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Abstract

This article provides a historical perspective of the field of adaptive
control over the past seven decades and its intersection with learning.
A chronology of key events over this large time-span, problem state-
ments that the field has focused on, and key solutions are presented.
Fundamental results related to stability and robustness of adaptive
systems and learning of unknown parameters are sketched. A brief
description of various applications of adaptive control reported over
this period is included.

1 Introduction

The goal of adaptive control is real-time control of uncertain dynamic systems
through adaptation and learning. This paper takes a historical perspective
of the field of adaptive control over the past seven decades. Given the recent
upsurge of interest in learning, in the Machine Learning and Control com-
munities, both offline and online, such a perspective is timely and warranted.

The scope that we aim to cover is clearly ambitious. Covering events
that span 70 years, chronicled in more than 15 textbooks, 20 edited books,
hundreds of surveys, and thousands of research publications in journals and
conferences in 30 pages is a formidable task. The goal of this article is to
accomplish this task by focusing on the highlights of this field, emphasize key

∗The first author is supported by the Boeing Strategic University Initiative. The second
author performed his part of the work in IPME RAS under support by Ministry of Science
and Higher Education of the Russian Federation (Project no. 075- 15-2021-573 ).
Published at https://doi.org/10.1016/j.arcontrol.2021.10.014.

1

ar
X

iv
:2

10
8.

11
33

6v
2 

 [
m

at
h.

O
C

] 
 2

2 
Fe

b 
20

22

https://doi.org/10.1016/j.arcontrol.2021.10.014


lessons learned, delineate key solutions derived, and identify a few takeaway
messages.

Here are the highlights of this article:

• Over the last seventy years, the field of adaptive control has wit-
nessed advances in both deterministic and continuous-time systems
and stochastic discrete-time systems. This article is one of the first
attempts to trace the development in both domains.

• The article focuses mainly on those advances in adaptive control that
have a significant intersection with parameter learning.

• This article has made a concerted effort in chronicling key advances
that have occurred globally.

• The article presents events chronologically (Section II), through prob-
lem statements (Section III), and through highlights of solutions (Sec-
tion IV). An interested reader may delve into only one or more of these
sections and do a deeper dive, if interested, by reading any of the 250
references listed at the end of the article.

• The article provides a snapshot of various applications of adaptive con-
trol (Section V).

• Concluding remarks including a few takeaway messages are provided
in Section VI.

When it comes to real-time control of uncertain dynamic systems, the ef-
forts of the control community extend significantly beyond adaptive control.
There are several topics that are at the boundaries, such as sliding-mode
control, iterative learning control, and linear-parameter-varying control that
are not addressed in this survey. While we devote a section to the topic of
reinforcement learning (RL) that has a rich intersection and complementarity
to adaptive control, we defer the reader to other articles for a more compre-
hensive discussion on RL as well as other topics that lie at the intersection
of adaptation and learning.

2 A chronology

The history of adaptive control systems is almost as long as the entire field
of control systems, as the concept of adaptation is fairly close to the no-
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tion of feedback. As such, this concept has been explored from the 1950s
to the present and continues to be an area of intense activity. We clas-
sify various developments in this area into three chunks of time, 1950-65,
1965-85, and 1990s-2000. During the first 15 years, several contributions
arose separately in the context of deterministic continuous-time systems and
pattern-recognition (which employed a stochastic framework), and are orga-
nized under these two broad headings. Subsequent sections outline parallel
developments in deterministic and stochastic systems in a combined manner.
While the 70s and 80s witnessed the development of a stability framework,
later decades developed a robustness framework for the adaptive systems.
Key developments in all of these decades are outlined below.

2.1 1950-65

2.1.1 Deterministic and continuous time

The term adaptation is defined in biology as “an advantageous conformation
of an organism to changes in its environment.” The earliest reflection of this
principle in an engineering context can be found in (Drenick and Shahbender,
1957)1. The authors coopted this fundamental principle in their definition
of an adaptive system in the context of a control system, and defined an
adaptive control system to be one which monitored its own performance and
adjusted its parameters in the direction of better performance Drenick and
Shahbender (1957). The implicit implication here is that a non-adaptive sys-
tem would then have parameters that are fixed and not adjusted. To provide
more clarity, and distinguish an adaptive system from a non-adaptive one,
references Aseltine et al. (1958) and Stromer (1959) introduced definitions
of adaptive systems. In fact, there was a profusion of definitions of adaptive
systems at this time based on what was adapted, what the adaptation was
in response to, time-scales of adaptation, or from whose viewpoint. It could
be argued that the classes of adaptive systems outlined in (Aseltine et al.,
1958) are precursors to the current approaches in adaptive control.

Similar to Drenick and Shahbender (1957), the authors of Whitaker et al.
(1958) focused on a servo problem where the process output was required
to follow a commanded output in the presence of parametric uncertainties.
They developed what came to be known as the MIT-rule as a core adaptive

1Origins of adaptation rules can be traced even earlier to 1949, in the form of Hebbian
rules (Hebb, 1949) that connected weight adjustments in a neuron to performance.
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mechanism which served as an outer loop with the inner loop consisting of
a standard feedback control system. The adaptive mechanism adjusted the
control parameter θ using a simple rule

θ̇ = −ke(t)∇θe(t) (1)

where e(t) denoted a tracking error between the process output y(t) and a
reference output ym(t), and ∇ stands for the gradient. The idea therefore is
to have the adaptive mechanism use (1) to estimate, i.e. learn the correct
value of the parameter that the feedback controller in the inner loop must
deploy. This main idea continues to pervade all adaptive control methods
to-date.

The motivation for the study and implementation of adaptive control
systems came from applications in aerospace – for autopilot design in flight
control (Gregory (1959); Hammond (2013)). As high performance aircraft
routinely encounter a wide range of operating conditions, there was a need
to develop sophisticated regulators that would adapt their parameters on-
line so that they are not constrained to work with constant gains which may
limit their operation to a small flight envelope. This led to several sym-
posia on adaptive systems in the early 60s, with what was referred to as a
three-legged milking stool for advanced flight control systems that consisted
of aerodynamics, GNC (Guidance, Navigation, and Control), and adaptation
(Hammond, 2013). Around the same time, Bellman and Kalaba introduced
the term adaptive in the context of multistage decision processes as belong-
ing to the last of a series of three stages in the evolution of control processes.
With the first two denoted as deterministic and stochastic control processes,
an adaptive control process was defined as when the designer has very little
knowledge about the system dynamics or even the statistics of any random
inputs that may be present (Bellman and Kalaba (1959); Bellman (2015)).
Yet another early evidence of interest in adaptive regulators is a patent by
Caldwell (Caldwell, 1950). Several additional references can be found in
Astrom (1996) and in Chapter 1 in Narendra and Annaswamy (2005).

Cautionary inputs and guidance for the design of the controllers and the
adaptive mechanisms soon started to appear. Any successful adaptive system
has to cope with changes in its environment for its survival and performance.
Familiarity with the environment results in better understanding, and bet-
ter understanding enables the system to better predict the changes in the
system. However, understanding and controlling are two distinct activities;
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predictive ability does not translate directly into the ability to control. Often
the converse may be true – a better ability to control may help in a better un-
derstanding but here too there may be limits. Needless to say, the connection
between identification and control is complex and was explored in a number
of seminal papers and textbooks during the ’60s. One of them is Feldbaum’s
concept of dual control (Feldbaum, 1960b), that emphasized the need for an
optimal control action that is taken for a system with uncertainties. Feld-
baum pointed out that the requisite control has to have dual components,
one of probing for enhancing identification and one of caution for ensuring
stable control action. Too much of a focus on identification may not result in
satisfactory control; too much emphasis on controlling the system may not
lead to satisfactory learning. The design of dual control with the right mix of
both of these components is therefore a huge challenge and the grand goal of
the field of adaptive control. These two intertwined concepts of identification
and control pervade Machine Learning (ML) as well (Kaelbling et al. (1996);
Ishii et al. (2002)), and often go under the monikers of “exploration” and
“exploitation.”

