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STRONGLY COMPACT CARDINALS AND THE
CONTINUUM FUNCTION

ARTHUR W. APTER, STAMATIS DIMOPOULOS, AND TOSHIMICHI USUBA

ABSTRACT. We study the general problem of the behaviour of the con-
tinuum function in the presence of non-supercompact strongly compact
cardinals. We begin by showing that it is possible to force violations
of GCH at an arbitrary strongly compact cardinal using only strong
compactness as our initial assumption. This result is due to the third
author. We then investigate realising Easton functions at and above
the least measurable limit of supercompact cardinals starting from an
initial assumption of the existence of a measurable limit of supercom-
pact cardinals. By results due to Menas, assuming 2° = s, the least
measurable limit of supercompact cardinals x is provably in ZFC a non-
supercompact strongly compact cardinal which is not x-supercompact.
We also consider generalisations of our earlier theorems in the presence
of more than one strongly compact cardinal. We conclude with some
open questions.

1. INTRODUCTION

Easton’s theorem (see [11, Theorem 15.18]) was a milestone in set theory,
which showed that ZFC by itself does not impose severe limitations on the
behaviour of the continuum function at regular cardinals. However, when
we bring large cardinals into the picture, the situation is more complicated.
Often the mere violation of GCH at a large cardinal requires strong as-
sumptions. The prototypical example is the case of a measurable cardinal.
By results of Gitik [4, 5] (see also Mitchell [18]), the violation of GCH at
a measurable cardinal is equiconsistent with the existence of a measurable
cardinal x such that o(k) = k*T.

In this paper, we look at the possible behaviour of the continuum function
in the presence of strongly compact cardinals that are not supercompact.
Our goal will be to work with strongly compact cardinals which possess
no non-trivial degrees of supercompactness. There are fundamental open
questions in this regard, such as whether it is possible to force GCH at an
arbitrary non-supercompact strongly compact cardinal.

As motivation, let us mention that if we allow enough supercompact-
ness assumptions, the continuum function at a non-supercompact strongly
compact cardinal can be manipulated fairly easily. For instance, to realise
a Ag-definable Easton function F', we can use a result due to Menas [17,
Theorem, pages 83-88], which shows that it is possible to realise F' while
preserving the supercompactness of a cardinal k. We can then use Magidor’s
Prikry iteration [15] that destroys all measurable cardinals below x. In the
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resulting model, k is strongly compact, x is the least measurable cardinal
(and so is not 2"-supercompact), and F' is still realised.

In a similar vein, suppose that F' is an Easton function definable by a Ao
formula in a model V' of ZFC 4+ GCH in which X is a supercompact limit
of supercompact cardinals. The aforementioned theorem of Menas shows
that it is possible to force over V' to obtain a model V; in which A remains
a supercompact limit of supercompact cardinals and the Easton function F
has been realised.

In V1, let kK < A be the least measurable limit of supercompact cardinals.
Another theorem of Menas shows that in V7, x is both strongly compact and
not 2%-supercompact. In particular, by starting with hypotheses stronger
than the existence of a measurable limit of supercompact cardinals, it is pos-
sible to force and construct a model containing a non-supercompact strongly
compact cardinal in which F' has been realised.

Also, if we assume that the strongly compact cardinal has a sufficient
degree of supercompactness, there are positive results. In [6, Theorem 4.5],
Hamkins shows that if  is both strongly compact and A-supercompact, then
k can be forced to have its strong compactness and A-supercompactness
indestructible under any x-directed closed forcing that has size at most .
In particular, it is possible to realise suitable Easton functions in the interval
[k, A).

The structure of this paper is as follows. Section 1 contains our introduc-
tory remarks. Section 2 contains a discussion of our notation, terminology,
and some earlier results used later on. We then separate our results into
two categories, depending on whether we are interested in preserving a sin-
gle strongly compact cardinal or more than one strongly compact cardinal.
Our results for one strongly compact cardinal are found in Section 3. We
first answer a long-standing open question on the problem of whether it is
possible to violate GCH at a strongly compact cardinal using no stronger
assumptions. We show that just assuming 2% = x* and & is strongly com-
pact, it is possible to preserve the strong compactness of x while forcing any
desired value for 2%. This result is due to the third author. We then address
the question of what sort of Easton functions can be realised in the presence
of a certain non-supercompact strongly compact cardinal. We show that if
k is the least measurable limit of supercompact cardinals and F is an ar-
bitrary Easton function defined on regular cardinals greater than or equal
to k, then it is possible to force to realise F' while preserving the fact that
K is the least measurable limit of supercompact cardinals. The techniques
used, however, will of necessity destroy many supercompact cardinals. We
therefore also present another result along the same lines, where the Easton
function realised has restrictions placed on it, but all supercompact cardinals
are preserved.

