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Performance metrics in the average consensus problem:
a tutorial

E. Lovisari, S. Zampieri 1

Abstract

The average consensus algorithm is a distributed procedure which al-
lows a network of agents to agree on the average of a set of initial val-
ues. The computation occurs through local exchange of information only,
namely the information exchange takes place only between agents which
are neighbors with respect to a graph representing the system communi-
cation architecture. Several performance metrics have been proposed for
the evaluation of this algorithm. Particularly interesting and challenging
is to relate them to the communication topology. Different performance
metrics may yield different answers in comparing alternative communica-
tion topologies. In this paper, we present a few performance metrics and
we show how these metrics are related to the communication topology.
In particular, when available, we present bounds which permit to relate
performance and topology for general graphs, for graphs with symmetries,
called d-dimensional tori, and for geometric graphs.

Keywords: linear consensus, graph theory, sensor networks, Cayley graphs,
geometric graphs, distributed estimation

1 Introduction

Distributed algorithms constitute a growing field of research within many scien-
tific communities. The possibility of deploying a large networks of small, simple
and cheap but intelligent units forces researchers to enlarge their point of view
from centralized, fast and fully designable procedures, to leaderless algorithms
in which information can flow only according to a constrained communication
architecture. Interesting examples come from coordinated control of mobile ve-
hicles [1, 2, 3, 4, 5, 6, 7]. In this scenario some agents are required to move in a
possibly unknown environment maintaining a formation suitable to their current
objective. The absence of a leader can be a big advantage in this application.
Indeed, if the environment is dangerous, we want to avoid that the failure of
the leader yields the disruption of the entire formation, neither we want use a
time–consuming leader–election procedure. Instead, it is often preferable that
all the agents are on the same hierarchical level. Moreover, in other cases, a
centralized control is undesirable when a large environment or a slow communi-
cation cause delays which could destabilize the system. Finally, if the number of
agents is large, the computational effort required to design a centralized control
could be unbearable. These requirements motivate the interest on distributed
algorithms. The task to be accomplished, whatever it is, must be distributed
over the network, and each agent contributes to build up the solution. Clearly,
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only in particular cases it is possible, via a distributed algorithm, to obtain the
same level of performance as in the centralized case.

Similar features characterize several other applications, such as distributed
estimation [8, 9, 10, 11, 12], load balancing [13, 14], sensor calibration for sensor
networks [15, 16, 17, 18, 19], distributed optimization [20, 21, 22, 23, 24, 25, 26],
distributed demodulation [27, 28]. In general, in all these problems a set of
agents is given and these agents can communicate with each other. The in-
formation exchange is modeled via a communication graph. Each node of the
graph represents an agent, an edge represents the possibility for an agent to re-
ceive information from another one. In certain cases, the communication graph
is allowed to be time-variant. This is used to model asynchronous working
conditions or scenarios in which two agents are not always able to communi-
cate, because of possible packet losses. The richness of such scenarios is clear,
since the enormous number of states that characterize such systems opens new
frontiers in research in terms of complexity of algorithms, of tasks to be accom-
plished, and so on. Vice versa, the same complexity yields an extreme difficulty
for the designers, since many problems are known to be NP-hard when the
communication constraints are imposed.

This difficulty forced researchers to spend much effort on the design of simple
algorithms for simple tasks. One of these algorithms is the average consensus
algorithm. In general, an average consensus algorithm is a distributed strategy
in which each agent has a real number. The goal for the agents is to compute
the average of those numbers. One way to accomplish this task is to label
each agent, gather the values via multi-hop communication in the network, and
combine them in the same way by each node. However, this implies that each
agent has to memorize the values of all the other nodes, which can be hard if
the network is large. The average consensus algorithm is an iterative procedure,
much simpler and easier to be implemented, based on a linear local iterative
data fusion. On the one hand, this method is in general less efficient than the
methods based on multi-hop communications, but on the other hand, it is more
robust to both communication drops and node failures.

1.1 The average consensus algorithm

The average consensus algorithm consists in the following discrete time linear
algorithm. Assume that each node u has a real number yu and a state xu(t)
which is initialized to yu, namely xu(0) = yu. Assume that u updates xu(t)
according to the iteration

xu(t+ 1) = puu(t)xu(t) +
∑
v∈Nu

puv(t)xv(t)

where Nu := {v ∈ V \ {u} : (v, u) ∈ E} is the set of neighbors of the agent u.
We impose that puv(t) ≥ 0 and that puu(t) +

∑
v∈Nu

puv(t) = 1 or, in words,
that xu(t + 1) is a convex combinations of all the states available to the agent
u. If we stack all the states xu(t)’s into a vector x(t) ∈ RN and we introduce
the matrix P (t) ∈ RN×N having entries equal to puv(t) in position u, v, we can
rewrite the previous iteration in the following compact form

x(t+ 1) = P (t)x(t). (1)
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Notice that P (t) is stochastic, namely it has non-negative entries and P (t)1 = 1,
where 1 denotes a column vector with all entries equal to 1.

In this paper we will limit to time-invariant consensus algorithms, namely
to the case in which the iteration is the following

x(t+ 1) = Px(t) (2)

where P is a stochastic matrix consistent with the graph G. If we assume that
all the diagonal entries of P are strictly positive and if we assume that the
graph associated with P is strongly connected (these notions will be introduced
below), then P is primitive and thus, by Frobenius-Perron theorem [29], all the
eigenvalues of P lie inside the open unit disk, except one which is equal to 1.
Moreover the eigenvalue 1 has algebraic multiplicity 1. Let π ∈ RN be a left
eigenvector of P associated with the eigenvalue 1. Since it can be proved that
all the entries of π are positive, it can be assumed with no loss of generality
that πT1 = 1. Under the above assumptions we can argue that

P t
t→∞−→ 1πT

This implies that

xu(t)
t→∞−→ α, ∀u = 1, . . . , N

with α =
∑N
u=1 πuxu(0) =

∑N
u=1 πuyu. We see in this way that the agents reach

consensus on the value of their states xu(t), since they all converge to the same
number α, called the consensus value. Notice that, if P is doubly stochastic,
namely if both P and PT are stochastic, then π = 1

N 1 and so the consensus
value α is equal to the average of the initial states. In this case we have the
average consensus.

While the pioneering work [30] studied the consensus algorithm for applica-
tions to distributed estimation, much work has been done in the last decade mo-
tivated by the formation control problem [31, 4]. A large number of papers have
been proposed for studying the convergence of this algorithm. In particular, it
has been highlighted its relations with Markov chains via the stochastic matrix
P , and proposed control-oriented criteria (e.g., Nyquist criterion) in order to
ensure its convergence [3]. Many papers included in the model more realistic
scenarios, such as packet-drop communication and delays [32, 33, 34, 35, 36, 37]
and some others have been devoted to the study of randomized consensus algo-
rithms, namely consensus algorithms in which P (t) is a matrix valued stochastic
process [38, 39, 40, 41, 42].

As the classical theory suggests (see Section 4), the typical trajectory which
the states draw while approaching the consensus value is exponential in time.
Many papers have been devoted to the study of the exponential rate of conver-
gence, both for structured graphs [43, 44, 45, 46, 47, 48, 49, 50], and in terms
of optimization problems [51, 52, 53, 54, 55, 56]. Since consensus is often con-
sidered an algorithm which has a direct application to many sensor network
problems, much effort has been spent trying to understand how consensus be-
haves under some typical constraints in communications, such as quantization
of information and noisy channels [57, 58, 59, 60, 61, 62, 36, 37]. To conclude, an
increasing interest is devoted to the problem of designing an effective distributed
Kalman-type estimation algorithm. The consensus averaging procedure is ap-
plied in many cases either as a tool in a distributed version of the Kalman filter
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or as a tool to build a state observer which is then required to satisfy a minimum
variance criterion [8, 9, 10, 11, 63, 64, 8].

One relevant issue concerning consensus algorithms is related to the choice
of a performance metric which allows the comparison of several possible choices
of the matrix P and of the associated graph GP . Several different performance
metrics have been proposed in the literature. One important aspect of the
performance evaluation is how the communication topology, namely the graph,
influences performance. More precisely, taken two different graph topologies G1

and G2, one can wonder if it may happen that G1 is better than G2 if compared
through a certain performance metric, but the reverse occurs when the compar-
ison is done through another performance metric. In other words the question is
whether all the relevant performance metrics are coherent in comparing differ-
ent topologies or not. Recent papers gave some partial answers to this question,
and the answer is that topology does play a fundamental role, which should be
an important guidance in the design process.

1.2 Paper contents

The aim of this paper is to give a tutorial on this subject focusing on the
following three performance metrics:

• The exponential rate of convergence of the consensus algorithm to its
asymptotic value.

