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Abstract

Quadcopters are increasingly used for applications ranging from hobby to industrial products and services.
This paper serves as a tutorial on the design, simulation, implementation, and experimental outdoor test-
ing of digital quadcopter flight controllers, including Explicit Model Predictive Control, Linear Quadratic
Regulator, and Proportional Integral Derivative. A quadcopter was flown in an outdoor testing facility and
made to track an inclined, circular path at different tangential velocities under ambient wind conditions.
Controller performance was evaluated via multiple metrics, such as position tracking error, velocity tracking
error, and onboard computation time. Challenges related to the use of computationally limited embedded
hardware and flight in an outdoor environment are addressed with proposed solutions.
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1. Introduction

As autonomous multicopters or drones become
more prevalent, emphasis on their performance and
safety grows. Small quadcopters are now consid-
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ered frequently for commercial use. Their perfor-
mance depends not only on their design but also on
their flight control system. Numerous approaches
to quadcopter control have been reported in the
literature. Practical implementation topics such as
in situ sensor calibration, vehicle parameter model-
ing, controller software, and real-time execution on
computationally limited platforms are of interest.

This paper investigates classical and modern
techniques for quadrotor flight control. The follow-
ing control algorithms are implemented and evalu-
ated: Proportional-Derivative (PD), Proportional-
Integral-Derivative (PID), Linear-Quadratic Regu-
lator (LQR), LQR with Integrators (LQR-I), and
Explicit Model Predictive Control (E-MPC). A
thorough tutorial of quadrotor flight controller de-
sign, simulation, implementation, and evaluation is
presented with the following contributions:

• Details of the design, software implementation,
and tuning of the quadcopter controllers with
emphasis on implementation in a computation-
ally limited embedded platform.

• Experimental results from outdoor flight tests
including a performance comparison of each
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Table 1: Nomenclature

îi, ĵi, k̂i Orthogonal unit vectors aligned with the in-
ertial coordinate frame

îb, ĵb, k̂b Orthogonal unit vectors aligned with the
body (quadcopter) coordinate frame

xi, yi, zi Position of the quadcopter geometric center

along the îi, ĵi, k̂i axes respectively[m]

ẋi, ẏi, żi Velocity of the quadcopter geometric center

along the îi, ĵi, k̂i axes respectively [m/s]

φ, θ, ψ Euler angles, quadcopter rotations around

the îi, ĵi and k̂i axes respectively [rad]

ωb
x , ω

b
y , ω

b
z Quadcopter rotation rates about the îb, ĵb

and k̂b axes respectively [rad/s]

rix, riy , riz Reference signals for position of the quad-

copter geometric center along the îi, ĵi, k̂i

axes respectively [m]

riẋ, riẏ , riż Reference signals for velocity of the quad-

copter geometric center along the îi, ĵi, k̂i

axes respectively[m/s]

riψ, ri
ψ̇

Reference signals for yaw and yaw rate re-
spectively [rad, rad/s]

T Total vertical thrust of quadcopter rotors
in body frame [N]

Thov Total vertical thrust required by quad-
copter to remain in hover condition for φ =
θ = 0 rad [N]

τx, τy, τz Torque of quadcopter rotors around the îb,

ĵb, k̂b axes respectively [N·m]

d Distance of each rotor to the geometric cen-
ter of the quadcopter [m]

ωss,i Steady state propulsor angular velocity zzz
i ∈ {1, 2, 3, 4} [RPM]

σi Normalized throttle signal in [0, 1] for mo-
tor i ∈ {1, 2, 3, 4}

ωb Steady state propeller angular velocity bias
[RPM]

CR Steady state propeller angular velocity pa-
rameter [RPM]

Tm Time constant of propulsor first-order dy-
namics

ωi Propulsor angular velocity zzzzzzzzzzzzz
i ∈ {1, 2, 3, 4}. [RPM]

CT Rotor thrust coefficient [kg·m]

CM Rotor moment coefficient [kg·m2]

Ti Thrust generated by propulsor zzzzzzzzzzzz
i ∈ {1, 2, 3, 4} [N]

Mi Moment magnitude generated by propulsor
i ∈ {1, 2, 3, 4} [N·m]

m Quadcopter mass [kg]

Jxx, Jyy, Jzz Quadcopter moment of inertia around the

îb, ĵb, k̂b axes, respectively [kg·m2]

Ts Sampling time [s]

sφ, cφ, tφ, Sine, cosine, and tangent of angle φ, respec-
tively.

controller’s ability to follow an inclined, cir-
cular path under varying ambient conditions.

• Design and implementation of ancillary autopi-
lot components such as state estimators to sup-
port full state feedback and actuator mapping.

Quadrotor or quadcopter modelling and control

has been frequently studied in the literature. In
Bouabdallah and Siegwart (2007), quadcopter aero-
dynamics were modelled using blade element and
momentum theory; a back-stepping, integral con-
troller was used for attitude and position control.
Maximum reference deviations of 3 cm and 20
cm were observed for attitude and position, re-
spectively. Similarly, in Hoffmann et al. (2007),
various aerodynamic effects experienced by quad-
copters at high speeds with wind disturbances were
presented and validated through thrust test stand
experiments and flight tests. In contrast to Bouab-
dallah and Siegwart (2007), a simple PID con-
troller was used for position and attitude control.
Powers et al. (2015) showed a simplified lumped
parameter model for quadcopter motor dynamics
and described the design and implementation of
continuous-time LQR and nonlinear controllers. A
nano quadcopter with a linear controller was com-
manded in tests to fly in a circular trajectory of
radius 0.5 m with a maximum acceleration of 0.008
m/s

2
. Errors of 10 cm and 1 cm were observed along

the horizontal and vertical planes, respectively.
Quadcopter PID control is studied in Dong et al.

(2013) and Bolandi et al. (2013). In both references,
quadcopter dynamics were linearized and treated as
decoupled around each axis to facilitate the imple-
mentation of single input single output (SISO) con-
trol techniques. In Dong et al. (2013), the PID con-
troller was designed using root locus analysis and
Ziegler-Nichols tuning, while Bolandi et al. (2013)
used the Direct Synthesis method. Outdoor trajec-
tory tracking flight tests were conducted in Dong
et al. (2013) with a maximum position error of 50
cm, but no discussion of velocity tracking error was
presented.

To achieve improved performance, multivariable
control techniques such as LQR have also been
considered. Reyes-Valeria et al. (2013) designed
a gain scheduled LQR controller with gains calcu-
lated for two different situations: (1) Quadcopter
far from the reference, and (2) Quadcopter was al-
ready closely tracking the reference state. Another
implementation of LQR can be found in Heng et al.
(2015) which addressed actuator saturation.

Due to its ability to handle constraints, Model
Predictive Control (MPC) has been pursued for
multicopters, especially in cases when substantial
computational power is available. Kamel et al.
(2017) implemented linear, nonlinear, and robust
MPC schemes for a hexacopter with a NUCi7 com-
puter onboard. Liu et al. (2015) developed an ex-
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plicit MPC scheme for trajectory tracking and ver-
ified it in simulation. Their approach exploited dif-
ferential flatness and Bezier curves and was solved
offline using a quadratic programming technique.
An efficient MPC scheme with a reduced compu-
tational footprint was proposed in Abdolhosseini
et al. (2013) for controlling quadcopters. An un-
constrained MPC law was implemented on a com-
puter embedded on a quadcopter in Bangura and
Mahony (2014).

MPC was applied to a simplified, linear dynam-
ics model derived via feedback linearization. This
yielded desired thrust, rotation rates, and angular
accelerations, which were subsequently regulated by
a high-gain attitude controller obtained by exploit-
ing quadcopter attitude dynamics.

The robustness of quadcopter controllers to dis-
turbances such as wind gusts has also been studied.
In Waslander and Wang (2009), a wind compen-
sator was added to the outer PID loop to reject
wind effects. This decreased position error from 40
cm to 10 cm. A constrained, finite-time optimal
control scheme was developed and experimentally
validated in Alexis et al. (2010). The quadcopter
was able to effectively achieve the desired set point
in the presence of wind gusts.

This paper synthesizes multiple quadcopter con-
trol laws and evaluates them in simulation and in
flight testing. Though organized as a tutorial, this
paper also offers novelty in its careful experimen-
tal evaluation and comparison of a diverse control
law suite. The organization of this paper is as fol-
lows. Quadcopter design and system modelling are
presented in Section 2 followed by guidance, nav-
igation, and control strategies in Section 3. The
state estimation algorithm is presented in Section
3.2. Formulations for all tested controllers are pro-
vided in Section 4 with simulation results of each
controller presented in Section 5. The experimen-
tal setup and results from outdoor flight tests are
provided in Sections 6 and 7, respectively. Results
are discussed in Section 8 with a brief conclusion
provided in Section 9. Nomenclature used in this
paper is summarized in Table 1.

