n1, . . . , ns〉 where n1, . . . , ns < k1,
and rank q2 = k2, σ2 = 〈m1, . . . , ms〉 with m1, . . . , ms < k2. If
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(q1 ↾σ1)(i) = (q2 ↾σ2)(i) for all i ∈ p (we write q1 ↾σ1 =p q2 ↾σ2), then

〈p, q1〉 
 φ(Ġn1
, . . . , Ġns

) if and only if 〈p, q2〉 
 φ(Ġm1
, . . . , Ġms

).

Proof. The proof is by induction on the logical complexity of φ.
For ∈-formulas the assertion follows immediately from Proposition 4.6.

In particular, it holds for all atomic formulas involving ∈ and = (cases
(1) - (7) in the definition of forcing). It is also clear for st (cases (11)
and (12)) and for conjunction (case (9)).

Case (8):

Assume that the statement is true for φ, 〈p, q1〉 
 ¬φ(Ġn1
, . . . , Ġns

),

and 〈p, q2〉 1 ¬φ(Ġm1
, . . . , Ġms

). Then there exists a condition 〈p′, q′2〉 ≤
〈p, q2〉 such that 〈p′, q′2〉 
 φ(Ġm1

, . . . , Ġms
). From the inductive as-

sumption it follows that 〈p′, q′2 ↾ σ2〉 
 φ(Ġ0, . . . , Ġs−1) (recall that
q′2 ↾ σ2 ⊆ Vs). Let q̄ = q′2 ↾ σ2 ≤ q2 ↾ σ2 =p q1 ↾ σ1. We define
q′1 = (πk1

σ1
)−1[q̄] ∩ q1 ≤ q1. Now 〈p′, q′1〉 ≤ 〈p, q1〉 and q′2 ↾σ2 =p′ q

′
1 ↾σ1,

so by the inductive assumption 〈p′, q′1〉 
 φ(Ġn1
, . . . , Ġns

). This is a
contradiction with 〈p, q1〉 
 ¬φ(Ġn1

, . . . , Ġns
). The reverse implication

follows by exchanging the roles of 〈p, q1〉 and 〈p, q2〉.
Case (10):
Assume that 〈p, q1〉 
 ∃v ψ(Ġn1

, . . . , Ġns
, v), Let 〈p′, q′2〉 ≤ 〈p, q2〉,

where rank q′2 = k′2 = k2 + r. We need to find 〈p′′, q′′2〉 extending 〈p′, q′2〉
and m such that 〈p′′, q′′2〉 
 ψ(Ġm1

, . . . , Ġms
, Ġm). This will prove that

〈p, q2〉 
 ∃v ψ(Ġm1
, . . . , Ġms

, v).

We let q̄ = π
k′2
σ2 [q′2] ⊆ πk2

σ2
[q2] =p π

k1
σ1

[q1] and ¯̄q = (πk1
σ1

)−1[q̄] ∩ q1 ≤ q1.
We define q′1 of rank k′1 = k1 + r by
q′1(i) = {〈x0, . . . , xk1−1, y0, . . . , yr−1〉 | 〈x0, . . . , xk1−1〉 ∈ ¯̄q ∧

〈xn1
, . . . , xns

〉 = π
k′
2

σ2(〈x′0, . . . , x
′
k2−1, y0, . . . , yr−1〉) for some

〈x′0, . . . , x
′
k2−1, y0, . . . , yr−1〉 ∈ q

′
2}

for i ∈ p′; q′1(i) = {∅k′
1
} otherwise. We observe that q′1(i) 6= ∅ and

π
k′1
σ1 [q

′
1] =p′ π

k′2
σ2 [q′2].

We have 〈p′, q′1〉 ≤ 〈p, q1〉; hence there are 〈p′′, q′′1〉 ≤ 〈p
′, q′1〉 with

rank q′′1 = k′′1 and n such that 〈p′′, q′′1〉 
 ψ(Ġn1
, . . . , Ġns

, Ġn). Finally
we construct q′′2 of rank k′′2 = k′2 + 1 such that 〈p′′, q′′2〉 ≤ 〈p

′′, q′2〉 and,

for some m, π
k′′1
σ1#n(q′′1) =p′′ π

k′′2
σ2#m(q′′2), where σ1#n = 〈n1, . . . , ns, n〉

and σ2#m = 〈m1, . . . , ms, m〉. By the inductive assumption, this es-

tablishes 〈p′′, q′′2〉 
 ψ(Ġm1
, . . . , Ġms

, Ġm).