• A time-dependent H2 type performance index arising when using the con-
sensus algorithm for distributed estimation.

• An H2 type performance index arising when evaluating the effect of the
additive noise to the asymptotic value of the consensus value.

The goal is to evaluate how these indices are influenced by the network topology.
In wireless sensor networks, which is the main application area of consensus
algorithms, the network topology is strongly related to the sensors positions. For
this reason we restrict our attention to the class of network topologies described
by geometric graphs. A geometric graph can be seen as a perturbation of a
regular grid. More precisely in a geometric graph the nodes of the graph are
deployed in an area and the connections between nodes have to satisfy some
constraints which, roughly speaking, prevent nodes that are too far apart to be
connected. This graph model, proposed in [65], can be seen as the deterministic
counterpart of the random geometric graph [66].

Specifically, we propose bounds able to suggest how the performance indices
scale with the number of nodes, when the network topology is described either by
a general geometric graph, or by a geometric graph with symmetries, called a d-
dimensional torus, or sometimes Cayley graphs. For tori, the results are easier to
be obtained and, in some cases, only results of those graphs are in fact available.
We preferred to give the proof only for the bounds on the rate of convergence
performance index. This proof, which is complicated, is largely inspired by
the proof of the analogous result given in [40] for the random geometric graph
model. We preferred to present again the proof here, both because in this paper
we are considering a slightly different model of geometric graph, and because in
some points we found the original proof in [40] quite difficult to follow.
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2 Some preliminaries on graphs and matrices

A graph is a quadruple G = (V, E , s, t) where V is called the set of nodes, E is
called the set of edges, and s and t are two functions s : E → V and f : E → V .
If s(e) = u we say that the edge e starts in u, or that u is the tail of e. If t(e) = v
we say that the edge e ends in v, or that v is the head of e. In this paper we
consider only graphs in which there do not exist different edges having the same
tail and head. Hence, if an edge e is such that s(e) = u and f(e) = v, then we
can simply denote it as e = (u, v) and write G = (V, E), where E is a subset of
V × V . We say that a graph is undirected if (u, v) ∈ E ⇐⇒ (v, u) ∈ E . If this
does not occur, then the graph is called directed, or a digraph. A path in the
graph G from a node u to a node v is a set of edges (ui, vi) ∈ E , i = 1, . . . , l,
such that u1 = u, vl = v and vi = ui+1 for all i = 1, . . . , l − 1. The integer l is
called the length of the path. The graphical distance between u and v, denoted
with the symbol dG(u, v) is given by the minimum length of the paths from u
to v. A graph is said to be strongly connected if there exists a path from u to
v for any pair (u, v) ∈ V 2.

Given a node u ∈ V , we denote by N in
u = {v : e = (v, u), ∃ e ∈ E} the

in-neighbor set of u, namely the set of nodes such that there exists an edge
starting in such nodes and ending in u. Analogously, we denote by N out

u = {v :
e = (u, v), ∃ e ∈ E} the out-neighbor set of u, namely the set of node such that
there exists an edge ending in such nodes and starting from u. Clearly, for an
undirected graph the two notions coincide, so we will generically talk about the
neighbor set Nu of u.

Given a graph G = (V, E), we will always denote by N := |V | and M := |E|
respectively the number of nodes and edges2. We define the incidence matrix
A ∈ {0,±1}M×N as follows

Aeu =


−1 if u = t(e)

1 if u = s(e)

0 otherwise

,

so the e-th row, related to directed edge e, has a −1 in correspondence with the
ending node, and a 1 in correspondence with the starting node. By construction
it is clear that A1 = 1. By Theorem 8.3.1 in [67] we know that the left kernel of
A has dimension equal to N−c where c is the number of connected components
of the graph. We will always refer to connected graphs, thus the kernel of A has
dimension 1 and it is generated by 1.

Another matrix related to a graph is the adjacency matrix F ∈ {0, 1}N×N ,
which is defined as

Fuv =

{
1 (u, v) ∈ E
0 otherwise

.

For undirected graphs, the adjacency matrix is symmetric.
Given a matrix P ∈ RN×N we define the graph associated with P , denoted

by the symbol GP , as the graph with vertex set V = {1, 2, . . . , N} and edge set
EP := {(u, v) ∈ V × V : Pu,v 6= 0}. Moreover we say that P is consistent with
a graph G if GP is a subgraph of G, namely they have the same vertex set and
the edge set of GP is a subset of the edge set of G

2The symbol |X| denotes the cardinality of the set X.
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Figure 1: Two examples of d-dimensional tori.

2.1 Cayley matrices and d-dimensional tori

Cayley matrices and tori are highly structured matrices and graphs which
present a number of symmetries, and that are defined through groups.

Definition 2.1. Let G be an finite Abelian group of order N = |G|. A matrix
P ∈ RG×G is said to be a Cayley matrix over the group G if

Pi, j = Pi+h, j+h, ∀ i, j, h ∈ G. (3)

It is easy to see [68] that there exists a function g : G→ R, called generator,
such that Pij = g(i− j). Note that g can be read from any row of P . A graph
G is a d-dimensional torus if its adjacency matrix is a Cayley matrix. With
this definition it is obvious that the graph associated with a Cayley matrix is
automatically a torus, or more precisely a dg-regular lattice on a d-dimensional
torus, where dg is the number of neighbors of each node. A d-dimensional torus
is completely determined by giving the group G and a set S ⊆ G. Indeed, the
set of edges E of a torus is such that (i, j) ∈ E if and only if j − i ∈ S.

In Fig. 1 two tori are presented. On the left, G = Z8 and S = {±1, 0}
generate the circle with N = 8 nodes, in which each agent communicates with
the node on the left and on the right. On the right, G = Z20 × Z10 and
S = {(−1, 0), (1, 0), (0, 1), (0,−1)} generates the torus with N1 = 20 circles of
N2 = 10 nodes each, where each agent communicates with the nodes on the left,
on the right, above and below.

Notice that any finite Abelian group G is isomorphic to the group Zn1
×

· · · × Znd
, for some n1, . . . , nd ∈ N. In order to simplify the notation, in this

paper we will restrict to d-dimensional tori with respect to groups of the type Zdn.
Moreover we will always assume that there is a positive constant δ (small enough
compared with n) such that3 (i, j) ∈ E only if ||j − i|| ≤ δ. This constraint
describes the assumption that a node can not communicate with nodes that are
too “far” away from it. Another parameter will play an important role in the
sequel. If we assume that the d-dimensional torus is connected, its connectivity

3Here we are assuming that the entries of i, j in Zn are represented by the integers −n/2+
1, . . . ,−1, 0, 1, . . . , n/2 in case n is even or by the integers −(n−1)/2, . . . ,−1, 0, 1, . . . , (n−1)/2
in case n is odd
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implies that there exists a path from the node 0 = (0, . . . , 0) ∈ Zdn to the node
ei ∈ Zdn, which is the vector with all entries equal to zero except the entry
in position i which is equal to 1. Let li be the graphical distance between 0
and ei and let l := maxi{li}. In many practical cases we have that l = 1. This
parameter will play an important role when we will need to bound the graphical
distance between nodes in tori.

2.2 Geometric graphs

Roughly speaking a geometric graph is a perturbation of a regular grid in d
dimension, for instance by removing or adding nodes or/and edges. There exist
several different mathematical models for networks deployed in a real environ-
ment. Some define certain geometric parameters which characterize the graph
[65]. Others give either probabilistic rules to deploy agents in an area [66, 69] or
rules to choose the edges connecting nodes [70, 71, 72]. All these models fall in
the general class of the so called ad-hoc networks, or proximity–induced graphs.
Here we have chosen the one proposed in [65, 73] because it is, in our opinion,
simpler, rather general and, compared to the definition of random geometric
graph model (see [66]), it requires no probabilistic rule.

`

γ
s

Figure 2: An example of geometric graph in 2 dimensions.

Consider an hypercube Q ⊂ Rd with edge of length `, namely Q = [0, `]d ⊆
Rd. Let G = (V, E) be a undirected graph such that V ⊂ Q and |V | = N .
For such graphs embedded in Rd, we denote by dE(u, v) the Euclidean distance
among any couple of nodes (u, v) ∈ V × V , namely if u and v are considered to
denote also the points in Rd we have

dE(u, v) =

√√√√ d∑
k=1

(uk − vk)2. (4)
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Following [73, 74, 75], the following parameters can be defined:

• the minimum Euclidean distance between any two nodes

s = min
u, v∈V, u6=v

{dE(u, v)} ; (5)

• the maximum Euclidean distance between any two connected nodes

r = max
(u, v)∈E

{dE(u, v)} ; (6)

• the radius γ of the largest ball centered in Q containing no nodes of the
graph

γ = sup {r|B(x, r) ∩ V = ∅, ∃x ∈ Q} ; (7)

• the minimum ratio between the Euclidean distance of two nodes and their
graphical distance

ρ = min

{
dE(u, v)

dG(u, v)
| (u, v) ∈ V × V

}
. (8)

Notice that, if G is connected, then ρ is well defined and positive4. Such a
graph is called a geometric graph with parameters (N, d, `, s, r, γ, ρ). An example
of geometric graph is pictured in Fig. 2.