2. System Description

2.1. Hardware

This section describes the tested hardware plat-
form. The assembled quadcopter is shown in Fig.
1. The onboard Beaglebone Blue Linux computer

features a 1GHz ARM ® Cortex-A8 processor
with eight servomotor outputs, an MPU9250 In-
ertial Measurement Unit (IMU) with three-axis an-
gular rate gyro, accelerometer, and magnetic field
sensors, a WiFi 2.4 GHz transceiver module, and
UART interfaces for serial communications. The
pre-installed Robot Control Library was used to
facilitate controller C code implementation. The
controller code was required to complete all calcu-
lations within a 0.005 second time interval between
system interrupts (Ts = 0.005 s). The Beagle-
bone Blue interfaced with all peripherals including
sensors, Pulse Width Modulation (PWM) signals
to control motor speeds, and communication links.
An IMU measured angular rates and orientation of
the body frame with respect to a flat-Earth inertial
frame gravity vector. The Wi-Fi transceiver mod-
ule allowed two-way communication between the
embedded board and a ground station computer.
An xBee modem connected to a UART interface to
reliably update position and heading measurements
from a Qualisys Motion Capture (MOCAP) cam-
era system. Finally, a Radio Control (RC) receiver
obtained commands from a RC Controller to initi-
ate/terminate tests and for manual backup control
as described further in Section 6.

A DJI Flamewheel F450 ARF kit was used for the
quadcopter frame, with AIR 2213/920KV brush-
less DC motors and APC (8 x 4.5) propellers for
the propulsion units. The system was powered by
a 3S 3000 mAh 35C LiPo battery. A Power Dis-
tribution Board (PDB) distributed 5V and 12V to
the embedded board and the motors, respectively.
Each motor was connected to an AIR 20A Elec-
tronic Speed Controller (ESC) controlled by Bea-
glebone PWM signals. 3D printed propeller guards,
originally designed in Romano et al. (2019), were
attached at the base of each motor and connected

îb

ĵb
k̂b

d√
2

4 1

3 2

CCW CW

CW CCW
îb

ĵb

k̂b

Figure 1: Experimental quadcopter based on a DJI Flame-
wheel F450 frame with custom propeller guards and avion-
ics mounts. Motion capture markers are placed on propeller
guards for increased camera visibility.
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by carbon fiber tubes to provide protection for pro-
pellers and users. MOCAP was used to determine
the 3D location and heading of the quadcopter with
targets placed on top of the propeller guards. The
quadcopter and body-fixed coordinate frame are
shown in Fig. 1.

2.2. Quadcopter Dynamics and System Modelling

This section describes the quadcopter model and
is based on content from Chapters 5 and 6 of Quan
(2017).

2.2.1. Quadcopter Configuration

The body-fixed frame (Fig. 1) is composed of or-

thogonal unit vectors îb, ĵb, k̂b. The îb axis points
forward on the quadcopter, the k̂b axis points down,
and the ĵb axis points right to satisfy a right-hand
convention. Let îi, ĵi, k̂i denote orthogonal unit
vectors defining an inertial coordinate frame, such
that k̂i points toward the ground. Let ψ, θ, φ de-
note yaw, pitch, and roll Euler angles, respectively.
Following a ψ → θ → φ rotation ordering conven-
tion, the relation between inertial axes îi, ĵi, k̂i and
the body-fixed axes îb, ĵb, k̂b is given by îiĵi

k̂i

 = Rb/i

 îbĵb

k̂b

 . (1)

where Rb/i is the rotation matrix from body-fixed
frame to inertial frame, such that

Rb/i ,

cθ cψ cψ sθ sφ− sψ cφ cψ sθ cφ+ sψ sφ
cθ sψ sψ sθ sφ+ cψ cφ sψ sθ cφ− cψ sφ
−sθ sφ cθ cφ cθ

 .
(2)

Fig. 1 displays the X-configuration chosen for
the quadcopter and the direction of rotation of each
propeller. Propellers 2 and 4 (in blue) rotate coun-
terclockwise (CCW) and propellers 1 and 3 (in red)
rotate clockwise (CW).

2.2.2. Propulsor Dynamics

The dynamics model for each propulsion unit
(motor with propeller) is depicted by the block di-
agram in Fig. 2. Let indices i ∈ {1, 2, 3, 4} denote
each propulsor as shown in Fig. 1. Each motor was
driven by a normalized throttle signal σi ∈ [0, 1],
such that σi = 0 gives no rotation and σi = 1
yielded the maximum rotation speed for propulsor
i. σi represents the duty cycle of the PWM signal
sent by the controller to propulsor i. The steady

CR + 1
Tms+1 (·)2

CT

CM

σi

ωb

ωss,i ωi ω2
i

Ti

Mi

Figure 2: Propulsor dynamics block diagram. The normal-
ized control signal σi (PWM duty cycle) is used to determine
output thrust magnitude Ti and torque magnitude τi.

state angular velocity of propulsor i in RPM, ωss,i,
is given by

ωss,i = CRσi + ωb, (3)

where CR and ωb define the steady state character-
istics of each propulsor. The transient response of
propulsor angular velocity ωi is modeled by a first-
order, low pass filter with time constant Tm, such
that the transfer function of a model with input
ωss,i and output ωi is given by

ωi =
1

Tms + 1
ωss,i, (4)

where s is the Laplace transform complex variable.
Finally, the thrust and torque magnitudes gener-
ated by the ith propulsor, Ti and Mi respectively,
are given by

Ti = CTω
2
i , (5)

Mi = CMω
2
i , (6)

where CT and CM are parameters that characterize
each propeller’s aerodynamic properties.

2.2.3. Quadcopter Inputs and Mixing Matrix

Assuming the quadcopter body is rigid, the
propulsors generate a total thrust T in direction
of −k̂b with three torque components τx, τy and

τz about îb, ĵb, and k̂b axes, respectively. Each
propulsor generates a thrust in the direction of −k̂b

and a torque aligned with k̂b, in the direction oppo-
site to its rotation. Hence, it follows from (5) and
(6) that

T
τx
τy
τz

 =


T1 + T2 + T3 + T4√

2
2
d(−T1 − T2 + T3 + T4)√
2

2
d(T1 − T2 − T3 + T4)

−M1 +M2 −M3 +M4



=


CT CT CT CT

−Cτ −Cτ Cτ Cτ
Cτ −Cτ −Cτ Cτ
−CM CM −CM CM



ω2
1
ω2
2
ω2
3
ω2
4

 , (7)

where d = 0.17 m is the distance from each ro-

tor to the geometric center and Cτ
4
=
√

2
2 dCT. The4



rightmost matrix of (7) is denoted the mixing ma-
trix and describes the linear transformation from
squared motor angular velocities to quadcopter sys-
tem input.

2.2.4. Quadcopter System Dynamics

The quadcopter dynamics model is derived un-
der the assumptions that the quadcopter body is
rigid, its mass properties remain constant during
operation, and the geometric center and the center
of gravity are located in the same position. It is as-
sumed that no aerodynamic forces or moments act
upon the quadcopter apart from from the thrust
and torque generated by each propulsor. In prac-
tice, the quadcopter body drag and blade flapping
have a significant impact on the dynamics of the
quadcopter at high flight velocities and in outdoor
environments, as is stated in Huang et al. (2009).
Nonetheless, these assumptions allow the result-
ing model to achieve a balance between simplicity
and accuracy for the purpose of designing a con-
trol strategy. Let m be the mass the quadcopter in

kg, J
4
= diag

(
[Jxx Jyy Jzz ]

T
)

be the inertia tensor

with respect to the body fixed frame in kg ·m2. Let
X ∈ R12 be the system state vector and U ∈ R4 be
the system input vector, such that

X
4
=
[
xi yi zi ẋi ẏi żi φ θ ψ ωb

x ωb
y ωb

z

]T
,

U
4
= [ T τx τy τz ]T,

where xi, yi, zi represent quadcopter position in the
inertial frame, ẋi, ẏi, żi represent its velocity vector
in the same frame, φ, θ, ψ are the Euler angles rep-
resenting the orientation of body-fixed frame with
respect to inertial frame axes, and ωb

x , ω
b
y , ω

b
z are

the components of quadcopter angular velocity ex-
pressed in the body-fixed frame. The nonlinear
model for the quadcopter dynamics is

d

dt
X = fquad(X,U). (8)

Assuming the only forces acting on the quadcopter
center of gravity are its weight mg and total thrust
T , Newton’s Second Law yields:

d

dt

ẋiẏi
żi

 =

0
0
g

−Rb/i

 0
0
T
m

 =

0
0
g

−
cψ sθcφ+ sψsφ

sψsθcφ− cψsφ
cθcφ

 T

m
.

(9)

Furthermore, considering the torques τx, τy, τz gen-
erated by the propulsors, it follows from the classi-

cal Euler equations of rotational dynamics that

d

dt

ωb
x

ωb
y

ωb
z

 =

 τx
Jxxτy
Jyy
τz
Jzz

+


Jyy−Jzz
Jxx

ωb
y ω

b
z

Jzz−Jxx
Jyy

ωb
x ω

b
z

Jxx−Jyy
Jzz

ωb
x ω

b
y

 . (10)

Finally, the relation between angular velocity vector
components and time rate of changes of 3-2-1 Euler
angles is given byφ̇θ̇

ψ̇

 =

1 tθsφ tθcφ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 ωb
x

ωb
y

ωb
z

 . (11)

Equation (9) describes the effects of gravity, atti-
tude, and total thrust T on three-dimensional quad-
copter motion. Note that total thrust vector T is
along the k̂b vector so its projection onto inertial
frame axes requires multiplication by a rotation ma-
trix per Eq. (9). Equation (10) describes the effect
of torques τx, τy and τz on the angular velocity. Gy-
roscopic torques caused by motor rotations are con-
sidered negligible and are thus not included in the
present model. Eq. (11) relates Euler angle rates
and angular velocity components as a function of
quadcopter attitude. These nonlinear equations are
used for simulations and to derive linearized equa-
tions for controller design.

