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Abstract

In the the present contribution, we prove an Omitting Types Theorem (OTT) for an arbitrary fragment of hybrid-

dynamic first-order logic with rigid symbols (i.e. symbols with fixed interpretations across worlds) closed under

negation and retrieve. The logical framework can be regarded as a parameter and it is instantiated by some well-known

hybrid and/or dynamic logics from the literature. We develop a forcing technique and then we study a forcing property

based on local satisfiability, which lead to a refined proof of the OTT. For uncountable signatures, the result requires

compactness, while for countable signatures, compactness is not necessary. We apply the OTT to obtain upwards and

downwards Löwenheim-Skolem theorems for our logic, as well as a completeness theorem for its constructor-based

variant. The main result of this paper can easily be recast in the institutional model theory framework, giving it a

higher level of generality.
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1. Introduction

Kripke semantics and hybrid-dynamic logics. Modal logics are formalisms for describing and reasoning about multi-

graphs. These structures appear naturally in many areas of research. For example, in knowledge representation

formalisms, role assertions describe relationships between individuals/objects grouped into classes determined by

concepts. Linguistic information can be represented by multi-graphs. Other mathematical entities that can be viewed

as multi-graphs are transition systems, derivation trees, semantic networks, etc. Therefore, it is useful to think of a

Kripke structure in the following way:

• a frame consisting of a set of nodes together with a family of (typed) edge sets, and

• a mapping from the set of nodes to a class of local models that gives meaning to the nodes.

However, modal logics have no mechanisms for referring to the individual nodes in such structures, which is necessary

when they are used as representation formalisms. Hybrid logics increase the expressive power of ordinary modal

logics by adding an additional sort of symbols called nominals such that each nominal is true relative to exactly one

point. The history of hybrid logics goes back to Arthur Prior’s work [43]. Further developments can be found in

works such as [1, 2, 3, 9]. The research on hybrid logics received an additional boost due to the recent interest in

the logical foundations of the reconfiguration paradigm. Dynamic logics provide a powerful language for describing

programs and reason about their correctness. Logics of programs have the roots in the work in the late 1960s of

computer scientists interested in assigning meaning to programming languages and finding a rigorous standard for

proofs about the programs. There is a significant body of research on this topic; [41] and [36] are two prominent

examples among many others. In the present contribution, we consider a logical system endowed with features from

both hybrid and dynamic logics, which is built on top of many-sorted first-order logic with equality. Despite its

complexity, it displays a certain simplicity due to its modular construction, which is a reminiscent of the hybridization

of institutions from [39].
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Applications of hybrid-dynamic logics. The application domain of the work reported in this contribution refers to a

broad range of reconfigurable systems whose states or configurations can be presented explicitly, based on some kind

of context-independent data types, and for which we distinguish the computations performed at the local/configuration

level from the dynamic evolution of the configurations. This suggests a two-layered approach to the design and

analysis of reconfigurable systems, involving:

• a local view, which amounts to describing the structural properties of configurations, and

• a global view, which corresponds to a specialized language for specifying and reasoning about the way system

configurations evolve.

Since configurations can be represented by local models and the dynamic evolution of configurations can be depicted

by the accessibility relations of the Kripke structures, hybrid-dynamic logics and their fragments are acknowledged

as suitable for describing and reasoning about systems with reconfigurable features. In addition, it is well-known

(see e.g., [7]) that hybrid logics specialize to temporal logics [35], description logics [5] and feature logics [45].

Therefore, the area of applications of the present work is rather large and it involves knowledge representation, compu-

tational linguistics, artificial intelligence, biomedical informatics, semantic networks and ontologies. We recommend

[7] for more information on this topic.

Omitting Types Theorem (OTT). In this paper we focus on obtaining an OTT for hybrid-dynamic first-order logic with

rigid symbols and sufficiently expressive fragments. Observe that an OTT for the full logic would not necessarily have

given us the property for its fragments. For this reason, we work within an arbitrary fragment of hybrid-dynamic first-

order logic with rigid symbols, which can be viewed as a parameter. Thus the generality of our proofs is an important

feature, since the parameter is instantiated by many concrete hybrid and/or dynamic logical systems which appear

in the literature. We provide a version of OTT for countable languages without any restrictions and a version for

uncountable languages provided that the fragment in question is compact. We show that compactness is necessary at

least for one fragment of the underlying logic. This situation is similar to that described in a theorem by Lindström for

first-order logic with only relational symbols [38]. The OTT for countable first-order languages is a result originally

from [21]. The extension of the OTT to uncountable languages is from [10]. One of the best known applications

of the OTT is a simple proof of the completeness of ω-logic (a more complex proof without using the OTT can be

found in [40]). In the present contribution, we develop this idea further to provide one important application of OTT

to computer science, which is described briefly in the following paragraph.

Formal methods practitioners are often interested in properties that are true of a restricted class of models whose

elements are reachable by some constructor operations [6, 31, 22]. For this reason, several algebraic specification

languages incorporate features to express reachability and to deal with constructors like, for instance, Larch [34],

CASL [4] or CITP [33, 29]. This situation is similar to the one in classical model theory, where the models of ω-

logic are reachable by the constructors zero and successor. In the present contribution, the completeness of ω-logic

is generalized by replacing the signature of arithmetics with an arbitrary vocabulary for which we distinguish a set of

constructor operators. Then we apply OTT to obtained completeness of the logical system resulted from restricting

the semantics of the underlying fragment of hybrid-dynamic first-order logic with rigid symbols to constructor-based

Kripke structures.

Institutions. Our approach is rooted in institutional model theory [20], which provides a unifying setting for studying

logical systems using category theory. The concept of institution formalizes the intuitive notion of logic, including

syntax, semantics and the satisfaction relation between them. The theory of institutions is one major approach in uni-

versal logic which promotes the development of logical properties at the most general level of abstraction. However,

to make the study available to a broader audience, the authors decided to present the results in a framework given by

a concrete logical system, that is, hybrid-dynamic first-order logic with rigid symbols. It should be obvious, at least

for the experts in institutions, that the main result, OTT, can be easily cast in a more general framework such as the

one provided by the definition of stratified institution [18], similarly to the work reported in [27]. Therefore, the area

of applications of our results covers a much broader range of hybrid-dynamic logics than the one mentioned in the

present contribution.
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Forcing. OTT is proved by applying a forcing technique, a method of constructing models based on consistency

results. Forcing was invented by Paul Cohen [11, 12] in set theory to prove the independence of the continuum

hypothesis from the other axioms of Zermelo-Fraenkel set theory. Robinson [44] developed an analogous forcing

method in model theory. In institutional model theory, forcing was introduced in [32] to prove a Gödel Completeness

Theorem. It was developed further for stratified institutions [27] to prove the completeness of a large class of hybrid

logics. The present contribution extends the forcing introduced in [27] to cover logics with both hybrid and dynamic

features and studies a forcing property based on local satisfiability to deliver an Omitting Types Theorem.

Structure of the paper. The article is arranged as follows: §2 reviews the framework of many-sorted first-order logic

in the institutional setting. §3 introduces all the necessary preliminaries about hybrid dynamic first-order logic with

rigid symbols, which expands the base system introduced in §2. §4 presents some necessary technical notions for the

arguments that follow later, such as that of a reachable model and a language fragment. §5 develops the basics of

the forcing technique in our present context. §6 presents a semantic forcing property that is instrumental in proving

the main result of the paper. §7 contains the proof of the main result, an Omitting Types Theorem for both countable

and uncountable signatures. §8 gives an application of the main result by establishing a completeness theorem for

the constructor-based variant of the logic. §9 establishes Löwenheim-Skolem theorems (upwards and downwards) as

consequences of the OTT. §10 shows that for a certain fragment of the logic in question compactness is a necessary

condition for the OTT for uncountable signatures to hold.

2. Many-sorted first-order logic (FOL)

In this section, we recall the definition of first-order logic as presented in institutional model theory [20].

Signatures. Signatures are of the form (S , F, P), where S is a set of sorts, F = {Far→s}(ar,s)∈S ∗×S is a (S ∗ × S -indexed)

set of operation symbols, and P = {Par}ar∈S ∗ is a (S ∗-indexed) set of relation symbols. If ar = ε then an element of

Far→s is called a constant symbol. Generally, ar ranges over arities, which are understood here as strings of sorts; in

other words an arity gives the number of arguments together with their sorts. We overload the notation and let F and

P also denote
⊎

(ar,s)∈S ∗×S Far→s and
⊎

ar∈S ∗ Par, respectively. Therefore, we may write σ ∈ Far→s or (σ : ar→ s) ∈ F;

both have the same meaning, which is: σ is an operation symbol of type ar → s. Throughout this paper, we let Σ, Σ′

and Σi to range over first-order signatures of the form (S , F, P), (S ′, F′, P′) and (S i, Fi, Pi), respectively.

Signature morphisms. A number of usual tricks, such as adding constants, but also, importantly, quantification, are

viewed as expansions of the signature, so moving between signatures is common. To make such transitions smooth,

a notion of a signature morphism is introduced. A signature morphism ϕ : Σ→ Σ′ is a triple χ = (χst, χop, χrl) of maps:

(a) χst : S → S ′, (b) χop = {χ
op
ar→s : Far→s → F′

χst(ar)→χst(s)
| ar ∈ S ∗, s ∈ S }, and (c) χrl = {χrl

ar : Par → P′
χst(ar)

| ar ∈ S ∗}.

When there is no danger of confusion, we may let χ denote either of χst, χ
op
ar→s, χ

rl
ar.

Fact 1. First-order signature morphisms form a category SigFOL under the componentwise composition as functions.

Models. Given a signature Σ, a Σ-model is a triple

A = ({As}s∈S , {Aσ}(ar,s)∈S ∗×S ,σ∈Far→s
, {Aπ}ar∈S ∗ ,π∈Par

)

interpreting each sort s as a non-empty set As, each operation symbol σ ∈ Far→s as a function Aσ : Aar → As (where

Aar stands for As1
× . . . × Asn

if ar = s1 . . . sn), and each relation symbol π ∈ Par as a relation Aπ ⊆ Aar. Morphisms

between models are the usual Σ-homomorphisms, i.e., S -sorted functions that preserve the structure.

Fact 2. For any signature Σ, the Σ-homomorphisms form a category ModFOL(Σ) under the obvious composition as

many-sorted functions.

For any signature morphism χ : Σ→ Σ′, the reduct functor ↾χ : Mod(Σ′)→ Mod(Σ) is defined as follows:
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1. The reduct A′ ↾ χ of a Σ′-model A′ is a defined by (A′ ↾χ)x = A
′
χ(x)

for each sort s ∈ S , operation symbol x ∈ F

or relation symbol x ∈ P. Note that, unlike the single-sorted case, the reduct functor modifies the universes of

models. For the universe of A′ ↾χ is {A′
χ(s)
}s∈S , which means that the sorts outside the image of S are discarded.

Otherwise, the notion of reduct is standard.

2. The reduct h′ ↾χ of a homomorphism h′ is defined by (h′ ↾χ)s = h′
χ(s)

for all sorts s ∈ S .

Fact 3. ModFOL becomes a functor SigFOL → Catop, with ModFOL(χ)(h′) = h′ ↾χ for each signature morphism

χ : Σ→ Σ′ and each Σ′-homomorphism h′.

Sentences. We assume a countably infinite set of variable names {vi | i < ω}. A variable for a signature Σ is a triple

〈vi, s,Σ〉, where vi is a variable name, and s is a sort in Σ. Given a signature Σ, the S -sorted set of Σ-terms is denoted

by TΣ. The set SenFOL(Σ) of sentences over Σ is given by the following grammar:

γF t = t′ | π(t1, . . . , tn) | ¬γ | ∨Γ | ∃X · γ′

where (a) t = t′ is an equation with t, t′ ∈ TΣ,s and s ∈ S , (b) π(t1, . . . , tn) is a relational atom with π ∈ Ps1...sn
, ti ∈ TΣ,si

and si ∈ S , (c) Γ is a finite set of Σ-sentences, (d) X is a finite set of variables for Σ, (e) γ′ is a Σ[X]-sentence, where

Σ[X] = (S , F[X], P), and F[X] is the set of function symbols obtained by adding the variables in X as constants to F.

Sentence translations. Quantification comes with some subtle issues related to the translation of quantified sentences

along signature morphisms that require a closer look. The translation of a variable 〈vi, s,Σ〉 along a signature morphism

χ : Σ → Σ′ is 〈vi, χ(s),Σ′〉. Therefore, any signature morphism χ : Σ → Σ′ can be extended canonically to a function

χ : SenFOL(Σ)→ SenFOL(Σ′) that translates sentences symbolwise.

Σ[X]
χ′ // Σ′[X′]

Σ
?�

OO

χ
// Σ′
?�

OO

Notice that χ(∃X · γ) = ∃X′ ·χ′(γ), where X′ = {〈vi, χ(s),Σ′〉 | 〈vi, s,Σ〉 ∈ X} and χ′ : Σ[X] → Σ′[X′] is the extension

of χ that maps each variable 〈vi, s,Σ〉 ∈ X to 〈vi, χ(s),Σ′〉 ∈ X′ and such that the diagram of signature morphisms

above is commutative.

Fact 4. SenFOL is a functor SigFOL → Set.

For the sake of simplicity, we will identify a variable only by its name and sort provided that there is no danger of

confusion. Using this convention, each inclusion ι : Σ →֒ Σ′ is canonically extended to an inclusion of sentences

ι : SenFOL(Σ) →֒ SenFOL(Σ′), which corresponds to the approach of classical model theory.

Satisfaction relation. Satisfaction is the usual first-order satisfaction and it is defined using the natural interpretations

of ground terms t as elements At in models A. For example, A |= t1 = t2 iff At1 = At2 .

Non-void signatures. A first-order signature Σ is called non-void if all sorts in Σ are inhabited by terms, that is TΣ,s , ∅

for all sorts s in Σ. If Σ is a non-void signature then the set of Σ-terms TΣ can be regarded as a first-order model which

interprets (a) any function symbol (σ : ar → s) ∈ F as a function TΣ,σ : TΣ,ar → TΣ,s defined by TΣ,σ(t) = σ(t) for all

t ∈ TΣ,ar, and (b) any relation symbol as the empty set.

Notations. For each first-order signature Σ, we denote by ⊥ the Σ-sentence ∨∅. Obviously, ⊥ is not satisfiable and

χ(⊥) = ⊥ for all signature morphisms χ : Σ→ Σ′. Let T and Γ be two theories over Σ.

• A |= T if A |= ϕ for all ϕ ∈ T , where A is any first-order Σ-structure.

• T |= Γ if for all first-order structures A over Σ, we have A |= T implies A |= Γ.

• T |=| Γ if T |= Γ and Γ |= T . In this case, we say that T and Γ are semantically equivalent.
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3. Hybrid-dynamic first-order logic with rigid symbols (HDFOLR)

In this section, we present hybrid-dynamic first-order logic with rigid symbols, which is an extension of hybrid

first-order logic with rigid symbols [27] with features of dynamic logics. Some preliminary attempts to the presenta-

tion of this logic framework can be found in [28].

Signatures. The signatures are of the form ∆ = (Σn,Σr ⊆ Σ), where

1. Σn = (S n, Fn, Pn) is a single-sorted first-order signature such that S n = {any} is a singleton, Fn is a set of

constants called nominals, and Pn is a set of binary relation symbols called modalities,

2. Σ = (S , F, P) is a many-sorted first-order signature such that S is a set of sorts, F is a (S ∗ × S )-indexed set of

function symbols, and P is a S ∗-indexed set of relation symbols, and

3. Σr = (S r, Fr, Pr) is a many-sorted first-order subsignature of rigid symbols.

Throughout this paper, we let ∆ and ∆i range over HDFOLR signatures of the form (Σn,Σr ⊆ Σ) and (Σn
i
,Σr

i
⊆ Σi),

respectively.

Signature morphisms. A signature morphism χ : ∆ → ∆1 consists of a pair of first-order signature morphisms

χn : Σn → Σn
1

and χ : Σ→ Σ1 such that χ(Σr) ⊆ Σr
1
.

Fact 5. HDFOLR signature morphisms form a category SigHDFOLR under the component-wise composition as first-

order signature morphisms.

Kripke structures. For every signature ∆, the class of Kripke structures over ∆ consists of pairs (W, M), where

1. W is a first-order structure over Σn, called a frame, with the universe |W | consisting of a non-empty set of

possible worlds, and

2. M : |W | → |ModFOL(Σ)| is a mapping from the universe of W to the class of first-order Σ-structures such that the

following sharing condition holds: Mw1
↾Σr = Mw2

↾Σr for all possible worlds w1,w2 ∈ |W |.