2.3 De Bruijn’s graphs

De Bruijn’s graphs constitute a very particular class of graphs. Nevertheless we
introduce them here because they are fast mixing graphs in which, if the weights
are chosen in a clever manner, it is possible to reach consensus in a minimum
finite number of steps. Related to this nice behavior, de Bruijn’s graphs have
been proposed as the optimal architecture for multi-processor networks due to
their fast information spreading properties, inspiring scientific papers [76] as well
as patents [77]. As a matter of fact, instead, in ad-hoc networks the De Bruijn is
hardly implemented due to the long-range communication it requires. We choose
it as an example to illustrate an extreme behavior of the performance costs under
analysis. The paper [44] uses de Bruijn’s graphs to solve linear consensus and
gives detailed and general results on these graphs and provides several useful
properties and characterizations. We will restrict here to a particular case. Let
k and n be two positive integers, and consider the graph G whose adjacency
matrix is the following

F = 1⊗ I ⊗ 1T

where the column vector 1 is k dimensional, the identity I is kn−1 dimensional
and the symbol ⊗ denotes Kronecker product. The graph G is called de Bruijn’s
graph [78], and it is displayed in Figure 3 in the case k = 2, n = 3.

4When G is not connected, then we assume by definition that ρ = 0.
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Figure 3: A de Bruijn graph with N = 8 nodes.

3 Electrical networks

It has been firstly stated in [65] the remarkable and deep analogy between
reversible Markov chains and electrical networks. We focus our attention on
Markov chains with symmetric P , which are a particular case of reversible
chains.

Define a resistive electrical network as a pair (G, C), or equivalently (G, R),
where

• G is an undirected graph (without self-loops), with N vertices, and M
edges;

• C and R are two functions C : E → [0,+∞) and R : E → [0,+∞). They
both associate with each edge of the graph a strictly positive number,
called respectively the conductance and the resistance of the edge, one
the inverse of the other.

Actually, we can assume that any non-existing edge has zero conductance or
infinite resistance.

Recall that in an undirected graph to any connected pair of nodes corre-
sponds two directed edges, one for each direction. For this reason we start from
a map C : E → [0,+∞) such that C((u, v)) = C((v, u)). We define the matrix
C ∈ RM×M as a diagonal matrix with diagonal entries equal to the conduc-
tances on the edges, namely Cee = C(e) for all e ∈ E . We denote the Laplacian
of the network by LC := ATCA. Recalling that A1 = 0, we immediately have
LC1 = 0. Using the notion of incidence matrix, it is immediate to obtain

[LC ]uv = [ATCA]uv =


2cu if u = v

−2C(e) if (u, v) = e ∈ E
0 if (u, v) /∈ E

, (9)

where cu :=
∑
e|u=t(e) C(e) is the sum of all the conductances of the edges

ending in u.
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We define the effective resistance between two nodes u and v in the electrical
network (G, C) as the quantity

Ruv(G, C) =
vu − vv

I
, (10)

where vu and vv are the potentials at the nodes u and v when we inject a current
of value I into u and we extract the same from v.

We are now going to obtain the effective resistance between two nodes in
terms of a matrix depending on LC . This procedure is quite well known, see
for example [79]. Consider any vector i ∈ RN such that 1T i = 0, and assume
to inject (or extract if negative) the current iu into the node u of the network,
for any node. Since 1T i = 0, the total current injected into and extracted from
the network is zero and this is a necessary condition for the problem to be well-
posed. The current i injected into the network induces the potentials v ∈ RN at
the nodes and the currents j ∈ RM on the edges. Potentials and currents must
satisfy both Kirchhoff’s current law and Ohm’s law, which can be represented
by the following linear system {

AT j = i
CAv = j

(11)

which in turn implies LCv = ATCAv = i. We solve the electrical equations
of the network if we are able to find v and j from i. It is clear that v is not
uniquely determined by (11), since, if v is a solution, then also v + α1 is a
solution. We have to impose a constraint on v in order to ensure the solution
to be unique. We will assume in this paper that v has zero mean, namely we
impose vT1 = 0. In this way we can rewrite (11) and the constraint on v in the
following matrix form [

LC 1
1T 0

] [
v
0

]
=

[
i
0

]
. (12)

In order to find v, we introduce the so called Green matrix of LC , or of the
electrical network, which is the unique matrix XC such that{

LCXC = I − 1
N 11T

1TXC = 0
. (13)

We can write XC in closed formula as follows

XC = (LC +
1

N
11T )−1 − 1

N
11T . (14)

This formula holds since LC + 1
N 11T is positive definite and thus invertible.

Indeed, we have that

xT (LC +
1

N
11T )x = xTATCAxT +

1

N
(1Tx)2,

where the right hand is the sum of two nonnegative terms. Since C > 0, in order
the sum to be zero, the vector x must satisfy{

Ax = 0

1Tx = 0
.

10



Since the first constraint implies x = α1 (recall that, since the graph is con-
nected, kerA = span {1}), the second implies α = 0, yielding in this way that
LC + 1

N 11T is positive definite.
The following lemma rewrites this expression in terms of power series.

Lemma 3.1. Let α ≥ 1
2λmax, where λmax is the largest eigenvalue of the sym-

metric positive semi-definite matrix LC . Then

XC =
1

α

∑
t≥0

(
(I − 1

α
LC)t − 1

N
11T

)
Proof. For any α ∈ R \ {0}, we can rewrite (14) as

XC =
1

α

[
(

1

α
LC +

1

N
11T )−1 − 1

N
11T

]
.

The condition α ≥ 1
2λmax ensures that all the eigenvalues of I − 1

αLC − 1
N 11T

lie in the interval (−1, 1), so we can write in power series

(
1

α
LC +

1

N
11T )−1 =

∑
t≥0

(
I − 1

α
LC −

1

N
11T

)t
.

The thesis now follows from the fact that LC1 = 0.

By construction, the Green matrix can be directly used to obtain v in (12),
yielding

v = XCi. (15)

Assume now that i = eu − ev. This corresponds to inject 1 Ampere into the
node u and extract 1 Ampere from the node v. Since vu−vv = vT i, by definition
(10) we can conclude that

Ruv(G, C) = vT i = (eu − ev)TXC(eu − ev).

Consider now a symmetric, stochastic, primitive matrix P ∈ RN . We build
an electrical network taking N nodes and setting C((u, v)) = Puv. If Puv = 0,
we assume that there is not an edge between u and v. Notice that this definition
implies that there are possibly nonzero conductances in the self loops.

From this definition of the electrical network, it is easy to obtain the following
relation between P and the Laplacian LC of the network

P = I − 1

2
LC .

This relation implies that the largest eigenvalue of LC satisfies λmax ≤ 4.
Thus we can use Lemma 3.1 with α = 2, obtaining

XC =
1

2

∑
t≥0

(
(I − 1

2
LC)t − 1

N
11T

)
,

and, in terms of P ,

XC =
1

2

∑
t≥0

(
P t − 1

N
11T

)
.
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We can thus compute the effective resistance between two nodes u and v in
the network build from P as follows

Ruv(G, P ) =
1

2
(eu − ev)TX(eu − ev),

where we define

X :=
∑
t≥0

(
P t − 1

N
11T

)
,

and where we use the notation Ruv(G, P ) in order to underline the role of P .
This relation, which is of interest by itself, will be used in order to analyze

the H2 performance index (Section 7).

4 The rate of convergence

The most classical performance index for the evaluation of the convergence of an
iterative algorithm is the speed of convergence of the algorithm output towards
its asymptotic value. It is well known from classical system theory that the
rate of convergence of the state x(t) to its asymptotic value is exponential. The
exponential rate of convergence is then defined as

R := lim
t→∞

(||x(t)− x(∞)||)1/t

where || · || denotes the 2-norm of a vector. Assume we are given a primitive
stochastic matrix P . By standard linear algebra it can be seen that R = ρ(P )
where ρ(P ) is the essential spectral radius of P

ρ(P ) := max{|λ| : λ ∈ Λ(P ) \ {1}}, (16)

where Λ(P ) is the set of all the eigenvalues of P . The relation between the
essential spectral radius of P and the topology of the graph GP associated
with P is a problem which has been widely studied both in the Markov chains
community and in the community studying the theory of graphs. In Markov
chain theory ρ(P ) is related to the so called mixing time of the Markov chain
having P as the transition matrix [80]. Spectral graph theory instead studies
the geometric properties of graphs using the so-called Laplacian matrix L of the
graph. This matrix is related to P via P = I −L, so that Λ(P ) = 1−Λ(L) and
the spectral properties of the two matrices essentially coincide. Once we sort in
increasing order the eigenvalues of L

0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN−1

the value λ2 is known as the Fiedler eigenvalue [81], or algebraic connectivity
of L. Its characteristics are closely related to those of ρ(P ). An extensive
treatment of these and many other graph–theoretic topics can be found in the
book [82].

