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Abstract

In this paper we analyse in the framework of constructive mathe-
matics (BISH) the validity of Farkas’ lemma and related propositions,
namely the Fredholm alternative for solvability of systems of linear
equations, optimality criteria in linear programming, Stiemke’s lemma
and the Superhedging Duality from mathematical finance, and von
Neumann’s minimax theorem with application to constructive game
theory.
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1 Introduction

In this paper we analyse in the framework of constructive mathematics the
validity of Farkas’ lemma and related propositions, namely

• the Fredholm alternative for solvability of systems of linear equations,

• optimality criteria in linear programming,

• Stiemke’s lemma and the Superhedging Duality,
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• von Neumann’s minimax theorem and existence of solutions to two-
person zero-sum games.

The latter two lines of results are fundamental in mathematical finance and
economics. Constructive mathematics refers to mathematics in the tradition
of Errett Bishop [4, 6], also denoted (BISH). Farkas’ lemma [7] in a formula-
tion as two conflicting alternatives is the following proposition: For any real
m× n-matrix A and b ∈ Rm we have

FAR(A, b) Exactly one of the following statements is true.

i) ∃ξ ∈ Rm (ξ · A ≥ 0 ∧ ξ · b < 0)

ii) ∃q = (q1, . . . qn) ∈ Rn (qi ≥ 0 (i = 1, . . . , n) ∧ A · q = b)

Obviously, i) and ii) cannot hold simultaneously. It is clear that Farkas’
lemma cannot be proved in (BISH), and in fact we show that it is equivalent
to the limited principle of omniscience (LPO) which is a strong instance of
the law of excluded middle (LEM). LPO may be stated as

∀x ∈ R (x > 0 ∨ x ≤ 0).

However, our main focus lies on deriving useful constructively valid versions
of Farkas’ lemma. The first type of such results replace the alternatives in
FAR(A, b) by equivalences and are useful in applications such as solvability
criteria for systems of linear equations, see Propositions 4, 8 and Corollary 2.
The second type of constructively valid versions of Farkas’ lemma concludes
FAR(A, b) in the original formulation as alternatives from the detachability
of a suited set from {1, . . . , k} for some k ∈ N, see Proposition 5. We then
say that FAR(A, b) is conditionally constructive. The rule of intuitionistic
propositional logic

((ϕ ∨ ¬ϕ) ⇒ ¬ψ) ⇒ ¬ψ

implies that conditionally constructive formulas ν such as FAR(A, b) may be
used to prove negated statements:

(ν ⇒ ¬ψ) ⇒ ¬ψ,

see Proposition 6. This observation is very useful because Farkas’ lemma
often comes into play when we wish to derive falsum. Indeed, based on
the fact that FAR(A, b) is conditionally constructive we provide short proofs
of constructive versions of classically well-known results such as optimality
criteria in linear programming, see Section 5.2, Stiemke’s lemma and the
Superhedging Duality from mathematical finance, see Section 5.3, and von
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Neumann’s minimax theorem with application to constructive game theory,
see Section 5.4. The constructive von Neumann minimax theorem was al-
ready proved differently in [5]. In Section 5.4 we also combine our results
with some recent findings in [3] to verify a conjecture stated in [5] as regards
the existence of solutions to two-person zero-sum games.

2 Notation and Preliminary Results

Let k, n ∈ N. We set Ik := {1, . . . , k} and for x, y ∈ Rn

x ≤ y :⇔ ∀i ∈ In (xi ≤ yi) , y ≥ x :⇔ x ≤ y.

Also we will need the following sets:

Xn := {p ∈ Rn | 0 ≤ p} and Sn :=

{

p ∈ Xn |
∑

i∈In

pi = 1

}

.

For any vector x ∈ Rn we write xi for its ith component, that is x =
(x1, . . . , xn). Given x, y ∈ Rn, z ∈ Rm and A = (aij)i∈Im,j∈In ∈ Rm×n we
write

x · y :=
∑

i∈In

xiyi

for the Euclidean scalar product, A · x for the element of Rm with ith com-
ponent

(A · x)i =
∑

j∈In

aijxj , i = 1, . . . , m,

and z · A for the element of Rn with jth component

(z · A)j = (
∑

i∈Im

aijzi), j = 1, . . . , n.

A subset K ⊆ Rn is a cone if it is inhabited, that is ∃x ∈ Rn(x ∈ K), and if

∀x ∈ K ∀t ≥ 0 (tx ∈ K) .

A subset C ⊆ Rn is convex if it is inhabited and if

∀x, y ∈ C ∀λ ∈ [0, 1] (λx+ (1− λ)y ∈ C) .

Let C ⊆ Rn and let f : C → R. f is convex if C is convex and if

∀x, y ∈ C ∀λ ∈ [0, 1] (f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)).
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Convex sets, convex functions, and cones will play an important role through-
out this paper.
Fix y1, . . . , yk ∈ Rn. We denote the span, convex hull, and convex cone
generated by y1, . . . , yk by

span(y1, . . . , yk) = span((yi)i∈Ik) =

{

k
∑

i=1

λi · y
i | λ ∈ Rk

}

,

hull(y1, . . . , yk) = hull((yi)i∈Ik) =

{

k
∑

i=1

λi · y
i | λ ∈ Sk

}

,

cone(y1, . . . , yk) = cone((yi)i∈Ik) =

{

k
∑

i=1

λi · y
i | λ ∈ Xk

}

, respectively.

A set U ⊆ Rn is located if it is inhabited and if for all x ∈ Rn the distance

d(x, U) = inf{‖x− y‖ | y ∈ U}

exists, where throughout this paper ‖ · ‖ denotes the Euclidean norm on Rn.
There are a number of sufficient conditions ensuring locatedness such as the
following variation of [6, Lemma 5.2.3] which we believe has not been stated
in the literature yet as it follows from a quite recent result in [2] on infima
of positive convex functions:

Lemma 1. Fix vectors y1, . . . , yk ∈ Rn such that each element of the convex
hull has positive norm, that is

∀x ∈ hull(y1, . . . , yk) (‖x‖ > 0).

