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ALMOST O-MINIMAL STRUCTURES AND X-STRUCTURES

MASATO FUJITA

Abstract. We propose new structures called almost o-minimal structures and
X-structures. The former is a first-order expansion of a dense linear order with-
out endpoints such that the intersection of a definable set with a bounded open
interval is a finite union of points and open intervals. The latter is a variant
of van den Dries and Miller’s analytic geometric categories and Shiota’s X-sets
and Y-sets. In them, the family of definable sets are closed only under proper
projections unlike first-order structures. We demonstrate that an X-expansion
of an ordered divisible abelian group always contains an o-minimal expansion
of an ordered group such that all bounded X-definable sets are definable in the
structure.

Another contribution of this paper is a uniform local definable cell de-
composition theorem for almost o-minimal expansions of ordered groups M =
(M,<, 0,+, . . .). Let {Aλ}λ∈Λ be a finite family of definable subsets of Mm+n.
Take an arbitrary positive element R ∈ M and set B =]−R,R[n. Then, there
exists a finite partition into definable sets

Mm × B = X1 ∪ . . . ∪Xk

such that B = (X1)b ∪ . . . ∪ (Xk)b is a definable cell decomposition of B for
any b ∈ Mm and either Xi ∩Aλ = ∅ or Xi ⊆ Aλ for any 1 ≤ i ≤ k and λ ∈ Λ.
Here, the notation Sb denotes the fiber of a definable subset S of Mm+n at
b ∈ Mm. We introduce the notion of multi-cells and demonstrate that any
definable set is a finite union of multi-cells in the course of the proof of the
above theorem.

1. Introduction

O-minimal structures [5, 15, 20] have been studied model theoretically and geo-
metrically. An expansion of a dense linear order without endpointsM = (M,<, . . .)
is o-minimal if any definable subset ofM is a finite union of points and open inter-
vals. Studies on o-minimal structures are too many to be presented here. One of
main interests in studying o-minimal structures is their tame topology. They pos-
sess various tame topological properties such as monotonicity theorem and definable
cell decomposition theorem.

An interesting question is what topological properties are remained when the
definition of o-minimal structures is relaxed. In fact, many structures relaxing the
definition of o-minimal structures have been proposed and their topological proper-
ties have been investigated. Here is an incomplete list; weakly o-minimal structures
[17, 26], structures having o-minimal open core [4, 8], d-minimal structures [19, 24],
locally o-minimal structures [25, 14], models of DCTC [22] and uniformly locally
o-minimal structures of the second kind [9]. We propose a new relative of these
structures named an almost o-minimal structure in this paper. Why do we propose
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2 M. FUJITA

a new structure though many structures have been already proposed? We explain
why. The notation M denotes a structure and M denotes its universe below.

Toffalori and Vozoris proposed a locally o-minimal structure [25], which is defined
by simply localizing the definition of an o-minimal structure. An expansion of a
dense linear order without endpoints M = (M,<, . . .) is locally o-minimal if, for
any definable subset X of M and any point x ∈M , there exists an open interval I
containing the point x such that the intersection I∩X is a finite union of points and
open intervals. In spite of its similarity to the definition of o-minimal structures, a
locally o-minimal structure does not enjoy the localized properties possessed by o-
minimal structures. Schoutens introduced a model of DCTC generalizing a locally
o-minimal expansion of an ordered field [22]. Roughly speaking, a model of DCTC
is a locally o-minimal structure which is o-minimal at the infinities ±∞. More
precisely, for any set X in M definable in a model of DCTC, there exist a, b ∈ M
such that X ∩ {x < a} and X ∩ {x > b} are empty sets or open intervals. A locally
o-minimal expansion of an ordered field and a model of DCTC possess several
tame topological properties. Readers who are interested in them should consult
[8, 22, 12].

The author have pursued another direction. His initial purpose is to find a
necessary and sufficient condition for a locally o-minimal structure admitting a
local definable cell decomposition [9]. The answer was a uniformly locally o-minimal
structure of the second kind when the structure is definably complete.

Definition 1.1. We consider an expansion M = (M,<, . . .) of a dense linear order
without endpoints. It is definably complete if every definable subset of M has both
a supremum and an infimum in M ∪ {±∞} [18]. A definably complete expansion
of an ordered group is divisible and abelian [18, Proposition 2.2].

A locally o-minimal structure M = (M,<, . . .) is a uniformly locally o-minimal
structure of the second kind if, for any positive integer n, any definable set X ⊆
Mn+1, a ∈ M and b ∈ Mn, there exist an open interval I containing the point
a and an open box B containing b such that the definable sets Xy ∩ I are finite
unions of points and open intervals for all y ∈ B. Here, Xy denotes the fiber
{x ∈ M | (y, x) ∈ X}. When we can choose B = Mn, the structure M is called a
uniformly locally o-minimal structure of the first kind.

We frequently consider definably complete uniformly locally o-minimal expan-
sions of the second kind of ordered groups. We simply call them DCULOAS struc-
tures. Their local tame topological properties have been clarified in a series of
papers [9, 11, 12].

In many potential applications to other mathematical branches such as geometry
and analysis, the universe is the set of reals R. The author also demonstrated that a
locally o-minimal expansion of the ordered group of reals admits local definable cell
decomposition better than a general definably complete uniformly locally o-minimal
structure of the second kind in an unpublished paper [10], which is a special case of
Theorem 4.29. A DCULOAS structure is not an excellent abstraction of locally o-
minimal expansion of the ordered group of reals. The significant difference between
the real case and the general case is that any bounded definable set is a finite union
of points and open intervals in the former, but it may not be in the latter. This is
the reason why we focus the following notion:
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Definition 1.2. An expansion M = (M,<, . . .) of densely linearly ordered set
without endpoints is almost o-minimal if any bounded definable set in M is a finite
union of points and open intervals.

Note that an locally o-minimal expansion of the ordered set of reals (R, <) is
almost o-minimal. Roughly speaking, an almost o-minimal structure is o-minimal
on bounded regions. The notion of almost o-minimality is a complementary notion
of DCTC in a sense. A locally o-minimal structure is o-minimal if and only if
it is simultaneously a model of DCTC and almost o-minimal as demonstrated in
Proposition 4.8.

The notion of subanalytic sets is another useful geometrical concept [1, 13]. A
subset of X of Rn is subanalytic if each point of Rn has a neighborhood U such
that X ∩ U is a finite union of sets of the form Im(f1) \ Im(f2), where f1 and f2
are proper real analytic maps from real analytic manifolds to Rn. The projection
image of a subanalytic set is not necessarily subanalytic, but its image under a
proper projection is again subanalytic. The family of subanalytic sets are not the
family of sets definable in a first-order language because it is not closed under taking
the projection image.

In [6], van den Dries andMiller generalized the notion of subanalytic sets and pro-
posed an analytic-geometric category and clarified the relation between the analytic-
geometric category of subanalytic sets and an o-minimal structure which is called
the restricted analytic field Ran. Shiota also proposed X-sets and Y-sets in [23].
They are also generalization of subanalytic sets. The family of sets ‘definable’ in
them is only closed under taking the image under a proper projection. In addition,
their underlying set is the set of reals R. We want to generalize their concepts when
underlying set is a densely linearly ordered set without endpoints. We propose the
following structure generalizing Shiota’s X-sets and Y-sets.

Definition 1.3. Let (M,<) be a densely linearly ordered set without endpoints.
A map p from a subset X of Mm to Mn is proper if the inverse image p−1(U) of
an arbitrary bounded open box U in Mn is bounded.

An X-structure is a triple X = (M,<,S = {Sn}n∈N) of a densely linearly ordered
set without endpoints (M,<) and the families Sn of subsets in Mn satisfying the
following conditions:

(1) For all x ∈ M , the singletons {x} belong to S1. All open intervals also
belong to S1.

(2) The sets {(x, y) ∈M2 | x = y} and {(x, y) ∈M2 | x < y} belong to S2.
(3) Sn is a boolean algebra and Mn ∈ Sn;
(4) We have X1 ×X2 ∈ Sm+n whenever X1 ∈ Sm and X2 ∈ Sn;
(5) For any permutation σ of {1, . . . , n}, the image σ̃(X) belongs to Sn when

X ∈ Sn and the notation σ̃ : Mn → Mn denotes the map given by
σ̃(x1, . . . , xn) = (xσ(1), . . . , xσ(n));

(6) Let π : Mn → Mm be a coordinate projection and X ∈ Sn such that the
restriction π|X of π to X is proper. Then, the image π(X) belongs to Sm.

(7) The intersection I ∩X is a finite union of points and open intervals when
X ∈ S1 and I is a bounded open interval.

The set M is called the universe and the underlying set of the X-structure X . A
subset X of Mn is called X-definable in X when X is an element of Sn. A set
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X-definable in X is simply called X-definable when X is clear from the context. A
map from a subset of Mm to Mn is X-definable if its graph is X-definable.

When (M,<, 0,+) is an ordered divisible abelian group and the addition is X-
definable, we call the X-structure an X-expansion of an ordered divisible abelian
group. We define an X-expansion of an ordered real closed field in the same manner.

In Shiota’s formulation, an X-set is locally a finite union of points and open
intervals. Here, we call that X is locally a finite union of points and open intervals
when, for any point x ∈ R, there exists an open interval I containing the point x
such that I ∩X is a finite union of points and open intervals. The formulation by
van den Dries and Miller is similar. If a subset X of R is locally a finite union of
points and open intervals, it satisfies the condition (7) in Definition 1.3 because the
closed bounded interval is compact in R. But, it is not true in a general densely
linearly ordered set without endpoints (M,<). In Shiota’s original formulation, we
cannot deduce several good properties enjoyed by the X-structure defined in our
formulation when the underlying set is a general M .

An almost o-minimal structure is an X-structure. The following is another im-
portant example of X-structures.

Definition 1.4. Let R = (M,<, . . .) be an o-minimal structure. A subset X ofMn

is semi-definable in R if the intersection U ∩X is definable in R for any bounded
open box U in Mn. A map from a subset of Mm to Mn is semi-definable if its
graph is semi-definable. The family S(R) = {S(R)n}n∈N of all semi-definable sets
satisfies the conditions in Definition 1.3. The X structure X(R) = (M,<,S(R)) is
called the X-structure of semi-definable sets in R.

We study general X-structures in Section 2. The main theorems of this section
are the structure theorems Theorem 2.13 and Theorem 2.25. The former says
that an X-expansion of an ordered divisible abelian group always contains an o-
minimal expansion R of an ordered group such that all bounded X-definable sets
are definable in the structure R. The latter gives a sufficient condition for an X-
expansion of an ordered divisible abelian group being an X-expansion of an ordered
real closed field. The basic property of dimension of X-definable sets are also
investigated in this section.

The X-structures of semi-definable sets in an o-minimal structure are studied in
Section 3. The notion of semi-definable connectedness is introduced in this section.
The main theorem of this section is Theorem 3.6, which gives equivalent conditions
for a semi-definable set to be semi-definably connected and also demonstrates the
existence of semi-definably connected components.

Section 4 is devoted for the study of almost o-minimal structures. After we
investigate the basic properties of almost o-minimal structures, we prove a uniform
local definable cell decomposition theorem. It is the last main theorem of this
paper. The definition of cells and the local definable cell decomposition theorem
for a definably complete uniformly locally o-minimal structures of the second kind
are as follows:

Definition 1.5 (Definable cell decomposition). Consider an expansion of dense
linear order without endpoints M = (M,<, . . .). Let (i1, . . . , in) be a sequence of
zeros and ones of length n. (i1, . . . , in)-cells are definable subsets of Mn defined
inductively as follows:

• A (0)-cell is a point in M and a (1)-cell is an open interval in M .
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• An (i1, . . . , in, 0)-cell is the graph of a definable continuous function defined
on an (i1, . . . , in)-cell. An (i1, . . . , in, 1)-cell is a definable set of the form
{(x, y) ∈ C ×M | f(x) < y < g(x)}, where C is an (i1, . . . , in)-cell and f
and g are definable continuous functions defined on C with f < g.

A cell is an (i1, . . . , in)-cell for some sequence (i1, . . . , in) of zeros and ones. The
sequence (i1, . . . , in) is called the type of an (i1, . . . , in)-cell. An open cell is a
(1, 1, . . . , 1)-cell. The dimension of an (i1, . . . , in)-cell is defined by

∑n

j=1 ij .
We inductively define a definable cell decomposition of an open box B ⊆ Mn.

For n = 1, a definable cell decomposition of B is a partition B =
⋃m

i=1 Ci into finite
cells. For n > 1, a definable cell decomposition of B is a partition B =

⋃m

i=1 Ci into
finite cells such that π(B) =

⋃m

i=1 π(Ci) is a definable cell decomposition of π(B),
where π :Mn →Mn−1 is the projection forgetting the last coordinate. Consider a
finite family {Aλ}λ∈Λ of definable subsets of B. A definable cell decomposition of B
partitioning {Aλ}λ∈Λ is a definable cell decomposition of B such that the definable
sets Aλ are unions of cells for all λ ∈ Λ.

Theorem 1.6 (Local definable cell decomposition theorem, [9, Theorem 4.2]).
Consider a definably complete uniformly locally o-minimal structure of the second
kind M = (M,<, . . .). Let n be an arbitrary positive integer. Let {Aλ}λ∈Λ be a
finite family of definable subsets of Mn. For any point a ∈Mn, there exist an open
box B containing the point a and a definable cell decomposition of B partitioning
the finite family {B ∩ Aλ | λ ∈ Λ and B ∩ Aλ 6= ∅}.

The above theorem says nothing about the relationship between decompositions
at two distinct points. When the considered structure is an almost o-minimal
expansion of an ordered group, we can obtain the following uniform local definable
cell decomposition theorem:

Theorem 1.7 (Uniform local definable cell decomposition). Consider an almost
o-minimal expansion of an ordered group M = (M,<, 0,+, . . .). Let {Aλ}λ∈Λ be
a finite family of definable subsets of Mm+n. Take an arbitrary positive element
R ∈ M and set B =]− R,R[n. Then, there exists a finite partition into definable
sets

Mm ×B = X1 ∪ . . . ∪Xk

such that B = (X1)b ∪ . . .∪ (Xk)b is a definable cell decomposition of B for any b ∈
Mm and either Xi∩Aλ = ∅ or Xi ⊆ Aλ for any 1 ≤ i ≤ k and λ ∈ Λ. Furthermore,
the type of the cell (Xi)b is independent of the choice of b with (Xi)b 6= ∅. Here,
the notation Sb denotes the fiber of a definable subset S of Mm+n at b ∈Mm.

We introduce the terms and notations used in this paper. When a first-order
structure is fixed, the term ‘definable’ means ‘definable in the structure with param-
eters.’ The notation f |A denotes the restriction of a map f : X → Y to a subset A
of X . Consider a linearly ordered set without endpoints (M,<). An open interval
is a nonempty set of the form {x ∈ M | a < x < b} for some a, b ∈ M ∪ {±∞}.
It is denoted by ]a, b[ in this paper. The closed interval is defined similarly and
denoted by [a, b]. We use the notations ]a, b] and [a, b[ for half open intervals. The
set M equips the order topology induced from the order <. The affine space Mn

equips the product topology of the order topology. We consider these topologies
unless otherwise stated. An open box is the Cartesian product of open intervals.
For a topological space T and its subset A, the notations A, int(A), ∂A and bd(A)
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denote the closure, interior, frontier and boundary of A, respectively. The notation
|S| denotes the cardinality of a set S. It also denotes the absolute value of an
element. This abuse of notation will not confuse readers.