Example: de Bruijn’s graphs

Consider the de Bruijn’s graph with N = kn we defined previously, and
assume that each node uniformly weights all its neighbors, namely the consensus
matrix is

P =
1

k
1⊗ I ⊗ 1T

12



where the column vector 1 is k dimensional and the identity I is kn−1 dimen-
sional. Notice that P defined in this way is not symmetric but it is doubly
stochastic and that the number of neighbors of each agent is exactly k. A
simple computation [44] shows that

Ph =
1

N
11T , ∀h ≥ k

where column vector 1 is here N dimensional. This means that with this matrix
the state converges to consensus in at most n = logkN steps. It is possible to
show that there exists no kn × kn stochastic matrix for which we have faster
convergence. Notice finally that P has the minimum possible essential spectral
radius since ρ(P ) = 0.

4.1 Bounds on the convergence rate for general graphs

One of the major issues in research on consensus algorithms and Markov chains
is to understand how to bound the essential spectral radius of P in terms of
geometric parameters of the network.

In the sequel we will briefly recall some classical results (see [83, 84, 85, 86,
87]). For simplicity, as already said, we will restrict our attention to symmetric
stochastic matrices. If P is symmetric, then its eigenvalues are real, and in the
sequel we will assume that they are ordered in such a way that 1 = λ0 > λ1 ≥
λ2 ≥ · · · ≥ λN−1. Notice that in this case we have that

ρ(P ) = max{λ1,−λN−1}

Therefore the second largest eigenvalue λ1 will play an important role in deter-
mining bounds on ρ(P ). Indeed, if we find bounds on λ1 and on −λN−1 we can
get an upper bound on ρ(P ) too. Applying Gershgorin circle theorem we can
argue that

−λN−1 ≤ 1− 2 max
i
{Pii}.

Therefore, the difficulty in finding bounds on ρ(P ) essentially stands in finding
bounds on λ1. This eigenvalue will be denoted with the symbol λ1(P ).

The well-known Rayleigh-Ritz theorem (see [88]) proves to be a helpful tool
in bounding λ1(P ). Rayleigh-Ritz theorem, in our case of P symmetric, coin-
cides with the following variational characterization of

1− λ1(P ) = min

{
xT (I − P )x

xTΩx
,x 6= α1

}
, (17)

where Ω = I − 1
N 11T is the projector over span {1}⊥.

This characterization is the basis of several results relating geometric param-
eters of the graph associated with the stochastic matrix P to its second largest
eigenvalue. We will briefly review two among the most important ones, namely
the Poincarè and the Cheeger inequalities. For the proof of both of them, we
refer to [83].

4.1.1 Poicarè inequality

Let P be a symmetric stochastic matrix and let GP = (V, E) be the undirected
graph associated with P . For any couple (u, v) ∈ V × V , u 6= v, let γuv be a

13



path from u to v. Namely, γuv is a set of edges γuv = {e0, . . . , el} such that
e0 = (u, u1), ei = (ui, ui+1) ∀ i = 1, . . . , l− 1 and el = (ul, v). We will assume
that in a path a vertex can be touched many times, while an edge may appear
at most once. We define the following weighted length of the path γuv

|γuv|P =
∑
e∈γuv

P (e)−1

where e are the edges forming γuv and P (e) = pz,w if e = (z, w).
Let Γ be a collection of such paths, one for each pair (u, v). We associate

to Γ the following quantity

κ = κ(Γ) = max
e∈E
{
∑
γuv3e

|γuv|P } (18)

namely κ is the maximum, as e varies over E , of the sum of |γuv|P for all the
paths γuv in which e appears as an edge.

This value has an immediate, intuitive, interpretation. We take, for any
path, the measure of the resistance to the flow of information through that
path. Then, we maximize it over the edges of the graph, obtaining thus a
measure of the bottleneck in the network. This bottleneck influences the rate
of convergence to the asymptotic distribution of the states as stated in the
following theorem.

Theorem 4.1. The second largest eigenvalue of P satisfies

λ1(P ) ≤ 1− N

κ
, (19)

with κ defined in (18).

This inequality is fundamentally an edge-perspective bound. It links ge-
ometric properties of paths along the network with the rate of convergence.
Intuitively, less information can flow along the paths considered, the slowest is
the convergence.

4.1.2 Cheeger inequality

In this section the interest is switched from paths to “surfaces”, giving the
definition of Cheeger ratio, as well as the relation between such quantity and
the second largest eigenvalue. Unfortunately, even if the computation of the
bound is someway simpler, this approach has been proved to offer less effective
results over large families of graphs if compared with the Poincarè inequality
[86].

Let P be a symmetric stochastic matrix and let GP = (V, E) be the undi-
rected graph associated with P . Take a proper subset S ⊆ V of the nodes. It is
rather intuitive that the flow of information from the set S to its complement
SC = V \ S is linked to the transition probability from S to SC . We can thus
consider the conditional expectation of crossing the boundary of S given that
we started from S, and minimize it over any possible set S. We obtain in this
way the so called Cheeger ratio

h(P ) = min
S:|S|≤N

2

{
P (S × SC)

|S|

}
, (20)
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where S ⊆ V and P (S × SC) =
∑

(x, y)∈S×SC Pxy.
This quantity can be used in order to derive both an upper and a lower

bound on the second largest eigenvalue, as stated in the following result.

Theorem 4.2. The second largest eigenvalue of P satisfies the following in-
equalities

1− 2h(P ) ≤ λ1(P ) ≤ 1− h(P )2, (21)

with h(P ) defined in (20).

4.2 Bounds on the convergence rate for Cayley matrices
and d-dimensional tori

In this section we will present the results about the rate of convergence for
the class of Cayley matrices and d-dimensional tori. Details and proofs can be
found for example in [43, 85, 40]. Consider the class of Cayley matrices and
d-dimensional tori with respect to the group Zdn with given d and n. Notice
that N = nd. Assume that the graphs belonging to this class have the self loops
and that they are connected. Recall from section Sect. 2.1 the definition of l
and δ.

The following theorem provides an upper bound on λ1(P ). We don’t give
the proof of this result because it follows the same lines of the proof of Theorem
5.2 which treats a more general case.

Theorem 4.3. Let P be a symmetric stochastic Cayley matrix with respect to
the group Zdn whose associate graph GP is in the previous class of d-dimensional
tori characterized by the parameter h as described above. Assume that all the
nonzero entries of P lie in an interval [pmin, pmax]. Then

λ1(P ) ≤ 1− C 1

n2

where C is a strictly positive constant depending on d, l and pmin.

The following theorem instead provides a lower bound on λ1(P ). We give
the proof of this result because this theorem will be instrumental in the proof
of the more general result given in Theorem 5.1.

Theorem 4.4. Let P be a symmetric stochastic Cayley matrix with respect to
the group Zdn whose associate graph GP is in the previous class of d-dimensional
tori characterized by the parameter δ as described above. Then

1− C 1

n2
≤ ρ(P )

where C is a strictly positive constant depending on d and δ.

Proof. First observe that, since ρ(P ) = max{λ1,−λN−1}, it is enough to prove
that

λ1 ≥ 1− C ′ 1

n2

From the properties of the Cayley matrices [89] we can argue that the eigenvalues
of P are given, for any h = (h1, . . . , hd) ∈ Zdn by the formula

λh =
∑
k∈Zd

n

Pk,0 cos

(
2π

n
kTh

)
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Take h = ei, where ei is the canonical vector defined above (see Sect. 2.1).
Then, using the fact that cosx ≥ 1− x2/2 and the definition of the generator g
of the matrix, we have

λei =
∑
k∈Zd

n

g(k) cos

(
2π

n
ki

)
≥
∑
k∈Zd

n

g(k)

(
1− 2π2

n2
k2
i

)
= 1−

∑
k∈Zd

n

g(k)k2
i

 2π2

n2

This in turn implies the thesis as follows

ρ(P ) ≥ 1− min
i=1,...,d

∑
k∈Zd

n

g(k)k2
i

 2π2

n2

≥ 1− 1

d

d∑
i=1

∑
k∈Zd

n

g(k)k2
i

 2π2

n2

= 1− 1

d

∑
k∈Zd

n

g(k)||k||2
 2π2

n2

≥ 1− 2π2δ2

d

1

n2

It is possible to obtain a similar result if we consider instead of Cayley
matrices, more general matrices which are consistent with d-dimensional tori.
We start from the following theorem providing an upper bound on λ1(P ). We
don’t give the proof of this result because it follows the same lines of the proof
of Theorem 5.2 which treats a more general case.