We start with q̂ = π
k′′
1

σ1 [q′′1 ] ⊆ π
k′
1

σ1 [q′1] =p′ π
k′
2

σ2 [q
′
2] and define

q′′2(i) = {〈x0, . . . , xk′
2
−1, z〉 | 〈x0, . . . , xk′

2
−1〉 ∈ (π

k′
2

σ2)−1[q̂ ] ∩ q′2 ∧

〈xn1
, . . . , xns

, z〉 ∈ π
k′′
1

σ1#n(q′′1)}
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for i ∈ p′′; q′′2(i) = {∅k′
2
+1} otherwise.

We have 〈p′′, q′′2〉 ≤ 〈p
′′, q′2〉 and rank q′′2 = k′′2 = k′2 + 1. Let m = k′2. It

follows from the construction that π
k′′1
σ1#n(q′′1 ) =p′′ π

k′′2
σ2#m(q′′2). �

Corollary 6.4. Let φ be an st-∈-sentence with parameters from V.
Then 〈p, q〉 
 φ iff 〈p, 1̄〉 
 φ.

As in Section 5, let p, p′ ∈ P and let γ be an increasing mapping of
p′ onto p; we extend γ to I by defining γ(a) = 0 for a ∈ I \ p.

Lemma 6.5. Let φ(v1, . . . , vs) be an st-∈-formula with parameters
from V. Then 〈p, q〉 
 φ(Ġn1

, . . . , Ġns
) iff 〈p′, q ◦ γ〉 
 φ(Ġn1

, . . . , Ġns
).

Proof. As for Lemma 5.7. �

Corollary 6.6. Let φ(v1, . . . , vr) be an st-∈-formula. For z1, . . . , zr ∈ V
〈p, q〉 
 φ(z1, . . . , zr) iff 〈p′, q′〉 
 φ(z1, . . . , zr).

Proposition 6.7. The structure N̂ = (N,∈∗,M) satisfies the principle
of Standardization for st-∈-formulas with no parameters.

Proof. For standard z, N̂ � φ(z) iff 〈p, q〉 
 φ(z) for every 〈p, q〉 ∈ H.
The right side is expressible by an ∈-formula. �

This completes the proof of Theorem B.

There is yet another principle that can be added to SPOT and keep
it conservative over ZF. One of its important consequences is the im-
possibility to uniquely specify an infinitesimal.

UP (Uniqueness Principle) Let φ(v) be an st-∈-formula with stan-
dard parameters. If there exists a unique x such that φ(x), then this x
is standard.

Theorem 6.8. SPOT + UP is a conservative extension of ZF.

Proof. If N̂ � ∃x [φ(x) ∧ ∀y (φ(y) → y = x) ∧ ¬ st(x)], then there is

〈p, q〉 ∈ G and m < k = rank q such that 〈p, q〉 
 φ(Ġm) ∧ ¬ st(Ġm) ∧
∀y (φ(y)→ y = Ġm).

Let r = q ↾ {m}, i.e., for all i ∈ I, x ∈ r(i) ←→ ∃〈x0, . . . , xk−1〉 ∈
q(i) (xm = x).

Claim 1. For every x ∈
⋃

i∈p r(i) the set px = {i ∈ p | x ∈ r(i)} is
bounded; we let ix denote its greatest element.

Proof of Claim 1. Let x be such that px is unbounded. Define

qx(i) = {〈x0, . . . , xk−1〉 ∈ q(i) | (xk = x)} for i ∈ px;

= {∅k} otherwise.
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Then 〈px, qx〉 ≤ 〈p, q〉 and 〈px, qx〉 
 Ġm = x, i.e., 〈px, qx〉 
 st(Ġm), a
contradiction. �

Claim 2. There exist unbounded mutually disjoint sets p1, p2 ⊂ p and
nonempty sets s(i) ⊆ r(i) for all i ∈ p1 ∪ p2 such that(⋃

i∈p1
s(i)

)
∩
(⋃

i∈p2
s(i)

)
= ∅.

We postpone the proof of Claim 2 and complete the proof of the
theorem.

We let q̃(i) = {〈x0, . . . , xk−1〉 ∈ q(i) | xk ∈ s(i)} for i ∈ p1 ∪ p2,
q̃(i) = {∅k} otherwise. We have 〈p1, q̃〉 ≤ 〈p, q〉, 〈p2, q̃〉 ≤ 〈p, q〉, and
consequently 〈p1, q̃〉 
 φ(Ġm), 〈p2, q̃〉 
 φ(Ġm).