Our results for more than one supercompact cardinal appear in Section 4.
We begin by showing how to iterate the partial orderings used in Section 3
so as to preserve all measurable limits of supercompact cardinals simultane-
ously, while realising certain Easton functions at all of them. We then prove
a theorem which gives a partial answer to the problem of the simultaneous
preservation of all supercompact and measurable limits of supercompact
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cardinals while violating GCH at each of them. Finally, Section 5 contains
some open questions.

In order to present our results in full generality, we will make the minimal
number of assumptions on the structure of the class of strongly compact
and supercompact cardinals in our ground model. However, if we force
over a model in which GCH and the property of compactness coincidence
both hold! (such as the one constructed by the first author and Shelah in
[2]), then all strongly compact cardinals will be preserved to our generic
extension. This is since the only strongly compact cardinals which exist in
a model satisfying compactness coincidence are the supercompact cardinals
and the measurable limits of supercompact cardinals.

2. PRELIMINARIES

Our notation and terminology on forcing are standard and follow [3]. In
particular, p < g means p is stronger than g, and we call a partial ordering
k-directed closed if every directed subset of size less than s has a lower
bound.

We will say that F is an Easton function for the model V of ZFC if F
satisfies the following conditions:

e Either F' € V (if F' is a set) or F' is definable over V' (if F is a proper
class).
dom(F) is a class of V-regular cardinals.
rge(F) is a class of V-cardinals.
For every k € dom(F), F (k) > k.
If Kk <A Kk, A €dom(F), F(k) < F(M).
e For every xk € dom(F), cf(F(k)) > k.
A model V* of ZFC realises an Faston function F if in V*, for every regular
cardinal ¢ in the domain of F, 20 = F(9).

We assume that the reader is familiar with the large cardinal notions
of measurability, strong compactness, and supercompactness. See [11] for
further details. As it is a lesser known notion, we recall that a cardinal s is
called tall if for every A > k, there is an elementary embedding j: V — M
with crit(j) =, j(k) > A, and "M C M. In [9], Hamkins made a systematic
study of tall cardinals. We will use the following facts about tallness.

Proposition 2.1. ([9, Corollary 2.7]) If k is measurable and a limit of tall
cardinals, then k is tall.

Proposition 2.2. ([9, Corollary 2.6]) If k is tall, then for every A\ > k,
there is a A-tallness embedding j : V- — M with crit(j) = k such that there
is no A-tall cardinal in [k, \] in M.

When it comes to strong compactness, we are interested in functions with
the Menas property, which is defined as follows.

IThe property of compactness coincidence states that the strongly compact and supercom-
pact cardinals coincide, except at measurable limit points. Models satisfying compactness
coincidence non-trivially were first constructed by Kimchi and Magidor in [12]. As we
observe in the paragraph immediately preceding the statement of Theorem 3.3, by work
of Menas, a further coincidence between these two classes is impossible.
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Definition 2.3. Suppose k is a strongly compact cardinal. A function
f kK — Kk has the Menas property if for all A > k, there is a k-complete, fine
ultrafilter U on P, A such that for the ultrapower embedding jy : V — My,
|[idlu ]|V < ju(f)(%) holds in My.

First used by Menas in [16], this property is quite helpful when lifting
strong compactness embeddings through forcing. In [6], Hamkins showed
that fast function forcing at an arbitrary strongly compact cardinal adds a
function with the Menas property.

Proposition 2.4. ([6, Theorem 1.7]) Suppose k is a strongly compact car-
dinal. Then the fast function forcing F, preserves the strong compactness
of k and adds a fast function f : k — k that has the Menas property.

Moreover, there are cases when ZFC implies the existence of such a func-
tion.

Proposition 2.5. ([16, Theorem 2.21 and Proposition 2.31]) Suppose & is
a measurable cardinal which is a limit of strongly compact cardinals. Then
K is strongly compact, and the function f : k — Kk, where f(«a) is the least
strongly compact cardinal greater than «, has the Menas property.

By an easy adaptation of the previous proposition, we can also obtain the
following corollary, which will be used in our results.

Corollary 2.6. Suppose k is a measurable cardinal which is a limit of super-
compact cardinals. Then k is strongly compact, and the function f : k — K,
where f(a) is the least supercompact cardinal greater than «, has the Menas

property.