2.1.2 Pattern Recognition and Classification

A parallel development of adaptation can be traced in the field of pattern
recognition and classification, which occurred during the same period. As
the title of Widrow (1964) attests, it was observed that a gradient descent
type algorithm, similar to that in (1), plays a central role not only in control
problems but also in pattern recognition. In addition to (Widrow, 1961,
1964; Abramson et al., 1963), several groups in USSR led by Aizerman
Aizerman (1963), Lerner Vapnik and Lerner (1963); Vapnik and Chervo-
nenkis (1964), Yakubovich V.A.Yakubovich (1963, 1965), and others (Bon-
gard, 1961; Braverman, 1962; Fradkov, 2020; Fradkov and Polyak, 2020) de-
veloped deterministic and stochastic approaches for input classification and
pattern recognition. A common element to a diverse set of problems in pat-
tern recognition, signal processing (Widrow et al., 1967), and perceptrons
(Rosenblatt, 1961), was the determination of a set of parameters or weights
that leads to desired classification, filtering, or tracking performance using
input-output data. In contrast to the earlier discussions of control systems,
the treatment in these works was in discrete-time rather than continuous
time, and instead of a deterministic framework, employed a stochastic frame-
work with noisy measurements and inputs. Widrow’s Adaline filters also led
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to the foundation of neural networks, deep and otherwise (Widrow and Lehr,
1990). The approach taken in many of these works was statistical in nature,
with their foundations in communications and decision theory (Marill and
Green, 1960; Widrow, 1960). Except for brief mentions, this survey will not
focus on the evolution of pattern recognition or its intersection with adaptive
control.

2.2 1965-1985

It was soon realized that the MIT-rule proposed in Whitaker et al. (1958) can
result in instability, especially when there is sufficient phase lag between the
measurement of error and adjustment of the parameters. Several authors con-
tributed to the formulation of a stability framework for the analysis and syn-
thesis of adaptive systems where real-time decisions in the form of parameter
adjustment in dynamic systems were taken using online data. Notable ones
came from the authors of Grayson (1963), Shackcloth and Butchart (1965),
Parks (1966), Monopoli (1967), and Narendra and Kudva (1974). Lyapunov’s
method was suggested in lieu of a gradient descent approach as in (1), and
ended up as the foundation for stability of adaptive systems2. Independently,
the same problem with similar conceptual tradeoffs was also addressed in de-
terministic discrete time setting by Yakubovich in V.A.Yakubovich (1968,
1972). Several seminal results were published during this period which wit-
nessed surveys by Lindorff and Carroll (Lindorff and Carroll, 1973), Landau
(Landau, 1974), Wittenmark (Wittenmark, 1975), Unbehauen (Unbehauen
et al., 1975), and others (Asher et al., 1976; Parks et al., 1980; Voronov
and Rutkovsky, 1984). These were followed by edited books such as Naren-
dra (1980 (reprinted 2012); Unbehauen (1980); Harris (1981), and subse-
quent textbooks in deterministic and continuous-time Fomin et al. (1981);
Narendra and Annaswamy (1989); Åström and Wittenmark (1995); Ioan-
nou and Sun (1996); Sastry and Bodson (1989); Tao (2003); Krstić et al.
(1995); Fradkov et al. (1999), stochastic systems in books and papers such
as Kumar and Varaiya (1986); Duncan and Pasik-Duncan (1990); Borkar
and Varaiya (1979); Becker et al. (1985); Fomin (1991), and multiple-input,
multiple-output systems in Tao (2003). These addressed adaptive control
architectures and algorithms for a range of dynamic systems, with either

2In hindsight, the MIT-rule can be viewed as a partial Lyapunov function, as it only
included an L2-norm of the performance error in its cost function.
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full-state or partial-state measurements available in real-time. The efforts
during these 15 years laid the foundation for stable adaptation in dynamic
systems, both deterministic and stochastic, where the uncertainties were pre-
dominantly in their parameters. The overall goal was to ensure a closed-loop
system that was well-behaved and met control goals such as tracking and
regulation asymptotically.

In deterministic systems, the structure of the algorithm for adjusting their
parameter θ was of the form

θ̇(t) = −k(t)e(t)φ(t) (2)

where φ is a suitably chosen regressor that may or may not coincide with the
gradient of a well-defined loss function, and k(t) represents a normalization
component. The choices of k and φ were guided by the determination of
an underlying Lyapunov function and the interplay between the adjustable
parameters and the signals in the closed-loop system, leading to an approach
that is most commonly termed Model Reference Adaptive Control (MRAC)
and used in deterministic continuous-time systems. In stochastic systems, the
works by Astrom and coworkers (Astrom and Wittenmark, 1973; Åström and
Wittenmark, 1995) led to Self-tuning Regulators (STR) associated with min-
imum variance controller with their foundation laid in papers such as (Ljung,
1977b),(Solo, 1979; Landau, 1982; Bitmead, 1983; Kumar, 1983; Clarke et al.,
1985; Johansson, 1995). In all these cases, conditions under which learn-
ing, that is, accurate parameter estimation, can take place were precisely
articulated. Both necessary and sufficient conditions were derived (Morgan
and Narendra, 1977; Ljung, 1977a,b; Ljung and Söderström, 1983; Anderson,
1985).

Yet another link between adaptation and learning is due to Yakov Tsyp-
kin who proposed a unified framework based on stochastic approximation
machinery. Parameter choice and convergence results then follow from the
results on stochastic approximation obtained earlier in mathematical statis-
tics based on average risk minimization (Tsypkin, 1966, 1968). We defer the
details of the problem statement to Section III.

As evidenced by the chronology above, there are two parallel, and very
similar evolution of the branches of adaptive control in deterministic systems
and stochastic systems, with the obvious distinction associated with the un-
derlying tools. The problem of convergence of the tracking error in the for-
mer case had a counter-part of a minimum variance controller in the latter.
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The term adaptive controller remained in vogue for deterministic systems
and its counterpart in stochastic systems was termed self-tuning regulators;
the terms adaptation and self-tuning were used synonymously. The funda-
mental tenets of stability and convergence in adaptive systems and tradeoffs
between performance and learning were however found to be invariant to
these two branches. We note that for stochastic systems, our focus in this
paper is restricted to adaptation and parameter learning in discrete-time sys-
tems. There is a significant and rich literature present in adaptive control of
stochastic continuous-time systems as well (see Wertz et al. (1989); Gevers
et al. (1991); Caines (1992); Duncan et al. (1999) for linear systems and Li
and Krstic (2020) for nonlinear systems). Most of these ideas and results
have discrete-time counterparts, which are presented in brief in the following
sections. Details of the problem statements are postponed until section III.

2.3 1990s-present

2.3.1 Adaptive Control of Deterministic and Stochastic Systems

With the stability framework established in the 70s, the next broad milestone
in the evolution of adaptive control systems was a robustness framework es-
tablished in the 80s with textbooks capturing the details of various solutions
in the 90s. It was soon realized that both gradient algorithms as in (1)
and stability-based algorithms that employed a Lyapunov approach as in (2)
were inadequate in ensuring robustness to perturbations such as bounded
disturbances and unmodeled dynamics (Rohrs et al., 1982). Several ap-
proaches were developed around the same time (Egardt, 1979; Peterson and
Narendra, 1982; Kreisselmeier and Narendra, 1982; Ioannou and Kokotovic,
1984; Praly, 1984b,a; Anderson et al., 1986; Narendra and Annaswamy, 1986,
1987a; Ioannou and Tsakalis, 1986a; Middleton and Goodwin, 1988; Tsakalis
and Ioannou, 1989; Ortega and Tang, 1989; Naik et al., 1992) in ensuring that
adaptive control systems not only provided appropriate adaptation to accom-
modate parametric uncertainties but also provided robustness to withstand
non-parametric uncertainties such as external disturbances, time-varying pa-
rameters, and unmodeled dynamics. Broadly, these approaches either relied
on properties of persistent excitation of the exogenous command signals (An-
derson et al., 1986; Narendra and Annaswamy, 1986) with the same adaptive
laws as in (2), or in modifying the adaptive law in a suitable manner (Frad-
kov, 1980; Peterson and Narendra, 1982; Kreisselmeier and Narendra, 1982;
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Ioannou and Tsakalis, 1986a; Narendra and Annaswamy, 1987a; Fradkov,
1987; Wen and Hill, 1992). A parallel to the latter corresponds to the use
of regularization in machine learning (Gaudio et al., 2020b). Similar results
can be found in discrete time as well (for example, (Ioannou and Tsakalis,
1986b; Tao and Kokotović, 1995; Wen and Hill, 1992; Cluett et al., 1988)).
The use of diminished persistent excitation with time was utilized to obtain
an elegant framework for adaptive optimal control in stochastic systems in
(Guo and Chen, 1991; Guo, 1995; Duncan et al., 1999).

The above stability and robustness arguments also set the stage for ad-
dressing the control of nonlinear systems with parametric uncertainties. This
too was addressed starting in the 90s, spawning a huge area of research with
dozens of researchers laying the foundation of key results (see for example
Krstić et al. (1995)). Special classes of adaptive nonlinear systems that arise
in robotics were addressed at length in Slotine and Li (1991) even earlier.
Methods based on feedback linearization, backstepping, and averaging led to
several seminal results in this area. A class of problems related to control of
nonlinear systems using neural networks witnessed significant activity dur-
ing this period as well (see for example, Narendra and Parthasarathy (1991);
Sanner and Slotine (1992); Rovithakis and Christodoulou (1994); Polycarpou
(1996); Yu and Annaswamy (1996, 1998); Lavretsky and Hovakimyan (2008);
Ren et al. (2010a)).