Kripke homomorphisms. A morphism h : (W, M) → (W′, M′) is also a pair (W
h
→ W′, {Mw

hw

→ M′
h(w)
}w∈|W |) consisting

of first-order homomorphisms such that hw1,s = hw2,s for all possible worlds w1,w2 ∈ |W | and all rigid sorts s ∈ S r.

Fact 6. For any signature ∆, the ∆-homomorphisms form a category ModHDFOLR(∆) under the component-wise com-

position as first-order homomorphisms.

Every signature morphism χ : ∆→ ∆′ induces appropriate reductions of models, as follows: every ∆′-model (W′, M′)

is reduced to a ∆-model (W′, M′) ↾ χ that interprets every symbol x in ∆ as (W′, M′)χ(x). When χ is an inclusion, we

usually denote (W′, M′) ↾ χ by (W′, M′) ↾ ∆ – in this case, the model reduct simply forgets the interpretation of those

symbols in ∆′ that do not belong to ∆.

Fact 7. ModHDFOLR becomes a functor SigHDFOLR → Catop, with ModHDFOLR(χ)(W, M) = (W, M) ↾ χ for each signa-

ture morphism χ : ∆→ ∆′ and each Kripke structure (W, M) over ∆′.

Actions. As in dynamic logic, HDFOLR supports structured actions obtained from atoms using sequential composi-

tion, union, and iteration. The set An of actions over Σn is defined in an inductive fashion, according to the grammar:

aF λ | a ; a | a ∪ a | a∗

where λ ∈ Pn is a binary relation on nominals. Given a natural number m > 0, we denote by am the composition a;· · ·;a

(where the action a occurs m times). Actions are interpreted in Kripke structures as accessibility relations between

possible worlds. This is done by extending the interpretation of binary modalities (from Pn): Wa1;a2 = Wa1 ; Wa2
(diagrammatic composition of relations), Wa1∪a2 = Wa1∪Wa2 (union), and Wa∗ = (Wa)

∗ (reflexive& transitive closure).
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Hybrid terms. For any signature ∆, we make the following notational conventions:

1. S e ≔ S r ∪ {any} the extended set of rigid sorts, where any is the sort of nominals,

2. S f ≔ S \ S r the subset of flexible sorts,

3. Ff ≔ F \ Fr the subset of flexible function symbols, where F \ Fr = {Far→s \ Frar→s}(ar,s)∈S ∗×S ,

4. Pf ≔ P \ Pr the subset of flexible relation symbols, where P \ Pr = {Par \ Prar}ar∈S ∗ .

The rigidification of Σ with respect to Fn is the signature @Σ = (@S ,@F,@P), where

1. @S ≔ {@k s | k ∈ Fn and s ∈ S },

2. @F ≔ {@k σ : @k ar→ @k s | k ∈ Fn and (σ : ar→ s) ∈ F}, 1 and

3. @P ≔ {@k π : @k ar | k ∈ Fn and (π : ar) ∈ P}.

It should be noted that @k is used polymorphically. Here it is a device from metalanguage that creates new symbols

out of existing ones. Later on @k will also be used as a sentence-building operator. The context always decides which

of these uses are intended. Since the rigid symbols have the same interpretation across the worlds, we define @k x ≔ x

for all nominals k ∈ Fn and all symbols x in Σr. The set of rigid ∆-terms is T@Σ, while the set of open ∆-terms is TΣ.

The set of hybrid ∆-terms is T
Σ
, where Σ = (S , F, P), S = S ∪@S f, F = F ∪@Ff, and P = P ∪@Pf.

Remark 8. The set of hybrid terms include both open and rigid terms, that is, TΣ ⊆ T
Σ

and T@Σ ⊆ T
Σ
.

The interpretation of the hybrid terms into Kripke structures is defined as follows: for any ∆-model (W, M), and any

possible world w ∈ |W |,

1. Mw,σ(t) = (Mw,σ)(Mw,t), where (σ : ar→ s) ∈ F, and t ∈ T
Σ,ar,

2

2. Mw,(@k σ)(t) = (Mw′ ,σ)(Mw,t), where (@k σ : @k ar→ @k s) ∈ @Ff, t ∈ T
Σ,@k ar and w′ = Wk.

Sentences. The simplest sentences defined over a signature ∆, usually referred to as atomic, are given by:

ρF k | t1 = t2 | π(t)

where (a) k, k′ ∈ Fn are nominals, (b) ti ∈ T
Σ,s

are hybrid terms, s ∈ S is a hybrid sort, (c) π ∈ Par, ar ∈ (S )∗

and t ∈ T
Σ,ar. We refer to these sentences, in order, as nominal sentences, hybrid equations and hybrid relations,

respectively. The set SenHDFOLR(∆) of full sentences over ∆ are given by the following grammar:

γF ρ | @k γ | ¬γ | ∨ Γ | ↓z · γ
′ | ∃X · γ′′ | 〈a〉γ

where (a) ρ is a nominal sentence or a hybrid equation or a hybrid relation, (b) k ∈ Fn is a nominal, (c) a ∈ An is an

action, (d) Γ is a finite set of sentences over ∆, (e) z is a nominal variable for ∆, (f) γ′ is a sentence over the signature

∆[z] obtained by adding z as a new constant to Fn, (g) X is a set of variables for ∆ of sorts from the extended set S e of

rigid sorts, and (h) γ′′ is a a sentence over the signature ∆[X] obtained by adding the variables in X as new constants

to Fn and Fr. Other than the first kind of sentences (atoms), we refer to the sentence-building operators, in order, as

retrieve, negation, disjunction, store, existential quantification and possibility, respectively. Notice that possibility is

parameterized by actions.

Sentence translations. Every signature morphism χ : ∆ → ∆′ induces translations of sentences, as follows: each

∆-sentence γ is translated to a ∆′-sentence χ(γ) by replacing (in an inductive manner) the symbols in ∆ with symbols

from ∆′ according to χ.

Fact 9. SenHDFOLR is a functor SigHDFOLR → Set.

1@k (s1 . . . sn) ≔@k s1 . . .@k sn for all arities s1 . . . sn.
2Mw,(t1 ,...,t2) ≔ Mw,t1 , . . . ,Mw,tn for all tuples of hybrid terms (t1 , . . . , tn).
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Local satisfaction relation. Given a ∆-model (W, M) and a world w ∈ |W |, we define the satisfaction of ∆-sentences

at w by structural induction as follows:

1. For atomic sentences:

• (W, M) |=w k iffWk = w for all nominals k;

• (W, M) |=w t1 = t2 iff Mw,t1 = Mw,t2 for all hybrid equations t1 = t2;

• (W, M) |=w π(t) iff Mw,t ∈ Mw,π for all hybrid relations π(t).

2. For full sentences:

• (W, M) |=w @k γ iff (W, M) |=w′ γ, where w′ = Wk;

• (W, M) |=w ¬γ iff (W, M) 6|=w γ;

• (W, M) |=w ∨Γ iff (W, M) |=w γ for some γ ∈ Γ;

• (W, M) |=w ↓z · γ iff (Wz←w, M) |=w γ,

where (Wz←w, M) is the unique ∆[z]-expansion of (W, M) that interprets the variable z as w; 3

• (W, M) |=w ∃X · γ iff (W′, M′) |=w γ for some expansion (W′, M′) of (W, M) to the signature ∆[X]; 3

• (W, M) |=w 〈a〉γ iff (W, M) |=w′ γ for some w′ ∈ |W | such that (w,w′) ∈ Wa.

The following satisfaction condition can be proved by induction on the structure of ∆-sentences. The proof is essen-

tially identical to those developed for several other variants of hybrid logic presented in the literature (see, e.g. [17]).

Proposition 10 (Local satisfaction condition for signature morphisms). For every signature morphism χ : ∆ → ∆′,

∆′-model (W′, M′), possible world w′ ∈ |W′|, and ∆-sentence γ, we have (W′, M′) |=w χ(γ) iff (W′, M′)↾χ |=
w γ. 4

Non-void signatures. A signature ∆ = (Σn,Σr ⊆ Σ) is called non-void if both Σn and Σ are non-void first-order

signatures. Notice that for any non-void signature, the set of nominals is not empty, that is, Fn
, ∅, and the set of

hybrid terms of any sort is not empty, that is, T
Σ,s
, ∅ for all sorts s ∈ S .

Lemma 11. If ∆ = (Σn,Σr ⊆ Σ) is non-void then there exists an initial model of terms (W∆, M∆) defined as follows:

(1) W∆ = Fn, and (2) M∆ : Fn → |ModFOL(Σ)|, where for all k ∈ Fn, M∆
k

is a first-order structure such that

(a) M∆
k,s
= T@Σ,@k s for all sorts s ∈ S ,

(b) M∆
k,σ

: T@Σ,@k ar → T@Σ,@k s is defined by M∆
k,σ

(t) = (@k σ)(t) for all function symbols (σ : ar → s) ∈ F and all

tuples of hybrid terms t ∈ T@Σ,@k ar, and

(c) M∆
k,π

is the empty set for all relation symbols (π : ar) ∈ P.

The proof of Lemma 11 is based on the unique interpretation of terms into models, and it is straightforward. We

leave it as an exercise for the reader.

Notations. Take a signature ∆, a Kripke structure (W, M) ∈ |ModHDFOLR(∆)|, a sentence ϕ ∈ SenHDFOLR(∆), and two

theories T, Γ ⊆ SenHDFOLR(∆).

• We say that (W, M) (globally) satisfies ϕ, in symbols, (W, M) |= ϕ, if (W, M) |=w ϕ for all w ∈ |W |.

• We say that (W, M) satisfies Γ, in symbols, (W, M) |= Γ, if (W, M) |= γ for all γ ∈ Γ.

3An expansion of (W,M) to ∆[X] is a Kripke structure (W′,M′) over ∆[X] that interprets all symbols in ∆ in the same way as (W,M).
4By the definition of reducts, (W′,M′) and (W′,M′)↾χ have the same possible worlds.
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• We say that T (globally) satisfies Γ, in symbols, T |= Γ,

if (V,N) |= T implies (V,N) |= Γ for all (V,N) ∈ |ModHDFOLR(∆)|. 5

• We say that T is semantically equivalent to Γ, in symbols, T |=| Γ, if T |= Γ and Γ |= T .

Lemma 12. Let ∆ be a signature.

1. For all sentences ϕ over ∆, all nominal variables z for ∆, all (W, M) ∈ |ModHDFOLR(∆)| and all w ∈ |W |,

(W, M) |=w ∀z ·@z ϕ iff (W, M) |= ∀z ·@z ϕ iff (W, M) |= ϕ.

2. For all sentences ϕ and γ over ∆, all nominal variables z for ∆, and all nominals k in ∆, we have

ϕ |=| ∀z ·@z ϕ |=|@k∀z ·@z ϕ, while ϕ⇒ γ |=| (∀z ·@z ϕ)⇒ γ does not hold, in general.

3. For all theories T over ∆, all sentences ϕ and γ over ∆ and all nominals k in ∆,

T |= @k (ϕ⇒ γ) iff T ∪ {@k ϕ} |= @k γ.

4. For all theories T over ∆, all sentences ϕ over ∆ and all nominals k in ∆,

T |= @k ¬ϕ iff T ∪ {@k ϕ} |= ⊥.

5. For all theories T over ∆, all nominal variables x and z for ∆ and all sentences ψ over ∆[x],

T ∪ {ψ} is satisfiable over ∆[x] iff T ∪ {∃x · ∀z ·@z ψ} is satisfiable over ∆. 6

The proof of this lemma is straightforward and we leave it as an exercise for the interested reader. Informally, the key

is that in the sentence ∀z ·@z ϕ the quantifier ∀z binds the free variable z in @z , so ∀z ·@z ϕ means ‘ϕ holds at all

worlds w’.

By using ‘storing and retrieving’ intuition it is easy to define complex properties. For example, temporal until

operator U – with the following semantics: U(ϕ, ψ) is true at a state w if there is a future state w′ where ϕ holds, such

that ψ holds in all states between w and w′ – can be defined as follows:

U(ϕ, ψ) ≔ ↓x ·♦↓y · (ϕ ∧@x �(♦y⇒ ψ))

The idea is to name the current state x using ↓, and then by ♦, we identify a successor state, which we call y, where ϕ

holds. Using @, the point of evaluation is changed to x, and then at all successors of x connected to y, ψ holds.

4. Logical concepts

In this section, we recall some concepts necessary to prove our results.

4.1. Substitutions

Let ∆ be a signature, C1 and C2 two sets of new constants for ∆ of sorts in S e, the extended set of rigid sorts.

A substitution θ : C1 → C2 over ∆ is a mapping from C1 to |(W∆[C2], M∆[C2])|, the carrier sets of the initial Kripke

structure (W∆[C2], M∆[C2]) over ∆[C2] defined in Lemma 11.

Proposition 13 (Local satisfaction condition for substitutions [26]). A substitution θ : C1 → C2 over ∆ uniquely

determines:

1. a sentence function θ : SenHDFOLR(∆[C1]) → SenHDFOLR(∆[C2]), which preserves ∆ and maps each constant

c ∈ C1 to a rigid term θ(c) over ∆[C2], and

5Notice that the semantics of ϕ |= γ is different from the standard one, where ϕ |= γ is interpreted locally, that is, (V,N) |=w ϕ implies (V,N) |=w γ

for all Kripke structures (V,N) and all possible worlds w in V .
6If we take into consideration the third component of a variable, the correct statement is T ∪ {ψ} is satisfiable over ∆[x] iff T ∪ {∃x · ∀z ·@z ι(ψ)}

is satisfiable over ∆, where ι : ∆[x] ֒→ ∆[x, z].
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2. a reduct functor ↾ θ : ModHDFOLR(∆[C2]) → ModHDFOLR(∆[C1]), which preserves the interpretation of ∆ and

interprets each c ∈ C1 as θ(c),

such that the following local satisfaction condition holds:

(W, M) |=w θ(γ) iff (W, M)↾ θ |=
w γ

for all ∆[C1]-sentences γ, all Kripke structures (W, M) over ∆[C2] and all possible worlds w ∈ |W |.

4.2. Fragments

By restricting the signatures and/or the sentences of HDFOLR, one can obtain well-known hybrid logics studied

in the literature.

Definition 14 (Fragment). A fragmentL of HDFOLR is obtained by restricting the syntax of HDFOLR, that is, SigL

is a subcategory of SigHDFOLR and SenL : SigL → Set is a subfunctor of SenHDFOLR : SigHDFOLR → Set, such that

1. for any signature ∆ ∈ |SigL|, any set C of new nominals and any set D of new rigid constants, we have ∆ →֒

∆[D,C] ∈ SigL,

2. for any substitution θ : 〈C1,D1〉 → 〈C2,D2〉 over a signature ∆ ∈ |SigL| and any sentence γ ∈ SenL(∆[C1,D1]),

we have θ(γ) ∈ SenL(∆[C2,D2]), and

3. L is closed under subsentence relation, that is,

• if 〈a1 ; a2〉γ ∈ SenL(∆) then 〈a1〉γ ∈ SenL(∆) and 〈a2〉γ ∈ SenL(∆),

• if 〈a1 ∪ a2〉γ ∈ SenL(∆) then 〈a1〉γ ∈ SenL(∆) and 〈a2〉γ ∈ SenL(∆),

• if 〈a∗〉γ ∈ SenL(∆) then 〈an〉γ ∈ SenL(∆) for some n ∈ ω,

• if 〈a〉γ ∈ SenL(∆) then γ ∈ SenL(∆),

• if ¬γ ∈ SenL(∆) then γ ∈ SenL(∆),

• if ∨Γ ∈ SenL(∆) then γ ∈ SenL(∆) for all γ ∈ Γ,

• if @k γ ∈ SenL(∆) then γ ∈ SenL(∆),

• if ↓z · γ ∈ SenL(∆) then γ ∈ SenL(∆[z]), and

• if ∃X · γ ∈ SenL(∆) then γ ∈ SenL(∆[X]).

According to Definition 14, a fragment L of HDFOLR has the same models as HDFOLR. By the closure under the

subsentence relation, the sentences of L are constructed from some atomic sentences by applying Boolean connec-

tives, possibility over action relations, retrieve, store or existential quantifiers, if these sentence building operators are

available in L. It does not imply that L is closed under any of these operators.

Example 15 (Hybrid First-Order Logic with Rigid symbols (HFOLR) [27]). This is the hybrid variant of HDFOLR

obtained by discarding structured actions and allowing possibility over binary modalities. According to [27], HFOLR

is compact.

