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CARLSON-SIMPSON’S LEMMA AND APPLICATIONS

IN REVERSE MATHEMATICS

PAUL-ELLIOT ANGLES D’AURIAC, LU LIU, BASTIEN MIGNOTY, AND LUDOVIC PATEY

Abstract. We study the reverse mathematics of infinitary extensions of the Hales-Jewett theorem, due to
Carlson and Simpson. These theorems have multiple applications in Ramsey’s theory, such as the existence
of finite big Ramsey numbers for the triangle-free graph, or the Dual Ramsey theorem. We show in particular
that the Open Dual Ramsey theorem holds in ACA

+

0
.

1. Introduction

Tree partition theorems play an important role in Structural Ramsey theory, by providing a combinatorial
core to which many other structural theorems can be reduced. For example, Milliken’s tree theorem, states
that, given an infinite finitely branching tree T , for every finite coloring of the strongly embedded subtrees
of length n of T , there is a strongly embedded subtree of infinite height S such that all embedded subtrees
of length n are monochromatic. Milliken’s tree theorem is known to be the combinatorial core to prove the
existence of a big Ramsey degree for colorings of the rationals and of the Rado graph (see Todorcevic [14]).

We study the reverse mathematics of infinitary extensions of the Hales-Jewett theorem, due to Carlson
and Simpson [1], and prove that they hold over ACA0. The higher-order version of Carlson-Simpson’s lemma
holds in ACA

+
0 and was used by Carlson and Simpson to prove a dual version of Ramsey’s theorem [1].

More recently, Hubička [8] proved that the existence of a big Ramsey degree for the universal triangle-free
graph followed from the higher-order version of Carlson-Simpson’s lemma. This gave a simpler proof, yet less
accurate, than the original proof of Dobrinen [4]. Thanks to our reverse mathematical analysis of Carlson-
Simpson’s lemma, we deduce that the existence of a big Ramsey degree for the universal triangle-free graph,
and the restriction of the Dual Ramsey theorem to open sets both hold in ACA

+
0 .

1.1. Variable words. We identify a non-negative integer k ∈ ω with the set {0, . . . , k − 1}. A word over
a finite alphabet A is a finite ordered sequence w = 〈a0, . . . , an−1〉 ∈ An for some n ∈ ω. An infinite word
over A is a function W : ω → A. We denote by A<ω and Aω the sets of finite and infinite words over A,
respectively. For w = 〈a0, . . . , an−1〉, we write |w| for the length n of the word w and given i < n, we let
w(i) = ai.

An ω-variable word over A is an infinite word W over the alphabet A ⊔ {xj : j ∈ N} where each variable
kind xj appears at least once and the first occurrence of xj appears before the first occurrence of xj+1. We
write Aω,ω for the set of all ω-variable words over A. Given an ω-variable word W over A and a word u
over A, we write W [u] for the finite word over A where each occurrences of xj is replaced by u(j), and cut
before the first occurrence of x|u|. In particular, letting ǫ be the empty word, W (ǫ) is the initial segment
of w before the first occurence of x0. The substitution notation W [a] must not be confused with W (i): the
former notation denotes the finite word obtained by substitution of all the occurrences of x0 by the letter a
and cutting before the first occurrence of x1, while the latter notation denotes the letter in W at position i.

Example 1.1. Then sequence 01101x01010x110x0101x20110x001010x1 is a valid initial segment of an ω-
variable word over 2. On the other hand, 010x10101x0 is not, since the first occurrence of x1 appears before
the first occurrence of x0. Similarly, 00191x0101x2 is not a valid initial segment, since in an ω-variable
word over 2, the variable x1 must appear at some point, before the first occurrence of x2. If W is an
ω-variable word over 2 starting with 01x010x101x0001x2, then W [ǫ] = 01, W [0] = 01010, W [1] = Ø110,
W [01] = 010101010001 and W [10] = 011100011001.

The following theorem was proven by Carlson and Simpson [1, Lemma 2.4]:
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Theorem 1.2 (Carlson-Simpson Lemma1). For every finite alphabet A and every finite partition C0 ⊔ · · · ⊔
Cℓ−1 = A<ω, there is some color i < ℓ and an ω-variable word W such that {W [u] : u ∈ A<ω} ⊆ Ci.

We write CSL(k, ℓ) the statement of theorem 1.2 for ℓ-colorings and alphabets of size k. The Carlson-
Simpson Lemma has several consequences in combinatorics, among which a dual version of Ramsey’s theorem
and the existence of a big Ramsey degree of the universal triangle-free graph.

Carlson and Simpson [1, Theorem 6.3] actually proved a stronger statement, known as the Ordered
Variable Word theorem. An ω-variable word over A is ordered if the last occurrence of xj appears before
the first occurrence of xj+1. Note that if W is an ordered ω-variable word, then each variable must appear
finitely often, unlike in the general case. We write Aω,ω

< for the set of all ordered ω-variable words over A.

Theorem 1.3 (Ordered Variable Word theorem). For every finite alphabet A and every finite partition
C0 ⊔ · · · ⊔ Cℓ−1 = A<ω, there is some color i < ℓ, and an ordered ω-variable word W over A such that
{W [u] : u ∈ A<ω} ⊆ Ci.

We write OVW(k, ℓ) the statement of theorem 1.3 for ℓ-colorings of words over finite alphabets of size k.
We study the reverse mathematics of the Ordered Variable Word theorem in Section 3 and Section 4, and
prove that it holds over ACA0. It is currently unknown whether OVW(k, ℓ) is strictly weaker.

1.2. Higher-order Variable Words. The same way Ramsey’s theorem for n-tuples can be proven induc-
tively from the pigeonhole principle, the Carlson-Simpson Lemma can be used as a pigeonhole principle to
prove inductively a higher-order version coloring finite multivariable words. An (ordered) n-variable word
over A is a word w over the alphabet A ⊔ {xj : j < n} where each xj appears at least once and the first
(last) occurrence of xj appears before the first occurrence of xj+1. We call n the dimension of the n-variable

word w. Denote by A<ω,n and A<ω,n
< the sets of unordered and ordered n-variable words over A, respec-

tively. Note that A<ω = A<ω,0, and that A<ω,n ⊆ (A ⊔ {x0, . . . , xn−1})<ω. The higher-order version of
the Carlson-Simpson Lemma is about finite colorings of n-variable words. The order of the theorem is the
dimension of the variable words which are colored.

Theorem 1.4 (Higher-order Carlson-Simpson Lemma). Fix n ≥ 0 and ℓ ≥ 1. For every finite alphabet A
and every finite partition C0 ⊔ · · · ⊔Cℓ−1 = A<ω,n, there is some color i < ℓ and an infinite ω-variable word
W such that {W [u] : u ∈ A<ω,n} ⊆ Ci.

