
ar
X

iv
:1

90
7.

09
51

3v
8

 [
m

at
h.

L
O

]
 1

5
Ju

n
20

20

Taming Koepke’s Zoo II: Register Machines

Merlin Carl

Institut für mathematische, naturwissenschaftliche und

technische Bildung, Abteilung für Matheamtik und ihre Didaktik,

Europa-Universität Flensburg

June 17, 2020

Abstract

We study the computational strength of resetting α-register ma-
chines, a model of transfinite computability introduced by P. Koepke
in [K1]. Specifically, we prove the following strengthening of a result
from [C]: For an exponentially closed ordinal α, we have Lα |=ZF−

if and only if COMPITRM
α = Lα+1 ∩ P(α), i.e. if and only if the set

of α-ITRM-computable subsets of α coincides with the set of subsets
of α in Lα+1. Moreover, we show that, if α is exponentially closed
and Lα 6|=ZF−, then COMPITRM

α = Lβ(α) ∩ P(α), where β(α) is the
supremum of the α-ITRM-clockable ordinals, which coincides with the
supremum of the α-ITRM-computable ordinals. We also determine
the set of subsets of α computable by an α-ITRM with time bounded
below δ when δ > α is an exponentially closed ordinal smaller than
the supremum of the α-ITRM-clockable ordinals.

1 Introduction

In [KM], Koepke and Miller introduced Infinite Time Register Machines
(ITRMs) as a generalization of register machines to ordinal time, thus com-
plementing the Infinite Time Turing Machines introduced in Hamkins and
Lewis [HL]. An ITRM has finitely many registers, each of which can store
a single natural number. Later on, Koepke also introduced Ordinal Turing
Machines (ORMs) (see e.g. [ORM]), in which every register can contain an
arbitrary ordinal. In [K1], he further mentions the possibility of defining
register machines in which the register contents are bounded by an ordinal

1

http://arxiv.org/abs/1907.09513v8

α while the computation time is bounded by a possibly different ordinal β,
so-called (α, β)-ITRMs. The computational objects for ITRMs were deter-
mined in [K1] to be those subsets of ω contained in LωCK

ω
, and for ORMs, it

was shown in [ORM] that they can compute exactly the constructible sets of
ordinals. Moreover, by arguments analogous to those given in Koepke and
Seyfferth [KS] for tape models, one can see that for exponentially closed α,
an (α, α)-ITRM computes exactly those subsets of α that are α-recursive,
i.e. ∆1 over Lα.

We recall the definitions of α-(w)ITRMs from [KM] and [K] very briefly.
In the original definition of Koepke, programs for α-(w)ITRMs are simply
register machine programs as e.g. described in Cutland [Cu]. An α-(w)ITRM
has finitely many registers, each of which can store a single ordinal < α.
Whe P is a program that uses the register with indices 1, 2, ..., n, then a
P -computation is a sequence of P -configuration, i.e., elements (l, c1, ..., cn) of
ω×αn, where l denotes the active program line ad ci is the content of the i-th
register, for i ∈ {1, 2, ..., n}. These machines operate along an ordinal time
axis. At successor stages, the register machine commands are carried out as
usual. At limit stages, the active program line and the register contents are
obtained as the inferior limits of the sequences of earlier program lines or the
earlier contents of the register in question, respectively. If that limit is α,
an α-wITRM-computation is undefined (it “crashes”), while in an α-ITRM-
computation, the content of such a register is simply reset to 0. Of course,
we can specify an initial configuration c from which the machine will start;
we write P (c) for the computation of the program P starting in the initial
configuration c. When we work with a single ordinal ι as an input, we write
P (ι) and understand that ι is initially written to the first register, while all
other registers contain 0. When we do not specify an input configuration, it
is meant that we start in the situation where all registers contain 0. When we
talk about “outputs” of a computation, we refer to the configuration in the
halting state; often (when, e.g., talking about the computability of functions
from the ordinals to the ordinals), it is only the content ρ of the first register
we care about, in which case we say that P (c) halts with output ρ. For
this paper, we modify the definition of a program slightly for the sake of
a smoother development: Instead of only allowing jump conditions of the
form Ri = Rj, i.e. stating that the content of one register is equal to the
content of another register, we allow arbitrary Boolean combinations of such
statements as jumping conditions. This has the convenient effect that one
can store a certain configuration of a program P (i.e. the register contents
and active program line) in some extra registers and then recognize in a single
step whether or not P is currently in this configuration. Clearly, this leaves
the computational power of these machines untouched; one nice effect of this

2

modification is that the proof of the speedup-theorem for α-(w)ITRMs (see
Lemma 33 below) avoids a lot of the trickery used in [CFKMNW] in the case
of (ω-)ITRMs.

In this work, we investigate the computational strength of α-ITRMs in
the case that α has sufficient closure properties. The lesson here is that,
if α has strong closure properties, then the computational strength of α-
(w)ITRMs goes little beyond Lα. The results on α-ITRMs in this paper are
refinement of results that appeared in [C]; there, it was proved that, if α > ω
is regular in Lαω , then COMPITRM

α = Lα+1 ∩ P(α). Here, we exploit the
proof to obtain the same result under a considerably weaker condition, thus
obtaining an equivalence.

Although we will mostly be concerned with α-ITRMs below, we point out
the following result on the unresetting case, which is contained in [C] and
will be improved below (Theorem 39):

Theorem 1. If α is Σ2-admissible, then COMPwITRM

α = ∆1(Lα) ∩P(α).

2 α-ITRMs and ZFC−

For the definition of α-ITRMs, we refer to [K1] or our sketch above. A set
x ⊆ α is α-ITRM-decidable or α-ITRM-computable if and only if there are
an α-ITRM-program P and a parameter γ < α such that, for all ι < α, we
have P (ι, γ) ↓= 1 if and only if ι ∈ x and otherwise, P (ι, γ) ↓= 0. We denote
the set of ITRM-computable sets by COMPITRM

α .
In [C], we showed that, if κ is an uncountable regular cardinal, then

COMPITRM

κ = P(κ) ∩ Lκ+1. Here, we will explore the matter further to
reach a much stronger result.

We will occasionally write liminf(cι : ι < δ) or min{cι : ι < δ} where
{cι : ι < δ} is a set of tuples (c1ι , ..., c

k
ι) of ordinals of fixed finite length k to

denote the tuple consisting of the component-wise inferior limits, minima etc.,
i.e. (liminfι<δc

1
ι , ..., liminfι<δc

k
ι) and (minι<δc

1
ι , ...,minι<δc

k
ι), respectively.

When talking about α-ITRM-computations in this paper, we always mean
that parameters are allowed, even though we will not mention it. Throughout
the paper, p will denote Cantor’s ordinal pairing function. If (X,∈) is an
∈-structure and f : α→ X is surjective, we will call {p(ι, ξ) : f(ι) ∈ f(ξ)} an
α-code for X. When α is clear from the context, the prefix α will occasionally
be dropped.

For this section, let α be an exponentially closed ordinal.
We will be working with ZF−, which is ZFC without choice and the power

set axiom; to be more precise, we use the formulation of ZF− established in
[GJH] as the most natural one.

3

Our goal is to show the following result:

Theorem 2. If α is exponentially closed, then Lα |= ZF− if and only if
COMPITRM

α = Lα+1 ∩P(α).

Let us say that α is a ZF−-ordinal if and only if Lα |= ZF−. We will fre-
quently and freely use the following folklore characterization of ZF−-ordinals,
the proof of which we recall for the convenience of the less set-theoretically
minded reader:

Lemma 3. α is a ZF−-ordinal if and only if α is regular in Lα+1.

Proof. Suppose that α is singular in Lα+1; pick δ < α, f : δ → α such that
f ∈ Lα+1 and f maps δ cofinally into α. Towards a contradiction, assume
that Lα |=ZF−. By assumption, f is definable over Lα; let φ be a formula,
~p ⊆ α finite such that f(ι) = ξ holds if and only if Lα |= φ(ι, ξ, ~p). Then f is
a functional class in Lα and thus, by replacement in Lα, f [δ] is an element
of Lα. But then, by the axiom of union in Lα, we also have α =

⋃
f [δ] ∈ Lα,

a contradiction.
Now assume that α is regular in Lα+1. The only axioms to check are

comprehension and collection (all other axioms of ZF− hold in all limit levels
of the L-hierarchy that contain ω). As comprehension is a consequence of
collection, it suffices to deal with the latter. So let φ be a formula and
X, ~p ∈ Lα such that Lα |= ∀x ∈ X∃yφ(x, y, ~p). We need to show that there
is Y ∈ Lα such that Lα |= ∀x ∈ X∃y ∈ Y φ(x, y, ~p). Let β be minimal such
that X ∈ Lβ. Then β < α (as α is a limit ordinal) and moreover, by
standard finestructure, there is a bijection g : β → Lβ in Lβ+1 and thus also
a surjection h : β → X. Now, the function f : X → α mapping each x ∈ X
to the minimal γ ∈ α such that Lγ contains some y with Lα |= φ(x, y, ~p) is
clearly definable over Lα and thus contained in Lα+1. By regularity of α in
Lα+1, the image of f ◦ h must be bounded in α, say be η. Then Y = Lη is
as desired.

We now show the direction from left to right.

Proposition 4. Let (αι : ι < δ) be an increasing sequence of ordinals,
where δ is a limit ordinal, and let α := supι<δαι. Let (βι : ι < α) be
another sequence of ordinals (by definition, α is a limit ordinal). Moreover,
let µξ = min{βι : ι < αξ} for ξ < δ.

Then liminfι<αβι = liminfξ<δµξ.

Proof. We first show that liminfι<αβι ≤ liminfξ<δµξ.

4

Suppose for a contradiction that liminfξ<δµξ < liminfι<αβι. Thus, for
some γ < α, we have βι > liminfξ<δµξ for all ι > γ. But then, the same holds
for µξ as soon as αξ > γ, contradicting the definition of liminfξ<δµξ.

Now we show that liminfι<αβι ≥ liminfξ<δµξ.
Suppose for a contradiction that liminfι<α < liminfξ<δµξ.
Thus, there is γ < δ such that, for all ξ > γ, we have µξ > liminfι<αβι.

But then, we have βξ > liminfι<αβι for all sufficiently large ξ, contradicting
the definition of liminfι<αβι.

The next lemma is a strenghthening of a lemma that was proved in joint
discussion with Philipp Schlicht and originally published in [C], namely that
the definability of F αn

P over Lα holds when α is an uncountable regular car-
dinal.

Lemma 5. Let Lα |= ZF−, let P be an α-ITRM-program using n many
registers, and let β be an ordinal. Denote by F β

P the function that maps a
P -configuration c = (l, r1, ..., rn) to the P -configuration arising by running
P for β many steps with initial configuration c.

Moreover, letGβ
P be the function that maps a P -configuration c = (l, r1, ..., rn)

to the tuple (l′, r′1, ..., r
′

n), where l′ is the minimal program line index in any
P -configuration occuring when one runs P on c for β many steps; and simi-
larly, r′1, ..., r

′

n are the minimal contents of the registers R1, ..., Rn used by P
during this computation.