2.2.5. Linearized System Dynamics

To design LQR, LQR-I, and MPC controllers,
the nonlinear model presented above is linearized
around an equilibrium point corresponding to
hover. As will be shown in test results, a linearized
model is sufficient as a basis for controller design
even when tracking a trajectory which deviates sub-
stantially from hover conditions.

Let Xhov ∈ R12 be the system state vector in
hover conditions and Uhov ∈ R4 be the system input
vector in hover conditions, such that

Xhov
4
=
[
xihov yihov zihov ẋihov ẏihov żihov

φhov θhov ψhov ωb
x,hov ωb

y,hov ωb
z,hov

]T
=
[
xihov yihov zihov 0 0 0 0 0 0 0 0 0

]T
,

Uhov
4
= [ Thov τx,hov τy,hov τz,hov ]T = [ mg 0 0 0 ]T.

Let δX ∈ R12 and δU ∈ R4 be the state and in-
put deviations from hover, respectively, such that
δX = X − Xhov and δU = U − Uhov. Since
φhov = θhov = ψhov = 0, the linearization is per-
formed assuming that the body-fixed and the in-
ertial frames are aligned. Furthermore, it follows

5



from Eq. (11) that, under hover conditions, the
Euler angle rates and the body angular velocities
are the same. Hence, it follows that

δX
4
= [ δxb δyb δzb δẋb δẏb δżb

δφ δθ δψ δφ̇ δθ̇ δψ̇
]T

δU
4
= [ δT δτx δτy δτz ]T = [ δT τx τy τz ]T.

Given the nonlinear representation of the dynamics
in (8), the linearized quadcopter dynamics model
takes the form

d

dt
δX =

∂fquad(X,U)

∂X

∣∣∣∣
X=Xhov,U=Uhov

δX

+
∂fquad(X,U)

∂U

∣∣∣∣
X=Xhov,U=Uhov

δU. (12)

Note that linearization decomposes the dynamics
of the nonlinear model into six sub-models. Each
sub-model is defined by its generalized state δX, its
time derivative δẊ, a parameter Kδ, a generalized
input δU, and dynamic equations of the form

d

dt

[
δX
δẊ

]
=

[
0 1
0 0

] [
δX
δẊ

]
+

[
0
Kδ

]
δU. (13)

For δX = δxb, δU = δθ and Kδ = −g. For δX =
δyb, δU = δφ and Kδ = g. For δX = δzb, δU =
δT and Kδ = − 1

m . For δX = δφ, δU = τy and
Kδ = 1

Jyy
. For δX = δθ, δU = τx and Kδ = 1

Jxx
.

For δX = δψ, δU = τz and Kδ = 1
Jzz
.

2.2.6. Discretized Linearized System Dynamics

The linearized model in the previous section is
discretized in order to design digital controllers.
Let k be the sample index, and define discrete-time
state vector Xk and input vector Uk such that

δXk
4
=
[
δxb
k δyb

k δzb
k δẋb

k δẏb
k δżb

k

δφk δθk δψk δφ̇k δθ̇k δψ̇k
]T
,

δUk
4
= [ δTk τx,k τy,k τz,k ]

T
.

Assuming a zero-order hold for the input and a sam-
pling period of Ts, each of the six sub-models (13)
is converted to discrete-time, with the discrete-time
models given by[

δXk+1

δẊk+1

]
=

[
1 Ts

0 1

] [
δXk
δẊk

]
+BTs

δUk, (14)

where BTs
is a 2-by-1 matrix. For δXk =

δxb
k, δUk = δθk and BTs = −g

[
T 2
s

2 Ts

]T
. For

δXk = δyb
k , δUk = δφk and BTs = g

[
T 2
s

2 Ts

]T
. For

δXk = δzb
k , δUk = δTk and BTs

= −
[
T 2
s

2m
Ts

m

]T
. For

δXk = δφk, δUk = τy,k and BTs
=
[
T 2
s

2Jyy
Ts

Jyy

]T
. For

δXk = δθk, δUk = τx,k and BTs =
[
T 2
s

2Jxx
Ts

Jxx

]T
. For

δXk = δψk, δUk = τz,k and BTs
=
[
T 2
s

2Jzz
Ts

Jzz

]T
.

2.2.7. System Model Parameter Estimation

A summary of the estimated model parameters
is displayed in Table 2. Parameters CT, CM, CR, ωb

and Tm were obtained via dynamometer tests per-
formed on all propulsor systems, as described in
Section 6.3.4 of Quan (2017). The value of d was
determined by measuring the distance from the cen-
ter of a propulsor to the geometric center of the
quadcopter. The value of m was measured using
a scale and Jxx, Jyy and Jzz were determined by
performing a bifilar pendulum test, as described in
Section 6.3.3 of Quan (2017). Finally, the value of
the sampling period Ts was chosen as the fastest one
available on the chosen embedded system. More de-
tails of parameter estimation techniques are given
in Appendix A.

Table 2: System Model Parameters

Parameter Value Units

CT 5.724165 · 10−8 kg.m
CM 8.881631 · 10−10 kg.m2

CR 9.9573 · 103 1/s
ωb 12.3517 1/s
Tm 0.245217 N/A
d 0.17 m
m 1.062 kg
Jxx 1.07 · 10−2 kg.m2

Jyy 1.11 · 10−2 kg.m2

Jzz 2.29 · 10−2 kg.m2

Ts 0.05 s

3. Guidance, Navigation, and Control

The block diagram representing quadcopter
guidance, navigation, and control is shown
in Fig. 3. Let Ts be the sampling pe-

riod, r
4
=

[
ri
x r

i
y r

i
z r

i
ψ ri

ẋ r
i
ẏ r

i
ż r

i
ψ̇

]
be the

reference signal vector including setpoints
for position (ri

x, r
i
y, r

i
z), velocity (ri

ẋ, r
i
y, r

i
z),
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yaw angle and yaw rate (ri
ψ, r

i
ψ̇

), and

rk
4
=

[
ri
x,k r

i
y,k r

i
z,k r

i
ψ,k r

i
ẋ,k r

i
ẏ,k r

i
ż,k r

i
ψ̇,k

]
be the sampled reference signal vector, such that
rk = r(kTs). Let Y be the vector of quadcopter
system output signals and Yk be the vector of sam-
pled sensor measurements such that Yk = Y (kTs).
At each iteration, the State Estimator provides
a sampled estimate of state vector Xk, such
that Xk = X(kTs). Due to the decomposition
resulting from model linearization, the digital
controller requires position and velocity states
and references to be aligned with the axes of
the frame obtained by rotating the îi and ĵi

axes by ψ around the k̂i axis. Hence, a Yaw
Alignment procedure must be performed to ob-

tain aligned reference and state vectors rψk
4
=[

rψx,k r
ψ
y,k r

i
z,k r

i
ψ,k r

ψ
ẋ,k r

ψ
ẏ,k r

i
ż,k r

i
ψ̇,k

]
and Xψ

k

4
=[

xψk yψk zi
k ẋψk ẏψk żi

k φk θk ψk φ̇k θ̇k ψ̇k
]T
,

respectively. The following transforms
[
xi
k y

i
k

]T
into

[
xψk yψk

]T
:[
xψk
yψk

]
=

[
cψ sψ
−sψ cψ

] [
xi
k

yi
k

]
. (15)

The same transformation is applied for trans-

forming
[
ẋi
k ẏ

i
k

]T
,
[
ri
x,k r

i
y,k

]T
, and [rẋ,k rẏ,k]

T

into
[
xψk yψk

]T
,
[
ẋψk ẏψk

]T
,
[
rψx,k r

ψ
y,k

]T
, and[

rψẋ,k r
ψ
ẏ,k

]T
, respectively.

The Digital Controller uses Xψ
k and rψk to gener-

ate the input signal Uk
4
= [ Tk τx,k τy,k τz,k ]

T
.