Then the convex cone cone(y1, . . . , yk) is located.

Proof. By [2, Corollary 1] the value

µ := inf
{

‖x‖ | x ∈ hull(y1, . . . , yk)
}

is defined and positive. Hence, the assertion follows from [6, Lemma 5.2.3].

Corollary 1. Suppose that the vectors y1, . . . , yk ∈ Rn are linearly indepen-
dent, that is ∀λ ∈ Rk(‖λ‖ > 0 ⇒ ‖

∑

i∈Ik
λiy

i‖ > 0). Then cone(y1, . . . , yk)
is closed and located.
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Proof. Note that ‖λ‖ > 0 for any λ ∈ Sk. Hence, by linear independence
‖
∑

i∈Ik
λiy

i‖ > 0. Apply Lemma 1 to conclude locatedness of cone(y1, . . . , yk).
As for closedness, note that linear independence implies that the mapping

Rk ∋ (λ1, . . . , λk) 7→
∑

i∈Ik

λiy
i

is a bounded linear injection and the same is true for its inverse, see [6,
Corollary 4.1.5].

Proposition 1. Let K ⊆ Rm be a located convex cone and fix b ∈ Rm. The
following statements are equivalent.

i) ∃ξ ∈ Rm ∀x ∈ K (ξ · x ≥ 0 ∧ ξ · b < 0)

ii) d(b,K) > 0.

Proof. i) ⇒ ii): As Rm ∋ x 7→ ξ · x is continuous and ξ · b < 0, there exists
δ > 0 such that

∀x ∈ Rm (‖b− x‖ < δ ⇒ ξ · x < 0) .

Fix x ∈ K. If ‖b − x‖ < δ, we can conclude that ξ · x < 0, a contradiction.
Thus,

∀x ∈ K (‖b− x‖ ≥ δ) .

This implies ii).

ii) ⇒ i): Set d := d(b,K). By [1, Lemma 6], there exists ξ ∈ Rn such that

∀x ∈ K
(

ξ · (x− b) ≥ d2
)

.

Thus,
∀x ∈ K

(

ξ · x ≥ d2 + ξ · b
)

.

Since 0 ∈ K, we conclude that ξ · b < 0. Finally, K being a cone implies

∀x ∈ K (ξ · x ≥ 0) .
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3 Farkas’ Lemma

Proposition 2. Equivalent are:

i) FAR : ∀A ∈ Rm×n ∀b ∈ Rm FAR(A, b)

ii) LPO

Proof. For the moment we only prove that Farkas’ lemma implies LPO, the
converse implication is shown in Lemma 7 below. Consider x ∈ R and let
A = (x) and b = 1. By FAR(A, b) either there is ξ ∈ R such that ξ < 0 and
ξx ≥ 0 which implies x ≤ 0 or there is q ≥ 0 such that xq = 1 which implies
x > 0.

In the following we provide three constructive versions of Farkas’ lemma,
all classically equivalent to FAR. For A ∈ Rm×n we henceforth denote by
a1, a2, . . . , an ∈ Rm the columns of A, and we write cone(A) := cone((ai)i∈In),
and similarly for the span and convex hull.

Proposition 3. Fix a matrix A ∈ Rm×n and b ∈ Rm. If cone(A) is located,
the following are equivalent:

i) ∃ξ ∈ Rm (ξ · A ≥ 0 ∧ ξ · b < 0)

ii) d(b, cone(A)) > 0

Proof. Apply Proposition 1.

Note that locatedness of cone(A) cannot be dropped from Proposition 3. In
fact, an inspection of the proof of Proposition 1 shows that i) always implies

ii)′: ∃δ > 0 ∀x ∈ cone(A) (‖b− x‖ ≥ δ)

which is equivalent to ii) in case cone(A) is located. However, without re-
quiring locatedness of cone(A) ii)′ ⇒ i) would imply the (constructively not
valid) lesser limited principle of omniscience (LLPO):

∀x ∈ R (x ≥ 0 ∨ x ≤ 0).

Indeed, for x ∈ R let

A =

(

|x|
x

)

and set b =

(

1
0

)

.

Then ii)′ is satisfied, and i) would provide a vector ξ = (ξ1, ξ2) such that
ξ1 < 0 and ξ1|x| + ξ2x ≥ 0. Either ξ2 < 0 or ξ2 > ξ1. In the first case we
obtain x ≤ 0, and in the second it follows that x ≥ 0.
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Proposition 4. Fix A ∈ Rm×n and b ∈ Rm. If cone(A) is located and closed,
then the following are equivalent:

i) ∀ξ ∈ Rm (ξ · A ≥ 0 ⇒ ξ · b ≥ 0)

ii) ∃q ∈ Xn (A · q = b)

Proof. Since cone(A) is located and closed, the statement ∃q ∈ Xn (A · q = b)
is equivalent to d(b, cone(A)) = 0, that is ¬(d(b, cone(A)) > 0). Thus the
proposition follows from Proposition 3.

Dropping the requirement on cone(A) in Proposition 4 is not possible since
that would imply LPO: For x ∈ R let

A =

(

|x| 1
0 |x|

)

and b =

(

1
0

)

.

Then i) of Proposition 4 holds. Indeed, suppose that ξ · A ≥ 0 and assume
that ξ1 < 0. Then

ξ2|x| ≥ −ξ1 > 0

which implies |x| > 0. As also ξ1|x| ≥ 0, we conclude that ξ1 ≥ 0 which is a
contradiction. Hence, ξ1 ≥ 0 and we have proved i). If Proposition 4 would
apply, we could conclude that

∃q ∈ X2 (A · q = b) .

By q1|x| + q2 = 1 we must have that either q1|x| > 0 or q2 > 0. In the first
case |x| > 0. If q2 > 0, then |x|q2 = 0 implies |x| = 0. Hence, we have shown
that either x = 0 or |x| > 0 which is LPO.
For the following definition we recall that a subset M of a set N is said to
be detachable from N if

∀x ∈ N (x ∈M ∨ x 6∈M).

