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Abstract

We study the p-adic algebraic groupsG from the definable topological-
dynamical point of view. We consider the case that M is an arbitrary
p-adic closed field and G an algebraic group over Qp admitting an Iwa-
sawa decompostion G = KB, where K is open and definably compact
over Qp, and B is a borel subgroup of G over Qp. Our main result
is an explicit description of the minimal subflow and Ellis Group of
the universal definable G(M)-flow SG(M

ext). We prove that the Ellis
group of SG(M

ext) is isomorphic to the Ellis group of SB(M
ext), which

is B/B0.
As applications, we conclude that the Ellis groups corresponding to

GL(n,M) and SL(n,M) are isomorphic to (Ẑ×Z∗p)
n and (Ẑ×Z∗p)

n−1

respectively, generalizing the main result of Penazzi, Pillay, and Yao
in [23].

1 Introduction

In this paper, we consider the topological dymanics of algebraic groups over a
p-adically closed field. The model theoretic approach to topological dynam-
ics was introduced by Newelski [19], then developed by a number of papers,
including [20], [1] and [16], and now called definable topological dynamics.
Definable topological dynamics studies the action of a group G definable in
a structure M on its type space SG(M) and tries to link the invariants sug-
gested by topological dynamics with model-theoretic invariants. For exam-
ple, in the case when Th(M) is stable, Newelski proved that the Ellis group
of SG,ext(M) = SG(M) is isomorphic to the definable Bohr compactification
G∗/G∗00 of G, where G∗ is the interpretation of G in a saturated elemen-
tary extension [21], which is another formulation of fundamental theorems
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of stable group theory by replacing the generic types with the Ellis group.
Newelski tried to generalize this result to some tame unstable context where
generic types may not exist, he conjectured in [19] that such isomorphism
holds ture for NIP context.

A considerable amount of work was motivated by the Ellis group conjec-
ture. The first counterexample of this conjecture is found in [9], where the au-
thors showed that Newelski’s conjecture fails in the case of G = SL(2,R). G.
Jagiella provided a range of counterexamples by extending results to groups
over R with compact-torsion-free decomposition in [12], and the second au-
thor of this paper showed that their results could be extended to any ele-
mentary extension M of an o-minimal extension of the reals [35]. Namely,
the Ellis groups of SG,ext(M) is isomorphic to the Ellis groups of SG(R). The
study of SL(2,Qp) in [23] provided another counterexample. Kirk showed in
[15] that SL(2,C((t))) is also a counterexample. In fact, The main results
of [9, 23, 15] showing that the Ellis group corresponding to SL(2,M) is iso-
morphic to B∗/B∗00, where B is the Borel subgroup of SL(2,−), when M is
R, Qp, or C((t)). A recent result in [14] of G. Jagiella showed that there is
a onto homomorphism from the Ellis groups of SL2(K) to B∗/B∗00 if K has
NIP .

As mentioned in [13], one may generalize these results to the case where
G has a “nice” decomposition in the p-adic setting. In this paper, We provide
a way of computing the Ellis groups for p-adic algebraic groups that admit
a definable “Iwasawa decomposition”. We finally showed that:

Theorem. Let G be a linear algebraic group defined in Qp. Suppose that
G(Qp) admits a Iwasawa decomposition G = KB with B a borel subgroup
of G, definable over Qp, and K an open compact subgroup of G. Then for
any M ≻ Qp we have that the Ellis group of SG,ext(M) is isomorphic to
B∗/B∗00 = B∗/B∗0.

By [34], any algebraic group trigonalizable over Qp has a global definable
f -generic (dfg) type, and by [22] any definably compact group over Qp has a
global finitly satisfiable generic (fsg) type. So the above decomposition is a
kind of “fsg-dfg” decomposition in the model-theoritic view when B is split
(trigonalizable) over Qp.

A split reductive algebraic group G over a local field F admits a Iwasawa
decomposition G = KB with B a borel subgroup trigonalizable over F and
K a maximal compact subgroup of G. We conclude directly from our main
theorem that

Corollary. If G(M) is a split reductive algebraic group over Qp, then the

Ellis group of SG,ext(M) is isomorphic to (Ẑ×Z∗p)
m for some m ∈ N. Partic-
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ularly, if G is GL(n,M), then then Ellis group of the SG,ext(M) is isomorphic

to (Ẑ× Z∗p)
n.

In [13], Jagiella showed that if G is a definably connected group definable
in an o-minimal expansion of a real closed field M , then the Ellis group of
the flow SG,ext(M) is abstractly isomorphic to a subgroup of a compact Lie
group. Based on our result, we conjecture that

Conjecture. Let G be a group definable in p-adic closed field M . Ellis group
of the flow SG,ext(M) is abstractly isomorphic to a profinite group.

the paper is organized as follows. In the rest of this introduction we recall
some notations, definitions and results, from earlier papers, relevant to our
results.

In section 2.1, we will study the minimal subflow and the Ellis group of
a definable group B = A⋊N , with A a fsg group and H a dfg group, in the
NIP environment.

In Section 2.2 we will prove some general results for groups definable over
Qp admiting compact-dfg decomposition.

In section 2.3, we prove the main results, on the minimal subflows and
Ellis group of the action on G(M) on its type space over M ext, where M is an
arbitrary p-adic closed field and G a linear algebraic group admits Iwasawa
decomposition, making use of the results of Section 2.1 and 2.2.

1.1 Notations

We will assume a basic knowledge of model theory. Good references are [27]
and [18]. Let T be a complete theory with infinite models. Its language is L
and M is the monster model, in which every type over a small subset A ⊆ M

is realized, where “small” means |A| < |M|. M,N,M ′, N ′ will denote small
elementary submodels of M. By x, y, z we mean arbitrary n-variables and
a, b, c ∈ M the n-tuples in Mn with n ∈ N. Every formula is an LM-formula.
For an LM -formula φ(x), φ(M) denotes the definable subset of M |x| defined
by φ, and a set X ⊆ Mn is definable if there is an LM -formula φ(x) such
that X = φ(M). If X̄ ⊆ Mn is definable, defined with parameters from M ,
then X̄(M) will denote X̄ ∩ Mn, the realizations from M , which is clearly
a definable subset of Mn. Suppose that X ⊆ Mn is a definable set, defined
with parameters from M , then we write SX(M) for the space of complete
types concentrating on X(M). We use Def(X(M)) the denote the boolean
algebra of all M-definable subset of X(M). We use freely basic notions of
model theory such as definable type, heir, coheir, .... The book [27] is a
possible source. Let A,B be subsets of M, and p ∈ S(A), by p ↾ B we mean
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the restriction of p to B if A ⊇ B, and p|B the unique heir of p over B if
B ⊇ A with A a model and p definable.

1.2 Definable topological dynamics

Assume that G is a group. By a (point-transitive) G-flow we mean a compact
Hausdorff space X together with a left action of G on X by homeomorphism
that contains a dense orbit. A set Y of X is called a subflow if it is a
closed subspace of X which is closed under the action of G. A subflow flow is
minimal if it has no proper subflows. The minimal subflows are “dynamically
indecomposable” and considered to be the most fundamental G-flows. It is
easy to see that Y ⊆ X is minimal iff Y = cl(G · y) for each y ∈ Y . For each
g ∈ G, we consider the homeomorphism πg : X → X induced by the group
action. Let XX be the collection of all maps from X to itself, equiped with
the product topology, which is a compact Hausdorff space by Tychonoff’s
theorem. Let E(X) be the closure of the set {πg| g ∈ G} in XX . Then E(X)
together with the operation ∗ of the function composition is a semigroup,
and the group action of G on E(X) given by g · x = πg ∗ x makes E(X)
a G-flow. It is natural isomorphism to its own Ellis semigroup. For every
x ∈ X the closure of its G-orbit is exactly E(X)(x) = {f(x) : f ∈ E(X)}.

