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ON COUNTABLY PERFECTLY MEAGER AND
COUNTABLY PERFECTLY NULL SETS

TOMASZ WEISS AND PIOTR ZAKRZEWSKI

ABSTRACT. We study a strengthening of the notion of a univer-
sally meager set and its dual counterpart that strengthens the no-
tion of a universally null set.

We say that a subset A of a perfect Polish space X is countably
perfectly meager (respectively, countably perfectly null) in X if
for every perfect Polish topology 7 on X, giving the original Borel
structure of X, A is covered by an F,-set F' in X with the original
Polish topology such that F' is meager with respect to T (respec-
tively, for every finite, non-atomic, Borel measure y on X, A is
covered by an Fi-set F'in X with u(F) =0).

We prove that if 2% < Ry, then there exists a universally meager
set in 2N which is not countably perfectly meager in 2V (respec-
tively, a universally null set in 2 which is not countably perfectly
null in 2V).

1. INTRODUCTION

We continue the study of countably perfectly meager sets undertaken
by Pol and Zakrzewski [19]. We say (cf. [19]) that a subset A of a
perfect Polish space X is countably perfectly meager in X (A € PM,),
if for every sequence of perfect subsets {P, : n € N} of X, there exists
an F,-set F'in X such that A C F and F'N P, is meager in P, for each
n. Let us also recall that A is universally meager (A € UM), if for
every Borel isomorphism f between X and any perfect Polish space Y
the image of A under f is meager in Y (see [20], [27], [1], [2] and also
[10], [11], [12], where this class was earlier studied by Grzegorek and
denoted by AFC). By [2, Theorem 7] we have PM, C UM and by
[19, Theorem 1.1], this inclusion is consistently proper, namely it holds
if there exists a universally meager set of cardinality 2%, in particular,
if CH is true.

In this note we prove (see Theorem [2.2]) that PM, # UM follows
also from the assumption that 2% = R,. Whether it is consistent that
PM, = UM remains an open problem (it is consistent that UM C
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PM but also that UM = PM (see [1]), where PM denotes the family
of all perfectly meager subsets of X).

ih

If I is a o-ideal of subsets of X, i.e., it is hereditary, closed under
taking countable unions and contains all singletons, then by [I* we
denote the o-ideal on X generated by the closed subsets of X which
belong to I (cf. [22]).

N

If 7 is a perfect Polish topology on X giving the original Borel struc-
ture of X, then by .Z (X, 7) we denote the o-ideal of meager sets with
respect to 7. Let us note that .Z*(X, 7) consists of such A C X that
there exists an F,-set F' in X (with the original Polish topology) with
AC F and F € #(X,7). By [26l Theorem 2.1], A is universally
meager in X if and only if A belongs to the intersection of all o-ideals
of the form .# (X, 1), whereas by [19, Proposition 4.6], A is countably
perfectly meager in X if and only if A belongs to the intersection of all
o-ideals of the form .Z*(X, 7).

Universally meager sets may be seen as a category counterpart of uni-
versally null sets in X. Namely, if for a finite, non-atomic, Borel mea-
sure £ is on X (i.e., a countably additive measure u : B(X) — [0, +00)
defined on the o-algebra B(X) of Borel subsets of X and vanishing on
singletons of X'), we denote by N'(X, ) the o-ideal of p-null sets (i.e.,
sets of outer u-measure zero), then the collection UN of universally
null subsets of X is the intersection of all o-ideals of the form N (X, p).

N

The following definition of a measure analogue of countably perfectly
meager sets was suggested by Taras Banakh. We say that A is countably
perfectly null in X (A € PN,), if A belongs to the intersection of all
o-ideals of the form N*(X, ). In other words, A € PN, if for every
finite, non-atomic, Borel measure p on X, A is covered by an F,-set F’
in X with p(F) = 0. Let us note that if A is the standard probability
product measure on the Cantor space 2V, then N*(2V,\) is a well-
known o-ideal which is usually denoted by & (cf. [3]).

The name of the class PN, is further justified by the following ob-
servation.

Proposition 1.1. A set A C X is countably perfectly null in X if and
only if for every sequence of perfect subsets {P, : n € N} of X with
associated probability non-atomic Borel measures p.,, on P,, there exists
an F,-set F' in X such that A C F and p,(F' N P,) =0 for each n.

