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ON COUNTABLY PERFECTLY MEAGER AND
COUNTABLY PERFECTLY NULL SETS

TOMASZ WEISS AND PIOTR ZAKRZEWSKI

Abstract. We study a strengthening of the notion of a univer-
sally meager set and its dual counterpart that strengthens the no-
tion of a universally null set.

We say that a subset A of a perfect Polish space X is countably
perfectly meager (respectively, countably perfectly null) in X , if
for every perfect Polish topology τ on X , giving the original Borel
structure of X , A is covered by an Fσ-set F in X with the original
Polish topology such that F is meager with respect to τ (respec-
tively, for every finite, non-atomic, Borel measure µ on X , A is
covered by an Fσ-set F in X with µ(F ) = 0).

We prove that if 2ℵ0 ≤ ℵ2, then there exists a universally meager
set in 2N which is not countably perfectly meager in 2N (respec-
tively, a universally null set in 2N which is not countably perfectly
null in 2N).

1. Introduction

We continue the study of countably perfectly meager sets undertaken
by Pol and Zakrzewski [19]. We say (cf. [19]) that a subset A of a
perfect Polish space X is countably perfectly meager in X (A ∈ PMσ),
if for every sequence of perfect subsets {Pn : n ∈ N} of X , there exists
an Fσ-set F in X such that A ⊆ F and F ∩Pn is meager in Pn for each
n. Let us also recall that A is universally meager (A ∈ UM), if for
every Borel isomorphism f between X and any perfect Polish space Y
the image of A under f is meager in Y (see [26], [27], [1], [2] and also
[10], [11], [12], where this class was earlier studied by Grzegorek and
denoted by AFC). By [2, Theorem 7] we have PMσ ⊆ UM and by
[19, Theorem 1.1], this inclusion is consistently proper, namely it holds
if there exists a universally meager set of cardinality 2ℵ0, in particular,
if CH is true.

In this note we prove (see Theorem 2.2) that PMσ 6= UM follows
also from the assumption that 2ℵ0 = ℵ2. Whether it is consistent that
PMσ = UM remains an open problem (it is consistent that UM (
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2 TOMASZ WEISS AND PIOTR ZAKRZEWSKI

PM but also that UM = PM (see [1]), where PM denotes the family
of all perfectly meager subsets of X).

ß
If I is a σ-ideal of subsets of X , i.e., it is hereditary, closed under

taking countable unions and contains all singletons, then by I∗ we
denote the σ-ideal on X generated by the closed subsets of X which
belong to I (cf. [22]).

ß
If τ is a perfect Polish topology on X giving the original Borel struc-

ture of X , then by M (X, τ) we denote the σ-ideal of meager sets with
respect to τ . Let us note that M ∗(X, τ) consists of such A ⊆ X that
there exists an Fσ-set F in X (with the original Polish topology) with
A ⊆ F and F ∈ M (X, τ). By [26, Theorem 2.1], A is universally
meager in X if and only if A belongs to the intersection of all σ-ideals
of the form M (X, τ), whereas by [19, Proposition 4.6], A is countably
perfectly meager in X if and only if A belongs to the intersection of all
σ-ideals of the form M ∗(X, τ).

Universally meager sets may be seen as a category counterpart of uni-
versally null sets in X . Namely, if for a finite, non-atomic, Borel mea-
sure µ is on X (i.e., a countably additive measure µ : B(X)−→ [0,+∞)
defined on the σ-algebra B(X) of Borel subsets of X and vanishing on
singletons of X), we denote by N (X, µ) the σ-ideal of µ-null sets (i.e.,
sets of outer µ-measure zero), then the collection UN of universally
null subsets of X is the intersection of all σ-ideals of the form N (X, µ).

ß
The following definition of a measure analogue of countably perfectly

meager sets was suggested by Taras Banakh. We say that A is countably
perfectly null in X (A ∈ PNσ), if A belongs to the intersection of all
σ-ideals of the form N ∗(X, µ). In other words, A ∈ PNσ if for every
finite, non-atomic, Borel measure µ on X , A is covered by an Fσ-set F
in X with µ(F ) = 0. Let us note that if λ is the standard probability
product measure on the Cantor space 2N, then N ∗(2N, λ) is a well-
known σ-ideal which is usually denoted by E (cf. [3]).

The name of the class PNσ is further justified by the following ob-
servation.