We write CSLn(k, ℓ) the statement of theorem 1.4 for ℓ-colorings of n-variable words over finite alphabets

of size k. In particular, CSL0(k, ℓ) is the statement CSL(k, ℓ). We study the reverse mathematics of the
Higher-order Carlson-Simpson Lemma in Section 5 and prove that it holds over ACA+

0 .
The Ordered Variable Word theorem also admits a higher-order counterpart, due to Carlson. The two last

theorems of this introduction will not be studied in this paper, but we state them for the sake of completion:

Theorem 1.5 (Higher-order Ordered Variable Word theorem). Fix n ≥ 0 and ℓ ≥ 1. For every finite
alphabet A and every finite partition C0 ⊔ · · · ⊔ Cℓ−1 = A<ω,n

< , there is some color i < ℓ and an infinite
ordered ω-variable word W such that {W [u] : u ∈ A<ω,n} ⊆ Ci.

We write OVW
n(k, ℓ) the statement of theorem 1.5 for ℓ-colorings of ordered n-variable words over finite

alphabets of size k. Here again, OVW0(k, ℓ) is the statement OVW(k, ℓ). However, OVWn(k, ℓ) cannot be
proven by iterating its zero-dimensional version as in the case of the Carlson-Simpson Lemma. Theorem 1.5
follows from a stronger theorem known as Carlson’s theorem. OVW

n(k, ℓ) and Carlson’s theorem have not
been studied so far in reverse mathematics, as the only two known proofs of Carlson’s theorem involve third-
order objects, namely, ultrafilters in combinatorics, and Ellis enveloping semigroup in topological dynamics.

The Higher-order Ordered Variable Word theorem of dimension 1 for unary alphabets is actually equivalent
to Hindman’s theorem over RCA0. Given a set X ⊆ ω, we write FS(X) for the set of all non-empty sums
over X with no repetitions, that is, FS(X) = {

∑

F : F ⊆fin X ∧ F 6= ∅}.

Theorem 1.6 (Hindman’s theorem). For every finite partition C0 ⊔ · · · ⊔ Cℓ−1 = ω; there is some color
i < ℓ and an infinite set X ⊆ ω such that FS(X) ⊆ Ci.

1The name “Carlson-Simpson Lemma” is sometimes used to refer to the Ordered Variable Word theorem in the literature of
combinatorics.
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There exist several proofs of Hindman’s theorem, which was extensively studied in reverse mathematics.
Hindman’s theorem is provable in ACA

+
0 and implies ACA0. The exact strength of Hindman’s theorem is

one of the most important open question in reverse mathematics.

1.3. Organization of the paper. In Section 2, we fix some notation and definitions which will be useful all
along the paper. Then, in Section 3 and Section 4, we give two proofs of the Ordered Variable Word theorem
in ACA0, based on two different largeness notions: piecewise syndeticity and positive upper density. In
Section 5, we iterate either proof of the Ordered Variable Word in ACA0 to obtain a proof of the Higher-order
Carlson-Simpson Lemma in ACA

+
0 . Last, we explore two applications of the Higher-order Carlson-Simpson

Lemma, namely, the Dual Ramsey Theorem for open sets in Section 6 and the existence of a big Ramsey
degree of the universal triangle-free graph in Section 7. Both consequences are shown to hold over ACA+

0 .

2. Notation and background

In the introduction, we stated the Ordered Variable Word theorem and the Carlson-Simpson Lemma in
terms of variable words. However, it is sometimes more convenient to consider the set of words obtained by
taking all the possible instantiations of a variable word.

Definition 2.1 (Ordered Variable Word tree). An OVW-tree over A of dimension n ∈ ω ∪ {ω} is a set of
the form T = {w[u] : u ∈ A<n} for some ordered n-variable word w over A. We call w its generating variable
word. An OVW-line is an OVW-tree of dimension 1.

We write T (j) = {w[u] : u ∈ Aj} for the j-th level of T , L(T ) = {|u| : u ∈ T } for the set of levels of T
and |T | = max(L(T )) for the size of T . Note that the size of T is different from the cardinality of T as a
set, and from the dimension of T as well. The size of T coincides with the length of its generating variable
word. An OVW-subtree of T is an OVW-tree which is a subset of T .

Example 2.2. For any c ∈ A<ω, {c} is an OVW-tree of dimension 0. The OVW-trees of dimension 1 are
the sets of the form T = {c}∪ {c⌢a⌢w[a] : a ∈ A} for some variable word w over A. Say A = {0, 1}, c = 10
and w = 01x010. Then T = {10, 10001010, 10101110}, T (0) = {10} and T (1) = {10001010, 10101110}. On
the other hand, S = {10, 1010, 1001} is not an OVW-tree.

It is easy to see that there is a one-to-one correspondence between OVW-trees and their generating variable
words. The tree presentation is especially convenient when dealing with iterations. The Ordered Variable
Word theorem can be stated in terms of OVW-trees as follows:

Theorem 2.3 (Ordered Variable Word theorem). For every finite alphabet A, every OVW-tree T ⊆ A<ω

over A of dimension ω and every finite partition C0 ⊔ · · · ⊔ Cℓ−1 = T , there is some color i < ℓ and an
OVW-subtree S ⊆ T of dimension ω such that S ⊆ Ci.

Proof. Let f : T → A<ω be the canonical computable isomorphism. Define D0 ⊔ · · · ⊔ Dℓ−1 = A<ω by
Di = {u ∈ A<ω : f(u) ∈ Ci}. By theorem 1.3, there is an ordered ω-variable word W over A and a color
i < ℓ such that {W [u] : u ∈ A<ω} ⊆ Di. In particular, S = {f−1(W [u]) : u ∈ A<ω} is an OVW-subtree of
T such that S ⊆ Ci. �

In some occasions, it will also be convenient to see an ordered n-variable word as a finite sequence
σ,w0, w1, . . . , wn where σ ∈ A<ω is a word over A, and wi are left 1-variable words over A, that is, 1-variable
words such that the variable occurs first at position 0. There is again a one-to-one correspondence between
OVW-trees of dimension n and sequences of this form.

2.1. Largeness and partition regularity. Partition theorems are often refined in terms of large sets
which are partition regular. These refinements can be seen as quantitative versions of these theorems. As
it happens, the proofs of the refined versions are sometimes more elementary from a reverse mathematical
viewpoint, although combinatorially more complicated.

Definition 2.4. A class C ⊆ P(A<ω) is partition regular if

(1) it is non-empty
(2) if B ∈ C and B ⊆ C, then C ∈ C
(3) if B ∈ C and C0 ⊔ C1 = B, then either C0 ∈ C or C1 ∈ Cc

We shall consider two refinements of the Ordered Variable Words, based on two standard partition regular
notions : positive upper density and piecewise syndeticity.
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2.1.1. Positive upper density.