Proof. If A € PN, and for each n we have a perfect set P, together
with the respective measure i, on P,, then it is enough to cover A by
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an F,-set F' with pu(F) =0 for p defined by

w(B) =3 Q%Mn(B AP, for BeBX).

n

For the other direction, given a finite, non-atomic, Borel measure p
on X let us note that the regularity of p (cf. [16, 17.C]) implies the
existence of (pairwise disjoint) perfect sets {F, : n € N} of positive
p-measure such that (X \ U, P,) = 0. Then it suffices to cover A by
an F,-set F' with u(F N P,) = 0 for each n.

U

Clearly, we have PN, C UN. One easily observes that we also have
PN, C PM,.

Proposition 1.2. Fvery countably perfectly null subset of X is count-
ably perfectly meager.

Proof. Let us assume that A € PN, and let { P, : n € N} be a sequence
of perfect subsets of X. For each n let u,, be a Borel probability, non-
atomic measure on P, which assigns positive values to all non-empty,
relatively open subsets of P, (e.g., one may concentrate j, on a dense
in P, homeomorphic copy of the irrationals). Let F' be an F,-set in X
such that A C F' and u,,(F N P,) = 0 for each n (cf. Proposition [L.1]).
Clearly, F'N P, is meager in P, for each n, so A € PM,. O

The inclusion PN, C PM,, is, at least consistently, proper. Indeed,
if A C 2V is a Sierpiniski set with respect to the measure A, then
A € PM, in 2V (cf. [19, Corollary 2.9 and Remark 2.11]) but A has
positive outer measure \.

An analogous argument shows the consistency of PN, # UN. Namely,
if A C 2V is a Luzin set in 2 (which exists e.g. under CH), then
A € UN but A is not even meager in 2V,

In this note we prove (see Theorem [B.2]) that the inequality PN, #
UN follows also from the assumptions that either there exists a uni-
versally null set in 2 of cardinality 2% (then we actually have that
even UN \ PM,, # 0); cf. Proposition [[2) or 2% = Ry, Whether it is
consistent that PN, = UN, remains an open problem.

Section 2 is devoted to the proof of Theorem stating that if
2% — N, then there is a universally meager set in 2 which is not
countably perfectly meager in 2V.

In Section B we give some examples of countably perfectly null sets
and prove Theorem which shows the inequality PN, # UN under
the assumption that either there exists a universally null set in 2% of
cardinality 2% (then we actually have that even UN \ PM, # 0, cf.
Proposition [[2) or 2% = N,.

In Section M we collect some remarks and open problems.
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2. UNIVERSALLY MEAGER NOT COUNTABLY PERFECTLY MEAGER
SETS

Let us recall that the cardinal number b is the minimal cardinality
of a subset of NN which is unbounded in the ordering <* of eventual
domination. Following [24, Definition 2.8], by a b-scale (in NY) we
mean a subset B = {f, : a < b} of N¥ with the following properties:

e f,: N— N is strictly increasing,
o o < 3 < b implies f, <* fs,
o for every f € N¥ there is v < b with f,, £* f.

By identifying each f, with the characteristic function of its range
(or just its range, respectively), we obtain a homeomorphic copy A of
B in 2" (respectively, in P(N) with the Cantor set topology) which we
also call a b-scale in 2V (respectively, in P(N)) (cf. [24]). Tt is well-
known and easy to see that b-scales can be constructed in ZFC. They
are also classical examples of sets which are both universally meager
and universally null (cf. [18§]).

Let us recall that given a subset A of a perfect Polish space X, by a
~v—cover of A we mean a countable relatively open cover % of A which
is infinite and such that for each x € A the set {U € % : x ¢ U} is
finite. We say that A satisfies property S;(I',T") if for every sequence
(%, : n € N) of y-covers of A we can select for each n a set V,, € %,
such that {V,, : n € N} is a y-cover of A (cf. [14], [24]). Tt is well-known
(and due to Hurewicz [13]) that property S;(I", ") implies the Hurewicz
property (for a definition of the Hurewicz property see Section [3).

If b = wy, then there exists a b-scale A = {a, : @ < b} in P(N)
with the additional property that @ < § < b implies that ag \ a, is
finite (see [24, page 8]) and by a theorem of Scheepers [23] (see also
[5, Theorem 123]), if A is such a b-scale in P(N), then A U [N]<™ has
property S;(I',T'). The following observation is an easy corollary of this
result. Let us recall that if x is an infinite cardinal, then a set A C X
is k-concentrated on a set @@ C X, if |A\ U| < & for each open set U
in X containing Q).

Lemma 2.1. Assume that b = w,. Let A = {a,: a < b} be a b-scale
in P(N) with the additional property that o < B < b implies that ag\ a,
is finite.