Theorem 4.5. Let P be a symmetric stochastic matrix whose associate graph
GP is in the previous class of d-dimensional tori characterized by the parameter
h as described above. Assume that all the nonzero entries of P lie in an interval
[pmin, pmax]. Then

λ1(P ) ≤ 1− C 1

n2

where C is a strictly positive constant depending on d, l and pmin.

We give finally a lower bound on ρ(P ). For this result we consider the case
in which the stochastic matrices are not restricted, as in the rest of the paper,
to be symmetric, but we give the result for the more general class of reversible
matrices. This because this theorem in this form will be a step in the proof of
the more general result given in Theorem 5.1.

A stochastic matrix P is called reversible [83] with respect to the diagonal
matrix Π if

PTΠ = ΠP

This means that P is a self adjoint operator with respect to the inner product
〈x, y〉 := xTΠy. Notice that a stochastic matrix is symmetric if and only if
it is reversible with respect to the identity matrix. Notice moreover that the
eigenvalues of a reversible stochastic matrix P are real, and that if πT = 1TΠ

16



and πT1 = 1, then πT is the normalized left eigenvalue of P associated to 1, co-
herently with the notations adopted so far. We will assume that the eigenvalues
of P are ordered in such a way that 1 = λ0 > λ1 ≥ λ2 ≥ · · · ≥ λN−1.

Theorem 4.6. Let P be a stochastic matrix which is consistent with a graph
G which belongs to the previous class of d-dimensional tori characterized by the
parameter δ as described above. Assume moreover that P is reversible with
respect to a diagonal matrix Π = diag (π1, . . . , πN ). Then

1− C 1

n2
≤ ρ(P )

where C is a strictly positive constant depending on d, δ and πmin/πmax, where
πmin := mini{πi} and πmax := maxi{πi}.
Proof. First observe that, since ρ(P ) = max{λ1,−λN−1}, it is enough to prove
that

λ1(P ) ≥ 1− C ′ 1

n2

Observe moreover that (17) can be adapted to reversible stochastic matrices as
follows

µ1 = min

{
xTΠLx

xT (Π− ππT )x
, x 6= α1

}
where L := I − P and µ1 is its second largest eigenvalue. Consider now for
any h ∈ G := Zdn the operator σh over the matrices in RG×G defined by letting
σh(P )i,j := Pi+h,j+h. Notice that

P̄ :=
∑
h∈G

σh(ΠP )

is still compatible with the graph G and moreover it is a symmetric Cayley
matrix with respect to the group G. Let 1 = λ̄0 > λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄N−1 be
the eigenvalues of P̄ . Let moreover L̄ := I − P̄ and µ̄1 be its second largest
eigenvalue. Then we have that

µ̄1 = min

{
xT L̄x

xTΩx
, x 6= α1

}
= min

{
1

xTΩx
xT

(∑
h∈G

σh(ΠL)

)
x, x 6= α1

}

≥
∑
h∈G

min

{
1

xTΩx
xTσh(ΠL)x, x 6= α1

}

=
∑
h∈G

min

{
xTΠLx

xTΩx
, x 6= α1

}

= N min

{
xTΠLx

xTΩx
, x 6= α1

}
≥ N2π2

min min

{
xTΠLx

xT (Π− ππT )x
, x 6= α1

}
≥

(
πmin

πmax

)2

µ1
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The last inequalities are motivated by the fact that

xT (Π− ππT )x =
1

2

∑
uv

(xu − xv)2πuπv ≥ π2
min

1

2

∑
uv

(xu − xv)2

= Nπ2
minx

TΩx

and that πmax ≥ 1
N .

Considering that, by Theorem 4.4 we have that µ̄ ≤ C/n2 for some constant
C, we get that the previous inequality implies that

λ1 = 1− µ1 ≥ 1−
(
πmax

πmin

)2

µ̄1 ≥ 1−
(
πmax

πmin

)2
C

n2

5 Bounds on the convergence rate for geometric
graphs

In this section we will analyze the rate of convergence, namely the second largest
eigenvalue in absolute value, of a generic symmetric stochastic matrix whose
associated graph is a geometric graph. Our aim is to obtain a lower and an upper
bound for such a quantity, and the tools used will be a Poincarè inequality-type
for the upper bound, and the state–aggregation approach for Markov Chains for
the lower bound. The procedure is similar to the one proposed in [40], where
the authors study the random geometric graphs [66] in dimension d and show
that the rate of convergence in such graphs is with high probability the same as
the rate of convergence of a d-dimensional grid. Here we obtain a similar result
for our deterministic model of geometric graphs. We start from the lower bound
given in the following theorem whose proof is given in the appendix.

Theorem 5.1. Let P be a symmetric stochastic matrix whose associate graph
GP is a geometric graph with parameters (N, d, `, s, r, γ, ρ), where we assume
that ` ≥ 4γ. Then

1− C

N2/d
≤ ρ(P ) (22)

where C is a strictly positive constant depending on the parameters d, s, r, γ
and ρ but not on `, N .

We will give now an upper bound on the second largest eigenvalue of a
symmetric stochastic P whose associated graph is a geometric graph and whose
entries lie in an interval [pmin, pmax]. The proof of this theorem, given in the
appendix, makes use of the Poincarè inequality given in Eq. 19.

Theorem 5.2. Let P be a symmetric stochastic matrix whose associate graph
GP is a geometric graph with parameters (N, d, `, s, r, γ, ρ), where we assume
that ` ≥ 4γ. We assume moreover that all the nonzero entries of P belongs to
[pmin, pmax]. Then

λ1(P ) ≤ 1− C

N2/d
(23)

where C is a strictly positive constant depending on the parameters pmin, d, s,
r, γ and ρ but not on `, N .
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5.1 Applications

As a first example of application of the previous theorem we can consider the
regular grid of N = n2 nodes on the plane. In this case the nodes are deployed
in a square of edge length equal to ` = n − 1 and have coordinates i, j with
i, j ∈ {0, . . . , n − 1}. In this scenario, it is clear that the distance among any
pair of nodes is 1 and so we have that s = 1. Moreover the communication
range is r = 1 and the disks which do not contain any node have radius which
is at most γ =

√
2/2. Moreover, given a pair of nodes, it can be seen that

the minimum of the ratio between the nodes Euclidean distance and graphical
distance is ρ =

√
2/2. The regular grid it thus a geometric graph with these

parameters, and so, if P is a symmetric stochastic matrix having the regular
grid as its associated graph, then we can apply Theorem 5.2 which yields the
well known result

λ1 ≤ 1− Cr
1

N
,

where Cr is a strictly positive constant depending only on the minimum value
of the entries of P associated with the edges of the grid.

Figure 4: Perturbation of the regular grid.

Consider now a perturbation of such a grid. We take the same set of nodes, in
the same positions, and we modify the communication topology as illustrated
in Fig. 4. It is clear that in this case r, s and γ remain the same as in the
previous example. Only the parameter ρ changes. It can be seen that ρ is
determined by any two nodes at Euclidean distance 1 which are not neighbours
in the perturbed grid. The application of Theorem 5.2 yields

ρ(P ) ≤ 1− Cp
1

N
.

where Cp is a strictly positive constant depending only on the minimum value
of the entries of P associated with the edges of the grid. Notice that in both
the grid and in the perturbed grid the number of node is N = n2. On the other
hand in the regular grid we have 2n(n − 1) edges, while in the perturbed grid
we have 3

2n(n− 1) edges. As shown in the proof of Theorem 5.2, the constants
Cr and Cp are proportional to ρ and so Cp = 1√

2
Cr. This means that, in this
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case, even dropping one fourth of the edges yields a rate of convergence with
the same behavior in N and a different constant.

6 A time-dependent H2 performance index

The application of the consensus algorithm to static estimation highlights a
new performance index which is of H2 type and will be called time dependent
in order to distinguish it from another H2 type performance index which will
be introduced in the next section. More details on the time-dependent H2

performance index can be found in [90].
We assume that N sensors are deployed in an environment and that they

are all able to measure a certain value θ, which is corrupted by noise, namely
each sensor i obtains

yi = θ + ni, i = 1, . . . , N.