2.3.2 Reinforcement learning/Approximate Dynamic Programming

Towards the end of the 1980s the approach of reinforcement learning (Sut-
ton and Barto, 2018; Kaelbling et al., 1996) was formulated and in the early
1990s strong ties were identified between these topics and adaptive optimal
control. A case in point is the reference Sutton et al. (1992), clearly indicated
in its title, Reinforcement learning is direct adaptive optimal control. In the
works on control based on RL, a performance index is introduced, usually as
an integral functional, and neural networks are used to approximate either
the predicted optimal value (Bellman function) of this functional (known as
Value Iteration (VI)) or the optimal control policy (policy iteration), based
on the HJB equation. Such an approach is referred to as “approximate dy-
namic programming”, ”neuro dynamic programming” (Powell, 2007; Bert-
sekas, 2008), or “adaptive dynamic programming” (Lewis and Vrabie, 2009).
Analytical frameworks for cases when the state and action sets are finite
and for the more difficult case when they are infinite have been addressed.
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Related problem statements are briefly addressed in Section III.

3 Problem Statements

This section outlines the problem statements that have been proposed un-
der the rubric of adaptive control. We classify them into four categories,
the first three of which are based on whether they are in continuous-time or
discrete-time, and deterministic or stochastic. We do not address stochastic
continuous-time systems in this paper mostly since that area was developed
much in parallel with the discrete-time case (Wertz et al., 1989; Gevers et al.,
1991; Caines, 1992; Duncan et al., 1999; Li and Krstic, 2020). A brief dis-
cussion on RL is also included in this section.

3.1 Deterministic and Continuous-time Systems

The aim in adaptive control problems is to design an exogenous input u(t) ∈
Rm that affects the dynamics of a system given by

ẋ = f(x, θ, u, t)

y = g(x, θ, u, t) (3)

where x(t) ∈ Rn represents the system state, y(t) ∈ Rp represents all mea-
surable system outputs, with many physical systems obeying the inequality
n >> p > m (Qu et al., 2020). θ ∈ R` represents system parameters that
may be unknown, and f(·) and g(·) denote system dynamics, that may be
nonlinear, that capture the underlying physics of the system. The functions
f(·) and g(·) also vary with t, as disturbances (often modeled as determin-
istic quantities) and stochastic noise may affect the states and output. The
goal is to choose u(t) so that y(t) tracks a desired command signal yc(t) at
all t, and so that an underlying cost J((y − yc), x, u) is minimized. In what
follows, we will refer to the system that is being controlled as a plant.

As the description of the system as in (3) is based on a plant model, and as
the goal is to determine the control input in real time, all control approaches
make assumptions regarding what is known and unknown. To begin with,
as the plant is subject to various perturbations and modeling errors due to
environmental changes, complexities in the underlying mechanisms, aging,
and anomalies, both f and g are not fully known. The field of adaptive
control has taken a parametric approach to distinguish the known parts from
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the unknown. In particular, it is assumed that f is a known function, while
the parameter θ is unknown. A real time control input is then designed so
as to ensure that the tracking goals are achieved by including an adaptive
component that attempts to estimate the parameters online. A linearized
version of the problem in (3) is of the form

y = W (s, θ)[u] (4)

where s denotes the differential operator d/dt, W (s, ·) is a rational operator
of s, and θ is an unknown parameter, and the goals of tracking and regulation
are the same as above.

In the following subsections, four broad categories of subproblems that
have been addressed in the context of adaptive control in deterministic continuous-
time systems are described.

3.1.1 Boundedness and real-time decision making

As mentioned above, the control goal is to ensure that

lim
t→∞

e(t) = 0 (5)

where e(t) = y(t)− yc(t). As these decisions are required to be made in real
time, the focus of the solutions is to have them lead to a closed-loop dynamic
system that has bounded solutions at all time t and a desired asymptotic be-
havior. The central question, therefore, is if this can be ensured even when
there are parametric uncertainties in θ and several other non-parametric un-
certainties that may due to unmodeled dynamics, disturbances, and the like.
Once this is guaranteed, the question of learning, in the form of parameter
convergence, is addressed. As a result, control for learning is a central ques-
tion that is pursued in the class of problems addressed in adaptive control
rather than learning for control (Krstic, 2021).

3.1.2 Certainty Equivalence Principle and Adaptive Control So-
lutions

The well known certainty equivalence principle (CEP) proceeds with the
following mantra: first, optimize under perfect foresight, then substitute op-
timal estimates for unknown values. This philosophy underlies all adaptive
control solutions by first determining a controller structure that leads to an
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optimal solution when the parameters are known and then replace the pa-
rameters in the controller with their estimates. The difficulty in adopting
this philosophy to its fullest stems from the dual nature of the adaptive con-
troller, as it attempts to accomplish two tasks simultaneously, estimation
and control. This simultaneous action introduces a strong nonlinearity into
the picture and therefore renders a true deployment of the certainty equiva-
lence principle difficult if not impossible. The procedure for adaptive control
is therefore modified, with the first step corresponding to a controller that
leads to a stable solution rather than optimal one. In other words, much
of the adaptive control literature has focused on deriving stable solutions
first and foremost for the real-time control of systems with parametric un-
certainties, followed by an effort to estimate the unknown parameters, and
optimization addressed at the final step. Such a breakdown of the problem
overcomes the intractability of the certainty equivalence principle and leads
to tractable procedures.

A typical solution of the adaptive controller takes the form

u = C1(θc(t), φ(t), t) (6)

θ̇c = C2(θc, φ, t) (7)

where θc(t) is an estimate of a control parameter that is intentionally varied
as a function of time, φ(t) represents all available data at time t. The nonau-
tonomous nature of C1 C2 is due to the presence of exogenous signals such
as set points and command signals. The functions C1(·) and C2(·) are de-
terministic constructions, and make the overall closed-loop system nonlinear
and nonautonomous. The challenge is to suitably construct functions C1(t)
and C2(t) so as to have θc(t) learn the requisite unknown control parameter
θ∗c , and ensure that stability and asymptotic stability properties of the over-
all adaptive systems are ensured. These constructions have been delineated
for deterministic systems in (Narendra and Annaswamy, 1989; Åström and
Wittenmark, 1995; Ioannou and Sun, 1996; Sastry and Bodson, 1989; Krstić
et al., 1995; Tao, 2003) and other textbooks. The solutions in these books
and several papers in premier control journals such as Transactions on Auto-
matic Control and Automatica have laid the foundation for the construction
of C1 and C2 for a large class of dynamic systems in (3).
Model Reference Adaptive Control A tractable procedure for determining
the structure of the functions C1 and C2, denoted as Model Reference Adap-
tive Control, uses the notion of a reference model, and a two-step design
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consisting of an algebraic part for determining C1 and an analytic part for
finding C2. A reference model provides a structure to the class of command
signals yc(t) that the plant output y can follow. For a controller to exist for a
given plant-model using which the closed-loop system can guarantee output
following, the signal yc needs to be constrained in some sense. A reference
model is introduced to provide such a constraint. In particular, a model M
and a reference input r is designed in such a way that the output ym(t) ofM
for an input r(t) approximates the class of signals yc(t) that is desired to be
followed. With a reference model inM, the algebraic part of the MRAC cor-
responds to the choice of C1 with a fixed parameter θ∗c such that if θc(t) ≡ θ∗c
in (6), then limt→∞ yp(t) − ym(t) = 0. With such a C1 determined, noting
that θ∗c could be unknown due to the parameteric uncertainty in the plant,
the analytic part focuses on finding C2 such that output following takes place
with the closed-loop system remaining bounded.

3.1.3 Learning = parameter estimation

With the problem statement as above, it is perhaps clear to the reader that
the organic connection between the adaptive control problem and learning
enters through parameters. Given that what’s unknown about the dynamics
is the plant parameter θ, or equivalently the control parameter θ∗c , learning is
synonymous with accurate parameter estimation. That is, it is of interest to
have the parameter estimate θc converge to θ∗c in the context of a control prob-

lem, and in identification problems, for an estimate θ̂ to converge to θ. The
goal in either case is to determine conditions under which this convergence
take place. These conditions are linked to properties defined as persistent ex-
citation (PE) and uniform observability (Narendra and Annaswamy, 1987b;
Boyd and Sastry, 1983; Morgan and Narendra, 1977; Anderson and Johnson,
1982; Jenkins et al., 2019). These PE properties are usually associated with
the underlying regressor φ, and typically realized by choosing the exogenous
signals such as r(t), the input into the reference model M appropriately,
which the control designers have the freedom to select.