Example 16 (Hybrid-Dynamic Propositional Logic (HDPL)). This is the dynamic variant of the most common

form of multi-modal hybrid logic (e.g. [1]). HDPL is obtained from HDFOLR by restricting the signatures ∆ =

(Σn,Σr ⊆ Σ) such that the set of sorts in Σ is empty, and the set of sentences is given by the following grammar:

γF ρ | k | @k γ | ¬γ | ∨ Γ | 〈a〉γ

where (a) ρ is a propositional symbol, (b) k ∈ Fn is a nominal, (c) a ∈ An is an action, and (d) Γ is a finite set of

sentences over ∆. Notice that if Σ = (S , F, P) and S = ∅ then P contains only propositional symbols. HPL is the

fragment of HDPL obtained by discarding structured actions.
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Example 17 (Rigid First-Order Hybrid Logic (RFOHL) [8]). This logic is obtained from HFOLR by restricting the

signatures ∆ = (Σn,Σr ⊆ Σ) such that (a) Σn has only one binary modality, (b) Σ is single-sorted, (c) there are no rigid

function symbols except variables (regarded here as special constants), and (d) there are no rigid relation symbols.

All examples of logics given above are fragments of HDFOLR. In the following, we give an example of logic which

is obtained from HDFOLR by some syntactic restrictions and it is not a fragment according to Definition 14.

Example 18 (Hybrid First-Order Logic with user-defined Sharing (HFOLS)). This logic has the same signatures

and Kripke structure as HFOLR. The sentences are obtained from atoms constructed with open terms only, that is, if

∆ = (Σn,Σr ⊆ Σ), all (ground) equations over ∆ are of the form t1 = t2, where t1, t2 ∈ TΣ, and all (ground) relation

over ∆ are of the form π(t), where (π : ar) ∈ P and t ∈ TΣ,ar. Variants of HFOLS have been used in works such as

[39, 19, 17].

HFOLS is not a fragment of HDFOLR in the sense of Definition 14, as it is not closed under substitutions. Retrieve

is applied only to sentences and not to function or relation symbols. However, according to [27], that is no loss of

expressivity as HFOLS has the same expressive power as HFOLR.

Lemma 19. For each signature ∆ and each sentence γ ∈ SenHFOLR(∆) there exists a sentence γ′ ∈ SenHFOLS(∆) such

that (W, M) |=w γ iff (W, M) |=w γ′ for all Kripke structures (W, M) over ∆ and all possible worlds in W.

Proof. By using [27, Lemma 2.20] which shows that for any atomic sentence in HFOLR there exists a sentence in

HFOLS which is satisfied by the same class of Kripke structures.

The forcing technique and the Omitting Types Theorem are not applicable to HFOLS even if it has the same

expressivity power as HFOLR. This is due to the absence of a proper support for the substitutions described in

Section 4.1. By Lemma 19, the results can be borrowed from HFOLR to HFOLS. It is worth noting that HFOLS

can be extended with features of dynamic logics such that the dynamic variant of HFOLS matches the expressivity of

HDFOLR by the same arguments used in the proof of Lemma 19 .

4.3. Reachable models

In this section, we give a category-based description of the models which consist of elements that are denota-

tions of terms. The concept of reachable model appeared in institutional model-theory in [42], and it has been used

successfully in several abstract developments such as proof-theoretic results [32, 31, 24] as well as model-theoretic

results [22, 23, 30, 25, 26, 13].

Definition 20. A Kripke structure (W, M) over a signature ∆ = (Σn,Σr ⊆ Σ) is reachable if for each set of new nom-

inals C, each set of new rigid constants D, and any expansion (W′, M′) of (W, M) to ∆[C], there exists a substitution

θ : 〈C,D〉 → 〈∅, ∅〉 over ∆ such that (W, M)↾ θ = (W′, M′).

Proposition 21 (Reachable Kripke structures [26]). A Kripke structure is reachable iff

1. its set of states consists of denotations of nominals, and

2. its carrier sets for the rigid sorts consist of denotations of rigid terms.

By Proposition 21, a model (W, M) is reachable iff the unique homomorphism from the initial Kripke structure

h : (W∆, M∆) → (W, M) is surjective, that is, h : W∆ → W is surjective and hw : M∆w → Mh(w) is surjective for all

possible worlds w ∈ |W∆|.

4.4. Basic sentences

In this section, we recall an important property of certain simple sentences of hybrid logics, which play the role

analogous to atomic sentences of first-order logic.
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Definition 22 (Basic set of sentences [14]). A set of sentences B over a signature ∆ = (Σn,Σr ⊆ Σ) is basic if there

exists a Kripke structure (WB, MB) such that

(W, M) |= B iff there exists a homomorphism h : (WB, MB)→ (W, M)

for all Kripke structures (W, M). We say that (WB, MB) is a basic model of B. If in addition the homomorphism h is

unique then the set B is called epi-basic.

According to [14, 16], in first-order logic, any set of atomic sentences is basic. One important property of basic

sentences is the preservation of their satisfaction along homomorphisms: given a set of basic sentences B and a

homomorphism h : M → N, if M |= B then N |= B. In hybrid logics, this property does not hold, in general. The

following example is from [27].

Example 23. Consider the following HPL signature ∆ = (Σn, Prop) such that Fn = {k}, Pn = {λ : any any} and

Prop = {ρ}. Let h : (W, M) →֒ (W′, M′) be the inclusion homomorphism defined by:

1. |W | = {k}, Wλ = {(k, k)} , ρ is true in Mk, and

2. |W′| = {k,w}, W′
λ
= {(k, k)}, ρ is true in M′

k
, ρ is not true in M′w.

Example 23 points out a significant difference between ordinary logics and hybrid (or, more generally, modal)

logics. Note that (W, M) |=HPL k, (W, M) |=HPL 〈λ〉k and (W, M) |=HPL ρ. Since (W′, M′) 6|=w k, (W′, M′) 6|=w 〈λ〉k and

(W′, M′) 6|=w ρ we have (W′, M′) 6|=HPL k, (W′, M′) 6|=HPL 〈λ〉k and (W′, M′) 6|=HPL ρ. Thus, homomorphisms do not

preserve satisfaction of atomic sentences. Hence, atomic sentences are not basic in HPL (the same example works for

any modal logic). Note however that local satisfaction (satisfiaction at a world) is preserved, and in hybrid logic the

retrieve operator (@) lifts local satisfaction to global. This motivates the next definition.

Definition 24 (Locally basic set of sentences [27]). A set of sentences Γ over a signature ∆ is locally (epi-)basic if

@Γ ≔ {@k γ | k ∈ Fn and γ ∈ Γ} is (epi-)basic.

Notice that @Γ is semantically equivalent to @@Γ. We denote by SenHDFOLR
0 (∆) the set of all extended atomic

sentences.

1. nominals k ∈ Fn,

2. nominal relations 〈λ〉k, where λ ∈ Pn is a binary modality and k ∈ Fn,

3. hybrid equations t1 = t2, where t1, t2 ∈ T
Σ
, and

4. hybrid relations π(t), where π ∈ Par, t ∈ (T
Σ
)ar and ar ∈ (S )∗.

We denote by SenHDFOLR
b (∆) the set of all sentences obtained from an extended atomic sentence by applying

retrieve (@) at most once.

Proposition 25 (Locally basic set of sentences [26, 27]). Given a signature∆, every set of sentences B ⊆ SenHDFOLR
b (∆)

is locally basic. Moreover, if ∆ is non-void, then B is locally epi-basic and its basic model (WB, MB) is reachable.

Definition 26 (Rigidification). For any signature ∆ = (Σn,Σr ⊆ Σ), the rigidification function atk : T
Σ
→ T@Σ,

where k ∈ Fn, is recursively defined by:

• atk σ(t) ≔

{

(@kσ)(atk t) if (σ : ar→ s) ∈ Ff,

σ(atk t) if (σ : ar→ s) ∈ Fr ∪@Ff.

Its extension atk : SenHFOLR(∆)→ SenHFOLR(∆) is recursively defined by:
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• atk k′ ≔@k k′

• atk 〈λ〉(k
′) ≔ @k 〈λ〉(k

′)

• atk (t1 = t2) ≔ (atk t1 = atk t2)

• atk π(t) ≔

{

(@kπ)(atk t) if π ∈ Pf

π(atk t) if π ∈ Pr ∪@Pf

• atk ¬γ ≔ ¬atk γ

• atk ∨ Γ ≔ ∨atk Γ

• atk @k′ γ ≔ atk′ γ

• atk ∃X · γ ≔ ∃X · atk γ

Any sentence semantically equivalent to a sentence in the image of atk is called a rigid sentence.

The proof of the following lemma is straightforward and we leave it as an exercise for the readers.

Lemma 27. Any sentence @k γ is semantically equivalent to atk γ. Hence, @k γ is rigid.

5. Forcing

Forcing is a method of constructing models satisfying some properties forced by some conditions. In this section,

we generalize the forcing relation for hybrid logics defined in [27] to hybrid-dynamic first-order logic with rigid

symbols. It is worth mentioning that the present developments can be cast in the framework of stratified institutions

following the ideas presented in [27].

Framework 1. The results in this paper will be developed in a fragment L of HDFOLR that is semantically closed

under negation and retrieve. 7 We make the following notational conventions:

• We let SenL
0

to denote the subfunctor of SenL which maps each signature ∆ to the set of extended atomic

sentences of L over the signature ∆. This means that SenL
0

(∆) = SenHDFOLR(∆) ∩ SenHDFOLR
0 (∆) for all

signatures ∆.

• We let SenL
b

to denote the subfunctor of SenL which maps each signature ∆ to the set of basic sentences of L

over the signature ∆. This means that SenL
b

(∆) = SenHDFOLR(∆) ∩ SenHDFOLR
b (∆) for all signatures ∆.

Since L is the logic in which we develop our results, we drop the superscript L from the notations SenL, SenL
0

and

SenL
b

if there is no danger of confusion.

Examples of fragments can be found in Section 4.2.

Definition 28 (Forcing property). Given a signature ∆, a forcing property over ∆ is a triple P = 〈P,≤, f 〉 such that:

1. (P,≤) is a partially ordered set with a least element 0.

The elements of p are traditionally called conditions.

2. f : P→ P(Senb(∆)) is a function,

3. if p ≤ q then f (p) ⊆ f (q), and

4. if f (p) |= @k γ then @k γ ∈ f (q) for some q ≥ p,

where p ∈ P, q ∈ P, k ∈ Fn and γ ∈ Sen0(∆).

As for ordinary first-order logics, a forcing property generates a forcing relation on the set of all sentences.

Definition 29 (Forcing relation). Let P = 〈P,≤, f 〉 be a forcing property over ∆.

The family of relations 
= {
k}k∈Fn , where 
k⊆ P × Sen(∆), is inductively defined as follows:

7L is semantically closed under negation whenever for all L-sentences γ there exists another L-sentence ϕ such that we have: (W,M) |=w ϕ iff

(W,M) 6|=w γ for all Kripke structures (W,M) and all possible worlds w ∈ |W |. When there is no danger of confusion, we denote ϕ by ¬γ. Similarly,

one can define the semantic closer of L under any sentence building operator.
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1. For γ extended atomic: p 
k γ if @k γ ∈ f (p).

2. For 〈a1 ; a2〉k
′′: p 
k 〈a1 ; a2〉k

′′ if p 
k 〈a1〉k
′ and p 
k′ 〈a2〉k

′′ for some k′ ∈ Fn.

3. For 〈a1 ∪ a2〉k
′′: p 
k 〈a1 ∪ a2〉k

′′ if p 
k 〈a1〉k
′′ or p 
k 〈a2〉k

′′.

4. For 〈a∗〉k′′: p 
k 〈a∗〉k′′ if p 
k 〈an〉k′′ for some n ∈ N.

5. For 〈a〉γ with γ < Fn: p 
k 〈a〉γ if p 
k 〈a〉k′ and p 
k′ γ for some nominal k′ ∈ Fn.

6. For ¬γ: p 
k ¬γ if there is no q ≥ p such that q 
k γ.

7. For ∨Γ: p 
k ∨Γ if p 
k γ for some γ ∈ Γ.

8. For @k′ γ: p 
k @k′ γ if p 
k′ γ.

9. For ↓z · γ: p 
k ↓z · γ if p 
k γ(z← k).

10. For ∃X · γ: p 
k ∃X · γ if p 
k θ(γ) for some substitution θ : X → ∅ over ∆.

The forcing relation defined in the present contribution consists of the forcing relation defined in [27] plus the

items 2—4 of Definition 29. The notation p 
k γ is read p forces γ at k.

Remark 30. Notice that Definition 29 does not rely on the fact that L is closed under disjunction or quantifiers. For

example, the last item from Definition 29 should be interpreted as follows: if ∃X · γ is a sentence in L and p 
k θ(γ)

for some substitution θ : X → ∅ over ∆ then p 
k ∃X · γ.

In regard to the satisfaction relation, one may consider a global forcing relation: p 
 γ iff p 
k γ for all nominals k.

This remark establishes a connection between the results in the present contribution and the results in [32] and [23],

where there exists only a global forcing relation.

Lemma 31. Let P = 〈P,≤, f 〉 be a forcing property as in Definition 28. We have:

1. p 
k ¬¬γ iff for each q ≥ p there is r ≥ q such that r 
k γ.

2. If q ≥ p and p 
k γ then q 
k γ.

3. If p 
k γ then p 
k ¬¬γ.

4. We cannot have both p 
k γ and p 
k ¬γ.

Proof. Notice that the statements 1 and 3 are well-defined as L is semantically closed under negation.

1. p 
k ¬¬γ iff for each q ≥ p we have q 1k ¬γ iff

for each q ≥ p there is r ≥ q such that r 
k γ.

2. By induction on the structure of sentences:

[ For γ extended atomic ] The conclusion follows easily from f (p) ⊆ f (q).

[ For 〈a1 ; a2〉k
′′ ] p 
k 〈a1 ; a2〉k

′′ iff p 
k 〈a1〉k
′ and p 
k′ 〈a2〉k

′′ for some k′ ∈ Fn. By the induction

hypothesis, q 
k 〈a1〉k
′ and q 
k′ 〈a2〉k

′′. Hence, q 
k 〈a1 ; a2〉k
′′.

[ For 〈a1 ∪ a2〉k
′′ ] p 
k 〈a1 ∪ a2〉k

′′ iff p 
k 〈a1〉k
′′ or p 
k 〈a2〉k

′′. By the induction hypothesis, q 
k 〈a1〉k
′′

or q 
k 〈a2〉k
′′. Hence, q 
k 〈a1 ∪ a2〉k

′′.

[ For 〈a∗〉k′′ ] p 
k 〈a∗〉k′′ iff there exists n ∈ N such that p 
k
a

n〈k′′〉. By the induction hypothesis, q 
k

〈an〉k′′. Hence, q 
k 〈a∗〉k′′.
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[ For 〈a〉γ with γ < Fn ] p 
k 〈a〉γ iff p 
k 〈a〉k′ and p 
k′ γ. By the induction hypothesis, q 
k 〈a〉k′ and

q 
k′ γ. Hence, q 
k 〈a〉γ.

[ For @k′ γ ] We have p 
k @k′ γ iff p 
k′ γ. By induction hypothesis, q 
k′ γ. Hence, q 
k @k′ γ.

[ For ¬γ ] We have p 
k ¬γ. This means r 1k γ for all r ≥ p. In particular, r 1k γ for all r ≥ q. Hence,

q 
k ¬γ.

[ For ∨Γ ] p 
k γ for some γ ∈ Γ. By induction hypothesis, q 
k γ which implies q 
k ∨Γ.

[ For ↓z · γ ] We have p 
k ↓z · γ iff p 
k γ(z← k). By the induction hypothesis, q 
k γ(z← k), which implies

q 
k ↓z · γ.

[ For ∃X · γ ] Since p 
k ∃X · γ then p 
k θ(γ) for some substitution θ : X → ∅ over ∆. By the induction

hypothesis, q 
k θ(γ). Hence, q 
k ∃X · γ.

3. It follows from 1 and 2.

4. By the reflexivity of (P,≤).

Lemma 31 is a generalization of [27, Lemma 4.4] from hybrid logics to hybrid dynamic logics. In the present

contribution, since the proof of the second statement is by induction, we need to consider possibility over structured

actions.

Definition 32 (Generic set [27]). Let P = 〈P,≤, f 〉 be a forcing property over a signature ∆.

A subset G ⊆ P is generic if it has the following properties:

1. r ∈ G if r ≤ p and p ∈ G;

2. there exists r ∈ G such that r ≥ p and r ≥ q, for all p, q ∈ G;

3. there exists r ∈ G such that r 
k γ or r 
k ¬γ, for all ∆-sentences @k γ.

We write G 
k γ whenever p 
k γ for some p ∈ G.

Note that G in Definition 32 is well-defined, as L is semantically closed under negation. The following lemma

ensures the existence of generic sets. The result is based on the assumption that signatures consist of a countable

number of symbols.