We assume that ni are independent random variables with zero mean and vari-
ance σ2. In order to obtain an estimate of θ, we run a consensus setting
xi(0) = yi in order to obtain average of yi’s. However such an average can
be obtained only asymptotically, while at tim t each sensor knows xi(t) which
can be considered its of θ at time t. A natural performance index in this context
is the time t estimation error.

While for the rate of convergence, the increase of the number of agents
in general yields a performance degradation due to the decrease of the graph
connectivity, intuitively we expect that this is not true for the estimation error.
Indeed in this case a larger number of sensors should cause, on the one hand,
a more difficult communication, but, on the other, a better estimate due to the
presence of more measurements. In this section we try to correctly highlight
this trade-off.

In order to do this, we take as measure of performance the variance of the
difference between the estimate x(t) and the true value θ, normalized over the
number of agents, namely we want to compute

JH2
(P, t) =

1

N
E
[
e(t)Te(t)

]
(24)

where e(t) = x(t) − θ1. Observe that, since P in the consensus algorithm is
symmetric and stochastic, then E[e(t)] = θ, namely the estimator is unbiased.

It turns out that

JH2(P, t) =
σ2

N
TrP 2t =

σ2

N

∑
λ∈Λ(P )

λ2t.

Example: de Bruijn’s graphs

In the case of de Bruijn’s graphs with N = nk, we have

JH2(P, t) =

{
1
nt , 0 ≤ t < k
1
N , t ≥ k (25)

so the finite time convergence of the algorithm to the steady state can be seen
also in such performance index. Notice that JH2

(P, t) ≥ 1
N for any P and any
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t, so that de Bruijn’s graphs are optimal for this index as they are concerning
the rate of convergence.

Notice that, differently from the rate of convergence, this performance index
depends on all the eigenvalues of P . No bounds for this performance index are
known for general matrices P . Interesting bounds instead have been found in
the special case in which P is a Cayley matrix.

6.1 Bounds on the time-dependent H2 performance index
for Cayley matrices

Before proposing the general result, we prefer to present a simple example.
Consider the following consensus matrix

P =



1/3 1/3 0 · · · · · · 1/3
1/3 1/3 1/3 · · · · · · 0
0 1/3 1/3 1/3 · · · 0
...

...
. . .

. . .
. . .

...
0 · · · · · · 1/3 1/3 1/3

1/3 · · · · · · 0 1/3 1/3


(26)

whose associate graph is shown in Fig. 1. The essential spectral radius of P is
ρ(P ) = 1 − C/N2. This shows that, as N grows, the convergence of the algo-
rithm tends to be very slow. Nonetheless we expect that, in case of distributed
estimation, the presence of more sensors should instead improve performance.
Figure 5 depicts JH2

(P, t) as a function of t, for various values of N .

0 20 40 60 80 100 120 140 160 180 200
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N=24
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N=18

N=

J(PN,t)

8

Figure 5: Time–dependent H2 performance index for a Cayley matrix.

For any fixed N , we have evolutions which exponentially converge (with rate
∼ 1−C/N2) to the constant value 1/N . The different curves become lower as N
grows, and their envelope, which corresponds to the limit for N →∞, converges
to zero for t→∞.
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The general bounds we will give in the theorem below show that indeed the

asymptotic behavior of JH2(P, t) in this example is given by max
{

1
N ,

1√
t

}
. In

particular, for N =∞, we have that JH2(P, t) converges to zero as 1/
√
t. This

result shows that increasing N does not have the disadvantages predicted by
observing that the essential spectral radius of P tends to 1 as N tends to infinity.
Nevertheless, a further look at Figure 5, gives a caveat against the choice of too
large values of N . Indeed, when the number of iterations t is finite, there is
a bound on the number of nodes being truly useful, after which there is no
improvement in adding new nodes. This is intuitive, as at time t there is no
way for a node to use information coming from other agents further than t steps
apart.

We give now the general result which has been proposed in [90].
Consider the class of Cayley matrices with respect to the group Zdn with

given d and n. Assume that the associated d-dimensional tori have the self
loops and that they are connected. Recall from section Sect. 2.1 the definition
of l and δ.

Theorem 6.1. Let P be a symmetric stochastic matrix whose associate graph
GP is in the previous class of d-dimensional tori characterized by the parameters
l and δ as described above. Assume that all the nonzero entries of P lie in an
interval [pmin, pmax]. Then

C ′max

{
1

N
,

1

td/2

}
≤ JH2

(P, t) ≤ C ′′max

{
1

N
,

1

td/2

}
, (27)

where C ′, C ′′ are a strictly positive constant depending on d, l, δ and pmin.

7 H2 performance index

The performance index we are going to present in this section arises in the
analysis of the consensus algorithm corrupted with additive noise [91, 92, 57].
Assume that the consensus iteration is corrupted by additive noise as follows

x(t+ 1) = Px(t) +w(t),

where w(t) is an i.i.d. process with zero mean and variance E[w(s)w(t)T ] =
Rδ(s−t), where δ(t) is the Kroenecker delta function and R is a positive semidef-
inite matrix. For sake of simplicity, assume R = I. Assume moreover x(0) and
w(s) are uncorrelated for all s ≥ 0. Define the dispersion of x(t) around its
center of mass as

x̃(t) = x(t)− xA(t) := x(t)− 1

N
11Tx(t) = Ωx(t)

where Ω = I − 1
N 11T . The vector x̃(t) describes the distance from consensus.

In this case a reasonable performance metrics is given by

JH2
(P ) =

1

N
lim sup
t→∞

E[||x̃(t)||2],

Observe that

x̃(t) = P tx̃(0) +

t−1∑
i=0

P t−1−iΩw(i)
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and thus, if x(0) is zero mean, E[x̃(t)] = 0, ∀ t ≥ 0. Denote by Σ(t) =
E[x̃(t)x̃(t)T ]. Notice that JH2

(P ) = Tr Σ(∞). The matrix Σ(t) can be com-
puted as follows

Σ(t) = P tΣ(0)(PT )t +

t−1∑
i=0

P iΩΩT (PT )i.

Since ΩΩT = Ω and since P tx̃(0) converges to zero, we can argue that

Σ(∞) =
∑
t≥0

P tΩ(PT )t.

and hence

JH2
(P ) =

1

N
Tr
∑
t≥0

P tΩ(PT )t. (28)

Since P is symmetric, the previous performance index can be rewritten as

JH2(P ) =
1

N

∑
λ∈Λ(P ), λ 6=1

1

1− λ2
. (29)

This index describes a different performance feature of the standard consen-
sus algorithm. In classic control a way to describe the transient performance of
a control strategy is through the position of the dominant eigenvalues. This is
analogous of taking the essential spectral radius of P as a performance index
for the consensus algorithm. In control however there are other indices used for
the transient evaluation, such as, for instance, the L2 norm of the tracking error
trajectory. We can do something similar for the consensus algorithm, namely
we can take the usual consensus iteration (1), and take the index

1

N

∑
t≥0

E||x(t)− x(∞)||22 = x(0)T

 1

N

∑
t≥0

P tΩ(PT )t

x(0),

If we assume that the initial state x(0) is a random vector with E[x(0)x(0)T ] =
I, then the previous index is equal to JH2(P ).

7.1 Bounds on the H2 performance index for Cayley ma-
trices

Concerning d-dimensional tori, from [92] we know the following interesting re-
sult. Consider the class of Cayley matrices with respect to the group Zdn with
given d and n. Assume that the associated d-dimensional tori have the self loops
and that they are connected. Recall from section Sect. 2.1 the definition of l
and δ, and define

f(N, d) :=


N, d = 1

logN d = 2

1, d ≥ 3

.
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Theorem 7.1. Let P be a symmetric stochastic matrix whose associate graph
GP is in the previous class of d-dimensional tori characterized by the parameters
l and δ as described above. Assume that all the nonzero entries of P lie in an
interval [pmin, pmax]. Then

C ′f(N, d) ≤ JH2
(P ) ≤ C ′′f(N, d) (30)

where C ′, C ′′ is a constant depending on d and l, on δ and on pmin.

7.2 Electric analogy and bounds on the H2 performance
index for geometric graphs

Recall from Section 3 that there is a relation between a symmetric stochastic
matrix and a suitable electrical network. In particular, by exploiting the relation
between the effective resistance and the Green matrix of the electric network,
we obtain the following theorem. For the details and the proof of the theorem
see [93]. A similar result, applied to a different problem, can be found also in
[94].

Theorem 7.2. Given a stochastic, symmetric, primitive matrix P , then

JH2
(P ) = R(GP 2 , P 2) :=

1

N2

∑
u6=v

Ruv(GP 2 , P 2). (31)

Namely, JH2
(P ) is the average of the effective resistances in a network build

from P 2.