2. Geometry of X-structures

We study X-structures in this section.

2.1. X-definable maps. We first investigate X-definable maps. Note that the
domain of definition of an X-definable map is not necessarily X-definable. We can
easily get the following lemma.

Lemma 2.1. Consider an X-structure whose underlying set is M and an X-
definable map ϕ : X → Mn. Take an X-definable subset Y of X. The restriction
ϕ|Y of ϕ to Y is X-definable.

Proof. Easy. We omit the proof. �

We investigate when the image and the inverse image of an X-definable set under
an X-definable map are again X-definable.

Lemma 2.2. Consider an X-structure whose underlying set is M . Let X be an
X-definable subset of Mm and ϕ : X → Mn be an X-definable map. The image
ϕ(X) is X-definable when X is bounded or ϕ is proper.

Proof. Consider the graph Γ(ϕ) = {(x, y) ∈ X × Mn | y = ϕ(x)}. Consider
the projection forgetting the first m coordinates. The image ϕ(X) is the projection
image of the graph. We can easily demonstrate that the restriction of the projection
to the graph is proper. �

Definition 2.3. Let (M,<) be a linearly ordered set without endpoints. Let X
be a subset of Mm and f : X → Mn be a map. The map f satisfies the bounded
image condition if the image f(X ∩ V ) is bounded for any bounded open box V of
Mm.

Lemma 2.4. Consider an X-structure whose underlying set is M . Let X and Y
be X-definable subsets of Mm and Mn, respectively. Let ϕ : X → Mn be an X-
definable map. The inverse image ϕ−1(Y ) is X-definable when Y is bounded or ϕ
satisfies the bounded image condition.

Proof. The proof is similar to that of Lemma 2.2. We omit the proof. �

Corollary 2.5. Consider an X-structure whose underlying set is M . Let ϕ : X →
M be an X-definable function satisfying the bounded image condition. Take c ∈M .
The sets {x ∈ X | ϕ(x) = c}, {x ∈ X | ϕ(x) < c} and {x ∈ X | ϕ(x) > c} are
X-definable.

Proof. The sets given in the corollary are the inverse images of {c}, ] −∞, c[ and
]c,∞[ under the function ϕ. The corollary follows from Lemma 2.4. �

Example 2.6. Consider a definably complete structure M = (M,<, . . .). The image
of a definable closed and bounded set under a definable continuous map f is again
definable, closed and bounded by [18, Proposition 1.10]. It means that the map f
satisfies the bounded image condition in this case. It is not true in an X-structure.

The ordered field (Ralg, <,+, ·, 0, 1) of the real numbers algebraic over Q is an
ordered real closed field and the induced structure is o-minimal. In particular, the
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structure is definably complete. Consider the X-structure of semi-definable sets in
this o-minimal structure. The set of positive integers N is semi-definable. Take
an, bn ∈ Q so that an < an+1 < π < bn+1 < bn for all n ∈ N and limn→∞ an =
limn→∞ bn = π. Here, π denotes the pi = 3.14 . . .. We define a semi-definable
function f on [a1, b1]. The graph of the restriction of f to [ai, ai+1] is the segment
connecting the points (ai, i) and (ai+1, i+1) for any i ∈ N. We define the restriction
of f to [bi, bi+1] in the same manner. The function f is X-definable and continuous,
but its image is not bounded.

The composition of two X-definable map is not necessarily X-definable. We find
a sufficient condition for the composition being X-definable.

Lemma 2.7. Consider an X-structure. Let ϕ : X → Y and ψ : Y → Z be two
X-definable maps. The composition ψ ◦ϕ is X-definable if ψ is proper or ϕ satisfies
the bounded image condition.

Proof. Let M be the underlying set of the X-structure. Let M l, Mm and Mn be
the ambient spaces of X , Y and Z, respectively. Consider the set A = {(x, y, z) ∈
X × Z × Y | z = ϕ(x), y = ψ(z)}. It is X-definable by Definition 1.3(3), (4) and
(5). Let π : M l+m+n → M l+n be the projection forgetting the last m coordinates.
The graph of the composition ψ ◦ ϕ is the image of A under the projection π. If
the restriction of π to A is proper, the graph is X-definable by Definition 1.3(6).
We have only to demonstrate that the restriction is proper.

Take a bounded open box U in M l and a bounded open box W in Mn. We
show that C = π−1(U ×W ) ∩A is bounded. When ψ is proper, the inverse image
ψ−1(W ) is bounded. The set C is contained in U×W×ψ−1(W ), and it is bounded.
When ϕ satisfies the bounded image condition, the set ϕ(X ∩ U) is bounded. The
set C is contained in U ×W × ϕ(X ∩ U), and it is bounded. �

The following lemma is easy to prove. The proofs are left to readers.

Lemma 2.8. The following assertions hold true.

(1) Consider an ordered group. The addition satisfies the bounded image con-
dition. The addition of a constant is proper and satisfies the bounded image
condition.

(2) Consider a divisible abelian group. Multiplication by a rational constant is
proper and satisfies the bounded image condition.

(3) Consider an ordered field. The multiplication satisfies the bounded im-
age condition. The multiplication by a constant is proper and satisfies the
bounded image condition.

(4) Consider an X-structure and let ϕ : X → Y and ψ : Y → Z be two X-
definable maps. The composition ψ ◦ϕ is proper if both ϕ and ψ are proper.

(5) Let ϕ and ψ be as in (4). The composition ψ◦ϕ satisfies the bounded image
condition if both ϕ and ψ satisfy the bounded image condition.

Corollary 2.9. Consider an X-expansion of an ordered divisible abelian group
whose underlying set is M . Consider a linear function l(x) =

∑n

i=1 qixi + c with
qi ∈ Q for all 1 ≤ i ≤ n and c ∈ M , where x = (x1, . . . , xn). The function l(x)
is X-definable and the sets of the form {x ∈ Mn | l(x) ∗ 0} for ∗ ∈ {=, <,>} are
X-definable.



8 M. FUJITA

Proof. The function l(x) is X-definable and satisfies the bounded image condition
by Lemma 2.7 and Lemma 2.8. The sets given in the corollary are X-definable by
Corollary 2.5. �

2.2. O-minimal structure contained in X-structure. Any X-structure has an
o-minimal structure R such that any bounded X-definable set is definable in the
o-minimal structure R.

Lemma 2.10. Consider an X-structure whose underlying set isM . There exists an
o-minimal structure R having the same underlying set and satisfying the following
conditions:

(i) Any set definable in R is X-definable.
(ii) Any bounded X-definable set is definable in R.

Proof. For any bounded X-definable setX , we define the predicate PX and interpret
it naturally. The notation Sbdd denote the set of all bounded X-sets. Consider the
language L = (<, (PX)X∈Sbdd

). The set M is naturally the underlying set of an L-
structureR. The structure R obviously satisfies the condition (ii). We demonstrate
that R is an o-minimal structure satisfying the condition (i).

We need a preparation. An L-formula φ(x) with parameters inM is called simple
when it is one of the following formula:

xi = c, xi < c, xi > c, xi = xj , xi < xj and xi > xj ,

where x = (x1, . . . , xn), c ∈ M and 1 ≤ i < j ≤ n. An L-formula φ(x) with
parameters in M is semi-simple if it is a finite conjunction of simple formulas. A
subset X in Mn definable in R is semi-simple if it is defined by a semi-simple
formula. An open box is semi-simple and the complement of an open box is a finite
union of semi-simple sets. We demonstrate the following claim:

Claim. Any L-formula φ(x) with parameters inM is equivalent to either a finite
disjunction of semi-simple formulas, a formula of the form PX(x) or their disjunction
in Th(R). Here, the notation Th(R) denotes the set of all the L-sentences valid in
the structure R.

We demonstrate the claim by induction on the complexity of the formula φ(x).
The claim is obvious when φ(x) is an atomic formula. The conjunction of PX(x)
and PY (x) is equivalent to PX∩Y (x). Their disjunction is equivalent to PX∪Y (x).
Let φ1(x) and φ2(x) be finite disjunctions of semi-simple formulas. The conjunction
φ1(x)∧φ2(x) is obviously a finite disjunction of semi-simple formulas. When φ1(x)
is a finite disjunction of semi-simple formulas and X is a bounded X-definable set,
the set Y = X ∩ {x ∈ Mn | M |= φ1(x)} is a bounded X-definable set. We
have R |= ∀x ((φ1(x) ∧ PX(x)) ↔ PY (x)). Therefore, the claim is true for the
conjunction of two formulas φ1(x) and φ2(x) satisfying the claim.

We consider the case in which φ(x) is the negation of the formula ψ(x) satisfying
the claim. The formula φ(x) clearly satisfies the claim when the formula ψ(x) is
equivalent to a finite disjunction of semi-simple formulas. We next consider the case
in which ψ(x) = PX(x) for some bounded X-definable subset X ofMn. There exists
a, b in M with a < b and X ⊆]a, b[n. The set ]a, b[n\X is a bounded X-definable set
and it belongs to Sbdd. It is obvious that there exists a finite disjunction ψ′(x) of
semi-simple formulas such that R |= ∀x (ψ′(x) ↔ x 6∈]a, b[n). Therefore, we have



ALMOST O-MINIMAL STRUCTURES AND X-STRUCTURES 9

R |= ∀x (¬PX(x) ↔ (P]a,b[n\X(x)∨ψ′(x))). Using these facts, we can demonstrate
that φ(x) = ¬ψ(x) satisfies the claim. We omit the details.

The projection image of a set in Sbdd is again an element of Sbdd Using this fact,
we can prove the claim when the formula φ(x) is of the form ∃y ψ(x, y). We also
omit the details. We have demonstrated the claim.

Take an arbitrary subset X of Mn definable in R. It is either a finite union of
semi-simple sets, a bounded X-definable set or their union by the claim. A semi-
simple set is obviously X-definable. Hence, the set X is X-definable. We have
demonstrated that the condition (i) holds true.

We finally show that a subset X of M definable in R is a finite union of points
and open intervals. A bounded X-definable subset of M is a finite union of points
and open intervals by Definition 1.3(7). A semi-simple subset of M is obviously a
finite union of points and open intervals. Therefore, X is a finite union of points
and open intervals by the claim. �

A locally o-minimal structure admits local definable cell decomposition if local
definable cell decomposition in Theorem 1.6 is always available. Note that a locally
o-minimal structure which admits local definable cell decomposition is always a
uniformly locally o-minimal structure of the second kind.

Corollary 2.11. An almost o-minimal structure admits local definable cell decom-
position. In particular, it is a uniformly locally o-minimal structure of the second
kind.

Proof. Recall that an almost o-minimal structure is an X-structure. The corollary
follows from Lemma 2.10 and [5, Chapter 3, Theorem 2.11]. �

We quote [7, Fact 1.7] which is originally proved in [16, Proposition 5.1(1)]:

Proposition 2.12. Let V = (V,+, <, a, (d)d∈D, (P )P∈P) be an expansion of an
ordered vector space (V,+, <, (d)d∈D) over an ordered division ring D by predicates
P ∈ P on a bounded subset of [−a, a]n, such that P contains predicates for all
subsets of [−a, a]n which are a-definable in the vector space structure. Then Th(V)
has quantifier elimination in its language.

Proof. [16, Proposition 5.1(1)]. �

The following theorem is a better variant of Lemma 2.10. It claims that an
X-expansion of an ordered divisible abelian group always contains an o-minimal
expansion of an ordered group.

Theorem 2.13. Consider an X-expansion of an ordered divisible abelian group
whose underlying set is M . There exists an o-minimal expansion R of an ordered
group having the same underlying set M and satisfying the following conditions:

(i) Any set definable in R is X-definable.
(ii) Any bounded X-definable set is definable in R.

Proof. Since (M, 0,+, <) is an ordered divisible abelian group, it is naturally a
Q-vector space. For any bounded X-definable set X , we define the predicate PX

and interpret it naturally. The notation Sbdd denote the set of all bounded X-sets.
Set Sbdd(a) = {X ∈ Sbdd | X ⊆ [−a, a]n when X ∈ Mn} for all positive a ∈ M .
Consider the language L = (+, <, (a)a∈M , (d)d∈Q, (PX)X∈Sbdd

). The set M is nat-
urally the underlying set of an L-structure R. The structure R obviously satisfies
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the condition (ii). We demonstrate that R is an o-minimal structure satisfying the
condition (i).

Take an arbitrary L-formula φ(x) with parameters in M . Here, x is an m-tuple
of variables. We first show that the set defined by φ(x) is X-definable. Since
only finitely many symbols are involved in the L-formula φ(x), we may assume
that φ(x) is L(a)-formula with parameters for some a > 0, where L(a) = (+, <
, a, (d)d∈Q, (PX)X∈Sbdd(a)). There exists a quantifier-free formula ψ(x) equivalent
to φ(x) by Proposition 2.12. We may assume that φ(x) is a quantifier-free formula.
The formula φ(x) is a finite disjunction of a finite conjunction of formulas of the
forms PX(t(x, c)) and t1(x, c) ∗ t2(x, c) and their negations, where the notation
t(x, c) denotes an n-tuple of terms with parameters c, X is a subset of Mn and
t1(x, c) and t2(x, c) are terms with parameters c. The symbol ∗ is one of =, < and
>.

The terms are of the form l(x) =
∑n

i=1 qixi + c, where x = (x1, . . . , xn), c ∈ M
and qi ∈ Q for all 1 ≤ i ≤ n. The definable set of the form t1(x, c) ∗ t2(x, c) is
X-definable by Corollary 2.9. Consider a formula of the form PX(t(x, c)). Introduce
new variables y = (y1, . . . , yn). The set defined by

{(x, y) ∈Mm ×Mn | y ∈ X and y = t(x, c)}

is X-definable because the graph of t(x, c) is X-definable by Corollary 2.9 and the
intersection of X-definable sets is again X-definable by Definition 1.3(3). The set
defined by the formula PX(t(x, c)) is the image of the above X-definable set under
the proper projection forgetting y. It is also X-definable by Definition 1.3(6). The
set defined by φ(x) is a boolean combination of sets of the above forms. It is also
X-definable because family of X-definable sets are closed under boolean algebra.
We have proven that the condition (i) is satisfied.

The next task is to demonstrate that the definable set defined by the formula
φ(x) is a finite union of points and open intervals when m = 1. We may assume
that φ(x) is a quantifier-free formula for the same reason as above. A boolean
combination of finite unions of points and open intervals is again a finite union of
points and open intervals. So we have only to demonstrate that the sets defined by
formulas the forms PX(t(x, c)) and t1(x, c) ∗ t2(x, c) with ∗ ∈ {=, <,>} are finite
unions of points and open intervals. It is trivial in the latter case. In the former
case, the set defined by PX(t(x, c)) is a bounded X-definable set. It is a finite union
of points and open intervals by Definition 1.3(7). �

The following corollary indicates that the o-minimal structure R given in The-
orem 2.13 is the minimal X-structure and the X-structure of semi-definable sets in
R is the maximal X-structure containing the o-minimal structure R.

Corollary 2.14. Consider an X-expansion X of an ordered divisible abelian group
whose underlying set is M . There exists an o-minimal expansion R of an ordered
group whose underlying set is M satisfying the following conditions:

(i) Any set definable in R is X-definable in X .
(ii) Any set X-definable in X is X-definable in X(R).

Here, the notation X(R) denotes the X-structure of semi-definable sets in R.