Definition 1. A formula ϕ is conditionally constructive if there exists a
k ∈ N and a subset M of Ik such that the detachability of M from Ik implies
ϕ.

One verifies that conditionally constructive formulas are closed under con-
junction and implication:

Lemma 2. Let the formulas ϕ and ψ be conditionally constructive. Then

i) if ϕ⇒ ν, then ν is conditionally constructive,
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ii) ϕ ∧ ψ is conditionally constructive.

Proof. i) is obvious. As for ii), let k, k′ ∈ N and M ⊆ Ik and M ′ ⊆ Ik′ such
that the detachability of M from Ik implies ϕ and the detachability of M ′

from Ik′ implies ψ. Set

M ′′ := {l + k | l ∈M ′}.

Then the detachability of M ′′ from {k+1, . . . , k+ k′} implies ψ. Hence, the
detachability of M ∪M ′′ from Ik+k′ implies ϕ ∧ ψ.

Proposition 5. Fix A ∈ Rm×n and b ∈ Rm. Then the formula FAR(A, b)
is conditionally constructive.

Proposition 5 will be proved throughout the following auxiliary results and is
then a direct consequence of Lemma 6. To this end, fix a matrix A ∈ Rm×n.
Consider the formula

IND(A) Exactly one of the following statements is true:

i) a1, . . . , an are linearly independent, that is

∀λ ∈ Rn (‖λ‖ > 0 ⇒ ‖
∑

i∈In

λia
i‖ > 0),

ii) a1, . . . , an are linearly dependent,

∃λ ∈ Rn (‖λ‖ > 0 ∧
∑

i∈In

λia
i = 0).

Let
IND : ∀A ∈ Rm×n IND(A).

IND is equivalent LPO. Indeed, let x ∈ R and A = (x). On the one hand, x
is linearly independent if and only if |x| > 0, so either x > 0 or x < 0. On
the other hand x is linearly dependent if and only if x = 0. That is we have
LPO. The fact that LPO implies IND follows from Lemma 7 below.
For each inhabited subset J of In set

AJ = (ai)i∈J ,

i.e. the matrix consisting of columns ai, i ∈ J . We will write cone(AJ)
for cone((ai)i∈J), and similarly for the span and convex hull. Moreover,
we say that AJ is linearly independent if the vectors aj, j ∈ J are linearly
independent, and AJ is linearly dependent if the vectors aj , j ∈ J are linearly
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dependent. We call A linearly independent if and only if AIn is and similarly
for the linear dependent case. Set

L := {J ∈ P(In) | J is inhabited and AJ is linearly independent}

where P(In) denotes the power set of In.

Lemma 3. Fix A ∈ Rm×n. Suppose that L is detachable from P(In), then
IND(A). Hence, IND(A) is conditionally constructive.

Proof. If L = ∅, then in particular {ai} is not linear independent for all i ∈ In
which implies ¬(‖ai‖ > 0), that is ‖ai‖ = 0 for all i ∈ In. In that case A is
the zero matrix which is linearly dependent. Suppose now that L is inhabited
and pick J ∈ L with a maximal cardinality. If J = In, then A is linearly
independent. Otherwise, if J ( In, note that span(AJ) is located and closed
by [6, Lemma 4.1.2, Proposition 4.1.6]. Let j ∈ In\J . If d(a

j, span(AJ)) > 0,
then J ∪ {j} ∈ L; see [6, Lemma 4.1.10], which contradicts maximality of J .
Hence, d(aj , span(AJ)) = 0 which implies that A is linearly dependent.

Lemma 4. Fix a subset J of In and suppose that |J | ≥ 2. Moreover, suppose
that AJ is linearly dependent. Let x ∈ cone(AJ) and ε > 0. Then there exist
j ∈ J and y ∈ cone(AJ\{j}) such that ‖x− y‖ < ε.

Proof. As x ∈ cone(AJ) there is q ∈ RJ with coordinates qi ≥ 0, i ∈ J , such
that x = AJ · q. Fix M > max{‖ai‖ | i ∈ J}. Let J ′ ⊆ J such that i ∈ J ′

implies qi > 0 whereas i 6∈ J ′ implies qi < ε/M . If J \ J ′ is inhabited, pick
j ∈ J \ J ′ and set

y =
∑

i∈J\{j}

qia
i ∈ cone(AJ\{j}).

Then ‖x− y‖ = qj‖a
j‖ < ε. Therefore in the following we may assume that

J ′ = J .

Since AJ is linearly dependent there is λ ∈ RJ with ‖λ‖ > 0 such that
AJλ = 0. Switching to −λ if necessary, we may assume that λi > 0 for some
i ∈ J . Set

β := max

{

λi
qi

| i ∈ J

}

.

Then β > 0 and there is j ∈ J such that λj > 0 and

∣

∣

∣

∣

qj
λj

−
1

β

∣

∣

∣

∣

<
ε

M̃
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where M̃ > 0 is such that M̃ > max{‖
∑

i∈J\{k} λia
i‖ | k ∈ J}. Set

y =
∑

i∈J\{j}

(qi −
1

β
λi)a

i.

As qi −
1
β
λi ≥ 0 for all i ∈ J \ {j} we have that y ∈ cone(AJ\{j}). Note that

x =
∑

i∈J\{j}

(qi −
qj
λj
λi)a

i.

Hence,

‖x− y‖ =

∣

∣

∣

∣

qj
λj

−
1

β

∣

∣

∣

∣

‖
∑

i∈J\{j}

λia
i‖ < ε.

Lemma 5. Suppose that L is detachable from P(In) and inhabited. Choose
arbitrary x ∈ cone(A) and ε > 0. Then there exists J ∈ L such that
d(x, cone(AJ)) < ε. In particular cone(A) is located and for all z ∈ Rm

we have d(z, cone(A)) = minJ∈L d(z, cone(AJ)).

Proof. Note that cone(AJ̃) is located and closed for any J̃ ∈ L by Corollary 1.
Let q ∈ Xn such that x = A · q. Since

{i} ∈ L ⇔ ‖ai‖ > 0

and as L is detachable from P(In), the set

J0 := {i ∈ In | ‖ai‖ > 0}

is detachable from In, and i 6∈ J0 implies ‖ai‖ = 0, that is ai = 0. Hence, we
have

x =
∑

i∈J0

qia
i ∈ cone(AJ0).