Then, a Command Mapping procedure must be
performed to obtain the normalized control signals

σk
4
= [ σk,1 σk,2 σk,3 σk,4 ]

T
that will be sent

as commands to the motors. Inverting the matrix
displayed in Eq. (7) and defining CTinv

= 1
4CT

,

CMinv
= 1

4CM
and Cτinv =

√
2

4dCT
, the squared angu-

lar velocities of the motors required to obtain the

forces and torques contained in U are obtained as
follows
ω2
k,1

ω2
k,2

ω2
k,3

ω2
k,4

 =


CTinv

−Cτinv Cτinv −CMinv

CTinv
−Cτinv −Cτinv CMinv

CTinv
Cτinv −Cτinv −CMinv

CTinv
Cτinv Cτinv CMinv



Tk
τx,k
τy,k
τz,k

 .
(16)

Finally, it follows from (3) that

σk,i =
ωk,i − ωb

CR
. (17)

A zero-order hold is performed on this signal, such
that

σ(t) = σk, t ∈ [kTs, (k + 1)Ts)]. (18)

3.1. Digital Controller Structure

All digital controllers implemented in this paper
follow the same structure displayed in Fig. 4. The
Inner Loop block features controllers that yield the
required rolling and pitching moments τx and τy
to regulate horizontal movement. The Inner Loop
block requires the current quadcopter attitude as
well as reference signals for roll and pitch to obtain
its output, such that

τx,k = CIL,θ(θk, θ̇k, r
i
θ,k, r

i
θ̇,k

), (19)

τy,k = CIL,φ(φk, φ̇k, r
i
φ,k, r

i
φ̇,k

). (20)

The reference signals for roll and pitch are obtained
from the Outer Loop block, which features con-
trollers that yield the required thrust differential
and yawing moments as well as the desired refer-
ence signals. Yaw and position are achieved with:

δTk = COL,z(z
i
k, ż

i
k, r

i
z,k, r

i
ż,k), (21)

τz,k = COL,ψ(ψk, ψ̇k, r
i
ψ,k, r

i
ψ̇,k

), (22)

ri
φ,k = COL,y(yψk , ẏ

ψ
k , r

ψ
y,k, r

ψ
ẏ,k), (23)

ri
θ,k = COL,x(xψk , ẋ

ψ
k , r

ψ
x,k, r

ψ
ẋ,k). (24)

Yaw
Alignment

Digital
Controller

Command
Mapping ZOH

Quadcopter

State
Estimator

Uk σk

Ts

Ts

σ Y
r rk

YkXk

rψk

Xψk

Figure 3: Control system block diagram. The digital controller yields the system input in terms of vertical thrust and torques,
which must be mapped into motor commands.
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Total thrust is obtained by adding the required
thrust differential to hover thrust:

Tk = Thov + δTk. (25)

Hence, a set of six control schemes is required
for control of the quadcopter. Evaluated control
algorithms will be discussed in Section 4. Note
that all controllers saturate these signals such that
δT ∈ [−10.42, 12.34] N, τx ∈ [−1.3679, 1.3679] N.m,
τy ∈ [−1.3679, 1.3679] N.m, τz ∈ [−0.1766, 0.1766]
N.m, ri

φ ∈ [−1, 1] rad and ri
θ ∈ [−1, 1] rad. Note

that while the saturation limits for δT, τx, τy and
τz were derived from the thrust and torque lim-
its of the rotors, the saturation limits for ri

φ and

ri
θ were chosen arbitrarily to prevent the outer loop

controllers from requesting potentially unstable ref-
erence signals for roll and pitch.

Digital Controller

Outer
Loop

+

Inner
Loop

rψk

riφ,k

riθ,kXψk

δTk

Thov

Tk
τz,k

τx,k
τy,k

Uk

Figure 4: Controller Block Diagram

3.2. State Estimation

State feedback controllers require estimates of the
full state vector X. For the quadcopter, X ∈ R12 is
comprised of three position coordinates (xi, yi, zi),
three linear velocity components (ẋi, ẏi, żi), three
Euler angles (φ, θ, ψ), and three angular velocity
components (ωb

x , ω
b
y , ω

b
z ) per Section 2.2. Posi-

tion and Euler angle measurements are provided
by the MOCAP system. However, the following
problems were encountered during experimentation
which motivated utilization of a filter:

1. Neither the onboard sensors nor the MOCAP
directly provided linear velocity estimates;

2. The yaw estimate from the onboard IMU grew
unbounded;

3. Measurements were available asynchronously;
the IMU and MOCAP sampling rates were 200
Hz and 100 Hz respectively.

A Kalman Filter (KF) was chosen to filter in-
coming measurements for several reasons. First, a

KF reduces noise and fuses redundant sensor mea-
surements to provide an estimate X̂ of the entire
state vector with the minimum mean-square-error
covariance (under linear KF assumptions). More-
over, it can estimate IMU biases thus stopping the
unbounded growth of estimates. Finally, a KF can
process measurements sequentially as they are sam-
pled, regardless of their sampling rates. In this case,
an a priori update is performed every Ts seconds on
all states. If new measurements have been sampled,
an a posteriori update is performed as well on all
the states with new measurements. These char-
acteristics make the KF an ideal state estimation
solution.

Since the linearized dynamics are decoupled,
three independent Kalman Filters were designed:

1. Vertical position and velocity (zi, żi)

2. Horizontal position and velocity (xi, yi, ẋi, ẏi)

3. Yaw and yaw rate (ψ, ψ̇)

Estimators for pitch, roll, and their respective rates
were not required because onboard sensors provided
acceptable estimates. In all cases, linear KFs were
based on the linearized quadcopter model. The spe-
cific Gauss-Markov models for each estimator, as
well as their corresponding covariance matrices, are
defined in Appendices B, C, and D. Specific calibra-
tion values can be found in Appendix E.

3.3. State Estimation Performance

Fig. 5 highlights the performance achieved with
the proposed state estimation scheme. Note that
the top and bottom plots do not share the same

Figure 5: [Top] Yaw vs. time. MOCAP measurements are
overlaid on Kalman Filter estimates. [Bottom] Yaw rate vs.
time. Kalman Filter estimates are overlaid on IMU DMP
measurements.
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time scale; the top plot is zoomed in to assist with
the following discussion. The top plot shows MO-
CAP yaw measurements overlaid on the Kalman
Filter estimates. Note that, even though MOCAP
data was received at a slower rate and at times had
gaps in coverage, the Kalman Filter was able to
maintain a smooth yaw estimate at all times. This
was because the rate gyro (bottom plot) was read at
200 Hz, enabling the estimator to continue propa-
gating both states. Note also that the Kalman yaw
rate estimate has less noise than the IMU DMP
measurement. These plots demonstrate how fusing
measurements sequentially through a Kalman Fil-
ter yielded smoother estimates regardless of mea-
surement asynchronicity. Similar performance was
achieved with the horizontal and vertical position
and velocity estimators.

4. Digital Controllers

This section describes the quadcopter digital con-
trol laws along with their tuning procedures us-
ing Simulink simulations. A brief summary of re-
quirements and capabilities of the controllers is pre-
sented in Table 3. PID and LQR are classical meth-
ods well established in the literature (Yun Li et al.,
2006; Kwakernaak and Sivan, 1972; Sontag, 1990).
MPC is also an established method, though com-
putational overhead challenges implementation on
typical real-time embedded computing components
found on quadcopters. The proposed quadcopter
MPC, LQR, and PID control designs are described
below.

Table 3: Controller Comparison

Factors PID LQR MPC

Model required No Yes Yes
Optimization Online No No Yes
Can be made explicit N/A N/A Yes
Implement Constraints No No Yes

4.1. Explicit Model Predictive Control (E-MPC)

Model predictive control (MPC) relies on predict-
ing the response of the system using a model and en-
sures that the imposed state and control constraints
are enforced. At each time step, MPC solves a con-
strained optimization problem, minimizing a cost
function subject to the constraints. The response

of the system is predicted over time period or hori-
zon Th. The first move in the optimal control is se-
lected as the control action thereby defining a feed-
back law (Mayne et al., 2000). The main challenge
in using MPC for quadcopters is its high computa-
tional cost versus limited onboard computation ca-
pabilities. The quadcopter model shown in Section
(2.2.4) is nonlinear with 12 states. A direct imple-
mentation of MPC to this nonlinear model was not
feasible given limited computational resources on-
board the quadrotor. Hence, the linearized model
around hover (12) is used for prediction. Note that
the linearized model decomposes into six submod-
els (13). For instance, the dynamics of the posi-
tion state δxb are described by a double integrator
with pitch angle δθ as an input, whereas the dy-
namics of pitch angle δθ are a double integrator
with input τx. Similar considerations apply to the
remaining linearized equations. By exploiting this
independence, six MPC controllers with small com-
putational footprint can be developed based on the
six double integrator models.

Fig. 6 depicts the decoupled MPC control ar-
chitecture. This figure summarizes the inner and
outer loop controller equations introduced in Eqs.
(19) – (24). Note that each of the MPC blocks as-
sumes that their respective commanded inputs are
applied instantly. However, the propulsion system
has internal dynamics that affect generation of on
T, τx, τy, and τz. Similarly, MPC blocks for x and
y position are designed based on the assumption
that pitch and roll angles are achieved instanta-
neously, yet in fact they have their own dynam-
ics determined by the MPC controllers for θ and
φ. These unmodelled dynamics have not produced
substantive constraint violations in the conducted
experiments, which justifies the use of this decom-
position approach.