We will want to show at certain junctures that no new instances of large
cardinals are created in certain forcing extensions. This will follow by a
corollary of Hamkins’ work of [8] on the approximation and cover properties
(which is a generalization of his gap forcing results found in [7]). This
corollary follows from [8, Theorem 3 and Corollary 14]. We therefore state
as a separate theorem what is relevant for this paper, along with some
associated terminology, quoting from [7, 8] when appropriate. Suppose P
is a partial ordering which can be written as Q * R, where |Q| < 4, Q is
non-trivial, and I-g “R is 6T-directed closed”. In Hamkins’ terminology of
[8], P admits a closure point at 6. Also, as in the terminology of [7, 8] and
elsewhere, an embedding j : V' — M is amenable to V when j | A € V
for any A € V. The specific corollary of Hamkins’ work from [8] we will be
using is then the following.

Theorem 2.7. (Hamkins) Suppose that V[G] is a generic extension ob-
tained by forcing with P that admits a closure point at some regular 6 < K.
Suppose further that j : V]G] — M[j(G)] is an elementary embedding with
critical point k for which M[j(G)] C VI[G] and *M[j(G)] € M[j(G)] in
VIG]. Then M C V; indeed, M =V N M[j(G)]. If the full embedding j is
amenable to V[G], then the restricted embedding j |V : V — M is amenable
to V. If j is definable from parameters (such as a measure or extender) in
VI[G], then the restricted embedding j | V is definable from the names of
those parameters in V.
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It immediately follows from Theorem 2.7 that any cardinal x which is
either A-supercompact or measurable in a forcing extension obtained by a
partial ordering that admits a closure point below & (such as at w) must also
be A-supercompact or measurable in the ground model V. In particular, if
V is a forcing extension of V' by a partial ordering admitting a closure point
at w in which each supercompact cardinal and each measurable limit of
supercompact cardinals is preserved, the classes of supercompact cardinals
and measurable limits of supercompact cardinals in V remain the same as
in V.

3. RESULTS FOR ONE STRONGLY COMPACT CARDINAL

We begin by showing that we can force violations of GCH at a strongly
compact cardinal x without any stronger assumptions. Theorem 3.1 and
Corollary 3.2 are due to the third author. Here, Add(k,d) is the standard
partial ordering for adding § Cohen subsets of k.

Theorem 3.1. (Usuba) Let k be a strongly compact cardinal. There is then
a forcing extension in which the strong compactness of k is indestructible

under Add(k,0) for all d.

Proof. By forcing with the fast function forcing F, if necessary, we can
assume that there is a function f* : x — k with the Menas property.

Define P = <]P’a,Q5 | 5 < a < k), an Easton support iteration of length
k, as follows. Let Py be the trivial forcing notion. Q, is then also a name
for the trivial forcing notion, unless « is inaccessible and f*“a C «. In this
case, Q, is a name for the lottery sum

P Add(e,B),
B<f*(a)

as defined in Ve 2 Let G C P be V-generic. The arguments of [6, Theorem
4.1] show that x remains strongly compact in V[G]. We wish to show that
in V[G], the strong compactness of  is indestructible under Add(x,d) for
all 0. Fix ¢, and let g C Add(k,d) be V[G]-generic. If we let Q = J g, then
Q : Kk x§— 2is a function.

Let A > max(k,d) be a regular cardinal, and fix a cardinal 6§ > pIN
Using the Menas property of f*, let j : V' — M be an ultrapower embedding
by a k-complete, fine ultrafilter U € V on P,0 with crit(j) = s such that
Ilidly|™ < 7(f*)(x). Since there is no source of confusion, we will drop the
subscript from elements of M and denote them as [h]. As usual, j“0 C [id],
so 0] < [fid)| M.

Claim 1. There is in M a function 7 : [id] — 6 such that for all a < 6,
m(j(a)) = a.

21f A is a collection of partial orderings, then the lottery sum is the partial ordering € 2 =
{{P,p) | P € A and p € P} U {1}, ordered with 1 above everything and (P, p) < (P, p') iff
P =P and p < p. Intuitively, if G is V-generic over @) 2, then G first selects an element
of 2 (or as Hamkins says in [6], “holds a lottery among the posets in 2”) and then forces
with it. The terminology “lottery sum” is due to Hamkins, although the concept of the
lottery sum of partial orderings has been around for quite some time and has been referred

to at different junctures via the names “disjoint sum of partial orderings”, “side-by-side
forcing”, and “choosing which partial ordering to force with generically”.
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Proof. For each a < 0, let g4 : P — V be a function such that [g,] = a.
Without loss of generality, we can assume that g,(x) is defined for every
x € Pib. Let h: P,0 — V be the function given by

hz) = {{a, ga(x)) | @ € z}.
By its definition, h(z) is a function with domain x. It follows that [h] is a
function with domain [id], and for each a < 6, [h](j(a)) = [ga] = . This
completes the proof, since we can easily use [h] to define a function 7 with
the required properties. O