Let γ be an increasing mapping of p1 onto p2 extended by γ(i) = 0
for i ∈ I \ p1. By Lemma 6.5 〈p1, q̃ ◦ γ〉 
 φ(Ġm). We “amalga-
mate” 〈p1, q̃〉 and 〈p1, q̃ ◦ γ〉 to form a condition of rank 2k as follows:
〈x0, . . . , xk−1, y0, . . . , yk−1〉 ∈ q̂(i)←→

〈x0, . . . , xk−1〉 ∈ q̃(i) ∧ 〈y0, . . . , yk−1〉 ∈ q̃(γ(i))

and observe that 〈p1, q̂〉 ≤ 〈p, q̃〉. Let σ1 = k and σ2 = {k+ ℓ | ℓ < k}.
We have q̂ ↾σ1 = q̃ and q̂ ↾σ2 = q̃ ◦ γ. By Lemma 6.3 〈p1, q̂〉 
 φ(Ġm) ∧
φ(Ġk+m). But xm 6= ym holds for all 〈x0, . . . , xk−1, y0, . . . , yk−1〉 ∈ q̂(i)
and all i ∈ p1, so 〈p1, q̂〉 
 Ġm 6= Ġk+m. This contradicts 〈p1, q̂〉 

∀y (φ(y)→ y = Ġm).

Proof of Claim 2. W.l.o.g. we can assume p = I = N (map p onto
N in an increasing way). Define sequences 〈nℓ | ℓ ∈ N〉, 〈αℓ | ℓ ∈ N〉
and 〈s(nℓ) | ℓ ∈ N〉 by recursion as follows:

Let n0 = 0, α0 = min{ix | x ∈ r(0)} and s(n0) = s(0) = {x ∈ r(0) |
ix = α0}.

At stage ℓ + 1 let nℓ+1 = αℓ + 1, αℓ+1 = min{ix | x ∈ r(nℓ+1)} and
s(nℓ+1) = {x ∈ r(nℓ+1) | ix = αℓ+1}.

We observe that s(nℓ) ∩ s(nℓ′) = ∅ for all ℓ 6= ℓ′. It remains to let
p1 = {n2ℓ | ℓ ∈ N} and p2 = {n2ℓ+1 | ℓ ∈ N}. � �

7. Idealization

We recall the axioms of the theory BST; see the references Kanovei
and Reeken [24] and Fletcher et al. [9] for motivation and more detail.
In addition to the axioms of ZFC, they are:

B (Boundedness) ∀x ∃sty (x ∈ y).

T (Transfer) Let φ(v) be an ∈-formula with standard parameters.
Then

∀stx φ(x)→ ∀x φ(x).
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S (Standardization) Let φ(v) be an st-∈-formula with arbitrary pa-
rameters. Then

∀stA ∃stS ∀stx (x ∈ S ←→ x ∈ A ∧ φ(x)).

BI (Bounded Idealization) Let φ be an ∈-formula with arbitrary
parameters. For every set A

∀st fina ⊆ A ∃y ∀x ∈ a φ(x, y)←→ ∃y ∀stx ∈ A φ(x, y).

7.1. Idealization over uncountable sets. In order to obtain models
with Bounded Idealization, the construction of Subsections 4.1 and 4.2
needs to be generalized from I = N to I = Pfin(A), where A is any
infinite set. The key is the right definition of “unbounded” subsets of
I. We work in ZF.

We use the notation P≤m(A) for {a ∈ Pfin(A) | |a| ≤ m}.

Definition 7.1. A set p ⊆ Pfin(A) is thick if

∀m ∈ N ∃n ∈ N ∀a ∈ P≤m(A) ∃b ∈ p ∩ P≤n(A) (a ⊆ b).

We let νp(m) denote the least n with this property. The set p is thin
if it is not thick.

Clearly {a ∈ Pfin(A) | x ∈ a} is thick for every x ∈ A (with νp(m) =
m+ 1). We now carry out the developments of Subsections 4.1 and 4.2
with unbounded and bounded replaced by thick and thin, respectively.
The definition of forcing and proofs of Lemmas 4.5 and 4.8 are as
before. The following observation enables the proof of Proposition 4.6
to go through as well.

Lemma 7.2. If p is thick and S ⊆ Pfin(A), then either p ∩ S or p \ S
is thick.

Proof. Otherwise there is m1 such that

(*) ∀n ∈ N ∃a1 ∈ P
≤m1(A) ∀b ∈ (p ∩ S) ∩ P≤n(A) (a1 * b)

and there is m2 such that

(**) ∀n ∈ N ∃a2 ∈ P
≤m2(A) ∀b ∈ (p \ S) ∩ P≤n(A) (a2 * b).

Let m1, m2 be as above, and let m = m1 +m2. Since p is thick,

(***) ∃n ∈ N ∀a ∈ P≤m(A) ∃b ∈ p ∩ P≤n(A) (a ⊆ b).

Fix such n; for a1 ∈ P
≤m1(A) such that ∀b ∈ (p∩S)∩P≤n(A) (a1 * b)

and a2 ∈ P
≤m2(A) such that ∀b ∈ (p \ S) ∩ P≤n(A) (a2 * b) we have

a1∪a2 ∈ P
≤m(A). By (***) there is b ∈ p∩P≤n(A) such that a1∪a2 ⊆ b.