Proof. Let R be the o-minimal structure given in Theorem 2.13. The condition (i)
follows from the theorem. Take an arbitrary subset X ofMn X-definable in X . For
any bounded open box B, the intersection B ∩X is definable in R. It means that
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the set X is semi-definable in R. We have demonstrated that the condition (ii) is
satisfied. �

Here is another corollary. Its proof illustrates a typical procedure for translating
an assertion for o-minimal expansions of ordered groups into the corresponding
assertion on bounded X-definable sets.

Corollary 2.15 (Curve selection lemma). Consider an X-expansion X of an or-
dered divisible abelian group whose underlying set is M . Let X be an X-definable
subset of Mn and take a point a ∈ ∂X. Let R be the o-minimal structure given in
Theorem 2.13. There exist a positive ε ∈ M and a continuous map γ :]0, ε[→ X
definable in R such that the image of γ is bounded and limt→0 γ(t) = a.

Proof. Let R be the o-minimal structure given in Theorem 2.13. Take a bounded
open box U containing the point a. The setX∩U is definable inR by Theorem 2.13.
Since R is an o-minimal expansion of an ordered group, there exists a continuous
map γ :]0, ε[→ X∩U definable in R such that limt→0 γ(t) = a by the curve selection
lemma for o-minimal expansions of ordered groups [5, Chapter 6, Corollary 1.5].
The image of γ is bounded because it is contained in U . �

2.3. Dimension. We define the dimension of an X-definable set and investigate its
basic properties.

Definition 2.16. Consider a densely linearly ordered set without endpoints (M,<
). Let X be a subset of Mn. If X is an empty set, we set dimX = −∞. The
nonempty set X is of dimension ≥ m if there exist a point x ∈Mn and a coordinate
projection π : Mn → Mm such that, for any open box B containing the point x,
the projection image π(B ∩X) has a nonempty interior. The set is of dimension m
when it is of dimension ≥ m and not of dimension of ≥ m+ 1.

Remark 2.17. The dimensions of sets definable in an o-minimal structure and defin-
able in a locally o-minimal admitting local definable cell decomposition are defined
differently in [5, Chapter 4, (1.1)] and [9, Definition 5.1], respectively. However,
they coincide with the definition given above by [9, Corollary 5.3]. We use this fact
without any notification in the rest of this paper.

Lemma 2.18. Consider an X-structure. A nonempty X-definable set is of dimen-
sion zero if and only if it is discrete. A discrete X-definable set is closed.

Proof. Lemma 2.10 and the cell decomposition theorem [5, Chapter 3, Theorem
2.11] immediately imply this lemma. �

The following lemma is well-known:

Lemma 2.19. Consider an o-minimal structure whose underlying set is M . Let

C1, . . . , CN be definable subsets of Mn. If the union
⋃N

i=1 Ci has a nonempty inte-
rior, Ck has a nonempty interior for some 1 ≤ k ≤ N .

Proof. It is an easy corollary of the cell decomposition theorem [5, Chapter 3,
Theorem 2.11]. �

We give another expression of dimension.

Lemma 2.20. Consider an X-structure whose underlying set is M . Let X be an
X-definable subset of Mn. We have

dimX = sup{dim(U ∩X) | U is a bounded open box in Mn}.
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Proof. Let R be the o-minimal structure given in Lemma 2.10. Let d be the right
hand of the equality in the lemma. We first demonstrate that d ≤ dimX . There
exists a bounded open box U in Mn such that d = dim(U ∩X). The set U ∩X is
definable in R. There exists a cell C contained in U∩X and a coordinate projection
π :Mn →Md such that the image π(C) has a nonempty interior by the definition
of dimension of a set definable in the o-minimal structure R.

Take an arbitrary point x ∈ C. The projection image π(C ∩B) has a nonempty
interior for any open box B containing the point x by the definition of cells. Since
C is a subset of X , the projection image π(X ∩B) has a nonempty interior for any
open box B containing the point x. It means that d ≤ dimX .

We next demonstrate the opposite inequality dimX ≤ d. There exist a point
x ∈M and a coordinate projection π :Mn →MdimX such that, for any open box
B containing the point x, the projection image π(B ∩X) has a nonempty interior.
Fix a bounded open box B containing the point x. The intersection X ∩ B is
definable in R by Lemma 2.10. Apply the cell decomposition theorem [5, Chapter

3, Theorem 2.11]. We get a finite partition into cells X ∩B =
⋃N

i=1 Ci. The image
π(Ck) has a nonempty interior for some 1 ≤ k ≤ N by Lemma 2.19. It implies that
dimX ≤ dimCk ≤ dim(B ∩X). It means dimX ≤ d. �

We summarize the basic properties of dimension.

Proposition 2.21. Consider an X-structure whose underlying set is M . The fol-
lowing assertions hold true:

(a) We have dim(X) ≤ dim(Y ) for any X-definable sets X and Y with X ⊆ Y .
(b) The equality dim(X ∪ Y ) = max{dim(X), dim(Y )} holds true for any X-

definable subsets X and Y of Mn.
(c) The equality dim(X×Y ) = dim(X)+dim(Y ) holds true for any X-definable

sets X and Y .
(d) Let X be an X-definable set. We get dim(∂X) < dim(X) and dim(X) =

dimX when ∂X is X-definable.

Proof. This proposition immediately follows from Lemma 2.20 and the basic prop-
erties of the dimension of sets definable in an o-minimal structure [5, Chapter 4,
Proposition 1.3, Corollary 1.6, Theorem 1.8]. �

2.4. Structure theorem. Loveys and Peterzil investigated necessary and suffi-
cient conditions for an o-minimal expansion of an ordered group being linear in
[16]. Using their results, we investigate the structure of an X-expansion X of an
ordered divisible abelian group when there exists an X-definable strictly monotone
homeomorphism between a bounded open interval and an unbounded open interval.
We first prove the following lemma.

Lemma 2.22. Consider an X-expansion of an ordered divisible abelian group whose
underlying set is M . Assume that there exists an X-definable strictly monotone
homeomorphism between a bounded open interval and an unbounded open interval.
Then, there exists an X-definable strictly increasing homeomorphism ψ between an
arbitrary bounded open interval and M such that

ψ(the middle point of the bounded open interval) = 0.

Proof. Let ϕ : I → J be the given X-definable strictly monotone homeomorphism
between a bounded open interval I and an unbounded open interval J . It is easy to
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construct strictly increasing homeomorphisms between ]a, b[ and ]0, b− a[, between
]a,∞[ and ]0,∞[, and between ]−∞, a[ and ]−∞, 0[ for a, b ∈M using the addition.
The composition of ϕ with them is X-definable by Lemma 2.7 and Lemma 2.8(1).
Hence, we may assume that I =]0, u[ for some u > 0. If J = M , consider the
restriction of ϕ to ]0, ϕ−1(0)[ instead of ϕ. We may assume that J =] − ∞, 0[ or
J =]0,∞[. We have to check X-definability in the same manner as above every
time we construct a new map but we omit them in the proof.

We may further assume that J =]0,∞[ and ϕ is strictly increasing by composing
ϕ with the maps given by x 7→ −x and x 7→ u − x. Take an arbitrary nonempty
bounded open interval I ′. We will construct an X-definable strictly increasing
homeomorphism from I ′ to M . We may assume that I ′ is of the form ]0, v[ for
some v > 0 in the same way as above. We first construct an X-definable strictly
increasing homeomorphism from I ′ to ]0,∞[. We have nothing to do when u = v.
When v < u, the X-map given by ϕ(t + u − v) − ϕ(u − v) for all 0 < t < v is the
desired map. When v > u, consider the the X-map which is the identity map on
]0, v − u] and which is given by ϕ(t+ u− v) + v − u for all t > v − u.

We finally construct an X-definable strictly increasing homeomorphism from I ′

to M . We can construct X-definable strictly increasing homeomorphisms ϕ1 :
]0, v/2[→]−∞, 0[ and ϕ1 :]v/2, v[→]0,∞[ in the same manner as above. The map
ψ :]0, v[→ M given by ψ(t) = ϕ1(t) if t < v/2, ψ(v/2) = 0 and ψ(t) = ϕ2(t) if
t > v/2 is the desired map. �

Recall the definition of a piecewise linear map definable in an o-minimal expan-
sion of an ordered group. We also define a piecewise linear map definable in an
X-expansion of an ordered divisible abelian group.

Definition 2.23. Consider an o-minimal expansion of an ordered group M =
(M,<,+, 0, . . .). A definable function F : U ⊆ Mn → M is piecewise linear, if we
can partition U into finitely many definable sets U1, . . . , Uk such that F is linear
on each of them, i.e., given x, y ∈ Ui and t ∈ Mn, if x + t, y + t ∈ Ui, then
F (x+ t)− F (x) = F (y + t)− F (y).

Consider an X-expansion of an ordered divisible abelian group whose underlying
set is M . An X-definable function F : U ⊆ Mn → M is piecewise linear, for any
bounded open box B in Mn and a bounded open interval I, if we can partition
B ∩U ∩F−1(I) into finitely many X-definable sets U1, . . . , Uk such that F is linear
on each of them, i.e., given x, y ∈ Ui and t ∈ Mn, if x + t, y + t ∈ Ui, then
F (x+ t)− F (x) = F (y + t)− F (y).

The following is due to Loveys and Peterzil [16] and is summarized in [7]. See
also [21].

Proposition 2.24. Consider an o-minimal expansion of an ordered group M =
(M,<,+, 0, . . .). The following are equivalent:

(1) Every definable function F : U ⊆Mn →M is piecewise linear.
(2) There exist no definable binary operations ⊕,⊗ : I2 → I on an interval

I =]− a, a[, and a positive element 1 ∈ I such that (I,<I , 0, 1,⊕,⊗) is an
ordered real closed field, where <I denotes the restriction of < to I.

Proof. [7, Fact 1.12]. �

We are now ready to prove the structure theorem.
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Theorem 2.25. Consider an X-expansion of an ordered divisible abelian group
whose underlying set is M . Assume further that there exists an X-definable strictly
monotone homeomorphism between a bounded open interval and an unbounded open
interval. Then, exactly one of the following holds true:

(1) Any X-definable function is piecewise linear.
(2) The structure is an X-expansion of an ordered real closed field in the follow-

ing sense: There exists elements 1′ ∈M and X-definable binary operations
⊕,⊗ : M2 → M such that the tuple (M,<, 0, 1′,⊕,⊗) is an ordered real
closed field.

Proof. Take the o-minimal expansion of an ordered groupR given in Theorem 2.13.
We have the following two cases by Proposition 2.24.

(1) Every function F : U ⊆Mn →M definable in R is piecewise linear.
(2) There exist binary operations ⊕I ,⊗I : I2 → I definable in R on an interval

I =]− a, a[, and a positive element 1I ∈ I such that (I,<I , 0, 1I ,⊕I ,⊗I) is
an ordered real closed field, where <I denotes the restriction of < to I.

We first consider the case (1). Take an arbitrary X-function F : U ⊆Mn →M .
Take a bounded open box B in Mn and a bounded open interval I. The set
Γ(F ) ∩ (B × I) is definable in R, where Γ(F ) denotes the graph of the function
F . It is the graph of the restriction of F to U ∩ B ∩ F−1(I). Since the function
F |U∩B∩F−1(I) definable in R is piecewise linear, the X-definable function is also
piecewise liner.

We next treat the case (2). There exists a strictly increasing X-definable home-
omorphism ϕ : I → M with ϕ(0) = 0 by Lemma 2.22. Set 1′ = ϕ(1I), x ⊕ y =
ϕ(ϕ−1(x)⊕I ϕ

−1(y)) and x⊗ y = ϕ(ϕ−1(x)⊗I ϕ
−1(y)) for all x, y ∈M . The graph

of ⊕I is a bounded set definable in R. In particular, it is X-definable. The graph
of ⊕ is the image of the graph of ⊕I under the homeomorphism between I3 and
M3 given by (x, y, z) 7→ (ϕ(x), ϕ(y), ϕ(z)). It is X -definable by Lemma 2.2. The
operator ⊗ is also X-definable for the same reason. It is easy to check that the
tuple (M,<, 0, 1′,⊕,⊗) is an ordered real closed field using [2, Theorem 1.2.2(ii)].
We omit the details. �

Remark 2.26. Consider an o-minimal expansion R̃ of the ordered group of reals.

The X-structure of semi-definable sets in R̃ satisfies the assumption of Theorem
2.25. The map ϕ :]0, 1[→]0,∞[ defined by ϕ(x) = i + 2i+1(x − (1 − 1/2i)) for
1− 1/2i < x ≤ 1− 1/2i+1 is a semi-definable homeomorphism between the interval
]0, 1[ and the interval ]0,∞[.

Remark 2.27. An assertion for Shiota’s Y-sets similar to but not identical to The-
orem 2.25 is found in [23, Theorem V.2.2].

2.5. Topological results. We summarize other basic topological properties of X-
structures which are not introduced in the previous subsections.

Proposition 2.28. Consider an X-expansion of an ordered divisible abelian group.
The interior, closure and frontier of an X-definable set are X-definable.

Proof. Let M be the underlying space of the given X-structure. Let X be an
X-definable subset of Mn. Fix a positive r > 0. Consider the X-definable set

A = {(x, y, s) ∈Mn ×Mn ×M | 0 < s < r, |xi − yi| < s(∀i), x ∈ X, y 6∈ X},
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where xi and yi are the i-th coordinate of x and y, respectively. Set

B = {(x, s) ∈ X ×M | 0 < s < r, ∃y 6∈ X and |xi − yi| < s(∀i)}.

The set B is the image of the X-definable set A under a proper projection. The setB
is X-definable. The interior int(X) ofX is the image of (X×{s ∈M | 0 < s < r})\B
under the projection forgetting the last coordinate. Therefore, the interior is X-
definable.

The closure of X is given by (int(Xc))c. Here, the notation Ac denotes the
complement of a set A. The closure is X-definable. The frontier is also X-definable
by Definition 1.3(3). �

Corollary 2.29. Consider an X-expansion of an ordered divisible abelian group.
Let X be an X-definable set. We get dim(∂X) < dim(X) and dim(X) = dimX.

Proof. Immediate from Proposition 2.28 and Proposition 2.21(d). �

Example 2.30. Consider a definably complete structure M = (M,<, . . .). A de-
finable family of subsets of Mn, parameterized by A ⊆ Mm, is an indexed family
{Ya}a∈A of fibers, where Y ⊆ Mm+n and A ⊆ Mm are definable. A definable
family {Ya}a∈A is monotone if A ⊆ M and either Yr ⊇ Ys for all r, s ∈ A with
r ≤ s or Yr ⊆ Ys for all r, s ∈ A with r ≤ s. We have

⋂
r∈A Yr 6= ∅ for all monotone

definable families of nonempty definable closed and bounded sets {Yr}r∈A by [18,
Lemma 1.9].

We can define X-definable family similarly. But the intersection of monotone X-
definable family of nonempty X-definable closed and bounded sets may be an empty
set. In fact, consider the o-minimal structure in Example 2.6 and the X-structure
of semi-definable sets in this o-minimal structure.

The set of positive integers N is semi-definable. Take an, bn ∈ Q as in Example
2.6. Set Yn = [an, bn] ⊆ Ralg. The family {Yn}n∈N is a monotone X-definable family
of nonempty definable closed and bounded sets. We obviously have

⋂
n∈N Yn = ∅.

We finally study when there exists an unbounded discrete X-definable set in M .

Lemma 2.31. Consider an X-expansion of an ordered divisible abelian group whose
underlying set is M . Exactly one of the following conditions holds true:

(1) Any X-definable subset of M is a finite union of points and open interval.
(2) There exists an unbounded discrete X-definable set.