Every minimal subflow of E(X) is a minimal left ideal of the semigroup
E(X), and homeomorphic to each other as G-flows. We sometimes use the
phrase “minimal subflow of E(X)” to denote the homeomorphism class of
minimal subflows of E(X). A minimal subflow I is the closure of the G-orbit
of every p ∈ I, hence is E(X) ∗ p. We call u ∈ I an idempotent if u ∗ u = u.
We denote the collection of all idempotents of I by J(I). For any u ∈ J(I),
(u ∗ I, ∗) is a group with u as its identity. We have I is a disjoint union of
u ∗ I’s with u ∈ J(I). All those groups are isomorphic to each other, even
for different minimal left ideals. We call these groups the ideal groups and
call their isomorphism class the Ellis group of the flow X . For more details,
readers need to see Refs.[3, 8].

Now we consider the topological dynamics in the model-theoretic context.
Let M be an L-structure. Take a saturated elementary extension M of M .
If U ⊆ Mn is definable, by an externally definable subset X of U we mean
a subset of U of the form Y ∩ U with Y an M-definable subset of Mn. By
X ⊆ext U we mean X is an externally definable subset of U . We write
Defext(U) for the the boolean algebra of all externally definable subset of U ,
and SU,ext(M) the space of all ultrafilters of Defext(U). In model theory, we
consider a definable group G ⊆ Mn acting on its type space SG(M). Clearly
SG(M) is a G-flow. By [19], the Ellis semigroup of SG(M) is SG,ext(M), and
the semigroup operation of SG,ext(M) can be explicitly described. We call
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SG,ext(M) the universial definable flow of G over M .
Let M ext be an expansion of M by adding predicates for all externally

definable subsets of Mn with n ∈ N+, and Lext
M , the associated language of

M ext, is a nature expansion of the language L. If Th(M) has NIP (see
[30] for the details of NIP ), then Th(M ext) also has NIP , admits quantifier
elimination, and all types over M ext are definable [29]. So we can identify
Sext(M) with S(M ext) in NIP context. Let SM,fs(M) be the space of global
types which is finitely satisfiable in M , then the trace of p in M , denoted
by Tr

M
(p) = {φ(M)| φ(x) ∈ p} is in Sext(M), and it is easy to see that

p 7→ Tr
M
(p) is a homeomorphim between SM,fs(M) and Sext(M). In NIP

theories, replacing Sext(M) by SG(M
ext), we use p 7→ Tr

M
(p) to denote the

homeomorphism from SM,fs(M) to S(M ext), and q 7→ qM to denote the inverse
map.

We assumeNIP throughout this paper. Now we use the notation SG(M
ext)

instead of SG,ext(M). The semigroup operatopn of SG(M
ext) is defined as fol-

lows: For any p, q ∈ SG(M
ext), p ∗ q = {U ⊆ext G| {g ∈ M | g−1U ∈ q} ∈ p}

Note that every type over M ext is definable, and thus has a unique heir.
By [19], p∗q can also be computered as follows: let a |= p and b |= q|(M ext, a),
then p ∗ q = tp(ab/M ext).

1.3 NIP , definable amenablity, and connected compo-

nents

Let G = G(Mn) be a definable group. Recall that a type-definable over A
subgroup H ⊆ G is a type-definable subset of G over A, and also a subgroup
of G. We say that H has bounded index if |G/H| < 2|A|+|T |. If M has NIP ,
then there is a smallest type-definable subgroup of bounded index (see [28]),
we call it the type-definable connected component of G, and denote it by G00.
We call the intersection of all M-definable subgroups of G of finite index the
definable connected component, and denote it by G0. Clearly, both G00 and
G0 are normal subgroups of G and G00 ≤ G0. Note that by [5], G00 is the
same whether computed in T or in Th(M ext) if T has NIP .

In [19], Newelski conjectured that G/G00 is isomorphic to the Ellis group
of G in NIP theories. Chernikov and Simon showed that the conjecture
holds when G is definably amenable and NIP . Briefly, a group is definably
amenable if it admits a global (left) G-invariant Keilser measure, where a
global Keisker on G is a finitely additive probabilistic measure on the algebra
of all M-definable subsets of G.

We now recall the stability-theoretic notion of dividing: A type p(x) ∈
S(B) divides over a set A ⊆ B if there is a formula φ(x, b) ∈ p and infinite A-
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indiscernible sequence b0, b1, b2, ... such that {φ(x, bi) : i < ω} is inconsistent.
A nice result of [6] showing that:

Fact 1.3.1. G is definably amenable iff there exists p ∈ SG(M) such that for
every g ∈ G = G(M), gp does not divide over M . Following the notation of
[6] we call a type p as in the right hand side a (global) strongly f -generic,
over M , type of G.

Given a definable subset X of G, we define X to be f -generic if for
some/any model M over which X is defined any left translate gX of X does
not divide over M . As the notation suggests, the property does not depend
on the model M chosen. Call a complete type p (over some set of parameters)
f -generic iff every formula in p is f -generic. In [6], the authors showed that
in NIP theories:

Fact 1.3.2. If M has the NIP and G ⊆ Mn is a A-definable group, then G
is definably amenable iff it admits a global f -generic type. Moreover, when
G is definably amenable, we have:

(i) p ∈ SG(M) is f -generic if and only if it is G00-invariant;
(ii) A type-definable subgroup H fixing a global f -generic type is exactly

G00;
(iii) Any global strongly f -generic type is f -generic;
(iv) For any M ≺ M containing A, if Eext

G ⊆ SG(M
ext) is an Ellis group,

then the map σ : Eext
G → G/G00 defined by p 7→ p/G00 is an isomor-

phism.

Among the strongly f -generics, there are two extreme case:

(1) There is a small submodel M such that every left G-translate of p ∈
SG(M) is finitely satisfiable in M , we call such types the fsg (finitely
satisfiable generic);

(2) There is a small submodel M such that every left G-translate of p ∈
SG(M) is definable over M , we call such types the dfg (definable f -
generic).

Clearly, both fsg and dfg groups are definably amenable. We now discuss
these two cases. Let Stabl(p) denotes the stabilizer of p with respect to the
left group action, and Stabr(p) the stabilizer of p with respect to the right
group action. By [10] we have:

Fact 1.3.3. Let G be an A-definable fsg group witnessed by a global type p
and a small model M . Then:

(i) Any left (right) translate of p is a global generic type and is finitely
satisfiable in any small model N ⊆ A.
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(ii) G00 = Stabl(p) = Stabr(p).
(iii) Let q be a global generic type, then q is finitely satisfiable in any small

model N ⊆ A hence can be considered as a type in SG(N
ext). Moreover

q is a generic type in the G(N)-flow SG(N
ext).

(iv) If A ⊆ N , then G(N)-flow SG(N
ext) has a unique minimal subflow

Gen(G(N)), which where is the space of all generic types in SG(N
ext).