Definition 2.5. We define the density of a set D inside a set U as densU (D) = card(D∩U)
card(U) . A set D ⊆ A<ω

has positive upper density if

lim sup
n→∞

densAn(D) > 0

It is clear that A<ω has positive upper density, and that if D has positive upper density, then so have its
supersets. Thus, properties (1) and (2) of the definition of partition regularity are satisfied for the class of
all sets of positive upper density. The following lemma shows that property (3) is also satisfied, hence the
class is partition regular.

Lemma 2.6 (RCA0). Suppose D ⊆ A<ω has positive upper density, and E ⊔ F = D. Then either E or F
has positive upper density.

Proof. Let ǫ > 0 be such that the set B = {n : densAn(D) > ǫ} is infinite. Suppose that E does not have
positive upper density. Then the set C = {n : densAn(E) > ǫ/2} is finite. It follows that the set B r C
is infinite. Note that ∀n ∈ B r C, densAn(D) = densAn(E) + densAn(F ) > ǫ and densAn(E) ≤ ǫ/2, so
densAn(F ) > ǫ/2. It follows that lim supn→∞ densAn(F ) > ǫ/2. �

We will prove in Section 4 that every set of positive upper density admits a solution to the Ordered
Variable Word theorem.

2.1.2. Thickness and syndeticity. Given a set F ⊆ A<ω and a word σ ∈ A<ω , we let F · σ = {τσ : τ ∈ F}.

Definition 2.7. A set S ⊆ A<ω is syndetic if there is some ℓ such that for every σ ∈ A<ω , there is
some τ ∈ A≤ℓ such that τσ ∈ S. For a given ℓ we call such a set ℓ-syndetic. A set T ⊆ A<ω is thick if for
each ℓ ∈ ω, there is some σ ∈ A<ω such that A≤ℓ · σ ⊆ T . A set P ⊆ A<ω is piecewise syndetic if it is the
intersection of a thick set and a syndetic set.

Thickness and syndeticity are not partition regular notions, as they are not closed under partitioning.
They play a dual role, in that a set is thick if and only if it intersects every syndetic set. We shall see on the
other hand that piecewise syndeticity is partition regular.

Lemma 2.8 (RCA0). Let P ⊆ A<ω be a piecewise syndetic set, and let P = B ⊔ C, then either B or C is
piecewise syndetic.

Proof. Assume that P = S∩T , where S is syndetic and T is thick, and let P = B⊔C. Let S̃ := B∪ (SrP ).

First, note that B ⊆ S̃ and B ⊆ P ⊆ T , so B ⊆ S̃ ∩ T . Also note that S̃ ∩ T ⊆ B ∪ ((S r P ) ∩ T ) ⊆ B,

so B = S̃ ∩ T . It follows that if S̃ is syndetic, then B is piecewise syndetic, and the proof is finished. But
if, on the contrary, S̃ is not syndetic, then T̃ := A<ω r S̃ is thick. Finally observe that C = P r B =
(S rB) ∩ (S ∩ P ) = (S r B) ∩ (S r (S r P )) = S r S̃ = (A<ω r S̃) ∩ S = T̃ ∩ S, which shows that in this
case C is piecewise syndetic. �

We will actually need the following iterated version of the previous lemma, which is a generalization of the
so-called Brown’s lemma. Brown’s lemma was originally proved for locally finite semigroups. Frittaion [7]
studied it from a reverse mathematical viewpoint for the semigroup (N,+) and showed that it is equivalent to
IΣ0

2 over RCA0. The following proof is essentially the same, recasted in the setting of the semigroup (A<ω , ·).

Lemma 2.9 (Brown, RCA0 + IΣ0
2). Let P ⊆ A<ω be a piecewise syndetic set, and let P = ⊔i<kCi for

some k ∈ ω. Then there is some i < k such that Ci is piecewise syndetic.

Proof. Let P = S ∩ T , where S is syndetic and T is thick. By bounded Σ0
2 comprehension, the following set

exists:

I = {B ⊆ {0, . . . , k − 1} : (A<ω
r T ) ∪

⋃

i∈B

Ci is syndetic }

Note that P ∪ (A<ω rT ) is syndetic, hence {0, . . . , k− 1} ∈ I. Let B ∈ I be minimal for the inclusion. Note
that B 6= ∅. Fix any i ∈ B. Since (A<ω rT )∪

⋃

j∈B Cj} is syndetic, then either (A<ω rT )∪
⋃

j∈Br{i} Cj is

syndetic, or Ci is piecewise syndetic. The former case would contradict minimality of B, so the latter case
holds. �
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Before finishing this section, we prove a small technical lemma which will be useful in the proof of the
Ordered Variable Word theorem.

Lemma 2.10 (RCA0). Suppose I ⊆ A<ω is a thick set and ℓ ∈ ω. Then the set J = {σ ∈ I : A≤ℓ · σ ⊆ I}
is thick.

Proof. Fix some m ∈ ω. Since I is thick, there is some τ ∈ A<ω such that A≤m+ℓ · τ ⊆ I. Let us show that
A≤m · τ ⊆ J , in other words, for every σ ∈ A≤m, A≤ℓ · στ ∈ I. Fix any σ ∈ A≤m and ρ ∈ A≤ℓ. Then since
A≤m+ℓ · τ ⊆ I, ρστ ∈ I. �

3. A proof of the Ordered Variable Word theorem in ACA0

The purpose of this section is to prove the following piecewise syndetic version of the Ordered Variable
Word over ACA0.

Theorem 3.1 (Piecewise Syndetic Ordered Variable Word Theorem, ACA0). Let P ⊆ A<ω be a piecewise
syndetic set. Then there exists an OVW-tree T ⊆ P over A of dimension ω.

Since piecewise syndeticity is partition regular, Theorem 3.1 implies in particular the Ordered Variable
Word theorem.

Corollary 3.2 (ACA0). For every finite alphabet A and every finite partition C0 ⊔ · · · ⊔Cℓ−1 = A<ω, there
is some color i < ℓ and an OVW-tree T ⊆ Ci of dimension ω.

Proof. By Brown’s lemma (see Lemma 2.9), there is some i < ℓ such that Ci is piecewise syndetic. By
Theorem 3.1, there exists an OVW-tree T ⊆ Ci over A of dimension ω. �

We are going to use the following finitary version of the Ordered Variable Word.

Theorem 3.3 (RCA0). Fix a finite alphabet A, a finite set of colors C. For every coloring f : A<ω → C,
there is a monochromatic OVW-line S ⊆ A<ω and a letter a ∈ A such that S(0) and S(1) · a are both
f -homogeneous for the same color.

It follows by compactness from the Ordered Variable Word theorem, but Dodos, Kanellopoulos and
Tyros [5, Section 4] gave an elementary proof which can be formalized in RCA0.

Remark 3.4. The statement of Theorem 3.3 is slightly different from the one of [5, Section 4], but can be
recovered by taking a monochromatic OVW-tree T ⊆ A<ω of dimension 2, then picking any non-empty
σ ∈ A<ω such that T (1) · σ ⊆ T (2). Let σ∗ be the word σ truncated from its last letter a, and let S =
T (0)∪ (T (1) ·σ∗). Then S is an OVW-line such that S(0) and S(1) ·a are both f -homogeneous for the same
color.