MPC for
ψ angle

MPC for
z position

MPC for
x position

MPC for
y position

MPC for
θ angle

MPC for
φ angle

ψ, ψ̇, ri
ψ,k, r

i
ψ̇,k zi, żi, ri

z, r
i
ż xψ, ẋψ, rψx , r

ψ
ẋ

yψ, ẏψ, rψy , r
ψ
ẏ

τz δT

τx τy

ri
θ

ri
φ

θ, θ̇ φ, φ̇

Figure 6: MPC control architecture

As an example, consider MPC design for control
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of roll angle (other cases are similar). It follows
from (13) that the linearized mode for the dynamics
of the roll angle has the formδφ̇

δφ̈

 =

0 1

0 0

δφ
δφ̇

+

 0
1

Jyy

 τy, (26)

where δφ = φ − ri
φ and δφ̇ = φ̇. As the states of

this system are the deviation with respect to roll
setpoint and the roll angular velocity, constraints
may be imposed on both of these quantities. In this
case, only the roll angular velocity is constrained.
It follows from (14) that discretization of (26) with
sample time Ts leads to a discrete-time model of
the form

xk+1 = Axk +Buk

≡
[
δφk+1

δφ̇k+1

]
=

[
1 Ts

0 1

] [
δφk
δφ̇k

]
+


T 2

s

2Jyy
Ts

Jyy

 τy,k.
(27)

The roll angle MPC controller uses (27) as the pre-
diction model and determines control action based
on solving the following finite-horizon discrete-time
optimal control problem:

min
u0,u1,··· ,uN−1

xTNPxN +

N−1∑
k=0

xTkQxk + uTkRuk

s.t. xk+1 = Axk +Buk,

x0 is the current state,

|φ̇k| ≤ φ̇max,
(28)

where N = Th/Ts, Q,R are positive definite ma-
trices and P is given by the solution of the dis-
crete time algebraic Riccati equation in the infinite
horizon version of (28) without control constraints.
The MPC feedback law is uMPC,x = u0. This MPC
formulation recovers the solution of the associated
LQR problem when constraints remain inactive.

As is stated in Cairano and Bemporad (2009),
the optimization problem (28) can be written in
condensed form as

min
U

1

2
UTHU + qTU

s.t. GU ≤W,
(29)

where U = (u0, u1, · · · , uN−1)T and H, q,G,U are
matrices that depend on A,B, x0 and the con-
straints of the system.

Solving the optimization problem as stated in
Eq. (29) in real time on a Beaglebone Blue using a
standard dual projection gradient algorithm imple-
mented in C has proven to be challenging. For in-
stance, with the prediction horizon set to 1 s to cap-
ture all transients and a sampling period Ts equal to
20 ms, around 100 ms was needed to solve the opti-
mization problem (29). Note that this time may
be reduced with advanced time-distributed opti-
mization strategies as described in Liao-McPherson
et al. (2020), although the problem of reducing the
computation time remains difficult.

Therefore, an explicit MPC (E-MPC) approach
was pursued. With E-MPC, each problem (29) is
parameterized by initial condition x0 which is a two
dimensional vector. The solution to problem (29)
can be precomputed offline and the resulting control
values can be stored in a two dimensional lookup ta-
ble for online use in the Beaglebone processor. To
address the potential infeasibility of problem (29),
which can occur due to large disturbances, as was
observed during flight tests, the implemented al-
gorithm switches to an unconstrained LQR under
such circumstances.

The particular structure of the quadcopter sys-
tem dynamics and constraints is critical for the pro-
posed implementation of E-MPC. When the sys-
tem is linearized about a hovering condition, six
two-dimensional smaller subsystems are obtained.
These systems are not coupled, i.e., the control in-
put computation is unidirectional, so there is no
feedback between the six smaller subsystems (see
Figure 6). Furthermore, the constraints on the sys-
tem can be independently enforced on these smaller
subsystems, i.e., there are no constraints that com-
bine states/inputs of different subsystems. This
convenient combination of decoupled dynamics and
independent constraints is what allows the compu-
tation and storage of the control inputs as six two-
dimensional look-up tables. Note that if the dimen-
sion of the smaller subsystems increases, then the
size of the solution look-up table of (29) grows ex-
ponentially. Hence, E-MPC may quickly become
intractable for more complex problems. Our ap-
proach can be viewed as an instantiation of a more
general idea of exploring symmetries in E-MPC de-
sign, see e.g., Danielson and Borrelli (2015).

To tune MPC controller parameters, the sam-
pling frequency was set to 200 Hz, sufficiently fast
for stability. To capture transients, time horizon
was set to 1 s. Constraints were set to illustrate
MPC’s constraint handling capability. Matrices Q
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Table 4: Parameters of the six Model Predictive Controllers

Parameter x y z θ φ ψ

Fs 200 Hz 200 Hz 200 Hz 200 Hz 200 Hz 200 Hz
Th 1 s 1 s 1 s 1 s 1 s 1 s
|xmax| 1000 m 1000 m 1000 m 1000 rad 1000 rad 1000 rad
|ẋmax| 5 m/s 5 m/s 5 m/s 45 deg/s 45 deg/s 90 deg/s
|umax| 45 deg 45 deg 1000 N 1000 N.m 1000 N.m 1000 N.m
Q diag([150, 200]) diag([150, 200]) diag([490, 117]) diag([5, 1.5]) diag([5,1.5]) diag([100, 15])
R 5000 5000 5.5 10 10 1000

and R were chosen by trial and error during out-
door tests. The parameters of each of six MPC
controllers are summarized in Table 4.

4.2. Discrete LQR and LQR-I Control

Discrete-time LQR exploits a linear discrete-time
model xk+1 = Axk+Buk, and generates the control
sequence according to uk = −Kxk, whereK = (R+
BTPB)−1BTPk, to minimize performance index

J =

∞∑
k=0

xTkQxk + uTkRuk.

In this expression, P is the unique positive semi-
definite solution to the discrete Algebraic Riccati
Equation.

The design of the LQR and LQR-I controllers for
each of the six subsystems is based on their mod-
els (14). Thus, the overall LQR design is decou-
pled into six controllers similar to the MPC design.
Hence, in the LQR case, the controller has the form

δUk = LQRX(Xk, Ẋk, rX,k, rẊ,k)

=
[
KX KẊ

]
·
[
rX,k − Xk
rẊ,k − Ẋk

]
=
[
KX KẊ

]
·
[
δXk
δẊk

]
,

(30)

where KX and KẊ are LQR gains, X is the state,

Ẋ is its time derivative and rX,k, rẊ,k are setpoints
which are consistent with the unforced dynamics of
(14). The state and control weighting matrices QX
and RX are used as tuning parameters.

In the LQR-I case, the controller is based on the
augmented model using (14) with integrator state
Xint, which has the form δXk+1

δẊk+1

Xint,k+1

 =

 1 Ts 0
0 1 0
Ts 0 1

 δXk
δẊk
Xint,k

+

[
BTs

0

]
δUk

= AX,int

 δXk
δẊk
Xint,k

+BX,intδUk (31)

Hence, the optimal gains KX, KẊ and KX,int are
obtained by solving the discrete Algebraic Riccati
Equation using AX,int, BX,int, QX,int and RX,int. The
LQR-I controller is augmented with anti-windup
(see Fig. 7). Note that the integrator is placed right
before the output so that the limit established by
the anti-windup is placed on the controller output
rather than on the integrator state. The output uk
is saturated and can only take a maximum value of
umax and a minimum value of umin, while the rate
at which the integrator “winds-down” depends on
gain τint. LQR-I anti-windup can be written as

δUk = LQRx,AW−Int(Xk, Ẋk, rX,k.rẊ,k) (32)

Note that outputs obtained from traditional LQR
control are also subject to output saturation.

A cascaded LQR/LQR-I controller scheme is em-
ployed in the quadcopter. Fig. 8 shows the chosen
architecture for these controllers. Roll and pitch
are regulated by LQR controllers since they simplify
the design of the cascaded LQR-I controllers and to
prevent overshoot inherent to integrators in roll and
pitch. LQR controllers are tuned from the values
assigned to Q and R matrices. Usually, only the
diagonal terms of these matrices are given nonzero
values. Higher values in the diagonal of the Q ma-
trix yield a more aggressive behavior when tracking
the states associated with each value, while higher
values in the diagonal of the R matrix yield a more
conservative behavior when tracking the states as-
sociated with the respective input. Parameters se-
lected for the LQR and LQR-I controllers are sum-
marized in Table 5.

4.3. PID and PD Controllers

The PID controller in continuous-time has the
following form:

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)

dt
(33)
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+

+

z−1
Tsz

z−1
Tsz

KX

KX,int

KẊ

+ + Tsz
z−1

τint +
δUmax

δUmin

rX,k

−Xk

rẊ,k

−Ẋk

−
δUk

Figure 7: Block diagram of LQR-I controller scheme with integrator anti-windup, where z is the Z-transform variable.

LQR for
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LQR for
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x position

LQR for
y position

LQR for
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ψ,k, r

i
ψ̇,k zi, żi, ri

z, r
i
ż xψ, ẋψ, rψx , r

ψ
ẋ

yψ, ẏψ, rψy , r
ψ
ẏ

τz δT
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ri
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φ
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LQR-I for
ψ angle

LQR-I for
z position

LQR-I for
x position

LQR-I for
y position

LQR for
θ angle

LQR for
φ angle

ψ, ψ̇, ri
ψ,k, r

i
ψ̇,k zi, żi, ri
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i
ż xψ, ẋψ, rψx , r

ψ
ẋ

yψ, ẏψ, rψy , r
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ẏ

τz δT

τx τy

ri
θ

ri
φ

θ, θ̇ φ, φ̇
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Figure 8: Control architecture for the LQR (a) and LQR-I (b) controllers.