Yet another extension that has been explored successfully in adaptive
control is the notion of multiple models (Narendra and Balakrishnan, 1997).
The goal is the same as in MRAC, but to accomplish adaptation rapidly. As
the name suggests, the solution consists of generating multiple models of the
plant, with multiple identification errors, one associated with each model,
and carry out two steps, of switching and tuning. Switching consists of de-
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termining the model with the smallest error using a suitable criterion, and
tuning corresponds to the adjustment rule that identifies the parameters of
that particular model. Several algorithms are suggested in (Narendra and
Balakrishnan, 1997) and the references therein. In Narendra and Balakrish-
nan (1997), the premise is that p∗, the plant parameter suddenly changes, and
the goal is to quickly determine an adaptive controller using a combination
of fixed models and adaptive models where the plant parameter is identified.
While learning is a part of the objective of adaptive models, the focus of the
paper is primarily in determining a closed-loop system that remains stable.
The counterpart to the concept of multiple model-based adaptive control in
the fixed control domain is supervisory control (Morse, 1996).

3.1.4 Robust adaptive control

The assumption that the uncertainties in (3) and (4) are limited to just the
parameter θ, and that otherwise f and g or W (s) are known, is indeed an
idealization. Several departures from this assumption can take place in the
form of unmodeled dynamics, time-varying parameters, disturbances, and
noise. For example, the linear plant may have a form

y = [W (s, (θ(t))) + ∆(s)] [u+ d(t) + n(t)] (8)

where d(t) is an exogenous bounded disturbance, n(t) represents measure-
ment noise, the parameter θ is time-varying and is of the form

θ(t) = θ∗ + ϑ(t) (9)

where θ∗ is an unknown constant parameter but is accompanied by additional
unknown variations in the form of ϑ(t), and ∆(s) may represent higher-order
dynamics that is either not known, poorly known, or even deliberately ig-
nored for the sake of computational simplicity. In all of these cases, a robust
adaptive controller needs to be designed to ensure that the underlying signals
remain bounded, with errors that are proportional to the size of these pertur-
bations. As mentioned earlier, these approaches either relied on properties
of persistent excitation of the exogenous command signals (Anderson et al.,
1986; Narendra and Annaswamy, 1986) with the same adaptive laws as in
(2), or in modifying the adaptive law in a suitable manner (Fradkov, 1980;
Peterson and Narendra, 1982; Kreisselmeier and Narendra, 1982; Ioannou
and Tsakalis, 1986a; Narendra and Annaswamy, 1987a; Fradkov, 1987; Wen
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and Hill, 1992). These are summarized in (Narendra and Annaswamy, 2005;
Åström and Wittenmark, 1995; Ioannou and Sun, 1996; Sastry and Bodson,
1989; Tao, 2003; Krstić et al., 1995; Fradkov et al., 1999). Details of these
approaches are deferred to the next section.

3.2 Stochastic and Discrete-time Systems

A parallel development in adaptive control is one where the control deci-
sions take place in a stochastic environment. The problem statements once
again center around systems that are not known, with a random or noisy
behavior being an essential feature. Here too, there are multiple classes of
problems that have been studied over the past five decades, a broad division
corresponding to Bayesian and Non-Bayesian problem statements (Kumar
and Varaiya, 1986). In both classes, similar to the problem statement in
Section 3.1, the unknown part of the system pertains to its parameters. The
former corresponds, as the name suggests, to problems where a probability
distribution of the parameter is known a priori, while in the latter, only
a known set Θ to which the parameter belongs is given. Examples of the
former include the Bayesian N-armed bandit problem (Gittins, 1979; Kumar
and Seidman, 1981; Kumar, 1985), and self-tuning regulators (STR) (Åström
and Wittenmark, 1995) for the latter. In this paper, we limit our discussion
to the latter.

3.2.1 Self-tuning Regulators

The starting point for the STR problem is a Nonlinear Auto-Regressive
Moving-Average model with noise (NARMAX) of the form

yk =
n∑
i=1

a∗i yk−i +
m∑
j=1

b∗juk−j−d +
n∑
i=0

c∗iwk−i

+

p∑
`=1

d∗`f`(yk−1, . . . , yk−n, uk−1−d, . . . , uk−m−d),

(10)

where a∗i , b
∗
i , c
∗
i , and d∗i are unknown parameters and d is a known time-delay.

wi corresponds to a white noise, stemming from measurement noise as well
as input noise. The function f` is an analytic function of its arguments and is
assumed to be such that the system in (10) is bounded-input-bounded-output
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(BIBO) stable. The NARMAX plant in (10) reduces to a linear ARMAX-
model when the last term on the right-hand-side is absent. Alternate state-
space representations rather than the input-output one in (10) have also been
analyzed in the literature. The goal once again is to determine the control
input uk, in real-time, so that the output yt either tracks a desired signal yd,t
or is regulated around zero.

Similar to the deterministic counterpart, the adaptive control structures
that solve the problem for stochastic systems have also centered around one
that leads to a solution when the parameters are known. We rewrite the
system in (10), assuming that there are no nonlinearities, as

A(z)yk+1 = zdB(z)uk+1 + C(z)wk+1 (11)

where A(z) = 1 − a0z − . . . + anz
n+1, B(z) = b0 + b1z + . . . + bpz

p, C(z) =
1 + c0z + . . . cnz

n+1, and z denotes the shift operator, zyk = yk−1. Defining
polynomials F (z) and G(z) as F (z) = 1 + f1z + . . . + fd−1z

d−1, G(z) =
−g0 + g1z + . . .+ gnz

n, we can express the polynomial C as

C = AF + zdG (12)

where we have suppressed the arguments for ease of exposition. F (·) repre-
sents the quotient of A with respect to C. With the introduction of F and
G, we can rewrite the system in (11) as

yk+1 = zd
(
B

A
uk+1 +

G

A
wk+1

)
+ Fwk+1 (13)

It is easy to see that the desired control input is given by

uk = − G

BF
yk

def
= C(φk, θ

∗
c ) (14)

where φk = [yk−1, . . . , yk−n, uk−1−d, . . . , uk−m−d]
>. The parameter θ∗c is a

transformation of the parameters of A and B, by virtue of the relation in
(12). It can also be shown that (Kumar and Varaiya, 1986) that the control
input in (14) minimizes the variance E((1/N)

∑N
1 (y2

k)), and is often referred
to as a minimum variance control (Åström and Wittenmark, 1995; Clarke
et al., 1985; Johansson, 1995).

The self-tuning regulator addresses the design of a minimum variance con-
trol when the parameter θ∗ is unknown. The corresponding solution pertains
to the choice of the control input of the form (Åström, 2012)

uk = C(φk, θ̂k) (15)

16



and finding parameter updates for the parameter estimate θ̂ so that minimum
variance can be achieved. We defer a discussion of various results related to
STR to Section IV.

3.2.2 Parameter Estimation and Persistent Excitation

Similar to the deterministic case discussed above, here too learning is tied
with estimation of unknown parameters. The ARMAX problem considered
in (11) can be rewritten as a linear regression equation

yk = φ>k−1θ
∗
k + vk, (16)

where vk is a noise term, not necessarily white, and θ∗ is a vector of un-
known parameters that needs to be estimated. Parameter estimation can
then be carried out using a variety of iterative algorithms such as stochastic
approximation (Kumar, 1983; Goodwin et al., 1981) also known as stochastic
gradient descent (SGD), and recursive least squares (Kumar, 1985; Goodwin
et al., 1981). As will be seen in Section IV, the conditions under which the
estimates generated by these algorithms converge to the true values are well
understood, also denoted as persistent excitation. The same procedure can
also be adopted in adaptive control by starting with (15), and noting that it
can be expressed once again as a linear regression. We discuss these details
in Section IV.

A more generic formulation of the adaptation and learning problem was
proposed by Tsypkin (Tsypkin, 1966, 1968) based on minimization of a aver-
aged performance index. That is, the problem was posed as minθ J(θ) where
J(θ) is the average of the cost function Q(x, θ) over x with an unknown
density p(x), where x is the state and θ is a decision variable:

J(θ) =

∫
X

Q(x, θ)p(x)dx = ExQ(x, θ). (17)

Tsypkin proposed a solution based on SGD as

θ[n] = θ[n− 1]− γ[n]∇Q(x[n], θ[n− 1])

where θ[n] is a recursive estimate of θ. Choosing the cost function in an
appropriate way allowed the author to present different classes of algorithms
described previously in the literature and a number of new ones in a unified
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manner. He also showed that convergence of the algorithms can be estab-
lished based on the stochastic approximation scheme under conditions of
convexity and bounded growth of J(θ) and classical Robbins-Monro condi-
tions on γ[n] (Robbins and Monro, 1951), namely

γ[n] > 0,
∑
n

γ[n] =∞,
∑
n

γ2[n] <∞. (18)

3.2.3 Adaptive Optimal Control of Linear Quadratic Gaussian
Systems

The problem statements in sections 3.1, 3.2.1, and 3.2.2 have focused on
ensuring that a tracking error in states, or an output variance in the con-
text of regulation is minimized (Åström and Wittenmark, 1995; Clarke and
Gawthrop, 1979). An alternate class of problems has focused on minimizing
a quadratic cost not only in states but also in the inputs. A typical problem
formulation in this class is of the form (Becker et al., 1985)

xk+1 = Axk +Buk + wk+1 (19)

where A and B are unknown matrices, and wk is a noise process made up
of Gaussian i.i.d. random variables N(0, 1). The control objective is to
determine uk such that the cost function

J(A,B)
def
= lim sup

T→∞

1

T

T∑
i=1

[
xTi Qxi + uTi Rui

]
, (20)

where Q = QT > 0, R = RT > 0, is minimized.