Depending on whether b ∈ p ∩ S or b ∈ p \ S, this contradicts (*) or
(**). �



INFINITESIMAL ANALYSIS WITHOUT THE AXIOM OF CHOICE 33

The next lemma enables a generalization of Lemma 4.9.

Lemma 7.3. Let 〈pn | n ∈ N〉 be such that, for all n, pn ∈ P and
pn ⊇ pn+1. Then there is p ∈ P with the property that for every n there
is k ∈ N such that ∀a ∈ (p \ pn) (|a| ≤ k). In particular, p \ pn is thin.

Proof. Define p =
⋃∞

m=0{a ∈ pm | |a| ≤ νpm(m)}. Since p \ pn ⊆⋃n−1
m=0{a ∈ pm | |a| ≤ νpm(m)}, a ∈ p \ pn implies |a| ≤ k for k =

max{νp0(0), . . . , νpn−1
(n− 1)}.

We show that p is thick. Given m ∈ N, we let n = νpm(m). If
a ∈ Pfin(A) and |a| ≤ m, then there is b ∈ pm such that a ⊆ b
and |b| ≤ n. By the definition of p, b ∈ p. So n has the required
property. �

With these changes, the rest of the development of Subsections 4.1
and 4.2 goes through and establishes the following strengthening of
Proposition 4.15.

Proposition 7.4. Assume that M � “I = Pfin(A) ∧ A is infinite”.

The structure N̂A = (NA,∈
∗,M) constructed for this I satisfies the

principles of Transfer, Nontriviality, Boundedness, Standard Part, and
Bounded Idealization over A for ∈-formulas with standard parameters.

Proof. To prove that N̂A � O one can take d ∈M such that M � “d is
a function on I = Pfin(A) ∧ ∀a ∈ Pfin(A) (d(a) = |a|)”. Nontriviality
also follows from Bounded Idealization.

Let Gm ∈ N and let 〈p, q〉 ∈ G have rank q = k > m. There is some
X ∈ M such that M � “∀i ∈ I ∀〈x0, . . . , xk−1〉 ∈ q(i) (xm ∈ X).” By
Proposition 4.6 〈p, q〉 
 ∀v (v ∈ Ġm → v ∈ X̌), so ∀v ∈ Gm (v ∈ X)

holds in NA. This proves Boundedness in N̂A.

It remains to prove that Bounded Idealization over A holds in N̂A.
Let φ(u, v) be an ∈-formula with parameters from M . Assume that
M � ∀a ∈ Pfin(A) ∃y ∀x ∈ a φ(x, y). By the Reflection Principle in
ZF, M � “∃ an ordinal α ∀a ∈ Pfin(A) ∃y ∈ Vα ∀x ∈ a φ(x, y)”. We
work in the model M.

Let 〈p, q〉 ∈ H be a forcing condition and k = rank q. For i = a ∈ p
we let q′(a) =

{〈x0, . . . , xk−1, xk〉 | 〈x0, . . . , xk−1〉 ∈ q(a)∧ xk ∈ Vα ∧∀x ∈ a φ(x, xk)};

q′(a) = {∅k+1} otherwise. Then 〈p, q′〉 extends 〈p, q〉. For every x ∈ A
the set c = p ∩ {a ∈ Pfin(A) | x ∈ a} is in P because p \ c is thin

(Lemma 7.2), and so, by Proposition 4.6, 〈p, q′〉 
 φ(x, Ġk).
By the genericity of G there exist 〈p, q〉 ∈ G and k ∈ Ω such that

〈p, q〉 
 φ(x, Ġk) for all x ∈ A. By the Fundamental Theorem 4.12
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NA � φ(x,Gk) for all x ∈ A. This means that the → implication of
Idealization over A for ∈-formulas with standard parameters is satisfied

in N̂A. The opposite implication follows from SP; see Lemma 2.1 in
Section 2. �

7.2. Further theories. Nelson’s IST postulates a form of Idealization
that is even stronger than Bounded Idealization (but it contradicts
Boundedness).
I (Idealization) Let φ be an ∈-formula with arbitrary parameters.

∀st fina ∃y ∀x ∈ a φ(x, y)←→ ∃y ∀stx φ(x, y).

The theory BSPT′ = ZF + T + SP′ + B + BI′ is introduced in
Subsection 1.3. We let ISPT′ be the theory obtained from BSPT′ by
deleting Boundedness and replacing Bounded Idealization for formulas
with standard parameters by I′, Nelson’s Idealization for formulas with
standard parameters. In other words, ISPT′ = ZF + T + SP′ + I′.