Lemma 33 (Existence of generic sets [27]). Let P = 〈P,≤, f 〉 be a forcing property over a signature ∆. If Sen(∆) is

countable then every p belongs to a generic set.

For the semantic forcing property defined in the next section it is possible to construct generic sets even if the

underlying signature consists of an uncountable number of symbols. Notice that the definition of forcing relation and

the definition of generic set are based on syntactic compounds. The following definition gives the semantics/meaning

to these concepts.

Definition 34 (Generic model [27]). Let P = 〈P,≤, f 〉 be a forcing property over a signature ∆.

• (W, M) is a model for a generic set G ⊆ P when (W, M) |= @k γ iff G 
k γ, for all ∆-sentences @k γ.

• (W, M) is a model for p ∈ P if there is a generic set G ⊆ P such that p ∈ G and (W, M) is a model for G.

The models (W, M) from Definition 34 are called, traditionally, generic models. The following result ensures the

existence of generic models.

Theorem 35 (Generic Model Theorem). Let P = 〈P,≤, f 〉 be a forcing property over ∆. Then each generic set G of P

has a generic Kripke structure (W, M). If in addition ∆ is non-void, (W, M) is reachable.
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Proof. Let G be a generic set. We define T = {@k γ ∈ Sen(∆) | G 
k γ} and B = T ∩ Senb(∆). By Proposition 25, B

is basic, and there exists a basic model (WB, MB) for B that is reachable. We show that (WB, MB) |= @k γ iff G 
k γ,

for all ∆-sentences @k γ.

[ For γ extended atomic ] Assume that (WB, MB) |= @k γ.

1 B and {@k γ} are basic by Proposition 25

2 there exists an arrow (W@k γ, M{@k γ})→ (WB, MB) since {@k γ} is basic and (WB,MB) |= @k γ

3 B |=@k γ since both B and {@k γ} are basic

4 there exists B f ⊆ B finite such that B f |=@k γ since HDFOLRb is compact

5 B f = {@k1
γ1, . . . ,@knγn} for some γi ∈ Sen0(∆) and some ki ∈ Fn by the definition of B

6 for all i ∈ {1, . . . , n}, there exists pi ∈ G such that pi 

ki γi by the definition of B

7 there exists p ∈ G such that p ≥ pi for all i ∈ {1, . . . , n} since G is generic

8 B f ⊆ f (p) since B f ⊆ Senb(∆)

9 q 
k γ or q 
k ¬γ for some q ∈ G since G is generic

10 suppose towards a contradiction that q 
k ¬γ

10.1 r ≥ p and r ≥ q for some r ∈ G since G is generic

10.2 r 
k ¬γ by Lemma 31 (2), since r ≥ q and q 
k ¬γ

10.3 B f ⊆ f (r) since B f ⊆ f (p) and r ≥ p

10.4 there exists s ≥ r such that @k γ ∈ f (s) since B f |= @k γ, we have f (r) |=@k γ

10.5 s 
k γ by Definition 29

10.6 s 
k ¬γ by Lemma 31 (2)

10.7 contradiction by Lemma 31 (4)

11 q 
k γ by 9 and 10

12 G 
k γ since q ∈ G

If G 
k γ then by the definition of B, we have @k γ ∈ B, which implies B |= @k γ; hence, (WB, MB) |= @k γ.

[ For 〈a1 ; a2〉k
′′ ] Assume that (WB, MB) |= @k 〈a1 ; a2〉k

′′.

1 (WB
k
,WB

k′′
) ∈ WB

(a1;a2)
by definition

2 (WB
k
,w) ∈ WB

a1
and (w,WB

k′′
) ∈ WB

a2
for some w ∈ |WB | since a1 ; a2 is the composition of the relations a1 and a2

3 w = WB
k′

for some nominal k′ ∈ Fn since (WB,MB) is reachable

4 (WB
k
,WB

k′
) ∈ WB

a1
and (WB

k′
,WB

k′′
) ∈ WB

a2
by 2 and 3

5 G 
k 〈a1〉k
′ and G 
k′ 〈a2〉k

′′ by the induction hypothesis

6 p 
k 〈a1〉k
′ for some p ∈ G and

q 
k′ 〈a2〉k
′′ for some q ∈ G

by Definition 32

7 r ≥ p and r ≥ q for some r ∈ G since G is generic

8 r 
k 〈a1〉k
′ and r 
k′ 〈a2〉k

′′ by Lemma 31 (2) applied to 6 and 7

9 r 
k 〈a1 ; a2〉k
′′ by Definition 29

10 G 
k 〈a1 ; a2〉k
′′ by Definition 32

Assume that G 
k 〈a1 ; a2〉k
′′.

1 p 
k 〈a1 ; a2〉k
′′ for some p ∈ G

2 p 
k 〈a1〉k
′ and p 
k′ 〈a2〉k

′′ for some k′ ∈ Fn by Definition 29

3 (WB, MB) |=@k 〈a1〉k
′ and (WB, MB) |=@k′ 〈a2〉k

′′ by the induction hypothesis

4 (WB, MB) |=@k 〈a1 ; a2〉k
′′ by the semantics of a1 ; a2

[ For 〈a1 ∪ a2〉k
′′ ] The following are equivalent:

15



1 G 
k 〈a1 ∪ a2〉k
′′

2 p 
k 〈a1 ∪ a2〉k
′′ for some p ∈ G by Definition 29

3 p 
k 〈a1〉k
′′ or p 
k 〈a2〉k

′′ by Definition 29

4 G 
k 〈a1〉k
′′ or G 
k 〈a2〉k

′′ by Definition 29

5 (WB, MB) |=@k 〈a1〉k
′′ or (WB, MB) |=@k 〈a2〉k

′′ by the induction hypothesis

6 (WB, MB) |=@k 〈a1 ∪ a2〉k
′′ by the semantics of a1 ∪ a2

[ For 〈a∗〉k′′ ] The following are equivalent:

1 (WB, MB) |=@k 〈a
∗〉k′′

2 (WB, MB) |=@k 〈a
n〉k′′ for some n ∈ N by the semantics of a∗

3 G 
k 〈an〉k′′ for some n ∈ N by the induction hypothesis

4 G 
k 〈a∗〉k′′ by Definition 29

[ For 〈a〉γ with γ < Fn ] The following are equivalent:

1 (WB, MB) |=@k 〈a〉γ

2 (WB, MB) |=w1 γ for some w1 ∈ |W
B| such that (WB

k
,w1) ∈ WB

a
by the definition of |=

3 (WB, MB) |=@k 〈a〉k1 and (WB, MB) |=@k1
γ

for some k1 ∈ Fn such that WB
k1
= w1

by Proposition 21, since (WB,MB) is reachable

4 G 
k 〈a〉k1 and G 
k1 γ for some k1 ∈ Fn by the induction hypothesis

5 G 
k 〈a〉γ since G is generic

[ For ¬γ ] The following are equivalent:

1 (WB, MB) |=@k ¬γ

2 (WB, MB) 6|=@k γ by the semantics of negation

3 G 1k γ by the induction hypothesis

4 p 1k γ for all p ∈ G by the definition of 


5 p 
k ¬γ for some p ∈ G since G is generic

6 G 
k ¬γ

[ For ∨Γ ] The following are equivalent:

1 (WB, MB) |=@k ∨ Γ

2 (WB, MB) |=@k γ for some γ ∈ Γ by the semantics of disjunction

3 G 
k γ for some γ ∈ Γ by the induction hypothesis

4 G 
k ∨Γ by the definition of 


[ For ∃X · γ ] Let w = WB
k

. The following are equivalent:

1 (WB, MB) |=@k ∃X · γ

2 (W′ , M′) |=w γ for some expansion (W′, M′) of (WB, MB) to ∆[X] by the definition of |=

3 (WB, MB) |=w θ(γ) for some substitution θ : X → ∅ over ∆ such that

(WB, MB)↾ θ = (W′, M′)

since (WB,MB) is reachable

4 G 
k θ(γ) for some substitution θ : X → ∅ over ∆ by the induction hypothesis

5 G 
k ∃X · γ by the definition of 


[ For ↓z · γ ] This case is straightforward since @k ↓z · γ is semantically equivalent to @k γ(z← k).

[ For @k′ γ ] This case is straightforward since @k @k′ γ is semantically equivalent to @k′ γ.

Theorem 35 is a generalization of Generic Model Theorem for hybrid logics from [27]. The new cases from the

present contribution correspond to structured actions, which include second, third and fourth cases.
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6. Semantic forcing property

We study a semantic forcing property, which will be used to prove the Omitting Types Theorem for a fragment L

of HDFOLR semantically closed under negation and retrieve.

Framework 2. In this section, we arbitrarily fix

1. a signature ∆ = (Σn,Σr ⊆ Σ) of L,

2. a class K of Kripke structures over the signature ∆, and

3. a sorted set C = {Cs}s∈S e of new rigid constants for ∆ such that card(Cs) = α for all sorts s ∈ S e, where

S e = S r ∪ {any} is the extended set of rigid sorts and any is the sort of nominals.

We let α denote the power of ∆.

If the set of sorts in Σ is empty then C consists only of nominals.

Definition 36. The semantic forcing property P = (P,≤, f ) over the signature ∆[C] relative to the class of Kripke

structuresK is defined as follows:

1. P = {p ⊆ Sen(∆[C]) | card(p) < α and (W, M) |= p for some (W, M) ∈ |Mod(∆[C])| s.t. (W, M)↾∆ ∈ K},

2. ≤ is the inclusion relation, and

3. f (p) = p ∩ Senb(∆[C]) for all p ∈ P.

Lemma 37. P = 〈P,≤, f 〉 described in Definition 36 is a forcing property.

Proof. All conditions enumerated in Definition 28 obviously hold except the last one. Assume that f (p) |= @k γ,

where p ∈ P and @k γ ∈ Senb(∆). Since f (p) ⊆ p, we have p |= @k γ. By Definition 36, (W, M) |= p for some

(W, M) ∈ |Mod(∆[C])| such that (W, M) ↾ ∆ ∈ K . Since (W, M) |= p and p |= @k γ, (W, M) |= p ∪ {@k γ}. Hence,

q ≔ p ∪ {@k γ} ∈ P and p ≤ q

Proposition 38. P = 〈P,≤, f 〉 described in Definition 36 has the following properties:

P1) If p ∈ P and @k 〈a1 ; a2〉k
′′ ∈ p then p ∪ {@k 〈a1〉k

′,@k′ 〈a2〉k
′′} ∈ P for some nominal k′ ∈ Cany.

P2) If p ∈ P and @k 〈a〉γ ∈ p with γ < Fn ∪ Cany then p ∪ {@k 〈a〉k
′,@k′ γ} ∈ P for some nominal k′ ∈ Cany.

P3) If p ∈ P and @k ∨ Γ ∈ p then p ∪ {@k γ} ∈ P for some γ ∈ Γ.

P4) If p ∈ P and @k ∃X · γ ∈ p then there exists an injective mapping f : X → C such that p∪{@k χ(γ)} ∈ P, where

χ : ∆[C, X]→ ∆[C] is the unique extension of f to a signature morphism which preserves ∆[C].

Proof. Let p ∈ P be a condition. By the definition of P, we have that p ⊆ Sen(∆[C′]) for some C′ ⊂ C with

card(C′s) < α for all s ∈ S e.

P1) Assume that @k 〈a1 ; a2〉k
′′ ∈ p. Since card(Cany) = α and card(C′any) < α, there exists k′ ∈ Cany \ C′any. We

show that p ∪ {@k 〈a1〉k
′,@k′ 〈a2〉k

′′} ∈ P:

1 (W, M) |= p for some model (W, M) over ∆[C] with (W, M)↾∆ ∈ K by the definition of P

2 (W′, M′) ≔ (W, M)↾∆[C′ ] |= p by the satisfaction condition

3 (W′
k
,w) ∈ W′

a1
and (w,W′

k′′
) ∈ W′

a2
for some w ∈ |W′ | since (W′,M′) |= @k 〈a1 ; a2〉k

′′

4 (W′′, M′) |= @k 〈a1〉k
′ and (W′′, M′) |= @k′ 〈a2〉k

′′, where (W′′, M′) is the

unique expansion of (W′, M′) to ∆[C′, k′] interpreting k′ as w

5 (V,N) |= p ∪ {@k 〈a1〉k
′,@k′ 〈a2〉k

′′}, where (V,N) is any expansion of

(W′′ , M′) to ∆[C]

by the satisfaction condition, since

(W′′,M′) |= p ∪ {@k 〈a1〉k
′,@k′ 〈a2〉k

′′}

6 p ∪ {@k 〈a1〉k
′,@k′ 〈a2〉k

′′} ∈ P since (V,N) |= p∪ {@k 〈a1〉k
′,@k′ 〈a2〉k

′′}

and (V,N)↾∆ = (W′,M′)↾∆ ∈ K
17



P2) Assume that @k 〈a〉γ ∈ p with γ < Fn ∪ Cany. Since card(Cany) = α and card(C′any) < α, there exists
k′ ∈ Cany \C′any. We show that p ∪ {@k 〈a〉k

′,@k′ γ} ∈ P:

1 (W, M) |= p for some model (W, M) over ∆[C] with (W, M)↾∆ ∈ K by the definition of P

2 (W′, M′) ≔ (W, M)↾∆[C′ ] |= p by the satisfaction condition

3 (W′
k
,w) ∈ W′

a
and (W′, M′) |=w γ for some w ∈ |W′ | since (W′,M′) |= @k 〈a〉γ

4 (W′′, M′) |= @k 〈a〉k
′ and (W′′, M′) |= @k′ γ, where (W′′ , M′) is the

unique expansion of (W′, M′) to ∆[C, k′] interpreting k′ as w

by semantics

5 (V,N) |= p ∪ {@k 〈a〉k
′,@k′ γ}, where (V,N) is any expansion of

(W′′ , M′) to ∆[C]

by the satisfaction condition, since

(W′′,M′) |= p ∪ {@k 〈a〉k
′ ,@k′ γ}

6 p ∪ {@k 〈a〉k
′,@k′ γ} ∈ P since (V, N)↾∆ = (W′,M′)↾∆ ∈ K

P3) Assume that @k ∨ Γ ∈ p. There exists a Kripke structure (W, M) over ∆[C] such that (W, M) |= p and (W, M) ↾

∆ ∈ K . Since (W, M) |= @k ∨ Γ, we have (W, M) |= @k γ for some γ ∈ Γ. Since (W, M) |= p, (W, M) |= @k γ

and (W, M)↾∆ ∈ K , we obtain p ∪ {@k γ} ∈ P.

P4) Assume that @k ∃X · γ ∈ p. Since card(C′s) < α and card(Cs) = α for all sorts s ∈ S e, by the finiteness of X,

there exists an injective mapping f : X → C \C′. Let C′′ ≔ C′∪ f (X). Let χ′ : ∆[C′, X]→ ∆[C′′] be the unique

extension of f to a signature morphism which preserves ∆[C′]. Let χ : ∆[C, X]→ ∆[C] be the unique extension

of f to a signature morphism which preserves ∆[C]. Let ι : ∆[C′′] →֒ ∆[C] and ι′ : ∆[C′, X] →֒ ∆[C, X] be

inclusions. Since χ and χ′ agree on X and they preserve the rest of the symbols, we have χ′ ; ι = ι′ ; χ.

∆[C′, X]
ι′ //❴❴❴❴❴❴❴❴

χ′

��✤
✤

✤
∆[C, X]

χ

��✤
✤

✤

∆[C′]

⊆

::t
t

t
t

t

⊆
// ∆[C′′]

ι
// ∆[C]

⊆

::✉✉✉✉✉✉✉✉✉

1∆[C]

// ∆[C]

We show that p ∪ {@k χ(γ)} ∈ P:

1 (W, M) |= p for some Kripke structure (W, M) over the

signature ∆[C] such that (W, M)↾∆ ∈ K

by the definition of P

2 (W′, M′) ≔ (W, M)↾∆[C′ ] |= p by the satisfaction condition

3 (V ′, N′) |=w γ for some expansion (V ′,N′) of (W′, M′) to

the signature ∆[C′, X], where w = W′
k
= V ′

k

since @k ∃X · γ ∈ p and (W′,M′) |= p

4 let (V ′′, N′′) be the unique χ′-expansion of (V ′,N′) (V ′′, N′′) exists, as χ′ is a bijection

5 let (V,N) be any expansion of (V ′′,N′′) to ∆[C]

6 (V,N)↾χ ↾ ι′ = (V,N)↾ ι ↾χ′ = (V ′′,N′′)↾χ′ = (V ′,N′) from 4 and 5, since ι′ ; χ = χ′ ; ι

7 (V,N)↾χ |=
w γ by the local satisfaction condition,

since (V,N)↾χ ↾ ι′ = (V ′, N′) |=w γ

8 (V,N) |=w χ(γ) by the local satisfaction condition

9 (V,N) |=@k χ(γ) since w = V ′
k
= (V ↾χ ↾ ι′ )k = Vk

10 (V,N) |= p by the satisfaction condition,

since (V,N)↾∆[C′ ] = (W′,M′) |= p

11 (V,N)↾∆ ∈ K since (V,N)↾∆[C′ ] = (W′,M′) and (W′,M′)↾∆ ∈ K

12 p ∪ {@k χ(γ)} ∈ P from 9—11

Proposition 38 sets the basis for the following important result concerning semantic forcing properties, which says

that all sentences of a given condition are forced eventually by some condition greater or equal than the initial one.
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Theorem 39 (Semantic Forcing Theorem). Let P = 〈P,≤, f 〉 be the semantic forcing property described in Defini-

tion 36. For all ∆[C]-sentences @k γ and conditions p ∈ P we have:

q 
k γ for some q ≥ p iff p ∪ {@k γ} ∈ P.