We are now ready to prove the main combinatorial lemma. The piecewise syndetic version of the Ordered
Variable Word follows by iterating the following lemma.

Lemma 3.5 (RCA0+ IΣ0
2). Let I ⊆ A<ω be a thick set and X : I → C be a coloring. There is an OVW-line

S ⊆ A<ω and a piecewise syndetic P ⊆ I such that S(0) and S(1) ·P are X-homogeneous for the same color.

Proof. Fix I and C. Suppose the lemma does not hold. We will build an infinite sequence of words σ0, σ1, . . .
such that, letting wn be the left variable word x0σn and Nn =

∑

m≤n |wn|, the following property holds (for

convenience, let N−1 = 0):

(3.1)
For every n ∈ ω, every b ∈ A, every OVW-line S ⊆ A<ω such that |S| = Nn−1, with
S(0) ⊆ I, we have ANn−1+1 · σn ⊆ I and S(0) and S(1) · wn[b] are not X-homogeneous
for the same color.

Let σ0 be such that A · σ0 ⊆ I. Assume σ0, . . . , σn−1 have been defined.
Let K be the set of all τ ∈ I such that there is an OVW-line S ⊆ A<ω with |S| = Nn−1 and S(0) ⊆ I such

that S(0) and S(1) · τ are X-homogeneous for the same color. If K is piecewise syndetic, then by Brown’s
lemma (Lemma 2.9), there is an OVW-line S ⊆ A<ω such that |S| = Nn−1, with S(0) ⊆ I, and a piecewise
syndetic set P ⊆ K such that S(0) and S(1) · P are X-homogeneous for the same color. Then the lemma is
satisfied and we are done.
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Otherwise, the set J = IrK is thick. Then for every OVW-line S ⊆ A<ω with |S| = Nn−1 and S(0) ⊆ I,
every τ ∈ J with S(1) · τ ⊆ I, we have S(0) and S(1) · τ are not X-homogeneous for the same color. Let σn

be such that A≤Nn−1+1 · σn ⊆ J , and let wn = x0σn. We claim that σn satisfies (3.1). Fix any b ∈ A, any
OVW-line S ⊆ A<ω with |S| = Nn−1 and S(0) ⊆ I. Clearly, wn[b] = bσn ∈ J and S(1) · wn[b] ⊆ I (since
A≤Nn−1+1 · σn ⊆ J). Therefore, S(0) and S(1) · wn[b] are not X-homogeneous for the same color. Thus σn

satisfies (3.1).
Consider the embedding h : A<ω → C defined by h(a0 · · ·an) = w0[a0] · · ·wn[an], and let Y = X ◦h. Note

that by choice of (σn)n∈ω, domh = A<ω . By Theorem 3.3, there is an OVW-line T ⊆ A<ω, a letter b ∈ A,
and a color i ∈ C such that T (0) and T (1)·b are both Y -homogeneous for color i. Let S ⊆ J be the OVW-line
obtained by taking the image of T by h. In particular, S(0) = h(T (0)) and S(1) · wM [b] = h(T (1) · b) and
|S| = NM−1, where M = |T |+ 1. By definition of h and Y , S(0) and S(1) ·wM [b] are both X-homogeneous
for color i. This contradicts (3.1). �

It will be convenient to reformulate the previous lemma into the following equivalent lemma, which is
in terms of piecewise syndetic sets instead of finite colorings of thick sets. One can indeed see a piecewise
syndetic set as a particular coloring of a thick set, where the color is the witness of syndeticity.

Lemma 3.6 (RCA0 + IΣ0
2). Let P ⊆ A<ω be a piecewise syndetic set. Then there is an OVW-line S ⊆ A<ω

and a piecewise syndetic subset Q such that S(0) ⊆ P and S(1) ·Q ⊆ P .

Proof. Say P = P̂∩I, where P̂ ism-syndetic and I is thick. By Lemma 2.10, the set J = {σ ∈ I : A≤m·σ ⊆ I}

is thick. Let X : J → A≤m be defined by X(σ) = ρ such that ρσ ∈ P̂ . Note that

X(σ) · σ ∈ P for all σ ∈ J .(3.2)

By Lemma 3.5, there is an OVW-line T ⊆ A<ω , a piecewise syndetic subset Q ⊆ J and a color ρ such that
T (0) and T (1) ·Q are in color ρ of X . By (3.2), ρ · T (0), ρ · T (1) ·Q ⊆ P . Thus the OVW-line S = ρ · T is
as desired. �

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let P ⊆ A<ω be a piecewise syndetic set. By Lemma 3.6, there an OVW-line S and
a piecewise syndetic set P0 ⊆ A<ω such that S(0) ⊆ P and S(1) · P0 ⊆ P . Set T0 = S(0) and let w0 be the
left variable word such that S(1) = S(0) · w0[A]. Note that T0 is an OVW-tree of dimension 0.

Assume by induction Ts is an OVW-tree over A of dimension s, ws is a left variable word and Ps ⊆ A<ω

is a piecewise syndetic set such that

(a) Ts ⊆ P and
(b) Ts(s) · ws[A] · Ps ⊆ P.

By Lemma 3.6, there is an OVW-line S and a piecewise syndetic set Ps+1 ⊆ A<ω such that S(0) ⊆ Ps and
S(1) · Ps+1 ⊆ Ps. Let

Ts+1 = Ts ∪ (Ts(s) · ws[A] · S(0))

and let ws+1 be the left variable word such that S(1) = S(0) · ws+1[A]. Note that Ts+1 is an OVW-tree
over A of dimension s+ 1. It suffices to verify the induction assumption.

Claim 1: Ts+1 ⊆ P . Indeed, by (a) Ts ⊆ P and by (b) and S(0) ⊆ Ps,

Ts+1(s+ 1) = Ts(s) · ws[A] · S(0) ⊆ Ts(s) · ws[A] · Ps ⊆ P.

Claim 2: Ts+1(s+ 1) · ws+1[A] · Ps+1 ⊆ P .

Ts+1(s+ 1) · ws+1[A] · Ps+1 = Ts(s) · ws[A] · S(0) · ws+1[A] · Ps+1

= Ts(s) · ws[A] · S(1) · Ps+1

⊆ Ts(s) · ws[A] · Ps ⊆ P.