If J0 ∈ L, then set J = J0. Otherwise, AJ0 is linearly dependent by Lemma 3,
so we may apply Lemma 4 to find j1 ∈ J0 and y1 ∈ cone(AJ0\{j1}) such that
‖x− y1‖ <

ε
n
. If J1 := J0 \ {j1} ∈ L, set J = J1, and note that

d(x, cone(AJ)) ≤ ‖x− y1‖ < ε.

Otherwise AJ1 is linearly dependent by Lemma 3, so we may apply Lemma 4
to find j2 ∈ J1 and y2 ∈ cone(AJ1\{j2}) such that ‖y1 − y2‖ <

ε
n
. If J2 :=

J1 \ {j2} ∈ L, set J = J2 and note that

d(x, cone(AJ)) ≤ ‖x− y2‖ < ‖x− y1‖+ ‖y1 − y2‖ < ε

10



Continue this procedure. Since {i} ∈ L for all i ∈ J0, after at most |J0| − 1
applications of Lemma 4 we obtain an inhabited set J ⊆ In and y|J0|−|J | ∈
cone(AJ), where y0 := x, such that J ∈ L and

d(x, cone(AJ)) ≤ ‖x− y|J0|−|J |‖

≤ ‖x− y1‖+ . . .+ ‖y|J0|−|J |−1 − y|J0|−|J |‖

< (n− |J |)
ε

n
< ε.

Finally, we prove that cone(A) is located. Let z ∈ Rm be arbitrary and set

d := min{d(z, AJ) | J ∈ L}.

We prove that for all y ∈ cone(A) we have ‖z − y‖ ≥ d which implies that
inf{‖z − y‖ | y ∈ cone(A)} exists and equals d. To this end, let y ∈ cone(A)
and suppose that ‖z − y‖ < d. Then, according to what we have shown
above, there exists J ∈ L such that d(y, cone(AJ)) < d − ‖z − y‖. This
implies that

d(z, cone(AJ)) ≤ ‖z − y‖+ d(y, cone(AJ)) < d

which is absurd.

Lemma 6. Fix A ∈ Rm×n and b ∈ Rm. Define subsets Ω1, Ω2, Ω3, and Ω4

of P(In)× I4 by

(J, 1) ∈ Ω1 ⇔ J ∈ L,
(J, 2) ∈ Ω2 ⇔ J ∈ L ∧ d(b, cone(AJ)) > 0,
(J, 3) ∈ Ω3 ⇔ J ∈ L ∧ d(b, cone(AJ)) = 0,
(In, 4) ∈ Ω4 ⇔ ‖b‖ > 0.

Assume that the set
Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4

is detachable from P(In)× I4, then FAR(A, b).

Proof. The assumption in particular implies that L is detachable from P(In).
If Ω1 = ∅ and Ω4 is inhabited, alternative i) of FAR(A, b) holds. Indeed, since
in that case ({i}, 1) 6∈ Ω1 for each i ∈ In, it follows that ‖a

i‖ = 0 for all i ∈ In.
Hence, A is the matrix in which all entries are 0. Therefore i) of FAR(A, b)
is satisfied by ξ = −b. If Ω1 = Ω4 = ∅, then b = 0 and alternative ii) of
FAR(A, b) holds with q = 0. Therefore, from now on we may assume that L
is inhabited. We show that

∀J ∈ L (d(b, cone(AJ)) > 0 ∨ d(b, cone(AJ)) = 0) . (1)

Fix J ∈ L. Consider the following cases:

11



• (J, 2) ∈ Ω2 and (J, 3) ∈ Ω3

• (J, 2) ∈ Ω2 and (J, 3) /∈ Ω3

• (J, 2) /∈ Ω2 and (J, 3) ∈ Ω3

• (J, 2) /∈ Ω2 and (J, 3) /∈ Ω3

The first and the last case are absurd. The remaining cases both imply (1).

Recall that cone(AJ) is closed for all J ∈ L according to Corollary 1. Hence,
if (J, 3) ∈ Ω3 for some J ∈ P(In), then there is q ∈ Xn with qi = 0 for all
i ∈ In \ J such that Aq = b. That is alternative ii) of FAR(A, b) holds. It
remains to consider the case

∀J ∈ L (d(b, cone(AJ)) > 0) .

In view of Lemma 5 we can conclude that cone(A) is located and that
d(b, cone(A)) > 0. Thus Proposition 3 implies that alternative i) of FAR(A, b)
holds.

Lemma 7. Assume LPO. Then IND and FAR.

Proof. Let A ∈ Rm×n, b ∈ Rm, and let J ∈ P(In) be inhabited. The unit
ball

S = {λ ∈ RJ | ‖λ‖ = 1}

is compact and thus
α := inf{‖AJλ‖ | λ ∈ S}

exists, see [6, Corollary 2.2.7]. LPO implies that either α > 0 or α = 0. If
α > 0, then AJ is linearly independent. If α = 0, then, as LPO implies the
minimum principle (see [10]), there exists λ ∈ S such that AJλ = 0 which
implies that AJ is linearly dependent. In particular, letting J = In, we have
shown IND(A). Also, as J ∈ P(In) was arbitrary, we have that L is detach-
able from P(In). Moreover, cone(AJ) is located for any J ∈ L by Corollary 1
and LPO implies that either d(b, cone(AJ)) > 0 or d(b, cone(AJ)) = 0. Again
by LPO we have either ‖b‖ > 0 or ‖b‖ = 0. Thus the set

Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4

from Lemma 6 is detachable from P(In) × I4. This implies FAR(A, b) ac-
cording to Lemma 6.