(v) For any A ⊆ N,N ′ ≺ M, Gen(G(N)) is homeomorphic to Gen(G(N ′))
via p 7→ Tr

N
(pM) (So we simply call it the generic type space of G, and

denote it by Gen(G)).
(vi) I = Gen(G) is a two-sided ideal.

Lemma 1.3.4. Suppose that G ⊆ Mn is a group definable over M admitting
fsg and I ⊆ SG(M

ext) is the minimal subflow. Then

(i) For any q ∈ I, the Ellis group contains q is q ∗ I = q ∗ SG(M
ext).

(ii) For any q ∈ I and tp(a/M ext), tp(b/M ext) ∈ SG(M
ext), we have that

q ∗ tp(a/M ext) = q ∗ tp(b/M ext) iff a/G00 = b/G00.
(iii) For each q ∈ I and r ∈ SG(M

ext), there is s ∈ q ∗I such that q = s ∗ r.

Proof. (i): let u ∈ J(I) be such that q ∈ u ∗ I. Since u ∗ I is a group, we
have u ∗I = q ∗u ∗I = q ∗I is the Ellis group containing q. Clearly, we have
q ∗ I ⊆ q ∗ SG(M

ext). Since I is a two-sided ideal, u ∗ SG(M
ext) ⊆ I, thus

q ∗ SG(M
ext) = q ∗ u ∗ SG(M

ext) ⊆ q ∗ I.

So q ∗ I = q ∗ SG(M
ext) as required.

(ii): Since q ∗ SG(M
ext) is the Ellis group generated by q, we see that (ii)

can be concluded directly from Fact 1.3.2(iv).
(iii): Suppose that r ⊢ k/G00 and q ⊢ t/G00. By Fact 1.3.2 there is

s ∈ q∗I such that s ⊢ (tk−1/G00). Now s∗r ∈ s∗I = q∗I and (s∗r)/K00 =
q/K00, so s ∗ r = q as required.

We now discuss the dfg groups.

Fact 1.3.5. [2] Let B ⊆ Mm be a group definable over M , and p ∈ SB(M)
is a global f -generic type. If p is definable over M , then

(i) Every left G-translate of p is definable over M ;
(ii) G00 = G0 = Stabl(p);
(iii) G · p is closed, and hence a minimal subflow of SG(M).

Fact 1.3.6. [5] Suppose that G ⊆ Mn is a dfg group definable over M . Let
J ⊆ SG(M

ext) be a minimal subflow. Then

(i) G has a global dfg type with respect to M ext in Th(M ext).
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(ii) Let N∗ be a extension of M ext and p ∈ J , then the unique heir p̄ ∈
SG(N

∗) of p is an f -generic type. Moreover any G(N∗)-translate of p̄
is an global heir of some q ∈ SG(M

ext) ∗ p.

Lemma 1.3.7. Suppose that G ⊆ Mn is a dfg group definable over M .
Let J ⊆ SG(M

ext) be a minimal subflow. Then J is an Ellis subgroup of
SB(M

ext).

Proof. Let M∗ ≻ M ext be a saturated extension. Let p ∈ J and p̄ ∈ SG(M
∗)

the unique heir of p over M∗. By Fact 1.3.6, the G-orbit G·p̄ is homeomorphic
to J via the map q̄ 7→ q̄ ↾ M ext. Since p̄ is G00-invariant, G · p̄ is isomorphic
to G/G00 via q̄ 7→ q̄/G00. So q 7→ q/G00 is also a ismomorphism from J to
G/G00. By Fact 1.3.2, we see that J is an Ellis group.

One could conclude directly from the above Fact that

Corollary 1.3.8. If G has dfg, then for any q1, q2 ∈ SG(M
ext) and p ∈ J ext

M ,
q1 ∗ p = q2 ∗ p iff q1/G

0 = q2/G
0.

1.4 Groups definable in (Qp,+,×, 0, 1)

We first give our notations for p-adics. By “the p-adics”, we mean the field
Qp. M0 denotes the structure (Qp,+,×, 0, 1), Q∗p = Qp\{0} is the multi-
plicative group. Z is the ordered additive group of integers, the value group
of Qp. The group homomorphism ν : Q∗p −→ Z is the valuation map. M de-
notes a very saturated elementary extension (K,+,×, 0, 1) of M0. Similarly,
K∗ = Qp\{0} is the multiplicative group. We sometimes write Qp for M0

and K for M.
For convenience, we use Ga and Gm denote the additive group and multi-

plicative group of field M respectively. So Ga(M0) and Gm(M0) (or Gm(Qp))
are (Qp,+) and (Q∗p,×) respectively.

We will be referring a lot to the comprehensive survey [4] for the basic
model theory of the p-adics. A key point is Macintyre’s theorem [17] that
Th(Qp,+,×, 0, 1) has quantifier elimination in the language of rings Lring

together with new predicates Pn(x) for the n-th powers for each n ∈ N+.
Moreover, for any polynormals f, g ∈ Qp[x̄], the relation v(f(x̄)) ≤ v(g(x̄))
is quantifier-free definable in the Macintyre’s language Lring ∪{Pn| n ∈ N+},
in particular it is definable in the language of rings. (See Section 3.2 of [4].)
By [7], every type over Qp is definable. A p-adically closed field is a model of
pCF := Th(Qp), which has NIP (see [4] for details). The theory pCF also
has definable Skolem functions [32].
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The p-adic field Qp is a locally compact topological field, with basis given
by the sets

B(a, n) = {x ∈ Qp | x 6= a ∧ v(x− a) ≥ n}

for a ∈ Qp and n ∈ Z. The valuation ring Zp is compact. The topology is
given by a definable family of a definable sets, so it extends to any p-adically
closed fieldM , makingM be a topological field (usually not locally compact).

For any X ⊆ Qn
p , the “topological dimension”, denoted by dim(X), is the

greatest k ≤ n such that the image of X under some projection from Mn
0

to Mk
0 contains an open subset of Qk

p. On the other side, as model-theoretic
algebraic closure coincides with field-theoretic algebraic closure ([11], Propo-
sition 2.11), we see that for any modelM of pCF the algebraic closure satisfies
exchange (so gives a so-called pregeometry on M) and there is a finite bound
on the sizes of finite sets in uniformly definable families. If a is a finite tuple
from M |= pCF and B a subset of M then the algebraic dimension of a over
B, denoted by dim(a/B), is the size of a maximal subtuple of a which is
algebraically independent over B.

When X ⊆ Qn
p is definable, the algebraic dimension of X , denoted by

alg-dim(X), is the maximal dim(a/B) such that a ∈ X(M) and B contains
the parameters over which X is defined. It is important to know that when
X ⊆ Qn

p is definable, then its algebraic-dimension coincides with its “topo-
logical dimension”, namely dim(X) = alg-dim(X). As a conclusion, for any
definable X ⊆ Qn

p , dim(X) is exactly the algebraic geometric dimension of
its Zariski closure.