The four equalities are due to: definition of Ts+1, definition of ws+1, S(1) · Ps+1 ⊆ Ps and (b). �

Remark 3.7. Although the proofs of Lemma 3.6 and Lemma 3.5 are over RCA, that is, RCA0 with more
induction, the proof of Theorem 3.1 holds in ACA0 with restricted induction. Indeed, ACA0 proves the
existence of a countable coded ω-model of RCA0 (see Theorem VIII.2.11 of Simpson [12]). Since every
countable coded ω-model satisfies full induction, then every Π1

2 consequence of RCA is provable in ACA0.
Simply note that Lemma 3.6 and Lemma 3.5 are Π1

2 statements.
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Note that if the coloring is computable, then the sequences built in the proof of Theorem 3.1 are com-
putable in any PA over ∅′. Therefore, for any set P of PA degree over ∅′, any computable instance of the
Ordered Variable Word theorem admits a P -computable solution. We say that a problem P admits cone
avoidance if for every pair of sets Z,C such that C 6≤C Z, every Z-computable instance of P admits a
solution Y such that C 6≤T Z ⊕ Y . It admits strong cone avoidance if we relax the requirement on Z to be
computable in the definition of cone avoidance. The following question remains open:

Question 3.8. Does the Ordered Variable Word theorem admit cone avoidance or even strong cone avoidance?

4. A proof of the Density Ordered Variable Word theorem in ACA0

Dodos, Kanellopoulos and Tyros proved in [5] a density version of the Ordered Variable Word theorem, a
stronger result where the color is fixed and of positive lim sup. The goal of this section is to show that their
result holds in ACA0:

Theorem 4.1 (Density Ordered Variable Word Theorem, [5], ACA0). Fix a finite alphabet A, and let
D ⊆ A<ω be of positive upper density. Then there exists an OVW-tree T ⊆ D over A of dimension ω.

As for piecewise syndeticity, positive upper density is partition regular, so Theorem 4.1 implies the Ordered
Variable Word theorem.

Corollary 4.2 (ACA0). For every finite alphabet A and every finite partition C0 ⊔ · · · ⊔Cℓ−1 = A<ω, there
is some color i < ℓ and an OVW-tree T ⊆ Ci of dimension ω.

Proof. Let i < ℓ be such that lim supr densAr (Ci) > 0. By Theorem 4.1, there is an OVW-tree T ⊆ Ci over
A of dimension ω. �

The OVW-tree T of dimension ω of theorem 4.1 will be constructed as the union of a sequence of OVW-
tree of finite but increasing dimension. The “finitary part” of the proof of theorem 4.1 is the following
theorem, which is a direct consequence of [5, Proposition 7.5]. For a set D ⊆ A<ω, a finite OVW-line S, let
DS = {σ : S(1) · σ ⊆ D}.

Theorem 4.3 ([5, Proposition 7.5], RCA). For all k ∈ N and alphabet A of size k, for any δ > 0, there exists
N0 = N0(k, δ) such that for any n ∈ ω, there exists N1 = N1(k, n, δ) such that the following is true. For any
L0 < L1 ⊆ N with |L0| > N0 and |L1| > N1, and for any D with densAr(D) > δ for all r ∈ L = L0 ∪ L1,
there exists an OVW-line S ⊆ D with L(S) ⊆ L0, and a set L′ ⊆ L1 such that:

(1) L′ is sufficiently big: card (L′) ≥ n, and
(2) DS is of sufficiently big density, at the length inside L′: for any r ∈ L′,

densAr−size(S)(DS) >
δ2

8× card (OVWLine(L0))

where OVWLine(L0) is the finite set of OVW-lines with set of levels included in L0.

In order to study the reverse mathematics of Theorem 4.1, we shall consider Theorem 4.3 as a blackbox.
Its proof involves an elaborate, but finite, combinatorial machinery, which is elementary from a logical
viewpoint. Theorem 4.3 for n = 1 implies the following lemma, which is the analog of Lemma 3.6, with
piecewise syndetic largeness replaced by positive upper density.

Lemma 4.4 (RCA). Let k and alphabet A of size k. For every positive upper density set D ⊆ A<ω, there is

an OVW-line S, a positive upper density set D̂ ⊆ A<ω such that S(0) ⊆ D and S(1) · D̂ ⊆ D.

Proof. Let δ > 0 be such that the set L1 = {r ∈ ω : densAr(D) > δ} is is infinite. Let N0 = N0(k, δ) and

N1 = N1(k, 1, δ), and let δ̂ = δ2/(8× card (OVWLine(L0))). For each r ∈ L1, let (if it exists) Sr ⊆ D by an

OVW-line satisfying L(S) ⊆ L0 and densAr−size(S)r (D
Sr ) > δ̂. By Theorem 4.3, there are at most N1 many

r for which Sr does not exist. Since L0 is finite, by the infinite pigeonhole principle, there is an OVW-line
S so that the set L = {r ∈ L1 : Sr = S} is infinite. The set L is computable and S and L can both be found
uniformly in any ∅′-PA degree. �

We are now ready to prove Theorem 4.1.
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Proof of Theorem 4.1. It is similar to the proof of Theorem 3.1 mutatis mutandis, using Lemma 4.4 instead
of Lemma 3.6 and positive upper density instead of piecewise syndeticity. �

As explained in Remark 3.7, although the proofs of Theorem 4.3 and of Lemma 4.4 are over RCA, the
proof of Theorem 4.1 holds in ACA0 with restricted induction.

5. A proof of the Higher-Order Carlson-Simpson Lemma in ACA
+
0

As mentioned in the introduction, many partition theorems admit higher-order counterparts. In the case
of variable word theorems, an n-dimensional version consists of coloring n-variable words rather than words.
The two applications of the variable word theorems that we are going to study in Section 6 and Section 7
involve their higher-order counterparts.

There exists a simple inductive proof of the higher-order version of the Carlson-Simpson lemma. The
general idea consists considering the variables as part of the alphabet. Typically, the Carlson-Simpson lemma
for dimension 1 and alphabet of size k uses ω applications the Carlson-Simpson lemma for dimension 0 and
alphabet of size k + 1. The variables being treated as part of the alphabet, they will occur infinitely often
in the solution. As a consequence, even using the Ordered Variable Word as the base statement, which is a
stronger statement where each variable occurs finitely often, the resulting higher-order version yields only a
solution to Carlson-Simpson’s lemma.

The following inductive proof is standard in combinatorics. It essentially corresponds to the original proof
of Carlson and Simpson [1, Section 2]. It was studied in the reverse mathematical setting by Dzhafarov,
Flood, Solomon and Brown Westrick [6, Section 3.5]. We include the proof of the sake of completeness.

Theorem 5.1. For every n ∈ ω, ACA+
0 ⊢ ∀k∀ℓCSLn(k, ℓ).

The proof uses induction on n. Let A be an alphabet of size k ; when we say ω-variable word, it means
over A unless claimed otherwise. We will use the notion of prehomogeneous ω-variable word (see Definition
5.2) to reduce an ℓ-coloring of A<ω,n+1 to an ℓ-coloring of A<ω,n.

Definition 5.2. An ω-variable word W over A is prehomogeneous for a coloring f : A<ω,n+1 → ℓ if for
every s ∈ A<ω,n and t0, t1 ∈ A<ω,n+1 such that s⌢xn is prefix of both t0 and t1, f(W [t0]) = f(W [t1]).