Finally, for 0 < n ∈ ω, ĉ := (l̂, r̂1, ..., r̂n) ∈ ω×αn, let Hβ,ĉ
P be the function

that maps a P -configuration c to the binary sequence (s0, ..., sn) ∈ {0, 1}n+1,
where si = 1 if and only if, for some configuration c′ occuring during the
P -computation of length β starting with c, the ith component of c′ coincides
with the ith component of ĉ, and otherwise, si = 0.

Then F αk

P , Gαk

P andHαk

P are definable over Lα, and in fact by Σ4k-formulas
for 0 < k ∈ ω (and thus in particular contained in Lα+1).

Proof. We will prove the definability of F αk

P and Gαk

P by a simultaneous
induction on k; the definability of Hαk

P will then be an easy consequence of
this proof.

Let k = 1, and let c = (l, r1, ..., rn).
As α is a limit ordinal, any partial computation of P of length γ < α for

any starting configuration will be contained in Lα.
Then, simply by expressing the liminf-rule, F α

P (c) is definable over Lα as
follows:

F α
P (c) = (l′, r′1, ..., r

′

n) if and only if all of the following hold:

5

1. For all ι < α, there is a P -computation of length ι + 1 starting with c
with active program line l′ in the final configuration. This is expressable
by a Π2-formula.

2. There is γ < α such that, for all ι ∈ (γ, α), and all P -computations
of length ι + 1 starting with c, the final configuration will have an
active program line with index ≥ l′. This condition is expressable by a
Σ2-formula.

3. For all ρi < r′i (1 ≤ i ≤ n), there is γi < α such that, for all ι > γi,
all P -computations of length ι + 1 starting with c have an ordinal
≥ ρi in their ith register in their final configuration. This condition is
expressable by a Π3-formula.

4. For all γ < α, there is ι ∈ (γ, α) such that there is a P -computation
of length ι+ 1 starting with c such that, at time ι+ 1, the ith register
contains an ordinal < r′i for all 1 ≤ i ≤ n. This condition is expressable
by a Π2-formula.

Thus, F α
P is Π3-definable over Lα.

Moreover, Gα
P (c) = (l̄, r̄1, ..., r̄n) holds if and only if the following condi-

tions hold:

1. There are ι0, ..., ιn < α and P -computations cι0 , ..., cιn starting with c of
length ι0+1, ...ιn+1 respectively, such that cι0 has active program line
l̄, cι1 has content r̄1 in its first register, ..., cιn has content r̄n in its nth
register in its final configuration. This is expressable by a Σ1-formula.

2. For all ι < α and all P -computations of length ι + 1 starting with c,
in the final configuration we have that the active program line index is
≥ l̄ and the content of the ith register is ≥ r̄i, for all 1 ≤ i ≤ n. This
is expressable by a Π1-formula.

Thus, Gα
P (c) is definable over Lα by the conjunction of a Σ1-formula and

a Π1-formula.

Now assume that F αk

P and Gαk

P have Σ4k-definitions over Lα. We show
that F αk+1

P and Gαk+1

P have Σ4(k+1)-definitions over Lα.
For a arbitrary P -configuration c and ι < γ < α, let us define Ck

γ (ι, c)
(the sequence of every αkth configuration in the P -computation starting with
c up to time αkγ) and Dk

γ(ι, c) (the sequence of component-wise minima of
configurations occuring in the P -computation starting with c between times
αkι and αk(ι+ 1) up to time αkγ) by a simultaneous recursion as follows:

6

• Ck
γ (0, c) = c

• Ck
γ (ι+ 1, c) = F αn

P (Ck
γ (ι, c))

• Ck
γ (δ, c) = liminfι<δD

k
γ(ι, c) for δ < γ a limit ordinal.

• Dk
γ(0, c) = c

• Dk
γ(ι+ 1, c) = Gn

γ(C
k
γ (ι, c))

• Dk
γ(δ, c) = min{Dk

γ(ι, c) : ι < γ} for δ < γ a limit ordinal.

By recursion (and the inductive assumption about the definability of F αk

P

and Gαk

P over Lα) in Lα, we have (Ck
γ (ι, c) : ι < γ) ∈ Lα and (Dk

γ(ι, c) : ι <
γ) ∈ Lα for all γ < α.

Now, we can define F αk+1

P and Gαk+1

P over Lα as follows:
For c = (l, r1, ..., rn), we have F αk+1

P (c) = liminfι<αD
k
ι+1(ι, c) by Propo-

sition 4. It is not hard to see, using the inductive assumption, that this is
Σ4k+4 over Lα, as desired.

On the other hand, we have that Gαk+1

P (c) = min{Dk
ι+1(ι, c) : ι < α}:

Clearly, the minimal value that the ith component assumes until time αk+1

is equal to the minimum of the minimal ith components occuring in each
subinterval of the form [αkι, αk(ι+ 1)).)

In total, F αk+1

P and Gαk+1

P are Σ4(k+1) over Lα, as desired.

Finally, we turn to Hαk,ĉ
P .

For n = 1, we have Hα,ĉ
P = (s0, ..., sn) if and only if, for any i ∈ {0, 1, ..., n}

such that si = 1, there is γ < α such that, after running P on c for γ
many steps, the ith component of the last configuration is equal to the ith
component of ĉ and for any i ∈ {0, 1, ..., n} with si = 0, this is false.

The former condition is Σ1 over Lα, the latter is Π1, so the whole definition
is Σ2.

Now suppose that Hαk,ĉ
P is defined. By recursion in Lα, define, for all

γ < α and all ι < γ:

• Ek,ĉ
γ (0, c) = (0, ..., 0)

• Ek,ĉ
γ (ι+ 1, c) = Hαk,ĉ

P (Ck
γ (ι, c))

• Ek,ĉ
γ (δ, c) = (0, ...0) for δ < γ a limit ordinal.

7

The let Hαk+1,ĉ
P (c) = max{Ek,ĉ

γ+1(γ, c) : γ < α} (where the maximum is
also to be taken in each component separately).

Clearly, this is definable over Lα, as desired.

Lemma 6. Suppose that Lα |= ZF−. If x ⊆ α is computable by an α-ITRM
in time < αn for some n ∈ ω, then x ∈ Lα+1.

Proof. Suppose that x ⊆ α is decidable by an α-ITRM-program P and that,
for each ι < α, P (ι) halts in < αn many steps, where n ∈ ω.

Now, for all ι ∈ α, we have ι ∈ x if and only if P (ι) ↓= 1 in < αn

many steps if and only if, at time αn, the first register contains 1 in the P -
computation starting in configuration (1, ι, 0, ..., 0)1 if and only if F αn

P (1, ι, 0, ..., 0)
has 1 in its second component. By Lemma 5, the last condition is Σ4n over
Lα.

In particular, it follows that x ∈ Lα+1.

The proof actually shows more:

Corollary 7. If x ⊆ α is α-ITRM-decidable with time bound αk, then x is
Σ4k over Lα.

Moreover, if α is Σ4k-admissible, then any x ⊆ α that is computable by
an α-ITRM with time bound αk is an element of Lα+1.

Without any assumption on α, we still obtain that, if x ⊆ α is α-ITRM-
decidable with time bound αk, then x ∈ Lα+k+1.

Proof. The first two claims are clear. For the third, note that, inductively,
Ck

γ and Dγ
k will be contained in Lα+k, so that F αk+1

P and Gαk+1

P are definable
over Lα+k and thus contained in Lα+k+1, so that now any x ⊆ α that is
α-ITRM-computable with time bound αk+1 is contained in Lα+k+2. Thus,
an induction on k proves the desired result.

Lemma 8. [Koepke and Seyffert, see [KS]] Let α be exponentially closed.
Then x ⊆ α is α-ITRM-computable in α many steps if and only if x is ∆1

over Lα.
In particular, there is an α-ITRM-computable code c ⊆ α for Lα in which

each ordinal ι is coded by ι+ 1.
Moreover, the truth predicate for bounded formulas in Lα with parame-

ters is α-ITRM-decidable.

1After a halting configuration has been reached, the computation continues by repeating
this configuration without changes.

8

Proof. For the first and last claim, see Koepke and Seyfferth [KS].2 For the
second claim, it is easy to see that such a code is ∆1 over Lα.

Lemma 9. Let α be exponentially closed, x ∈ Lα+1 ∩ P(α). Then x is
α-ITRM-computable.

Proof. By Lemma 8, a subset c ⊆ α coding Lα is α-ITRM-computable as it
is easy to see that there is such a code which is ∆1 over Lα: More precisely,
associate with every δα a triple (β, k, γ) ∈ α × ω × α, which is meant to
represent Def(β, k, γ) := {x ∈ Lβ : Lβ |= φk(x, γ)}. (In particular then,
ι < α is represented by (ι, k, ∅), where k is an index for the formula “x is an
ordinal”. Now define a code c ⊆ α by saying that p(ι, ξ) ∈ c if and only if
there are t0 := (β0, k0, γ0), t1 := (β1, k1, γ1) in α×ω×α such that ι codes t0,
ξ codes t1 and Def(t0) ∈ Def(t1) if and only if we have Def(t0) ∈ Def(t1) for
all such t0, t1. This definition is clearly ∆1 over Lα.

Now suppose that x ∈ Lα+1 is given as

x = {ι < α : Lα |= φ(ι, ~p)},

where ~p is a finite sequence in α. We show by induction on the complexity
of φ that x is α-ITRM-decidable.

Suppose that φ is written in the form ∃x1∀x2...∀xnψ, where ψ is quantifier-
free.

To evaluate ψ, one only needs to use the algorithm for evaluating the
bounded truth predicate from Lemma 9.

Then, for each quantifier alternation, we perform an exhaustive search
through α. For n quantifier alternations, n extra registers are used for the
nested searches.

More specifically, if Q decides {(ι, ξ) ∈ α×α : φ(ι, ξ)} for some formula φ,
then {ι < α : ∃ξφ(ι, ξ)} is decided by running through α in a new register and
using Q on each content of that register to decide whether φ(ι, ξ) holds. If this
terminates (i.e., if the new register contains 0, due to an overflow) without
Q ever having returned the output 1, then ∃ξφ(ι, ξ) is false, otherwise, it is
true.

The set {ι < α : ∀ξφ(ιξ)} is just the relative complement of the set
{ι < α∃ξ¬φ(ι, ξ)} in α and can thus be decided similarly.

We now work towards a bound on the halting times on α-ITRM-programs
when α is a ZF−-ordinal. Our approach is an adaptation of the proof by
Koepke in [K1] that the halting times of ω-ITRMs are bounded by ωCK

ω

2Strictly speaking, [KS] proves this for α-ITTMs, but the adaptation to α-ITRMs is
straightforward, see [C], Theorem 3.3.3.

9

and strengthens our result from [C] that the halting times of κ-ITRMs are
bounded by κω when κ is an uncountable regular cardinal.

The following lemma generalizes the looping criterion for ITRMs from
[KM].