12



4 Conditionally Constructive Formulas and

Proofs of Negated Statements

Consider the following rule of intuitionistic propositional logic:

((ϕ ∨ ¬ϕ) ⇒ ¬ψ) ⇒ ¬ψ, (2)

see also [11]. (2) allows to prove a negated statement ¬ψ by assuming a finite
number of case distinctions ϕ ∨ ¬ϕ and proving ¬ψ in each resulting case:

([(ϕ1 ∨ ¬ϕ1) ∧ . . . ∧ (ϕk ∨ ¬ϕk)] ⇒ ¬ψ) ⇒ ¬ψ,

or equivalently, if we prove

ν1 ∧ . . . ∧ νk ⇒ ¬ψ (3)

for all 2k possible combinations νi ∈ {ϕi,¬ϕi}, i ∈ Ik, then ¬ψ. As a result
we obtain the following proposition:

Proposition 6. Suppose that the formula ϕ is conditionally constructive.
Then

(ϕ⇒ ¬ψ) ⇒ ¬ψ.

Proof. Since ϕ is conditionally constructive, there is k ∈ N and a subsetM of
Ik such that M being detachable from Ik implies ϕ. For each i ∈ Ik consider
the cases i ∈M or i 6∈M . This gives 2k instances of type ν1 ∧ . . .∧ νk where
νi ∈ {i ∈M, i 6∈M}, i ∈ Ik, as in (3). In each such instance M is detachable
from Ik and thus we obtain ϕ. Hence if ϕ ⇒ ¬ψ, then we may conclude
¬ψ.

Clearly, for any formula ϕ the formula ϕ ∨ ¬ϕ is conditionally constructive,
simply by choosing k = 1 and M ⊆ I1 given by 1 ∈ M if and only if ϕ.
Hence, in that case Proposition 6 is nothing but (2).

5 Applications

5.1 Constructive Fredholm Alternative

A basic solvability theorem from Linear Algebra is the so-called Fredholm
alternative theorem (FRED): For all A ∈ Rm×n and b ∈ Rm

FRED(A, b) Exactly one of the following statements is true:

13



i) ∃ξ ∈ Rm (ξ · A = 0 ∧ |ξ · b| > 0)

ii) ∃x ∈ Rn (A · x = b)

In fact, like FAR, also FRED is equivalent to LPO: Let a ∈ R and set A = (a)
and b = 1. Then FRED(A, b) yields either a = 0 or ax = 1 for some x ∈ R.
The latter implies |a| > 0, so either a < 0 or a > 0. Hence, we have LPO.
Conversely, as LPO implies FAR (Proposition 2), the following proposition
also implies that LPO ⇒ FRED.

Proposition 7. Fix A ∈ Rm×n and b ∈ Rm. Let B = (A − A) ∈ Rm×2n.
Then FAR(B, b) ⇒ FRED(A, b). Hence, FRED(A, b) is conditionally con-
structive.

Proof. By FAR(B, b) there is either ξ ∈ Rm such that ξ ·B ≥ 0 and ξ · b < 0
or there is q ∈ X2n such that B · q = b. In the latter case, letting x be given
by xi = qi − qn+i, i ∈ In, yields x ∈ Rn with A · x = b. In the first case
ξ · A ≥ 0 and −ξ · A ≥ 0 imply ξ · A = 0.
Proposition 5 and Lemma 2 imply that FRED(A, b) is conditionally con-
structive.

We now prove a constructive version of FRED.

Proposition 8. Let A ∈ Rm×n and b ∈ Rm. Suppose that span(A) is located
and closed. Equivalent are:

i) ∀ξ ∈ Rm (ξ · A = 0 ⇒ ξ · b = 0),

ii) ∃x ∈ Rn (A · x = b).

Proof. Again consider the matrix B := (A −A), then cone(B) = span(A) is
closed and located. Hence, by Proposition 4 the following are equivalent

1) ∀ξ ∈ Rm (ξ · B ≥ 0 ⇒ ξ · b ≥ 0)

2) ∃q ∈ X2n (B · q) = b.

Now i) is equivalent to 1) and ii) is equivalent to 2).

As a consequence we obtain the following constructive version of the Fred-
holm alternative for solvability of systems of linear equations.

Corollary 2. Let A ∈ Rm×n and b ∈ Rm. Suppose span(A) is located and
closed. If the homogeneous equation ξ ·A = 0 admits a unique solution, then
there exists a solution to the system of linear equations A · x = b.

Proof. The unique solution to ξ·A = 0 is of course ξ = 0, so i) of Proposition 8
is satisfied which implies ii).
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5.2 Optimality Criteria of Linear Programming

Consider the following linear optimisation problems: Let A ∈ Rm×n, b ∈ Rm,
and c ∈ Rn. The primal problem is

(P ) minimise c · x subject to x ∈ P := {y ∈ Xn | A · y = b},

whereas the dual problem is

(D) maximise b · u subject to u ∈ D := {v ∈ Rm | v · A ≤ c}.

Before we state constructive versions of optimality criteria in linear program-
ming in Propositions 9 and 10, we briefly recall the following well-known
result.

Lemma 8. Fix x ∈ P and u ∈ D such that c · x = b · u. Then x solves (P )
and u solves (D).

Proof. This follows immediately once we observe that for all y ∈ P and all
v ∈ D we have

b · v = v · A · y ≤ c · y.

Proposition 9. Suppose that there exists a solution u to (D). The following
statement is conditionally constructive:

there exists a solution x to (P) and c · x = b · u.

For the proof we need the following auxiliary lemma:

Lemma 9. Let u be a solution to (D). Define J ⊆ In by

∀i ∈ In (i ∈ J ⇔ (u · A)i < ci) .

Consider

ϕ : (‖b‖ = 0) ∨ (‖b‖ > 0, J is detachable from In, |J | < n, FAR(AIn\J , b)).

ϕ is conditionally constructive.