Proof. We proceed by induction on the structure of γ.

[ For γ extended atomic ] Assume that there is q ≥ p such that q 
k γ. We show that p ∪ {@k γ} ∈ P:

1 @k γ ∈ q by Definition 29

2 p ∪ {@k γ} ≤ q since q ≥ p

3 (W, M) |= q for some Kripke structure (W, M) over

the signature ∆[C] such that (W, M)↾∆ ∈ K

since q ∈ P

4 p ∪ {@k γ} ∈ P since (W,M) |= p ∪ {@k γ} and (W,M)↾∆ ∈ K

Assume that p ∪ {@k γ} ∈ P. Let q = p ∪ {@k γ}. By Definition 29, q 
k γ.

[ For 〈a1 ∪ a2〉k
′′ ] The following are equivalent:

1 q 
k 〈a1 ∪ a2〉k
′′ for some q ≥ p

2 q 
k 〈a1〉k
′′ or q 
k 〈a2〉k

′′ by Definition 29

3 p ∪ {@k 〈a1〉k
′′} ∈ P or p ∪ {@k 〈a2〉k

′′} ∈ P by the induction hypothesis

4 (W, M) |= p ∪ {@k 〈a1〉k
′′} or (W, M) |= p ∪ {@k 〈a2〉k

′′} for some

Kripke structure (W, M) over ∆[C] such that (W, M)↾∆ ∈ K

by Definition 36

5 (W, M) |= p ∪ {@k 〈a1 ∪ a2〉k
′′} for some Kripke structure (W, M)

over ∆[C] such that (W, M)↾∆ ∈ K

by the semantics of a1 ∪ a2

6 p ∪ {@k 〈a1 ∪ a2〉k
′′} ∈ P since (W,M) |= p ∪ {@k 〈a1 ∪ a2〉k

′′} and (W,M)↾∆ ∈ K

[ For 〈a1 ; a2〉k
′′ ] Assume that q 
k 〈a1 ; a2〉k

′′ for some q ≥ p. We show that p ∪ {〈a1 ; a2〉k
′′} ∈ P:

1 q 
k 〈a1〉k
′ and q 
k′ 〈a2〉k

′′ for some k′ ∈ Fn ∪ Cany by Definition 29

2 q ∪ {@k 〈a1〉k
′} ∈ P by the induction hypothesis, since q ≤ q

3 q ∪ {@k 〈a1〉k
′} 
k′ 〈a2〉k

′′ by Lemma 31 (2), since q 
k′ 〈a2〉k
′′ and q ≤ q ∪ {@k 〈a1〉k

′}

4 p ∪ {@k 〈a1〉k
′} ∪ {@k′ 〈a2〉k

′′} ∈ P by the induction hypothesis, since p ∪ {〈a1〉k
′} ≤ q ∪ {〈a1〉k

′}

5 p ∪ {@k 〈a1 ; a2〉k
′′} ∈ P by the definition of P

Assume that p ∪ {@k 〈a1 ; a2〉k
′′} ∈ P. We show that q 
k 〈a1 ; a2〉k

′′ for some q ≥ p:

1 p ∪ {@k 〈a1 ; a2〉k
′′ ,@k 〈a1〉k

′,@k′ 〈a2〉k
′′} ∈ P for some k ∈ Cany by Proposition 38 (P1)

2 let r ≔ p ∪ {@k 〈a1 ; a2〉k
′′ ,@k 〈a1〉k

′,@k′ 〈a2〉k
′′}

3 s 
k 〈a1〉k
′ for some s ≥ r by the induction hypothesis,

since r ∪ {@k 〈a1〉k
′} = r ∈ P

4 q 
k′ 〈a2〉k
′′ for some q ≥ s by the induction hypothesis,

since s ∪ {@k′ 〈a2〉k
′′} = s ∈ P

5 q 
k 〈a1〉k
′ by Lemma 31 (2), since s 
k 〈a1〉k

′ and q ≥ s

6 q 
k 〈a1 ; a2〉k
′′ from 4 and 5

[ For 〈a∗〉k′′ ] The following are equivalent:

1 q 
k 〈a∗〉k′′ for some q ≥ p

2 q 
k 〈an〉k′′ for some q ≥ p and n ∈ N by Definition 29

3 p ∪ {@k 〈a
n〉k′′} ∈ P for some n ∈ N by the induction hypothesis

4 p ∪ {@k 〈a
∗〉k′′} ∈ P by the semantics of a∗ and the definition of P
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[ For 〈a〉γ with γ < Fn ∪ Cany ] Assume that q 
k 〈a〉γ for some q ≥ p. We show that p ∪ {@k 〈a〉γ} ∈ P:

1 q 
k 〈a〉k′ and q 
k′ γ for some nominal k′ from q 
k 〈a〉γ, by Definition 29

2 q ∪ {@k′ γ} ∈ P from q ≤ q and q 
k′ γ, by the induction hypothesis

3 @k 〈a〉k
′ ∈ q from q 
k 〈a〉k′, by Definition 29

4 (W, M) |= q ∪ {@k 〈a〉k
′,@k′ γ} for some Kripke structure

(W, M) over ∆[C] such that (W, M)↾∆ ∈ K

since q ∪ {@k′ γ} ∈ P and @k 〈a〉k
′ ∈ q

5 (W, M) |= q ∪ {@k 〈a〉γ} for some Kripke structure (W, M)

over ∆[C] such that (W, M)↾∆ ∈ K

since {@k 〈a〉k
′,@k′ γ} |= @k 〈a〉γ

6 q ∪ {@k 〈a〉γ} ∈ P by Definition 36

7 p ∪ {@k 〈a〉γ} ∈ P since p ⊆ q

Assume that p ∪ {@k 〈a〉γ} ∈ P. We show that q 
k 〈a〉γ for some q ≥ p:

1 (p∪{@k 〈a〉γ})∪{@k 〈a〉k
′,@k′ γ} ∈ P for some nominal k′ ∈ Fn∪Cany by Proposition 38 (P2)

2 q 
k′ γ for some q ≥ p ∪ {@k 〈a〉γ,@k 〈a〉k
′} by the induction hypothesis

3 q 
k 〈a〉k′ since @k 〈a〉k
′ ∈ f (q)

4 q 
k 〈a〉γ by 3 and 2

[ For ¬γ ] By the induction hypothesis, for each q ∈ P we have

(S1) r 
k γ for some r ≥ q iff q ∪ {@k γ} ∈ P, which is equivalent to

(S2) r 1k γ for all r ≥ q iff q ∪ {@k γ} < P, which is equivalent to

(S3) q 
k ¬γ iff q ∪ {@k γ} < P.

Assume that q 
k ¬γ for some q ≥ p. We show that p ∪ {@k ¬γ} ∈ P:

1 q ∪ {@k γ} < P by statement S3

2 (W, M) |= q for some Kripke structure (W, M) over ∆[C] such that

(W, M)↾∆ ∈ K

by Definition 36, since q ∈ P

3 (W, M) 6|=@k γ since q ∪ {@k γ} < P

4 (W, M) |=@k ¬γ by the semantics of ¬

5 q ∪ {@k ¬γ} ∈ P since (W,M) |= q ∪ {@k ¬γ} and (W,M)↾∆ ∈ K

6 p ∪ {@k ¬γ} ∈ P since p ∪ {@k ¬γ} ⊆ q ∪ {@k ¬γ}

Assume that p ∪ {@k ¬γ} ∈ P. We show that q 
k ¬γ for some q ≥ p:

1 let q = p ∪ {@k ¬γ}

2 q ∪ {@k γ} < P since @k ¬γ ∈ q

3 q 
k ¬γ by statement S3

[ For ∨Γ ] Assume that there exists q ≥ p such that q 
k ∨Γ. We show that p ∪ {@k ∨ Γ} ∈ P:

1 q 
k γ for some γ ∈ Γ by Definition 29

2 p ∪ {@k γ} ∈ P by the induction hypothesis

3 (W, M) |= p ∪ {@k γ} for some Kripke structure

(W, M) over ∆[C] such that (W, M)↾∆ ∈ K

by Definition 36

4 (W, M) |= p∪ {@k ∨ Γ} for some Kripke structure

(W, M) over ∆[C] such that (W, M)↾∆ ∈ K

by the semantics of ∨

5 p ∪ {@k ∨ Γ} ∈ P by Definition 36

Assume that p ∪ {@k ∨ Γ} ∈ P. We show that q 
k ∨Γ for some q ≥ p:

1 (p ∪ {@k ∨ Γ}) ∪ {@k γ} ∈ P for some γ ∈ Γ by Proposition 38 (P3)

2 q 
k γ for some q ≥ p ∪ {@k ∨ Γ} by the induction hypothesis
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3 q 
k ∨Γ for some q ≥ p by Definition 29

[ For ∃X · γ ] Assume that q 
k ∃X · γ for some q ≥ p. We show that p ∪ {@k ∃X · γ} ∈ P:

1 q 
k θ(γ) for some substitution θ : X → ∅ by Definition 29

2 p ∪ {@k θ(γ)} ∈ P by the induction hypothesis

3 (W, M) |= p ∪ {@k θ(γ)} for some Kripke structure (W, M) over ∆[C] such

that (W, M)↾∆ ∈ K

by Definition 36

4 (W, M) |= p ∪ {@k ∃X · γ} and (W, M)↾∆ ∈ K by semantics

5 p ∪ {@k ∃X · γ} ∈ P by Definition 36

We assume that p ∪ {@k ∃X · γ} ∈ P. We show that q 
k ∃X · γ for some q ≥ p:

1 (p ∪ {@k ∃X · γ}) ∪ {@k χ(γ)} ∈ P

for some signature morphism χ : ∆[C,X]→ ∆[C] which preserves ∆[C]

by Proposition 38 (P4)

2 q 
k χ(γ) for some q ≥ p ∪ {@k ∃X · γ} by the induction hypothesis

3 q 
k ∃X · γ for some q ≥ p by Definition 29

[ For ↓z · γ ] This case is straightforward, as @k ↓z · γ is semantically equivalent to @k γ(z← k).

[ For @k′ γ ] This case is straightforward, as @k @k′ γ is semantically equivalent to @k′ γ.

The following result is a corollary of Theorem 39. It shows that each generic set of a given semantic forcing

property has a reachable model that satisfies all its conditions.

Corollary 40. Let P = 〈P,≤, f 〉 be the semantic forcing property described in Definition 36.

Then for each generic set G we have:

C1) G 
k γ for all conditions p ∈ G, sentences γ ∈ p and nominals k ∈ Fn ∪ Cany.

C2) There exists a generic structure (WG, MG) for G which is reachable and satisfies each condition p ∈ G.

Proof.

C1) Suppose towards a contradiction that G 1k γ for some p ∈ G, γ ∈ p and nominal k ∈ Fn ∪Cany. Then:

1 q 
k ¬γ for some q ∈ G since G is generic

2 r ≥ p and r ≥ q for some r ∈ G since G is generic

3 γ ∈ r since γ ∈ p and r ≥ p

4 r ∪ {@k γ} ∈ P since r |=@k γ

5 s 
k γ for some s ≥ r by Theorem 39

6 s 
k ¬γ by Lemma 31 (2) since s ≥ q and q 
k ¬γ

7 contradiction by Lemma 31 (4) since s 
k γ and s 
k ¬γ

It follows that G 
k γ for all p ∈ G, γ ∈ p and nominals k.

C2) By Theorem 35, there exists a generic model (WG, MG) for G which is reachable. Let p ∈ G, γ ∈ p and

w ∈ |WG|. Since (WG, MG) is reachable, w is the denotation of some nominal k ∈ Fn ∪ Cany. By the first part

of the proof, G 
k γ. Since (WG, MG) is a model for G, (WG, MG) |= @k γ. Hence, (WG, MG) |=w γ. As w was

arbitrary, we have (WG, MG) |= γ.

7. Omitting Types Theorem

Let ∆ = (Σn,Σr ⊆ Σn) be a countable signature. Let C = {Cs}s∈S e be a finite set of new constants of extended rigid

sorts. We say that a Kripke structure (W, M) over ∆ realizes a set Γ of sentences over ∆[C] iff there exists an expansion
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(V,N) of (W, M) to ∆[C] such that (V,N) |= Γ. We say that (W, M) omits Γ if (W, M) does not realize Γ. We say that

a satisfiable set T of sentences over ∆ locally realizes Γ if there exists a finite set p of sentences over ∆[C] such that

T ∪ p is satisfiable, and T ∪ p |= Γ. In the following we generalize these definitions to signatures of any power.

Definition 41 (Omitting Types semantically). Assume a signature ∆ = (Σn,Σr ⊆ Σn), and let α be the power of ∆.

Let X = {Xs}s∈S e be a sorted set of variables for ∆ such that card(Xs) < ω for all sorts s ∈ S e.

• A Kripke structure (W, M) over ∆ realizes a type Γ ⊆ Sen(∆[X]) if there exists an expansion (V,N) of (W, M) to

∆[X] such that (V,N) |= Γ.

• A Kripke structure (W, M) over ∆ omits a set Γ of ∆[X]-sentences if (W, M) does not realize Γ.

Classically, Γ from Definition 41 is called a type with free variables X.

Definition 42 (Omitting Types syntactically). Let ∆ be a signature, and let α be the power of ∆. Let X = {Xs}s∈S e

be a sorted set of variables for ∆ such that Xs is finite for all sorts s ∈ S e. A theory T ⊆ Sen(∆) α-realizes a type

Γ ⊆ Sen(∆[X]) if there exist

• a sorted set C = {Cs}s∈S e of new constants for ∆ with card(Cs) < α for all s ∈ S e,

• a substitution θ : X → C, and

• a set of sentences p over ∆[C] with card(p) < α,

such that T ∪ p is satisfiable and T ∪ p |= θ(Γ). We say that T α-omits Γ if T does not α-realize Γ.

Notice that the power of any signature is at least ω. If α = ω, we say that T locally omits Γ instead of T α-omits Γ.

Definition 42 is similar to the definition of locally omitting types for first-order logic without equality from [37]. Our

results are applicable to fragments L without equality. We give a couple of equivalent descriptions of the omitting

types property which can be found in the literature.

Lemma 43.

L1) Assume that L is semantically closed under equality. 8 Then T α-realizes Γ as described in Definition 42 iff

there exist (a) a sorted set C = {Cs}s∈S e of new constants for ∆[X] with card(Cs) < α for all s ∈ S e, and (b) a

set of sentences p over ∆[C, X] with card(p) < α, such that T ∪ p is satisfiable and T ∪ p |= Γ.

L2) Assume that L is semantically closed under equality, conjunction and quantifiers. Then T locally realizes Γ iff

there exists a finite set of ∆[X]-sentences p such that T ∪ p is satisfiable and T ∪ p |= Γ.

L3) Assume that L is compact and semantically closed under equality, conjunction and quantifiers. Then T α-

realizes Γ iff there exists a set of ∆[X]-sentences p with card(p) < α such that T ∪ p is satisfiable and T ∪ p |= Γ.

Proof. The backward implication is straightforward for all cases. Therefore, we will focus on the forward implication.

∆[C, X] pθ

Γ ∆[X]
, �

::✈✈✈✈✈✈✈✈✈
θ // ∆[C]

2 R

dd❍❍❍❍❍❍❍❍❍
p

∆
2 R

dd■■■■■■■■■■ , �

::✉✉✉✉✉✉✉✉✉✉
T

Let θ : X → C be a substitution with card(Cs) < α for all s ∈ S e, and let p be a set of sentences over ∆[C] with

card(p) < α such that T∪p is satisfiable and T∪p |= θ(Γ). Without loss of generality, we assume that X∩C = ∅. Since

in all three cases L is semantically closed under equality, there exists a set of sentences pθ over ∆[C, X] semantically

equivalent with {x = θ(x) | x ∈ X} 9. Since T ∪ p is satisfiable, T ∪ p ∪ pθ is satisfiable too. Now we consider three

8L is semantically closed under equality whenever (a) for any nominal k there exists an L-sentence ϕ such that (W,M) |=w ϕ iff w = Wk for all

Kripke structures (W,M) and all possible worlds w ∈ |W |, and (b) for any open terms t1 , t2 ∈ T
Σ

there exists an L-sentence ϕ such that (W,M) |=w ϕ

iff Mw,t1 = Mw,t2 for all Kripke structures (W,M) and all possible worlds w ∈ |W |.
9Here = is a shorthand from the metalanguage. In particular, for nominals x = θ(x) means that @x θ(x) for all x ∈ Xany.
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cases.