3.3 Deterministic and Discrete-time Systems

3.3.1 Pattern Recognition and Classification

The problem of image classification into one of two classes A or B can be
recast in a form very similar to (16) and is briefly described here (Novikoff,
1962; V.A.Yakubovich, 1963): Let Xk, k = 1, 2, ...N denote features, and a
corresponding output y(Xk) is of the form

yk =

{
1 k = 1, 2, . . .M
−1 k = M + 1, . . . N

(21)
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Suppose that the features are such that these two classes can be separated by
a hyperplane in a suitable image of the initial space. That is, the underlying
classification model is such that there exist θ ∈ Rn and θ0 ∈ R such that

yk = θTφ(Xk) + θ0 (22)

where φ(·) is a suitable kernel function (regressor) that enables efficient clas-
sification. Having exposed the model to a number of features of known
images, the goal is to learn the value of θ and θ0 so as to classify any given
image into class A or class B. That is, the problem is reduced to finding
an approximation of the function between X and y based on its values on
a finite set. Gradient-type algorithms in (Novikoff, 1962; V.A.Yakubovich,
1963) have been shown to learn the hyperplanes in a finite number of steps
with a prespecified accuracy.

Yet another approach suggested in (V.A.Yakubovich, 1965; Yakubovich,
1966) consists of transforming the above into a dual problem of finding the
intersection of a finite number of half-spaces{

(θ, θ0) : y(Xk)(θ
Tφ(Xk) + θ0) > 0

}
, k = 1, 2, ...N.

A gradient-like solution to the above is given by

θk+1 = θk − γky(Xk)φ(Xk), θ0,k+1 = θ0,k − γky(Xk), (23)

Several approaches have been proposed to select the size of the steps (gains)
γk. In particular, it is possible to project the current vector of weights onto
the boundary hyperplane if the current object is classified incorrectly and
take γk = 0 otherwise (see details in (Yakubovich, 1966; Bondarko and
Yakubovich, 1992)).

An alternative approach is to choose a vector of weights θ∗ in such
a way that the corresponding hyperplane {x : θ∗Tφ(x) + θ0 = 0} is a
supporting hyperplane to the convex hull of the available set of vectors
y(Xk)φ(Xk), k = 1, 2, ...N , so that the minimum distance from it to the con-
vex hull of classes is maximal. This idea, pioneered in 1964 formed the basis
of the celebrated support vector machine (SVM) method (Vapnik and Cher-
vonenkis, 1964; A.Y.Chervonenkis, 2013). In the same year, another simple
recursive algorithm was also proposed that converges to an optimal support-
ing hyperplane (Kozinets, 1964) thereby reducing the memory complexity
significantly. A min-max based method, MDM was developed in Mitchell
et al. (1974) for this problem as well.
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A particularly useful method was developed during the 1960s by Bregman
() which has become quite popular in recent years in convex optimization and
in Machine Learning (Wilson et al., 2016). In Bregman (1967) (which has
more than 1500 citations in Scopus in 2021), Bregman proposed a highly
useful notion for a strictly convex function f(x) that later has come to be
known as Bregman divergence. Currently it is not only of use in convex
optimization and associated problems in ML but also in adaptive control.
The main idea here is the use of an underlying function Df (x, y) = f(x) −
f(y) − ∇f(y)T (x − y) which becomes nonnegative for any x and y if f is
convex. The function Df is often used either for establishing convergence
or as a Lyapunov function candidate, as discussed in Section 4.4. Bregman
divergence has also found widespread application in mirror-descent methods
in ML.

It is interesting that a similar problem was addressed in Gubin et al.
(1967) using a different approach, leading to a number of results on strong
convergence and convergence rate in Hilbert space. Additionally, algorithms
with incomplete relaxation were proposed and convergence in a finite number
of steps was established as well as some applications to Chebyshev approxi-
mation and optimal control. This approach has been used in ML as well.

3.3.2 From pattern recognition to adaptive optimal control

The link between the above learning methods and adaptive control methods
lies in the determination of suitable recursive algorithms so as to minimize an
underlying loss function as closely as possible. The papers V.A.Yakubovich
(1965); Yakubovich (1966) examined this link through “the method of recur-
rent goal inequalities” that is based on the reduction of the problem to the
solution of a system of inequalities constructed for a given goal function. The
proposed gradient-like learning algorithms with deadzone allow one to find a
solution to an infinite number of previously not shown inequalities. This in
turn allowed Yakubovich to extend his approach to solving adaptive control
problems (V.A.Yakubovich, 1972, 1976), which is stated below.

In V.A.Yakubovich (1976) an adaptive suboptimal control problem for a
discrete-time linear controlled system affected by coloured bounded distur-
bances is studied. Let the controlled system be modeled as follows:

yk =
n∑
i=1

a∗i yk−i +
m∑
j=1

b∗juk−j−d + fk, (24)

20



n∑
i=0

c∗i fk−i = gk+n, (25)

where yk, uk, fk are output, input and disturbances, respectively. Distur-
bances fk are generated by the stable filter (25) with bounded input signal
gk that may take an arbitrary value from the interval |gk| ≤ G. Note that
equations (24),(25) are similar to (10) with two differences: first, the filter
(25) is IIR in contrast to the FIR filter in (10) and second, disturbances gk
and fk in (24),(25) are deterministic in contrast to stochastic disturbances
wk in (10).

With the above system (24)-(25), the following adaptive optimal control
problem is now posed. Let the vector of the system parameters ξ = [a∗i , b

∗
i , c
∗
i ]

be unknown while the set Ξ of all admissible values of ξ be known. Introduce
the performance index as follows:

JN(u(·)) = sup
k≥N

sup
ξf∈Ξf

|yk| (26)

The problem is to find an admissible adaptive control law not depending
on unknown parameters and minimizing the performance index (26). It is
shown in V.A.Yakubovich (1976) that if the vector ξ if known, i.e. if Ξ
consists of a single element, then the optimal controller would exist and can
be represented as

uk = θ∗Tσk, (27)

where θ∗ is some constant vector explicitly depending on ξ and σk is the
sensor vector. The optimal value (26) and vector of control parameters (27)
do not depend on N for N ≥ n+ r + q

If the vector ξ is unknown then an adaptation algorithm for the vector
θk is proposed allowing to achieve the value of the performance index in the
adaptive system arbitrarily close to the optimal value (26). It is important
that design of the adaptation algorithm is based on the reduction of the
problem to the solving an infinite system of the goal inequalities and appli-
cation of the method (V.A.Yakubovich, 1965; Yakubovich, 1966) allowing to
solve it in a finite number of steps by a recursive algorithm close to (23). We
refer the reader to (V.A.Yakubovich, 1976; Fomin et al., 1981; Bondarko and
Yakubovich, 1992) for further details.
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3.4 Reinforcement Learning/Adaptive Dynamic Pro-
gramming

The main problem in RL/ADP can be stated as follows. Let the plant to be
controlled be described by the nonlinear state space equation

xk+1 = f(xk, uk) (28)

with a control law (also known as a policy) π = [µ1, µ2, . . .] as follows

uk = µk(xk). (29)

Introduce a performance index in the form of a cost functional as follows:

Jπ(x0) = lim
k→∞

k∑
t=0

g(xt, µt(xt)) (30)

The problem is to find J∗(x) = Jπ∗(x), where Jπ∗(x) = infπ Jπ(x). Based
on Bellman’s optimality principle, the Value Iteration (VI) process is orga-
nized as follows (Bertsekas, 2017):

Jk+1(x) = inf
u∈U(x)

{g(x, u) + Jk(f(x, u))} . (31)

The key step aimed at reducing an overwhelming amount of function evalu-
ations is a neural approximation of the value function as Jk(x) = W T

k φ(x),
where φ(x) ∈ RL is truncated set of basis functions, and Wk is a vector of
weights that is recursively updated at each k.