Proof. By Lemma 2 and Proposition 5

ψ1 : ‖b‖ = 0 ∨ ‖b‖ > 0,

ψ2 :
∧

i∈In

((u · A)i < ci ∨ (u · A)i = ci),
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and
ψ3 :

∧

J ′∈P(In), J ′ inhabited

FAR(AJ ′, b)

are conditionally constructive, and thus also ψ1 ∧ ψ2 ∧ ψ3. ψ1 ∧ ψ2 ∧ ψ3

implies that either ‖b‖ = 0 or ‖b‖ > 0 and that J is detachable from In. In
case ‖b‖ > 0 and as u solves (D), we have that |J | < n, because otherwise
u + tb ∈ D for small t > 0, and b · (u + tb) = b · u + t‖b‖2 > b · u which is
absurd. Now ψ3 implies FAR(AIn\J , b). Hence, we have ψ1 ∧ ψ2 ∧ ψ3 ⇒ ϕ,
so ϕ is conditionally constructive by Lemma 2.

Proof of Proposition 9. Recall ϕ from lemma 9. We show that ϕ implies that
there exists a solution x to (P) and c · x = b · u. To this end, consider

A′ =

(

A
c

)

∈ R(m+1)×n and b′ :=

(

b
b · u

)

∈ Rm+1.

We show that b′ ∈ cone(A′), because in that case there is x ∈ Xn such that
A · x = b and c · x = b · u, so x solves (P) according to Lemma 8.
If ‖b‖ = 0, then b′ = 0 ∈ cone(A′).

If ‖b‖ > 0, then FAR(AIn\J , b), with J as in Lemma 9, yields the following
cases:
Case 1: There is ξ ∈ Rm such that ξ · AIn\J ≥ 0 and ξ · b < 0. Then there
is t > 0 such that (u − tξ) · A ≤ c and (u − tξ) · b > u · b which contradicts
optimality of u.
Case 2: There is x ∈ RIn\J with x ≥ 0 such that AIn\J · x = b. In that case
x′ ∈ Rn given by x′i = xi, i ∈ In \ J , and x

′
i = 0 otherwise satisfies x′ ∈ Xn,

A · x′ = AIn\J · x = b, and

c · x′ = cIn\J · x = (u ·AIn\J) · x = u · b,

so A′ · x′ = b′. Here we used that (u · A)i = ci for all i ∈ In \ J .

Now one readily finds the following version of the optimality criteria in lin-
ear programming, replacing the requirement ‘conditionally constructive’ in
Proposition 9 by a sufficiently strong condition on the input A, b, c such that
proving x to be a solution to (P) boils down to proving a negated statement:

Proposition 10. Consider the (m+ 1)× n-matrix

A′ =

(

A
c

)

and suppose that cone(A′) is closed and located. If there is a solution u to
(D), then there exists a solution x to (P) and c · x = b · u.
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Proof. Again set

b′ :=

(

b
b · u

)

∈ Rm+1.

As in the proof of Proposition 9 we need to show that b′ ∈ cone(A′). Note
that cone(A′) being closed and located implies that b′ ∈ cone(A′) is equivalent
to d(cone(A′), b′) = 0, that is ¬(d(cone(A′), b′) > 0). As we are proving a
negated statement, according to Propositions 6 and 9 it suffices to prove
¬(d(cone(A′), b′) > 0) under the assumption that

there exists a solution x to (P) and c · x = b · u.

But the latter obviously implies that b′ ∈ cone(A′).

5.3 Stiemke’s Lemma and Superhedging Duality in Ar-

bitragefree Financial Markets

In the following for x, y ∈ Rk we write

x < y :⇔ ∀i ∈ Ik (xi < yi) , y > x :⇔ x < y

and
x � y :⇔ x ≤ y ∧ ∃i ∈ Ik (xi < yi) , x 
 y :⇔ y � x.

Let
Pn = {q ∈ Sn | q > 0} .

Stiemke’s lemma (STI) states that for all A ∈ Rm×n we have

STI(A) Exactly one of the following alternatives is true:

i) ∃ξ ∈ Rm (ξ · A 
 0)

ii) ∃p ∈ Pn (A · p = 0)

Like FAR and FRED also STI is equivalent to LPO. Indeed, for x ∈ R let
A = (|x|). Then STI(A) implies that either there exists ξ ∈ R such that
ξ|x| > 0, that is |x| > 0, or |x| = 0. Hence, we have LPO. The implication
LPO ⇒ STI follows from LPO ⇒ FAR (Proposition 2) and the proof of the
following proposition.

Proposition 11. Fix A ∈ Rm×n. Then STI(A) is conditionally constructive.

17



Proof. First, assume that n = 1. ‖a1‖ > 0 ∨ ‖a1‖ = 0 is conditionally
constructive. If ‖a1‖ > 0, alternative i) of STI(A) holds. If ‖a1‖ = 0,
alternative ii) of STI(A) holds.

Now assume that n ≥ 2. For each i ∈ In, let A
i be the matrix which results

from removing the column ai from A. By Proposition 5 and Lemma 2

ϕ : FAR(A1,−a1) ∧ FAR(A2,−a2) ∧ . . . ∧ FAR(An,−an)

is conditionally constructive. We prove that ϕ ⇒ STI(A). Note that ϕ
implies that the sets

N1 =
{

i ∈ In | alternative i) of FAR(Ai,−ai) holds
}

and
N2 =

{

i ∈ In | alternative ii) of FAR(Ai,−ai) holds
}

.

are detachable from In and that

In = N1 ∪N2.

If N1 is inhabited, there exist i ∈ In and ξ ∈ Rm such that

ξ · Ai ≥ 0 and ξ · (−ai) < 0.

This implies that ξ · A 
 0. Thus alternative i) of STI(A) holds.

Now assume that N1 = ∅ and therefore N2 = In. For each i ∈ In there exists
qi ∈ Xn−1 such that Ai · qi = −ai, which yields the existence of pi ∈ Xn with
(pi)i = 1 and A · pi = 0. Then

p̃i :=
1

∑

j∈In
pij
pi ∈ Sn, i ∈ In,

and

p :=
1

n

∑

i∈In

p̃i ∈ Pn

satisfies A · p = 0. Thus, alternative ii) of STI(A) holds.