For ω-variable words W, Ŵ and m ∈ ω, we write Ŵ ≤m W iff Ŵ = W [V ] where V is an ω-variable word
so that z0 · · · zm−1 ≺ V . Clearly ≤m is transitive and ≤m+1 implies ≤m.

Lemma 5.3 (ACA0). Let W be an ω-variable word, and s ∈ A<ω,n. There exists an ω-variable word

Ŵ ≤|s|+1 W and a color i such that for every t ∈ A<ω,n+1 with s⌢xn � t, we have f(Ŵ [t]) = i.

Proof. Let Â = A ⊔ {x0, . . . , xn}. We define fs : Â<ω → ℓ in the following way: for every u ∈ Â<ω,
fs(u) = f(W [s⌢xn

⌢u]). Note that fs can be seen as an instance of CSL(k + n + 1, ℓ). Let U be an ω-

variable word over Â with variable set (yn)n∈N such that fs is constant, of value i < ℓ on {U [u] : u ∈ Â<ω}.
Replacing (xm : m ≤ n) in U by (zjm : m ≤ n) where jm is the first occurrence xm in s⌢xn, we obtain

an ω-variable word Û (over A instead of over Â); and let Ŵ = W [z0 · · · z⌢|s|Û ]. The motivation to use Û

is that for every word û over Â, there is a word u over Â such that Ŵ [s⌢x⌢
n û] = W [s⌢x⌢

n U [u]] (this not
necessarily true for other ŝ ∈ A<ω,n). Therefore, for every t ∈ A<ω,n+1 with s⌢xn � t, say t = s⌢x⌢

n û, we

have, for some word u over Â,

f(Ŵ [t]) = f(Ŵ [s⌢x⌢
n û]) = f(W [s⌢x⌢

n U [u]]) = fs(U [u]) = i.

Clearly Ŵ ≤|s|+1 W and is an ω-variable word (over A). Thus we are done. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. The proof uses induction on n. The case n = 0 is a direct consequence of Theorem 4.1,
since an ordered ω-variable word is a particular case of ω-variable word. Assume ∀k∀ℓCSLn(k, ℓ) holds and
fix k, ℓ. We prove CSL

n+1(k, ℓ).
Let A be an alphabet of size k and fix a coloring f : A<ω,n+1 → ℓ. Iterating Lemma 5.3, there exists

a sequence of ω-variable words W = W0 ≥n+1 W1 ≥n+2 W2 ≥n+3 · · · as well as a coloring on words
g : A<ω,n → ℓ such that for every m ∈ ω, every s ∈ A<ω,n, every t ∈ A<ω,n+1 with s⌢xn � t and
|s| = n+m, we have f(Wm+1[t]) = g(s); which implies f(Wm̂[t]) = g(s) for all m̂ ≥ m+ 1. It is easy to see
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that the limit Wω = limm Wm exists (by definition of ≤m). Now for every s ∈ A<ω,n and t ∈ A<ω,n+1 with
s⌢xn � t, we have (let m̂ be sufficiently large),

f(Wω[t]) = f(Wm̂[t]) = g(s).

That is, Wω is prehomogeneous for f . It remains to restrain the space so that g is constant. Let W ′ be the
ω-variable word given by the application of CSLn(k, ℓ) to the coloring g, so that g ◦W ′ is constant for some
color i < ℓ. Let t ∈ A<ω,n+1 and s ∈ A<ω,n be such that s⌢xn � t. Then

f(Wω[W
′[t]]) = g(W ′[s]) = i.

Thus, W = Wω[W
′] is a witness of the theorem. This completes the proof of Theorem 5.1. �

When constructing the prehomogeneous variable word Wω , we invoke CSL(k, ℓ) infinitely many times
which blows up the complexity. However, it is unknown whether CSL(k, ℓ) holds in RCA0. Were it provable
in RCA0, then CSL

n(k, ℓ) and results on the Dual Ramsey Theorem and the Big Ramsey degree of universal
triangle-free graph would be provable in ACA0. It is not even known whether RCA0 implies CSL(2, ℓ).

Question 5.4 (Joe Miller and Solomon, [10]). Does RCA0 imply CSL(k, ℓ)?

6. A proof of the Open Dual Ramsey theorem in ACA
+
0

The first application of the Carlson-Simpson lemma is a dual version of Ramsey’s theorem. This was
actually the theorem which motivated the proof of the Carlson-Simpson theorem. While Ramsey’s theorem
is about finite colorings of the integers, the Dual Ramsey theorem is about finite colorings of colorings.

For α ∈ ω+, we note (ω)α the class of partitions of ω in exactly α sets. Such a partition can be seen as
a surjective ordered function from ω to α. Therefore (ω)α inherits of a natural topology from αω. Given a
partition p ∈ (ω)ω and α ∈ ω+, we write (X)ω for the class of Y ∈ (ω)α coarsening X , that is, for every n,m
such that X(m) = X(n), then Y (m) = Y (n). Carlson and Simpson [1] proved the following theorem:

Theorem 6.1 (Borel Dual Ramsey theorem). For any n, ℓ ∈ ω, let C0 ∪ ... ∪ Cℓ−1 be a partition of (ω)n

where each Ci is a Borel set. Then there is partition X ∈ (ω)ω such that (X)n ⊆ Ci for some i < ℓ.

The dual Ramsey theorem does not hold for arbitrary colorings. There exists in particular a 2-partition
C0 ∪ C1 of (ω)2 such that for all X ∈ (ω)ω, neither (X)2 ⊆ C0 nor (X)2 ⊆ C1 (see [1, Section 1.4]). On the
other hand, the dual Ramsey theorem can be generalized to any coloring which admits the Baire property
(see Prömel and Voigt [11]). From a mathematical viewpoint, it is well-known that Borel classes have the
Baire property, hence the Baire version of the Dual Ramsey theorem implies its Borel version. However,
from a computational and reverse mathematical viewpoint, the situation is more complicated. Indeed, the
proof that Borel classes have the Baire property is non-trivial, and requires a careful analysis of the way to
represent Borel classes in second-order arithmetic.