By a definable manifold X ⊆ Qn
p over a subset A ⊆ Qp, we mean a topo-

logical space X with a covering by finitely many open subsets U1, ..., Um, and
homeomorphisms of Ui with some definable open Vi ⊆ Qn

p for i = 1, ..., m,
such that the transition maps are A-definable and continuous. If the tran-
sition maps are Ck, then we call X a definable Ck manifold over Qp of
dimension n. A definable group G ⊆ Qn

p can be equipped uniquely with the
structure of a definable manifold over K such that the group operation is C∞

(see [24] and [22]). The facts described above work for any M |= pCF.
By [22], a group K ⊆ Ml definable over M0 has fsg iff it is definably

compact over M0. The type-definable connected component K00 coincides
with its definable connected component K0, which is also the kernel of the
standard part map st : K → K(M0). Namely, K0 is the set of infinitesimals
of K over M0.

By [25], a group H ⊆ Mk definable over M0 has dfg iff there is a trigonal-
izable algebraic group A over M0 and a definable homomorphic f : H → A
such that both ker(f) and A/im(f) are finite. In particular, any trigonaliz-
able algebraic group over M0 has dfg.
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2 Main Results

2.1 Semi-product of a fsg group and a dfg group

We now consider a group B = B(M) definable in a NIP structure M , which
could be decomposed into a semi-product B = A ⋊ H , where A has fsg, H
has dfg, and both of the definable over M . Clearly, B is definably amenable.
We will study the the minimal subflow and the Ellis group of SB(M

ext) in
this section.

Lemma 2.1.1. B00 = A00 ⋊H0.

Proof. Since A/A00 and H/H0 is bounded, we see that B/(A00 ⋊ H0) is
bounded. So B00 ⊆ A00 ⋊H0. On the other side, A/(B00 ∩ A) ∼= AB00/B00

and H/(B00 ∩ H) ∼= HB00/B00. So B00 ∩ A has bounded index in A and
B00 ∩ H has bounded index in H , which imples that A00 ⊆ B00 and H0 =
H00 ⊆ B00. So A00 ⋊H0 ⊆ B00.

Lemma 2.1.2. Let I
M

A
be the (unique) minimal subflow of SA(M

ext) and

J
M

H
be a minimal subflow of SH(M

ext), then I
M

A
∗ J

M

H
is a minimal subflow

of SB(M
ext). Moreover if u ∈ I

M

A
and v ∈ J

M

H
are idempotents, then u ∗ v is

an idempotent.

Proof. Let N∗ ≻ M ext be an |M |+-saturated model. Clearly, u ⊢ A00 and
v ⊢ H0 since they are idempotents. Let a1, a2, h1 ∈ B(N∗) such that a1 |= u,
h1 |= v|(M ext, a1), and a2 |= u|(M ext, a1, h1), let h2 |= v|N∗, then

u ∗ v ∗ u ∗ v = tp
(

a1h1a2h2

/

M ext
)

= tp
(

a1a2h
a2
1 h2

/

M ext
)

Since H0 is a normal subgroup of B, we see that ha2
1 ∈ B00(N∗). By Fact

1.3.6, tp (h2/N
∗) is B00(N∗)-invariant, so tp (h2/N

∗) = tp (ha2
1 h2/N

∗), which
implies that

tp
(

a1a2h
a2
1 h2

/

M ext
)

= tp
(

a1a2
/

M ext
)

∗ tp
(

ha2
1 h2

/

M ext
)

= u ∗u ∗ v = u ∗ v.

So u ∗ v is an idempotent.
We now show that I

M

A
∗J

M

H
is minimal. It suffices to show that I

M

A
∗J

M

H
⊆

SB(M
ext) ∗ r ∗ s for any r ∈ I

M

A
and s ∈ J

M

H
. Let α ∈ I

M

A
and β ∈ J

M

H
,

then there are a ∈ A(N∗) and h ∈ H(N∗) such that α = tp (a/M ext) ∗ r and
β = tp (h/M ext) ∗ s. Let a′ ∈ A(N∗) realize r|(M ext, a, h0) and h0 ∈ H(N∗)
such that ha′

0 /H
0 = h/H0. Let h′ |= s|N∗. Then

tp
(

ah0

/

M ext
)

∗ r ∗ s = tp
(

ah0a
′h′

/

M ext
)

= tp
(

aa′ha′

0 h
′
/

M ext
)

,

10



and, since tp(ha′

0 h
′/N∗) is the heir of tp(ha′

0 h
′/M ext) by Fact 1.3.6, it is easy

to see that

tp
(

aa′ha′

0 h
′
/

M ext
)

= tp
(

aa′
/

M ext
)

∗ tp
(

ha′

0 h
′
/

M ext
)

= tp
(

a
/

M ext
)

∗ tp
(

a′
/

M ext
)

∗ tp
(

ha′

0 h
′
/

M ext
)

= tp
(

a
/

M ext
)

∗ tp
(

a′
/

M ext
)

∗ tp
(

hh′
/

M ext
)

= α ∗ β.

This completes the proof.

Lemma 2.1.3. Let I
M

A
and J

M

H
be minimal subflows of SA(M

ext) and SH(M
ext)

respectively. Let u ∈ I
M

A
and v ∈ J

M

H
be idempotents. Then u ∗ I

M

A
∗ J

M

H
is

the Ellis group in SB(M
ext) generated by u ∗ v.

Proof. By Lemma 2.1.2, I
M

A
∗J

M

H
⊆ SB(M

ext) is a miniaml subflow and u∗v
is an idempotent. The Ellis group containing u ∗ v is u ∗ v ∗SB(M

ext) ∗ u ∗ v.
We first show that u∗v∗SB(M

ext)∗u∗v ⊆ u∗I
M

A
∗J

M

H
. Let p ∈ SB(M

ext).
Take a1, a2, a3 ∈ A and h1, h2, h3 ∈ H such that

a1 |= u, h1 |= v|(M ext, a1), a2h2 |= p|(M ext, a1, h1),

a3 |= u|(M ext, a1, h1, a2, h2), and

h3 |= v|(M ext, a1, h1, a2, h2, a3).

Then u ∗ v ∗ p ∗ u ∗ v = tp(a1h1a2h2a3h3/M
ext). Now

a1h1a2h2a3h3 = a1a2h1
a2h2a3h3 = a1a2a3(h1

a2h2)
a3h3.

Let N∗ ≺ N∗∗ be extensions of M ext such that N∗ is |M |+-saturated and
N∗∗ is |N∗|+-saturated. Without lose of generality, we may assume that
a1 ∈ A(N∗∗) realizes the coheir of u over N∗ and h3 realizes the heir of
v over N∗∗, and h1, a2, h2, a3 ∈ B(N∗). Since tp(h3/M

∗) is a definable f -
generic type and (h1

a2h2) ∈ H(N∗), tp((h1
a2h2)h3/N

∗∗) is the unique heir
of tp((h1

a2h2)h3/M
ext). Similarly, tp(a1/M

∗) is a finitely satisfiable generic
type, so tp(a1a2a3/N

∗) is the unique coheir of tp(a1a2a3/M
ext). We conclude

that

tp(a1a2a3(h1
a2h2)

a3h3/M
ext) = tp(a1a2a3/M

ext) ∗ tp((h1
a2h2)

a3h3/M
ext)

Clearly,

tp(a1a2a3/M
ext) = tp(a1/M

ext) ∗ tp(a2a3/M
ext) ∈ u ∗ SA(M

ext),

11



and

tp((h1
a2h2)

a3h3/M
ext) = tp((h1

a2h2)
a3/M ext) ∗ tp(h3/M

ext) ∈ SH(M
ext) ∗ v.

By Fact 1.3.3(vi), we have u∗SA(M
ext) = u∗I

M

A
. Clearly, SH(M

ext)∗v = J
M

H
.