Proof. Assume that the condition (1) is not satisfied. There exists an X-definable
subset X of M which is not a finite union of points and open intervals. Set Y =
X \ int(X). It is X-definable by Proposition 2.28. We demonstrate that Y is an
unbounded discrete X-definable set.

We first demonstrate that Y is discrete. For any bounded open interval I in
M , the intersection I ∩ Y is a finite union of points and open intervals by the
definition of a X-structure. Therefore, Y is discrete when it has an empty interior.
Assume that Y has a nonempty interior. We can take a bounded open interval
J contained in Y . Since X ∩ J is a finite union of points and open intervals,
J = Y ∩ J = (X ∩ J) \ (int(X) ∩ J) consists of finite points. Contradiction.

We next show that Y is unbounded. The set Y consists of infinite points. In
fact, assume that Y is a finite set. There exists a nonempty bounded open interval
I which contains Y . The differenceM \I consists of a closed interval J+ unbounded
above and a closed interval J− unbounded below. We have J+ ∩X = ∅ or J+ ⊆ X .
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Otherwise, we can take points a ∈ J+ ∩X and b ∈ J+ \X . Take a bounded open
interval J ⊆ J+ containing the points a and b. We have J ∩Y = ∅. The set J ∩X is
a finite union of points and open intervals. We have J ∩X 6= ∅ because it contains
the point a. We also have J ∩X 6= J because J ∩X does not contain the point b.
By the definition of Y , we get Y ∩ J 6= ∅ in both the cases in which X ∩ J consists
of points and in which it contains an open interval. We have demonstrated that
J+ ∩ X = ∅ or J+ ⊆ X . We also obtain J− ∩ X = ∅ or J− ⊆ X similarly. Since
I ∩ X is a finite union of points and open intervals, the set X is a finite union of
points and open intervals. Contradiction. We have demonstrated that Y consists
of infinite points.

If Y is bounded, we can take a bounded open interval I containing the set Y .
The set Y = Y ∩ I consists of finite points because Y is X-definable and Y is
discrete. Contradiction to the fact Y is an infinite set. �

3. Geometry of semi-definable sets

We studied X-structures in the previous section. In this section, we treat a
special family of X-structures; that is, the X-structure of semi-definable sets in an
o-minimal structure R = (M,<, . . .).

3.1. Frontier of semi-definable set. We first consider the frontier, interior and
closure of semi-definable sets.

Lemma 3.1. Consider an o-minimal structure. The frontier, interior and closure
of a semi-definable set are semi-definable.

Proof. Let R be an o-minimal structure and M be its underlying set. Let X be a
semi-definable subset ofMn. We have (∂X)∩U = (∂(X ∩U))∩U for any bounded
open box U . The set X ∩ U is definable in R because X is semi-definable. The
frontier ∂(X∩U) is also definable. The intersection (∂X)∩U is definable. It means
that ∂X is semi-definable.

Once we know that the frontier is semi-definable, it is easy to demonstrate that
the interior and the closure are semi-definable. �

Remark 3.2. When we assume that the o-minimal structure is an expansion of an
ordered group, Lemma 3.1 immediately follows from Proposition 2.28.

3.2. Semi-definable connectedness. We next introduce the notion of semi-definable
connectedness.

Definition 3.3. Consider an o-minimal structureR = (M,<, . . .). A semi-definable
subset X ofMn is semi-definably connected if there are no non-empty proper semi-
definable closed and open subsets Y1 and Y2 of X such that Y1 ∩ Y2 = ∅ and
X = Y1 ∪ Y2. We define that a definable set is definably connected in the same
manner. The semi-definable set X is semi-definably pathwise connected if, for
any x, y ∈ X , there exist elements c1, c2 ∈ M and a definable continuous map
γ : [c1, c2] → X with γ(c1) = x and γ(c2) = y. We define that a definable set is
definably pathwise connected in the same manner.

We easily get the following result:

Lemma 3.4 (Intermediate value property). Consider an o-minimal structure M =
(M,<, . . .). Let D be a subset of Mn and f : D → M be a function whose graph
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is semi-definable and semi-definably connected. Take two points y1, y2 ∈ f(D) with
y1 < y2. For any y ∈M with y1 < y < y2, there exists x ∈ D such that y = f(x).

Proof. Otherwise, the sets Γ(f)∩ (Mn×{y′ ∈M | y′ > y}) and Γ(f)∩ (Mn×{y′ ∈
M | y′ < y}) are nonempty closed and open semi-definable subsets of Γ(f). Here,
Γ(f) denotes the graph of f . �

We next recall the following fact:

Lemma 3.5. Consider an o-minimal structure R = (M,<, . . .). Let X be a defin-
able subset of Mn and U1 ⊆ U2 be open boxes in Mn. Take a definably connected
component C of X ∩ U2. The intersection C ∩ U1 is the union of the definably
connected components of X ∩ U1 contained in C.

Proof. Immediate from the definable cell decomposition theorem for o-minimal
structures [5, Chapter 3, Theorem 2.11]. �

We get the following theorem:

Theorem 3.6. Consider an o-minimal expansion R = (M,<,+, 0, . . .) of an or-
dered group. Let X be a nonempty semi-definable subset of Mn. The following are
equivalent:

(1) X is semi-definably connected.
(2) For any x, y ∈ X, there exists a bounded open box U in Mn such that both

the points x and y are contained in some definably connected component of
X ∩ U .

(3) X is semi-definably pathwise connected.

In addition, for any x ∈ X, there exists a maximal semi-definably connected semi-
definable subset Y of X containing the point x. The set Y is called the semi-
definably connected component of X containing the point x. A semi-definably con-
nected component of X is closed and open in X.

Proof. Fix a point x ∈ X . We first define a semi-definable closed and open subset
Cx of X containing the point x. In this proof, the subscript such as Cx does not
denote the fiber of a set, exceptionally. Let Bx be the set of bounded open boxes
in Mn containing the point x. Take an arbitrary element U ∈ Bx. The intersection
U ∩X is definable by the definition of semi-definablity and it has finite definably
connected components by [5, Chapter 3, Proposition 2.18]. Let C(U) be the set of
the definably connected components of U ∩ X . The notation Lx(U) denotes the
subset of C(U) of the elements C satisfying that a definably connected component
of the intersection B ∩X contains both the point x and C for some bounded open
box B containing the open box U . We set

Cx(U) =
⋃

C∈Lx(U)

C.

Let U1, U2 ∈ Bx with U1 ⊆ U2. We show the following equality:

Cx(U2) ∩ U1 = Cx(U1).

Since Cx(U2) is a finite union of definably connected components of X ∩ U2, the
set Cx(U2)∩U1 is also a finite union of definably connected components of X ∩U1

by Lemma 3.5. Let D1 be a definably connected component of X ∩ U1. The
exists a unique definably connected component D2 of X ∩ U2 containing the set
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D1 by Lemma 3.5. We have only to demonstrate that D1 ∈ Lx(U1) if and only if
D2 ∈ Lx(U2). We can easily demonstrate that D1 ∈ Lx(U1) when D2 ∈ Lx(U2).
We omit the proof. We consider the opposite implication. There exists a bounded
open box U such that D1 ⊆ U and a definably connected component of X ∩ U
contains both x and D1. Taking a larger bounded open box V containing the both
U and U2. A definably connected component of X∩V still contains both x and D1.
The definably connected set D2 is also contained in the same definably connected
component of X ∩ V by Lemma 3.5 because D2 contains D1 by the assumption. It
means that D2 ∈ Lx(U2).

We are now ready to define the semi-definable closed and open subset Cx. Set

Cx =
⋃

U∈Bx

Cx(U).

We first show that Cx ∩U = Cx(U) for any U ∈ Bx. In fact, the inclusion Cx(U) ⊆
Cx∩U is obvious from the definition. We demonstrate the opposite inclusion. Take
an arbitrary element y ∈ Cx ∩U . There exists V ∈ Bx such that y ∈ Cx(V ) by the
definition. Set W = U ∩ V . Since Cx(V ) is a subset of V , we get y ∈ Cx(V ) ∩U =
Cx(V ) ∩ (V ∩ U) = Cx(V ) ∩W = Cx(W ) = Cx(U) ∩W ⊆ Cx(U) by the above
equality. We have demonstrated the opposite inclusion.

We demonstrate that Cx is semi-definable. Take an arbitrary bounded open box
U in Mn. We have only to prove that Cx ∩ U is definable. Take a bounded open
box V larger than U . If Cx ∩ V is definable then Cx ∩ U = (Cx ∩ V ) ∩ U is also
definable. We may assume that U contains the point x for the above reason. We
get Cx ∩ U = Cx(U), which is a finite union of definably connected components of
X ∩ U . Hence, it is definable.

The semi-definable set Cx is closed and open in X . In fact, take a point y ∈ Cx.
Take a bounded open box U containing the points x and y. The intersection
Cx ∩ U = Cx(U) is a finite union of definably connected components of X ∩ U .
In particular, Cx ∩ U is closed and open in X ∩ U by [5, Chapter 3, Proposition
2.18]. Take a sufficiently small open box V ⊆ U containing the point y. We have
X ∩ V = (X ∩ U) ∩ V = (Cx ∩ U) ∩ V = Cx ∩ V by the definition of definably
connected components. It means that Cx is open in X . We can demonstrate that
X \ Cx is open in the same manner.

We have finished the preparation. We prove that (1) implies (2). Assume that
the condition (2) does not hold true. There exist x, y ∈ X such that, for any
bounded open box U containing the point x and y, x and y are contained in different
definably connected components of X ∩ U . It means that Lx(U) and Ly(U) has
an empty intersection for any bounded open box U containing x and y. We have
Cx(U)∩Cy(U) = ∅ by the definition for any bounded open box U containing both x
and y. We easily get Cx∩Cy = ∅. It means that X is not semi-definably connected.

The next task is to prove that (2) ⇒ (3). Take arbitrary x, y ∈ X . There exist
a bounded open box U containing the points x and y and a definably connected
component Y of X ∩ U containing the points x and y. It is well-known that a
definable connected set is definably pathwise connected [5, Chapter 6, Proposition
3.2]. There exists a definable continuous map γ : [c1, c2] → X ∩ U with γ(c1) = x
and γ(c2) = y.

The implication (3) ⇒ (1) is easy to be proven. Assume for contradiction that
there exist disjoint nonempty semi-definable closed and open subsets Y1 and Y2 of
X with X = Y1∪Y2. Take points y1, y2 ∈ X with yi ∈ Yi for i = 1, 2. There exists a
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definable continuous map γ : [c1, c2] → X with γ(ci) = yi for i = 1, 2. The image of
γ is bounded by [18, Proposition 1.10] because an o-minimal structure is definably
complete. We can take a bounded open box B in Mn containing the image of γ.
The sets B ∩X , B ∩ Y1 and B ∩ Y2 are all definable. The closed interval [c1, c2] is
decomposed into two disjoint definable closed and open subsets γ−1(Y1 ∩ B) and
γ−1(Y2 ∩B). On the other hand, the closed interval is definably connected by [18,
Corollary 1.5]. It is a contradiction.

The last task is to prove the existence of a semi-definably connected component.
In fact, the semi-definable set Cx is the semi-definably connected component con-
taining the point x ∈ X . Take arbitrary y1, y2 ∈ Cx. We can take U1, U2 ∈ Bx

with yi ∈ Cx(Ui) for i = 1, 2. By the definition of Cx(Ui), there exists Vi ∈ Bx such
that x and yi are contained in a definably connected component of Vi ∩X . Take a
bounded open box W containing the open boxes V1 and V2. Three points x, y1 and
y2 are contained in a definably connected component of X∩W . This definably con-
nected component is also the definably connected component of Cx(W ) = Cx ∩W .
Hence, Cx is semi-definably connected by the condition (2).

We finally show that Cx is maximal. Take an arbitrary semi-definably connected
semi-definable subset Y of X with x ∈ Y . We have only to demonstrate that Y
is contained in Cx. Take an arbitrary point y ∈ Y . Since Y is semi-definably
connected, there exists a definable continuous map γ : [c1, c2] → Y such that
γ(c1) = x and γ(c2) = y. Since the image γ([c1, c2]) is bounded for the same reason
as above, we can take a bounded open box U containing the image. It means
that x and y are contained in the same definably connected component of X ∩ U
because a definably pathwise connected definable set is definably connected. We
have y ∈ Cx(U) ⊆ Cx. We have finished the proof. �

We introduce a corollary of Theorem 3.6.

Corollary 3.7. Consider an o-minimal expansion of an ordered group. The closure
of a nonempty semi-definably connected semi-definable set is again semi-definably
connected.

Proof. Immediately follows from Theorem 3.6(3) and Corollary 2.15. �

3.3. Good manifolds. We introduce the notion of a good manifold necessary in
Section 4.3.2.

Definition 3.8. Consider an o-minimal structure R = (M,<, . . .). A subset X of
Mn of dimension d is locally a good submanifold at x ∈ X if there exist

• a bounded open box B containing the point x,
• a permutation σ of {1, . . . , n} and
• a definable continuous map f : πd(σ̃(X ∩B)) →Mn−d

such that σ̃(X ∩ B) is the graph of f . Here, the notation σ̃ denotes the map
defined in Definition 1.3 and πd : Mn → Md denotes the projection onto the first
d coordinates.

The notation Reg(X) denotes the set of points at which X is locally a good
submanifold. The notation Sing(X) denotes the singular locus defined by X \
Reg(X). A semi-definable set is called a good submanifold if it is a locally good
submanifold at every point in it.

Let π : Mn → Mn−1 be the projection forgetting the last coordinate. A semi-
definable subset X of Mn is locally the graph of a continuous function at x ∈ X if
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there exists a bounded open box U containing the point x such that π(X) ∩ π(U)
is a good submanifold and X ∩ U is the graph of a continuous function defined on
π(X) ∩ π(U). A semi-definable subset X of Mn is locally the graph of continuous
functions everywhere if it is locally the graph of a continuous function at every
point in X .

Lemma 3.9. Consider an o-minimal structure whose underlying space is M and
a good submanifold X of Mn. Let U an open subset of Mn. Then, X ∩ U is also
a good submanifold.

Proof. Obvious. �

Lemma 3.10. Consider an o-minimal structure whose underlying space is M . Let
π : Mn → Mn−1 be the projection forgetting the last coordinate. Take a semi-
definable open subset U of Mn−1. If a semi-definable subset X of Mn is locally the
graph of continuous functions everywhere, X ∩ (U ×M) is also locally the graph of
continuous functions everywhere.

Proof. Obvious. �

Lemma 3.11. Consider an o-minimal structure whose underlying space is M . Let
X be a semi-definable set. The set Reg(X) is an open semi-definable subset of X.
We also have dim(Sing(X)) < dim(X).

Proof. It is obvious that Reg(X) is an open subset ofX . Take an arbitrary bounded
open box U . The set Reg(X)∩U is obviously definable in the o-minimal structure
because X ∩ U is definable. It implies that Reg(X) is semi-definable.

Set d = dim(X). Take an arbitrary bounded open box B. We have only to show
that dim(Sing(X) ∩B) < d by Lemma 2.20.