Dzhafarov, Flood, Solomon and Westrick [6] studied the reverse mathematics of the various versions of
the Dual Ramsey theorem, namely, its restrictions to the Baire, the Borel, and the open colorings. They
proved that the Borel Dual Ramsey theorem implies the Baire version, which is itself equivalent to the Open
Dual Ramsey theorem. All these variants were proven to hold in Π1

1-CA0 by Slaman [13]. In their analysis,
Dzhafarov and al. [6] reduced the Open Dual Ramsey theorem to a combinatorial statement, which they
called the Combinatorial Dual Ramsey theorem:

Theorem 6.2 (Combinatorial Dual Ramsey theorem). For any n, ℓ ≥ 2 let C0∪...∪Cℓ−1 be a finite partition
of ∅<ω,n−1, then there is a color i < ℓ and an ω-variable word W such that {W [u], u ∈ ∅<ω,n−1} ⊆ Ci

We will write ODRT
n(ℓ) the statement of the Open Dual Ramsey theorem for ℓ-colorings of (ω)n and

CDRT
n(ℓ) the statement of the Combinatorial Dual Ramsey theorem for ℓ-colorings of ∅<ω,n−1. Dzhafarov

and al. [6] proved that ODRT
n(ℓ) and CDRT

n(ℓ) are equivalent over RCA0. They proved CDRT
n(ℓ) from

the Carlson-Simpson lemma inductively as in Section 5, leaving the Carlson-Simpson lemma unproved, as a
blackbox. The proof is optimal, in the following sense:

Theorem 6.3. The following propositions are equivalent over RCA0:

(1) For all n, k, ℓ, CSLn(k, ℓ)
(2) For all n, ℓ > 2, CDRTn(ℓ)
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Proof. (1) clearly implies (2) since CDRTn(ℓ) is exactly CSL
n−1(0, ℓ). We just need to prove that (2) implies

(1). Let n, k, ℓ some integers, and we consider the statement CSLn(k, ℓ). Let A = {a0, ..., ak−1} an alphabet

of size k, and C0 ⊔ · · · ⊔ Cℓ−1 a partition of A<ω,n. This induces a partition Ĉ0 ⊔ · · · ⊔ Ĉℓ−1 of ∅ω,k+n by

replacing the first k variables by a letter in A. Now, by using CDRT
k+n+1(ℓ), we have a color i and an

ω-variable word Ŵ on alphabet ∅ such that {Ŵ [u], u ∈ ∅<ω,k+n} ⊆ Ĉi. Then consider the ω-variable word

W = Ŵ [a0a1...ak−1x0x1...] on alphabet A. For all u ∈ A<ω,n, since the letters in a0a1...a
a

k−1u appear in

order, this word can be seen as a k + n-variable word û ∈ ∅ω,k+n. Therefore, since Ŵ [û] ∈ Ĉi, we also have

Ŵ [a0a1...a
a

k−1u] = W [u] ∈ Ci, meaning that W is a solution to our instance of CSLn(k, ℓ). �

Thanks to our new analysis of the Carlson-Simpson lemma, we prove that the Combinatorial Dual Ramsey
theorem holds in ACA

+
0 . It follows that the open and Baire versions of the Dual Ramsey theorem also hold

in ACA
+
0 , which is a dramatical improvement from the previous bound of Π1

1-CA0.

Corollary 6.4. For all n ≥ 2, ACA+
0 ⊢ ∀ℓODRTn(ℓ)

7. Big Ramsey number of the universal triangle-free graph using variable words

Our second application comes from Structural Ramsey Theory. We consider graphs as relational structures
and denote by H3 the universal triangle-free graph, or the triangle-free Henson graph. Given integers k, ℓ ∈ ω,
structures A,B and C we write C −→ (A)Bk,ℓ for the following statement:

Definition 7.1. C −→ (A)Bk,ℓ: For any partition C0 ∪ ... ∪ Ck−1 of the embeddings of B in A there is an

embedding f : C 7→ A such that all the embeddings of B in f(C) intersect at most ℓ many Ci’s.

The big Ramsey degree of B in A is the smallest L ∈ ω+ such that A −→ (A)Bk,L for every k ∈ ω, and a
infinite structure A is said to have finite big Ramsey degrees if for all finite substructure of B, B has a finite
big Ramsey degree in A. The study of big Ramsey degrees was initiated by Laver, who proved the order of
rationals has finite big Ramsey degrees [3].

Most recent results on big Ramsey degrees rely on a combinatorial core which is usually a tree partition
theorem. The most famous one is Milliken’s tree theorem, which was used by Devlin [3] in 1979 to give
a precise characterization of big Ramsey degrees on the order of rationals, and by Laflamme, Sauer, and
Vuksanovic [9] in 2006 to characterize the big Ramsey degrees of the Rado graph. The reverse mathematics
of Milliken’s tree theorem and its applications were studied by Anglès d’Auriac, Cholak, Dzhafarov, Monin
and Patey [2], who proved that they all hold in ACA0.

However, Milliken’s tree theorem fails to serve as a combinatorial core to prove that some non-universal
relational structures admit finite big Ramsey degrees. In 2020, Dobrinen [4] proved that the triangle-free
Henson graph admits finite big Ramsey degrees by proving a combinatorial statement about coding trees,
using an involved notion of forcing. More recently, Hubička [8] gave an alternative proof of Dobrinen’s
theorem using the higher-order Carlson-Simpson lemma as a combinatorial core. Although this proof is less
accurate than the original proof of Dobrinen, it has the advantage of relying on a partition theorem with a
known combinatorial proof. In this section, we analyse the proof by Hubička and show that it holds in ACA

+
0 .

The analysis is straightforward, but we include it for the sake of completeness.
By the usual back-and-forth argument, any computable copy of the triangle-free Henson graph is com-

putably isomorphic. We will first enrich the set {0}<ω,1 of variable words over the unary alphabet {0}
with a symmetric irreflexive binary relation E so that ({0}<ω,1, E) is a universal triangle-free graph, hence
computably isomorphic to H3.

Definition 7.2. Let E be the symmetric binary relation on {0}<ω,1 defined as follows: for v, w ∈ {0}<ω,1,
vEw if and only if |v| 6= |w| and, assuming |v| < |w|:

(1) Passing number property: w(|v|) = x0

(2) Triangle-freeness condition: there is no i < |v| with v(i) = w(i) = x0.

We write G the graph ({0}<ω,1, E)

One can see the set {0}<ω,1 as the full binary tree 2<ω truncated from the set {0, 00, 000, . . .}. Based on
this intuition, the previous construction is very similar to the one of Laflamme, Sauer, and Vuksanovic [9]
where they represent a Rado graph by the full binary tree with an edge relation based on the passing
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number property. The following lemma shows how the second property of the edge relation ensures that G
is triangle-free.

Lemma 7.3. G is triangle-free.

Proof. Assume by contradiction that we have three words s, t, u ∈ {0}<ω,1, forming a triangle. Without loss
of generality, we assume |s| < |t| < |u|. Therefore we must have t(|s|) = x0. But we also have u(|s|) = x0,
and this contradicts the triangle-freeness condition between t and u. �

The triangle-freeness condition ensures that there will not be too many edges, the risk being that the
resulting edge relation is too restrictive and that we lose universality. The following theorem shows that the
edge relation is general enough.

Theorem 7.4 (RCA0). G is the universal triangle-free graph.