So u∗v ∗SB(M
ext)∗u∗v ⊆ u∗I

M

A
∗J

M

H
. On the other side, if u1, u2 ∈ u∗I

M

A

and v1, v2 ∈ J
M

H
such that u1 ∗ v1/B

00 = u2 ∗ v2/B
00, then we conclude

that u1/A
00 = u2/A

00 and v1/H
0 = v2/H

0. Since J
M

H
is an Ellis group by

Lemma 1.3.7, we have u1 = u2 and v1 = v2, which implies that p 7→ p/B00 is
a bijection from u∗I

M

A
∗J

M

H
to B/B00. So u∗I

M

A
∗J

M

H
= u∗v∗SB(M

ext)∗u∗v
is the Ellis group generated by u ∗ v by Fact 1.3.2(iv).

The above Lemma shows that E
M

A ∗ J
M

H
is an Ellis group in SB(M

ext)

when E
M

A is a Ellis group of SA(M
ext) and J

M

H
a minimal subflow (or Ellis

group) of SH(M
ext).

From now on, we use notation E
M

A to denote a Ellis group in SA(M
ext)

and E
M

B = E
M

A ∗ J
M

H
.

Lemma 2.1.4. Let q ∈ E
M

A and p ∈ J
M

H
, then E

M

B = q ∗ SB(M
ext) ∗ p.

Proof. Clearly, E
M

A = q ∗ SA(M
ext) and J

M

H
= SH(M

ext) ∗ p. So E
M

A ∗ J
M

H
⊆

q ∗ SB(M
ext) ∗ p.

Conversely, let r ∈ SB(M
ext). Let N∗ ≻ M ext such that N∗ is |M |+-

saturated. Take a, a0 ∈ A(N∗) and h0 ∈ H(N∗) such that a |= the coheir of
q over (M ext, a0, h0) and a0h0 |= r. Let h |= p|N∗ Then tp(h/N∗) is f -generic
and definable. So the transition tp(h0h/N

∗) is definable over M ext, and thus
an heir of tp(h0h/M

ext). We see that

q ∗ r ∗ p = tp(aa0h0h/M
ext) = tp(aa0/M

ext) ∗ tp(h0h/M
ext) ⊆ E

M

A ∗ J
M

H
.

This completes the proof.

Corollary 2.1.5. Let E
M

A and J
M

H
be Ellis groups in SA(M

ext) and SH(M
ext)

respectively. Then for any r1, r2, r
∗ ∈ E

M

A and s1, s2, s
∗ ∈ J

M

H
such that

r1 ⊢ a1/A
00, r2 ⊢ a2/A

00, s1 ⊢ h1/H
0, s2 ⊢ h2/H

0 , r∗ ⊢ a1a2/A
00, and

s∗ ⊢ ha2
1 h2/H

0. Then

(r1 ∗ s1) ∗ (r2 ∗ s2) = r∗ ∗ s∗.

Proof. It is easy to see from Lemma 2.1.3 and Fact 1.3.2 that (r1 ∗ s1) ∗ (r2 ∗
s2) ⊢ a1a2h

a2
1 h2/B

00. On the other side, if r∗ ⊢ a1a2/A
00 and s∗ ⊢ ha2

1 h2/H
0,

then r∗ ∗ s∗ ⊢ a1a2h
a2
1 h2/B

00. So (r1 ∗ s1) ∗ (r2 ∗ s2) = r∗ ∗ s∗ as required.
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2.2 Groups with compact-dfg decomposition

We assume in this section that G = G(M) is a group definable in M, with
parameters from M0 = Qp, and G = CH is a decomposition of G, where H
is a Qp-definable subgroup of G with dfg, and C a Qp-definbale subset of G
such that C(M0) is definably compact, and open in G(M0).

Since C is open in G, the infinitesimals of C over M0, which is the in-
tersection of all Qp-definable open subsets of C, denoted by µC , coincides
with µG, the infinitesimals of G over M0. By the continuity of the group
operation, we see that µg

G = µG for all g ∈ G(M0). Let VG = G(M0)µG, then
it is the subgroup of G consisting of all elements have its standard part in
G(M0). It is easy to see that VG ≤ NG(µG) = NG(µC).

For any N ≻ M0, we use G
0(N) to denote G0∩G(N). By VG(N) we mean

set G(M0)µG(N), which is the subgroup of G(N) consisting of all elements
have its standard part in G(M0).

Let Y be an N -definable subset of G. By Y (N)/H we mean the set
{g/H(N)| g ∈ Y (N)}. Let X = G/H , we write Def(X(N)) for the boolean
algebra of all sets of the form {Y (N)/H| Y ∈ Def(G(N))}, and SX(N) is the
space of all ultrafilters of Def(X(N)), similarly for Defext(X) and SX(N

ext).
We now consider quotient space X = G/H , which admits a quotient

topology. Let π be the projection from G to X , then it is easy to see that
π could be naturally extended to a onto homomorphism from SG(M

ext) to
SX(M

ext).

Lemma 2.2.1. Let g, h ∈ VG such that tp((g/H)/M0) = tp((h/H)/M0),
then there is ǫ1, ǫ2 ∈ µG such that ǫ1gH = hH and gǫ2H = hH.

Proof. For any g, h ∈ VG, we have µGg = gµG and µGh = hµG. So it sufficies
to show that gµGH ∩ hµGH 6= ∅.

If gµGH ∩ hµGH = ∅, then by compactness there is a M0-definable open
subgroup D of C such that D ⊇ µG and gDH ∩ hDH = ∅. Since µG ⊆ D,
we see that gD = st(g)D and hD = st(h)D, and thus g/H ∈ st(g)D/H and
h/H /∈ st(g)D/H . We conclude that tp((g/H)/M0) 6= tp((h/H)/M0). A
contradiction.

Lemma 2.2.2. Let p ∈ SG(M
ext) be H0(M)-invariant. Then for any k ∈ K

and h ∈ H such that kh |= p, H0(M)
k
⊆ µGH.

Proof. Let h0 ∈ H0(M). Since p is H0(M)-invariant, we see that

tp(h0kh/M
ext) = tp(kh/M ext),

and hence tp((h0k/H)/M0) = tp((k/H)/M0). By Lemma 2.2.1, we have
h0kH = kǫH for some ǫ ∈ µG. So h0

k ∈ µGH for all h0 ∈ H0(M) as
required.
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2.3 Minimal subflows and Ellis groups of groups ad-

mitting Iwasawa decomposition

In this section we assume that L is the language of the rings,M0 = (Qp,+,×, 0, 1)
is the standard model of pCF, M will denote an elementary extension of M0,
and Lext

M the associated language of M ext. We assume that the Lext
M -structure

M∗ is a monster model of Th(M ext), and M = M∗ ↾ L is the reduction of M∗

on L. Clearly, M ≻ M0 is a monster model of pCF.
We now consider the case that G = G(M) is a linear algebraic group

over Qp admitting a Iwasawa decomposition G = KB, where B is a borel
subgroup of G, definable over Qp, and K is a Qp-definable open subgroup of
G such that K(Qp) is compact.