The result of this theorem can be significantly simplified using the following
argument. Assume that all the nonzero entries of P lie in an interval [pmin, pmax]
and that the maximum degree of the agents in the network is dg. By exploiting
the properties of the effective resistance (see [65, 73]) it is possible to bound
from above and from below the average effective resistance R(GP 2 , P 2) in the
following way

c1R(GP ) ≤ R(GP 2 , P 2) ≤ c2R(GP ),

whence the performance index is bounded by

c1R(GP ) ≤ JH2
(P ) ≤ c2R(GP ). (32)

In these inequalities c1 and c2 denote two strictly positive constants depending
only on pmin, pmax and dg, and R(GP ) denotes the average effective resistance
in an electrical network with graph GP and having all resistances set to 1 Ohm.
This result is particulary interesting because we can focus our attention to the
graph GP , rather than on the particular matrix P . Indeed, we can achieve in
this way the following result, in which again

f(N, d) =


N, d = 1

logN d = 2

1, d ≥ 3

.
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Theorem 7.3. Let P be a symmetric stochastic matrix whose associate graph
GP is a geometric graph with parameters (N, d, `, s, r, γ, ρ). We assume moreover
that all the nonzero entries of P belongs to [pmin, pmax]. Then

C ′f(N, d) ≤ JH2
(P ) ≤ C ′′f(N, d) (33)

where C ′ and C ′′ are two constants depending on d, on the parameters s, r, γ,
ρ, dg, and on pmin, and C ′′ depending on pmax too.

8 Conclusions

This paper is devoted to gather many results developed by the scientific commu-
nity in the last years concerning the evaluation of the performances of consensus
algorithms. It was shown that many performance indices can be defined in rela-
tion to the specific applications in which the consensus algorithm is employed.
Moreover, it is investigated the influence of the communication topology on
these performance indices. Geometric graph topologies are considered both in
the general case and in the more structured case in which the graphs satisfy
some symmetries, namely for d-dimensional tori. While for some performance
indices, there is a quite complete understanding, for others the research is still
at its first steps and many important questions remain still open, especially in
understanding the influence of more general classes of graph topologies.

A Proofs of Theorem 5.1

The proof of this theorem is very difficult and to present it we need to introduce
some notation and some lemmas. Given a connected graph G let

ρ(G) := min{ρ(P ) : P primitive symmetric stochastic matrix consistent with G}

namely ρ(G) denotes the minimum ρ(P ) when P varies in the set of symmetric,
stochastic, primitive matrices consistent with G. Notice that the matrix attain-
ing such minimum might be not unique. It is clear that lower bound in the
thesis of the theorem is proved if we prove that

ρ(G) ≥ 1− C

N2/d
. (34)

Now we give a lemma which will be useful in the proof of the theorem.

Lemma A.1. Let P,M ∈ RN×N be symmetric stochastic matrices and assume
that P is primitive. Then

ρ(MPM) ≤ ρ(P ).

Proof. Notice first that

ρ(MPM) = max

{ |yTMPMy|
yT y

, y ⊥ 1, y 6= 0

}

ρ(P ) = max

{ |xTPx|
xTx

, x ⊥ 1, x 6= 0

}
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To prove that ρ(MPM) ≤ ρ(P ) it is sufficient to prove that for any y 6= 0 such
that 1T y = 0, there exists x 6= 0 such that 1Tx = 0 such that

|yTMPMy|
yT y

≤ |x
TPx|
xTx

.

In finding x we distinguish two cases:

1. In case My 6= 0, we let x := My. Notice that in this case we have that
x 6= 0 and that 1Tx = 1TMy = 1T y = 0. Notice finally that, since all the
eigenvalues of M are in [−1, 1], then yTMMy ≤ yT y and so

|yTMPMy|
yT y

≤ |y
TMPMy|
yTM2y

=
|xTPx|
xTx

.

2. In case My = 0, we let x to be any nonzero vector such that 1Tx = 0.

Proof of Theorem 5.1

Let h := b`/2γc and tessellate the hypercube Q into H := hd identical
hypercubes with edge of length ¯̀ := `/h. Notice that, since `/h ≥ 2γ then each
of such hypercubes contains at least one node of G. This implies that hd ≤ N .
Notice moreover that, from the assumption that ` ≥ 4γ, we can argue that

¯̀=
`

b`/2γc ≤
`

`/2γ − 1
≤ 4γ

We can define now a graph GL = (Q,L) having all hypercubes as nodes and
having as edges all the pairs (q′, q′′) of hypercubes such that, either q′ = q′′

(self-loops), or there exists (u, v) ∈ E with u ∈ q′ and v ∈ q′′. Notice that GL is
a subgraph of a d-dimensional torus over the group Zdn. Notice moreover that if
two nodes x, y ∈ Zdn are connected, then there exists (u, v) ∈ E with u ∈ qx and
v ∈ qy, with qx and qy the hypercubes correspondent to x and y respectively.
Identify now x ∈ Zdn with the center of its hypercube qx, and the same for y.
We can argue that

||x− y||¯̀= dE(x, y) ≤ dE(x, u) + dE(u, v) + dE(v, y) ≤ r + ¯̀
√
d

From this we can argue that x, y ∈ Zdn are connected only if ||x− y|| ≤ δ where
δ = r/2γ +

√
d.

Build now a new graph, G̃ = (V, Ẽ), which has the same set of nodes as G,
and has an edge connecting any couple of nodes u, v if and only if one of the
following two conditions hold:

1. u, v lie in the same hypercube,

2. u ∈ q′ and v ∈ q′′ and (q′, q′′) ∈ L.

Notice that, by construction, we have that E ⊆ Ẽ , namely G is embedded in
G̃ so that

ρ(G̃) ≤ ρ(G)
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since minimization in G̃ is subjected to a smaller set of constraints. Our aim is
now to lower bound ρ(G̃), since this will yield in turn a lower bound for ρ(G) as
well.

Let ni ≥ 1, i = 1, 2, . . . ,H, be the number of nodes inside the i-th hypercube
so that

∑H
i=1 ni = N . Assume that the nodes of G̃ are ordered in such a way

that the nodes ni−1 + 1, ni−1 + 2, . . . , ni end in the i-th hypercube. Introduce
the following matrices, D := diag (n1, . . . , nH) and

S :=


1n1

0 . . . 0 0
0 1n2 . . . 0 0
...

...
0 0 . . . 0 1nH

 ∈ {0, 1}N×H

Notice that M := SD−1ST is stochastic. Assume now that P G̃ be a symmetric,

stochastic, primitive matrix consistent with G̃ such that ρ(P G̃) = ρ(G̃). By the
definition of M it is easy to see that

MP G̃M =


p111n11

T
n1

p121n11
T
n2

. . . p1H1n11
T
nH

p121n2
1Tn1

p221n2
1Tn2

. . . p2H1n2
1TnH

...
...

p1H1nH
1Tn1

p2H1nH
1Tn2

. . . pHH1nH
1TnH

 .
where pij are the elements of the matrix P̃ = D−1STP G̃SD−1. By definition of

G̃ we have thatMP G̃M is compatible with G̃ and so ρ(MP G̃M) ≥ ρ(G̃) = ρ(P G̃).

On the other hand, by lemma A.1 we have that ρ(MP G̃M) ≤ ρ(P G̃), proving

in this way that ρ(MP G̃M) = ρ(G̃).

Let P̄ := D−1STP G̃S = P̃D. This is a stochastic matrix. It can be shown
that

Λ(MP G̃M) \ {0} ⊆ Λ(P̄ ) ⊆ Λ(MP G̃M) (35)

To prove (35) first observe that, if µ ∈ Λ(P̄ ) then there exists a nonzero vector
v such that P̄ v = µv. If we let ṽ := Sv 6= 0, then

MP G̃Mṽ = SD−1STP G̃SD−1STSv = SP̄v = Sµv = µṽ,

and so µ ∈ Λ(MP G̃M). Assume conversely that µ ∈ Λ(MP G̃M) \ {0}. Then

MP G̃Mṽ = µṽ for some nonzero vector ṽ. Let v := ST ṽ. Observe that v is
nonzero because otherwise we would have that µ = 0. Observe finally that

µv = µST ṽ = STMP G̃Mṽ = STSD−1STP G̃SD−1ST ṽ = P̄ v

This implies that µ ∈ Λ(P̄ ).
Notice that (35) implies that ρ(P̄ ) ≤ ρ(G̃) ≤ ρ(G) ≤ ρ(P ). It remains to

find a lower bound of ρ(P̄ ). Notice first that, if we define Π := N−1D, then we
have that

P̄TΠ = ΠP̄

This means that P̄ is a reversible stochastic matrix with respect to D. Notice
moreover that P̄ is compatible with the graph GL which is a subgraph of a
d-dimensional torus with respect to the group Zdh in which two nodes x, y ∈ Zdn
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are connected only if ||x − y|| ≤ δ, where δ = r/2γ +
√
d. Therefore we can

apply Theorem 4.6 to obtain

ρ(P̄ ) ≥ 1−
(
πmax

πmin

)2
C

h2
.

where C depends on d, γ and r.
Recall finally that, since each hypercube contains at least a node, then hd ≥

N . Notice moreover that πmax/πmin ≤ maxi{ni}. Observe that the volume of

the d-dimensional sphere of radius s/2 is Ad
(
s
2

)d
, where Ad = πd/2

Γ(d/2+1) . Then,

by definition of s, we have that

niAd

(s
2

)d
≤ ¯̀d

and so

ni ≤
1

Ad

(
2¯̀

s

)d
≤ 1

Ad

(
8γ

s

)d
where we used the fact that ¯̀≤ 4γ. We can conclude that

ρ(G) = ρ(G̃) = ρ(P̄ ) ≥ 1− 1

Ad

(
8γ

s

)d
C

N2/d
.