We now proceed by lifting j through P Add(k,d). As usual, j(P)
can be factorised as P x Q % Py, where Q is a name for the lottery sum
Dps<j(s)x) Add(k, 8), and P, is a name for the remaining stages through
j(k). Using G as an M-generic filter for P, we can form M[G]. Also, since
§ < 0 < |[id)|M < j(f*)(k), we can choose to force below a condition in
Q = (Q)¢ that opts for Add(x, §). Thus, we can use g as an M[G]-generic fil-
ter for Q. Furthermore, note that since j(f*)(k) > |[id]|™, Piait = (Prait) g
is at least (|[id]|*)™-closed in M[G][g].

Force over V[G][g] to add a generic filter Gy for Py . Using Gigy as an
M[G][g]-generic filter for P4, since j“G C G, we can lift j in V[G][g][G1ail]
to

J:VIG] = M[j(G)],
where j(G) = G * g * G- In order to further lift j through Add(k,?),
we will use a master condition argument. Consider the function 7 given by
Claim 1, and note that |[id] N j(6)|M < |[id]M| < j(k). Define in M[j(G)]
a function ¢ : k x ([id] N j(0)) — 2 given by q((8,7)) = Q(B,n(y))) if
() < 6, and 0 otherwise. Clearly, ¢ is a condition in j(Add(k,d)).

Claim 2. ¢ < j(p) for all p € g.

Proof. By elementarity and the fact that crit(j) = &, for each p € g, j(p) is
a function with domain j“dom(p) = {(5,j(v)) | (8,7) € dom(p)}. Hence,
dom(j(p)) € dom(q). For (5,3j(7)) € dom(j(p)), we have j(p)((8,j(7))) =
p((B,7) = QUB, 7)) = QUB, 7 (1)) = q((B,5(7)))- .

Force over V[G][g][Gtai] to add a generic filter h C j(Add(k,d)) contain-

ing ¢q. By Claim 2, we can lift j in V[G|[g][Gai][R] to
j: VIGllgl = M[5(G)][A].

Let X = (X¢ | € < 2)™") € V[G][g] be an enumeration of P(P,\)VC]ld],
In M[j(G)][h], consider the set B = {£ € [id] | [id] Nj(\) € j(f)g} Since
Piair * j(Add(k, @) is at least (|[id]|*)M Closed in M[G][g], B € M|G][g] <
VI[G][g]. Hence, W = {X; € P(P.\)VIEIl | j(€) € B} € V[G][g], and since
g > 22" , W is easily seen to be a k-complete, fine ultrafilter on P, A. Thus,
K is A-strongly compact in V[G][g]. Since A can be chosen arbitrarily large,

we have shown that x remains strongly compact in V[G][g]. This completes
the proof of Theorem 3.1. O

Corollary 3.2. The existence of a strongly compact cardinal is equiconsis-
tent with the existence of a strongly compact cardinal where GCH fails. In
particular, assuming 2¢ = kT and k is strongly compact, it is possible to
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force to preserve the strong compactness of k while also forcing any desired
value for 2.

We now proceed by looking at a specific case of a non-supercompact
strongly compact cardinal, the least measurable limit of supercompact car-
dinals. By (the proof of) [16, Theorem 2.22], if k is the least measurable
limit of supercompact cardinals, then k isn’t 2"-supercompact. Thus, if
2% = kT, then k isn’t kT-supercompact, i.e., x exhibits no non-trivial de-
gree of supercompactness.

Theorem 3.3. Suppose GCH holds,  is the least measurable limit of su-
percompact cardinals, and F is an arbitrary Faston function. There is then
a forcing extension in which k remains the least measurable limit of super-
compact cardinals, k exhibits no non-trivial degree of supercompactness, and
F is realised at all regular cardinals greater than or equal to k.

Proof. Let f : k — K be the function where f(«) is the least supercompact
cardinal greater than a. We define P = (P,,Qp | B < a < &), an Easton
support iteration of length x. We start by letting Py = Add(w,1). For
0 < a < k, Q is then defined as follows:

(1) If « is supercompact, but not the least supercompact cardinal greater
than an inaccessible limit of supercompact cardinals, Q, is a name
for the Laver preparation [13] of «, defined using only o-directed
closed partial orderings. Here, o < « is the least inaccessible cardi-
nal greater than the supremum of the supercompact cardinals below
a, or the least inaccessible cardinal if there are no supercompact
cardinals below «. We explicitly note that since there is no super-
compact limit of supercompact cardinals below k, the first non-trivial
stage in the realisation of Q, can be assumed not to occur until after
stage o.