For each n let %, = {U}} : k € N} be an ascending (i.e., U} CUl',)
sequence of open sets in P(N) with [N]<® C |J, Uy but [N]<% C Up
for no k. Then we can select for each n a set V,, = U}l such that
{V,, : n € N} is a y-cover of (AU [N]<X)\'Y for a certain countable
set’Y C A.

Proof. The set A being a b-scale in P(N), is b-concentrated on [N]<®0
(see [24, Lemma 2.10]). Consequently, since b = wy, there is £ < w;
such that if we let A" = {a, : £ < o < b}, then for each n we have
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A'UIN]<N C |, Up and by the properties of the sequence {U}" : k € N},
{(AUNJR)NUP: k € N} is a y-cover of AU [N]<. Since at the
same time A’ is still a b-scale in P(N) with the additional property
above, Scheepers’s theorem gives the desired conclusion. O

Let us recall that non(.#) is the smallest cardinality of a non-meager
subset of 2. Tt is well-knows that if 7 is a perfect Polish topology on
a Polish space X, then non(.#) is the smallest cardinality of a subset
of X not in . (X, 7). We denote by Q the copy of the rationals in 28
consisting of all eventually zero binary sequences.

B

Now we are ready to prove the main result of this section (cf. the
proof of [25, Theorem 4]).

Theorem 2.2. If 2% < Ry, then there is a universally meager set in
2N which is not countably perfectly meager in 2.

Proof. If 2% = R, then the result follows from [19, Theorem 1.1], so
from now on let us assume that 2% = R,.

We shall split the argument into three cases.

Case (A): non(#Z) = N,.

Then, by a result of Grzegorek (see [11, Theorem 1]), there exists
a universally meager set in 2V of cardinality Ny = 2% and the result
follows from [19, Theorem 1.1].

Case (B): b = N,.
This case is already covered by the previous one, since it is well-
known that b < non(.#).

Case (C): non(.Z) =b = N;.
Let C and D be disjoint copies of the Cantor set in 2V such that

(1) the operation + of addition is a homeomorphism between C'x D
and C + D (cf. [20]).

Let us fix a homeomorphism h : 28 — O

Let A = {as : @ < b} be a b-scale in P(N) with the additional
property that a < 8 < b implies that ag\ a, is finite (cf. the paragraph
preceding Lemma[2.T]) and let us identify it with its homeomorphic copy
in 2N,
Let X =AUQ and X = h(X). Since X is universally meager, so is
X.

Let us fix a set M C D of cardinality non(.#) = X; such that

(2) M is relatively non-meager in D.

Since |X| = ¥;, we can fix a surjection m : X — M onto X and
let H = {(z,m(z)) : © € X} C C x D be the graph of m. Let us

note that since X is the injective continuous image of H under the
projection onto the first axis and X is universally meager, so is H.



6 TOMASZ WEISS AND PIOTR ZAKRZEWSKI

Finally, let Z = {z+m(z) : = € X}. Clearly, Z is universally meager
as the image of H under the homeomorphism + between C' x D and
C+ D (cf. (1)).

We shall show that
(3) Z is not a PM,-set in 2%

and this will end the proof of the theorem.

To that end, let Q = h(Q) = {g, : n € N} and let us suppose,
towards a contradiction, that there are closed sets F), in 2" such that
Z C |, F, and F, is relatively nowhere dense in g, + D or equivalently,
(qr + F,) N D is relatively nowhere dense in D for each n and k.

Let {I,, : n € N} be an enumeration with infinitely many repetitions
of the elements of a countable basis Z of D.

Let us fix an arbitrary ¢ and let F' = Fj.

As the set F' is compact, for each n we can define by induction
on k an ascending sequence {U}' : k € N} of open sets in C' with
{¢; -1 <k} CU'N Q # Q for every k together with a sequence
{D} : k € N} of non-empty, relatively clopen sets in D such that

(4) Dy, € Dy C I, and clp((U} + F) N D) N Dy = 0 for every k.

Now, since X and Q are the respective images of X and QQ under the
homeomorphism h, and %, = {U}! : k € N} is an ascending sequence
of open sets in C' with @ C U, Uy but Q C U} for no k, Lemma 2.1]
enables us to select for each n a set V,, = U}l such that

(5) {Va : n € N} is a y-cover of X \ 'Y for a certain countable set
Y CX.
We will show that
(6) (X\Y)+ F)N D is meager in D.