Principle I implies the existence of a finite set that contains all stan-
dard sets as elements, and has certain undesirable consequences from
the metamathematical point of view. Kanovei and Reeken [24], The-
orem 4.6.23, prove that there are countable models M = (M,∈M) of
ZFC that cannot be extended to a model of IST in which M would be
the class of all standard sets (assuming ZFC is consistent). We do not
know whether the same is the case for ISPT′. Nevertheless we have
the following result.

Theorem 7.5. ISPT′ is a conservative extension of ZF.

Proof. Let us assume that ISPT′ ⊢ θ but ZF 0 θ, for some ∈-sentence
θ. Let ZFr be ZF with the Axiom Schema of Replacement restricted
to Σr-formulas, and let ISPT′

r be ISPT′ with ZF replaced by ZFr.
There is r ∈ ω for which ISPT′

r ⊢ θ.
Let M = (M,∈M) be a model of ZF+¬θ. By the Reflection Principle

of ZF, valid in M, there is α ∈ M such that M � “α is a limit ordinal”,
M � φVα for every axiom φ of ZFr, and M � (¬θ)Vα .

We let A = (Vα)M and use Proposition 7.4 to extend M to a model

N̂A. We define Nα = {x ∈ NA | N̂A � x ∈ Vα}. It is easy to verify

that N̂α = (Nα,∈
∗↾Nα,M ∩ Nα) is a model of ISPT′

r; hence θ holds

in N̂α. On the other hand, (¬θ)Vα holds in M and hence, by Transfer,

¬θ holds in N̂α. A contradiction. �

Kanovei and Reeken [24], Theorem 3.4.5, showed that the class of
bounded sets in IST satisfies the axioms of BST. This result holds
also for ISPT′ and BSPT′, respectively, and establishes the following
theorem.
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Theorem 7.6. The theory BSPT′ is a conservative extension of ZF.

This concludes the proof of Theorem C.

Finally, we prove that if M satisfies ADC, then the model N̂A con-
structed in Proposition 7.4 satisfies CC. We note that the definition
of forcing for st-∈-formulas in Section 6, and Lemma 6.3, extend to
I = Pfin(A).

Proposition 7.7. If M is a countable model of ZFc, then the extended

ultrapower N̂A satisfies Countable st-∈-Choice (both CC and CCst).

Proof. We work in ZFc.
CC: Let us assume that 〈p, q〉 has rank k and 〈p, q〉 
 ∀stm ∈

N ∃v φ(m, v). Let Em =

{〈p′, q′〉 ∈ H | 〈p′, q′〉 ≤ 〈p, q〉 ∧ 〈p′, q′〉 
 φ(m, Ġn) for some n > k}.

By an argument like the one in Lemma 5.3 it follows that for every m
and every 〈p′′, q′′〉 ≤ 〈p, q〉 there is 〈p′, q′〉 ≤ 〈p′′, q′′〉 such that 〈p′, q′〉 ∈
Em. [We note that the Em may be proper classes, but by the Reflection
Principle there is a set S such that 〈p, q〉 ∈ S and for every m and every
〈p′′, q′′〉 ∈ S there is 〈p′, q′〉 ≤ 〈p′′, q′′〉 such that 〈p′, q′〉 ∈ S ∩ Em. The
classes Em can be replaced by the sets S ∩Em in the argument below.]

We let 〈m′, 〈p′, q′〉〉R〈m′′, 〈p′′, q′′〉〉 iff

〈p′′, q′′〉 ≤ 〈p′, q′〉 ≤ 〈p, q〉 ∧m′′ = m′+1∧ 〈p′, q′〉 ∈ Em′ ∧ 〈p′′, q′′〉 ∈ Em′′ .

Applying ADC to the relation R we obtain a sequence 〈〈pm, qm〉 |
m ∈ N〉 such that 〈p0, q0〉 ≤ 〈p, q〉 and, for each m, 〈pm+1, qm+1〉 ≤
〈pm, qm〉 and 〈pm, qm〉 
 φ(m, Ġn) for some n ∈ N, n > k. Let
rank qm = ℓm and let nm < ℓm, nm > k, be the least such n.

As in the proof of Lemma 7.3, let p∞ =
⋃∞

m=0Cm where Cm = {a ∈
pm | |a| ≤ νpm(m)}. We recall that p∞ \ pm is thin for every m; hence

〈p∞, qm〉 
 φ(m, Ġnm
). We define a function q∞ ∈ Q of rank k + 1 as

follows: If a ∈ Cm \
⋃m−1

j=0 Cj then

q∞(a) = {〈x0, . . . , , xk〉 | xk is a function ∧ dom xk = N ∧ ∀j ≤ m

∃ yk, . . . , yℓj−1 (〈x0, . . . , xk−1, yk, . . . , yℓj−1〉 ∈ qj(a) ∧ xk(j) = ynj
)∧

∀j > m (xk(j) = 0)}.