(2) If « is an inaccessible limit of supercompact cardinals, Q, is a name
for D f(a) Add(a, B).

(3) In all other cases, Q, is a name for the trivial forcing notion.

Let G C P be V-generic. In V[G], we force with the Easton product

1 Add(s, F(5)),

0>k
where 0 > k is a (V or V[G])-regular cardinal. Let g x H be V[G]-generic
over

Add(k, F(r)) x [] Add(6, F(6)) = Add(k, F(x)) x R = J] Add(6, F(5)).
0>k 0>k

Standard arguments (see [11, proof of Theorem 15.18]) show that F' is re-
alised in V[G][g][H] at all cardinals greater than or equal to k. We wish to
show that x remains the least measurable limit of supercompact cardinals
in V[G][g][H] (so k is strongly compact in V[G][g][H]) and also exhibits no
non-trivial degree of supercompactness in V[G][g|[H].

We begin by showing that x remains a limit of supercompact cardinals in
V[G][g][H]. For this, note that in V', the set {a < k| a is supercompact and
is not the least supercompact cardinal greater than an inaccessible limit of
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supercompact cardinals} is unbounded below k. For each such «, the partial
ordering Q, forces a to have its supercompactness indestructible under a-
directed closed forcing. Since all the stages of P above o are at least a-
directed closed, « remains indestructibly supercompact in V[G]. Moreover,
since the forcing Add(k, F'(k)) x R is itself a-directed closed in V]G], « is
supercompact in V[G][g][H]| as well.

We now show that x remains measurable in V[G][g][H]. We first note that
by Corollary 2.6, f has the Menas property. Further, in the definition of P,
if o is an inaccessible limit of supercompact cardinals, the first non-trivial
stage of forcing after stage o does not occur until after f(«). Therefore,
the proof of Theorem 3.1 immediately yields that x is strongly compact in
V[G][g]. However, by Easton’s lemma [11, Lemma 15.19], R is (k" 00)-
distributive in V[G][g]. This consequently implies that x is measurable in
VIG][g][H].

To complete the proof of Theorem 3.3, it only remains to show that in
V[G][g][H], k remains the least measurable limit of supercompact cardinals
and exhibits no non-trivial degree of supercompactness. Towards a contra-
diction, suppose v < k is a measurable limit of supercompact cardinals in
V[G][g][H]. By its definition, Px*([]s-, Add(d, F(9))) admits a closure point
at w. Hence, by our remarks in the paragraph immediately following Theo-
rem 2.7, k exhibits no non-trivial degree of supercompactness in V[G|[g][H].
In addition, these same remarks imply that v must be a measurable limit
of supercompact cardinals in V', which contradicts that in V', x is the least
measurable limit of supercompact cardinals. This completes the proof of
Theorem 3.3. U

Remark 3.4. Our choice of x as the least measurable limit of supercompact
cardinals together with GCH was in order to highlight the fact that we do
not assume any non-trivial degree of supercompactness for . However, the
same proof would go through if x were an arbitrary measurable limit of
supercompact cardinals.

Remark 3.5. The partial ordering P of Theorem 3.3 will destroy the su-
percompactness of any cardinal o < k which is in V' the least supercompact
cardinal above an inaccessible limit of supercompact cardinals. To see this,
note that we can write P = P! « P2, where P! is forcing equivalent to a
partial ordering having size less than «, and P? is forced to add a subset
of some v > «, v below the least supercompact cardinal in V above a. By
[10, Theorem, page 550], it is then the case that in V[G], « is no longer ~-
supercompact. Hence, by the closure properties of [[s~, Add(6, F'(9)), « is
no longer y-supercompact in V[G][g][H] as well. However, if we are willing
to impose some restrictions on our Easton function, it is possible to prove
a version of Theorem 3.3 in which all supercompact cardinals below k are
preserved. In particular, we have the following theorem.

Theorem 3.6. Suppose GCH holds, k is the least measurable limit of su-
percompact cardinals, and F' is an Faston function such that F(k) is reqular
and F(§) = F(k) for every 6 € [k, F(k)). There is then a forcing extension
in which k remains the least measurable limit of supercompact cardinals, k
exhibits no non-trivial degree of supercompactness, F is realised at all reqular
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cardinals greater than or equal to k, and the supercompact cardinals below k
are the same as in the ground model.