Proposition 1.1. A set A ⊆ X is countably perfectly null in X if and
only if for every sequence of perfect subsets {Pn : n ∈ N} of X with
associated probability non-atomic Borel measures µn on Pn, there exists
an Fσ-set F in X such that A ⊆ F and µn(F ∩ Pn) = 0 for each n.

Proof. If A ∈ PNσ and for each n we have a perfect set Pn together
with the respective measure µn on Pn, then it is enough to cover A by
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an Fσ-set F with µ(F ) = 0 for µ defined by

µ(B) =
∑

n

1

2n
µn(B ∩ Pn) for B ∈ B(X).

For the other direction, given a finite, non-atomic, Borel measure µ
on X let us note that the regularity of µ (cf. [16, 17.C]) implies the
existence of (pairwise disjoint) perfect sets {Pn : n ∈ N} of positive
µ-measure such that µ(X \

⋃
n Pn) = 0. Then it suffices to cover A by

an Fσ-set F with µ(F ∩ Pn) = 0 for each n.
�

Clearly, we have PNσ ⊆ UN. One easily observes that we also have
PNσ ⊆ PMσ.

Proposition 1.2. Every countably perfectly null subset of X is count-
ably perfectly meager.

Proof. Let us assume that A ∈ PNσ and let {Pn : n ∈ N} be a sequence
of perfect subsets of X . For each n let µn be a Borel probability, non-
atomic measure on Pn which assigns positive values to all non-empty,
relatively open subsets of Pn (e.g., one may concentrate µn on a dense
in Pn homeomorphic copy of the irrationals). Let F be an Fσ-set in X
such that A ⊆ F and µn(F ∩ Pn) = 0 for each n (cf. Proposition 1.1).
Clearly, F ∩ Pn is meager in Pn for each n, so A ∈ PMσ. �

The inclusion PNσ ⊆ PMσ is, at least consistently, proper. Indeed,
if A ⊆ 2N is a Sierpiński set with respect to the measure λ, then
A ∈ PMσ in 2N (cf. [19, Corollary 2.9 and Remark 2.11]) but A has
positive outer measure λ.

An analogous argument shows the consistency ofPNσ 6= UN. Namely,
if A ⊆ 2N is a Luzin set in 2N (which exists e.g. under CH), then
A ∈ UN but A is not even meager in 2N.

In this note we prove (see Theorem 3.2) that the inequality PNσ 6=
UN follows also from the assumptions that either there exists a uni-
versally null set in 2N of cardinality 2ℵ0 (then we actually have that
even UN \ PMσ 6= ∅; cf. Proposition 1.2) or 2ℵ0 = ℵ2. Whether it is
consistent that PNσ = UN, remains an open problem.

Section 2 is devoted to the proof of Theorem 2.2 stating that if
2ℵ0 = ℵ2, then there is a universally meager set in 2N which is not
countably perfectly meager in 2N.

In Section 3 we give some examples of countably perfectly null sets
and prove Theorem 3.2 which shows the inequality PNσ 6= UN under
the assumption that either there exists a universally null set in 2N of
cardinality 2ℵ0 (then we actually have that even UN \ PMσ 6= ∅, cf.
Proposition 1.2) or 2ℵ0 = ℵ2.

In Section 4 we collect some remarks and open problems.
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2. Universally meager not countably perfectly meager

sets

Let us recall that the cardinal number b is the minimal cardinality
of a subset of NN which is unbounded in the ordering ≤∗ of eventual
domination. Following [24, Definition 2.8], by a b-scale (in NN) we
mean a subset B = {fα : α < b} of NN with the following properties:

• fα : N−→N is strictly increasing,
• α < β < b implies fα <∗ fβ,
• for every f ∈ NN there is α < b with fα �∗ f .

By identifying each fα with the characteristic function of its range
(or just its range, respectively), we obtain a homeomorphic copy A of
B in 2N (respectively, in P(N) with the Cantor set topology) which we
also call a b-scale in 2N (respectively, in P(N)) (cf. [24]). It is well-
known and easy to see that b-scales can be constructed in ZFC. They
are also classical examples of sets which are both universally meager
and universally null (cf. [18]).