By “ Loś’s Theorem”, 〈p∞, q∞〉 
 “Ġk is a function with dom Ġk =
N.”

Now assume that N̂A � ∀stm ∃v φ(m, v). Then there is 〈p, q〉 ∈ G
such that 〈p, q〉 
 ∀stm ∃v φ(m, v). By the above discussion, there
is a condition of the form 〈p∞, q∞〉 such that 〈p∞, q∞〉 ∈ G; hence
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N̂A � “Gk is a function with domGk = N.” Fix m ∈ M ; let N̂A �

Gk(m) = Gℓ; we can assume ℓ > k. Then there is some 〈p′, q′〉 ∈ G,

〈p′, q′〉 ≤ 〈p∞, q∞〉, such that 〈p′, q′〉 
 Ġk(m) = Ġℓ.
Let σm = k ∪ {nm} and σ′ = k ∪ {ℓ}.
From 〈p∞, qm〉 
 φ(m, Ġnm

) and Lemma 6.3 it follows that the con-
dition 〈p∞, qm ↾ σm〉 
 φ(m, Ġk). We see from the construction that
〈p′ ∩ pm, q

′ ↾ σ′〉 ≤ 〈p′ ∩ pm, qm ↾ σm〉. As p′ \ pm is thin, we have

〈p′, q′ ↾ σ′〉 
 φ(m, Ġk), and by Lemma 6.3 again, 〈p′, q′〉 
 φ(m, Ġℓ).

From 〈p′, q′〉 ∈ G, we conclude that N̂A � φ(m,Gℓ) and hence also

N̂A � φ(m,Gk(m)).
CCst: Assuming 〈p, q〉 
 ∀stm ∈ N ∃stv φ(m, v), we can require in

the definition of Em that 〈p′, q′〉 
 st(Ġn), i.e., 〈p′, q′〉 
 Ġn = czn
for a uniquely determined zn. In the definition of q∞(a) we can let

xk = 〈znj
| j ∈ N〉. Then 〈p∞, q∞〉 
 st(Ġk) and N̂A � st(Gk). �

Let BSCT′ be the theory obtained from BSPT′ by adding ADC

and strengthening SP to CC; analogously for ISCT′. The last two
theorems of this section follow by the same arguments as those used to
prove Theorems 7.5 and 7.6.

Theorem 7.8. The theory ISCT′ is a conservative extension of ZFc.

Theorem 7.9. The theory BSCT′ is a conservative extension of ZFc.

8. Final Remarks

8.1. Open problems.

(1) Are the theories BSCT′ +SN and ISCT′ +SN (defined above)
conservative extensions of ZFc?

We do not know whether N̂A for I = Pfin(A) with uncountable A
satisfies SN. In the absence of AC, a way to formulate and prove a
suitable analog of Lemma 5.7 is not obvious.

(2) Are the theories BSPT and ISPT conservative extensions of
ZF? Are the theories BSCT and ISCT conservative extensions of
ZFc?

Here BSPT is obtained from BSPT′ by strengthening (Bounded)
Idealization to allow arbitrary parameters; similarly for the other the-
ories. The likely answer is yes; the obvious approach is to iterate the
forcing used to prove the primed versions. Spector develops iterated ex-
tended ultrapowers in [39]. His method would require nontrivial adap-
tations in our framework, but it is likely to work provided the answer
to problem (1) is yes. The ultimate result would be that BSCT+SN

and ISCT + SN are conservative extensions of ZFc.
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(3) Does every countable model of ZF have an extension to a model
of BSPT′?

The likely answer is again yes, using a suitable iteration of extended
ultrapowers.

(4) Is SPOT + SC a conservative extension of ZF?

8.2. Forcing with filters. A more elegant and potentially more pow-
erful notion of forcing is obtained by replacing P with

P̃ = {P | P is a filter of unbounded subsets of I}

where P ′ extends P iff P ⊆ P ′. “ Loś’s Theorem” 4.6 then takes the
form: 〈P, q〉 
 φ(Ġn1

, . . . , Ġns
) iff rank q = k > n1, . . . , ns and

∃p ∈ P ∀i ∈ p ∀〈x0, . . . , xk−1〉 ∈ q(i) φ(xn1
, . . . , xns

).
The forcing notion P we actually use amounts to restricting oneself to
principal filters.