Get a stratification of B partitioning ∂B, X ∩B and Sing(X)∩B by [5, Chapter
4, Proposition 1.13]. Recall that a stratification of B is a partition of B into finitely
many cells such that the frontier of a cell is a finite union of cells. Let C be an
arbitrary cell contained in X of dimension d. The semi-definable set X is a good
submanifold of Mn for any x ∈ C. In fact, we have C ∩ U = X ∩ U for any
sufficiently small open box U containing the point x. Otherwise, there exists a cell
C′ contained in X such that C′ ∩ U 6= ∅ for any small open box U containing the
point x. It means that x ∈ C′. We get C ⊆ ∂C′. We have dimC′ > d by [5, Chapter
4, Theorem 1.8]. It means that C′ ∩X = ∅. Contradiction. We have demonstrated
C is not contained in Sing(X)∩B. It implies that that dim(Sing(X)∩B) < d. �

Lemma 3.12. Consider an o-minimal structure whose underlying space is M . Let
π : Mn → Mn−1 be the coordinate projection forgetting the last coordinate. Let
X be a semi-definable subset of Mn such that π(X) is semi-definable and a good
submanifold, and the fiber X ∩ π−1(x) is of dimension zero for any x ∈ π(X). We
further assume that dimπ(X) = dimX. Let S be the set of points at which X is
locally the graph of a continuous function. Then, S is semi-definable and we have
dim(X \ S) < dim(X).

Proof. It is obvious that S is semi-definable.
Let R be the given o-minimal structure. Set d = dim(X) = dim π(X). Take an

arbitrary bounded open box B. We have only to show that dim(T ∩ B) < d by
Lemma 2.20, where T = X \ S.
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The intersectionsX∩B and (π(X)×M)∩B are definable inR. We first apply the
definable cell decomposition theorem for o-minimal structures [5, Chapter 3, Theo-
rem 2.11]. There exists a partition {C1, . . . , CN} of B into cells partitioning X ∩B
and (π(X)×M)∩B. Any cell C contained in X is the graph of a continuous func-

tion defined on π(C). Get a stratification of π(B) partitioning π(C1), . . . , π(CN )
and π(X) ∩ π(B) by [5, Chapter 4, Proposition 1.13]. Let D1, . . . , DL be the par-
tition. The family C = {Ci ∩ (Dj ×M) | 1 ≤ i ≤ N, 1 ≤ j ≤ L,Dj ⊂ π(Ci)} is a
partition of B into cells.

Take an arbitrary cell C ∈ C of dimension d contained in X . For any x ∈ π(C),
π(X) is locally a good submanifold of Mm−1 at x for the same reason as the proof
of Lemma 3.11. Therefore, X is locally the graph of a continuous function at every
point in C because C is a cell. We have shown that dimT < d. �

4. Geometry of almost o-minimal structures

We finally investigate almost o-minimal structures.

4.1. Definably complete locally o-minimal structures. We first introduce
several lemmas on definably complete structures.

Lemma 4.1. Let M = (M,<, . . .) be a definably complete structure and X be a
definable subset of M . Any open interval contained in X is contained in a maximal
open interval contained in X.

Proof. Let I be an open interval contained in X . Take a point c with c ∈ I. Set

d = inf{x ∈M | (x < c) ∧ (∀y, x < y < c→ y ∈ X)} ∈M ∪ {−∞} and

e = sup{x ∈M | (x > c) ∧ (∀y, c < y < x→ y ∈ X)} ∈M ∪ {∞}.

They are well-defined because M is definably complete. The open interval ]d, e[
is obviously the maximal open interval containing the interval I and contained in
X . �

Lemma 4.2. Consider a definably complete structure M = (M,<, . . .). The fol-
lowing are equivalent:

(1) The structure M is a locally o-minimal structure.
(2) Any definable set in M either has a nonempty interior or it is closed and

discrete.

Proof. [12, Lemma 2.3]. �

We then consider a definably complete locally o-minimal structures.

Lemma 4.3. Let M = (M,<, . . .) be a definably complete locally o-minimal struc-
ture and X be a definable subset of M . Any element x in M satisfies exactly one
of the following conditions:

(1) The point x is an element of an open interval contained in either X or
M \X;

(2) The point x is a discrete point of X;
(3) The point x is an endpoint of a maximal open interval contained in X.

The sets consisting of the discrete points of X and consisting the endpoints of
maximal open intervals contained in X are definable, discrete and closed.
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Proof. Let x be an arbitrary element in M . There exists an open interval I con-
taining the point x such that X ∩ I is a finite union of points and open intervals.
Therefore, by Lemma 4.1, exactly one of (1) through (3) is obviously satisfied.
Consider the definable set

Y = {x ∈M | ∀a ∀b, a < x < b→ (∃y, ∃z a < y < b, a < z < b, y ∈ X, z 6∈ X)}.

The formula defining the set Y is obviously the negation of the condition (1).
Consider the sets

D = {x ∈M | x is a discrete set in X} and

E = Y \D.

The set D is the set consisting of the discrete points of X . The set E is the set
consisting the endpoints of maximal open intervals contained in X . They are both
definable. Since they do not contain an open interval, they are discrete and closed
by Lemma 4.2. �

Lemma 4.3 provides tests for a definably complete locally o-minimal structure
being o-minimal or almost o-minimal.

Corollary 4.4. Let M = (M,<, . . .) be a definably complete locally o-minimal
structure. The structure M is o-minimal if and only if any definable discrete subset
of M is a finite set.

Proof. We have only to show that, for any definable subset X of M , the set of
discrete points and the set consisting of the endpoints of maximal open intervals
contained in X are finite. It is immediate from Lemma 4.3. �

Corollary 4.5. Let M = (M,<, . . .) be a definably complete locally o-minimal
structure. The structureM is almost o-minimal if and only if any bounded definable
discrete subset of M is a finite set.

Proof. We can prove it in the same manner as Corollary 4.4. We omit the proof. �

4.2. Basic properties of almost o-minimal structures. We begin to study the
basic properties of almost o-minimal structures.

Lemma 4.6. An almost o-minimal structure is definably complete.

Proof. Let M be the universe of the considered structure and X be a nonempty
definable subset of M . We demonstrate that sup(X) is well-defined and sup(X) ∈
M ∪ {∞}. Take a point c ∈ X and consider the set Y = {x ∈ X | x ≥ c}. We
may assume that X is bounded from below by considering Y instead of X . When
X is unbounded, we have sup(X) = ∞. Otherwise, X is bounded and it is a finite
union of points and open intervals by the definition. It obviously that sup(X) is
well-defined and sup(X) ∈M .

We can prove that inf(X) is well-defined and inf(X) ∈M ∪{−∞}, similarly. �

Corollary 4.7. An almost o-minimal structure is an o-minimal structure or has
an unbounded infinite discrete definable set.

Proof. Immediate from Lemma 4.6, Corollary 4.4 and Corollary 4.5. �

Proposition 4.8. A locally o-minimal structure is o-minimal if and only if it is
almost o-minimal and satisfies the type-completeness property defined in [22].
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Proof. It immediately follows from [22, Theorem 2.10, Corollary 2.11], Corollary
4.4, Corollary 4.5 and Lemma 4.6. �

An almost o-minimal structure is a uniformly locally o-minimal structure of the
second kind by Corollary 2.11. An almost o-minimal expansion of an ordered field
is o-minimal by [9, Proposition 2.1]. We do not expect that the multiplication
is definable in a non-o-minimal almost o-minimal structure. However, when we
study bounded definable sets, even the multiplication definable only in the bounded
regions is useful. Therefore, we propose the following definition:

Definition 4.9. An expansion of dense linear order without endpoints M = (M,<
, . . .) has a bounded definable field structure if there exist elements 0, 1 ∈ M and
binary maps ⊕,⊗ :M×M →M such that the tuple (M,<, 0, 1,⊕,⊗) is an ordered
real closed field and, for any a, b ∈ M with a < b the restrictions ⊕|]a,b[×]a,b[ and
⊗|]a,b[×]a,b[ of the addition ⊕ and the multiplication ⊗ to ]a, b[×]a, b[ are definable
in M.

We also need the following:

Definition 4.10. An ordered abelian group (G,+, 0, <) is archimedean if, for any
positive a, b ∈ G, we have na > b for some positive integer n. Here, na denotes the
summation of n copies of a.

We give examples of almost o-minimal structures.

Proposition 4.11. A locally o-minimal structureM = (M,<) is almost o-minimal
if one of the following conditions is satisfied:

(1) All closed bounded intervals are compact;
(2) It is a uniformly locally o-minimal expansion of an ordered group of the

second kind having bounded field structure;
(3) It is a definably complete locally o-minimal expansion of an archimedean

ordered group, and the image of a nonempty definable discrete set under a
coordinate projection is again discrete.

Proof. (1) Obvious. We omit the proof.
(2) Let X be a bounded definable set in M . We have the addition and the

multiplication⊕,⊗ :M×M → M whose restriction to the product of bounded open
intervals definable inM. We may assume that X is contained in the bounded closed
interval [−N,N ]. Consider the set Y = {(t, x) ∈ [0, 1]×M | ∃y ∈ X, x = t ⊗ y}.
The set Y is definable because we assume the bounded definable multiplication.
Since M is uniformly locally o-minimal of the second kind, there exists an open
interval I =]− L,L[ containing the origin and a small positive ε > 0 such that, for
any 0 < t < ε, the intersection I ∩ Yt of I with the fiber Yt = {t⊗ y ∈M | y ∈ X}
of Y at t is a finite union of points and open intervals. Take t > 0 smaller than ε
and satisfying L ⊗ t < N . We have Yt ⊆ I. Since Yt = Yt ∩ I is a finite union of
points and open intervals, X is also a finite union of points and open intervals.

(3) Let D be a nonempty bounded definable discrete set. We have only to show
that it is a finite set by Corollary 4.5. It is also closed by [12, Lemma 2.4]. We may
assume that D has at least two points without loss of generality. Set m = sup(D).
We get m < ∞ because D is bounded. We have m ∈ D because D is closed. Set
E = D \ {m}. Consider the successor function succ : E →M given by

succ(x) = inf{y ∈ D | y > x}.
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Since D is closed, we have succ(x) ∈ D.
Consider the definable function ρ : E → M defined by ρ(x) = succ(x) − x. We

have ρ(x) > 0. The graph of the map ρ is definable and discrete. The image
ρ(E) is the projection image of the graph and it is also discrete by the assumption.
Since ρ(E) is discrete, it is closed by [12, Lemma 2.4] again. Set d = inf ρ(E).
We have d ∈ ρ(E) because ρ(E) is closed. In particular, we have d > 0. Set
l = sup(D) − inf(D). Since the structure is archimedean, there exists a positive
integer n with nd > l. By the definition of ρ, the cardinality of the set D is not
greater than n. �

Example 4.12. We can easily construct a locally o-minimal structure having bounded
definable field structure which is not an expansion of an ordered field. Consider

an arbitrary o-minimal expansion of the real field R̃. The structure [0, 1)def is the
structure whose universe is [0, 1) defined in [14, Definition 2]. The simple product
of Z and [0, 1)def has bounded definable field structure but it is not an expansion of
an ordered field. The definition of a simple product is found in [14, Definition 14].

Remark 4.13. The latter condition in Proposition 4.11(3) is [12, Definition 1.1(a)].
This condition is satisfied in a model of DCTC [22, Corollary 4.3] and in a definably
complete uniformly locally o-minimal expansion of an ordered group of the second
kind [12, Proposition 2.12].

Almost o-minimality does not preserve under elementary equivalence.

Proposition 4.14. Let M = (M,<, . . .) be an almost o-minimal structure which is
not o-minimal. An ω-saturated elementary extension of M is not almost o-minimal.

Proof. There exists a definable discrete infinite subset D of M by Corollary 4.7.
It is closed by Lemma 4.2. Take an arbitrary element c ∈ M . We assume that
D>c = {x ∈ D | x > c} is infinite. We can prove the proposition in the same
manner when D<c = {x ∈ D | x < c} is infinite.

We consider the formula Φn(x) defining that the open interval ]c, x[ has at least
n elements in D for any non-negative integer n. The family {Φn(x)} is finitely
satisfiable in M because D>c is infinite. Let N = (N,<, . . .) be an ω-saturated
elementary extension of M. We can find d ∈ N such that N |= Φn(d) for all n.
In particular, the definable set ]c, d[∩DN is not a finite union of points and open
intervals. Here, the notation DN be the subset of N defined by the same formula
as D. It implies that N is not almost o-minimal. �

The definition of a structure having bounded definable field structure seems to be
technical. However, as indicated in the following proposition, sufficiently complex
almost o-minimal structure has bounded definable field structure.

Proposition 4.15. Consider an almost o-minimal expansion of an ordered group.
Assume further that there exists a strictly monotone homeomorphism from an un-
bounded open interval to a bounded open interval the graph of whose restriction
to arbitrary bounded open subintervals of the unbounded open interval is definable.
Then, any definable function is piecewise linear or the structure has bounded defin-
able field structure.

Proof. An almost o-minimal expansion M of an ordered group is obviously an X-
structure. It is an X-expansion of an ordered divisible abelian group by Lemma
4.6 and [18, Proposition 2.2]. Take an o-minimal expansion of an ordered group R
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given in Theorem 2.13. Any set definable in R is definable in M and any bounded
set definable in M is definable in R.

Consider the X-structure X(R) of semi-definable sets inR. There exists a strictly
monotone homeomorphism between a bounded interval and an unbounded interval
which is X-definable in X(R) by the assumption of the proposition. By Theorem
2.25, either any function X-definable in X(R) is piecewise linear or there exists
binary maps ⊕,⊗ : M2 → M X-definable in X(R) such that (M,<, 0, 1,⊕,⊗) is
an ordered real closed field. In the former case, any function definable in M is
piecewise linear because it is also X-definable in X(R)

Consider the latter case. The restriction of the addition ⊕ to the bounded open
box ]a, b[×]a, b[ is definable in R and; therefore, it is definable in M. It is the same
for the multiplication ⊗. We have demonstrated that the structure M has bounded
definable field structure. �

4.3. Uniform local definable cell decomposition.

4.3.1. Preliminary. We begin to study uniform local definable cell decomposition
for almost o-minimal structures. The author developed the theory of uniformly
locally o-minimal structures of the second kind and their dimension theory in [9,
11, 12]. An almost o-minimal structure is a definably complete uniformly locally
o-minimal structures of the second kind by Corollary 2.11 and Lemma 4.6. We use
the following facts:

Proposition 4.16. Consider a DCULOAS structure M = (M,<, 0,+, . . .). The
following assertions hold true:

(1) Let f : X →Mn be a definable map. We have dim(f(X)) ≤ dimX.
(2) Let f : X →Mn be a definable map. The notation D(f) denotes the set of

points at which the map f is discontinuous. The inequality dim(D(f)) <
dimX holds true.

(3) (Addition Property) Let ϕ : X → Y be a definable surjective map whose
fibers are equi-dimensional; that is, the dimensions of the fibers ϕ−1(y) are
constant. We have dimX = dimY + dimϕ−1(y) for all y ∈ Y .

Proof. (1) [11, Theorem 1.1]; (2) [11, Corollary 1.2]; (3) [12, Theorem 3.14]. �

We consider an almost o-minimal expansion of an ordered group M = (M,<,
0,+, . . .) in Section 4.3.2 and Section 4.3.3. An M-definable set is simply called
definable in these sections. We introduce several notations. The almost o-minimal
structureM is simultaneously an X-expansion of an ordered divisible abelian group.
Applying Theorem 2.13 to it, there exists an o-minimal expansion of an ordered
group such that any set definable in this structure is definable in M and any
bounded set definable in M is definable in the structure. The notation Rind(M)
denote this o-minimal structure. Sets semi-definable in Rind(M) are simply called
semi-definable in these sections. Any definable set is semi-definable by the defini-
tions of the o-minimal structure Rind(M).