Table 5: Parameters of the six LQR (Q = diag([Qp, Qd])) and LQR-I (Q = diag([Qp, Qd, Qi])) Controllers

LQR LQR-I

Parameter x y z θ φ ψ x y z θ φ ψ

Qp 85 85 2000 5.06 5.06 7 50 50 490 5 5 1
Qd 100 100 100 1.55 1.55 0.25 195 195 117 1.5 1.5 15
Qi – – – – – – 25 25 12.6 – – 10
R 515 515 4 4 4 875 1000 1000 5.5 10 10 1000

where e denotes the tracking error, u is the control
signal, Kp , Ki and Kd are the controller gains.
Such a controller is implemented in discrete-time on
the quadcopter using a Z-transform formulation:

C(z) = Kp+Ki
Ts

z− 1
+Kd

N

1 +NTs/(z− 1)
, (34)

where typical values of N range from 8 to 20, and
z is the Z-transform variable. Note that the deriva-
tive term in Eq. (34) is combined with a low pass
filter to mitigate sensitivity of the derivative ac-
tion to measurement noise (Åström and Hägglund,
1995). Furthermore, note that the PID controller
given by Eq. (34) does not include an anti-windup
mechanism, unlike the integral term in the pro-
posed LQR-I scheme. We have chosen such a con-
troller as a benchmark for comparison because PID
controllers without anti-windup are commonly of-
fered as commercial-off-the-shelf solutions, e.g., in

our case we used the PID function already provided
in the Robot Control Library, which consists of a C
code implementation of Eq. (34).

A cascaded PID/PD controller scheme is em-
ployed in the quadcopter. Fig. 9 shows the chosen
architecture for these controllers. First, the desired
roll, desired pitch, and thrust are determined based
on position error. Then, required torques are calcu-
lated based on desired attitude. Note that the con-
trollers for roll and pitch are PD controllers since
they simplify the design of the cascaded PID con-
trollers and prevent undesired overshoot, similar to
the cascaded LQR design above. Parameters for
the PD and PID controllers are summarized in Ta-
bles 6 and 7. Note that, while the discrete PD and
PID structures are the same in the simulation as in
the embedded implementation, the parameters used
for the simulations and for the experiments are dif-
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Figure 9: Control architecture for PD (a) and PID (b) controllers.

Table 6: Parameters of the Six PD Controllers

Simulation Experiment

Parameter x y z θ φ ψ x y z θ φ ψ

Kp 0.6 0.6 5 0.25 0.25 0.1 0.5 0.5 8 0.75 0.75 1.5
Kd 0.135 0.135 3.5 0.225 0.225 0.075 0.05 0.05 3.5 0.2 0.2 0.1
N 62.83 62.83 62.83 62.83 62.83 31.41 62.83 62.83 62.83 62.83 62.83 31.41

Table 7: Parameters of the six PID Controllers

Simulation Experiment

Parameter x y z θ φ ψ x y z θ φ ψ

Kp 0.6 0.6 5 0.25 0.25 0.1 0.5 0.5 5 0.75 0.75 1.5
Ki 0.15 0.15 1 – – 0.025 0.15 0.15 1 – – 0.5
Kd 0.135 0.135 3.5 0.225 0.225 0.075 0.05 0.05 3.5 0.2 0.2 0.1
N 62.83 62.83 62.83 62.83 62.83 31.41 62.83 62.83 62.83 62.83 62.83 31.41

ferent since the simulation parameters yielded an
unstable behavior during the tests.

5. Quadcopter Simulation

The block diagram of a closed loop simulation
model implemented in Simulink is shown in Fig.
10. The Motor Dynamics block simulates the dy-
namics of each of the four motors/propulsors used
by the quadcopter, represented by Eqs. (3) - (7).
The inputs of this block are the PWM signals σ
and its output is the quadcopter dynamic system
input vector U. The Quadcopter Dynamics block
simulates the dynamics represented by Eqs. (9) -
(11). The input of this block is the input vector U
and its output is the current state vector X. The
Yaw Alignment block transforms the reference set-
point vector rk and the state vector Xk into rψk and

Xψ
k , as stated in (15). The Digital Controller block

contains the inner and outer loop controllers per
Section 3.1 and yields the discrete quadcopter sys-
tem vector input vector Uk. Finally, the Command

Yaw
Alignment

Digital
Controller

Command
Mapping

Quadcopter
Dynamics

Motor
Dynamics ZOH

Ts

Uk

σkσUX

Xk

rk rψk

Xψk

Figure 10: Simulink Model Block Diagram. The blocks are
arranged such that the dynamics models run in continuous
time while the controller does so at given time intervals.

Mapping block obtains σk from Uk per Eqs. (16)
and (17). The ZOH block holds σk for Ts seconds,
thus converting this discrete signal into the contin-
uous signal σk, as described in Eq. (18).

Figs. 11, 12, 13, 14, and 15 show simulation re-
sults using step reference setpoint signals for ri

x, r
i
y,

ri
z and ri

ψ for the PD, PID, LQR, LQR-I and MPC
controllers, respectively. In the next section, simu-
lation results using an inclined, circular trajectory
are compared against experimental results to eval-
uate performance.
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Figure 11: Simulation results for PD controller. (a) shows
the response to a unit step in the position setpoint in the x-
axis direction, in the y-axis direction, in the negative z-axis
direction and in the positive direction of ψ. (b) shows the
setpoint signals and trajectories of φ and θ in response to a
unit step in the position setpoint in the y-axis direction and
in the x-axis direction, respectively.

Figure 12: Simulation results for PID controller. (a) shows
the response to a unit step in the position setpoint in the x-
axis direction, in the y-axis direction, in the negative z-axis
direction and in the positive direction of ψ. (b) shows the
setpoint signals and trajectories of φ and θ in response to a
unit step in the position setpoint in the y-axis direction and
in the x-axis direction, respectively.

Figure 13: Simulation results for LQR controller. (a) shows
the response to a unit step in the position setpoint in the x-
axis direction, in the y-axis direction, in the negative z-axis
direction and in the positive direction of ψ. (b) shows the
setpoint signals and trajectories of φ and θ in response to a
unit step in the position setpoint in the y-axis direction and
in the x-axis direction, respectively.

6. Experimental Setup

The quadcopter outdoor flight test architecture is
shown in Fig. 16. The attitude and position infor-
mation of the quadcopter is obtained from the MO-
CAP system. This MOCAP data is serially trans-
mitted to a Beaglebone Green (BBG), which then
wirelessly relays it to the quadcopter using an XBee

Figure 14: Simulation results for LQR-I controller. (a) shows
the response to a unit step in the position setpoint in the x-
axis direction, in the y-axis direction, in the negative z-axis
direction and in the positive direction of ψ. (b) shows the
setpoint signals and trajectories of φ and θ in response to a
unit step in the position setpoint in the y-axis direction and
in the x-axis direction, respectively.

Figure 15: Simulation results for MPC controller. (a) shows
the response to a unit step in the position setpoint in the x-
axis direction, in the y-axis direction, in the negative z-axis
direction and in the yaw angle in the positive direction of ψ.
(b) shows the setpoint signals and trajectories of φ and θ in
response to a unit step in the position setpoint in the y-axis
direction and in the x-axis direction, respectively.

radio modem. The MOCAP data is then fused by
the Kalman Filter (described in Section 3.2) to pro-
duce a state estimate.

To mitigate the impact of short-term MOCAP
data dropouts (due to varying lighting conditions,
changes in ambient temperature, etc.), the Kalman
Filter provided state estimates based solely on on-
board sensor data. Also, a digital wind vane was
used to measure wind during outdoor flight tests.

In the experiments reported in this paper, the
quadcopter tracked an inclined, circular trajectory
while continuously changing its heading angle, as
shown in Fig. 17. For the circular section of the
trajectory, the quadcopter followed a trapezoidal
velocity profile. For the straight sections, it fol-
lowed a cubic velocity profile. All controllers were
flown at tangential velocities of 1, 2, 3, and 4 m/s
(three times each) along a circle of radius 4.5 m,
inclined at an angle of −7.5 deg along the y-axis.
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Figure 16: Quadcopter Flight Test Architecture.

7. Results

In this section, step responses, position and ve-
locity tracking errors of an inclined circle, and con-
trol effort plots are presented. Each controller was
manually tuned to achieve the best performance.

Figs. 18 – 22 compare simulation and experimen-
tal results for a tangential velocity of 2 m/s. Note
that the noise in the velocity estimates from the
experimental data was due to the Kalman Filter
propagation of noisy sensor measurements.

Experimental results from inclined, circular tra-
jectory tracking in M-Air over all the tangential ve-
locities are summarized in Table 8. It is apparent
that integral action reduces of maximum radial and
altitude error. Negligible wind was present.