We can decompose B into a semi-product B = T ⋊Bu, where Bu(Qp) is
the maximal unipotent subgroup of B(Qp) and T (Qp) a torus. a basic fact
is that NG(Bu) = NG(B) = B (see [31]). Moreover, T is an almost direct
product of Tspl and Tan, where Tspl(Qp) is Qp-split, thus is isomorphic to Gk

m

for some k ∈ N, and Tan(Qp) is anisotropic, which is compact [26, 33].
For simplity, We assume that B = A⋊H where A = Tan and H = S⋊Bu.

By [34], H has dfg and H00 = H0 = S0 ⋊ Bu. Let C = KA, it is easy to
see that G = CH is a compact-dfg decomposition. By [22], both K and A
have fsg, K0 = K00 = µG, and A0 = A00 = µG ∩ A. By Lemma 2.1.1,
B00 = A0 ⋊H0 = B0, and B/B0 ∼= T/T 0 is commutative.

Lemma 2.3.1. Let p ∈ SG(M
ext) be H0(M)-invariant. Suppose that g |= p,

then g = ǫb for some ǫ ∈ µG, b ∈ B with ǫ, b ∈ dcl(M, g).

Proof. Let g = kb′ for some k ∈ K and b′ ∈ B. Since pCF has definable
Skolem functions (see [32]), we may assume k, b′ ∈ dcl(M, g). By Lemma
2.2.2, we have that H0(M)k ⊆ µGH . Note that Bu(M0) ⊆ H0(M). So in
particular, we have Bu(M0)

k ⊆ µGH ∩ VG. Take a standard part map, we
have

st(Bu(M0)
k) = Bu(M0)

st(k) ⊆ st(µGH ∩ VG) = H(M0) ⊆ B(M0).

Thus st(k) ∈ NG(Bu(M0)) = B(M0). Let ǫ ∈ µG such that k = ǫ · st(k),
then g = ǫ · st(k)b′. Let b = st(k)b′, then g = ǫb ∈ µGB as required. Clearly
ǫ, b ∈ dcl(M, g).

Now it is easy to see that

Corollary 2.3.2. Let I
M

B
be a minimal subflow of SB(M

ext), b |= p1 ∈ I
M

B
,

and g ∈ G(M). Then there exist ǫ ∈ µG∩dcl(M, b, g) and b′ ∈ B∩dcl(M, b, g)
such that bg = ǫb′ ∈ µGB.
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Proof. Since tp(h0g/M
ext) is B0(M)-invariant, thus is H0(M)-invariant.

Lemma 2.3.3. Let g ∈ G and ǫ ∈ µG such that tp (g/M0, ǫ) is finitely
satisfiable in M0, then ǫg ∈ µG. Particularly, if N ≻ M0 and g ∈ G such
that tp (g/N) is finitely satisfiable in M0, then (µG(N))g ≤ µG.

Proof. Suppose that g and ǫ satisfy the condition, and ǫg /∈ µG, then there
exists anM0-definable open neighorhood U around idG satisfies ǫg /∈ U . Thus
the formula (ǫx /∈ U) is in tp (g/M0, ǫ). So by the type is finitely satisfiable
in M0, we know that there exists g0 ∈ G(M0) such that ǫg0 /∈ U , hence is not
in µG. A contradiction.

Lemma 2.3.4. Let ǫ0, ǫ ∈ µG and b0, b ∈ B such that ǫ0b0 = ǫb, then b0, b
are in the same coset of B0.

Proof. bb−10 = ǫ−1ǫ0 ∈ µG ∩B = µB. Since each ∅-definable subgroup A of B
with finite index is open, we have µB |= A, so µB ≤ B0, which means b0 and
b are in the same coset of B0.

We will freely use the above fact. Note that for any b ∈ B, and any
finite-index subgroup A of B defianble over M0, there is b0 ∈ B(M0) such
that bA = b0A. So the coset bB0 is defined by a partial type over M0 for any
b ∈ B.

Let I
M

A
⊆ SA(M

ext) and J
M

H
⊆ SH(M

ext) be minimal subflows with

u ∈ I
M

A
and v ∈ J

M

H
are idempotents. Then by Lemma 2.1.2, I

M

B
= I

M

A
∗J

M

H

is a minimal subflow of SB(M
ext) and p0 = u ∗ v ⊢ B0 is an idempotent. By

Lemma 2.1.3, the Ellis group E
M

B = p0∗I
M

B
of SB(M

ext) equals to u∗I
M

A
∗J

M

H
.

By Fact 1.3.2(iv), τ : p 7→ p/B0 is an isomorphic from E
M

B to B/B0.
Suppose that δ ∈ B, consider the map lδ : E

M

B → E
M

B defined by p 7→ pδ ∗ p,
where pδ ∈ E

M

B such that pδ/B
0 = δ/B0. Then lδ is a bijection from E

M

B to
itself, and lδ1 = lδ2 iff δ1/B

0 = δ2/B
0. Besides, for any δ1, δ2 ∈ B, we have

lδ1 ◦ lδ2 = lδ1δ2 .
By Lemma 2.3.1, we see that p ∗ q ⊢ µGB for each p ∈ I

M

B
and q ∈

SK(M
ext). We now assume that u ∈ I

M

A
and v ∈ J

M

H
are an idempotents,

E
M

B = E
M

A ∗ J
M

H
is the Ellis group of SB(M

ext), and p0 = u ∗ v ∈ E
M

B is the
idempotent.

Lemma 2.3.5. If δ = ah with a ∈ A and h ∈ H. Let q ∈ E
M

A such that
q/A0 = a/A0, p ∈ SH(M

ext) such that p is finitely satisfiable in M0 and
p/N0 = h/H0 . Then

lδ(p0) = q ∗ p ∗ p0.
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Proof. Assume that p0 = u ∗ v with u and v be idempotents of E
M

A and J
M

H

respectively. Let N∗ be an |M |+-sarurated extension of M ext, a1 ∈ A(N∗)
and h1 ∈ H(N∗) such that a1 |= u and h1 |= v|(M ext, a1). Let N∗∗ be an
|N∗|+-sarurated extension of N∗. Take a0 ∈ A realizing the generic extension
of q over N∗∗. Take h0 ∈ H(N∗∗) realizing p such that tp(h0/N

∗) is finitely
satisfiable in M0. Then

q ∗ p ∗ p0 = tp(a0h0a1h1/M
ext) = tp(a0a1

h0h0h1/M
ext).

Since tp(h0/N
∗) is finitely satisfiable in M0, we see that

a1
h0 ∈ (µG(N

∗))h0 ∩ A(N∗∗) ≤ µG ∩A(N∗∗) = A0(N∗∗)

by Lemma 2.3.3. Now tp(a0/N
∗∗) is a generic type and thus A0(N∗∗)-

invariant under the right action. So tp(a0/N
∗∗) = tp(a0a1

h0/N∗∗) is finitely
satisfiable in M0. We conclude that

tp(a0a1
h0h0h1/M

ext) = tp(a0a1
h0/M ext) ∗ tp(h0h1/M

ext)

= tp(a0/M
ext) ∗ tp(h0h1/M

ext),

which is in E
M

B By Lemma 2.1.3. Since

tp(a0/M
ext) ∗ tp(h0h1/M

ext) ⊢ a0h0/B
0 = ah/B0 = δ/B = lδ(p0)/B,

we have
q ∗ p ∗ p0 = tp(a0/M

ext) ∗ tp(h0h1/M
ext) = lδ(p0).

Lemma 2.3.6. If p = lδ(p0) and p′ = lδ′(p0), then p ∗ p′ = lδδ′(p0).