Let us recall that given a subset A of a perfect Polish space X , by a
γ–cover of A we mean a countable relatively open cover U of A which
is infinite and such that for each x ∈ A the set {U ∈ U : x /∈ U} is
finite. We say that A satisfies property S1(Γ,Γ) if for every sequence
(Un : n ∈ N) of γ-covers of A we can select for each n a set Vn ∈ Un

such that {Vn : n ∈ N} is a γ-cover of A (cf. [14], [24]). It is well-known
(and due to Hurewicz [13]) that property S1(Γ,Γ) implies the Hurewicz
property (for a definition of the Hurewicz property see Section 3).

If b = ω1, then there exists a b-scale A = {aα : α < b} in P(N)
with the additional property that α < β < b implies that aβ \ aα is
finite (see [24, page 8]) and by a theorem of Scheepers [23] (see also
[5, Theorem 123]), if A is such a b-scale in P(N), then A ∪ [N]<ℵ0 has
property S1(Γ,Γ). The following observation is an easy corollary of this
result. Let us recall that if κ is an infinite cardinal, then a set A ⊆ X
is κ-concentrated on a set Q ⊆ X , if |A \ U | < κ for each open set U
in X containing Q.

Lemma 2.1. Assume that b = ω1. Let A = {aα : α < b} be a b-scale
in P(N) with the additional property that α < β < b implies that aβ\aα
is finite.

For each n let Un = {Un
k : k ∈ N} be an ascending (i.e., Un

k ⊆ Un
k+1

)
sequence of open sets in P(N) with [N]<ℵ0 ⊆

⋃
k U

n
k but [N]<ℵ0 ⊆ Un

k

for no k. Then we can select for each n a set Vn = Un
kn

such that
{Vn : n ∈ N} is a γ-cover of (A ∪ [N]<ℵ0) \ Y for a certain countable
set Y ⊆ A.

Proof. The set A being a b-scale in P(N), is b-concentrated on [N]<ℵ0

(see [24, Lemma 2.10]). Consequently, since b = ω1, there is ξ < ω1

such that if we let A′ = {aα : ξ < α < b}, then for each n we have
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A′∪[N]<ℵ0 ⊆
⋃

k U
n
k and by the properties of the sequence {Un

k : k ∈ N},
{(A′ ∪ [N]<ℵ0) ∩ Un

k : k ∈ N} is a γ-cover of A′ ∪ [N]<ℵ0 . Since at the
same time A′ is still a b-scale in P(N) with the additional property
above, Scheepers’s theorem gives the desired conclusion. �

Let us recall that non(M ) is the smallest cardinality of a non-meager
subset of 2N. It is well-knows that if τ is a perfect Polish topology on
a Polish space X , then non(M ) is the smallest cardinality of a subset
of X not in M (X, τ). We denote by Q the copy of the rationals in 2N

consisting of all eventually zero binary sequences.
ß
Now we are ready to prove the main result of this section (cf. the

proof of [25, Theorem 4]).

Theorem 2.2. If 2ℵ0 ≤ ℵ2, then there is a universally meager set in
2N which is not countably perfectly meager in 2N.

Proof. If 2ℵ0 = ℵ1, then the result follows from [19, Theorem 1.1], so
from now on let us assume that 2ℵ0 = ℵ2.

We shall split the argument into three cases.

Case (A): non(M ) = ℵ2.
Then, by a result of Grzegorek (see [11, Theorem 1]), there exists

a universally meager set in 2N of cardinality ℵ2 = 2ℵ0 and the result
follows from [19, Theorem 1.1].

Case (B): b = ℵ2.
This case is already covered by the previous one, since it is well-

known that b ≤ non(M ).

Case (C): non(M ) = b = ℵ1.

Let C and D be disjoint copies of the Cantor set in 2N such that

(1) the operation + of addition is a homeomorphism between C×D
and C +D (cf. [20]).

Let us fix a homeomorphism h : 2N−→C.
Let A = {aα : α < b} be a b-scale in P(N) with the additional

property that α < β < b implies that aβ \aα is finite (cf. the paragraph
preceding Lemma 2.1) and let us identify it with its homeomorphic copy
in 2N.

Let X = A∪Q and X̃ = h(X). Since X is universally meager, so is
X̃ .

Let us fix a set M ⊆ D of cardinality non(M ) = ℵ1 such that

(2) M is relatively non-meager in D.