Let us now briefly consider a simple stochastic one-period financial market
model. For further details and explanations we refer to [2, 8]. The matrix
A ∈ Rm×n represents the discounted price changes between time 0 (today)
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and time t = 1 (tomorrow). More precisely, we assume that the market
consists of m financial assets and that there are n possible states of the
world tomorrow. Thus aij is the discounted price change between times 0
and 1 of asset j ∈ Im in state i ∈ In. A so-called equivalent martingale
measure for the market is a p ∈ Pn such that A · p = 0. We denote the set of
equivalent martingale measures by P. If P is inhabited, the market model is
called arbitragefree. A contingent claim is a financial contract which pays a
certain amount ci ≥ 0 in state i ∈ In at time 1. We assume that ci is already
discounted, that is c = (c1, . . . , cn) ∈ Xn is the discounted payoff profile of
the claim c. For any p ∈ P the price c · p is a fair (arbitragefree) price of the
claim c. Trading strategies are given by vectors ξ ∈ Rm, where ξi represents
the amount of shares of asset i which are bought. Shortselling, that is ξi < 0,
is allowed. The gains at time 1 in the market in the different future states
resulting form buying ξ are thus given by ξ ·A. Assuming we have available
capital x ∈ R at time 0, a superhedge of the claim c given the capital x is
a trading strategy ξ such that x1 + ξ · A ≥ c. Here 1 := (1, 1, . . . , 1) ∈ Rn

represents the bank account in which the investor keeps her capital. Indeed,
assuming that the investor buys ξ at time 0, she has xminus the price of ξ left
in the bank account. At time 1 the discounted value of the investment is x
minus the price of ξ at time 0 plus the price of ξ at time 1 which corresponds
to x1 + ξ · A. Thus a superhedge of c given the capital x is an investment
which outperforms c in any possible future state of the world. The so-called
Superhedging Duality in classical financial mathematics states that

sup
p∈P

c · p = min{x ∈ R | ∃ξ ∈ Rm (x1 + ξ · A ≥ c)}.

We now prove a constructive version of this Superhedging Duality:

Proposition 12. Suppose that P is inhabited and that

sup
p∈P

c · p and inf{x ∈ R | ∃ξ ∈ Rm (x1 + ξ · A ≥ c)}

exist. Then

sup
p∈P

c · p = inf{x ∈ R | ∃ξ ∈ Rm (x1 + ξ · A ≥ c)}.

Proof. Consider x ∈ R such that there exists ξ ∈ Rm with

x1 + ξ · A ≥ c.

For any p ∈ P we obtain x = (x1+ ξ · A) · p ≥ c · p. Hence, we have that

sup
p∈P

c · p ≤ inf{x ∈ R | ∃ξ ∈ Rm (x1+ ξ · A ≥ c)}.
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It remains to prove that

¬(sup
p∈P

c · p < inf{x ∈ R | ∃ξ ∈ Rm (x1 + ξ · A ≥ c)}).

To this end, assume that there is y ∈ R such that

sup
p∈P

c · p < y < inf{x ∈ R | ∃ξ ∈ Rm (x1 + ξ · A ≥ c)},

and consider the extended market

B =

(

A
c− y1

)

∈ R(m+1)×n.

Since we are proving a negated statement, according to Proposition 6, it
suffices to prove this under the assumption of STI(B). Note that ii) in
STI(B) is absurd because for any p ∈ Pn with B · p = 0 we have p ∈ P and
c · p − y = 0 which contradicts the assumption c · p < y. Hence, we may
assume i) in STI(B), that is there exists ξ ∈ Rm and η ∈ R such that

ξ · A+ η(c− y1) 
 0. (4)

Pick any p ∈ P. Then

η(c · p− y) = (ξ · A+ η(c− y1)) · p > 0

which implies η < 0. Thus deviding both sides in (4) by |η| and rearranging
we obtain

y1+
1

|η|
ξ · A ≥ c

which contradicts

y < inf{x ∈ R | ∃ξ ∈ Rm (x1 + ξ ·A ≥ c)}.

5.4 Von Neumann’s Minimax Theorem and Further

Steps in Constructive Game Theory

The discussion in this section is based on the lemma on alternatives (ALT):
For all A ∈ Rm×n we have

ALT(A) Exactly one of the following statements is true:

20



i) ∃p ∈ Sm (p · A ≥ 0)

ii) ∃q ∈ Sn (A · q < 0)

ALT is equivalent to LPO. Indeed, for any x ∈ R and A = (x) by ALT(A)
we either have x ≥ 0 or x < 0 which is LPO. Conversely, Propositions 2 and
13 imply that LPO ⇒ ALT.

Proposition 13. Let A ∈ Rm×n. Define B = (A Em) ∈ Rm×(n+m), where
Em ∈ Rm×m denotes the identity matrix, i.e. the matrix with diagonal entries
all equal to 1 and all other entries equal to 0. Set b = (−1, . . . ,−1) ∈ Rm.
Then FAR(B, b) ⇒ ALT(A). Hence, ALT(A) is conditionally constructive.

Proof. By FAR(B, b) either there is ξ ∈ Rm such that ξ ·B ≥ 0 and ξ · b < 0
or there is q ∈ Xn+m such that B · q = b. In the first case we must have
ξ ≥ 0, since 0 ≤ ξ · Em = ξ, and

∑

i∈Im
ξi = −ξ · b > 0. Hence,

p :=
1

∑

i∈Im
ξi
ξ ∈ Sm

satisfies p · A ≥ 0. In the second case q̂ := (q1, . . . , qn) ∈ Xn satisfies

A · q̂ ≤ B · q = b < 0.

In particular,

min{ai1 | i ∈ In}
∑

i∈In

q̂i < 0,

which implies |
∑

i∈In
q̂i| > 0 and thus

∑

i∈In
q̂i > 0 since q̂ ∈ Xn. Hence,

q̃ :=
1

∑

i∈In
q̂i
q̂ ∈ Sn

satisfies A · q̃ < 0.

Von Neumann’s minimax theorem [12] states that for any matrix A ∈ Rm×n

max
p∈Sm

min
q∈Sn

p · A · q = min
q∈Sn

max
p∈Sm

p · A · q.

A thorough discussion of this result in (BISH) is given in [5]. In that article
also the following constructive version of von Neumann’s minimax theorem
was introduced, see [5, Theorem 2.3]. Here we provide a short proof of this
result based on Propositions 6 and 13.