Proof. Since p ⊢ δ/B0 and p ⊢ δ′/B0, we have p ∗ p′ ⊢ δδ′/B0. On the other
side lδδ′(p0) ⊢ δδ′/B0, which implies that p∗p′ = lδδ′(p0) by Fact 1.3.2(iv).

Lemma 2.3.7. Let q ∈ SG(M
ext) such that p0 ∗ q ⊢ µGδ0B

0, let p1 = lδ(p0),
where δ0, δ ∈ B. Then p1 ∗ q ⊢ µGδδ0B

0.

Proof. Let N∗∗ ≻ N∗ ≻ M , where N∗ is |M |+-saturated and N∗∗ is |N∗|+-
saturated. Let δ = ah with a ∈ A and h ∈ H .

Let and a0 ∈ A such that tp(a0/M
ext) ∈ Eext

A and tp(a0/N
∗∗) ⊢ a/A0 is

finitely satisfiable in M0. As h/H0 is a partial type over M0, there is h0 ∈
H(N∗∗) such that tp(h0/N

∗) ⊢ h/H0 is finitely satisfiable in M0. Without
loss of generality, we may assume that δ, δ0 ∈ B(N∗).
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By Lemma 2.3.5,

lδ(p0) = tp(a0/M
ext) ∗ tp(h0/M

ext) ∗ p0.

Let b ∈ B(N∗) and g ∈ G(N∗) such that b |= p0 and g |= q|(M ext, b), then
there are c ∈ µG(N

∗) and b′ ∈ δ0B
0(N∗) such that bg = cb′. Now

lδ(p0) ∗ q = tp(a0/M
ext) ∗ tp(h0/M

ext) ∗ p0 ∗ q = tp(a0h0cb
′/M ext).

By Lemma 2.3.3, ch0 ∈ µG(N
∗∗) and thus

a0h0cb
′ = a0c

h0h0b
′ ∈ a0µGh0δ0B

0 = µGa0h0δ0B
0 = µGδδ0B

0.

This completes the proof.

Take a generic type qM ∈ SK(M
ext) such that qM ⊢ K0. We fix some

δ0 ∈ B such that p0 ∗ qM ⊢ K0δ0B
0. By Lemma 2.3.7 we have:

Corollary 2.3.8. Write pM = lδ−1

0

(p0). Then lδ(pM) ∗ qM ⊢ µGB
0δ for each

δ ∈ B. Particularly, pM ∗ qM ⊢ µGB
0 = K0B0

We now prove that qM ∗ pM is an idempotent in a minimal subflow. We
will denote the space of generic types in SK(M

ext) by I
M

K
.

Lemma 2.3.9. Suppose q1 ∈ I
M

K
, p, p′ ∈ E

M

B . If p = lδ(pM) for some δ ∈ B.
Then we have q1 ∗ p ∗ qM ∗ p′ = q1 ∗ lδ(p

′).

Proof. By Corollary 2.3.8, p ∗ qM ⊢ µGδB
0. Without loss of generality, we

main assume that

q1 ∗ p ∗ qM ∗ p′ = q1 ∗ tp(ǫδ/M
ext) ∗ p′

for some ǫ ∈ µG. It is easy to see that q1 ∗ tp(ǫδ/M ext) = q1 ∗ tp(δ/M ext)
since q1 is generic.

Let u ∈ E
M

A , then by Lemma 2.1.4, u ∗ SB(M
ext) ∗ p′ ⊆ E

M

B . We assume
that u ⊢ A0 ⊆ µG is an idempotent. So q1 ∗ u = q1. We have

q1 ∗ p ∗ qM ∗ p′ = q1 ∗ tp(δ/M
ext) ∗ p′ = q1 ∗ (u ∗ tp(δ/M ext) ∗ p′).

Assume that p′ ⊢ δ′B0, then we have u ∗ tp(δ/M ext) ∗ p′ ⊢ µGδδ
′B0. Since

both u ∗ tp(δ/M ext) ∗ p′ and lδ(p
′) are in E

M

B , and

lδ(p
′)/B0 = (δδ′)/B0 = (u ∗ tp(δ/M ext) ∗ p′)/B0,

we conclude that lδ(p
′) = u ∗ tp(δ/M ext) ∗ p′ by Fact 1.3.2. Thus

q1 ∗ p ∗ qM ∗ p′ = q1 ∗ (u ∗ tp(δ/M ext) ∗ p′) = q1 ∗ lδ(p
′)

as required.
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By Lemma 2.3.9, we see immediately that

Corollary 2.3.10. qM ∗ pM ∗ qM ∗ pM = qM ∗ pM . Namely, qM ∗ pM is an
idempotent

We now show that the subflow SG(M
ext) ∗ qM ∗ pM generated by qM ∗ pM

is minimal. We use KA to denote the definable set {ka| k ∈ K, a ∈ A}.

Lemma 2.3.11. Suppose that p ∈ J
M

H
. Then

SG(M
ext) ∗ p ⊆ SKA(M

ext) ∗ J
M

H
.

Proof. Let N∗ be an |M |+-saturated extension of M ext. Let s ∈ SG(M
ext).

Take k0 ∈ K(N∗), b0 ∈ B(N∗) and b ∈ B such that k0b0 |= s and h |= p|N∗.
Then:

s ∗ p = tp
(

k0b0h
/

M ext
)

.

Suppose that b0 = a0h0 with a0 ∈ A(N∗) and h0 ∈ H(N∗), then s ∗ p is
tp (k0a0h0h/M

ext).
By Fact 1.3.6, the heir p|N∗ is an f -generic type in SB(N

∗) and any
B(N∗)-translate of p|N∗ is f -generic and definable over M , so there is q∗ ∈
J

M

H
such that tp (h0h/N

∗) = q∗|N∗. Therefore we have:

s ∗ p = tp
(

k0a0h0h
/

M ext
)

= tp
(

k0a0
/

M ext
)

∗ tp
(

h0h
/

M ext
)

∈ SKA(M
ext) ∗ SH(M

ext).

Therefore SG(M
ext) ∗ p ⊆ SKA(M

ext) ∗ J
M

H
.

Proposition 2.3.12. Suppose s ∈ SG(M
ext), then

qM ∗ pM ∈ SG(M
ext) ∗ s ∗ qM ∗ pM = cl(G(M) · (s ∗ qM ∗ pM)).

Consequently, SG(M
ext) ∗ qM ∗ pM is a minimal subflow.

Proof. By the previous lemma, we may assume that s ∗ qM ∗ pM = q ∗ p1
where p1 = J

M

H
and q ∈ SKA(M

ext). Let N∗ be an |M |+ saturated extension

of M ext. Let k0 ∈ K(N∗) and a0 ∈ A(N∗) such that k0a0 |= q. Let u ∈ E
M

A

be an idempotent. Then u ∗ tp(a0/M
ext) ∗ p1 ∈ E

M

A ∗ J
M

H
= E

M

B .
If tp(a0/M

ext) ∗ p1 ⊢ δ/B0, then by Lemma 2.3.9 we see that

qM ∗ lδ−1(pM) ∗ qM ∗ (u ∗ tp(a0/M
ext) ∗ p1) = qM ∗ pM .
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Note that qM ∗ u = qM since u ⊢ A0 ⊆ K0 = µG. So we have

qM ∗ pM = qM ∗ lδ−1(pM) ∗ qM ∗ (u ∗ tp(a0/M
ext) ∗ p1)

= qM ∗ lδ−1(pM) ∗ qM ∗ tp(a0/M
ext) ∗ p1.