8.3. Zermelo set theory. Similar results can be obtained for theo-
ries weaker than ZF. Let Z = ZF − Replacement be the Zermelo
set theory, and let BT denote Transfer for bounded formulas. In the
proof of Proposition 4.2 the extended ultrapower can be replaced by
the extended bounded ultrapower (see Chang and Keisler [6], Sec. 4.4,
for a discussion of ordinary bounded ultrapowers). This proves that
SPOT− = Z + O + BT + SP is a conservative extension of Z. With
some modifications, this theory can be taken as an axiomatization of
the internal part of nonstandard universes of Keisler [6, 27] (the super-
structure framework for nonstandard analysis). Analogous results can
be obtained for SCOT−, BSPT− and BSCT−.

8.4. Weaker theories. Reverse Mathematics has as its goal the cal-
ibration of the exact set-theoretic strength of the principal results in
ordinary mathematics. One of its chief accomplishments is the discov-
ery that, with a few exceptions, every theorem in ordinary mathematics
is logically equivalent (over S1) to one of the five subtheories S1 − S5

of second-order arithmetic Z2 (Simpson [35, p. 33]), known collectively
as “The Big Five.” Here S1 is the weakest of the five theories, the
second-order arithmetic with recursive comprehension axiom, also de-
noted RCA0, and S2, known as WKL0, is obtained by adding the
Weak König’s Lemma to the axioms of RCA0. We refer to Simp-
son [35] for a comprehensive introduction to Reverse Mathematics.

Keisler and others extended the ideas of Reverse Mathematics to
the nonstandard realm. In Keisler’s paper [28] it is established that if
S is any of the “Big Five” theories above, then S has a conservative
extension ∗S to a theory in the language with an additional unary
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predicate st; the axioms of ∗S include O, SP and, for the theories
stronger than WKL0, also FOT (First-Order Transfer).

In a somewhat different direction, there is an extensive body of work
by van den Berg, Sanders and others (see [5], [32] and the references
therein) devoted to determining the exact proof-theoretic strength of
particular results in infinitesimal ordinary mathematics. Substantial
parts of it can be carried out in these and other elementary systems
for nonstandard mathematics, for example Nelson [30] and Sommer
and Suppes [37]. However, these systems do not enable the natural
reasoning as practiced in analysis. They are usually formalized in the
language of second-order arithmetic or type theory. Basic objects of
ordinary analysis, such as real numbers, continuous functions and sepa-
rable metric spaces, have to be represented in these theories via suitable
codes, and the results may have to be presented “up to infinitesimals,”
because the full strength of the Transfer principle or the Standard Part
principle is not available. The focus of this paper is on theories like
SPOT or SPOT−, which axiomatize both the traditional and the
nonstandard methods of ordinary mathematics in the way they are
customarily practiced. Rather than looking for the weakest principles
that enable a proof of a given mathematical theorem, we formulate
theories that are as strong as possible while still effective (conservative
over ZF) or semi-effective (conservative over ZFc).

8.5. Finitistic proofs. The model-theoretic proof of Proposition 4.2
as given here is carried out in ZF. Using techniques from Simpson [35],
Chapter II, esp. II.3 and II.8, it can be verified that the proof goes
through in RCA0 (w.l.o.g. one can assume that M ⊆ ω).

The proof of Theorem A from Proposition 4.2 requires the Gödel
Completeness Theorem and therefore WKL0; see [35], Theorem IV.3.3.
We conclude that Theorem A can be proved in WKL0.

Theorem A, when viewed as an arithmetical statement resulting from
identifying formulas with their Gödel numbers, is Π0

2. It is well-known
that WKL0 is conservative over PRA (Primitive Recursive Arith-
metic) for Π0

2 sentences ([35], Theorem IX.3.16); therefore Theorem A

is provable in PRA. The theory PRA is generally considered to cor-
rectly capture finitistic reasoning as envisioned by Hilbert [12] (see
e.g., Simpson [35], Remark IX.3.18) and Hilbert–Bernays [13, 14] (see
Zach [42], p. 417). We conclude that Theorem A has a finitistic proof.

These remarks apply equally to Theorems B - D.

8.6. SPOT and CH. Connes (see for example [7], pp. 20–21) objects
to the use of ultrafilters but approves of the Continuum Hypothesis
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(CH). In the absence of full AC, it is important to distinguish (at
least) two versions of CH.
CH: Every infinite subset of R is either countable or equipotent

to R.
CH+: R is equipotent to ℵ1 (often written 2ℵ0 = ℵ1).
The axioms CH and CH+ are equivalent over ZFC, but not over

ZFc. It is known that ZFc+ CH does not imply the existence of any
nonprincipal ultrafilters over N (CH holds in the Solovay model). We
have:

Proposition 8.1. The theory SPOT+CH is a conservative extension
of ZF + CH.