The difficulty of justifying control based on reinforcement learning under
disturbances lies in that the performance index is the average of the inte-
gral along the trajectories of the system over the ensemble of disturbances.
Averaging requires the use of the Monte Carlo method in one form or an-
other, which inevitably leads to incomplete verification or violation of the
stability conditions of the closed loop system. Proving the stability of con-
trol systems based on reinforcement learning is a difficult task, and today
there are few works where attempts are made to solve it under certain ad-
ditional assumptions. For example, VI has been thoroughly studied in the
setting of Markov Decision Processes with finite states (Watkins and Dayan,
1992; Chang et al., 2013). Recent results on VI for discrete-time dynamical
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processes evolving in continuous state spaces for nonlinear systems are pre-
sented in (Bertsekas, 2017). Continuous-time counterparts of the VI related
results can be found in Bian and Jiang (2016, 2021) where the boundedness
of all signals and practical stability of the closed loop is established based on
neural approximation of both value function and the system Hamiltonian.
This paper does not address details of the solutions that have been obtained
in this very active and rich research topic.

4 Solutions

This section presents a snapshot of the solutions that have been presented
over the last six decades, starting from the results presented in the 70s and
80s. These correspond to stability in continuous-time systems (Section 4.1),
and proceed to learning and parameter estimation (Section 4.2). Results
proposed for nonlinear systems and nonlinearly parameterized systems follow
in sections 4.3 and 4.4, respectively. Similar to deterministic continuous-time
systems, the stability results developed in stochastic discrete-time systems
are then presented in Section 4.5. Robustness results obtained starting the
90s are presented in Section IV-F. A cautionary message related to imperfect
learning and bursting phenomena is mentioned in Section 4.7. An inclusion
of input constraints in adaptive solutions is discussed in Section 4.8. Finally,
an overview of the assumptions made and the challenges and fundamental
tradeoffs encountered in the evolution of adaptive control are presented in
Section 4.9.

4.1 Continuous-time Systems-Stability

4.1.1 Algebraic systems

Many problems in adaptive estimation and control may be expressed as

y(t) = θ∗Tφ(t), (32)

where θ∗, φ(t) ∈ RN represent an unknown parameter and measurable re-
gressor, respectively, and y(t) ∈ R represents a measurable output. This is
apparent from (16) and (22), which corrresponded to estimation and pat-
tern recognition problems in discrete-time. Several examples can be drawn
from problems in continuous-time plants as well. One example corresponds
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to adaptive observers for linear plants, whose output can be represented as
an algebraic combination of filtered inputs and outputs (Narendra and An-
naswamy (2005), chapter 4). Another example corresponds to a combined-
composite approach to adaptive control, discussed at length in papers such
as (Slotine and Li, 1989; Duarte and Narendra, 1989; Lavretsky, 2009) and
more recently a unified approach in Ortega et al. (2020), all of which reduce
to a plant-model as in (32).

Given that θ∗ is unknown, we formulate an estimator ŷ(t) = θT (t)φ(t),
where ŷ(t) ∈ R is the estimated output and the unknown parameter is esti-
mated as θ(t) ∈ RN . This in turn results two types of errors, a performance

error ey(t) and a learning error θ̃(t)3

ey = ŷ − y, θ̃ = θ − θ∗ (33)

where the former can be measured but the latter is unknown though ad-
justable. From (32) and the estimator, it is easy to see that ey and θ̃ are
related using a simple regression relation

ey(t) = θ̃Tφ(t). (34)

A common approach for adjusting the estimate θ(t) at each time t is to
determine a rule using all available measurements such that ey(t) converges
towards zero. To do so, a squared loss function

L1(θ) =
1

2
e2
y (35)

and a corresponding adaptive law for adjusting the parameter error as

θ̇(t) = −γ∇θL1(θ(t)), γ > 0 (36)

is commonly considered (Narendra and Annaswamy, 2005). It is easy to see
that ∇θL1(θ) = φey, and therefore (36) is implementable. Such a gradient-
descent approach has found widespread applications in estimation, control,
signal processing, and ML. More recently high-order tuners have been pro-
posed for adjusting θ that uses both gradient and Hessian information (Gau-
dio et al., 2020b; Moreu and Annaswamy, 2022).

3In what follows, we suppress the argument (t) unless needed for emphasis.
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4.1.2 Dynamic Systems with States Accessible

The next class of problems that has been addressed in adaptive control cor-
responds to plants with all states accessible. We present the solution for the
simple case for a scalar input:

ẋ = Apx+ bpu (37)

where Ap and bp are unknown, u is the control input and is a scalar, and x
is the state and is accessible for measurement.
Matching Condition and Reference Model The process of determining an adap-
tive solution proceeds by first ensuring that the desired solution from the
closed-loop system can be described using a reference model. For the plant
in (40), this reference model takes the form

ẋm = Amxm + bmr (38)

and is such that the state xm(t) encapsulates the desired solution expected
from the controlled plant. This can be accomplished by choosing a reference
input r, Am to be a Hurwitz matrix, (Am, bm) is controllable so that together
they produce an xm(t) that approximates the signal that the plant is required
to track.

With the reference model chosen as above, the next step pertains to
Matching Conditions (Narendra and Annaswamy, 2005). These ensure that
a controller with fixed parameter exists, which guarantees that the closed-
loop system matches the reference model. In particular, for the plant in (37),
a control input of the form

u(t) = θ∗Tx(t) + k∗r(t) (39)

guarantees this match provided θ∗ and k∗ solve the following which is denoted
as Matching Conditions:

Ap + bpθ
∗T = Am

bpk
∗ = bm

This corresponds to the Algebraic Part of the problem described in Section
3.1.2.

The final step is the analytic part, the rule for estimating the unknown
parameters θ∗ and k∗ and the corresponding adaptive control input that
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replaces the input choice in (39). These solutions are given by

u = θT (t)x+ k(t)r (40)

θ̇ = −sign(k∗)Γθ(e
TPbm)x (41)

k̇ = −sign(k∗)γk(e
TPbm)r (42)

where Γθ > 0 is a positive definite matrix, γk > 0 is a positive constant,
e = x− xm, and P = P T ∈ Rn×n is a positive definite matrix that solves the
Lyapunov equation

ATmP + PAm = −Q (43)

with a positive definite matrix Q = QT ∈ Rn×n. It can be shown that

V = eTPe+ |k∗|
[
(θ − θ∗)TΓ−1(θ − θ∗) + (1/γk)(k − k∗)2

]
(44)

is a Lyapunov function with V̇ = −eTQe and that limt→∞ e(t) = 0. The
reader is referred to Chapter 3 in Narendra and Annaswamy (2005) for further
details.

It should be noted that the adaptation rules in (41)-(42) can also be
expressed as the gradient of a loss function (Gaudio et al., 2020b)

L2(θ̄) =
d

dt

{
eTPe

2

}
+
eTQe

2
, (45)

where θ̄ = [θT , k]T , and it is assumed that k∗ > 0 for ease of exposition. It
is noted that this loss function L2 differs from that in (35), and includes an
additional component that reflects the dynamics in the system. It is easy to
see that

˙̄θ(t) = −Γ∇θ̄L2(θ(t)), Γ > 0, (46)

and is implementable as ∇θL2(θ) = φeTPbm, can be computed at each time
t, where φ = [xTp , r]

T .
The matching condition (40) is akin to the controllability condition, albeit

somewhat stronger, as it requires the existence of a θ∗ for a known Hurwitz
matrix Am (Lavretsky and Wise, 2013; Narendra and Annaswamy, 2005).
The other requirement is that the sign of k∗ needs to be known, which is
required to ensure that V is a Lyapunov function.

26



4.1.3 Adaptive Observers

The adaptive control solution in (40)-(41) in section 4.1.2 required that the
state x(t) be available for measurement at each t. A central challenge in
developing adaptive solutions for plants whose states are not accessible is
the simultaneous generation of estimates of both states and parameters in
real-time. Unlike the Kalman Filter in the stochastic case or the Luenberger
observer in the deterministic case, the problem becomes significantly more
complex, as state estimates require plant parameters and parameter esti-
mation is facilitated when states are accessible. This loop is broken using
a non-minimal representation of the plant, leading to a tractable observer
design. Starting with a plant model as in (4), a state-representation of the
same can be derived as is given by Luders and Narendra (1974)

ω̇1 = Λω1 + `u

ω̇2 = Λω2 + `y (47)

y = θT1 ω1 + θT2 ω2

where ω = [ωT1 , ω
T
2 ]T is a nonminimal state of the plant transfer function

Wp(s) between the input u and the output y. Λ ∈ Rn×n is a Hurwitz matrix
and (Λ, `) is controllable and are known parameters. Assuming that Wp(s)
has n poles and m coprime zeros, in contrast to a minimal nth-order repre-
sentation, Eq. (47) is nonminimal and has 2n states. The adaptive observer

leverages Eq. (47) and generates a state estimate ω̂ and a plant estimate θ̂
as follows:

˙̂ω1 = Λω̂1 + `u
˙̂ω2 = Λω̂2 + `y (48)

ŷ = θ̂T1 ω̂1 + θ̂T2 ω̂2

where θ̂ = [θ̂T1 , θ̂
T
2 ]T and ω̂ = [ω̂T1 , ω̂

T
2 ]T . The adaptive law that adjusts the

parameter estimates is chosen as

˙̂
θ = −Γ (ŷp − yp) ω̂ (49)

where Γ is a known symmetric, positive definite matrix.
Analytical guarantees of stability of the parameter estimate θ̂ in (48) and

(49) as well as asymptotic convergence of θ̂(t) to θ can be found in Morgan
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and Narendra (1977); Narendra and Annaswamy (1987b). Necessary and
sufficient conditions for this convergence requires that the regressor ω̂ be
persistently exciting. Several results also exist in ensuring accelerated con-
vergence of these estimates (Lion, 1967; Kreisselmeier, 1977; Jenkins et al.,
2019; Aranovskiy et al., 2019; Ortega et al., 2020; Gaudio et al., 2020a)) using
matrix regressors, a time-varying learning rate for Γ, and dynamic regressor
extension and mixing.