Table 8: Position tracking performance of quadcopter con-
trollers over all experiments

Controller
Avg. Tracking

Error (m)
Max Tracking Error

Radial(m) Altitude(m)

PD 0.5373 1.408 0.4507
PID 0.1722 0.53462 0.2348
LQR 0.4450 1.1852 0.3854
LQR-I 0.3470 1.027 0.628
E-MPC 0.9292 1.7404 0.708

Fig. 23 provides controller performance details
at different tangential velocities. The position and

Figure 17: 3D plot illustrating the inclined, circular refer-
ence trajectory and tracking results of the quadcopter LQR
controller. For ease of viewing, the coordinates are North-
West-Up in this plot.

velocity errors are calculated by taking the norm of
the error vector. It can be seen that an increase in
tangential velocity along the circle led to an increase
in position and velocity error.

The control effort of each controller was calcu-
lated using the following formula:

Control Effort =
||u||2
Ttotal

, (35)

15



Figure 18: Experimental results (exp subscript) versus sim-
ulation results (sim subscript) for PD controller for a tan-
gential velocity of 2 m/s. (a) x-axis position. (b) y-axis
position. (c) −z-axis position. (d) x-axis velocity. (e) y-axis
velocity. (f) −z-axis velocity. (g) Yaw.

Figure 19: Experimental results (exp subscript) versus sim-
ulation results (sim subscript) for PID controller for a tan-
gential velocity of 2 m/s. (a) x-axis position. (b) y-axis
position. (c) −z-axis position. (d) x-axis velocity. (e) y-axis
velocity. (f) −z-axis velocity. (g) Yaw.

where u is the control input to the motors and Ttotal

is the total time to execute the circular trajectory.
Control effort is presented in Fig. 24. Nearly all

the controllers had similar control effort. However,
a significant change in control effort was observed
with a change in operating temperatures.

The E-MPC control scheme offers the capabil-
ity to handle state constraints. In the conducted
experiments, roll rate and pitch rate constraints
were imposed to restrict aggressive attitude changes
that might destabilize the system. It can be seen
in Figs. 25 and 26 that E-MPC satisfies a maxi-
mum 45 deg/s magnitude rate constraint for a tan-
gential velocity of 4 m/s. In the the case of the
other control schemes, constraints were violated as

Figure 20: Experimental results (exp subscript) versus sim-
ulation results (sim subscript) for LQR controller for a tan-
gential velocity of 2 m/s. (a) x-axis position. (b) y-axis
position. (c) −z-axis position. (d) x-axis velocity. (e) y-axis
velocity. (f) −z-axis velocity. (g) Yaw.

Figure 21: Experimental results (exp subscript) versus simu-
lation results (sim subscript) for LQR-I controller for a tan-
gential velocity of 2 m/s. (a) x-axis position. (b) y-axis
position. (c) −z-axis position. (d) x-axis velocity. (e) y-axis
velocity. (f) −z-axis velocity. (g) Yaw.

there was no mechanism to enforce them. Exam-
ple results presented here are for one flight; how-
ever, similar outcomes were observed in the other
experiments. The benefits of constraint satisfaction
could only be observed at higher velocities since, at
lower velocities, the rates were within limits for all
controllers. Reference trajectories with a tangential
velocity of 5 m/s could only be completed when us-
ing the E-MPC controller. When the other control
schemes (PD, PID, LQR and LQR-I) were used,
the higher speeds required for trajectory tracking
resulted in crashes when moving downwards due
to the increased momentum, which E-MPC man-
aged to constrain. This pattern suggests that de-
tuning the gains of the other control schemes to
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Figure 22: Experimental results (exp subscript) versus sim-
ulation results (sim subscript) for MPC controller for a tan-
gential velocity of 2 m/s. (a) x-axis position. (b) y-axis
position. (c) −z-axis position. (d) x-axis velocity. (e) y-axis
velocity. (f) −z-axis velocity. (g) Yaw.

slow down the translational response could have
prevented the crashes at the expense of tracking
performance; however, that study is left for future
work.

7.1. Data Playback for Controller Timing Analysis

In order to benchmark onboard controller com-
putation times, experimental data was played back
using the Beaglebone Blue on a benchtop. In these
simulations, only the controllers were executed to
determine the amount of time required to gener-
ate a control command in each loop. The results
from the data playback simulations are presented
in Table 9. It was observed that, on average, the
LQR controller took the least amount of time to
compute the control command while E-MPC took
the most. Note that the mean computation times
of all controllers were less than the time between
system interrupts (Ts = 5000 µs) and that only the
worst case computations times of PID and LQR-I
exceeded this time.

Table 9: Controller computation time from data playback

Controller
Computation Time (µs) Worst Case

(µs)Mean σ

LQR 5.2468 3.0878 314
LQR-I 6.7263 35.0383 8163
PD 8.8461 7.6955 1424
PID 9.3786 29.3469 5071
E-MPC 13.6239 6.6481 1301
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Figure 23: Results from outdoor quadcopter experiments,
with different ambient temperatures for LQR and E-MPC.

8. Discussion

Fig. 23 shows that, out of all controllers, the
implemented PID controller had the best tracking
performance. However, while the same controller
parameters were used in both the simulations and
experiments for the LQR, LQR-I, and MPC cases,
different parameter sets were required for the PD
and PID simulations and experiments (as was ex-
plained in Section 4.3). Hence, it can be argued
that LQR-I offered a better compromise between
tracking performance and maintaining consistent
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Figure 24: Control effort plot for quadcopter tracking an
inclined circle, with different ambient temperatures for LQR
and E-MPC.
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Figure 25: Pitch rate constraint satisfaction supported by
E-MPC compared to other control schemes, while executing
an inclined circle with tangential velocity of 4 m/s

simulation and experimental performance.
With an increase in tangential velocity, an in-

crease in position and velocity error was observed.
This can be attributed to the inertia of the vehicle
which resists changes in attitude and position, espe-
cially at higher velocities. Furthermore, due to their
low KV, the motors lacked the control authority to
rapidly change quadcopter attitude. However, an
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Figure 26: This plot illustrates the roll rate constraint sat-
isfaction capability of E-MPC compared to other control
schemes, while executing an inclined circle with tangential
velocity of 4m/s

increase in motor KV may require different battery
characteristics, which may increase the weight and
require a different set of propellers. Hence, an ap-
propriate combination of motors and propellers is
required for satisfactory flight performance.

Fig. 24 shows insignificant control effort varia-
tion across controllers under similar flight condi-
tions. However, lower ambient temperatures re-
duced the required control effort. This can be at-
tributed to the higher density of freezing air (-1 °C
during the experiments), which required lower con-
trol effort to propel the quadcopter. Similar results
were presented in Paredes et al. (2017), where more
energy was consumed at higher altitudes with lower
air density while less energy was consumed at lower
altitudes with higher air density (for similar flight
times).

Fig. 25 shows E-MPC controller constraint vio-
lations at approximately 7 s and 31 s. These spikes
were attributed to random delays in MOCAP infor-
mation, thus acting as noise for the system. Over-
all, the E-MPC scheme proved helpful in situations
where aggressive trajectory tracking was required
while satisfying constraints.

The data playback simulations showed that, on
average, LQR took the least amount of time to
compute control commands while E-MPC took the
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most. This was due to the fact that E-MPC deter-
mines gains based on a lookup table as opposed to
other controllers which use predefined gains. These
simulations also showed that the mean computa-
tion times of all controllers were less than the time
between system interrupts (Ts = 5000 µs) and that
only the worst case computation times of PID and
LQR-I exceeded this time. This implies that all
controllers will usually meet the time constraint im-
posed by the embedded system. Furthermore, since
the PID and LQR-I controllers had the best track-
ing performance and completed all test flights, it
can be inferred that the cases where these don’t
meet the time constraint are rare and don’t have a
significant impact on tracking performance. Since
the only controllers that exceeded the time con-
straint feature an integrator, improving the com-
putational efficiency of the algorithm that imple-
ments the integrator might decrease the probability
of time constraint violation.

9. Conclusions

This paper reviews quadrotor system modeling,
state estimation, and control. Multiple digital con-
trollers were successfully designed based on a lin-
earized quadcopter model and were implemented
on a computationally limited embedded platform.
Tested controllers included PD, PID, LQR, LQR-
I, and E-MPC. These controllers were evaluated
in the M-Air outdoor motion capture facility dur-
ing inclined, circular flight sequences. Various
challenges such as limited onboard computational
power and loss of MOCAP tracking during outdoor
flight were encountered with mitigation methods
provided. Reported results for E-MPC, LQR, LQR-
I, PD, and PID controllers analyzed position track-
ing error, velocity tracking error, and control effort.
Overall, PID had the best tracking performance,
LQR-I offered a better compromise between track-
ing performance and maintaining consistent sim-
ulation and experimental performance, and LQR
had the fastest average computation time. All con-
trollers satisfied the time constraint imposed by the
embedded system.

If constraints must be met on a computation-
ally limited platform, E-MPC provides an effec-
tive solution by computing gains offline and using a
lookup table in-flight. However, E-MPC must rely
on a backup (e.g., LQR) when conditions stray from
precomputed cases. Controller selection should be
based on factors such as available computational

power, mission specifications (e.g. velocity con-
straints), and a designer’s ability to determine op-
timal gains and performance. Appropriate motor
and propeller selection is also a key element in quad-
copter design. For example, trajectories requiring
aggressive velocities or quick changes in direction
need higher KV motors.