Since |X̃| = ℵ1, we can fix a surjection m : X̃ −→M onto X̃ and
let H = {(x,m(x)) : x ∈ X̃} ⊆ C × D be the graph of m. Let us

note that since X̃ is the injective continuous image of H under the
projection onto the first axis and X̃ is universally meager, so is H .
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Finally, let Z = {x+m(x) : x ∈ X̃}. Clearly, Z is universally meager
as the image of H under the homeomorphism + between C × D and
C +D (cf. (1)).

We shall show that

(3) Z is not a PMσ-set in 2N

and this will end the proof of the theorem.
To that end, let Q̃ = h(Q) = {qn : n ∈ N} and let us suppose,

towards a contradiction, that there are closed sets Fn in 2N such that
Z ⊆

⋃
n Fn and Fn is relatively nowhere dense in qk+D or equivalently,

(qk + Fn) ∩D is relatively nowhere dense in D for each n and k.
Let {In : n ∈ N} be an enumeration with infinitely many repetitions

of the elements of a countable basis B of D.
Let us fix an arbitrary i and let F = Fi.
As the set F is compact, for each n we can define by induction

on k an ascending sequence {Un
k : k ∈ N} of open sets in C with

{qi : i < k} ⊆ Un
k ∩ Q̃ 6= Q̃ for every k together with a sequence

{Dn
k : k ∈ N} of non-empty, relatively clopen sets in D such that

(4) Dn
k+1

⊆ Dn
k ⊆ In and clD((U

n
k + F ) ∩D) ∩Dn

k = ∅ for every k.

Now, since X̃ and Q̃ are the respective images of X and Q under the
homeomorphism h, and Un = {Un

k : k ∈ N} is an ascending sequence

of open sets in C with Q̃ ⊆
⋃

k U
n
k but Q̃ ⊆ Un

k for no k, Lemma 2.1
enables us to select for each n a set Vn = Un

kn
such that

(5) {Vn : n ∈ N} is a γ-cover of X̃ \ Y for a certain countable set
Y ⊆ X̃.

We will show that

(6) ((X̃ \ Y ) + F ) ∩D is meager in D.

To see this, for each m let Km =
⋂

n≥m clD((Vn +F )∩D) and let us
note that Km is a closed relatively nowhere dense subset of D. Indeed,
any open set from B is of the form In for some n ≥ m and In 6⊆ Km

by (4).
Moreover, we have ((X̃ \ Y ) + F ) ∩ D ⊆

⋃
mKm. Indeed, if c ∈

X̃ \ Y , then there is m such that c ∈ Vn for every n ≥ m (cf. (5)).
Consequently, (c + F ) ∩D ⊆

⋂
n≥m((Vn + F ) ∩D) ⊆ Km, completing

the proof of (6).

Let us summarize: for each i we have found a countable set Yi ⊆ X̃
such that ((X̃ \ Yi) + Fi) ∩D is meager in D.

Consequently, letting Ỹ =
⋃

i Yi we get a countable subset of C such

that ((X̃ \ Ỹ ) +
⋃

n Fn) ∩D is meager in D.
But since Z ⊆

⋃
n Fn, we conclude that

(7) ((X̃ \ Ỹ ) + Z) ∩D is meager in D.
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On the other hand, M \ m(Ỹ ) ⊆ (X̃ \ Ỹ ) + Z. Indeed, if m ∈
M \m(Ỹ ), then m = m(x) for some x ∈ X̃ \ Ỹ and then m = (x+(x+
m(x))) ∈ x+Z. This implies that ((X̃ \ Ỹ ) + Z)∩D is not meager in
D (cf. (2)) contradicting (7) and thus completing the proof of (3).

�

Let us note that under CH we have non(M ) = b = ℵ1 and Case (C)
of the proof above establishes the consistency of PMσ 6= UM in the
way which avoids the use of [19, Theorem 1.1].

3. Countably perfectly null sets

Let us recall that given a perfect Polish space X a set A ⊆ X has the
Hurewicz property, if for each sequence U1,U2, . . . of open covers of A,
there are finite subfamilies Fn ⊆ Un such that A ⊆

⋃
n

⋂
m≥n(

⋃
Fm).

If A is a zero-dimensional subspace of X , then by a result of Hurewicz
(cf. [13] and [21]) this is equivalent to the statement that every con-
tinuous image of A in NN is bounded in the ordering ≤∗ of eventual
domination.