4.3.2. Partition into multi-cells.

Definition 4.17. Consider an expansion of a dense linear order M = (M,<, · · · ).
A subsetX ofMn+1 is called bounded in the last coordinate if there exists a bounded
open interval I such that X ⊆Mn × I.
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Lemma 4.18. Consider an almost o-minimal structure M = (M,<, . . .). Let X be
a semi-definable subset of Mn+1 which is bounded in the last coordinate. The image
π(X) is also semi-definable, where π :Mn+1 →Mn is the projection forgetting the
last coordinate.

In addition, if X is semi-definably connected, then the image π(X) is also semi-
definably connected.

Proof. Obvious. �

We next define multi-cells.

Definition 4.19. Consider an almost o-minimal expansion of an ordered group
M = (M,<, 0,+, . . .). We define a multi-cell X in Mn inductively.

• If n = 1, either X is a discrete definable set or all semi-definably connected
components of the definable set X are open intervals.

• When n > 1, let π : Mn → Mn−1 be the projection forgetting the last
coordinate. The projection image π(X) is a multi-cell and, for any semi-
definably connected component Y of X , π(Y ) is a semi-definably connected
component of π(X) and Y is one of the following forms:

Y = π(Y )×M ,

Y = {(x, y) ∈ π(Y )×M | y = f(x)},

Y = {(x, y) ∈ π(Y )×M | y > f(x)},

Y = {(x, y) ∈ π(Y )×M | y < g(x)} and

Y = {(x, y) ∈ π(Y )×M | f(x) < y < g(x)}

for some continuous functions f and g defined on π(Y ) with f < g.

A definable set is partitioned into finitely many multi-cells. Its proof is long. We
divide the proof into several lemmas.

Lemma 4.20. Consider an almost o-minimal expansion of an ordered group M =
(M,<, 0,+, . . .) which is not o-minimal. Let X be a definable subset of Mn with
n > 1 and π :Mn →Mn−1 be the projection forgetting the last coordinate. Assume
that, for any x ∈Mn−1, the fiber X ∩ π−1(x) is at most of dimension zero. Then,
there exists a definable closed subset Z of Mn−1 satisfying the following conditions:

(a) dim(Z) < dim(π(X));
(b) The definable set X \ π−1(Z) is closed in Mn \ π−1(Z);
(c) The definable set X \ π−1(Z) is locally the graph of continuous functions

everywhere;
(d) Any semi-definably connected component C of X \π−1(Z) is bounded in the

last coordinate.

Proof. Set d = dim(X). We have dim(π(X)) = d by Proposition 4.16(3). Let
Z1 = π(∂X). We have dimZ1 ≤ dim ∂X < dimX = d by Corollary 2.29 and
Proposition 4.16(1). Set X1 = X \ π−1(Z1). We have dimX1 = d by Proposition
2.21(b). The definable set X1 is closed in Mn \ π−1(Z1).

We now set Z2 = Sing(π(X1)) and X2 = X1 \ π−1(Z2). They are obviously
definable in M. The definable set π(X)\ (Z1∪Z2) = π(X1)\Z2 = π(X2) is a good
submanifold by Lemma 3.9 and Lemma 3.11. We get dimZ2 < d by Lemma 3.11
and Corollary 2.29. We also have dimX2 = d for the same reason as above.
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We want to apply Lemma 3.12 to X2. We have dimX2 = dim π(X2) by Propo-
sition 4.16(3). The assumption in Lemma 3.12 is satisfied. Let S be the set of
points at which X2 is locally the graph of a continuous function. It is obviously

definable in M. We have dim(X2 \ S) < d by Lemma 3.12. Set Z3 = π(X2 \ S).
We have dim(Z3) < d by Corollary 2.29 and Proposition 4.16(1). The definable set
X3 = X2 \ π−1(Z3) is locally the graph of a continuous function at any point in
X3. We have dimX3 = d.

There exists an unbounded discrete definable subset D of M by Corollary 4.7.
We may assume that inf(D) = −∞ and sup(D) = ∞ by considering D ∪ (−D)
in place of D because the group operation is definable. Let Vr be the boundary
of X3 ∩ (π(X3) × {r}) in π(X3) × {r} for any r ∈ D. Set W =

⋃
r∈D Vr and

Z4 = π(W ). The setW is definable. In fact,W is given by {(x, r) ∈Mn−1×M | r ∈
D, the point x is contained in the boundary of X3∩π−1(r) in π(X3)×{r}} and it
is definable.

We demonstrate that dimW < d. Take an arbitrary bounded open box B in
Mn. We have only to demonstrate that dim(B ∩W ) < d by Lemma 2.20. Note
that B ∩W is definable in Rind(M). Take an arbitrary cell C contained in B ∩W .
We have to show that dimC < d by [5, Chapter 3, (1.1)]. There exists r ∈ D with
C ⊆ Vr. We have dim(C) < dim(X3 ∩ (π(X3) × {r})) ≤ dim(X3) by Corollary
2.29. We get the inequality dimW < d, and consequently, we obtain dimZ4 < d
by Corollary 2.29 and Proposition 4.16(1).

Set Z = Z1∪Z2∪Z3∪Z4. We are now ready to demonstrate that the conditions
(a) through (d) are satisfied. The condition (a) is now immediate by Proposition
2.21(b). The condition (b) is satisfied because ∂X is contained in π−1(Z). The
condition (c) follows from the definition of Z3, Lemma 3.9 and Lemma 3.10.

The remaining task is to show that the condition (d) is satisfied. Set Xflat =
X∩((π(X) \ Z)×D) andXflat,r = X∩((π(X)\Z)×{r}) for all r ∈ D for simplicity
of notations. By the condition (c) and the definition of Z4, we obtain the following
assertion.

(∗): For any x ∈ Xflat, there exists an open box U containing the point x such
that X ∩ U = Xflat,r ∩ U for some r ∈ D, π(X) ∩ π(U) is a good submanifold of
Mn and X ∩ U is the graph of a constant function defined on π(X) ∩ π(U).

In fact, by the definition of Z4, we can take an open box U containing the point
x such that Xflat ∩U = Xflat,r ∩U for some r ∈ D and U ∩π−1(Z4) = ∅. Shrinking
U if necessary, we may assume that π(X)∩ π(U) is a good submanifold of Mn and
X ∩ U is the graph of a continuous function on π(X) ∩ π(U) by the condition (c).
If X ∩U is not the graph of a constant function, it intersects with Vr, and it means
that U ∩ π−1(Z4) 6= ∅. Contradiction.

Fix an arbitrary semi-definably connected component C of X \ π−1(Z). We
consider two cases, separately.

We first consider the case in which Xflat ∩ C 6= ∅. We demonstrate that C ⊆
Xflat,r for some r ∈ D. Take a point x ∈ Xflat∩C. The point x is contained inXflat,r

for some r ∈ D. We lead to a contradiction assuming that y 6∈ Xflat,r for some y ∈
C. There exists an Rind(M)-definable continuous curve γ : [c1, c2] → C such that
γ(c1) = x and γ(c2) = y by Theorem 3.6. The set γ−1(Xflat,r) = γ−1(Mn−1×{r}) is
a finite union of points and open intervals because it is definable in the o-minimal
structure Rind(M). It is closed and does not coincide with the closed interval
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[c1, c2] by the assumption. Therefore, there exists a point d ∈ [c1, c2] such that
γ(d) ∈ Xflat,r and, for any small ε > 0, we can take points s1, s2 ∈ [c1, c2] satisfying
that |si − d| < ε for i = 1, 2, γ(s1) ∈ Xflat,r and γ(s2) 6∈ Xflat,r. It implies that
X ∩ U 6= Xflat,r ∩ U for any open box U containing the point γ(d). It contradicts
the assertion (*). We have demonstrated that C is contained in Xflat,r. Now, the
condition (d) is clearly satisfied.

We next consider the case in which Xflat ∩ C = ∅. We demonstrate that C ⊆
Mn−1×]r1, r2[ for some r1, r2 ∈ M . Let π2 : Mn → M be the projection onto the
last coordinate. We demonstrate that there exists r1 ∈ M such that π2(C) > r1.
Assume the contrary. Take a point x1 ∈ C, then there exists an R ∈ D with
π2(x1) > R because inf(D) = −∞. We can get x2 ∈ C with π2(x2) < R by the
assumption. Then C = {x ∈ C | π2(x) > R} ∪ {x ∈ C | π2(x) < R} is a partition
into two non-empty open and closed subsets. It contradicts the assumption that
C is semi-definably connected. We have demonstrated the existence of r1. We can
take r2 ∈ M with π(C) < r2 in the same manner. This concludes the assertion
(d). �

The following lemma is the major induction step of the proof of Theorem 4.22.

Lemma 4.21. Consider an almost o-minimal expansion of an ordered group M =
(M,<, 0,+, . . .) which is not o-minimal. Let X be a definable subset of Mn and
π : Mn → Mn−1 be the projection forgetting the last coordinate. Assume that, for
any x ∈Mn−1, the fiber X ∩ π−1(x) is at most of dimension zero. Assume further
that any definable subset of Mn−1 is partitioned into finitely many multi-cells.

Then, the definable set X is also partitioned into finitely many multi-cells. Fur-
thermore, the projection images of two distinct multi-cells are disjoint.

Proof. We prove the lemma by induction on dim(X). When dim(X) = 0, X is a
discrete closed definable set and its projection images are also discrete and closed
by Lemma 2.18 and Proposition 4.16(1). Therefore, X itself is a multi-cell.

Next we consider the case in which dim(X) > 0. We can find a definable closed
subset Z of Mn−1 satisfying the following conditions by Lemma 4.20.

(a) dim(Z) < dim(π(X));
(b) The definable set X \ π−1(Z) is closed in Mn \ π−1(Z);
(c) The definable set X \ π−1(Z) is locally the graph of continuous functions

everywhere;
(d) Any semi-definably connected component C of X \ π−1(Z) is bounded in

the last coordinate.

The lemma holds true for X ∩ π−1(Z) by the induction hypothesis because
dim(X ∩ π−1(Z)) ≤ dim(Z) < dim(π(X)) = dim(X) by Proposition 4.16(3). Re-
placing X with X \ π−1(Z), we may further assume the followings:

• X is closed in π−1(π(X));
• X is locally the graph of continuous functions everywhere;
• any semi-definably connected component of X is bounded in the last coor-
dinate.

We can partition π(X) into finitely many multi-cells by the assumption. Hence, we
may assume that π(X) is a multi-cell. We demonstrate that X is a multi-cell in
this case. Let C be a semi-definably connected component of X . We have only to
show the following assertions:
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• π(C) is a semi-definably connected component of π(X).
• C is the graph of a continuous function defined on π(C).

We first demonstrate that π(C) is a semi-definably connected component of
π(X). The image π(C) is semi-definable and semi-definably connected by Lemma
4.18 because C is bounded in the last coordinate. Therefore, we have only to show
that π(C) is open and closed in π(X).

We first show that π(C) is open. Take an arbitrary point x ∈ C. There exists
an open box U containing the point x such that X ∩U is the graph of a continuous
function on π(X) ∩ π(U). Shrinking U if necessary, we may assume that U is
bounded and X ∩ U is definably connected as a set definable in Rind(M). On
the other hand, C ∩ U is a union of definably connected components of X ∩ U
because C is semi-definably connected. It implies that C ∩ U = X ∩ U . The
intersection C ∩ U is the graph of a continuous function on π(X) ∩ π(U). In
particular, we have π(X) ∩ π(U) = π(C ∩ U) ⊆ π(C) ∩ π(U) ⊆ π(X) ∩ π(U). We
get π(C)∩π(U) = π(X)∩π(U). We have demonstrated that π(C) is open in π(X).

We next demonstrate that π(C) is closed in π(X). Assume for contradiction that
we can take a point x in the frontier of π(C) in π(X). There exists a continuous
curve γ :]0, ε[→ π(C) definable in Rind(M) with lim

t→0
γ(t) = x by Corollary 2.15.

Define fu :]0, ε[→ M by fu(t) = sup{y ∈ M | (γ(t), y) ∈ C}. The definable set
{(t, y) ∈]0, ε[×M | (γ(t), y) ∈ C} is definable in Rind(M) because C is bounded in
the last coordinate. Therefore, the function fu is definable in Rind(M). We may
assume that fu is continuous and monotone by the monotonicity theorem for o-
minimal structures [5, Chapter 3, Theorem 1.2] by taking a sufficiently small ε > 0
if necessary. The limit y = lim

t→0
fu(t) exists because the function fu definable in

Rind(M) is bounded and monotone. We have (x, y) ∈ X because X is closed in
π−1(π(X)). We get (x, y) ∈ C because C is closed in X by Theorem 3.6. It means
x ∈ π(C). Contradiction to the assumption that x is a point in the frontier of π(C)
in π(X).

We next demonstrate that C is the graph of a continuous function defined on
π(C). We have only to show that the restriction of π to C is injective by the
condition (b). Set

T = {x ∈ π(C) | |π−1(x) ∩ C| > 1}.

We have only to demonstrate that T is an empty set. We first show that T is semi-
definable. Consider the set S = {(x, y1, y2) ∈Mn−1×M×M | (x, y1) ∈ C, (x, y2) ∈
C and y1 < y2}. The semi-definable set S is bounded in the last coordinate, and the
image S′ of S under the projection forgetting the last coordinate is semi-definable
by Lemma 4.18. It is obvious that S′ is also bounded in the last coordinate and
T = π(S′). The set T is semi-definable using Lemma 4.18 again.

The set T is open in π(C). In fact, take an arbitrary point x ∈ T . There
exist y1 < y2 ∈ M with (x, y1), (x, y2) ∈ C. By the condition (b), there exists
an open box B with x ∈ B ∩ π(C) such that X ∩ π−1(B) contains the graphs of
two continuous functions whose values at x are y1 and y2, respectively. Therefore,
B ∩ π(C) is contained in T , and T is open in π(C).

We next show that T is closed in π(C). Assume the contrary. Take a point
x ∈ π(C) ∩ ∂T . We can take the unique y ∈ M with (x, y) ∈ C because x 6∈ T .
There exists a continuous curve γ :]0, ε[→ π(C)∩T definable in Rind(M) such that
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lim
t→0

γ(t) = x by Corollary 2.15. We define the maps ηu, ηl :]0, ε[→M by

ηu(t) = sup{u ∈M | (γ(t), u) ∈ C} and

ηl(t) = inf{u ∈M | (γ(t), u) ∈ C}.

They are well-defined because C is bounded in the last coordinate. Take a suffi-
ciently small ε > 0. The two functions ηu and ηl are definable in Rind(M) and
continuous and they have the limits yu = lim

t→0
ηu(t) ∈ M and yl = lim

t→0
ηl(t) ∈ M

for the same reason as above. We have ηu(t) 6= ηl(t) because γ(t) ∈ T . We have
(x, yu) ∈ C and (x, yl) ∈ C because C is closed in π−1(π(C)). We therefore get
y = yl = yu because x 6∈ T . The condition (b) fails at (x, y) because ηu(t) 6= ηl(t).
Contradiction. We have shown that T is closed in π(C).