L1) As p ∪ pθ is a set of sentences over ∆[C, X]), we show that T ∪ p ∪ pθ |= Γ:

1 let (W, M) ∈ |Mod(∆[C,X])| such that (W, M) |= T ∪ p ∪ pθ

2 (W, M)↾∆[C] ↾ θ = (W, M)↾∆[X] since (W,M) |= pθ

3 (W, M)↾∆[C] |= T ∪ p by the satisfaction condition, since (W,M) |= T ∪ p

4 (W, M)↾∆[C] |= θ(Γ) since T ∪ p |= θ(Γ) and (W,M)↾∆[C] |= T ∪ p

5 (W, M)↾∆[X] = (W, M)↾∆[C] ↾ θ |= Γ by the satisfaction condition for substitutions

6 (W, M) |= Γ by the satisfaction condition

7 T ∪ p ∪ pθ |= Γ since (W,M) was arbitrarily chosen

L2) If α = ω, we show T ∪ {ϕ} |= Γ for a single sentence ϕ over ∆[X]:

1 the sets C, p and pθ are finite since their cardinals are strictly less than ω

2 there exists a ∆[X]-sentence ϕ semantically equivalent with

∃C · ∀z ·@z ∧ (p ∪ pθ)

since L is semantically closed under conjunction and

quantifiers

3 T ∪ {ϕ} is satisfiable over ∆[X] since T ∪ p ∪ pθ is satisfiable over ∆[C, X]

4 T ∪ {ϕ} |= Γ since T ∪ p ∪ pθ |= Γ

L3) If L is compact, we show that T ∪ p′ |= Γ for a set p′ of sentences over ∆[X] with card(p′) < α:

1 for each γ ∈ Γ there exists pγ ⊆ p ∪ pθ finite such that T ∪ pγ |= γ by compactness, since T ∪ p∪ pθ |= γ for all γ ∈ Γ

2 let Cγ be all constants from C which occur in pγ for all γ ∈ Γ

3 there exists a set p′ of ∆[X]-sentences semantically equivalent with

{∃Cγ · ∀z ·@z ∧ pγ | γ ∈ Γ}

since L is semantically closed under conjunction,

retrieve and quantifiers

4 T ∪ p′ is satisfiable over ∆[C] since T ∪ p ∪ pθ is satisfiable over ∆[C, X]

5 T ∪ p′ |= Γ since T ∪ pγ |= γ for all γ ∈ Γ

6 card(Pω(p ∪ pθ)) < α since card(p) < α and card(pθ) < α

7 card({pγ | γ ∈ Γ}) < α since {pγ | γ ∈ Γ} ⊆ Pω(p ∪ pθ)

8 card(p′) < α by its definition, p′ is in one-to-one

correspondence with {pγ | γ ∈ Γ}

The following result is needed for proving the Omitting Types Theorem.

Lemma 44. Assume that T α-omits Γ as described in Definition 42. Then for any substitution θ : X → C over ∆ such

that card(Cs) < α for all s ∈ S e, and any set of ∆[C]-sentences p such that card(p) < α and T ∪ p is satisfiable, there

exists γ ∈ Γ such that T ∪ p ∪ {@z ¬θ(γ)} is satisfiable, where z is a nominal variable for ∆[C].

Proof. Let C = {Cs}s∈S e be a set of new constants for ∆ with card(Cs) < α for all s ∈ S e. Let θ : X → C be a

substitution over ∆. Let p be a set of ∆[C]-sentences such that card(p) < α and T ∪ p satisfiable. Since T α-omits Γ,

we have T ∪ p 6|= θ(Γ). There exists a Kripke structure (W, M) over ∆[C] such that (W, M) |= T ∪ p and (W, M) 6|= θ(Γ).

It follows that (W, M) |=w ¬θ(γ) for some possible world w ∈ |W | and some sentence γ ∈ Γ. Let z be a new nominal for

∆[C], and let (Wz←w, M) be the unique expansion of (W, M) to ∆[z,C] which interprets z as w. Since (W, M) |=w ¬θ(γ),

we get (Wz←w, M) |= @z ¬θ(γ). Hence, T ∪ p ∪ {@z ¬θ(γ)} is satisfiable.

Definition 45 (Omitting Types Property). We say that L has α-Omitting Types Property (α-OTP), where α is an

infinite cardinal, whenever

• for all signatures ∆ of power at most α,

• all satisfiable theories T ⊆ Sen(∆), and

• all families of types {Γi ⊆ Sen(∆[Xi]) | i < α},

where Xi = {Xi
s}s∈S e is a set of variables for ∆ with card(Xi

s) < ω for all s ∈ S e,
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such that T α-omits Γi for all i < α, there exists a Kripke structure over ∆ which satisfies T and omits Γi for all i < α.

If for all signatures ∆ ∈ |SigL| and all cardinals α equal or greater than the power of ∆, L has α-OTP then L has OTP.

All the ingredients for proving Omitting Types Theorem are in place.

Theorem 46 (Extended Omitting Types Theorem). Let α be an infinite cardinal. Assume thatL is semantically closed

under retrieve and negation, and if α > ω assume that L is compact. Then L has α-OTP.

Proof. Assume that T α-omits Γi as described in Definition 42. Let C = {Cs}s∈S e be a sorted set of new constants for

∆ such that card(Cs) = α for all s ∈ S e. Let P = (P,≤, f ) be the semantic forcing property described in Definition 36

with K = |Mod(∆, T )|. The proof is performed in four steps.

∆[Xi]
� � //

θ′

��

∆[C, Xi]

θ

��
∆
. �

==④④④④④④④④④� � // ∆[C′]
� � // ∆[C]

, �

::✉✉✉✉✉✉✉✉✉

1∆[C]

// ∆[C]

S1) We show that for any condition p ∈ P, any index i < α, and any substitution θ : Xi → ∅ over ∆[C], there exist a
sentence γ ∈ Γi and a nominal c ∈ C such that p ∪ {@c ¬θ(γ)} ∈ P:

1 let C p be the set of all constants from C which occur in p

2 there exists c ∈ Cany \ (θ(Xi
any) ∪ C

p
any) since card(θ(Xi

any)) < ω, card(C
p
any) < α and card(Cany) = α

3 let C′ ≔ θ(Xi) ∪ C p ∪ {c}

4 let θ′ : Xi → C′ be the substitution over ∆ defined by

θ(x) = θ′(x) for all x ∈ Xi

5 T ∪ p ∪ {@c ¬θ
′(γ)} is satisfiable for some γ ∈ Γi by Lemma 44, since T α-omits Γi

6 p ∪ {@c ¬θ(γ)} ∈ P since @c ¬θ(γ) =@c ¬θ
′(γ), we have

(W,M) |= T ∪ p ∪ {@c ¬θ(γ)} for some (W,M) ∈ |Mod(∆[C])|

S2) The cardinality of the set Si of all substitutions θ : Xi → ∅ over ∆[C] is equal or less than α. It follows that the

cardinality of S ≔
⋃

i<α S
i is equal or less than α. Let {θ j : Xi j → ∅ ∈ S | j < α} be an enumeration of S. Let

{@k j
ϕ j ∈ Sen(∆[C]) | j < α} be an enumeration of the ∆[C]-sentences with retrieve as the top operator. We

define an increasing chain of conditions p0 ≤ p1 ≤ . . . by induction on ordinals:

[ j = 0 ] p0 ≔ ∅.

[ j⇒ j + 1 ] If p j 

k j ¬ϕ j then let q ≔ p j else let q ≥ p j be a condition such that q 
k j ϕ j. By the first part of

the proof, there exist γ ∈ Γi j and c ∈ C such that q ∪ {@c ¬θ
j(γ)} ∈ P. Let p j+1 ≔ q ∪ {@c ¬θ

j(γ)}.

[ β < α limit ordinal ] pβ ≔
⋃

j<β p j. Since card(p j) < α for all j < β and β < α, we have card(pβ) < α. Since

p j ∈ P for all j < β, the set T ∪ p j is satisfiable for all j < β. By compactness10, (
⋃

j<β p j) ∪ T is satisfiable

too. Hence, pβ ∈ P.

The set G = {q ∈ P | q ≤ p j+1 for some j < α} is generic. Let k ∈ Fn ∪ Cany and ψ ∈ T . Suppose towards a

contradiction that q 
k ¬ψ for some q ∈ G then:

1 q ∪ {@k ψ} ∈ P since ψ ∈ T and q ∪ T is satisfiable

2 r 
k ψ for some r ≥ q by Theorem 39

3 r 
k ¬ψ since q 
k ¬ψ and r ≥ q

4 contradiction by Lemma 31 (4) from 2 and 3

Since G is generic, q 
k ψ for some q ∈ G.

10If there exists a limit ordinal β < α then α is not countable, so we assume L is compact.
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S3) By Theorem 35, there exists a generic Kripke structure (W, M) for G that is reachable. Let (V,N) ≔ (W, M)↾∆.
We show that (V,N) |= T :

1 let w ∈ |W | and ψ ∈ T

2 Wk = w for some k ∈ Fn ∪ Cany since (W,M) is reachable

3 G 
k ψ by the second part of the proof

4 (W, M) |=@k ψ since (W,M) is generic for G

5 (W, M) |=w ψ by the semantics of @, since Wk = w

6 (W, M) |= T since w ∈ |W | and ψ ∈ T were arbitrarily chosen

7 (V,N) |= T by the satisfaction condition, since (W,M)↾∆ = (V,N)

S4) We show that (V,N) omits Γi for all i < α:

1 let (V ′,N′) be an arbitrary expansion of (V,N) to ∆[Xi]

2 there exists an expansion (W′, M′) of (W, M) to ∆[C, Xi] such that

(W′, M′)↾∆[Xi ] = (V ′,N′)

by interpreting Xi as (V ′, N′) interprets Xi

3 there exists θ j : Xi → ∅ ∈ S such that (W, M)↾ θ j = (W′, M′) since (W,M) is reachable

4 there exist c ∈ C and γ ∈ Γi such that @c ¬θ
j(γ) ∈ p j+1 by the construction of the chain p0 ≤ p1 ≤ . . .

5 (W, M) |= p j+1 by Corollary 40, since p j+1 ∈ G and (W,M) is

generic for G

6 (W, M) |=w ¬θ j(γ), where w = Wc since @c ¬θ
j(γ) ∈ p j+1

7 (W′, M′) |=w ¬γ by the local satisfaction condition for θ j

8 (V ′,N′) |=w ¬γ by the local satisfaction condition, since

(W′,M′)↾∆[Xi ] = (V ′,N′)

9 (V ′,N′) 6|= Γi since γ ∈ Γi

10 (V,N) omits Γi since (V ′, N′) is an arbitrary expansion of (V, N)

We conclude that (V,N) is a Kripke structure over ∆ which satisfies T and omits Γi for all i < α.

Any fragment L of HDFOLR free of the Kleene operator is compact. If, in addition, L is semantically closed

under negation and retrieve,L is an instance of Theorem 46. In particular, any fragment presented in Examples 15 —

18 can be an instance of L from Theorem 46. Omitting Types Theorem is obtained from Theorem 46 by restricting

the signatures ∆ to countable ones. By Lemma 43 (L2), Omitting Types Theorem is a corollary of Extended Omitting

Types Theorem.

Notice that the forcing technique developed in the present contribution is not applicable to HFOLS as this logic

lacks support for the substitutions described in Section 4.1. However, by Lemma 19, OTP can be borrowed from

HFOLR to HFOLS.

Theorem 47. HFOLS has α-OTP for all infinite cardinals α.

Proof. Recall that for all HFOLS signatures ∆, we have:

• SenHFOLS(∆) ⊆ SenHFOLR(∆), and

• by Lemma 19, for every sentence γ ∈ SenHFOLR(∆) there exists a sentence γ′ ∈ SenHFOLS(∆) which is satisfied

by the same class of Kripke structures as γ.

Assume that T α-omits Γi as described in Definition 42. By the remarks above, T α-omits Γi in HFOLR for all i < α.

By Theorem 46, there exists a Kripke structure (W, M) over ∆, which satisfies T and omits Γi for all i < α.

It is worth noting that in general the Omitting Types Property cannot be borrowed from a given logic to its

restrictions. If T omits Γi in a restriction then T might not omit Γi in the full underlying logic. This is the reason for

developing Theorem 46 in an arbitrary fragment L of HDFOLR.
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8. Constructor-based completeness

Constructor-based completeness is a modern approach to the well-known ω-completeness, which has applica-

tions in formal methods. We make the result independent of the arithmetic signature by working over an arbitrary

vocabulary where we distinguish a set of constructors which determines a class of Kripke structures reachable by

constructors. Throughout this section we assume that the fragmentL is semantically closed under equality, negation,

retrieve, disjunction and quantifiers. An example of such fragmentL is HDFOLR or HDPL.

8.1. Semantic restrictions

Given a theory T over a vocabulary ∆, not all Kripke structures are of interest. In many cases, formal methods

practitioners are interested in the properties of a class Kripke structures that are reachable by a set of constructor

operators. Let ∆ = (Σn,Σr ⊆ Σ) be a signature and Σc ⊆ Σr a subset of constructor operators. The constructors create

a partition of the set of rigid sorts S r. A constrained sort is a rigid sort s ∈ S r that has a constructor, that is, there

exists a constructor σ : w → s in Σc. A rigid sort that is not constrained it is called loose. We denote by S c the set of

all constrained sorts, and by S l the set of all loose sorts. Let Y = {Ys}s∈S l be a set of loose variables such that Ys is

countably infinite for all s ∈ S l. A constructor-based Kripke structure is a Kripke structure (W, M) such that

• for all possible worlds w ∈ |W | there exists a nominal k ∈ Fn such that w = Wk, and

• for all rigid sorts s ∈ S r, all possible worlds w ∈ |W |, and all elements m ∈ Mw,s there exist an expansion (W,N)

of (W, M) to ∆[Y], and a rigid term t ∈ T@Σc(Y) such that m = Nw,t.

Example 48. Let ∆ be the signature defined as follows:

• Σn = (Fn, Pn) such that Fn consists of all natural numbers, and Pn has one element λ.

• Σ = (S , F, P), S = {Elt, List}, F = {empty :→ List, cons : Elt List → List, delete : List → List} and P = ∅.

• S r = S and Fr = {empty :→ List, cons : Elt List → List}.

• The set of constructors Fc is Fr.

This means that List is constrained while Elt is loose.

We define a theory T over ∆, which deletes n elements from a list in each possible world n:

• {@n 〈λ〉n + 1 | n ≥ 0} ∪ {¬@n m | n , m},

• {∀N · (@N delete)(empty) = empty,∀L · (@0 delete)(L) = L}, and

• {∀E, L · (@n+1 delete)cons(E, L) = (@n delete)(L) | n > 0}.

A constructor-based Kripke structure which satisfies T has the set of possible worlds isomorphic with ω. Let (W, M)

be the constructor-based Kripke structure such that (a) |W | = ω and Wλ is <, the natural order on ω, and (b) for all

possible worlds n ∈ ω, the first-order-structure Mn interprets Elt as an arbitrary set, and List as the set of lists with

elements from Mn,Elt , while the function Mn,delete : Mn,List → Mn,List deletes the first n elements from the list given as

argument. Obviously, (W, M) satisfies T .

By enhancing the syntax with a subset of rigid constructor operators and by restricting the semantics to constructor-

based Kripke structures, we obtain a new logicLc fromL. Note that restricting the semantics also changes the relation

|=, applied to theories: T |= ϕ now means that all restricted models of T are models of ϕ, so there may be non-restricted

models of T which are not models of ϕ.

8.2. Entailment systems

Given a system of proof rules for L which is sound and complete, the goal is to add some new proof rules such

that the resulting proof system is sound and complete for Lc.