Proof. We first note that since & is strongly compact, by [9, Theorem 2.11],
k is also tall. Next, let f : kK — k be the function where f(«) is the least
tall cardinal greater than «. Since every supercompact cardinal is clearly
also tall and k is a limit of supercompact cardinals, f(«) has a value less
than k for every a < k and so is well-defined. It is also the case that f has
the Menas property for tallness [9, page 75|, i.e., for every ordinal 6, there
is an elementary embedding j : V' — M with crit(j) = k, "M C M, and
J(f)(k) > 0. To see this, let § > k. Using Proposition 2.2, we fix for x a
f-tallness embedding j : V' — M such that:

crit(j) = k.

Jj(k) > 0.

"M C M.

j is given by a (k, #)-extender embedding.

There is no #-tall cardinal in M in the interval [k, 6].

Since in M, j(f)(k) is the least tall cardinal greater than x, and because
there are no 6-tall cardinals in M in the interval [k,6], it follows that
J(F)(K) > 0.

We will now proceed along the same lines as the proof of Theorem 3.3.
We begin by fixing for k an F(k)-tallness embedding j : V' — M such that:
crit(j) = k.

Jj(k) > F(k).

"M C M.

Jj is given by a (k, F'(k))-extender embedding.

There is no F(k)-tall cardinal in the interval [k, F'(k)].

We next define P = (Pa,Qg | B < a < k), an Easton support iteration of
length x. We start by letting Py = Add(w,1). For 0 < a < &, Q, is then
defined as follows:

(1) If a is supercompact, Q, is a name for the Laver preparation [13] of
«, defined using only o-directed closed partial orderings. Here, 0 < «
is redefined as the least tall cardinal greater than -+, the supremum
of the supercompact cardinals below «, or the least tall cardinal if
there are no supercompact cardinals below «. As before, since there
is no supercompact limit of supercompact cardinals below x and
a < K is supercompact, v < a. Also, by [1, Lemma 2.1], o € (v, «)
(where we take v = w if there are no supercompact cardinals below
a). Therefore, in analogy to the proof of Theorem 3.3, the first non-
trivial stage in the realisation of Q, can be assumed not to occur
until after stage o.

(2) If « is an inaccessible limit of supercompact cardinals, Q, is a name
for ®B<f(oz) Add(oa,.ﬁ).

(3) In all other cases, Q, is a name for the trivial forcing notion.

Let G C P be V-generic, and let g9 C Add(k, F(k)) be V[G]-generic. By
clause (2) in the definition of P, the choice of j, and the fact f has the
Menas property for tallness, it is possible to opt for Add(x, F'(k)) at stage &
in M in the definition of j(IP). In addition, by clause (1) in the definition of
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P, the first non-trivial stage in M in the definition of j(P) after x does not
occur until after stage j(f)(k), the least tall cardinal in M greater than k.
This means that the proof of [9, Theorem 3.13] unchanged remains valid and
allows us to infer the existence of a s-directed closed, (k™ 0o)-distributive,
cardinal and cofinality preserving partial ordering R € V[G][go] such that if
g1 C Ris V[G][go]-generic, in V[G][go][g1], & is a tall cardinal, and 2° = F(k)
for every 4 € [k, F'(k)). If we now let ga C J[5> p(x) Add(6, F(6)) (the Easton
product for § > k a regular cardinal in any of the models V', V|G|, V[G][go],
or V[G][go]lg1]) be V[G][g0][g1]-generic, then F is realised in V[G][g0][91][g2]
at all regular cardinals 6 > k. In addition, the same arguments as found in
the proof of Theorem 3.3 show that in V[G][go0][g1][g2], £ remains the least
measurable limit of supercompact cardinals, and s exhibits no non-trivial
degree of supercompactness. By the definition of P, all ground model super-
compact cardinals less than s have been made indestructible and hence are
preserved to V[G][g0][g1][g2]. Consequently, by our remarks in the paragraph
immediately following Theorem 2.7, the supercompact cardinals below  in
V[G][g0][g1][g2] are the same as in V. This completes the proof of Theorem
3.6. O

4. RESULTS FOR MORE THAN ONE STRONGLY COMPACT CARDINAL

In the previous section, we successfully violated GCH and even realised
certain Easton functions above one non-supercompact strongly compact car-
dinal, the least measurable limit of supercompact cardinals. We now present
results in which we handle more than one measurable limit of supercompact
cardinals. In what follows, let A = {§ | ¢ is a measurable limit of supercom-
pact cardinals}. Define Q = sup(A) if A is a set, or 2 = Ord if A is a proper
class. Let f: Q — Q be the function where f(«) is the least supercompact
cardinal greater than c.