To see this, for each m let K,,, =,~,, clp((V, + F)N D) and let us
note that K, is a closed relatively nowhere dense subset of D. Indeed,
any open set from A is of the form I, for some n > m and I, € K,,
by (4). )

Moreover, we have (X \Y) + F)ND C |J,, K. Indeed, if ¢ €
X \'Y, then there is m such that ¢ € V,, for every n > m (cf. (5)).
Consequently, (c+ )N D C,5,,((V,+ F)N D) C K, completing
the proof of (6).

Let us summarize: for each i we have found a countable set V; C X
such that ((X \'Y;) + F;) N D is meager in D.

Consequently, letting ¥ = U, Yi we get a countable subset of C' such
that (X \Y) 4+, F.) N D is meager in D.

But since Z C J,, F,, we conclude that

(7) (X \Y)+ Z)N D is meager in D.
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On the other hand, M \ m(Y) C (X \Y) + Z. Indeed, if m €
M\m(Y), then m = m(x) for some 2 € X \Y and then m = (z+ (z +
m(z))) € x4 Z. This implies that ((X \ Y) + Z) N D is not meager in
D (cf. (2)) contradicting (7) and thus completing the proof of (3).

U

Let us note that under CH we have non(.#) = b = ¥y and Case (C)
of the proof above establishes the consistency of PM, # UM in the
way which avoids the use of [19, Theorem 1.1].

3. COUNTABLY PERFECTLY NULL SETS

Let us recall that given a perfect Polish space X a set A C X has the
Hurewicz property, if for each sequence %4, %, . .. of open covers of A,
there are finite subfamilies F,, C %, such that A C |, N,,>,,(UFm)-
If A is a zero-dimensional subspace of X, then by a result of Hurewicz
(cf. [13] and [21]) this is equivalent to the statement that every con-
tinuous image of A in NV is bounded in the ordering <* of eventual
domination.

The smallest cardinality of a subset of 2 which is nonmeasurable
with respect to the standard probability product measure A on 2V is
denoted by non(N). Tt is well-knows that if x4 is a non-zero, finite, non-
atomic, Borel measure on X, then non(N) is the smallest cardinality
of a subset of X not in N'(X, u).

Let us also recall that by Q we denote the copy of the rationals in
2N consisting of all eventually zero binary sequences.

b

The following result provides examples of universally null countably
perfectly meager sets which are countably perfectly null as well.

Proposition 3.1. The following collections of sets are countably per-
fectly null in the respective perfect Polish spaces:

(1) universally null sets with the Hurewicz property in any perfect
Polish space X,

(2) any sets of cardinality less than min(non(N),b) in any perfect
Polish space X,

(3) ~v-sets in any perfect Polish space X,

(4) b-scales in 2V,

(5) Hausdorff (wi,w;)-gaps in P(N).

Proof. (1) Let A C X be a universally null set with the Hurewicz
property and let p be a non-zero, finite, non-atomic Borel measure on
X. Since A € UN;, there is a Gs-set G in X such that A C G and
1(G) = 0. Now, since A has the Hurewicz property, there is an F, set
F in X such that A C F' C G (cf. [14, Theorem 5.7]). Consequently,
w1(F) = 0 which shows that A € PN,.

B



8 TOMASZ WEISS AND PIOTR ZAKRZEWSKI

Statements (2) — (4) can be derived from (1) as follows.

ih

(2) Sets of cardinality less than non(N) are universally null and sets
of cardinality less than b have the Hurewicz property.

(3) v-sets are universally null (as they actually have Rothberger’s
property C”, cf. [8]) and they have the Hurewicz property, by [7,
Theorem 2.

(4) Let us assume that A is a b-scale in 2. Let B = AU Q. Then
B is a universally null set with the Hurewicz property (see e.g., [19,
Example 4.1 and Remark 4.2]), so B € PN, in 2¥. Consequently,
A € PN, in 2V,

(5). This may actually be established by a classical argument show-
ing that the Hausdorff gap is universally null, which we sketch here for
the sake of completeness. Following the proof of [I5, Lemma 20.5], let
({(aq + a < wy), (by : @ < wy)) be a Hausdorff gap, F, = {c¢ € P(N) :
ao CF ¢ C* by} for @ < wy and let p be a non-zero, finite, non-atomic
Borel measure on P(N). Then F,’s are F,-sets in P(N) and for a suffi-
ciently large & we have pu(F¢) = 0 (see [15], the proof of Lemma 20.5]).
Letting

F=FU{ay: a<&tU{by:a <},
we get an Fy-set with {aq : o < w1 }U{by : @ <wq} C Fand pu(F) =0
which shows that {a, : @ <w;} U{by: a <w;} € PN, in P(N).
O

The main result of this section is a measure counterpart of [19, The-
orem 1.1] and Theorem

Theorem 3.2. If either
(a) there exists a universally null set in 2% of cardinality 2%
or
(b) 280 < Ny,
then there is a universally null set in 2% which is not countably perfectly
null in 2N,

Proof. (a) Let T be a universally null set in 2" of cardinality 2%.