The smallest cardinality of a subset of 2N which is nonmeasurable
with respect to the standard probability product measure λ on 2N is
denoted by non(N ). It is well-knows that if µ is a non-zero, finite, non-
atomic, Borel measure on X , then non(N ) is the smallest cardinality
of a subset of X not in N (X, µ).

Let us also recall that by Q we denote the copy of the rationals in
2N consisting of all eventually zero binary sequences.

ß
The following result provides examples of universally null countably

perfectly meager sets which are countably perfectly null as well.

Proposition 3.1. The following collections of sets are countably per-
fectly null in the respective perfect Polish spaces:

(1) universally null sets with the Hurewicz property in any perfect
Polish space X,

(2) any sets of cardinality less than min(non(N ), b) in any perfect
Polish space X,

(3) γ-sets in any perfect Polish space X,
(4) b-scales in 2N,
(5) Hausdorff (ω1, ω

∗
1)-gaps in P(N).

Proof. (1) Let A ⊆ X be a universally null set with the Hurewicz
property and let µ be a non-zero, finite, non-atomic Borel measure on
X . Since A ∈ UN, there is a Gδ-set G in X such that A ⊆ G and
µ(G) = 0. Now, since A has the Hurewicz property, there is an Fσ set
F in X such that A ⊆ F ⊆ G (cf. [14, Theorem 5.7]). Consequently,
µ(F ) = 0 which shows that A ∈ PNσ.

ß
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Statements (2) – (4) can be derived from (1) as follows.
ß
(2) Sets of cardinality less than non(N ) are universally null and sets

of cardinality less than b have the Hurewicz property.
(3) γ-sets are universally null (as they actually have Rothberger’s

property C ′′, cf. [8]) and they have the Hurewicz property, by [7,
Theorem 2].

(4) Let us assume that A is a b-scale in 2N. Let B = A ∪ Q. Then
B is a universally null set with the Hurewicz property (see e.g., [19,
Example 4.1 and Remark 4.2]), so B ∈ PNσ in 2N. Consequently,
A ∈ PNσ in 2N.

(5). This may actually be established by a classical argument show-
ing that the Hausdorff gap is universally null, which we sketch here for
the sake of completeness. Following the proof of [15, Lemma 20.5], let
〈〈aα : α < ω1〉, 〈bα : α < ω1〉〉 be a Hausdorff gap, Fα = {c ∈ P(N) :
aα ⊆∗ c ⊆∗ bα} for α < ω1 and let µ be a non-zero, finite, non-atomic
Borel measure on P(N). Then Fα’s are Fσ-sets in P(N) and for a suffi-
ciently large ξ we have µ(Fξ) = 0 (see [15, the proof of Lemma 20.5]).
Letting

F = Fξ ∪ {aα : α < ξ} ∪ {bα : α < ξ},

we get an Fσ-set with {aα : α < ω1}∪{bα : α < ω1} ⊆ F and µ(F ) = 0
which shows that {aα : α < ω1} ∪ {bα : α < ω1} ∈ PNσ in P(N).

�

The main result of this section is a measure counterpart of [19, The-
orem 1.1] and Theorem 2.2.

Theorem 3.2. If either

(a) there exists a universally null set in 2N of cardinality 2ℵ0

or

(b) 2ℵ0 ≤ ℵ2,

then there is a universally null set in 2N which is not countably perfectly
null in 2N.

Proof. (a) Let T be a universally null set in 2N of cardinality 2ℵ0 .
By Proposition 1.2, it suffices to show that there is also one which

is not countably perfectly meager.
Let us recall that by [19, Theorem 1.1], there exist a set H ⊆ T ×2N

intersecting each vertical section {t} × 2N, t ∈ T , in a singleton and
a homeomorphic copy E of H in 2N which is not a PMσ-set in 2N.
Now, since T is universally null, so is E as a preimage of T under a
continuous injective function.

ß
(b) If 2ℵ0 = ℵ1, then any Luzin set in 2N provides an example of a

non-meager, universally null set.
From now on let us assume that 2ℵ0 = ℵ2.
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Following closely the scheme of proof of the Theorem 2.2, we split
the argument into three cases.

Case (A): non(N ) = ℵ2.
Then, by a theorem of Grzegorek (see [9]), there exists a universally

null set in 2N of cardinality ℵ2 = 2ℵ0 and the result follows from part
(a).

Case (B): b = ℵ2.
In this case any b-scale in 2N is a universally null set of cardinality

b = 2ℵ0 and the result again follows from part (a).