Lemma 10. Let P be an α-ITRM-program. Suppose that, during the com-
putation of P , there are times ι < ξ such that the configurations at time ι
and ξ are equal and such that any configuration arising in between is in every
component ≥ the configuration at time ι. Then P is looping, repeating its
behaviour between times ι and ξ and in particular never halts.

Proof. Let δ be such that ι+ δ = ξ. By the liminf-rule, the configuration at
time ι reappears at any time of the form ξ + δγ.

Definition 11. In the situation of Lemma 10, we say that (ι, ξ) witnesses
the looping of P .

A new phenomenon occuring for α-ITRMs with α > ω, but not for ITRMs
is the possibility that a register content > 0 occurs at a limit time without
ever having been contained in that register before; for example, if one counts
upwards in a register, starting with 0, then at time ω, this register will
contain ω for the first time. This kind of limits complicates the control
over the register contents that we need to ensure looping. Fortunately, for
reasonable closed β, we can show that it cannot occur at time β.

Definition 12. Let P be an α-(w)ITRM-program, ι, δ < α, δ > 0 and τ a
limit ordinal. We say that δ is a proper limit of (P, ι) at time τ if and only
if some register contains δ at time τ in the computation of P in the input ι,
but that register had contents < δ cofinally often before time τ .

Lemma 13. Let α be a ZF−-ordinal, let P be an α-ITRM-program, k ∈ ω,
and let R be a register used by P and let r > 0 be its content at time αk.
Then there is τ < αk such that all contents of R after time τ were ≥ r and
moreover, r was cofinally often the content of R before time αk.

Proof. By the liminf rule, the second claim follows from the first. It thus
suffices to show the first claim.

Suppose for a contradiction that the first claim fails. Note that, as a
register content of an α-ITRM, we have r < α. Now we have that, for any
ρ < r, there is a minimal ordinal ι(ρ) < α such that, from time αk−1ι(ρ) on,
all contents of R were ≥ ρ (but cofinally often, it was < r). Consider the
function ρ 7→ ι(ρ), which maps r < α cofinally into α.

We claim that this function is definable over Lα, hence contained in Lα+1,
contradicting the assumption that α is regular in Lα+1. To this end, we recall

10

from the proof of Lemma 5 that (Dk
ι : ι < γ) is definable over Lα for every

γ < α.
Now β ≥ ι(ρ) holds if and only if, for all ξ ∈ [β, α), we have that

Dk
ξ+1(β, c) has an ordinal ≥ ρ in its (i+ 1)st component.

Clearly, this is expressable by some ∈-formula over Lα since Dk
ξ+1(β, c) is

so expressable uniformly in ζ , β and c (where c is the initial configuration).
Hence, the minimal such ordinal is also definable over Lα and thus, so is the
function ι 7→ ι(ρ).

Theorem 14. Let α be a ZF−-ordinal. Then an α-ITRM-program using n
registers halts in < αn+1 many steps or not at all.

Proof. We follow the argument by Koepke from [K1].
We actually show that, if an α-ITRM-computation with Lα |=ZF− reaches

time αn+1, then at least n registers must contain 0 or there are ι, ξ < αn+1

witnessing the looping of P . Since there cannot be more registers containing
0 than there are registers in total, this proves the claim.

By Lemma 13, we know that, if an α-ITRM-computations reaches time αk

for some 1 ≤ k ∈ ω, then there is τ < αk (namely, the maximum of the values
guaranteed to exist by that lemma for each of the finitely many registers)
such that, from time τ on up to time αk, no register content dropped below its
value at time αk (this holds trivially when that content is 0). By increasing
τ if necessary, we can assume without loss of generality that the same holds
for the active program line. Let c be the configuration of P at time αk.

Now let n = 1 and pick τ as just described. We build an increasing
sequence of ordinals (αk : k ∈ ω) such that α0 = τ and, for all k ∈ ω,
αk > max{α0, ..., αk−1} is minimal such that the (k mod (n+1))th component
of the configuration at time αk agrees with that of c. (Such a sequence exists
since, by assumption, none of the register contents at time α is due to an
overflow.) Clearly, this sequence is definable over Lα as a map from ω into
α and is thus not cofinal.

Let η = sup{αk : k ∈ ω}. Then τ < η < α and the P -configurations at
time η is equal to c by the liminf-rule.

But then, (η, α) witnesses the looping of P and thus, P does not halt.3

Let us now assume that the theorem holds for n. Suppose the computa-
tion arrives at time αn+1 and less than n many registers contain 0 at that
time. Again, pick τ as in the first case.

Suppose first that there is no register overflow at time αn+1.

3This argument actually shows that the halting times of α-wITRMs are bounded by α

when α is Σ2-admissible. See [C] and the remark in the introduction.

11

Once more, we want to build the sequence (αk : k ∈ ω) as for n = 1.
However, as it stands, this would be a sequence of ordinals < αn+1 and it
would be defined over Lαn+1 , not over Lα, which would not help much to see
that it is bounded.

We thus modify the definition a bit: α0 will be the minimal ζ < α
such that αnζ > τ . After that, αk+1 will be the minimal ordinal such that
αk+1 > max{α0, ..., αk} and the ((k + 1) mod (n + 1))st component will at
some time between αnαk+1 and αn(αk+1 + 1) agree with the corresponding
component of c.

This is again a sequence of elements of α and, by Lemma 5, it is definable
over Lα and thus bounded in α.

With η = sup{αk : k ∈ ω}, we thus have η < α, hence αnη < αn+1 and,
by the liminf-rule, the configuration at time αnη will be c. Consequently, the
looping criterion for P is once again satisfied, and P does not halt.

Thus, if there is no register overflow at time αn+1, then P does not halt.

Now suppose that there is a register overflow at time αn+1. Pick one
register of P , say R, that overflows at time αn+1. Thus, we can now chose
the τ above additionally in such a way that, after time τ and up to time
αn+1, R never contains 0.

Consider the configuration c̄ at time τ+αn, which we can regard as arising
by running P for αn many steps on the configuration it had at time τ .

In c̄, no register contains 0 that does not contain 0 at time αn+1 by
assumption on τ , and by the same reason, R does not contains 0. Thus, at
time τ + αn, at most (n − 1) registers contain 0. As we can regard this as
step αn in a P -computation starting in the configuration at time τ , it follows
again that P is looping.

Both cases are finished. Thus, if P does not have at least n many 0s in
its registers by time αn+1, it does not halt.

In particular, this holds if P uses < n many registers.

By exploiting the proof a bit further, we obtain the following refinement:

Corollary 15. For any k ∈ ω, there is n(k) ∈ ω with the following property:
If Lα |= Σn(k)-collection, then an α-ITRM-program using ≤ k many registers
halts or loops in < αk+1 many steps. In fact, there is a natural constant C
such that n(k) ≤ C · k for all k ∈ ω.

Corollary 16. An α-ITRM-program P with Lα |=ZF− halts in < αω many
steps or does not halt at all.

12

Proof. P uses some natural number n of registers. Thus, if it halts, it halts
before time αn+1 < αω.

Corollary 17. If Lα |=ZF−, then αω is the supremum of the α-ITRM-halting
times.

Proof. That αω is an upper bound was just proved. On the other hand, it is
easy to see that, for any n ∈ ω, there is an α-ITRM-program that halts at
time αn:

To halt at time α, just count upwards in some register, starting with 1
and halt once that register overflows (i.e., contains 0).

Now, if P halts at time αn, take a program as above, but before in-
crementing its register, run P once each time. Clearly, this halts at time
αn+1.

We are ready to prove the first direction of our main result.

Theorem 18. Suppose that α is a ZF−-ordinal. Then COMPITRM

α = Lα+1∩
P(α).

Proof. Let x be α-ITRM-computable by the α-ITRM-program P . Suppose
that P uses n registers. Then P runs for < αn+1 many steps on each input
by Theorem 14. Hence x is α-ITRM-decidable with time bound αn+1. By
Lemma 6, it follows that x is definable over Lα. Hence x ∈ Lα+1.

On the other hand, if x ∈ Lα+1, then, by Lemma 9, x is α-ITRM-
decidable.

Remark 19. As a consequence of the last theorem, it follows that, for
Lα |=ZF−, α-ITRMs cannot evaluate truth predicates for Lα (since such
a truth predicate would allow us to compute sets outside of Lα+1, see be-
low.) In fact, together with the results below, this is possible if and only if
Lα 6|=ZF−.

Remark 20. We point out that, for α a ZF−-ordinal, the realm of com-
putable objects for α-ITRMs is Lα+1, which is only a very minor portion of
Lαω , the first L-level containing all halting α-ITRM-computations. To our
knowledge, this is the first time such a divergence between levels containing
computations and levels containing the computable objects has occured in
ordinal computability. (See, however, footnote 4 below.)

We now work towards the reverse direction. To this end, we introduce
some terminology from [C].

13

Definition 21. An ordinal α is (w)ITRM-singular if and only if there are
β < α, a cofinal function f : β → α and an α-(w)ITRM-program P , ξ < α
such that P (ι, ξ) ↓= f(ι) for all ι ∈ β.

We note that the singularising functions can be chosen to have a partic-
ularly nice form:

Proposition 22. If α is (w)ITRM-singular, then there is a function g :
γ → α with γ < α such that f [γ] is unbounded in α and such that g is
α-(w)ITRM-computable, continuous and increasing.

Proof. Let f : β → α with β < α be such that f [β] is unbounded in α and
f is α-(w)ITRM-computable. Now pick ρ ≤ β minimal such that f [ρ] is
unbounded in α and define g : ρ → α by g(ξ) = sup{f(ι) : ι < ξ} for ξ < ρ.
This can be computed on an α-(w)ITRM as follows: Given ξ < ρ in the input
register, successively compute the values of f(ι) for all ι < ξ. At the start of
this computation, store f(0) in some extra register R. Whenever some f(ι)
is larger than the current content of that register, replace the content of that
register with f(ι). When we reach ξ, that register will contain g(ξ). Then g
is as desired.

Lemma 23. Suppose that α is exponentially closed. Then α is ITRM-
singular if and only if α is singular in Lα+1, i.e. if and only if Lα 6|= ZF−.

Proof. Suppose first that α is singular in Lα+1. Then there is f ∈ Lα+1 such
that f maps some δ < α cofinally into α. By a simple coding, we can regard
f as a subset of α. By Lemma 9, f is α-ITRM-computable. Thus, α is
ITRM-singular.

Now suppose that α is ITRM-singular. Suppose for a contradiction that
Lα |=ZF−. Let f be an α-ITRM-computable function that maps some δ < α
cofinally into α. By coding, we can regard f as a subset of α. By Theorem
18, we have f ∈ Lα+1. Thus α is singular in Lα+1, a contradiction.

We will also use the following theorem from [C] (Theorem 3.3.28):

Lemma 24. If α is ITRM-singular, then there is an α-ITRM-program Ptruth

such that, for all γ < α and all n ∈ ω, we have P (n, γ) ↓= 1 if and only if
Lα |= φn(γ) and otherwise, we have P (n, γ) ↓= 0.