Since π(C) is semi-definably connected and T is open and closed in π(C), we have
either T = π(C) or T = ∅. We have only to lead to a contradiction assuming that
T = π(C). Define the function fu : π(C) → M by fu(x) = sup{t | (x, t) ∈ C}. We
can easily show that its graph is a semi-definable set because C is bounded in the last
coordinate. It is a continuous function. In fact, let D be the set of all the points at
which fu is discontinuous. Take a point x ∈ D. Let V be the intersection of π−1(x)
with the closure of the graph of fu|π(C)\{x}, where fu|π(C)\{x} denote the restriction
of fu to π(C) \ {x}. The closure of the graph of fu|π(C)\{x} is semi-definable by
Lemma 3.1. The set V is semi-definable and bounded. Consequently, V is definable
in Rind(M) by the definition of semi-definable sets. There exists a point (x, y) ∈ V
with y 6= fu(x) by the assumption. Note that (x, y) ∈ C because C is closed in
π−1(π(C)). Since X is locally the graph of continuous functions everywhere, the set
C is locally the graphs of continuous functions g and h defined on a neighborhood
of x in π(X) at (x, y) and (x, fu(x)), respectively. Take a sufficiently small ε > 0.
Since g and h are continuous and g(x) < h(x), we have g(x′) + ε < h(x′) if x′ is
sufficiently close to x. We also get h(x′) ≤ fu(x

′) by the definition of the function
fu. We then have g(x′)+ ε < fu(x

′) for any x′ sufficiently close to x and we obtain
(x, y) = (x, g(x)) 6∈ Vx. Contradiction. We have demonstrated that the function fu
is continuous.

Consider the graph {(x, y) ∈ C | y = fu(x)}. It is easy to prove that the graph
is an open and closed proper subset of C using the fact that X is locally the graph
of continuous functions everywhere. Contradiction to the assumption that C is
semi-definably connected. �

The following theorem is the main theorem in this subsection.

Theorem 4.22. Consider an almost o-minimal expansion of an ordered group. A
definable set is partitioned into finitely many multi-cells.

Proof. Consider the case in which the structure in consideration is o-minimal. A
definable set is partitioned into finitely many cells by [5, Chapter 3, Theorem 2.11].
It is also a partition into finitely many multi-cells because a cell is simultaneously
a multi-cell.

We next consider the case in which the structure is not o-minimal. Let M =
(M,<, 0,+, . . .) be an almost o-minimal expansion of an ordered group. Let X be a
definable subset of Mn. We demonstrate that the set X is partitioned into finitely
many multi-cells. We prove it by induction on n. Consider the case in which n = 1.
The theorem is clear when X = ∅ or X =M . We consider the other cases. Let X1
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be the union of all the maximal open intervals contained in X , which is definable.
In fact, the set X1 is described as follows:

X1 = {x ∈ X | ∃ε > 0, ∀y ∈M, |x− y| < ε→ y ∈ X}.

The set X2 = X \ X1 is the set of the isolated points and the endpoints of the
maximal open intervals in X and it is a discrete closed definable set by Lemma 4.6
and Lemma 4.3. The decomposition X = X1 ∪X2 is a partition into multi-cells.

We next consider the case in which n > 1. Let π :Mn →Mn−1 be the projection
forgetting the last coordinate. Consider the sets

Xoi = {(x, y) ∈Mn−1 ×M | ∃ε > 0, ∀y′ ∈M, |y′ − y| < ε→ (x, y′) ∈ X},

X∀ = {(x, y) ∈Mn−1 ×M | ∀y′ ∈M, (x, y′) ∈ X},

X ′
∞ = {(x, y) ∈Mn−1 ×M | ∀y′ ∈M, y′ > y → (x, y′) ∈ X} and

X ′
−∞ = {(x, y) ∈Mn−1 ×M | ∀y′ ∈M, y′ < y → (x, y′) ∈ X}.

The subscript oi of Xoi is an acronym of open intervals. Set

Xboi = Xoi \ (X∀ ∪X ′
∞ ∪X ′

−∞),

X∞ = X ′
∞ \X∀,

X−∞ = X ′
−∞ \X∀ and

Xpt = X \ (Xboi ∪X∞ ∪X−∞ ∪X∀).

The subscripts boi of Xboi and pt of Xpt represent bounded open intervals and
points, respectively. The definable set X is partitioned as follows:

X = Xboi ∪X∞ ∪X−∞ ∪X∀ ∪Xpt.

By the definition and Lemma 4.3, semi-definably connected components of non-
empty fibers of Xboi, X∞, X−∞, X∀ and Xpt are a bounded open interval, an open
interval unbounded above and bounded below, an open interval bounded above and
unbounded below, M and a point, respectively.

We have only to show that the above five definable sets are partitioned into
multi-cells. The definable set Xpt is partitioned into multi-cells by Lemma 4.21.

As to X∀, there exists a partition into multi-cells π(X∀) =
⋃k

i=1 Yi by the induction

hypothesis. Set X∀,i = Yi ×M , then the partition X∀ =
⋃k

i=1X∀,i is a partition
into multi-cells.

Consider the set

Y∞ = {(x, y) ∈ π(X∞)×M | (x, y) 6∈ X∞, ∀y
′, y′ > y → (x, y′) ∈ X∞}.

The definable sets Y∞ consists of the lower endpoints of fibers of X∞. In particular,

Y∞ satisfies the assumption of Lemma 4.21. Let Y∞ =
⋃k

i=1 Y∞,i be a partition
into multi-cells given by Lemma 4.21. Set X∞,i = X∞ ∩ π−1(π(Y∞,i)). We claim
that each definable set X∞,i, 1 ≤ i ≤ k, is a multi-cell. In fact, it is clear that
the projection image π(X∞,i) is a multi-cell because π(X∞,i) = π(Y∞,i). Since
Y∞,i is a multi-cell, it is the graph of a continuous function f defined on π(Y∞,i).
It is obvious that X∞,i = {(x, y) ∈ π(X∞,i) ×M | y > f(x)} by the definition.

Hence, the definable set X∞,i is a multi-cell, and X∞ =
⋃k

i=1X∞,i is a partition
into multi-cells.

We can show that the definable set X−∞ is partitioned into multi-cells in the
same way.
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The remaining task is to demonstrate that Xboi is partitioned into multi-cells.
We may assume the followings:

(i) All the semi-definably connected components of non-empty fibers of X are
bounded open intervals;

(ii) For any x ∈ π(X), the closures of two distinct semi-definably connected
components of X ∩ π−1(x) have an empty intersection.

In fact we can assume (i) by setting X = Xboi. Let us prove why we can also
assume (ii). Consider the definable set

Yboth = {(x, y1, y2) ∈ π(X)×M2 | (x, y1) 6∈ X, (x, y2) 6∈ X, y1 < y2,

∀c, y1 < c < y2 → (x, c) ∈ X}.

Set

Xupper = {(x, y) ∈ π(X)×M | ∃y1, y2, (x, y1, y2) ∈ Yboth, (y1 + y2)/2 < y < y2},

Xmiddle = {(x, y) ∈ π(X)×M | ∃y1, y2, (x, y1, y2) ∈ Yboth, y = (y1 + y2)/2} and

Xlower = {(x, y) ∈ π(X)×M | ∃y1, y2, (x, y1, y2) ∈ Yboth, y1 < y < (y1 + y2)/2}.

The definable setXmiddle can be partitioned into finitely many multi-cells by Lemma
4.21. The closures of two distinct semi-definably connected components of Xupper∩
π−1(x) have empty intersections for all x ∈ π(X). The fiber Xlower ∩ π

−1(x) also
enjoys the same property. Therefore, we may assume that the definable set X
satisfies the assumption (ii) by setting X = Xupper and X = Xlower.

Consider the definable sets

Yupper = {(x, y) ∈ π(X)×M | (x, y) 6∈ X, ∃ε > 0, ∀c, y − ε < c < y

→ (x, c) ∈ X} and

Ylower = {(x, y) ∈ π(X)×M | (x, y) 6∈ X, ∃ε > 0, ∀c, y < c < y + ε

→ (x, c) ∈ X}.

For any x ∈ π(X), the fiber Yupper ∩ π−1(x) is the set of the upper endpoints of
the maximal open intervals contained in X ∩ π−1(x) by the assumption (i). The
fiber Ylower∩π−1(x) is the set of the lower endpoints of the maximal open intervals.
By Lemma 4.21, both Yupper and Ylower are partitioned into finitely many multi-

cells. Let Yupper =
⋃k

i=1 Yupper,i and Ylower =
⋃l

j=1 Ylower,j be these partitions,

respectively. We have π(Yupper,i1) ∩ π(Yupper,i2) = ∅ by Lemma 4.21 if i1 6= i2.
We may further assume that, for all 1 ≤ i ≤ k and 1 ≤ j ≤ l, we have either
π(Yupper,i) = π(Ylower,j) or π(Yupper,i)∩π(Ylower,j) = ∅. In fact, for all 1 ≤ i ≤ k and
1 ≤ j ≤ l, the definable set π(Yupper,i)∩π(Ylower,j) is partitioned as a finite union of

multi-cells by the induction hypothesis. Let π(Yupper,i) ∩ π(Ylower,j) =
⋃p(i,j)

m=1 Zijm

be this partitions. Set Yupper,ijm = Yupper,i ∩ π−1(Zijm) and Ylower,ijm = Ylower,j ∩
π−1(Zijm). They are obviously multi-cells satisfying the requirement.

SetXi = X∩π−1(π(Yupper,i)). We have a partitionX =
⋃k

i=1Xi. The remaining
task is to show that each Xi is a multi-cell. Take an arbitrary semi-definably
connected component C of Xi and an arbitrary point ẑ ∈ C. Set x̂ = π(ẑ) and
ẑ = (x̂, ŷ) for some ŷ ∈M . Since semi-definably connected components of the fiber
X∩π−1(x̂) are bounded open intervals by the assumption (i), there exist yu, yl ∈M ,
1 ≤ i′ ≤ k and 1 ≤ j′ ≤ l with yl < ŷ < yu, (x̂, yu) ∈ Yupper,i′ , (x̂, yl) ∈ Ylower,j′

and (x̂, y) ∈ X for all yl < y < yu. We have π(Yupper,i′) = π(Ylower,j′) by the
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assumption. Let Z be its semi-definably connected component of π(Xi) containing
the point x̂. There are two continuous function f and g defined on Z such that
yl = f(x̂), yu = g(x̂) and the graphs of f and g are semi-definably connected
components of Ylower,j′ and Yupper,i′ , respectively, because Ylower,j′ and Yupper,i′ are
multi-cells.

We demonstrate that f(x) < g(x) on Z and

C = {(x, y) ∈ Z ×M | f(x) < y < g(x)}.

We first show that the graph of f does not intersect Yupper. In particular, we have
f(x) < g(x) on Z by Lemma 3.4. Assume the contrary. Let x′ ∈ Z and y′ = f(x′)
with (x′, y′) ∈ Yupper. By the definition of f and Yupper, there exist y1, y2 ∈M with
y1 < y′ < y2 such that {x}×]y1, y

′[ and {x}×]y′, y2[ are semi-definably connected
components of the fiber X∩π−1(x). The intersection of their closures is not empty.
This contradicts (ii).

We next show that C = {(x, y) ∈ Z ×M | f(x) < y < g(x)}. The set C is
contained in {(x, y) ∈ Z ×M | f(x) < y < g(x)} because the latter set is closed
and open in X by the definition. We demonstrate the opposite inclusion. Assume
the contrary. Let (x′, y′) be a point satisfying x′ ∈ Z, f(x′) < y′ < g(x′) and
(x′, y′) 6∈ C. By the assumption (i), there exists y ∈ M with f(x′) < y ≤ y′ and
(x′, y) ∈ Yupper. Since we have π(Yupper,i1) ∩ π(Yupper,i2) = ∅ for all i1 6= i2, we
have (x′, y) ∈ Yupper,i′ . Since Yupper,i′ is a multi-cell, the semi-definably connected
component of Yupper,i′ containing the point (x′, y) is the graph of some continuous
function g′ defined on Z. We have f(x′) < g′(x′) < g(x′). The graph of g′ does
not intersect the graph of g because Yupper,i′ is a multi-cell. The graph of g′ does
not intersect the graph of f because the graph of f does not intersect Yupper as
we demonstrated previously. We get yl = f(x̂) < g′(x̂) < g(x̂) = yu by Lemma
3.4. We obtain (x̂, g′(x̂)) 6∈ X , which contradicts the fact that (x̂, y) ∈ X for all
yl < y < yu. �

Remark 4.23. The notion of special submanifolds defined in [8, 19, 24, 12] is similar
to that of multi-cells.

Consider an expansion of a densely linearly order without endpoints M =
(M,<,. . .). Let π : Mn → Md be a coordinate projection. A definable subset
is a π-special submanifold or simply a special submanifold if, π(X) is a definable
open set and, for every point x ∈ π(X), there exists an open box U in Md contain-
ing the point x satisfying the following condition: For any y ∈ X ∩ π−1(x), there
exist an open box V in Mn and a definable continuous map τ : U →Mn such that
π(V ) = U , τ(U) = X ∩ V and the composition π ◦ τ is the identity map on U .

Let {Xi}mi=1 be a finite family of definable subsets of Mn. A decomposition
of Mn into special submanifolds partitioning {Xi}mi=1 is a finite family of special

submanifolds {Ci}Ni=1 such that
⋃N

i=1 Ci =Mn, Ci ∩Cj = ∅ when i 6= j and either
Ci has an empty intersection with Xj or is contained in Xj for any 1 ≤ i ≤ m and
1 ≤ j ≤ N .

For instance, a DCULOAS structure admits decomposition into special subman-
ifolds [12]. A d-minimal expansion of an ordered field also admits decomposition
into special submanifolds [19, 24].

A multi-cell is a special manifold, but the converse is false. The projection
image of a multi-cell under the projection forgetting the last coordinate is again a
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multi-cell, but it is not true for a special manifold. We need a decomposition into
multi-cells in order to prove Theorem 4.26.

4.3.3. Uniform local definable cell decomposition. In this subsection, we first show
that an almost o-minimal expansion of an ordered group M = (M,<, 0,+, . . .) has
a uniformity property. We also prove the uniform local definable cell decomposition
theorem introduced in Section 1 using this uniformity property.

We need the following technical definition.

Definition 4.24. Consider an almost o-minimal expansion of an ordered group
M = (M,<, 0,+, . . .). Let X ⊆ Mn be a multi-cell and Y be a discrete definable
subset of X . Let πk :Mn →Mk denote the projection onto the first k coordinates
for all 1 ≤ k ≤ n. Note that πn is the identity map. The definable set Y is a
representative set of semi-definably connected components of X if the intersection
of πk(Y ) with any semi-definably connected component of πk(X) is a singleton for
any 1 ≤ k ≤ n.

Lemma 4.25. Consider an almost o-minimal expansion of an ordered group M =
(M,<, 0,+, . . .). Let X ⊆ Mm+n be a multi-cell and π : Mm+n → Mm be the
projection onto the first m coordinates. There exists a definable subset Y of X such
that Y ∩ π−1(x) is a representative set of semi-definably connected components of
X ∩ π−1(x) for any x ∈ π(X).

Proof. We demonstrate the lemma by the induction on n. We first consider the
case in which n = 1. Consider the following definable sets:

S∞ = {x ∈ π(X) | ∀y ∈M, (x, y) ∈ X},

Su = {x ∈ π(X) | ∃y ∈M, ∀z, z > y → (x, z) ∈ X} \ S∞ and

Sl = {x ∈ π(X) | ∃y ∈M, ∀z, z < y → (x, z) ∈ X} \ S∞.

The definable functions ρu : Su →M and ρl : Sl → M are given as follows:

ρu(x) = inf{y ∈M | ∀z, z > y → (x, z) ∈ X} and

ρl(x) = sup{y ∈M | ∀z, z < y → (x, z) ∈ X}.