B Proofs of Theorem 5.2

For simplicity we will develop the proof only for d = 2, showing at the end how
it is possible to generalize the result to any dimension.

For any pair of nodes x, y we build a path γxy connecting x and y as follows
(see Fig. 6). We first tessellate the square Q as we did in the previous proof,
namely by letting h := b`/2γc and by tessellating Q into h2 identical squares
with edge of length ¯̀ := `/h. Notice that, since `/h ≥ 2γ then each of such
squares contains at least one node of GP . As in the previous proof, we have that
h2 ≤ N and that ¯̀≤ 4γ.

Assume that, for any square q, we choose one of its nodes, denoted by uq,
as its representative node in such a square. Moreover, for any node v let uv be
the representative of the square x belongs to.

Take the two nodes x, y we want to connect. Assume that x is below with
respect to y. Link, via the shortest path, x to ux, the representative of the
square qx. Then, start proceeding upward, linking via the shortest path the
representatives of each of the neighbor squares till we reach a square which is
at the same height of the square qy containing y. Then, proceed left or right
with in a similar way. At a certain point, we will reach the representative uy of
qy, and then we will link uy with y via the shortest path.

Let Γ be the collection of these paths, one for each pair x, y. We want to
give an estimate of κ(Γ), where κ(Γ) is defined (18). By definition of |γxy|P ,
given (7), we have that

|γxy|P =
∑
e∈γxy

1

Pe
≤ 1

pmin
|γxy|,
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¯̀

D D

S1(x)

x

ux

y

uy

x

ux

y

uy

Figure 6: Building γxy. For each square, we choose a representative, which is
marked by a cross. We proceed from representative to representative upwards
and then leftwards (or rightwards). We can exit from the squares, but not from
stripes of width 2D.

≈ `

≈ N

z

Figure 7: Maximum usage of a node. Given z, we can use it if we start from a
node in the dark grey below it, which is a subset of S1(z). The number of nodes
in is region is proportional to ` ≈ N1/d. Once we used z, we can possibly reach
any node in the soft grey region. The number of nodes in this region is, in the
worst case, proportional to the number of nodes in the network, N .
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where |γxy| is the length of the path γxy, namely the cardinality of {e ∈ E : e ∈
γxy}. We want to upper bound |γxy|. We will start by bounding the graphical
distance between two representatives u and v of neighbor squares. Observe that
dE(u, v) ≤

√
5¯̀≤ 4

√
5γ, and so

dG(u, v) ≤ dE(u, v)

ρ
≤ 4
√

5
γ

ρ

Through similar arguments it can be proved that

dG(x, ux) ≤ dE(x, ux)

ρ
≤ 4
√

2
γ

ρ
, dG(y, uy) ≤ dE(y, uy)

ρ
≤ 4
√

2
γ

ρ

Now, observe that a path in Γ touches at most 2h squares, so including the
starting and the ending points, we have that

|γxy| ≤ 8
√

5
γ

ρ
h+ 8

√
2
γ

ρ
≤ 8(
√

5 +
√

2)
γ

ρ
h (36)

Now, given an edge e, we have that∑
γxy3e

|γxy|P ≤ 8(
√

5 +
√

2)
γ

pminρ
h|{γxy|γxy 3 e}|. (37)

Hence, it remains to bound the maximum number of paths which cross a
certain edge. To do this we will bound the number of paths which cross a certain
node (see Fig. 7). Assume that a node z belongs to γxy. We want to understand
where z has to be with respect to x, y. Let

D := 4
√

5
rγ

ρ
+ 4γ ≥

√
5
r ¯̀

ρ
+ ¯̀

which is a constant depending only on γ, ρ and r. We show now that

z ∈ S1(x) ∪ S2(y) (38)

where for any point w ∈ Q we define

S1(w) := {w′ ∈ Q : |w1 − w′1| ≤ D}, S2(w) := {w′ ∈ Q : |w2 − w′2| ≤ D}

and where w1 and w2 denote the two coordinates of the point w ∈ Q. Namely,
S1(w) is a “vertical stripe” centered in w and of width 2D, S2(w) is the hori-
zontal analogous.

We distinguish various cases:

1. If z belongs to the shortest path between x and the representative ux of
the square x belongs to, then since the path from x to ux is the shortest
possible, dG(x, z) ≤ dG(x, ux) ≤

√
2¯̀/ρ. This implies

dE(x, z) ≤ rdG(x, z) ≤
√

2
r ¯̀

ρ
≤ D

and hence |x1 − z1| ≤ dE(x, z) ≤ D.
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2. In an analogous way it can be shown that, in case z belongs to the shortest
path between y and uy, then |y2 − z2| ≤ D.

3. If z belongs to the shortest path between u and v, which are representatives
of neighbor squares in the vertical portion of the path from x, then |x1 −
u1| ≤ ¯̀ and moreover, since dG(u, z) ≤ dG(u, v) ≤

√
5¯̀/ρ, we can argue

that

dE(u, z) ≤ rdG(u, z) ≤
√

5
r ¯̀

ρ

and so |x1 − z1| ≤ |x1 − u1|+ |u1 − z1| ≤ ¯̀+ dE(u, z) ≤ D.

4. In an analogous way it can be shown that, in case z belongs to the shortest
path between u and v, which are representatives of neighbor squares in
the horizontal portion of the path to y, we have that |y2 − z2| ≤ D.

Now we are able to bound the number of paths γxy which cross z. Indeed, if
γxy crosses z then (38) holds and so we can distinguish to cases:

(i) Assume that z ∈ S1(x). This holds if and only if x ∈ S1(z). Then the
number of γxy such that x ∈ S1(z) is upper bounded by

8

π

D`

s2
N.

In fact, such value is less than or equal to the number of nodes in the stripe
S1(z) multiplied by the total number of nodes N . The first quantity can
be upper bounded as before by the area of the stripe, 2D`, over the area
of a sphere of radius s

2 .

(ii) Assume in this case that z 6∈ S1(x). Then the number of γxy such that
x 6∈ S1(z) can be bounded as follows. Indeed observe from (38) that, if
x 6∈ S1(z), then y ∈ S2(z), and so the number of γxy such that x 6∈ S1(z) is
less than or equal to the number of nodes in S2(z) multiplied by the total
number of nodes N . This value is upper bounded by the same number
above.

Putting together the two cases, the number of paths γxy which cross z is
upper bounded by

8

π

D`

s2
N

Finally, by considering this last bound, with the bounds (37) and (36) we obtain
that

κ(Γ) ≤ 8(
√

5 +
√

2)
γ

pminρ
h

8

π

D`

s2
N ≤ 64(

√
5 +
√

2)γD

πpminρs2
4γN2.

where we used the fact that ` = ¯̀h ≤ 4γh and the fact that h2 ≤ N .
To conclude, by exploiting the Poicaré inequality, we have

λ1 ≤ 1− N

κ(Γ)
≤ 1− C 1

N
,

where C is a constant depending on the geometric parameters s, γ, r and ρ and
on pmin.
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In the general case, the whole reasoning still holds. What differs is the value
of many numerical constants, since for example the Euclidean distance among
the representatives of two neighbor hypercubes is in general dE(u, v) ≤

√
3 + d.

The most important difference lies however in the fact that now hd ≤ N , whence
` ≤ 4γN1/d. This yields

κ(Γ) ≤ C ′h`N ≤ CN1+2/d,

and thus Poincaré inequality implies

λ1 ≤ 1− C N

N1+2/d
= 1− C 1

N2/d
.
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