Definition 49 (Entailment relation). An entailment relation for L is a family of binary relations between sets of

sentences indexed by signatures ⊢= {⊢∆}∆∈|SigL | with the following properties:
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(Monotonicity)
Φ1 ⊆ Φ2

Φ2 ⊢ Φ1

(Transitivity)
Φ1 ⊢ Φ2 Φ2 ⊢ Φ3

Φ1 ⊢ Φ3

(Union)
Φ1 ⊢ ϕ2 for all ϕ2 ∈ Φ2

Φ1 ⊢ Φ2

(Translation)
Φ1 ⊢Σ Φ2

χ(Φ1) ⊢ χ(Φ2)
where χ : ∆→ ∆′

The entailment relation is sound (complete) if ⊢⊆|= (|=⊆⊢). Examples of sound and complete entailment relations

for HFOLR and HPL can be found in [27].

Definition 50 (Constructor-based entailment relation). Let ⊢ be an entailment relation for L. The entailment rela-

tion ⊢c for Lc is the least entailment relation closed under the following proof rules:

(R0)
Φ ⊢ ϕ

Φ ⊢c ϕ
(R1)

Φ ⊢c @k1
ϕ(k2) for all k1, k2 ∈ Fn

Φ ⊢c ∀x ·ϕ(x)
(R2)

Φ ⊢c @k ∀Yt ·ψ(t) for all k ∈ Fn and t ∈ TΣc (Y)

Φ ⊢c ∀y ·ψ(y)

where Yt is the set of variables occurring in t

According to [15], the entailment relation ⊢c is well defined. We say that a theory T in L is semantically closed under

(R1) if T |= @k1
ϕ(k2) for all k1, k2 ∈ Fn implies T |= ∀x ·ϕ(x). Similarly, we define the closure under (R2), that is,

T |= @k ∀Yt ·ψ(t) for all k ∈ Fn and t ∈ T@Σ(Y) implies T |= ∀y ·ψ(y). It is not difficult to check that ⊢c is sound for

Lc provided that ⊢ is sound forL. Completeness is much more difficult to establish in general, but it can be done with

the help of the OTP.

Theorem 51 (Constructor-based completeness). The entailment relation ⊢c is complete for Lc if ⊢ is complete for L

and L has OTP.

Proof. Let ∆ = (Σn,Σr ⊆ Σ) be a signature and T a theory over ∆ in L. Let Σc ⊆ Σr be a set of constructors, and Y a

set of loose variables. We perform the proof in two steps.

(S1) We show that if T is satisfiable in L and semantically closed under (R1) and (R2) then T is satisfiable in Lc.
Let Γn

≔ {¬@k x | k ∈ Fn} be a type in one nominal variable x, and let Γr ≔ {∀Yt · ¬t = y | t ∈ TΣc(Y)} be
a type in one constrained variable y. Any Kripke structure over ∆ which omits Γn and Γr is reachable by the
constructors in Σc. Firstly, we show that T locally omits Γn:

1 let ρ(x) be a ∆[x]-sentence such that T ∪ {ρ(x)} is satisfiable

2 T ∪ {∃x · ∀z ·@z ρ(x)} is satisfiable by semantics since T ∪ {ρ(x)} is satisfiable

3 T 6|= ∀x · ¬∀z ·@z ρ(x) since (W,M) |= T ∪ {∀z ·@z ρ(x)} for some Kripke

structure (W,M) over ∆[x]

4 T 6|=@k1
¬∀z ·@z ρ(k2) for some nominals k1, k2 ∈ Fn since T is semantically closed under (R1)

5 T ∪ {@k1
∀z ·@z ρ(k2)} is satisfiable by semantics of negation and retrieve

6 T ∪ {@k1
∀z ·@z ρ(x)} ∪ {@k2

x} is satisfiable by the semantics of nominals

7 T ∪ {ρ(x)} ∪ {@k2
x} is satisfiable by Lemma 12

8 T locally omits Γn since ρ(x) was arbitrarily chosen

Secondly, we show that T locally omits Γr:

1 let ρ(y) be a ∆[y]-sentence such that T ∪ {ρ(y)} is satisfiable

2 T ∪ {∃y · ∀z ·@z ρ(y)} is satisfiable by Lemma 12

3 T 6|= ∀y · ¬∀z ·@z ρ(y) since (W,M) |= T ∪ {∀z ·@z ρ(y)} for some Kripke

structure (W,M) over ∆[y]

4 T 6|=@k ∀Yt · ¬∀z ·@z ρ(t) for some k ∈ Fn and t ∈ T@Σc (Y) since T is semantically closed under (R2)

5 T 6|=@k ¬∀z ·@z ρ(t) over ∆[Yt] by semantics of quantifiers

6 T ∪ {@k ∀z ·@z ρ(t)} is satisfiable over ∆[Yt] by semantics of negation and retrieve

7 T ∪ {ρ(t)} is satisfiable over ∆[Yt] by Lemma 12
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8 T ∪ {ρ(y)} ∪ {∃Yt · t = y} is satisfiable since (W,M) |= T ∪ {ρ(t)} for some Kripke structure (W,M)

over ∆[Yt]

9 T locally omits Γr since ρ(y) was arbitrarily chosen

By Theorem 46, there exists a Kripke structure (W, M) which satisfies T and omits Γn and Γr. By the definition

of Γn and Γr, (W, M) is a constructor-based Kripke structure.

(S2) Next we assume T is consistent in Lc and show that T is satisfiable in Lc. Let T ′ ≔ {ϕ ∈ Sen(∆) | T ⊢c ϕ}. We

have that T is consistent in Lc iff T ′ is consistent in L:

For the forward implication, suppose towards a contradiction that T ′ is not consistent in L, that is, T ′ ⊢ ⊥;

By (R0), T ′ ⊢c ⊥; by (Union) , T ⊢c T ′; by (Transitivity), T ⊢c ⊥, which is a contradiction with the

consistency of T in Lc.

For the backward implication, suppose towards a contradiction that T ⊢c ⊥; we have ⊥ ∈ T ′, and by

(Monotonicity), T ′ ⊢ ⊥, which is a contradiction with the consistency of T ′ in L.

Assume that T is consistent in Lc. It follows that T ′ is consistent in L. By the completeness of ⊢ in L, T ′ is

satisfiable in L. By the completeness of ⊢ in L, T ′ is semantically closed under (R1) and (R2). By the first part

of the proof, T ′ is satisfiable in Lc. Since T ⊆ T ′, T is satisfiable in Lc.

9. Omitting types and Löwenheim-Skolem Theorems

Downwards and Upwards Löwenheim-Skolem Theorems are consequences of the Omitting Types Theorem.

Throughout this section we assume that the fragment L is semantically closed under equality, retrieve, negation, dis-

junction, possibility over binary modalities, and quantifiers. An example of such fragment L is HDFOLR or HDPL,

in which case L has ω-OTP. For cardinals greater than ω, we need to drop the Kleene operator ∗ in order to have

compactness and be able to apply our OTP (we will show in the next section that compactness is necessary at least for

certain strong fragments of L). Some of the arguments in this and the next section are modelled after the technique

used by Lindström [38] for first-order logic without equality.

Theorem 52 (Downwards Löwenheim-Skolem Theorem). Assume that L has α-OTP. Let T be a satisfiable theory

over a signature ∆ of power at most α. Then T has a Kripke structure (W, M) such that card(W) ≤ α and card(Mw,s) ≤

α for all rigid sorts s ∈ S r.

Proof. Let C = {Cs}s∈S e be a sorted set of new constants for ∆ such that card(Cs) = α for all sorts s ∈ S e. Let
Γs
≔ {c , x | c ∈ Cs} be a type11 in one variable x of sort s ∈ S e. We show that T α-omits Γs:

1 let p be a set of sentences over ∆[C, x] such that card(p) < α and T ∪ p is satisfiable

2 p ⊆ ∆[C′, x] for some C′ ⊆ C such that card(C′s) < α since card(p) < α

3 there exists c ∈ Cs \ C′s since card(Cs) = α and card(C′s) < α

4 T ∪ p ∪ {x = c} is satisfiable since T ∪ p is satisfiable and c does not occur in T ∪ p

5 T α-omits Γs since p was arbitrarily chosen

Since L has α-OTP, there exists a Kripke structure (W, M) over ∆[C] which satisfies T and omits Γs for all

s ∈ S e.

Theorem 53 (Upwards Löwenheim-Skolem Theorem). Assume that L has α-OTP, where α is a regular cardinal. Let

T be a satisfiable theory over a signature ∆ of power at most α. For each model (W, M) of T there exists another

model (V,N) of T such that card((V,N)s) ≥ α for all sorts s ∈ S e.

In fact, if ∆′ is obtained from ∆ by adding a rigid binary relation ≤ on each sort s ∈ S e interpreted by (W, M)

as infinite then there exists an expansion (V ′,N′) of (V,N) to ∆′ such that 〈(W, M)s, (W, M)≤〉 is a linear ordering of

11Notice that for nominals, c , x means ¬@c x. Compare Lemma 43 for a similar use.
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cofinality α for all sorts s ∈ S e.

Proof. Let Ω ⊆ S e be the set of all sorts interpreted by (W, M) as infinite. Let C = {Cs}s∈Ω be a set of new rigid

constants such that Cs = {ci | i < α} for all s ∈ Ω. Let T ′ be the theory over ∆′[C] obtained from T by adding:

{≤ is a linear order on s without the greatest element} ∪ {ci ≤ c j | i < j < α} for each sort s ∈ Ω

The definition of T ′ relies on the semantic closure of L under the relevant sentence building operators. For example,

for nominals, ci ≤ c j means @ci
〈 ≤ 〉c j. There exists an expansion (W′, M′) of (W, M) to the signature ∆′[C] such that

(W′, M′) |= T ′. For each sort s ∈ Ω we define the following type in one variable x of sort s:

Γs
≔ {ci ≤ x | i < α}

We show that T ′ α-omits Γs:

1 let p ⊆ Sen(∆′[C, x]) with card(p) < α such that T ′ ∪ p is satisfiable

2 (V,N) |= T ′ ∪ p for some Kripke structure (V,N) over ∆′[C, x] since T ′ ∪ p is satisfiable

3 p ⊆ Sen(∆′[Cβ, x]) for some β < α, where Cβ is obtained from C by

restricting the constants of sort s to C
β
s ≔ {ci ∈ Cs | i < β}

since α is regular

4 (Vβ,Nβ) |= T ∪ p, where (Vβ,Nβ) ≔ (V,N)↾∆′ [Cβ ,x] since (V, N) |= T ′ ∪ p and T ⊆ T ′

5 there exists w > max{(V,N)x, (V,N)cβ } since 〈(V, N)s, (V,N)≤〉 is a linear order without the

greatest element

6 w > (V,N)ci
for all i < β since w > (V,N)cβ and (V,N)cβ ≥ (V, N)ci

for all i < β

7 (V ′,N′) |= T ′ ∪ p, where (V ′,N′) is the unique expansion of (Vβ,Nβ)

to the signature ∆′[C, x] such that (V ′,N′)ci
= w for all i ≥ β

since (Vβ,Nβ) |= T ∪ p and w is greater than the

interpretation of cβ in (V, N)

8 (V ′,N′) 6|= ci ≤ x for all i ≥ β since (V, N)x < w and w = (V ′, N′)ci
for all i ≥ β

9 T ′ α-omits Γ from 7 and 8, since p was arbitrarily chosen

By Theorem 46, there exists a model (V ′,N′) which satisfies T ′ and omits Γs for all s ∈ Ω. It follows that

〈(V ′,N′)s, (V
′,N′)≤〉 is a linear ordering of cofinality12 α for all sorts s ∈ Ω. Let (V,N) ≔ (V ′,N′)↾∆, and notice that

(V,N) satisfies T and its carrier sets corresponding to the sorts in Ω have cardinalities greater than or equal to α.

10. Omitting types and compactness

In this section, we show that at least at some occasions, compactness is a necessary condition for proving the

Omitting Types Theorem for uncountable signatures. We work within a fragment L with the following properties:

P1) L is semantically closed under (a) possibility applied to nominal sentences, (b) retrieve, (c) negation, (d) dis-

junction, and (e) quantifiers.

P2) Signatures have only one rigid sort and all function symbols (except variables) are flexible.

Notice that L is semantically closed under possibility, as 〈λ〉ϕ |=| ∃x · 〈λ〉x ∧@x ϕ.

10.1. Global substitutions

We begin by defining a notion of substitution which we then use to derive compactness for infinite models from

α-OTP using a technique originally developed by Lindström for first-order logic with only relational symbols [38].

Consider a signature ∆ = (Σn,Σr ⊆ Σ) with only one rigid sort and no rigid function symbols, that is, S n = {s1},

S r = S = {s2} and Fr = ∅. We define another signature ∆+ = (Σn
+,Σ

r
+ ⊆ Σ+) as follows:

1. Σn
+ consists of only one sort, let us say, s0, and Σr+ consists of two sorts s1 and s2.

12To be more precise, we can select a strictly increasing subsequence (ci j
: i j < α) which is unbounded. This sequence is order-isomorphic with

an ordinal γ, and since α is regular we have γ = α. In particular card(Cs) ≥ α for each s ∈ Ω.
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2. Σ+ is obtained from Σn by adding the following sets of flexible symbols:

(a) {σ+ : s1 s2 . . . s2
︸  ︷︷  ︸

m−times

→ s2 | σ : s2 . . . s2
︸  ︷︷  ︸

m−times

→ s2 ∈ F} and

(b) {π+ : s1 s2 . . . s2
︸  ︷︷  ︸

m−times

| π : s2 . . . s2
︸  ︷︷  ︸

m−times

∈ P}.

The signature ∆+ provides a local environment for encoding the Kripke structures over ∆. The following set of

sentences over ∆+ ensures that the interpretation of the rigid relation symbols in ∆ is ‘locally rigid’ in ∆+.

Γ ≔ {∀x1, x2, y1, . . . , ym · π+(x1, y1, . . . , ym)⇔ π+(x2, y1, . . . , ym) | π : s2 . . . s2
︸  ︷︷  ︸

m−times

∈ Pr}

Let z be a distinguished nominal variable for ∆+. We define a substitution ( )+ : ∆ 99K (∆+[z], Γ), that is,

1. a sentence function ( )+ : Sen(∆)→ Sen(∆+[z], Γ) and

2. a reduct functor ( )− : Mod(∆+[z], Γ)→ Mod(∆),

such that the following global satisfaction condition holds:

(Wz←w, M) |= γ+ iff (Wz←w, M)− |= γ

for all Kripke structures (W, M) ∈ |Mod(∆+, Γ)|, all possible worlds w ∈ |W | and all sentences γ ∈ Sen(∆).

Mapping on models. Notice that a model in |Mod(∆+, Γ)| can be regarded as a collection of Kripke structures over

the signature ∆. Once z is assigned to a node, the functor ( )− extracts the Kripke structure corresponding to the

node denoted by z. Concretely, the functor ( )− : Mod(∆+[z], Γ)→ Mod(∆) maps each Kripke structure (Wz←w, M) ∈

|Mod(∆+[z], Γ)| to (W−w , M−w) ∈ |Mod(∆)|, where

1. W−w ≔ Mw ↾Σn , 13

2. the mapping M−w : Mw,s1
→ |Mod(Σ)| is defined as follows:

• For all v ∈ Mw,s1
, the carrier set (M−w)v,s2

is Mw,s2
.

• For all v ∈ Mw,s1
and all σ : s2 . . . s2

︸  ︷︷  ︸

m−times

→ s2 ∈ F, the function (M−w)v,σ : Mw,s2
× · · · × Mw,s2

︸                  ︷︷                  ︸

m−times

→ Mw,s2
is

defined by (M−w)v,σ(a1, . . . , am) ≔ Mw,σ+ (v, a1, . . . , am) for all a1, . . . , am ∈ Mw,s2
.

• For all v ∈ Mw,s1
and all π : s2 . . . s2

︸  ︷︷  ︸

m−times

∈ P, the relation (M−w)v,π ⊆ Mw,s2
× · · · × Mw,s2

︸                  ︷︷                  ︸

m−times

is defined by

(M−w)v,π ≔ {(a1, . . . , am) | (v, a1, . . . , am) ∈ Mw,π+ }.

Since (W, M) |= Γ, the Kripke structure (W−w , M−w) interprets all rigid symbols in Pr uniformly across the worlds, which

means it is well-defined.

Fact 54. The functor ( )− : Mod(∆+[z], Γ) → Mod(∆) can be extended to ( )− : Mod(∆+[z, X], Γ) → Mod(∆[X]),

where X = {Xs}s∈S e is a set of variables for ∆, such that the interpretation of all variables in X is preserved, that is,

(Wz←w, M)x = (Wz←w, M)−x for all x ∈ X.

13Notice that Mw ∈ |Mod(Σ+)| and Mw ↾Σn is well-defined since Σn ⊆ Σ+.
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Mapping on sentences. We define a mapping on sentences ( )+ : Sen(∆[X]) → Sen(∆+[z, X]) in three steps, where

X = {Xs}s∈S e is any set of variables for ∆.