Although we do not give a detailed proof of this result here and rather
refer to [C], we offer a sketch for the interested reader to see how ITRM-
singularity enters the picture. Let a code c for Lα be given, where the element
coded by ι < α in c is given by h(ι). Moreover, let us say that the statement
to be evaluated is ∃x1∀x2...∃xn−1∀xnψ, where ψ is quantifier-free. Thus, ψ

14

is a Boolean combination of statements that can be read off from c for all
assignments, which can easily be done by an α-ITRM with access to c.

Below, we will represent a sequence (α0, ..., αk) of ordinals using two
stacks, one of which contains k, while the other contains p(α0, ..., αk), which
is defined thus: p(α0) = α0, p(α0, α1) is Cantors’s ordinal pairing function,
and p(α0, ..., αk+1) = p(p(α0, ..., αk), αk+1).

Now, what we would like to do - and what is done e.g. in the work of
Koepke on ORMs - is the following: Store 0 on the bottom of a stack. We
now want to test whether ∀x2...∃xn−1∀xnψ holds when one substitutes x1
with h(0) in ψ. To this end, we successively put all elements of α on the
stack, considering p(0, ι) for all ι < α one after the other. For each such
pair, we then want to evaluate whether ∃x3∀x4...∃xn−1∀xnψ holds when one
substitutes h(0) for x1 and h(ι) for x2, which is now done by putting further
elements on the stack. If the answer is “yes” for each ι, we finally halt and
return ‘true’. If the answer is “no” for some ι, we replace 0 with 1 and repeat
the whole procedure, and so on, until we have either found a witness for the
x1 or have run through the whole of α and thus know that none exists.

However, as it stands, this does not work (in fact, by our remark above on
the inability of α-ITRMs to evaluate truth predicates in Lα when Lα |=ZF−,
it cannot). The reason is this: After, e.g., considering p(0, i) for all i ∈ ω,
the stack register will not contain p(0, ω), as it should, but simply ω, thus
losing all information. The same happens frequently when the stack contents
approach limits.

Fortunately, there is a way out: As is already observed and used in [K1],
the following is true:

Lemma 25. Let (βι : ι < δ) be a sequence of ordinals of limit length,
β = liminfι<δβι, and let α > β. Then liminfι<δp(α, βι) = p(α, β).

Thus, sequence coding is compatible with limits, provided the limits are
small enough. And if α is ITRM-singular, this can be exploited: Suppose
that f : δ → α with δ < α is cofinal, total and α-ITRM-computable. Note
that, by putting δ2 at the bottom of the stack, we can perform a depth-first-
search through δ<ω on an α-ITRM. Take an auxiliar register R∗ in which
this is done, called the “regulating register”. For the sake of simplicity, we
will consider in detail only the case that the formula is ∃x∀yψ; the rest
is then a matter of iteration. We proceed as follows: at each time, R∗

contains a sequence (δ2, ι0, ι1) with ι0, ι1 < δ. At the same time, the “main
register” R will contain a sequence (f(ι0), ζ0, f(ι1), ζ1) with ζi < f(ιi) for
i ∈ {1, 2}. For any such sequence, it is tested whether ψ holds for the
elements coded by ζ0 and ζ1 using the code c. If not, the current candidate
for ζ0 is not good and we change the contents of R first to (f(ι0) + 1, ζ0),

15

then to (f(ι0) + 1, ζ0 + 1) and then to (f(ι0) + 1, ζ0 + 1, f(ι1) + 1, 0), so that
the search in the second component can continue. If yes, we simply replace
ζ1 with ζ1 + 1. When ζ1 = f(ι1), we have successfully checked up to f(ι1);
in this case, we increase ι1 by 1 and modify the contents of R as follows:
(f(ι0) + 1, ζ0, f(ι1) + 1, f(ι1)) 7→ (f(ι0, ζ0) 7→ (f(ι0) + 1, ζ0, f(ι1 + 1) + 1, 0)
and continue. When ζ0 = f(ι0), we have unsuccessfully searched for a witness
below f(ι0); in that case, we modify the content of R∗ first to (δ2, ι0+1) and
then to δ2, ι0 + 1, 0) and moreover, we modify the current content r of R as
follows: r 7→ (f(ι0+1)+1) 7→ (f(ι0+1)+1, 0) 7→ (f(ι0+1)+1, 0, f(0)+1, 0).
When ι1 = δ, we have successfully checked all ordinals < α and ∃x∀yψ holds,
where x is the element coded by the current value of ζ0; thus, we output “true”.
On the other hand, when ι0 = δ, we have unsuccessfully searched through α
for a candidate for x, in which case we output “false”.

The following picture illustrates the approach.

δ2

ι0

ι1

...

ιn

f(ι0)

ξ0 < f(ι0 + 1)

f(ι1 + 1)

ξ1 < f(ι1 + 1)

...

f(ιn)

ξn < f(ιn) + 1

Given this lemma, the rest is a matter of a standard diagonalization:

Theorem 26. Suppose that α is exponentially closed and Lα 6|=ZF−. Then
COMPITRM

α 6= Lα+1 ∩P(α).

Proof. Suppose that α is not a ZF−-ordinal. By Lemma 3, it follows that α
is singular in Lα+1. By Lemma 23, α is ITRM-singular. By Lemma 24, there
is a program Ptruth that evaluates truth predicates in Lα.

For γ ∈ On, let us write n(γ) for the unique natural number n and ξ(γ)
for the unique ordinal ξ such that γ can be written in the form γ = ωξ + n.

16

Now let D := {ι < α : Lα 6|= φn(ι)(ι, ξ(ι))}. Using Ptruth, D is clearly
α-ITRM-decidable.

Assume for a contradiction that D ∈ Lα+1. Thus, there are k ∈ ω
and ξ < α such that D = {ι < α : Lα |= φk(ι, ξ)}. Let γ := ωξ + k.
Then Lα |= φk(γ, ξ) ⇔ γ ∈ D ⇔ Lα 6|= φn(γ)(γ, ξ(γ)) ⇔ Lα 6|= φk(γ, ξ), a
contradiction. Thus D /∈ Lα+1.

Hence, we have D ∈ COMPITRM

α \ Lα+1, so COMPITRM

α 6= Lα+1 ∩P(α).

This theorem is a bit of an understatement. Using the truth predicate
for Lα, one can compute a code for Lα+1. From this in turn, one obtains a
code for Lα+2 and so on. Thus, we actually get the following:

Corollary 27. If α is exponentially closed and Lα 6|=ZF−, then COMPITRM
α ⊇

P(ω) ∩ Lα+ω.

We will considerably extend this in the next section.

In any case, the proof of Theorem 2 is now finished: For exponentially
closed α, Theorem 18 shows that Lα |=ZF− implies COMPITRM

α = Lα+1 ∩
P(α) and Theorem 26 shows that Lα 6|=ZF− implies that COMPITRM

α 6=
Lα+1 ∩P(α), which yields the desired equivalence.

3 Towards the general Case

We will now consider the case of ordinals α such that Lα 6|=ZF−. Although we
are not able to determine the comptuational strength of α-ITRMs in general,
we give some information that should be helpful. The content of this section
are generalizations of those obtained in [CFKMNW] for ITRMs (i.e., the case
α = ω).4

For the rest of the section, let α be an ordinal that is exponentially closed
and ITRM-singular.

We recall some standard terminology: For an ordinal γ, we say that γ
is α-ITRM-computable if and only if it has an α-ITRM-computable α-code
(i.e. a subset of α that codes it). We say that γ is α-ITRM-clockable if and
only if there are an α-ITRM-program P and an ordinal ζ < α such that P (ζ)
halts in exactly γ many steps.

4We point out that our contribution to [CFKMNW] was the lost melody theorem for
ITRMs. In particular, we had no part in the proof that clockability implies computability
for ITRMs, which is generalized to α-ITRMs in Theorem 32 below.

17

Lemma 28. [Cf. [CFKMNW], Theorem 5] Let P be an α-ITRM-program,
and let ζ < α such that P (ζ) halts. Then no configuration appears more
than ωω many times in the computation of P (ζ).

Proof. This is proved by a generalization of the proof of Theorem 5 of
[CFKMNW]. The new feature that one needs to take into account is the
possibility of proper limits, i.e., that inferior limits are reached not by ap-
pearing cofinally often before, but as limits of increasing sequences from
below. Since the general case requires a bit more care in some places, we
elaborate the proofs a bit further than it is done in [CFKMNW].

So suppose for a contradiction that P (ζ) halts, but some configuration ap-
pears ≥ ωω many times during this computation. The possible configurations
are partially ordered by the component-wise ≤-relation. As configurations
are finite tuples of ordinals, this ordering is well-founded. Let us assume
without loss of generality that c is minimal among the configurations ap-
pearing ≥ ωω many times during the computation of P (ζ). Also, for ι < ωω,
let us denote by τι the ιth time at which c appears in the computation of
P (ζ), and let τ := supι<ωωτι.

Claim: Between times τ0 and τ , no component of any configuration
occuring in the computation of P (ζ) was below the corresponing component
in c.

Proof. Suppose otherwise. Thus, there is ξ ∈ (τ0, τ) such that, at time ξ,
some component of the current configuration d was smaller than the corre-
sponding component in c. Let δ be such that τ0 + δ = ξ.

Now, clearly, the same will happen at time τι+δ for any ι < ωω; moreover,
if at least ωω many occurences of c would happen between times τι and τι+δ,
then the same was true between times τ0 and ξ, contradicting the assumption
that ξ < τ .

Let us form a sequence (βi : i ∈ ω) of ordinals as follows: β0 = τ0, β2n+2

is the smallest ordinal of the form τι′ greater than β2n+1 and β2n+1 = β2n+ δ.
It is not hard to see that the supremum γ̂ of this sequence will be strictly

below τ . Let δ̂ be such that γ̂ = τ0+δ̂. Moreover, at time γ̂, the configuration
will be an inferior limit of a sequence of configurations that contains cofinally
often both times at which the configuration was c and at which it was d.
Thus, at time γ̂, the configuration d′ will be strictly smaller than c in the
component-wise ordering. As c′ appears at any time of the form τι + δ̂ with
ι < ωω, this happens ωω many times, contradicting the minimality of c.

By the claim, the configuration at time τ is c, and we have a strong loop
between times τ0 and τ . But then, P (ζ) does not halt, a contradiction.

18

Remark 29. Note that the bound ωω is optimal in the above result. To this
end, recall (e.g., from [CFKMNW]) that a ’flag’ for an ITRM consists of two
registers that initially contain 0 and 1 and swap their contents in each step,
so that the first time at which they will have equal contents will be ω. By
nesting flags (which is used in [CFKMNW] to show that ordinals < ωω are
ITRM-clockable), it is easy to obtain, for any k ∈ ω and any α > 0, a halting
α-ITRM-program that repeats some configuration at least ωk many times,
and in fact with a program that only generates register contents 0 and 1.

From the proof of Theorem 28, we further obtain the following observa-
tion:

Corollary 30. Let δ be a limit ordinal, and suppose that in the computation
of P (ζ), the configuration c appears both at time δ and unboundedly often
before δ. Then P (ζ) is looping.