Theorem 4.1. Suppose V is a model of GCH containing more than one
measurable limit of supercompact cardinals. Let F be an Faston function
defined on measurable limits of supercompact cardinals such that F(k) <
f(k) for any k € dom(F'). Then there is a forcing extension in which the
measurable limits of supercompact cardinals are the same as in 'V and F is
realised.

Proof. Intuitively, we will proceed by iterating the forcing notion used in
the proof of Theorem 3.3. More formally, let (ko | @ < §2) enumerate in
increasing order the measurable limits of supercompact cardinals. We define
P = (]P’a,(@g | B < a < Q), an Easton support iteration of length . We
start by letting Py = Add(w,1). For 0 < a < Q, Qq is then defined as
follows:

(1) If « is supercompact, but neither the least supercompact cardinal
greater than an inaccessible limit of supercompact cardinals nor a
supercompact limit of supercompact cardinals, Q, is a name for the
Laver preparation [13] of «, defined using only o-directed closed par-
tial orderings. Here, o0 < « is the least inaccessible cardinal greater
than the supremum of the supercompact cardinals below «, or the
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least inaccessible cardinal if there are no supercompact cardinals be-
low a. We explicitly note that since a is not a supercompact limit of
supercompact cardinals, the first non-trivial stage in the realisation
of Q, can be assumed not to occur until after stage o.

(2) If o is a non-measurable inaccessible limit of supercompact cardinals,

Qq is a name for @ge f(q) Add(e, B).

(3) If « is a measurable limit of supercompact cardinals, Q, is a name
for Add(«, F(«)).

(4) In all other cases, Q, is a name for the trivial forcing notion.

Let G C P be V-generic. Fix s such that x is a measurable limit of
supercompact cardinals in V. Write G as G *xg* Gy, Wwhere G, is V-generic
for the forcing defined through stage k, g is V[G,]-generic for Add(k, F'(k))
(the stage k forcing), and Gy, is V[G,][g]-generic for the rest of P. The
proof of Theorem 3.3 shows that in V[G,][g], x remains a measurable limit
of supercompact cardinals, and 2* = F(k). By the definition of P, because
F(k) < f(k) and the first non-trivial stage of forcing after stage x does not
occur until after f(k), in V[G][9][Grii] = V[G], k remains a measurable
limit of supercompact cardinals, and 2% = F(k). By our remarks in the
paragraph immediately following Theorem 2.7, any cardinal in V[G] which
is a measurable limit of supercompact cardinals must have been a measurable
limit of supercompact cardinals in V. Since standard arguments show that
if P is a proper class, V[G] is a model of ZFC, this completes the proof of
Theorem 4.1. U

As was the case with Theorem 3.3, the proof of Theorem 4.1 yields that
any 0 < € which in V is the least supercompact cardinal greater than
an inaccessible limit of supercompact cardinals has its supercompactness
destroyed after forcing with IP. It is possible, however, by making some slight
changes in the definition of IP, to prove an analogue of Theorem 4.1 in which
both the measurable limits of supercompact cardinals and the supercompact
cardinals which are not limits of supercompact cardinals are the same as in
V. In particular, suppose we assume:

e A, Q, and (kq | @ < Q) have been defined as in the proof of Theorem
4.1.

o [:Q — Qisredefined as f(«) is the least tall cardinal greater than
Q.

e o is redefined as the least tall cardinal greater than the supremum
of the supercompact cardinals below «, or the least tall cardinal if
there are no supercompact cardinals below a.

e We define a partial ordering P as in the proof of Theorem 4.1, except
that in Case (1) of the definition of P, @ can be any supercompact
cardinal which is not a limit of supercompact cardinals.

We now have the following.

Theorem 4.2. Suppose V' is a model of GCH containing more than one
measurable limit of supercompact cardinals. Let F be an Faston function
defined on measurable limits of supercompact cardinals such that F(k) <
f(k) for any k € dom(F'). Then there is a forcing extension in which the
measurable limits of supercompact cardinals and the supercompact cardinals



12 ARTHUR W. APTER, STAMATIS DIMOPOULOS, AND TOSHIMICHI USUBA

which are not limits of supercompact cardinals are the same as in'V, and F
is realised.

The proof of Theorem 4.2 is essentially the same as the proof of Theorem
4.1, with all references to the proof of Theorem 3.3 replaced by references to
the proof of Theorem 3.6. We note only that if § < Qisin V a supercompact
cardinal which is not a limit of supercompact cardinals, the definition of P
(specifically, the change made in Case (1)) shows that § is preserved to the
generic extension V|G| by P. By our remarks in the paragraph immediately
following Theorem 2.7, it now immediately follows that the supercompact
cardinals which are not limits of supercompact cardinals are the same in both
V and V[G]. If A is a set instead of a proper class (so that in particular,
Q) is an ordinal), then by the Lévy-Solovay results [14], the supercompact
cardinals above € in both V and V[G] are precisely the same.