Note that, other than PID, most of the control
approaches discussed in this paper require mod-
elling information. “Model-free” approaches to
quadcopter control have been proposed and suc-
cessfully implemented, as shown in Al Younes et al.
(2016); Bekcheva et al. (2018) for example, where
an ultra-local model is estimated online and used
to compensate for uncertainties and disturbances.
The comparison with such model-free approaches
is left as a subject for future research.

The authors hope this paper will serve as a com-
prehensive guide for engineers needing to select, de-
sign, implement, and tune a quadcopter digital con-
trol solution.

Appendix

A. Propulsion Modeling

The thrust T (in N) and torque M (in N · m)
generated by a propeller spinning at ω RPM are
given by,

T = CTω
2, (36)

M = CMω
2, (37)

where CT and CM are computed through a least
squares fit on the RPM versus Thrust and RPM
versus Moment curves shown in Fig. 27. The R-
squared value of the fit for CT was 0.9983, whereas
the R-squared value for CM was 0.9988. These high
R-squared values show that the fits were very ac-
curate. The motors were driven by a normalized
control signal σ that goes from 0 (motor not spin-
ning) to 1 (full throttle). The steady state angular
velocity of the propeller ω (in RPM) is fit with a
linear model with respect to σ,

wss = CRσ + ωb, (38)

where CR and ωb were obtained with a least squares
fit on the curve σ versus RPM curve shown in Fig.
27. The R-squared value of this fit was 0.9911,
showing that the linear model fit the experimen-
tal data accurately. It is interesting to note that
the fit was worse for σ < 0.2 and σ ≈ 1 due to the

19



Figure 27: Dynamometer experimental results. Propulsion system parameters were obtained through a least squares curve fit.

existence of a dead zone for low σ and saturation for
high σ. This wasn’t problematic since quadcopters
do not usually operate in those zones while flying.

Finally, the propeller experienced some transient
behavior until it reached the steady state ωss given
by Eq. (38). This was modeled as a low pass filter
with time constant Tm:

ω =
1

Tms + 1
wss. (39)

The time constant Tm was obtained by analyzing
the step response of the system (see Fig. 27). Note
that Tm is the time that the system in Eq. 39 needs
to reach 63.2% of the final step value.

The following plots have been included in this
section:

• RPM versus PWM, Thrust versus PWM, Ef-
ficiency versus RPM, Thrust versus RPM,
Torque versus RPM, Step Response, σ versus
RPM for 3S batteries and 8 inch propellers.

• RPM versus Efficiency compares different com-
binations of batteries and propeller size. The
efficiency peak that appears at 2000 RPM for
the 12 V / 8 inch curve is because the mo-
tor’s mechanical power output is very low at

low RPM. Then, for a range of RPM around
2000, it increases much faster than the elec-
trical power provided to the motor, generating
the peak.

From these plots, it was determined that a larger
propeller (10 inches) was better for efficiency be-
cause bigger propellers have a larger surface in con-
tact with the air. In general, larger propellers
paired with lower KV motors are more efficient than
shorter propellers matched with higher KV motors.
The testing quadcopter had a constraint on pro-
peller size due to the propeller guards. Thus, the 8
inch propeller was chosen.

Regarding battery voltage, it is desirable that,
should a designer choose a higher battery voltage,
a smaller propeller size should be used. The loss of
efficiency at high RPM with the 16 V battery may
have been due to the increased energy losses.

In summary, the pairing of a 12 V battery, motor,
and 8-in propeller was adequate for the quadcopter
as it provided a reasonable efficiency (around 70%)
for the expected typical flight condition.

The mass and inertia were computed using two
methods, namely a lumped mass model, and by
measuring the physical properties using a scale and
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a bifilar pendulum.
The total mass of the quadcopter as determined

by each method was the following:

mlumped model = 0.997 kg, mscale = 1.062 kg

The inertia tensor (in kg ·m2) computed with the
lumped mass model was as follows

J =

 0.0109 −4.3412 · 10−6 3.6716 · 10−5

−4.3412 · 10−6 0.0109 −2.2186 · 10−5

3.6716 · 10−5 −2.2186 · 10−5 0.0200

 .
The products of inertia were assumed to be zero

due to the symmetry in the mass configuration of
the quadcopter. The moments of inertia were com-
puted using the bifilar pendulum method. If the
pendulum period is Tpend, then the moment of in-
ertia will be given by

J =
mgd2

16π2L
T 2

pend. (40)

To determine the pendulum period, two methods
were used (see Fig. 28):

1. Inspection of the Time versus Orientation plot.

2. Computation of the periodogram of the Time
versus Orientation plot and identification of
the pendulum period from the peak.

Both methods yielded very similar results, so, in
the end, 1) was arbitrarily chosen. The resulting
moments of inertia (in kg · m2) were:

Jxx = 0.0107, Jyy = 0.0111, Jzz = 0.0229.

Note how similar the results were between the
lumped mass model and the bifilar pendulum ex-
periments. The differences among them were at-
tributed to erroneous and noisy measurements of
distance, weight, and pendulum period.

B. Vertical Position & Velocity Estimator

B.1. Discrete Gauss-Markov Prediction Model
zk+1

żk+1

z̈bias,k+1

 =

1 Ts 0
0 1 −Ts
0 0 1

 zk
żk

z̈bias,k



+


T2
s

2m

Ts
m

0

 (−z̈k − g) +


T2
s

2m

Ts
m

0

wz̈k , (41)

where z̈bias,k is the estimated accelerometer bias in
the z-axis at step k and wz̈k represents the process
noise that acts upon the acceleration z̈ at step k.

Figure 28: Results of the bifilar pendulum experiment for the
characterization of Jzz . The top plot is the orientation of the
drone against time, the bottom plot is the periodogram of
the time series given by the top plot.

B.2. Discrete Gauss-Markov Measurement Model
zbaro,k

zrf,k

zMOCAP,k

 =

−1 0 0
−1 0 0
−1 0 0

 zk
żk

z̈bias,k



+

bbaro

brf

0

+

 nbaro

nrf

nz,MOCAP

 (42)

where zbaro,k, zrf,k, and zMOCAP,k are, respectively,
the barometer, range finder, and MOCAP altitude
measurements at step k, bbaro and brf are, respec-
tively, the barometer and range finder biases, and
nbaro, nrf, and nz,MOCAP represent, respectively,
the barometer, range finder, and MOCAP sensor
noise that acts upon the altitude measurements.

B.3. Covariance Matrices

The process covariance matrix W was given by

W = diag([0, 0.1428, 0.1]).

The sensor noise covariance matrix V was given by

V = diag([1.00 · 106, 1.20 · 10−6, 10−4]).
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C. Horizontal Position & Velocity Estimator

C.1. Discrete Gauss-Markov Prediction Model
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wẍk
wÿk
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where ẍbias,k and ÿbias,k are the estimated ac-
celerometer biases at step k in the x-axis and y-axis
respectively, and wẍk and wÿk represent the process
noise at step k that acts upon the accelerations ẍ
and ÿ respectively.

C.2. Discrete Gauss-Markov Measurement Model

xMOCAP,k

yMOCAP,k

 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]


xk
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ẋk
ẏk

ẍbias,k
ÿbias,k


+

[
nx,MOCAP

ny,MOCAP

]
(44)

where xMOCAP,k and yMOCAP,k are, respectively,
the MOCAP x-axis and y-axis position measure-
ments at step k, and nx,MOCAP and ny,MOCAP rep-
resent the MOCAP sensor noise that acts upon
the x-axis and y-axis position measurements respec-
tively.

C.3. Covariance Matrices

The process covariance matrix W was given by

W = diag([0, 0, 0.2749, 0.0328, 0.1, 0.1]).

The sensor noise covariance matrix V was given by

V = diag([10−4, 10−4]).

D. Yaw & Yaw Rate Estimator

D.1. Discrete Gauss-Markov Prediction Model
ψk+1

ωb
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ωb
z,bias,k+1
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where ωb
z,bias,k is the rate gyro bias around the z-

axis at step k.

D.2. Discrete Gauss-Markov Measurement Model

ψMOCAP,k

ωb
z,gyro,k

 =

1 0 0

0 1 0



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ωb
z,k

ωb
z,bias,k

+

nψ,MOCAP

ngyro

 ,
(46)

where ψMOCAP,k, and ωb
z,gyro,k are, respectively, the

MOCAP yaw and the rate gyro yaw rate measure-
ments at step k, and nψ,MOCAP, and ngyro repre-
sent, respectively, the MOCAP and rate gyro sensor
noise that acts upon the yaw and yaw rate measure-
ments.

D.3. Covariance Matrices

The process covariance matrix W was given by

W = diag([0, 0, 0.1]).

The sensor noise covariance matrix V was given by

V = diag([10−4, −0.7822]).

E. Sensor Calibration Results

Covariances used in-flight for motion capture
measurements were set to higher than measured
values to assure the Kalman Filter correction step
would not operate on near-singular matrices. The
motion capture biases were assumed to be zero be-
cause the camera system was calibrated before use.
Accelerometer and gyro biases and slopes were orig-
inally determined from linear least squares fits on
rate table experimental data as shown in Table 10.
In practice, the biases were estimated on-the-fly
with Kalman Filters.
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