From now on, the proofs from [CFKMNW] apply verbatim in the general
context. We thus restrict ourselves to giving the results in their general form
and sketching the proofs for the convenience of the reader.

The following lemma will be needed below for ι < ωω.

Lemma 31. [Cf. [CFKMNW], Lemma 4] Every ordinal ι < ωCK

ω is α-ITRM-
clockable. Moreover, there is a recursive function f that sends (an encoding
of the Cantor normal forms of) each ordinal γ in ωω to an α-ITRM-program
P such that P clocks γ.

Proof. Let ι < ωCK
ω . By the results of [CFKMNW] and [K1], ι is ITRM-

clockable. Clearly, when α ≥ ω, then an α-ITRM can simulate an ITRM
(using an extra register which initially contains ω) without time lapse. Hence
ι is α-ITRM-clockable.

The second statement follows similarly from Proposition 1 of [CFKMNW],
the proof of which clearly yields such a recursive function.

Theorem 32. [Cf. [CFKMNW], Theorem 7] If β is α-ITRM-clockable, then
β is α-ITRM-computable. Moreover, the suprema of the α-ITRM-clockable
and the α-ITRM-computable ordinals coincide.

Proof. Let P and ζ be such that P (ζ) runs for exactly β many steps. Sup-
pose that P uses n ∈ ω many registers. Pick some effective bijection f : α →
αn × ω × ωω. An α-code c is obtained as follows: We let p(ι, ξ) ∈ c if and
only if, with f(ι) = (a1, ..., an, j, ι

′) and f(ξ) = (b1, ..., bn, k, ι
′′), the ι′-th oc-

curence of the configuration (a1, ..., an, j) preceeds the ι′′-th occurence of the
configuration (b1, ..., bn, k) in the computation of P (ζ) (and both occurences
exist in this computation).

19

This can be computed as follows: By Lemma 31, compute a program
Q0 that clocks ι′ and a program Q1 that clocks ι′′. Then run P (ζ). When-
ever (a1, ..., an, j) occurs, run one step of Q0 in some separate registers, and
likewise for (b1, ..., bn, k) and Q1. If Q0 halts before Q1 in this computation,
return ‘yes’, otherwise (i.e., if the computation of P (ζ) halts and no such
occurences were detected or if Q1 halts before Q0), return ‘no’.

Concerning the suprema, the above yields that the supremum of the α-
ITRM-computable ordinals is not smaller than that of the α-ITRM-clockable
ordinals. For the converse, just note that, if α is ITRM-singular, then we
can run a depth-first search on an α-code c for an ordinal β to test it for
well-foundedness, which takes at least β many steps.

Lemma 33. [Cf. [CFKMNW], Lemma 3] The set of α-ITRM-clockable
ordinals is downwards closed: That is, if ξ is α-ITRM-clockable and ι < ξ,
then ι is also α-ITRM-clockable.

Proof. Let P be an α-ITRM-program and ζ an ordinal such that P (ζ) clocks
ξ. At time ι in the computation of P (ζ), some configuration c appears for
the γ-th time. By Theorem 28, we have γ < ωω. By Lemma 31, γ is α-
ITRM-clockable, say by the program Q. Now run P (ζ) with c stored in some
extra registers and run one step of Q whenever c occurs in that computation.
When Q halts, halt. This clocks ι.

Let us from now on denote by β(α) the supremum of the α-ITRM-
clockable ordinals.

Corollary 34. [Cf. [CFKMNW]] Let P be an α-ITRM-program, and let ζ <
α. Suppose that P (ζ) does not halt. Then there are ordinals ι < ξ < β(α)
such that (ι, ξ) witnesses the looping of P (ζ). Moreover, β(α) is minimal
with this property.

Proof. Suppose that P uses n registers. Since P (ζ) does not halt and all
configurations come from the set αn × ω, some configuration must occur
more than ωω many times, so Lemma 28 implies that the computation will
eventually enter a strong loop. Say that (ι, ξ) is lexically minimal such that
(ι, ξ) witnesses the looping of P (ζ). Let c be the configuration at time ι.

We claim that ξ is α-ITRM-clockable, which implies ξ < β(α), as desired.
To clock ξ, let us run P (ζ) with c stored in some extra registers. Moreover,

we use a further ‘index’ register R, which initially contains 0. Whenever c is
assumed during the computation of P (ζ), the content of R is changed to 1.
When a further configuration is < c in any component, the content of R is

20

changed back to 0. On the other hand, if c reoccurs with R containing 1, we
halt.

Minimality is clear, as we can simply run a non-halting computation after
a halting computation.

For the next result, it will be important that one can ‘read out’ ordinals
from codes for ordinals. More specifically:

Lemma 35. Let c ⊆ α be an α-code for an ordinal γ < α obtained from a
program C clocking γ (possibly with parameters) as described in the proof
of Theorem 32. Then there are α-ITRM-programs P and Q such that:

1. For any ι < γ, P (ι) halts and outputs an ordinal ξ < α such that ξ
represents ι in c.

2. For any ι < α, Q(ι) halts and outputs an ordinal ξ < α such that ι
represents ξ in c.

Proof. First, observe that, since γ < α, no configuration can occur in the
computation of C more than α many times.

1. The program in question works as follows: Let ρ < γ be given in some
input register. Run C. Along with C, count upwards in a separate
register until ρ is reached. At this point, we have determined the ρ-th
configuration in the computation of C, say d. Now run C again for ρ
many steps in this way, this time counting upwards in some register
whenever the configuration d occurs during the computation. Let δ be
the content of that register when C reaches its ρth step. (In particular,
we have δ < ωω and δ < γ < α.) Now, knowing d and δ, we can com-
pute the ordinal representing ρ in the sense of c by simply computing
the tuple code.

2. Let ρ be given in an input register; we want to determine the ordinal
ξ < γ represented by ρ in c. To this end, count upwards in some register
up to γ. For every ι < γ, uses the program from (1) to compute the
ordinal ξ(ι) represented by ι in c. At some point, we will have ξ(ι) = ρ;
when this happens, output ι.

Theorem 36. For every exponentially closed and ITRM-singular ordinal α
and every x ⊆ α, x is α-ITRM-computable if and only if x ∈ Lβ(α).

21

Proof. Suppose that x ⊆ α is α-ITRM-computable. Thus, there are an
α-ITRM-program P and an ordinal ζ such that, for any ι < α, we have
P (ι, ζ) ↓= 1 if and only if ι ∈ x and otherwise P (ι, ζ) ↓= 0. In particular,
P (ι, ζ) halts for every ι < α. Now consider the program Q that counts
upwards in some register R starting with 0 and runs P (ι, ζ) for every ι
appearing in that register until R overflows. This program will terminate,
say in γ many steps. In particular, we will have γ < β(α) and γ will be
larger than the halting time of P (ι, ζ) for each ι < α. So x is definable over
Lγ , thus x ∈ Lγ+1 ⊆ Lβ(α).

It remains to show that, if an ordinal γ is α-ITRM-computable and x ∈
P(α) ∩ Lγ , then x is α-ITRM-computable.

We sketch the construction, which is based on the way Koepke et al. used
to show that Ordinal Register Machines (ORMs) compute all constructible
sets of ordinals.

Elements of Lγ can be ‘named’ by triples of the form (β, φ, ξ), where
ξ < β < α are ordinals and φ is an ∈-formula. Here, (β, φ, ξ) will represent
the set {x ∈ Lβ : Lβ |= φ(ξ)}. Clearly (by exponential closure of α), names
can be encoded as ordinals in α in way that allows us to compute codes from
their components and components from codes on an α-ITRM. Let us fix such
an encoding f : α→ α× ω × α.

We can now use a recursive truth predicate algorithm in the spirit of
Lemma 24 to determine, for codes ι and ξ, whether or f(ι) ∈ f(ξ). We then
obtain an α-code for Lγ as the set of p(ι, ξ) such that f(ι) ∈ f(ξ).

From this code, we can read out all elements of Lγ using Lemma 35.

Thus, in contrast to Theorem 18, which spoils the general picture of or-
dinal computability that ‘computational strength corresponds to the L-level
indexed by the supremum of the clockable ordinals’ which holds for all mod-
els studied so far (including wITRMs ([K]), ITRMs ([], [K1]), ITTMs ([HL]),
α-ITTMs ([K1], [C], [C1]), ORMs ([ORM]) and OTMs ([OTM]) with and
without parameters, the ‘hypermachines’ of Friedman and Welch ([FW]) and
infinite time Blum-Shub-Smale machines ([KS1],[KM]), for ITRM-singular α,
all is well again.5

5We note that this is not the only place in ordinal computability where this happens:
In fact, for Ordinal Turing Machines (OTMs), let ρ be the supremum of the ordinals with
eventually OTM-writable real codes and let η be the supremum of the stabilization times
for real numbers. Since ρ is a supremum of a constructibly countable set of constructibly
countable ordinals, we have ρ < ωL

1 ; on the other hand, J. Hamkins observed (see [HMO])
that there are stabilization times way over ωL

1 , so that η > ωL
1 ; in particular, η is way

larger than ρ.

22

3.1 (α, β)-ITRMs

In [K1], Koepke defined (α, β)-(w)ITRMs, which are α-(w)ITRMs with time
restricted to ordinals < β.

Definition 37. A set x ⊆ α is (α, β)-(w)ITRM-computable if and only if
there are an α-(w)ITRM-program P and some ξ, ρ < α such that, for all
ι < α, P (ι, ξ) halts in < ρ many steps with output χx(ι).

We denote the set of (α, β)-ITRM-computable subsets of α by COMPITRM

(α,β)

and the set of (α, β)-wITRM-computable subsets of α by COMPwITRM

(α,ρ) .

Combining the above proof with a more careful analysis of running times,
we obtain the computational strength of (α, β)-ITRMs, partially6 answering
a question of Koepke, see [K1], p. 6.

Theorem 38. Let ρ ∈ (α, β(α)] be exponentially closed. Then COMPITRM

(α,ρ) =

Lρ ∩P(α).

Proof. Clearly, if x is computable by an α-ITRM with time bounded by
γ < ρ, then x ∈ Lγ+ω ⊆ Lρ.

On the other hand, suppose that x ∈ Lρ. Thus, there is γ < ρ such that
x ∈ Lγ . As γ < ρ < β(α), γ is α-ITRM-clockable. By the proof of Theorem
32, a code for γ is α-ITRM-computable with time bound γ · 2.

Now, x is of the form {ι < α : Lδ |= φ(ι, ζ)} for some δ < γ, some ordinal
parameter ζ < δ and some ∈-formula φ. Thus, x is ‘named’ by the tripel
(δ, φ, ζ).

To determine whether ι ∈ x for some ι < α, one now again uses the
bounded truth predicate algorithm for evaluating whether Lδ |= φ(ι, ζ). It
is now easy to see (see, e.g., [KS1], p. 314) that the running time of this
algorith will be bounded below the next exponentially closed ordinal after
max{α, δ, ζ}, and thus in particular below ρ, as required. Thus x ∈COMPITRM

(α,β) .