4.1.4 Adaptive Controllers with Output Feedback - A special case

The two assumptions made in the development of adaptive systems in Sec-
tion 4.1.2 include matching conditions and the availability of states of the
underlying dynamic system at each instant t. Both are often violated in
many problems, which led to the development of adaptive systems when
only partial measurements are available. With the focus primarily on linear
time-invariant (LTI) plants, the first challenge was to address the problem of
separation principle employed in control of LTI plants (Kailath, 1980; Chen
and Chen, 1984). The idea therein is to allow a simultaneous estimation of
states using an observer and a feedback control using state estimates with a
linear quadratic regulator to be implemented and allow them both to proceed
simultaneously in real-time and guarantee stability of the closed-loop system.
The challenge in the current context is that parameters are unknown, intro-
ducing an additional estimate, of the plant parameter, to be generated in
real-time. In contrast to the classical problem where the closed-loop remains
linear, the simultaneous problem of generating the parameter estimate to
determine the controller and the feedback control to ensure the generation
of well-behaved parameter estimates introduced intractable challenges.

The starting point is an input-output representation of the plant model
as in (4). Recognizing that estimation and control are duals of each other
(Feldbaum, 1960a), a similar nonminimal representation of the plant as in
(47) was used as the starting point to decouple the estimation of the state
from the design of the control input. In particular, an adaptive control input
of the form

u(t) = θTc (t)ω(t) + k(t)r(t) (50)

enabled a tractable problem formulation, where ω(t) is generated as in (47).
The added advantage of the nonminimal representation is that it ensures the
existence of a solution that matches the controlled plant using (50) to that
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of the reference model. That is, the existence of a control parameter θ∗ and
k∗ such that

u(t) = θ∗Tω(t) + k∗r(t) (51)

ensured that the closed-loop transfer function from r to y matched that of a
reference model with a transfer function Wm(s), specified as

ym(t) = Wm(s)r(t) (52)

That is, the controller in (51) is guaranteed to exist for which the output error
ey = yp − ym has a limiting property of limt→∞ ey(t) = 0. For this purpose,
the well known Bezout Identity (Kailath, 1980) and the requirement that
Wp(s) has stable zeros was leveraged.

When the adaptive controller as in (50) is used, the plant model in (4)
and the existence of θ∗ and k∗ that guarantee that the output error ey(t)
goes to zero, leads to an error model of the form

ey = (1/k∗)Wm(s)[
¯̃
θ
T

φ] (53)

where φ = [ωT , r]T ,
¯̃
θ = [(θ − θ∗)T , (k − k∗)]T .

The problem of determining the adaptive rule for adjusting
¯̃
θ was solved

in a very elegant manner when the relative degree, i.e. the net-order of
Wm(s) = 1. In this case, a fundamental systems concept of strictly positive
real (SPR) transfer function as well as an elegant tool known as Kalman-
Yakubovich Lemma (KYL) (Yakubovich, 1964; Kalman, 1963; Meyer, 1965;
Lefschetz, 1965; Narendra and Taylor, 1973; Anderson and Johnson, 1982)
can be leveraged. This KYL was first proposed by Yakubovich (Yakubovich,
1964) and extended by Kalman (Kalman, 1963), which came out of stabil-
ity theory of nonlinear systems, Popov’s absolute stability, and the Circle
Criterion (Narendra and Taylor, 1973). This is briefly described below.
Strictly Positive Real Functions: The concept of positive realness arose in the
context of stability of a class of linear systems with an algebraic nonlinearity
in feedback. It was shown, notably by Popov, that under certain conditions
on the frequency response of the linear system, that a Lyapunov function
can be shown to exist. The KYL establishes the relation between these
frequency domain conditions and the existence of the Lyapunov function.
Both the definition of rational SPR functions and the KYL are listed in the
appendix.
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Using the KYL, the following adaptive laws are proposed for the adjust-
ment of the control parameters:

θ̇ = −sign(k∗)eyω (54)

k̇ = −sign(k∗)eyr (55)

It can be shown that

V = eTPe+ (1/|k∗|)
(
||(θc − θ∗)||2 + |(k − k∗)|2

)
(56)

is a Lyapunov function where P is the solution of the KYL for the realization
{Am, b, c} of Wm(s) which is SPR. This follows by first noting that

V̇ = −eT (ATmP + PAm)e+ 2eTPb(θ̃Tω + k̃r)− ˙̃
θ
T

eyω − ˙̃keyr.

Since Wm(s) is SPR, the use of the KYL applied to Wm(s) together with the
adaptive laws in (54)-(55) and (56) causes the second term to cancel out the
3rd and 4th terms and hence that V̇ = −eTQe ≤ 0. The structure of the
adaptive controller in (50) guarantees that ey, θc, k, ω, yp, and u are bounded
and that limt→∞ ey(t) = 0. Additions of positive definite gains to (54) and
(55) as in (41)-(42) are straight forward.

The choice of the adaptive laws as in (54)-(55) centrally depended on the
KYL which in turn required that Wm(s) be SPR. A SPR transfer function
(Narendra and Annaswamy, 2005) leads to the requirement that the rela-
tive degree, the difference between the number of poles and zeros of Wp(s),
is unity, and has stable zeros (zeros only in Re[s] < 0), also defined as
hyperminimum-phase (Fradkov, 1974). Qualitatively, it implies that a sta-
ble adjustment rule for the parameter should be based on loss functions that
does not significantly lag the times at which new data comes into the system.
For a general case when the relative degree of Wp(s) exceeded unity, it posed
a significant stability problem, as it was clear that the same simple adap-
tive laws as in (54)-(55) will no longer suffice as the corresponding transfer
function Wm(s) of the reference model cannot be made SPR.

A final note about the assumptions made about the plant-model in (4) is
in order. For the controller in (51) to allow the closed-loop system to match
the reference model in (52) for any reference input r(t), a reference model
Wm(s) with the same order and net-order as that of Wp(s) needs to be chosen,
which implies that the order and net-order of the plant need to be known.
Determination of a Lyapunov function requires that the sign of k∗ be known.
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Finally, the model-matching starting with a non-minimal representation of
the plant required stable pole-zero cancellations, which necessitated the zeros
to be stable.

4.1.5 Adaptive Controllers with Output Feedback - Passification
approach

In some cases the structure of the adaptive controller may be significantly
simplified avoiding usage of reference model or adaptive observer. This ap-
proach is based on the so called passification lemma - a feedback version of
KYL (Fradkov, 1974, 2003). For simplicity consider the case of stabilization
r(t) = 0. Let vector B ∈ Rn, n× l matrix C and vector g ∈ Rl be given.
Lemma (Passification): Consider matrix relations

ATθ P + PAθ < 0, Aθ = A+BθC

PB = Cg (57)

There exist a symmetric positive definite matrix P and a vector θ satisfy-
ing (57) if and only if the transfer function Zg(s) = (Cg)T (sI − A)−1B is
hyperminimum-phase.

Based on the above lemma it can be proven that the control plant

ẋ = Ax+Bu, y = CTx (58)

can be stabilized by adaptive controller

u = θTy, θ̇ = −Γ(gTy)y (59)

in the sense that x(t)→ 0, θ(t)→ const as t→∞, if Zg(s) is hyperminimum-
phase. Moreover the property of hyperminimum-phaseness is necessary and
sufficient for existence of Lyapunov function

V (x, θ) = xTPx+ 0.5(θ − θ∗)TΓ−1(θ − θ∗) (60)

such that V (x, θ) > 0 for x 6= 0, θ 6= θ∗ and V̇ < 0 for x 6= 0. Extensions
and applications of passification approach can be found in (Andrievskii and
Fradkov, 2006; Andrievskii and Selivanov, 2018).
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4.1.6 Adaptive Controllers with Output Feedback - The General
case

Extensions to a general case with output feedback have been proposed us-
ing several novel tools including an augmented error approach (Narendra
and Annaswamy, 1989), backstepping (Krstić et al., 1995), averaging theory
(Anderson et al., 1986), and high-order tuners (Evesque et al., 2003a). In
all cases, the complexity of the adaptive controller is increased, as the error
model in (53) does not permit the realizations of simple loss functions as in
Li(θ), i = 1, 2.