By Lemma 1.3.4(iii), there is r ∈ qM ∗ I
M

K
such that qM = r ∗ tp(k0/M

ext).
So we have

qM ∗ tp(a0/M
ext) ∗ p1 = r ∗ tp(k0/M

ext) ∗ tp(a0/M
ext) ∗ p1.

Take k ∈ K(N∗) realizing the unique generic (or coheir) extension of r over
(M ext, k0, h0) and h ∈ H realizing the heir of p1 over N∗. Then tp(h0h/N

∗)
the unique heir of some p ∈ J

M

H
. We see that

r ∗ tp(k0/M
ext) ∗ tp(a0/M

ext) ∗ p1

= (tp(k/M ext) ∗ tp(k0/M
ext)) ∗ (tp(h0/M

ext) ∗ tp(h/M ext))

= tp(kk0/M
ext) ∗ tp(h0h/M

ext) = tp(kk0h0h/M
ext).

On the other side,

r ∗ q ∗ p1 = r ∗ tp(k0a0/M
ext) ∗ p1 = tp(kk0h0h/M

ext).

We conclude that

qM ∗ pM = qM ∗ lδ−1(pM) ∗ r ∗ tp(k0/M
ext) ∗ tp(a0/M

ext) ∗ p1

= qM ∗ lδ−1(pM) ∗ r ∗ q ∗ p1

= qM ∗ lδ−1(pM) ∗ r ∗ s ∗ qM ∗ pM ,

which is in SG(M
ext) ∗ s ∗ qM ∗ pM as required.

Let qM , pM be as in above, and M = SG(M
ext) ∗ qM ∗ pM be the minimal

subflow generated by qM∗pM , we now compute the Ellis group E of SG(M
ext),

which is of the form qM ∗ pM ∗M.

Lemma 2.3.13. Assume again that E
M

B is the Ellis group of SB(M
ext) gen-

erated by pM . Then
qM ∗ pM ∗M = qM ∗ E

M

B

Proof. Let p1 ∈ E
M

B . By Lemma 2.3.9,

qM ∗ p1 = qM ∗ pM ∗ qM ∗ p1

= qM ∗ pM ∗ qM ∗ pM ∗ qM ∗ p1

= qM ∗ pM ∗ (qM ∗ p1 ∗ qM ∗ pM) ∈ qM ∗ pM ∗M.
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Thus, we have qM ∗E
M

B ⊆ qM ∗ pM ∗M.
Now we show that qM∗pM∗M ⊆ qM∗E

M

B . By lemma 2.3.11,M is a subset
of SKA(M

ext)∗J
M

H
, so it suffices to show qM ∗pM ∗SKA(M

ext)∗J
M

H
⊆ qM ∗E

M

B .

Let q ∈ SKA(M
ext) and p1 ∈ J

M

H
. By Lemma 2.3.1, pM ∗ q ⊢ µGB. Let

N∗ ≻ M ext be |M |+-saturated. Assume that pM ∗ q = tp(ǫa0h0/M
ext) for

ǫ ∈ µG(N
∗) = K0(N∗), a0 ∈ A(N∗), and h0 ∈ H(N∗).

Let k ∈ K(N∗) realize the coheir of qM over dcl(M ext, ǫ, a0, h0) and h |=
p1|N

∗. Then a similar argument as in Proposition 2.3.12 shows that

qM ∗ pM ∗ q ∗ p1 = tp(kǫa0h0h/M
ext)

= tp(kǫ/M ext) ∗ tp(a0/M
ext) ∗ tp(h0h/M

ext)

= qM ∗ tp(a0/M
ext) ∗ tp(h0h/M

ext).

Let u ∈ E
M

A be the idempotent. Then qM ∗ u = qM , so we have

qM ∗ tp(a0/M
ext) ∗ tp(h0h/M

ext) = qM ∗ u ∗ tp(a0/M
ext) ∗ tp(h0h/M

ext)

∈ qM ∗ E
M

A ∗ J
M

H
= qM ∗ E

M

B .

This completes the proof.

Theorem 1. The Ellis group of SG(M
ext) is isomorphic to Ellis group of

SB(M
ext). Namely, qM ∗ E

M

B
∼= E

M

B .

Proof. Recall that pM ⊢ B0δ−10 . Let r : E
M

B → qM ∗ E
M

B be the map defined
by p 7→ qM ∗ lδ−1

0

(p). Because lδ−1

0

is a bijection, we know r is an onto map.

Suppose p, p′ ∈ E
M

B and assume p = lδ(pM), p′ = lδ′(pM), then by lemma
2.3.9:

r(p) ∗ r(p′) = qM ∗ lδ−1

0
δ(pM) ∗ qM ∗ lδ−1

0
δ′(pM) = qM ∗ lδ−2

0
δδ′(pM).

Now lδ−2

0
δδ′(pM) ⊢ δ−30 δδ′B0 and p ∗ p′ ⊢ δ−20 δδ′B0, so

lδ−2

0
δδ′(pM) = lδ−1

0

(p ∗ p′),

and which implies that

r(p) ∗ r(p′) = qM ∗ lδ−2

0
δδ′(pM) = qM ∗ lδ−1

0

(p ∗ p′) = r(p ∗ p′).

So r is a group homomorphism.
Now it remains to show that r is injective. For p = lδ(pM), we have

r(p) = qM ∗ lδ−1

0
δ(pM) ⊢ µGB

0δ−20 δ. If r(p) = qM ∗ pM ⊢ µGB
0δ−10 , then

there are ǫ ∈ µG and b1, b2 ∈ B0 such that ǫb1δ
−2
0 δ = b1δ

−1
0 . We see that

ǫ ∈ µG∩B ⊆ B0, and conclude immediately that δ/B0 = δ0/B
0, thus p ⊢ B0

is the idempotent. So ker(r) = {id
E

M

B

}, i.e. r is an isompophism.
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Thus finally we have our main theorem:

Theorem 2. Suppose that G is a linear algebraic group over Qp admits a
Iwasawa decomposition KB, with K open and definably compact over Qp

and B a borel subgroup deinable over Qp. Then the Ellis group of SG(M
ext)

algebraically isomorphic to B/B0.

Example. We now consider the general linear group G(x) = GL(n, x).
Then G(Qp) has the Iwasawa decomposition G(Qp) = K(Qp)B(Qp), where
K(Qp) = GL(n,Zp) is a maxiaml open compact subgroup, and B(Qp) is the
subgroup consisting of all upper triangular matrices. Since B = D⋊Bu, where
D is the subgroup of diagonal matrices and Bu is the subgroup of strictly upper
triangular matrices, we see that B/B0 ∼= D/D0 ∼= (Gm/G

0
m)

n. Now Gm/G
0
m

is isomorphic to (Ẑ×Z∗p), with Ẑ = lim
←−

Z/n and Z∗p = {x ∈ Zp| ν(x) = 0} by

Remark 2.5 in [23]. We finally conclude that the Ellis group corresponding
to GL(n, x) is isomorphic to (Ẑ × Z∗p)

n, independent of the models.
Similarly, for G(x) = SL(n, x), we have that the corresponding Ellis group

is isomorphic to (Ẑ× Z∗p)
n−1.
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