3.2 Properties of β(α)

What remains to be done in order to determine the computational strength
of α-ITRMs when Lα 6|=ZF− is to determine β(α). In this section, we will
give upper bounds and, in some special cases, lower bounds on the value of
β(α); moreover, we will prove some properties of β(α).

6Note that, as exponential closure is a rather weak requirement on running times, this
can be regarded as the major part of the question, possibly covering all interesting cases.

23

Our first observation is that Corollary 30 yields Π3-reflecting ordinals as
bounds on halting times (we denote by COMPwITRM

α the set of α-wITRM-
decidable subsets of α); we remark that Π3-reflecting ordinals as bounds on
halting times for a strengthened type of Infinite Time Blum-Shub-Smale-
machines working on natural or rational numbers are mentioned by Welch in
[W1]; the proof below probably bears some similarity to his (unpublished)
argument, which is not known to us. We received a further hint at consider-
ing Π3-reflecting ordinals from [M], according to which the first Π3-reflecting
ordinal is way smaller than the first Σ2-admissible ordinal. As every Σ2-
admissible is Π3-reflecting but not vice versa, part (1) of the following theo-
rem improves Theorem 1 from the introduction.

Theorem 39. We have the following statements:

1. If α is Π3-reflecting, then COMPwITRM

α = ∆1(Lα) ∩P(α).

2. If γ is the smallest Π3-reflecting ordinal > α, then β(α) < γ.

Proof. (1) Suppose that α is Π3-reflecting, and let P be an α-wITRM-
program, ζ < α. Suppose that P (ζ) does not halt before time α, and let
c = (l, ρ1, ..., ρn) be the configuration of P (ζ) at time α. We will show that
c has appeared unboundedly often before time α, from which it follows by
Corollary 30 that P (ζ) does not halt at all.

That the ith register contains ρi at time α means that (i) for every ι < α,
there is ξ ∈ (ι, α) such that, at time ξ, the content of the ith register was
at most ρi and (ii) that, for every ι < ρi, there is ξ < α such that, for all
γ ∈ (ξ, α), the i-th register had a content > ι at time γ. This is clearly a Π3-
statement that holds in Lα. Since α is Π3-reflecting, it holds at some earlier
ordinal ᾱ. The same is true when one additionally demands in both clauses
that ξ is larger than some given bound δ < α. The active program line l can
be dealt with in the same way (it can be regarded as another register that
only contains natural numbers below a given bound). Thus, for every δ < α,
there is a time τ ∈ (δ, α) such that c appeared at time τ , i.e. c appeared
unboundedly often before time α.

However, by Lemma 8, one sees that register machines with time and and
space bound α compute exactly those subsets of α contained in ∆1(Lα) ∩
P(α).

(2) The proof that β(α) ≤ γ works by a similar argument; the only
modification is that, when some ρi is equal to 0, one needs to distinguish
whether or not this is due to an overflow when expressing this as a Π3-
formula. Now, the statement that, for all k ∈ ω and all ζ ∈ α, there is

24

either a halting computation of Pk(ζ) or a partial computation with a strong
loop is Π2 and holds in Lγ , as it holds in Lβ(α) and γ ≥ β(α). Since γ is
Π3-reflecting, it follows that there is γ̄ < γ such that the same holds in Lγ̄ .
Thus β(α) ≤ γ̄ < γ.

As a consequence of the last part of the proof of Theorem 39, we obtain:

Corollary 40. β(α) is not Π2-reflecting. In particular, β(α) is not admissi-
ble.

Proposition 41. Let P be an α-ITRM-program, ζ < α. Then, at time
β(α), no registers of the computation of P (ζ) overflows.

Proof. If P (ζ) halts, it does so before time β(α), so there is no overflow at
time β(α). Now suppose that P (ζ) does not halt. As β(α) is the supremum
of the looping times for α-ITRMs, we know that P (ζ) entered a strong loop
before time β(α), which, by additive indecomposability of β(α), has been
repeated unboundedly often below β(α). In particular, there is a configura-
tion c that appeared unboundedly often before time β(α). But then, by the
liminf-rule, there cannot be an overflow at time β(α).

We mention some further properties of β(α).
We also note the following rather straightforward generalization of the

induction used in Koepke [K1] for ITRMs:

Definition 42. Let us say that an ordinal τ is α-safe if there is no α-ITRM-
program P and no ζ < α such that (P, ζ) has a proper limit at time τ .

Let us denote the ith ordinal which is both additively indecomposable
and α-safe by τi(α) and let τω(α) := supi∈ωτi(α). Moreover, define τwi (α) in
the analogous way for α-wITRMs.

Lemma 43. For all exponentially closed α, we have β(α) ≤ τω(α). Moreover,
the halting times of α-wITRMs are bounded above by τw1 (α).

Proof. Let P use the registers R1, ..., Rn. As in [K1], we really show the
following statement:

Claim: If less than k many registers contain 0 at time τk(α) in the
computation of P (ζ), then P (ζ) loops.

To see this, first suppose that, at time τ1(α), no register contains 0. Let
c = (l, r1, ..., rn) be the configuration of P (ζ) at time τ1(α). By definition
of τ1(α), there is τ < τ1(α) such that the content of the ith register does
not drop below ri between times τ and τ1(α) (and similarly for the active

25

program line). Consequently, ri has occured as the content if the ith register
unboundedly often before time τ1(α). If we can show that c occured between
times τ and τ1(α), we have a strong loop for P (ζ), as desired. We proceed as
follows: As τ occurs below the looping or halting time of P (ζ), τ is clockable.
Thus, we can run P (ζ) for τ many steps. After that, we continue to run P (ζ),
but along with that, we have a new registers R (initially containing 0) and
run a routine that works in phases and observes the computation of P (ζ)
do detect the following: In phase i ∈ {1, 2, ..., (n − 1)}, it waits for Ri to
contain ri. When this happens, it counts 1 upwards in R and switches to
phase (i + 1). In phase n, it waits for Rn to contain rn and, when that
happens, counts 1 upwards in R and switches to phase 0. In phase 0, it
waits for the active program line to be l and when that happens, it counts
1 upwards in R and switches to phase 1. Thus, when R contains a limit
ordinal, the configuration of P (ζ) is c. If that happens at τ1(α) for the first
time, the content of R at time τ1(α) is ω, while it was < ω at all earlier
times, contradicting the definition of τ1(α). Thus, c occurs between times τ
and τ1(α), so P (ζ) is indeed looping.

The inductive step now works as in the proof of Theorem 14 above or as
the proof of the main theorem in [K1]: Suppose that the statement is proved
for k and suppose that, at time τk+1(α), at most k registers contain 0. If
none of these 0s is due to an overflow, we are back in the situation of the base
case. Otherwise, suppose that R1 overflows at time τk+1(α). Again, there
is τ < τk+1(α) such that, from time τ on, the content of Ri is always > 0;
in particular, no register that does not contain 0 at time τk+1(α) contains
0 after time τ (up to time τk+1(α)). Now, as R1 overflows, R1 does not
contain 0 from some time ξ < τk+1(α) on; let γ = max{ξ, τ}. By additive
indecomposability of τk+1(α), we have γ + τk(α) < τk+1(α). But then, at
time γ + τk(α), less than k registers contained 0. As we can regard this as
the τk(α)th step of the computation of P starting in the configuration that
P (ζ) had at time γ, it follows by induction that P (ζ) is looping.

The argument for the second statement is basically the base case of the
above induction.

Remark 44. It is easy to see that the supremum of the α-wITRM-clockable
ordinals is both additively indecomposable and α-safe for weak machines.
Thus, this supremum is in fact equal to τw1 (α).

We saw above that, for ITRM-singular α (i.e., for Lα 6|=ZF−), the depth-
first search algorithm testing subsets of α for coding well-orderings can be
performed on an α-ITRM. This algorithm has the property that it produces

26

an infinite descending sequence in the case of an ill-founded input. Conse-
quently, denoting by WOα the set of subsets of α coding well-orderings, we
have the following property of β(α):

Corollary 45. For all c ∈ P(α) ∩ Lβ(α), we have that c ∈WOα if and only
if Lβ(α) |= c ∈WOα.

In particular, this means that Lβ(α) is Π1
1-true, i.e. for any Π1

1-formula φ
with parameters in Lβ(α), we have Lβ(α) |= φ if and only if φ holds in V .7

3.3 Special Cases

With further conditions on α, we can obtain more precise estimates of β(α).
Recall that an ordinal α is an index if and only if (Lα+1 \Lα)∩P(ω) 6= ∅.

Moreover, for an ordinal α and a natural number i, α+ denotes the next
admissible ordinal after α, α+i denotes the ith admissible ordinal after α and
α+ω denotes the next limit of admissible ordinals after α. Note that, if α is
an index, then the comprehension axiom for subsets of ω does not hold in
Lα, so Lα 6|= ZF− and thus α is ITRM-singular.

Proposition 46. β(α) is not admissible. If α is an index, then β(α) is a
limit of admissible ordinals.

Proof. That β(α) is not admissible was seen in Corollary 40 above.8

Now suppose that α is an index. Let γ < β(α). Thus, γ is clockable, so
γ + 1 is an index. To see this, note that a real number in Lα+1 \ Lα can be
used in the definition of a real number over Lγ . Now suppose that P (ι) runs
for exactly γ many steps. There is a real r in Lα that codes γ by assumption.
Now γ + 1 is minimal with the property that Lγ+1 believes that there is an
ordinal ρ coded by r such that P (ρ) halts. Hence, the Σ1-Skolem hull of {r}
in Lγ+1 is Lγ+1, so γ + 1 is a index by standard finestructure.

Let g ∈ Lγ+2 \Lγ+1 be a code for γ. Then g is α-ITRM-computable. The
same holds for all ordinals that are recursive in g; as α-ITRMs can simulate
ITRMs, we can check all of these for well-foundedness and compute a code
for their sum, which will be ωCK,g

1 . Thus, we obtain γ < ωCK,g
1 < β(α), so

there is an admissible clockable ordinal above γ, as desired.

7We suspect that this can be generalized via generalized descriptive set theory to a
more general version of Π1

1-statements referring to elements and subsets of α.
8For a different way to see that β(α) is not admissible, note that β(α) > α and the

function that maps (k, ζ) ∈ ω × α to the halting- or looping time (the end of the first
repetition of a strong loop) of the kth program in the input ζ is Σ1 (in fact ∆1) over
Lβ(α).

27

Remark 47. Note that this has the consequence that the computational
strength of α-ITRMs may make wild jumps as the number of used registers
increases: In fact, if Lα |= Σn(k)-collection (with k ∈ ω and n(k) as in
Corollary 15), an α-ITRM with ≤ k registers will halt or loop in < αk+1

many steps, while the halting times with any number of registers go at least
up to α+ω. This condition is for example satisfied by the smallest α > ω that
satisfies Σn(k)-collection.

Concerning lower bounds for the supremum of the clockable ordinals, this
yields the following partial result.

Corollary 48. Let α be an index. Then β(α) ≥ α+ω.