Case (C): non(N ) = b = ℵ1.

As in the proof of Theorem 2.2, we fix copies C, D of the Cantor set
in 2N such that

(1) the operation + of addition is a homeomorphism between C×D
and C +D (cf. [20]),

a homeomorphism h : 2N −→C, a b-scale X in 2N and we let X̃ = h(X).

Since X is universally null, so is X̃ .
We also fix a homeomorphism g : 2N −→D and we define a Borel

measure µ on 2N by letting

µ(B) = λ(g−1(B ∩D)), for B ∈ B(2N).

Then we fix a set M ⊆ D of cardinality non(N ) = ℵ1 with

(2) µ∗(M) > 0,

we let m : X̃ −→M be a surjection onto M and we put H = {(x,m(x)) :
x ∈ X̃}. Since X̃ is the injective continuous image of H under the

projection onto the first axis and X̃ is universally null, so is H .
Finally, let Z = {x+m(x) : x ∈ X̃}. Clearly, Z is universally null

as the image of H under the homeomorphism + between C × D and
C +D (cf. (1)).

We shall show that on the other hand

(3) Z is not a PNσ-set in 2N,

thus completing the proof of the theorem.
To that end, let Q̃ = h(Q) = {qn : n ∈ N} and let us suppose,

towards a contradiction, that there are closed µ-null sets Fn in 2N such
that Z ⊆

⋃
n Fn and µ(qk + Fn) = 0 for each n and k (cf. Proposition

1.1.)
Let us fix an arbitrary ε > 0.
For each n, Fn being compact and µ-null, there is an open set Un in

C such that Q̃ ⊆ Un and

(4) µ(Un + Fn) <
ε

2n+1 .

Now, X being a b-scale in 2N, is b-concentrated onQ (see [24, Lemma

2.10]). Consequently, X̃ is b-concentrated on Q̃ which, taking into
account that b = ℵ1, implies that for each n there is a countable set
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Yn ⊆ X̃ such that X̃ \ Yn ⊆ Un. It follows (cf. (4)) that µ
∗((X̃ \ Yn) +

Fn) <
ε

2n+1 which implies that, letting F =
⋃

n Fn and Ỹ =
⋃

n Yn, we

have µ∗((X̃ \ Ỹ ) + F ) < ε. But since Z ⊆ F and the choice of ε was
arbitrary, we conclude that

(5) µ∗((X̃ \ Ỹ ) + Z) = 0.

On the other hand, exactly as in the proof of Theorem 2.2, we have
M \ m(Ỹ ) ⊆ (X̃ \ Ỹ ) + Z which, Ỹ being countable, implies that
µ∗((X̃ \ Ỹ ) + Z) > 0 (cf. (2)), contradicting (5) and thus completing
the proof of (3).

�

4. Remarks and open problems

The results of Sections 2 and 3 motivate the following questions. The
first two are directly related to Theorems 2.2 and 3.2, respectively.

ß
Problem 1. Is PMσ = UM consistent?

ßProblem 2. Is PNσ = UN consistent?
ß
Let us note that we consistently have PMσ ⊆ UN since in the

model obtained by adding ℵ2 Cohen reals to a model of GCH we have
UM ⊆ UN (see Corazza [6, Theorem 0.6(b)] and Miller [17]; by a
theorem of Bartoszyński and Shelah, cf [4, Theorem 3], it is consistently
true that even all perfectly meager sets are universally null). By the
fact that PNσ ⊆ PMσ (see Proposition 1.2), the dual statement that
PNσ ⊆ UM is just true but the following question remains open.

ß
Problem 3. Is PNσ = PMσ consistent?

ß
Finally, in view of the inclusion PNσ ⊆ PMσ ∩UN one may ask
ß

Problem 4. Is PNσ = PMσ ∩UN true/consistent?
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5. L. Bukovský, The structure of the real line, Monografie Matematyczne, vol. 71,
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University, Dewajtis 5, 01-815 Warsaw, Poland

Email address : tomaszweiss@o2.pl

Institute of Mathematics, University of Warsaw, Banacha 2, 02-097

Warsaw, Poland

Email address : piotrzak@mimuw.edu.pl


	1. Introduction
	2. Universally meager not countably perfectly meager sets
	3. Countably perfectly null sets
	4. Remarks and open problems
	References