By Proposition [[L2] it suffices to show that there is also one which
is not countably perfectly meager.

Let us recall that by [19, Theorem 1.1], there exist a set H C T x 28
intersecting each vertical section {t} x 2N, ¢t € T, in a singleton and
a homeomorphic copy E of H in 2V which is not a PM,-set in 2V
Now, since T' is universally null, so is E as a preimage of T under a
continuous injective function.

N

(b) If 2% = N;, then any Luzin set in 2 provides an example of a
non-meager, universally null set.

From now on let us assume that 2% = N,.
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Following closely the scheme of proof of the Theorem 2.2, we split
the argument into three cases.

Case (A): non(N) = N,.

Then, by a theorem of Grzegorek (see [9]), there exists a universally
null set in 2V of cardinality N, = 2% and the result follows from part
(a).

Case (B): b = N,.

In this case any b-scale in 2V is a universally null set of cardinality
b = 2% and the result again follows from part (a).

Case (C): non(N) =b =N;.
As in the proof of Theorem 2.2] we fix copies C, D of the Cantor set
in 2 such that

(1) the operation + of addition is a homeomorphism between C'x D
and C' + D (cf. [20]),
a homeomorphism & : 28 — C, a b-scale X in 2~ and we let X = h(X).
Since X is universally null, so is X.
We also fix a homeomorphism ¢ : 28 — D and we define a Borel
measure g on 2V by letting

w(B) = Xg Y (BnD)), for BeB(2Y).
Then we fix a set M C D of cardinality non(N) = Ry with
2) (M) >0,
we let m : X — M be a surjection onto M and we put H = {(z, m(z)) :
reX }. Since X is the injective continuous image of H under the
projection onto the first axis and X is universally null, so is H.

Finally, let Z = {z +m(z) : = € X}. Clearly, Z is universally null
as the image of H under the homeomorphism + between C' x D and
C+ D (cf. (1)).

We shall show that on the other hand

(3) Z is not a PN,-set in 2V,
thus completing the proof of the theorem.

To that end, let Q = h(Q) = {g, : n € N} and let us suppose,
towards a contradiction, that there are closed p-null sets F,, in 2% such
that Z C J,, F,, and u(qx + F,,) = 0 for each n and k (cf. Proposition
Let us fix an arbitrary € > 0.

For each n, F,, being compact and p-null, there is an open set U, in
C such that @ C U,, and

(4) p(Un + F,) < g7
Now, X being a b-scale in 2V, is b-concentrated on Q (see 24, Lemma

2.10]). Consequently, X is b-concentrated on Q which, taking into
account that b = N;, implies that for each n there is a countable set
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Y, C X such that X \ 'Y, C U,. It follows (cf. (4)) that u*((X \Y,)+
F,) < 55+ which implies that, letting F = |J, F,, and Y = |, Yz, we
have p*((X \Y) + F) < e. But since Z C F and the choice of £ was
arbitrary, we conclude that

(5) p(X\Y)+2) =0.

On the other hand, exactly as in the proof of Theorem 2.2 we have
M\ m(Y) C (X \Y)+ Z which, Y being countable, implies that
(X \Y)+Z) >0 (cf. (2)), contradicting (5) and thus completing
the proof of (3).

U

4. REMARKS AND OPEN PROBLEMS

The results of Sections 2land [3 motivate the following questions. The
first two are directly related to Theorems and [3.2] respectively.

ih
Problem 1. Is PM, = UM consistent?

$Problem 2. Is PN, = UN consistent?

N

Let us note that we consistently have PM, C UN since in the
model obtained by adding N, Cohen reals to a model of GCH we have
UM C UN (see Corazza [0, Theorem 0.6(b)] and Miller [17]; by a
theorem of Bartoszytiski and Shelah, cf [4, Theorem 3], it is consistently
true that even all perfectly meager sets are universally null). By the
fact that PN, C PM, (see Proposition [[2), the dual statement that
PN, C UM is just true but the following question remains open.

N
Problem 3. Is PN, = PM,_ consistent?

N

Finally, in view of the inclusion PN, C PM, N UN one may ask

B
Problem 4. Is PN, = PM, N UN true/consistent?
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