Proof. We have that β(α) > α and from Proposition 46 it follows that β(α)
is a limit of admissible ordinals. As α+ω is by definition the smallest ordinal
with those properties, we have β(α) ≥ α+ω.

We recall from [AS] that an admissible ordinal α is called Gandy if and
only if the supremum of the α-recursive ordinals equals α+. Gostanian [Go]
obtained several sufficient criteria for a countable ordinal to be Gandy. Gen-
eralizations to the uncountable case were given by Abramson and Sacks [AS].

We start by connecting Gandyness to α-ITRMs.

Lemma 49. If β is an admissible Gandy ordinal with β ∈ (α, β(α)], then
β+ < β(α).

Proof. Suppose that β ≤ β(α) is admissible. As we saw above, β(α) is
not admissible. Thus, we actually have β(α) > β. It follows that β + 1
is α-ITRM-clockable. Consequently, every subset of α contained in Lβ+1 is
α-ITRM-computable, which includes every α-recursive subset of α. Thus, we
have β+ ≤ β(α). By inadmissibility of β(α) again, we have β+ < β(α).

We recall the following special case of a statement from Gostanian [Go],
Corollary 2.1.1:

Lemma 50. [Cf. [Go], Corollary 2.1.1]
Let α be an admissible ordinal such that α is countable in Lα+ . Let φ(~p)

be an ∈-formula with parameters in Lα and suppose that α is minimal with
Lα |= φ(~p). Then α is Gandy.

This allows us to show for many special cases of α that β(α) is either
rather small or quite large:

28

Theorem 51. Let α be admissible and countable in Lα+ . Then either β(α) <
α+ or β(α) ≥ α+ω.

Proof. Suppose that the first alternative fails, i.e. β(α) ≥ α+. We now show
inductively that β(α) ≥ α+i, for every i ∈ ω, which implies that the second
alternative holds. The base case has already been dealt with, so it remains
to prove the induction step. Hence, let us assume that β(α) ≥ α+i; we will
show that β(α) ≥ α+(i+1).

Since β(α) is not admissible, we have β(α) > α+i. Hence α+i is α-ITRM-
clockable. Thus, there exists a program P and some parameter ρ < α such
that P (ρ) runs for exactly α+i many steps.

We will now express that fact that P (ρ) halts by a formula φ that holds
in Lγ if and only if γ ≥ α+i. (Note that “there is a halting computation by
P (ρ) will not work, as Lα+i will not contain a computation of length α+i.)
Let c = (l, r1, ..., rn) be the halting configuration of the computation of P (ρ),
where l ∈ ω is the index of the active program line and r1, ..., rn < α are the
register contents. Then c ∈ Lα. Now let n be the maximal index of a register
used by P and let φ(ρ, c) be the conjunction of the following statements:

• There is τ such that every partial computation of P (ρ) of length > τ
has the active program line index ≥ l at all times > τ .

• For every τ such that there is a partial computation of P (ρ) of length
τ , there is τ ′ > τ and a partial computation C of P (ρ) of length τ ′ + 1
such that, at time τ ′, C has the active program line index l.

• (For every i ≤ n.) For every ρ < ri, there is τ such that there is a
partial computation of P (ρ) of length τ and every partial computation
C of P (ρ) of length > τ has the content of the ith register > ρ from
time τ on.

• (For every i ≤ n.) For every τ such that there is a partial computation
of P (ρ) of length τ , there is τ ′ > τ and a partial computation of P (ρ)
of length τ ′ + 1 such that, at time τ ′, the content of the ith register is
≤ ri.

These statements simply encode the liminf-rule. The first two statements
imply that, at time α+i, the active program line index is l, while the last two
imply that the register contents are (r1, ..., rn). Taken together, they express
that, at time α+i, P (ρ) assumes the halting configuration c.

Thus α+i is minimal with the property that Lα+i |= φ(ρ, c). Now, by
Lemma 50, this implies that α+i is Gandy. By Lemma 49, we have β(α) >
(α+i)+ = α+(i+1), as desired.

29

We do not know whether the first alternative can occur for any countable
α unless Lα |=ZF−.

The argument for Theorem 51 actually shows that, when β(α) ≥ α+, then
β(α) cannot lie between two successive admissible ordinals. By iterating the
same argument, we obtain:

Corollary 52. Let α be admissible and countable in Lα+ . Suppose that
β(α) ≥ α+. Then β(α) ∈ [δ, δ+), where δ is a limit of admissible ordinals
> α.

4 Weak ITRMs and u-weakness

Concerning α-ITRMs, one of our main results above is that their halting
times are bounded by αω if and only if Lα |= ZF−. Moreover, in Theorem 39
above, we saw that the halting times of α-wITRMs are bounded by α itself
when α is Π3-reflecting. This motivates the following definition:

Definition 53. An ordinal α is u-weak if and only if all α-wITRM-clockable
ordinals are smaller than α.

Clearly, since we allow parameters, all ordinals< α are α-wITRM-clockable,
so that α coincides with the supremum of the α-wITRM-clockable ordinals
when α is u-weak. Also note that, by the speedup-theorem, an ordinal α is
u-weak if and only if α is not α-wITRM-clockable.

We currently have no full characterization for u-weakness. By the proof
of Theorem 39, all Π3-reflecting ordinals are u-weak. In this section, we will
additionally prove the following:

• An admissible ordinal α is u-weak if and only if it is wITRM-regular
(i.e. not wITRM-singular).

• Any u-weak ordinal is admissible.

• There are u-weak ordinals that are not Π3-reflecting.

• There are admissible ordinals that are not u-weak.

Thus, u-weakness is strictly between Π3-reflection and admissibility. We
now prove the statements in the order of their appearence.

Theorem 54. An admissible ordinal α is u-weak if and only if it is wITRM-
regular.

30

Proof. We will prove both implications by contraposition.
“⇒”: Suppose that α is not wITRM-regular. Thus, there is an α-wITRM-

computable, total and cofinal function f : β → α with β < α. Let P be a
program that computes f , say in the parameter ~p. If P (ι, ~p) halts after ≥ α
many steps on some input ι < β, then we have found an α-wITRM-program
that halts in ≥ α many steps, so α is not u-weak. On the other hand, suppose
that P (ι, ~p) takes < α many steps on any input ι < β. In this case, we add
the parameter β to our computation and use a separate register R. In R,
we count upwards from 0 to β and for every ι < β, we use P to compute
f(ι) and then use another extra register to count from 0 to f(ι). When the
content of R reaches β, we halt. Clearly, this program halts after at least α
many steps, so again, α is not u-weak.

“⇐”: Now suppose that α is not u-weak. As we mentioned above, this
implies that α is α-wITRM-clockable. In particular, there is a program P
that halts in α many steps (we ignore parameters for the sake of simplicity).
We distinguish two cases:

Case 1: For every register R used by P , there is a time τ < α such that,
from time τ on, the content of R never dropped below the content of R at
time α.

By the liminf-rule, there must also be an ordinal ρ < α such that the
active program line index was never below the one at time α after time
ρ. Let µ be the maximum of ρ and the finitely many τ that exist by the
case assumption. Again by the liminf-rule, the active program line and the
register contents at time α must have occured cofinally often before time α.
Thus, we can build an interleaving, strictly increasing sequence of length ω
of times at which these values were the ‘right’ ones. By admissibility, the
supremum ᾱ of this sequence will be < α. But then, ᾱ and α witness that
P is looping, which is a contradiction.

Case 2: There is some register R containing an ordinal ρ at time α such
that the content of R was < ρ cofinally often before time α.

By the liminf-rule, this means that, for every ι < ρ, there must be some
ξ < α such that, from time ξ on, the content of R was ≥ ξ. Let g be the
function that maps each ι < ρ to the minimal such ξ. Clearly, g maps ρ
cofinally into α. (If g[ρ] was bounded in by β < α, all contents of R would
be ≥ ρ from time β on, contradicting the case assumption.) We claim that g
is α-wITRM-computable. To this end, we use the clockability of α. Reserve
two extra registers, say T1 and T2. Now, given ι < ρ, we proceed as follows:
In T1, we count upwards, starting with 0. For every value ζ ∈ T1, we run
P for α many steps, using the clockability of α and check whether, from
time ζ on, the content of R drops below ι. If yes, we continue with the next

31

value of ι. If not, we halt with output ζ . Since we know that some ζ < α
exists for which the routine will halt, this computes g(ι) without producing
an overflow and thus on an α-wITRM. Thus, α is wITRM-singular, i.e. not
wITRM-regular.

Remark 55. Note that only the reverse direction uses the admissibility of
α, which can in fact be weakened to the assumption that Σ1-definable total
functions with domain ω are bounded.

Theorem 56. Any u-weak ordinal is admissible.

Proof. Suppose for a contradiction that α is u-weak, but not admissible.
Thus, there is β < α and a cofinal function f : β → α which is Σ1 over Lα.
Let g be the function that maps ι < β to the smallest ξ < α such that Lξ

believes that f(ι) exists, according to the Σ1-definition of f . Clearly, g is
also a cofinal map from ρ to α. Now, given ι < β, compute upwards in a
separate register T starting with ι and, for every content ζ , use evaluation of
bounded truth predicates to test whether Lζ |= ∃δf(ι) = δ. If not, continue
with the next value of ζ . Otherwise, halt with output ζ . Since this will halt
for some ζ < α, this will compute g(ι) without producing an overflow, and
thus by an α-wITRM-computation. Hence, α is wITRM-singular and hence
not u-weak by the remark after Theorem 54, a contradiction.

Theorem 57. (1) There are u-weak ordinals that are not Π3-reflecting. In
fact, there are unboundedly many such ordinals.

(2) There are admissible ordinals that are not u-weak.

Proof. (1) We claim that there is a Π3-sentence φ such that Lα |= φ if and
only if α is u-weak. Once this is proved, consider some u-weak ordinal µ
and let β be the first Π3-reflecting ordinal > µ. Then, by reflection, there
is γ ∈ (µ, β) such that Lγ |= φ, and so γ is u-weak and > µ, but not Π3-
reflecting. Since all Π3-reflecting ordinals are u-weak, there are unboundedly
many u-weak ordinals, and the claim follows.

Now for the claim: α is u-weak if and only if, for all programs P and all
parameters ~p ⊆ α, one of the following holds in Lα:

• There is an overflow at time α, i.e. ∀ι∃τ∃i ∈ ω∀ξ > τRiξ > ι (where i
denotes the register with index i and Riξ is the content of Ri at time ξ
in the computation of P (~p)) (this is a Π3-condition) OR

• P (~p) halts (this is a Σ1-condition) OR

32

• P (~p) does not halt, i.e. there are τ1 < τ2 such that P (~p) is in a strong
loop between times τ1 and τ2 (this is a Σ1-condition).

This is clearly necessary for α being u-weak. To see that it is sufficient,
note that every program P only uses finitely many registers; thus, if the first
disjunct holds, one of them has contents that eventually surpass cofinally
many ordinals below α, which suffices for an overflow.

The disjunction can clearly be written as a Π3-formula, and thus the same
holds for the whole condition.