Proof. Let φ be an ∈-sentence. Then SPOT + CH ⊢ φ iff SPOT ⊢
(CH→ φ) iff ZF ⊢ (CH→ φ) iff ZF + CH ⊢ φ. �

However, it seems clear that Connes has CH+ in mind. But CH+

implies that R has a well-ordering (of order type ℵ1). From this it
easily follows that there exist nonprincipal ultrafilters over N (for ex-
ample, Jech [21], p. 478 proves a much stronger result). Thus Connes’s
position on this matter is incoherent.

Apart from the issue of CH, Connes’s repeated criticisms of Robin-
son’s framework starting in 1994 are predicated on the premise that
infinitesimal analysis requires ultrafilters on N (which are incidentally
freely used in some of the same works where Connes criticizes Robin-
son). Our present article shows that Connes’s premise is erroneous
from the start.4

8.7. External sets. This paper employs only definable external sets,
and only in Subsection 3. It is sometimes claimed that the axiomatic
approach is inferior to the model-theoretic one because substantial use
of external sets is essential for some of the most important new con-
tributions of Robinsonian nonstandard analysis to mathematics, such
as the constructions of nonstandard hulls and Loeb measures. The
following observations are relevant:

• Except in some very special cases, nonstandard hulls and Loeb
measures fall in the scope of set-theoretic mathematics, and the
use of AC in their construction is not an issue.
• Hrbacek and Katz [19] demonstrate that nonstandard hulls and

Loeb measures can be constructed in internal-style nonstandard
set theories such as BST and IST.

4A more detailed analysis of Connes’s views can be found in Sanders ([33], 2020)
and references therein.
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• The theory BST can seamlessly be extended to HST, a non-
standard set theory that axiomatizes also external sets (see
Kanovei and Reeken [24]). In HST the constructions of non-
standard hulls and Loeb measures can be carried out in ways
analogous to those familiar from the model-theoretic approach.

9. Conclusion

In this paper we establish that infinitesimal methods in ordinary
mathematics require no Axiom of Choice at all, or only those weak
forms of AC that are routinely used in the traditional treatments. This
conclusion follows from the fact that the theory SPOT and its vari-
ous strengthenings, which do not imply the existence of nonprincipal
ultrafilters over N, or other strong forms of AC, are sufficient to carry
out infinitesimal arguments in ordinary mathematics (and beyond).

But most users of nonstandard analysis work with hyperreals, and
the existence of hyperreals does imply the existence of nonprincipal
ultrafilters over N. So it would seem that ultrafilters are needed, after
all. However, this view implicitly assumes that set theory like ZFC,
based exclusively on the membership predicate ∈, is the only correct
framework for the Calculus.

Historically,5 the Calculus of Newton and Leibniz was first made rig-
orous by Dedekind, Weierstrass and Cantor in the 19th century using
the ε-δ approach. It was eventually axiomatized in the ∈-language as
ZFC. After Robinson’s development of nonstandard analysis it was
realized that Calculus with infinitesimals also admits a rigorous for-
mulation, closer to the ideas of Leibniz, Bernoulli, Euler (see [1]) and
Cauchy (see [3]). It can be axiomatized in a set theory using the st-∈-
language. The primitive predicate st can be thought of as a formaliza-
tion of the Leibnizian distinction between assignable and inassignable
quantities. Such theories are obtained from ZFC by adding suitable
versions of Transfer, Idealization and Standardization.

Now that it has been established that the infinitesimal methods do
not carry a heavier foundational burden than their traditional counter-
parts, one can ask the following question. Which foundational frame-
work constitutes a more faithful formalization of the techniques of the
17–19 century masters? For all the achievements of Cantor, Dedekind
and Weierstrass in streamlining analysis, built into the transformation
they effected was a failure to provide a theory of infinitesimals which
were the bread and butter of 17–19 century analysis, until Weierstrass.

5See for example Katz and Sherry [25] and Bair et al. [2].
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By the yardstick of success in formalization of classical analysis, ar-
guably SPOT, SCOT and other theories developed in the present
text are more successful than ZF and ZF + ADC.

One can learn to work in the universe of an st-∈-set theory intu-
itively. This universe can be viewed as an extension of the standard
set-theoretic universe, either by a (soritical) predicate st (the internal
picture) or by new ideal objects (the standard picture); see Fletcher et
al. [9], Sec. 5.5, for a detailed discussion.6 This extended universe has
a unique set of real numbers, constructed in the usual way, and con-
taining both standard and nonstandard elements. It also of course has
choice functions and ultrafilters over N, just as the universe of ZFC

does. Mathematicians concerned about AC can analyze their methods
of proof and determine whether a particular result can be carried out
in one of the theories considered in this paper. For most if not all of
ordinary mathematics, both traditional and infinitesimal, the answer
is likely to be affirmative. It then follows from Theorems A - D that
these results are just as effective as those provable in respectively ZF

or ZF + ADC.
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