The techniques used in the proofs of Theorems 4.1 and 4.2 do not seem
to allow for the preservation of supercompact limits of supercompact cardi-
nals. Although we do not yet know a way of accomplishing this in general,
it is possible to achieve this goal in a certain restricted situation. More
specifically, we have the following.

Theorem 4.3. Suppose V' is a model of GCH in which k is the only super-
compact limit of supercompact cardinals and there is no inaccessible cardinal
greater than k. Then there is a forcing extension in which the supercompact
cardinals and measurable limits of supercompact cardinals are the same as
in V' (so in particular, k remains the only supercompact limit of supercom-
pact cardinals), and 2° = 61+ for every & which is either supercompact or a
measurable limit of supercompact cardinals.

Proof. Let (ko | @ < k) enumerate in increasing order the measurable limits
of supercompact cardinals. Let f : kK — & be the function where f(«) is the
least tall cardinal greater than a. We define P = (P,, Qs | 8 < a < k), an
Easton support iteration of length k+1. We start by letting Py = Add(w, 1).
For 0 < a < k&, Qa is then defined as follows:

(1) If & < & is supercompact, Q, is a name for the Laver preparation [13]
of «, defined using only o-directed closed partial orderings. Here,
o < « is the least tall cardinal greater than the supremum of the
supercompact cardinals below «, or the least tall cardinal if there
are no supercompact cardinals below a. We explicitly note that as
in the proof of Theorem 3.6, since « is not a supercompact limit of
supercompact cardinals, the first non-trivial stage in the realisation
of Q, can be assumed not to occur until after stage o.

(2) If « is a non-measurable inaccessible limit of supercompact cardinals,
Q. is a name for Ds<f(a) Add(a, B).

(3) If a < k is either supercompact or a measurable limit of supercom-
pact cardinals, Q,, is a name for Add(a, ).

(4) In all other cases, Q, is a name for the trivial forcing notion.

Let G C P be V-generic. Write G as G *g, where Gy, is V-generic for the
forcing defined through stage x, and g is V[G]-generic for Add(k, x™1) (the
stage k forcing). The arguments found in the proofs of Theorems 4.1 and 4.2,
in tandem with the definition of P, show that in V[G,][g], the supercompact
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cardinals less than x and measurable limits of supercompact cardinals are
the same as in V, and 20 = 6T+ for every ¢ which is either supercompact
or a measurable limit of supercompact cardinals. In addition, since there
are no inaccessible cardinals greater than s in V', there are no inaccessible
cardinals greater than x in V[Gg][g] as well. Thus, the proof of Theorem
4.3 will be complete once we have shown that x remains supercompact in
VIG.][gl.

To do this, fix an arbitrary A > s+, and let j: V — M bea vy = AT
supercompactness embedding with crit(j) = . In V, there is no inaccessible
cardinal greater than x, and since "M C M, in M, there is no inaccessible
cardinal in (x,7]. Thus, we can write j(P) as P % Add(k, kT1) % Py *
Add(j(k),j(kTT)), where Py is a name for a yt-directed closed forcing
whose first non-trivial stage occurs after y*. Standard arguments (see,
e.g., [13, proof of the Theorem, pages 387-388]) now show that x is A-
supercompact in V[G][g]. Since A was chosen arbitrarily, x is supercompact
in V[G,][g]. This completes the proof of Theorem 4.3. O

5. QUESTIONS

The following questions remain open concerning strongly compact cardi-
nals and the continuum function.

Question 5.1. If k is a strongly compact cardinal, can we force GCH at &
while preserving the strong compactness of k without assuming any stronger
hypotheses?

Question 5.2 (Woodin). If GCH holds below a strongly compact cardinal,
does it hold above it too?

Also, our methods leave unresolved the problem of realising an arbitrary
Easton function in the presence of a strongly compact cardinal.

Question 5.3. Suppose F' is any Faston function and k is a strongly com-
pact cardinal. Under what conditions can we realise F' while preserving the
strong compactness of k?

One of the challenges in the proofs of the theorems of Section 4 that
remains unresolved is the preservation of arbitrary supercompact limits of
supercompact cardinals.

Question 5.4. Can we prove analogues of Theorems 4.1, 4.2, and 4.3 where
all supercompact limits of supercompact cardinals are preserved?
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