It is well-defined by Lemma 4.6. We set

Yc = {(x, y1, y2) ∈ π(X)×M2 | (x, y1) 6∈ X, (x, y2) 6∈ X, y1 < y2,

∀c, y1 < c < y2 → (x, c) ∈ X} and

Yp = {(x, y) ∈ X | ∃ε > 0, ∀c, 0 < |y − c| < ε→ (x, c) 6∈ X}.

We finally set

Y = {(x, ρu(x) + ε) ∈Mm+1 | x ∈ Su} ∪ {(x, ρl(x) − ε) ∈Mm+1 | x ∈ Sl}

∪ {(x, y) ∈Mm+1 | ∃y1, y2, (x, y1, y2) ∈ Yc, y = (y1 + y2)/2}

∪ Yp ∪ (S∞ × {0}),

where ε is a fixed positive element in M . The definable set Y ∩π−1(x) is obviously
a representative set of semi-definably connected components of X ∩ π−1(x) for any
x ∈ π(X) by the definition of multi-cells.

We consider the case in which n > 1. The notations π1 :Mm+n →Mm+n−1 and
π2 :Mm+n−1 →Mm denote the projections forgetting the last coordinate and onto
the first m coordinates, respectively. The projection image π1(X) is a multi-cell by



ALMOST O-MINIMAL STRUCTURES AND X-STRUCTURES 35

the definition of multi-cells. There exists a definable subset Y1 ⊆ π1(X) such that
the definable set Y1 ∩ π−1

2 (x) is a representative set of semi-definably connected

components of π1(X)∩π−1
2 (x) for any x ∈ π(X) by applying the induction hypoth-

esis to π1(X) and π2. Set X
′ = X ∩π−1

1 (Y1), and apply the lemma for n = 1 to X ′

and π1. We can find a representative set Y of semi-definably connected components
of X ′. It is easy to demonstrate that Y is also a representative set of semi-definably
connected components of X . �

Theorem 4.26 (Uniformity theorem). Consider an almost o-minimal expansion
of an ordered group M = (M,<, 0,+, . . .). For any definable subset X of Mn+1

and a positive element R ∈ M , there exists a positive integer K such that, for
any a ∈ Mn, the definable set X ∩ ({a}×]− R,R[) has at most K semi-definably
connected components.

Proof. Consider the set X<R := X ∩ (Mn×] − R,R[). Apply Theorem 4.22 to

X<R. We have a partition into multi-cells X<R =
⋃k

i=1Xi. Let π1 :Mn+1 → Mn

and π2 : Mn+1 → M be the projections onto first n coordinates and onto the
last coordinate, respectively. We next apply Lemma 4.25 to Xi and π2. For any
1 ≤ i ≤ k, we can take a definable discrete subset Yi of Xi which is a representative
set of semi-definably connected components of Xi. Since Yi is discrete, we have
dim(Yi) ≤ 0 by Lemma 2.20. Set Zi = π2(Yi) for all 1 ≤ i ≤ k. We get dim(Zi) ≤ 0
by Proposition 4.16(1). It implies that the definable set Zi is discrete. The definable
set Zi is included in the bounded open interval ]− R,R[ by the definition. Hence,
the definable set Zi is a finite set for any 1 ≤ i ≤ k because M is almost o-minimal.

Set K =
∑k

i=1 |Zi|.
When a ∈ π1(Xi) for some 1 ≤ i ≤ k, there exists a point a′i ∈ π1(Yi) contained

in the semi-definably connected component of π1(Xi) containing the point a. The
definable set Xi∩π

−1
1 (a) has the same number of semi-definably connected compo-

nents as Xi∩π
−1
1 (a′i) which is equal to |Yi∩π

−1
1 (a′i)| by the definitions of multi-cells

and representative sets of their semi-definably connected components. Let NC(S)
denote the number of semi-definably connected components of a definable set S.
We therefore have

NC(X ∩ ({a}×]−R,R[)) = NC(X<R ∩ π−1
1 (a)) ≤

∑

1≤i≤k,a∈π1(Xi)

NC(Xi ∩ π
−1
1 (a))

=
∑

1≤i≤k,a∈π1(Xi)

NC(Xi ∩ π
−1
1 (a′i))

=
∑

1≤i≤k,a∈π1(Xi)

|Yi ∩ π
−1
1 (a′i)|

≤
k∑

i=1

|π2(Yi)| =
k∑

i=1

|Zi| = K.

We have finished the proof. �

We now begin to demonstrate Theorem 1.7.

Proof of Theorem 1.7. We first show the assertion for n = 1. For any definable set
S ⊆Mm+1, the notation bdm(S) denotes the set {(x, y) ∈Mm×M | y ∈ bd(Sx)}.
Set I =]−R,R[, then S′ ∩ I is a finite union of points and open intervals for
any definable subset S′ of M by the definition of almost o-minimality. Set X =



36 M. FUJITA

⋃
λ∈Λ bdm(Aλ ∩ I). The fibers Xb are finite sets for all b ∈Mm. It is obvious that

any definable cell decomposition of I partitioning Xb ∩ I partitions {(Aλ)b ∩ I}λ∈Λ

for any point b ∈Mm.
There exists a positive integer K such that |X ∩ ({b} × I)| ≤ K for any point

b ∈Mm by Theorem 4.26. Set Si = {b ∈Mm | |Xb∩ I| = i} for all 0 ≤ i ≤ K. The
family {Si}Ki=0 partitions the parameter space Mm. Let yj(b) be the j-th largest
point of Xb ∩ I for all b ∈ Si and 1 ≤ j ≤ i. Set y0(b) = −R and yi+1(b) = R for
all b ∈ Si. Applying Proposition 4.16(2) inductively, we can find a partition into
definable sets

Si = Si0 ∪ . . . ∪ Sim

such that either Sik = ∅ or dim(Sik) = k, and yj is continuous on Sik for any
0 ≤ j ≤ i and 0 ≤ k ≤ m. We set

Cijk = {(x, yj(x)) ∈ Sik ×M} (1 ≤ j ≤ i) and

Dijk = {(x, y) ∈ Sik ×M | yj(x) < y < yj+1(x)} (0 ≤ j ≤ i)

for any 0 ≤ i ≤ K and 0 ≤ k ≤ m. Consider the family of maps F = {σ : Λ →
{0, 1}}. Set

T 0
ijkσ = {x ∈ Sik | Cijk ∩ ({x} ×M) is contained in Aλ iff σ(λ) = 1} (1 ≤ j ≤ i) and

T 1
ijkσ = {x ∈ Sik | Dijk ∩ ({x} ×M) is contained in Aλ iff σ(λ) = 1} (0 ≤ j ≤ i)

for any 0 ≤ i ≤ K, 0 ≤ k ≤ m and σ ∈ F . We finally set Cijkσ = Cijk∩(T 0
ijkσ×M)

and Dijkσ = Dijk ∩ (T 1
ijkσ ×M). The partition

Mm × I =

K⋃

i=0




m⋃

k=1




⋃

σ∈F




i⋃

j=1

Cijkσ ∪
i⋃

j=0

Dijkσ








is the desired partition. Furthermore, the above definable functions yj can be
chosen as continuous functions on p(Cijkσ) and p(Dijkσ), where p : Mm+1 → Mm

is the projection forgetting the last coordinate. It is clear that the type of the cell
(Xi)b is independent of the choice of b with (Xi)b 6= ∅.

We consider the case in which n > 1. Let π : Mm+n → Mm+n−1 be the
projection forgetting the last coordinate. Set I =]−R,R[. Applying the theorem for
n = 1 to the family {Aλ}λ∈Λ, there exists a partitionM

m+n−1×I = Y1∪. . .∪Yl such
that I = (Y1)b ∪ . . .∪ (Yl)b is a definable cell decomposition I for any b ∈Mm+n−1

and either Yi ⊆ Aλ or Yi ∩ Aλ = ∅ for any 1 ≤ i ≤ l and λ ∈ Λ. We can further
assume that Yi is one of the following forms:

Yi = {(x, f(x)) ∈ π(Yi)×M} and

Yi = {(x, y) ∈ π(Yi)×M | f(x) < y < g(x)},

where f and g are definable continuous functions on π(Yi) with f < g.
Set B′ =]−R,R[n−1. Apply the induction hypothesis to the family {π(Yi)}li=1.

There exists a partition Mm×B′ = Z1∪ . . .∪Zq such that B′ = (Z1)b ∪ . . .∪ (Zq)b
is a definable cell decomposition B′ for any b ∈ Mm, and either π(Yi) ∩ Zj = ∅ or
Zj ⊆ π(Yi) and the type of the cell (Zj)b is independent of the choice of b with
(Zj)b 6= ∅ for all i and j.

Set Xij = Yi∩π−1(Zj) for all 1 ≤ i ≤ l and 1 ≤ j ≤ q. Let {Xi}ki=1 be the family
of non-empty Xij ’s. It is easy to demonstrate that the family {Xi}ki=1 satisfies the
requirement of the theorem. We omit the details. �
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Corollary 4.27. Consider an almost o-minimal expansion of an ordered group
M = (M,<, 0,+, . . .). For any definable subset X of Mn and a positive element
R ∈M , there exists a positive integer K such that the definable set X ∩ (b+B) has
at most K semi-definably connected components for all b ∈Mn. Here, B =]−R,R[n

and b+B denotes the set given by {x ∈Mn | x− b ∈ B}.

Proof. Consider the definable set Y defined by

{(y, x) ∈Mn ×Mn | x− y ∈ X}.

Applying Theorem 1.7, there exists a partition Mn × B = X1 ∪ . . . ∪ XK such
that B = (X1)b ∪ . . . ∪ (XK)b is a definable cell decomposition B partitioning the
definable set Yb ∩ B for any b ∈ Mn. It means that the definable set X ∩ (b + B)
is the union of at most K cells. The set X ∩ (b+B) has at most K semi-definably
connected components because cells are semi-definably connected. We have finished
the proof. �

4.4. Structures elementarily equivalent to an almost o-minimal structure.

Structures elementarily equivalent to an almost o-minimal structure is not neces-
sarily almost o-minimal as demonstrated in Proposition 4.14. However, a weaker
version of Theorem 1.7 holds true for such structures.

Lemma 4.28. Let M = (M,<, . . .) be an expansion of a dense linear order. Con-
sider a definable set C ⊆ Mn defined by a first-order formula with parameter c.
There exists a first-order sentence with parameters c expressing the condition for C
being a definable cell of type (j1, . . . , jd).

Proof. We prove the lemma by the induction on n. When n = 1, the definable set
C is a cell if and only if C is a point or an open interval. This condition is clearly
expressed by a first-order sentence.

We next consider the case in which n > 1. The notation π : Mn → Mn−1

denotes the projection forgetting the last factor. The condition for π(C) being
a cell is represented by a first-order sentence with parameters c by the induction
hypothesis. We only prove the lemma in the case in which the definable set C is of
the form

C = {(x, y) ∈Mn−1 ×M | f(x) < y < g(x)},

where f and g are definable continuous functions defined on π(C). We can demon-
strate the lemma in the other cases in a similar way. The above condition is
equivalent to the following conditions:

• For any x ∈ π(C), the fiber Cx = {y ∈ M | (x, y) ∈ C} is a bounded
interval.

• Set f(x) = inf{y ∈ M | (x, y) ∈ C} and g(x) = sup{y ∈ M | (x, y) ∈ C}
for any x ∈ π(C), then f and g are continuous on π(C).

The above conditions are obviously expressed by first-order sentences with param-
eters c. �

Theorem 4.29. Consider a structure M = (M,<, 0,+, . . .) elementarily equiva-
lent to an almost o-minimal expansion of an ordered group. Let {Aλ}λ∈Λ be a finite
family of definable subsets of Mm+n. There exist an open box B in Mn containing
the origin and a finite partition into definable sets

Mm ×B = X1 ∪ . . . ∪Xk



38 M. FUJITA

such that B = (X1)b ∪ . . . ∪ (Xk)b is a definable cell decomposition of B for any
b ∈ Mm and either Xi ∩ Aλ = ∅ or Xi ⊆ Aλ for any 1 ≤ i ≤ k and λ ∈ Λ. Here,
the notation Sb denotes the fiber of a definable subset S of Mm+n at b ∈Mm.

Proof. Consider a structure N = (N,+, 0, <, . . .) elementarily equivalent to an
almost o-minimal expansion of an ordered group M = (M,+, 0, <, . . .). We first
reduce to the case in which the Aλ are definable without parameters for all λ ∈ Λ.
There exist parameters c ∈ Np and first-order formulae ϕλ(x, y, c) with parameters
c defining the definable sets Aλ for all λ ∈ Λ. Set A′

λ = {(z, x, y) ∈ Np × Nm ×
Nn | N |= ϕλ(x, y, z)}. If the corollary holds true for the family {A′

λ}λ∈Λ, the
corollary also holds true for the family {Aλ}λ∈Λ because Aλ is the fiber (A′

λ)c =
{(x, y) ∈ Nm × Nn | (c, x, y) ∈ A′

λ}. Hence, we may assume that the Aλ are
definable without parameters for all λ ∈ Λ. Let ϕλ(x, y) denote the first-order
formulae without parameters defining the definable sets Aλ.

Let AM
λ be the definable subset of Mm+n defined by the formula ϕλ(x, y) for

each λ ∈ Λ. By Theorem 1.7, there exist an open box BM in Mn containing the
origin and a partition into definable sets

Mm ×BM = XM
1 ∪ . . . ∪XM

k

such that the fibers (XM
i )b are definable cells of a fixed type for all b ∈ Mm with

(XM
i )b 6= ∅ and either XM

i ⊆ AM
λ or XM

i ∩AM
λ = ∅ for all 1 ≤ i ≤ k. There exist

parameters d ∈ Mp and first-order formulas ψi(x, y, d) with parameters d defining
the definable sets XM

i for all 1 ≤ i ≤ k.

Using the first-order formulas ψi(x, y, d), the condition that

• there exists an open box BM in Mn containing the origin and
• Mm ×BM = XM

1 ∪ . . . ∪XM
k

can be expressed by a first-order sentence Φ(d) with parameters d. Let Ψi(d) be the
sentence expressing the condition XM

i ⊆ AM
λ or XM

i ∩AM
λ = ∅ for any 1 ≤ i ≤ k.

The condition for the fiber (XM
i )b being either a cell or an empty set for any

b ∈ Mm is expressed by a first-order formula Πi(d) with parameters d by Lemma
4.28. We have

M |= Φ(d) ∧
k∧

i=1

(
Ψi(d) ∧ Πi(d)

)

by the definitions of Φ(d), Ψi(d) and Πi(d). We therefore get

M |= ∃d Φ(d) ∧
k∧

i=1

(
Ψi(d) ∧ Πi(d)

)
.

Since N is elementarily equivalent to M, we finally obtain

N |= ∃d Φ(d) ∧
k∧

i=1

(
Ψi(d) ∧ Πi(d)

)
.

Take d′ ∈ Np satisfying the above condition and setXi = {(x, y) ∈ Nm×Nn | M |=
ψi(x, y, d′)} for all 1 ≤ i ≤ k. Then, there exists an open box B in Nn containing
the origin such that the partitionNm×B = X1∪. . .∪Xk is the desired partition. �

Corollary 4.30. A structure elementarily equivalent to an almost o-minimal ex-
pansion of an ordered group is a uniformly locally o-minimal structure of the first
kind.
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Proof. The corollary immediately follows from Theorem 4.29. �
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