Proof. We define ϕ : H3 7→ {0}<ω,1 with for all i, ϕ(i) = s where s is such that |s| = i and for all j < i :

• s(j) = x0 if there is an edge between i and j in H

• s(j) = 0 otherwise

It is clear that ϕ is an embedding ϕ : H3 7→ G therefore since G is triangle-free and by unicity of the universal
triangle-graph, G is the universal triangle-free graph. �

The following observation shows that for every ω-variable word W , the induced subgraph ({W [u] : u ∈
{0}<ω,1}, E) remains universal:

Lemma 7.5 (RCA0). Let W be an ω-variable word. Then for every u, v ∈ {0}<ω,1, uEv iff W [u]EW [v]. In
particular, ({W [u] : u ∈ {0}<ω,1}, E) is the universal triangle-free graph.

Proof. Say |u| < |v|. Then |W [u]| < |W [v]|. The passing number property is preserved: v(|u|) = x0

iff W [v](|W [u]|) = x0. Let us show that the triangle-freeness condition is preserved. Suppose there is
some i < |u| such that u(i) = v(i) = x0. Then let j be the position of any occurrence of xi in W .
We have W [u](j) = u(i) = v(i) = W [v](j) = x0. Conversely, suppose there is some j < |W [u]| such
that W [u](j) = W [v](j) = x0. Then W (j) = xi for some i < |u|. In particular, W [u](j) = u(i) and
W [v](j) = v(i), so u(i) = v(i) = x0. �

Remark 7.6. The previous lemma is precisely the reason why we consider variable words over {0} rather than
binary words, and use the Carlson-Simpson lemma rather than Milliken’s tree theorem. Indeed, identifying
{0}<ω,1 as 2<ωr{0, 00, 000, . . .}, an application of Milliken’s tree theorem yields a strong infinite subtree S.
The issue that the graph (S,E) is not universal in general. For example, if there is some n ∈ ω such that
every w ∈ S satisfies w(n) = 1, then the graph (S,E) is an anticlique, by the triangle-freeness condition.

The following notions of envelope and embedding types are now standard in the study of big Ramsey
degrees. We define the appropriate notions under the scope of variable words :

Definition 7.7. Let A an alphabet and S a set of finite variable words over A. An envelope of S is a
(< ω)-variable word W such that for all s ∈ S there is a variable word t such that W [t] = s. We say that W
is minimal if there is no envelope of S with fewer variables than W .

A simple computation shows that if W is a minimal envelope of S, then

it has at most 2|S| + |S| − 1 variables (see [8, Proposition 3.1]).(7.1)

In what follows, given two graphs F,G, we write
(

G
F

)

for the set of all embeddings from F to G. We write
F ∼=ϕ G iff F is isomorphic to G via ϕ.

Theorem 7.8 (RCA0+∀kCSL2
n+n−1(1, k)). Let F be a finite triangle-free graph of size n, there is an integer

ℓ such that for any integer k > 0 and any finite coloring χ :
(

G

F

)

7→ k, there exists f ∈
(

G

G

)

such that χ attain

at most ℓ colors on
(

f(G)
F

)

.

Proof. Let Â be {0} ∪ {x0}. Firstly, we note that χ give rise to a coloring χ̂ ≤T χ of {0}<ω,2n+n−1, where

χ̂(u) records the coloring profile of 〈ϕ : T ⊆ Â≤2n+n−1 and F ∼=ϕ u[T ]〉, namely

χ̂(u) = 〈χ(ϕ) : T ⊆ Â≤2n+n−1 and F ∼=ϕ u[T ]〉.
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By CSL
2n+n−1(1, k̂) (for some sufficiently large k̂), there exists an ω-variable word W (over {0}) such that

{W [u] : u ∈ {0}<ω,2n+n−1} is homogeneous for χ̂. By Lemma 7.5, the graph {W [t] : t ∈ Â<ω} is isomorphic

to G. It suffices to show that for any embedding ϕ of F into the graph {W [t] : t ∈ Â<ω}, we have χ(ϕ) ∈ L
where L is the range of χ, namely for every u ∈ {0}<ω,2n+n−1, let û = W [u],

L = {χ(ϕ) : T ⊆ Â≤2n+n−1 and F ∼=ϕ û[T ]}.

Let S ⊆ Â<ω so that W [S] = ϕ(F ); which means |S| = n. By (7.1), there is a u ∈ {0}<ω,2n+n−1 and

T ⊆ Â≤2n+n−1 such that u[T ] = S. Let û = W [u] ∈ {0}<ω,2n+n−1. Clearly, F ∼=ϕ û[T ]. So

χ(ϕ) ∈ {χ(ϕ) : T ⊆ Â≤2n+n−1 and F ∼=ϕ û[T ]} = L.

The last equality follows by homogeneity of χ̂ on {W [u] : u ∈ {0}<ω,2n+n−1} ∋ û. Thus we are done. �

Corollary 7.9 (ACA+
0 ). The triangle-free Henson graph admits finite big Ramsey degrees.

Proof. Immediate by Theorem 7.8 and Theorem 5.1. �

Acknowledgement

The authors are thankful to Natasha Dobrinen, Jan Hubička and Keita Yokoyama for interesting comments
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theorem and its applications: a computability-theoretic perspective, 2020.
[3] Denis Devlin. Some partition theorems and ultrafilters on ω. PhD thesis, Dartmouth College, 1979.
[4] Natasha Dobrinen. The Ramsey theory of the universal homogeneous triangle-free graph. J. Math. Log., 20(2):2050012,

75, 2020.
[5] Pandelis Dodos, Vassilis Kanellopoulos, and Konstantinos Tyros. A density version of the Carlson-Simpson theorem. J.

Eur. Math. Soc. (JEMS), 16(10):2097–2164, 2014.
[6] Damir Dzhafarov, Stephen Flood, Reed Solomon, and Linda Westrick. Effectiveness for the dual ramsey theorem. Notre

Dame Journal of Formal Logic, 62(3):455–490, 2021.
[7] Emanuele Frittaion. Brown’s lemma in second-order arithmetic. Fund. Math., 238(3):269–283, 2017.
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[11] Hans Jürgen Prömel and Bernd Voigt. Baire sets of k-parameter words are Ramsey. Trans. Amer. Math. Soc., 291(1):189–
201, 1985.

[12] Stephen G. Simpson. Subsystems of Second Order Arithmetic. Cambridge University Press, 2009.
[13] Theodore A. Slaman. A note on dual ramsey theorem. Unpublished, January 1997.
[14] Stevo Todorcevic. Introduction to Ramsey spaces, volume 174 of Annals of Mathematics Studies. Princeton University

Press, Princeton, NJ, 2010.

E-mail address: peada@free.fr

School of Mathematics and Statistics, HNP-LAMA, Central South University, ChangSha 410083, People’s

Republic of China

E-mail address: g.jiayi.liu@gmail.com

ENS Lyon, 46 allée d’Italie, 69007 Lyon, FRANCE

E-mail address: bastien.mignoty@ens-lyon.fr
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