Proposition 14. Let A ∈ Rm×n. Then

sup
p∈Sm

inf
q∈Sn

p · A · q = inf
q∈Sn

sup
p∈Sm

p · A · q.
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Proof. Note that infq∈Sn
p · A · q = mini∈In(p · A)i and supp∈Sm

p · A · q =
maxj∈Im(A · q)j, and the functions

Sm ∋ p 7→ min
i∈In

(p · A)i and Sn ∋ q 7→ max
j∈Im

(A · q)j

are uniformly continuous, whence

sup
p∈Sm

inf
q∈Sn

p · A · q and inf
q∈Sn

sup
p∈Sm

p · A · q

exist, see [6, Corollary 2.2.7]. Clearly,

sup
p∈Sm

inf
q∈Sn

p ·A · q ≤ inf
q∈Sn

sup
p∈Sm

p ·A · q,

so it remains to show that

¬( sup
p∈Sm

inf
q∈Sn

p ·A · q < inf
q∈Sn

sup
p∈Sm

p ·A · q).

Suppose
sup
p∈Sm

inf
q∈Sn

p · A · q < inf
q∈Sn

sup
p∈Sm

p · A · q.

Without loss of generality, by suitable translation, we may assume that there
exists ι > 0 such that

sup
p∈Sm

inf
q∈Sn

p ·A · q ≤ −ι and ι ≤ inf
q∈Sn

sup
p∈Sm

p · A · q. (5)

As we aim at proving falsum, by Propositions 6 and 13 it suffices to consider
the cases

i) ∃p ∈ Sm (p · A ≥ 0)

ii) ∃q ∈ Sn (A · q < 0).

In the first case
sup
p∈Sm

inf
q∈Sn

p · A · q ≥ 0 > −ι,

a contradiction, and in the second case

inf
q∈Sn

sup
p∈Sm

p ·A · q ≤ 0 < ι,

also a contradiction.
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As a consequence of a recent result on the minimum principle for convex
functions, see [3, Theorem 1], we obtain the following existence result for
solutions to two-person zero-sum games; see for instance [9] for a classical
discussion of such games. To this end, note that a function f : C → R,
where C ⊆ Rk, such that α := infx∈C f(x) exists is said to admit at most
one minimum, if

∀ x, y ∈ C (‖x− y‖ > 0 ⇒ (f(x) > α ∨ f(y) > α)).

Proposition 15. Let A ∈ Rm×n. Suppose that

fA : Sn ∋ q 7→ sup
p∈Sm

p · A · q

admits at most one minimum, and that

gA : Sm ∋ p 7→ inf
q∈Sn

p ·A · q

admits at most one maximum, that is −gA admits at most one minimum.
Then there exists (p̂, q̂) ∈ Sm × Sn such that

p̂ ·A · q̂ = sup
p∈Sm

inf
q∈Sn

p · A · q = inf
q∈Sn

sup
p∈Sm

p · A · q.

Proof. Note that Sn and Sm are compact and that fA is convex whereas gA
is concave, that is −gA is convex. Hence, according to [3, Theorem 1] there
exists a minimiser q̂ ∈ Sn of fA and a minimiser p̂ ∈ Sm of −gA, i.e. p̂ is a
maximiser of gA. We have

sup
p∈Sm

inf
q∈Sn

p ·A · q = inf
q∈Sn

p̂ ·A · q ≤ p̂ ·A · q̂ ≤ sup
p∈Sm

p ·A · q̂ = inf
q∈Sn

sup
p∈Sm

p ·A · q.

Now apply Proposition 14.

Saddle points (p̂, q̂) as in Proposition 15 are called solutions to the two-person
zero-sum game given by A. The following Corollary 3 generalises [5, Theorem
3.2] and verifies the conjecture as regards existence of solutions to two-person
zero-sum games made at the end of [5].

Corollary 3. Let A ∈ Rm×n, and suppose that the associated two-person
zero-sum game has at most one solution in the sense of [5], that is, denoting

α := sup
p∈Sm

inf
q∈Sn

p · A · q = inf
q∈Sn

sup
p∈Sm

p · A · q,

we have for any pairs (p, q), (p′, q′) ∈ Sm × Sn with ‖p − p′‖ + ‖q − q′‖ > 0
that either |p · A · q − α| > 0 or |p′ · A · q′ − α| > 0. Then the game has a
unique solution, that is there exists a unique (p̂, q̂) ∈ Sm × Sn such that

p̂ · A · q̂ = α.
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Proof. For uniqueness, assume that (p, q), (p′, q′) ∈ Sm×Sn are two solutions
to the game. Then, as the game has at most one solution, ‖p−p′‖+‖q−q′‖ >
0 is absurd, which implies (p, q) = (p′, q′).

As regards existence of solutions, we show that the function fA defined in
Proposition 15 admits at most one minimum. Note that infq∈Sn

fA(q) = α
and

∀δ > 0 ∀q ∈ Sn ∃p ∈ Sm (|p · A · q − fA(q)| < δ) . (6)

Fix q, q′ ∈ Sn and suppose that ‖q − q′‖ > 0. The function

h : Sm × Sm → R

(p, p′) 7→ |p · A · q − α|+ |p′ · A · q′ − α|

is uniformly continuous, convex, and positive-valued. The latter follows from
the assumption that the game has at most one solution. Thus, according to
[2, Proposition 1] there exists ε > 0 such that

inf
(p,p′)∈Sm×Sm

h(p, p′) > ε. (7)

We have that either fA(q) < α+ε/4 or fA(q) > α and either fA(q
′) < α+ε/4

or fA(q
′) > α. Assume that

fA(q) < α +
ε

4
and fA(q

′) < α+
ε

4
.

Then there are p, p′ ∈ Sm such that

|p · A · q − α| <
ε

2
and |p′ · A · q′ − α| <

ε

2
.

This is a contradiction to (7). Thus, either

fA(q) > α or fA(q
′) > α.

Similarly, one verifies that gA defined in Proposition 15 admits at most one
maximum. Hence, the assertion follows from Proposition 15.
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