(2) Since ωCK

1 -wITRMs (in fact, (ω+1)-wITRMs) can simulate (ω-)ITRMs
whose running times are all ordinals below ωCK

ω (see [K1]), it follows that ωCK

1

is admissible, but not u-weak. The same holds for ωCK

i for all i ∈ ω.

Proposition 58. There is an α-wITRM-program PWO such that, for any
c ⊆ β < α, P c

WO
↓= 1 if and only if c codes a well-ordering and otherwise,

P c ↓= 0.

Proof. Just perform the usual depth-first search used on ITRMs (see [KM])
with β at the bottom of the stack.

As we saw for β(α), we can now see that u-weak ordinals are WO-true.

Lemma 59. If an ordinal α is u-weak, then α is admissible and WO-true.

Proof. Suppose that α is u-weak. By Theorem 56, α is admissible. Let
R ∈ Lα be a linear ordering and suppose that R is not well-founded. Since
R ∈ Lα, some β-code c for R is α-wITRM-computable for some β < α.
By u-weakness, P c

WO
will terminate in γ < α many steps after finding an

ill-founded sequence in R. Now, the computation D of P c
WO

is contained in
Lα and from D, one can define an ill-founded sequence (ai : i ∈ ω) in R by
letting ai = δ if and only if, for some ι < γ, the ith component of content
of the stack register is always δ. But then, we have (ai : i ∈ ω) ∈ Lα, as
desired.

4.1 Further Observations

We mention a bunch of related results, some of which are contained in [C] as
exercises, in the hope that these may lead to more substantial generalizations
or refinements.

Proposition 60. The real numbers computable by an α-wITRM for α > ω
are a superset of P(ω) ∩ LωCK

ω
.

33

Proof. It is easy to simulate ITRMs on an α-wITRM when α > ω.

We also note the following humble simulation result:

Proposition 61. For any 1 < k ∈ ω and any ordinal α, we have β(α+1) =
β(α · k).

Proof. It is clear that we have β(α+ 1) ≤ β(α · k)
On the other hand, an (α · k)-ITRM-program P can be simulated on an

(α + 1)-ITRM in the following way: Replace any register used by P with
k registers that can contain ordinals up to α. Then represent (α · i) + ρ,
i < k, ρ < α by having α in the first i many of these registers and ρ in the
(i+ 1)st.

Finally, we observe that the lost melody theorem holds for α-ITRMs
whenever α is exponentially closed. Let us say that x ⊆ α is α-ITRM-
recognizable when there are an α-ITRM-program P and an ordinal ζ < α
such that, for any y ⊆ α, we have P y(ζ) ↓= 1 if and only if y = x and
otherwise P y(ζ) ↓= 0.9 Following the terminology of [HL] (where it is shown
that there are lost melodies for ITTMs), a subset of α which is α-ITRM-
recognizable, but not α-ITRM-computable is called an α-ITRM lost melody,
below simply called ‘lost melody’ for short. In the below proof, we will
occasionally confuse a program P with its index i.

Theorem 62. For any ITRM-singular and exponentially closed ordinal α,
there is a lost melody.

Proof. Given α, let H := {p(i, ζ) ∈ ω × α : Pi(ζ) ↓} be the halting set for
α-ITRMs. It is clear that H is not α-ITRM-computable.

We claim that H is α-ITRM-recognizable. We sketch the proof, which is
a generalization of the one in [C2] showing that the halting set for ITRMs
is ITRM-recognizable and thus a lost melody for ITRMs. We freely use the
relativized versions of the previous results in this section: In particular, if γ
is α-ITRM-clockable in the oracle x ⊆ α, then γ is α-ITRM-computable in
this oracle etc.

Note that it is easy to effectively assign to any α-ITRM-program P and
any parameter ζ another α-ITRM-programQP,ζ such that Q halts if and only
if P (ι, ζ) halts with output 0 or 1 for any ι < α. Moreover, we can effectively
assign to all α-ITRM-programs P and all ordinals ι, ζ < α a program RP,ι,ζ

that halts if and only if P (ι) ↓= ζ .

9The term ‘recognizable’ was first used by Hamkins and Lewis in [HL] in the context
of ITTMs.

34

Now, given x ⊆ α in the oracle, we do the following: Run through
α and, for each p(i, ζ) < α, check whether p(QPi,ζ, ζ) ∈ x. If not, con-
tinue. Otherwise, perform a well-foundedness check on the set {ι < α :
{p(RPi,(ι,ζ),1, p(ι, ζ)) ∈ x}. Doing this for any (i, ζ) ∈ ω × α will clock some
ordinal γ in the oracle x; thus, γ is α-ITRM-computable. From a code c for
γ, we can then compute a code d for Lγ. Evaluating truth in Lγ, we can
then check whether it holds in Lγ that, for any α-ITRM-program P and any
ζ < α, P (ζ) either halts or runs into a strong loop. If this fails, then x 6= H .
If this holds, H is definable over Lγ and thus α-ITRM-computable from d,
and we can use this to compute H and compare it to x.

5 Conclusion and Further Work

The above work settles the question of the computational strength of α-
ITRMs when Lα |=ZF−; in the other cases, the question for the α-ITRM-
computable subsets of an exponentially closed ordinal α is reduced to the
determination of β(α), which is characterized as (i) the supremum of the α-
ITRM-clockable ordinals (ii) the α-ITRM-computable ordinals and (iii) the
supremum of the looping times for non-halting α-ITRM-programs. Although
we obtained some lower and upper bounds, these are still quite far apart, and
we expect that considerably new ideas are needed to determine β(α) precisely
for any α which neither has Lα |=ZF− nor α = ω.

Similarly open is the analogous question for α-wITRMs: Here, we are
even missing a characterization of the u-weak ordinals.

We mention the following specific questions:

Question 63. Is β(α) ≤ α+ω for all exponentially closed α? Even more
boldly, is β(α) = α+ω for such α unless Lα |=ZF−?

Question 64. An important feature of ITRMs is the solvability of the
bounded halting problem, see Koepke and Miller [KM]: For any fixed number
k ∈ ω, the halting problem for ITRM-programs using k registers is solvable
by an ITRM-program (which, of course, will use more than k registers). The
proof in [KM] seems to depend on the fact that, for any possible register
content j of an ITRM, only finitely many configurations have all register
contents ≤ j, which clearly fails for α-ITRMs as soon as α > ω. Hence,
we ask: Does the solvability of the bounded halting problem work for any
exponentially closed α > ω other than the ZF−-ordinals?10

10For the ZF−-ordinals, this is clearly true as we can clock the upper bound αn+1 of
the halting times of programs using ≤ n registers, so it can be decided whether such a

35

6 Acknowledgements

We thank Philipp Schlicht for a series of discussion in which the proof of a
previous (weaker) version Lemma 5, was obtained and his kind permission
to use this proof in our work.

References

[AS] F. Abramson, G. Sacks. Uncountable Gandy Ordinals. Journal of the
London Mathematical Society, vol. s2-14(3) (1976)

[C] M. Carl. Ordinal Computability. An Introduction to Infinitary Machines.
De Gruyter (2019) (forthcoming)

[CFKMNW] M. Carl, T. Fischbach, P, Koepke, R. Miller, M. Nasfi, G. Weck-
becker. The basic theory of Infinite Time Register Machines. Archive for
Mathematical Logic 49 (2010) 2, 249-273.

[C1] M. Carl. Resetting α-register machines and ZF−. Preprint, arxiv
1907.09513 (2019)

[C2] M. Carl. Optimal results on recognizability for infinite time register
machines. ournal of Symbolic Logic 80 (4):1116-1130 (2015)

[Cu] N. Cutland. Computability. An introduction to recursive function the-
ory. Cambridge University Press (1980)

[FW] S. Friedman, P. Welch. Hypermachine. J. Symb. Log., vol. 76(2), pp.
620-636 (2011)

[GJH] V. Gitman, T. Johnstone, J. Hamkins. What is the theory ZFC with-
out power set? Mathematical Logic Quarterly, vol. 62(4) (2011)

[Go] R. Gostanian. The next admissible ordinal. Annals of Mathematical
Logic, vol 17(1-2) (1979)

[HL] J. Hamkins, A. Lewis. Infinite Time Turing Machines. Journal of Sym-
bolic Logic 65(2), 567–604 (2000)

[HMO] J. Hamkins. MathOverflow Post, https://mathoverflow.net/questions/345007/relation-between-eta-and-omegal-1/345037#345037,
accessed: 11.11.2019

program halts by simply running it for that many steps and seeing whether it holds until
then.

36

https://mathoverflow.net/questions/345007/relation-between-eta-and-omegal-1/345037#345037

[KS] P. Koepke, B. Seyfferth. Ordinal machines and admissible recursion
theory. Annals of Pure and Applied Logic, vol. 160, pp. 310–318 (2009)

[KS1] P. Koepke, B. Seyfferth. Towards a theory of infinite time Blum-Shub-
Smale machines. S. Cooper et al. (eds.), How the world computes. Turing
centenary conference and 8th conference on computability in Europe, CiE
2012, Cambridge, UK, 2012. Proceedings. Springer Berlin. Lecture Notes
in Computer Science 7318, pp. 405–415 (2012).

[KM] P. Koepke, A. Morozov. On the computational strength of Infinite
Time Blum-Shub-Smale Machines. Algebra and Logic, vol. 56, no. 1, (2017)

[K] P. Koepke. Infinite time register machines. In Logical Approaches to
Computational Barriers, Arnold Beckmann et al., eds., Lecture Notes in
Computer Science 3988 (2006), 257-266

[K1] P. Koepke. Ordinal Computability. In Mathematical Theory and Com-
putational Practice. K. Ambos-Spies et al. (eds.), Lecture Notes in Com-
puter Science 5635, pp. 280–289 (2009)

[KM] P. Koepke, R. Miller. An enhanced theory of infinite time register
machines. In Logic and Theory of Algorithms. A. Beckmann et al, eds.,
Lecture Notes in Computer Science 5028 (2008), 306-315

[M] D. Madore. A Zoo of ordinals. Available online.
http://www.madore.org/~david/math/ordinal-zoo.pdf

[OTM] P. Koepke. Turing Computations on Ordinals. Bull. of Symbolic
Logic, Volume 11(3) (2005)

[ORM] P. Koepke, R. Siders. Register computations on ordinals. Archive for
Mathematical Logic vol. 47, pp. 529–548 (2008)

[W] P. Welch. Characteristics of discrete transfinite Turing machine models:
halting times, stabilization times, and Normal Form Theorems. Theoretical
Computer Science, vol. 410, (2009), 426-442

[W1] P. Welch. Transfinite Machine Models. In: R. Downey (ed.), Turing’s
Legacy, Lecture Notes in Logic, Association for Symbolic Logic, (2013)

37

http://www.madore.org/~david/math/ordinal-zoo.pdf

	1 Introduction
	2 -ITRMs and ZFC-
	3 Towards the general Case
	3.1 (,)-ITRMs
	3.2 Properties of ()
	3.3 Special Cases

	4 Weak ITRMs and u-weakness
	4.1 Further Observations

	5 Conclusion and Further Work
	6 Acknowledgements
	References