S1) We define a mapping from the rigid terms over ∆[X] to the rigid terms over ∆+[z, X] by structural induction:

• x+ ≔ x, where x is any variable of rigid sort from X , and

• (@k σ)(t1, . . . , tm)+ ≔ (@z σ+)(@z k, t+
1
, . . . , t+m), where k ∈ Fn∪Xany, and ti are rigid terms over ∆+[z, X].

Notice that ( )+ is well-defined on rigid terms, as the set of rigid function symbols is empty.

Lemma 55. For all Kripke structures (W, M) ∈ |Mod(∆+[X], Γ)|, all possible worlds w ∈ |W |, and all rigid

terms t over ∆[X],

(Wz←w, M)t+ = (Wz←w, M)−t . (1)

Proof. By structural induction on terms:

[ x ∈ {Xs}s∈S r ] Obviously, (Wz←w, M)x = (W−w , M−w)x.

[ @k σ(t1, . . . , tm) ] Let v ≔ (Wz←w, M)@z k = Mw,k, and we have:

(Wz←w, M)(@z σ+)(@z k,t+
1
,...,t+m) = Mw,σ+ (v, (W

z←w, M)t+
1
, . . . , (Wz←w, M)t+m ). By the induction hypothesis,

Mw,σ+(v, (W
z←w, M)t+

1
, . . . , (Wz←w, M)t+m ) = (M−w)v,σ((W−w , M−w)t1 , . . . , (W

−
w , M−w)tm ) =

(W−w , M−w)(@k σ)(t1 ,...,tm).

Since Fr = ∅, the cases considered above cover all possibilities.

S2) We define the mapping ( )+ on rigid sentences of the form @k ϕ ∈ Sen(∆[X]) such that every rigid sentence

will be mapped to a rigid sentence (@k ϕ)+ ∈ Sen(∆+[z, X]), which means that

(Wz←w, M) |= (@k ϕ)+ iff (Wz←w, M) |=w (@k ϕ)+

for all Kripke structures (W, M) ∈ |Mod(∆+[X], Γ)| and all possible worlds w ∈ |W |. We proceed by structural

induction.

• (@k k′)+ ≔@z (k = k′)

• (@k 〈λ〉k
′)+ ≔@z λ(k, k′)

• (@k (t1 = t2))+ ≔ (atk t1)+ = (atk t2)+

• (@k π(t1, . . . , tm))+ ≔ (@z π+)(@z k, (atk t1)+, . . . , (atk tm)+)

• (@k ∨ Φ)+ ≔ ∨ϕ∈Φ(@k ϕ)+

• (@k ¬ϕ)+ ≔ ¬(@k ϕ)+

• (@k ∃X′ · ϕ)+ ≔ ∃X′ · (@k ϕ)+

• (@k @k′ ϕ)+ ≔ (@k′ ϕ)+

• (@k ↓x ·ϕ)+ ≔ (@k ϕ(x ← k))+

Lemma 56 (Rigid satisfaction condition). For all sentences ϕ ∈ Sen(∆[X]), all nominals k ∈ Fn ∪ Xany, all

Kripke structures (W, M) ∈ |Mod(∆+[X], Γ)| and all possible worlds w ∈ |W |,

(Wz←w, M) |= (@k ϕ)+ iff (Wz←w, M)− |= @k ϕ. (2)

Proof. Let v ≔ Mw,k. We proceed by induction on the structure of ϕ:

[ k′ ∈ Fn ∪ Xany ] (Wz←w, M) |= (@k k′)+ iff (Wz←w, M) |= @z (k = k′) iff (Wz←w, M) |=w k = k′ iff Mw,k =

Mw,k′ iff (M−w)k = (M−w)k′ iff (W−w , M−w) |= @k k′.

[ 〈λ〉k′ ] (Wz←w, M) |= (@k 〈λ〉k
′)+ iff (Wz←w, M) |= @z λ(k, k′) iff (Wz←w, M) |=w λ(k, k′) iff (Mk, Mk′ ) ∈ Mw,λ

iff (W−w , M−w) |= @k 〈λ〉k
′.

[ t1 = t2 ] (Wz←w, M) |= (@k (t1 = t2))+ iff (Wz←w, M) |= (atk t1)+ = (atk t2)+ iff

(Wz←w, M)(atk t1)+ = (Wz←w, M)(atk t2)+ iff (W−w , M−w)atk t1 = (W−w , M−w)atk t2 iff (W−w , M−w)@k t1 = (W−w , M−w)@k t2

(W−w , M−w) |= @k (t1 = t2).

31



[ π(t1, . . . , tm) ] (Wz←w, M) |= (@k π(t1, . . . , tm))+ iff (Wz←w, M) |= @z π+(@z k, (atk t1)+, . . . , (atk tm)+) iff

(v, (Wz←w, M)(atk t1)+ , . . . , (W
z←w, M)(atk tm)+ ) ∈ Mw,π+ iff ((W−w , M−w)atk t1 , . . . , (W

−
w , M−w)atk tm ) ∈ (M−w)v,π iff

((W−w , M−w)@k t1 , . . . , (W
−
w , M−w)@k tm ) ∈ (M−w)@k π iff (W−w , M−w) |= @k π(t1, . . . , tm).

[ ¬ϕ ] (Wz←w, M) |= (@k ¬ϕ)+ iff (Wz←w, M) |= ¬(@k ϕ)+ iff (Wz←w, M) |=w ¬(@k ϕ)+ iff

(Wz←w, M) 6|=w (@k ϕ)+ iff (Wz←w, M) 6|= (@k ϕ)+ iff (W−w , M−w) 6|=@k ϕ iff (W−w , M−w) |= @k ¬ϕ.

[ ∨Φ ] (Wz←w, M) |= (@k ∨Φ)+ iff (Wz←w, M) |= ∨ϕ∈Φ(@k ϕ)+ iff (Wz←w, M) |=w ∨ϕ∈Φ(@k ϕ)+ iff (Wz←w, M) |=w

(@k ϕ)+ for some ϕ ∈ Φ iff (W−w , M−w) |= @k ϕ for some ϕ ∈ Φ iff (W−w , M−w) |= @k ∨ϕ∈Φ ϕ.

[ ∃X′ · ϕ ] Let (V,N) ≔ (W−w , M−w). Since ( )− preserves the interpretation of variables, we have:

(a) for any expansion (W′, M′) of (W, M) to ∆+[X, X′], (W′z←w, M′)− is an expansion of (V,N) to ∆[X, X′],

(b) for any expansion (V ′,N′) of (V,N) to ∆[X, X′], there exists an expansion (W′, M′) of (W, M) to

∆+[X, X′] such that (W′z←w, M′)− = (V ′,N′).

(V ′,N′) ∆[X, X′]
( )+ // ∆+[z, X, X′] (W′z←w, M′)

(V,N) ∆[X, X′]
?�

OO

( )+ // ∆+[z, X]
?�

OO

(Wz←w, M)

∆
?�

OO

( )+ // ∆+[z]
?�

OO

Based on the remark above, the following are equivalent:

1 (Wz←w, M) |= (@k ∃X′ ·ϕ)+

2 (Wz←w, M) |= ∃X′ · (@k ϕ)+ by the definition of ( )+

3 (W′z←w , M′) |= (@k ϕ)+ for some expansion (W′, M′) of (W, M) to ∆+[X, X′] since (@k ϕ)+ is rigid

4 (V ′,N′) |=@k ϕ for some expansion (V ′,N′) of (V,N) to ∆[X, X′] by the induction hypothesis

5 (V,N) |=@k ∃X′ ·ϕ since @k ϕ
+ is rigid

[ @k′ ϕ ] This case is straightforward, since @k @k′ ϕ |=| @k′ ϕ.

[ ↓x · ϕ ] This case is straightforward, since @k ↓x · ϕ |=|@k ϕ[x ← k].

S3) The function ( )+ : Sen(∆[X]) → Sen(∆+[z, X]) is defined by ϕ+ = ∀x · (@x ϕ)+ for all ϕ ∈ Sen(∆[X]), where

x is a distinguished nominal variable for ∆[X].

Proposition 57 (Global satisfaction condition). For all sentences ϕ ∈ Sen(∆[X]), all Kripke structures (W, M) ∈

|Mod(∆+[X])|, and all possible worlds w ∈ |W |,

(Wz←w, M) |= ϕ+ iff (Wz←w, M)− |= ϕ. (3)

Proof. Let (V,N) ≔ (W−w , M−w).

(Vx←v,N) ∆[x, X]
( )+ // ∆+[z, x, X] (Wz←w, Mx←v)

(V,N) ∆[X]
?�

OO

( )+ // ∆+[z, X]
?�

OO

(Wz←w, M)

∆
?�

OO

( )+ // ∆+[z]
?�

OO

The following are equivalent:
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1 (Wz←w, M) |= ϕ+

2 (Wz←w, M) |= ∀x · (@x ϕ)+ by the definition of ( )+

3 (Wz←w, Mx←v) |= (@x ϕ)+ for any expansion (Wz←w, Mx←v) of

(Wz←w, M) to ∆+[z, x, X]

since (Wz←w,M) |= ∀x · (@x ϕ)+

4 (Vx←v,N) |=@x ϕ for any expansion (Vx←v,N) of (V,N) to ∆[x, X] by Lemma 56, since (Wz←w,Mx←v)− = (Vx←v, N)

5 (V,N) |= ∀x ·@x ϕ by semantics

6 (V,N) |= ϕ by semantics

10.2. Inf-compactness

We say that L is inf-compact if each set of sentences Γ has an infinite model whenever each finite subset Γ f ⊆ Γ

has an infinite model. We say that L is α-inf-compact, where α is an infinite cardinal, if each set of sentences Γ

of cardinality α has an infinite model whenever each finite subset Γ f ⊆ Γ has an infinite model. We show that

inf-compactness is a consequence of omitting type property.

Theorem 58. If L has α-OTP, where α is a regular cardinal then L is β-inf-compact for all cardinals β < α.

Proof. Let ∆ be a signature of power at most α. By induction, it suffices to prove that each sequence Φβ = {ϕi ∈

Sen(∆) | i < β} has an infinite model whenever each subsequence Φ j ≔ {ϕi | i < j} has an infinite model for all

j < β. Let {(W i, Mi) ∈ |Mod(∆)| | 0 < i < β} be a sequence of Kripke structures over ∆ such that

• the carrier sets of (W i, Mi) are infinite for all indexes j with 0 < j < β, and

• (W j, M j) |= Φ j for all indexes j with 0 < j < β.

By Löwenheim-Skolem properties, we can assume that all carrier sets of (W i, Mi) are of cardinality α. By renaming

the elements, we assume furthermore that |W i| = |W j| and Mi
w,s2
= M

j
w,s2

for all i < j < β and all possible worlds

w ∈ |W i|. We define the following Kripke structure (W+, M+) over ∆+:

• |W+| = {wi | 0 < i < β}, where {wi | 0 < i < β} is a sequence of pairwise distinct possible worlds. The carrier

sets of (W+, M+) for the sorts s1 and s2 are the carrier sets of (W i, Mi) for the sorts s1 and s2, where 0 < i < β.

• For all k ∈ Fn and all 0 < i < β, we define M+
wi,k
≔ W i

k
.

• For all σ : s2 . . . s2
︸  ︷︷  ︸

m−times

→ s2 ∈ F and all 0 < i < β, the function M+
wi ,σ+

: M+wi ,s1
× M+wi ,s2

× · · · × M+wi ,s2
︸                   ︷︷                   ︸

m−times

→ M+wi ,s2
is

defined by M+wi ,σ+
(a, b1, . . . , bm) = Mi

a,σ(b1, . . . , bn) for all (a, b1, . . . , bm) ∈ M+wi ,s1
× M+wi ,s2

× · · · × M+wi,s2
︸                   ︷︷                   ︸

m−times

.

• For all π : s2 . . . s2
︸  ︷︷  ︸

m−times

∈ P, we define M+wi,π
≔ {(a, b1, . . . , bm) | (b1, . . . , bm) ∈ Mi

a,π}.

By the definition of (W+, M+), we have

((W+)z←wi , M+)− = (W i, Mi) for all i < β. (4)

Let ∆• be the signature obtained from ∆+ by adding a set of new nominals C = {ki | 0 < i < β} and a new binary

modality ≤. Let (W•, M•) be the expansion of (W+, M+) to ∆• such that

(a) W•
ki
= wi for all ordinals i with 0 < i < β, and

(b) (wi,w j) ∈ W•< iff i < j.

Let T = Γ ∪ {∀z ·@ki
〈 < 〉z⇒ ϕ+

i
(z) | i < β}. We show that (W•, M•) |= T :
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1 (W•, M•) |= Γ since (W+,M+) |= Γ

2 let i be an ordinal such that 0 < i < β

3 let w j ∈ |W
•| such that (wi,w j) ∈ W•

<, meaning that ((W•)z←w j , M•) |=@ki
〈 < 〉z

4 i < j by the definition of (W•,M•), since (wi ,w j) ∈ W•<

5 ((W+)z←w j , M+) |= Φ+j by Proposition 57 and statement 4, since (W j ,M j) |= Φ j

6 ((W•)z←w j , M•) |= Φ+j by the satisfaction condition

7 ((W•)z←w j , M•) |= ϕ+
i

since ϕi ∈ Φ j

8 (W•, M•) |= ∀z ·@ki
〈 < 〉z⇒ ϕ+i from 3 and 7

9 (W•, M•) |= T from 1 and 8

By Theorem 53, there exists a model (V•,N•) of T such that (V•,V•≤) is of confinality α. We define vi ≔ V•
ki

for

all i < β. By cofinality, there exists v ∈ V•s0
such that (vi, v) ∈ V•< for all i < β. It follows that ((V•)z←v,N•) |= ϕ+

i

for all i < β. Let (V+,N+) ≔ (V•,N•) ↾ ∆+ . By the satisfaction condition, ((V+)z←v,N+) |= ϕ+
i

for all i < β. By

Proposition 57, ((V+)z←v,N+)− |= ϕi for all i < β.

11. Conclusion

In this paper we established an omitting types theorem for first-order hybrid dynamic logic and sufficiently expres-

sive fragments. For countable signatures, the result followed without needing compactness whereas for uncountable

signatures we had to restrict our attention to compact fragments of the logic. It turns out that the latter restriction is

actually necessary for some of these fragments, as compactness is a consequence of OTT for uncountable signatures.

We also provided two applications of the OTT: (1) Löwenheim-Skolem theorems and (2) a completeness theorem for

the constructor-based version of first-order hybrid dynamic logic. In future work we intend to explore other interesting

consequences of OTT in this setting, particularly the Robinson Joint Consistency theorem.

Acknowledgments

This paper grew out of some lectures given by George Georgescu on forcing while the first author was a master

student at the University of Bucharest. The work presented in this paper has been partially supported by the Japanese

Contract Kakenhi 20K03718.

References

[1] Carlos Areces and Patrick Blackburn. 2001. Bringing them all Together. Journal of Logic and Computation 11, 5 (2001), 657–669.

[2] Carlos Areces, Patrick Blackburn, and Maarten Marx. 2001. Hybrid logics: characterization, interpolation and complexity. Journal of

Symbolic Logic 66, 3 (2001), 977–1010.

[3] Carlos Areces, Patrick Blackburn, and Maarten Marx. 2003. Repairing the interpolation theorem in quantified modal logic. Ann. Pure Appl.

Log. 124, 1-3 (2003), 287–299.

[4] Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner andco Peter D. Mosses, Donald Sannella, and Andrzej Tarlecki.

2002. CASL: the Common Algebraic Specification Language. Theoretical Computer Science 286, 2 (2002), 153–196.

[5] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. 2017. An Introduction to Description Logic. Cambridge University Press,

Cambridge. https://doi.org/10.1017/9781139025355

[6] Michel Bidoit and Rolf Hennicker. 2006. Constructor-based observational logic. J. Log. Algebr. Program. 67, 1-2 (2006), 3–51.

[7] Patrick Blackburn. 2000. Representation, Reasoning, and Relational Structures: a Hybrid Logic Manifesto. Logic Journal of the IGPL 8, 3

(2000), 339–365.

[8] Patrick Blackburn, Manuel A. Martins, Marı́a Manzano, and Antonia Huertas. 2019. Rigid First-Order Hybrid Logic. In Logic, Language,

Information, and Computation - 26th International Workshop, WoLLIC 2019, Utrecht, The Netherlands, July 2-5, 2019, Proceedings (Lecture

Notes in Computer Science), Rosalie Iemhoff, Michael Moortgat, and Ruy J. G. B. de Queiroz (Eds.), Vol. 11541. Springer, Utrecht, 53–69.
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[22] Daniel Găină. 2013. Interpolation in logics with constructors. Theoretical Computer Science 474 (2013), 46–59.
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