Over the years, several solutions have been proposed in the literature
to address this problem, of which two are briefly summarized below. In all
cases, the zeros of Wp(s) are required to be stable.
Augmented Error Approach: The problem is to convert an error model that
is of the form

e1 = Wm(s)[θ̃Tω]

where Wm(s) is not SPR to one where the transfer function between the
parameter error and the output error is SPR. Towards this end, an auxiliary
error e2 is added to e1, where

e2 = [θTWm −Wmθ
T ]ω (61)

where θ is the adjustable parameter and θ̃ is the corresponding parameter
error. It can be shown that the resulting augmented error ε1 = e1 + e2 has a
simple error model structure of the form

ε1 = θ̃T ζ, ζ = Wm(s)ω (62)

This in turn allows a simple adjustment rule

˙̃
θ = −m(t)εζ (63)

where m(t) is a suitably chosen normalizing signal that guarantees not only
that θ(t) is bounded but also that θ̇ ∈ L2. These two properties of the pa-
rameter are then suitably leveraged to guarantee that the closed loop system
with the controller defined by (50) and the adaptive law specified by (61)-
(63) has bounded solutions and that the output error ey(t) converges to zero
asymptotically. BIBO properties of linear systems, almost time-invariant sys-
tems, and minimum-phase systems as well as order arguments are leveraged

32



in this proof of stability (Narendra et al., 1980; Narendra and Annaswamy,
2005). As in the case of the special case when the net-order of Wp(s) = 1,
the requirements that the order, net-order, the sign of the high-frequency
gain be known, and that the zeros of Wp(s) are stable are all needed in this
case as well.
High-order Tuners: The starting point is a plant model of the form

y(t) = Wp(s)[u(t)], Wp(s) =
Zp(s)

Rp(s)
(64)

with a relative degree m that is known, an order n that is unknown, with
all zeros in C−, and a high frequency gain unity. It is well known that this
plant can be stabilized using

u = − p(s)

(s+ zc)m−1
u− k1y (65)

where
p(s) = k21 + k22s+ · · ·+ k2(m−1)s

m−2 (66)

for suitable values of kc and k2j in (66). This follows from the fact that the
closed-loop transfer function is of the form

Wcl(s) =
(s+ zc)

m−1Zp(s)

Rp(s)pc(s) + k1(s+ zc)m−1Zp(s)
(67)

where
pc(s) = (s+ zc)

m−1 + p(s). (68)

For a large k1, the n + m − 1 poles of Wcl(s) become close to the zeros of
(s + zc)

m−1Zp(s) and other m stable locations for suitable values of k2i, i =
1, . . . ,m− 1 (Evesque et al., 2003a). We now utilize the controller structure
as in (65)-(66) to describe an alternate type of adaptive controller.

A time-domain representation of (65)-(66) is given by

ω̇1 = Λω1 + `u (69)

u = −kT2 ω1 − k1y + r (70)

where Λ ∈ Rm×m, (Λ, `) is controllable, and

kT2 (sI − Λ)−1` =
p(s)

(s+ zc)m−1
. (71)
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As k1 and k2 are unknown when the parameters of Wp(s) are unknown, an
adaptive controller corresponding to (70) is given by

u = kT2 (t)ω1 + k1(t)y + r. (72)

Expressing the control parameters as k1(t) = k∗1+k̃1(t), k2(t) = k∗2+k̃2(t), ω =
[ωT1 , y]T , k̃ = [k̃T1 , k̃

T
2 ]T , the closed-loop system equations can be described as

y = Wcl(s)(k̃
Tω) + r. (73)

Wcl(s) is not strictly positive real (SPR), but has stable poles, stable zeros,
and is of relative degree m. Due to these properties, it is reasonable to
assume that one can find a strictly positive real transfer function of the form

Wm(s) = Wcl(s)(s+ a)m−1. (74)

To enable the realization of Wm(s) in closed-loop, we choose the control
input, instead of kT (t)ω(t) + r(t), as follows:

u(t) = (s+ a)m−1[kTω′(t) + r′] (75)

ω′(t) =
1

(s+ a)m−1
[ω(t)] (76)

r′(t) =
1

(s+ a)m−1
[r(t)] (77)

This will lead to
y = Wm(s)(k̃Tω′ + r′). (78)

Now, the problem is to realize (75) without explicitly differentiating any
signal. Let p = m − 1. Using binomial expansion and the chain rule for
differentiation, we obtain that

u = kTd0 + pk̇Td1 + · · ·+ (pci)k
(i)Tdi + · · ·+

+ k(p)Tdp + r,

di(t) =

[
1

(s+ a)i

]
[ω(t)], i = 1, . . . , p

Note that all terms involving k and di are realizable. So, the only remaining
piece is the realization of derivatives of k to pth order.
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The overall problem can be summarized as follows: Given the closed-loop
system in Eq. (78) where ω′ is given by (76), determine an adaptive law for
adjusting k so that it is differentiable p times and all the signals in the loop
are bounded. The time-domain representation of the error model in (78) is
given by

ė = Ase+ bs(k − k∗)Tω′, e1 = hTs e, (79)

where
hTs (sI − As)−1bs = Wm(s).

Since Wm(s) is SPR, we have that

ATs Ps + PsAs = −Q ≤ 0, Psbs = hs (80)

We note that ω′ is differentiable p times. In what follows, ω′i and ki denote
the ith element of a vector ω′ and k, respectively.

Using the high-order tuners developed in Morse (1992), the following
adaptive law is suggested for adjusting k,

k̇′ = −e1ω
′ (81)

ẋi = (Axi + bk′i)f(ω′i), f(x) = 1 + µx2 (82)

ki = cTxi (83)

cT (sI − A)−1b =
α(0)

α(s)
(84)

and α(s) is an arbitrary stable polynomial of degree p. The choice of k as in
Eqs. (81)-(84) guarantees that k is differentiable p times.

4.2 Learning and Persistent Excitation

The focus of all problems addressed in Sections 4.1 is to bring the performance
error ey(t) or e(t) to zero. This performance corresponds to either successful
output estimation or tracking, both of which are reflected in the choice of
the underlying loss function. However an additional goal in many adaptive
systems is to learn the underlying parameters. As is clear from all preceding
discussions, the hallmark of all adaptive control problems is the inclusion of a
parameter estimation algorithm. In addition to ensuring that the closed-loop
system is bounded and that the performance errors are brought to zero, all
adaptive systems attempt to learn the underlying parameters, with the goal
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that the parameter error θ− θ∗ is reduced if not brought to zero. We discuss
two important aspects under which this learning, i.e. reduction of parameter
error to zero, occurs.

The first is the necessary and sufficient condition under which learning
occurs:

Definition 1 (Narendra and Annaswamy (2005)) A bounded function
φ : [t0,∞)→ RN is persistently exciting (PE) if there exists T > 0 and α> 0
such that ∫ t+T

t

φ(τ)φT (τ)dτ ≥ αI, ∀t ≥ t0.

It has been shown in Morgan and Narendra (1977); Narendra and Annaswamy
(2005) that this leads to convergence of the parameter error in algebraic sys-
tems, dynamic systems with states accessible, and in those with output feed-
back. Several books and papers have delineated properties of the exogenous
signals in a control system that ensures the underlying regressor φ is persis-
tently exciting (Narendra and Annaswamy, 1987b, 1989; Sastry and Bodson,
1989; Boyd and Sastry, 1983). It should be noted that this property creates
a rank N matrix over an interval despite the fact that the integrand is of
rank one at any instant τ . Conditions that ensure parameter learning with
high-order tuners in Eqs. (81)-(84) are established in (Ortega, 1993). This
necessary and sufficient condition on the underlying regressor is shown to
lead to several desirable properties of the adaptive system, including lack of
bursting (Anderson, 1985; Morris et al., 1977; Fortescue et al., 1981; Narendra
and Annaswamy, 1987a) and uniform asymptotic stability and robustness to
disturbances (Narendra and Annaswamy, 1986; Jenkins et al., 2018).

The second is the important observation that persistent excitation is not
required for satisfactory performance of the adaptive system; both output
estimation and tracking, typical goals in system estimation and control, can
be achieved without relying on learning. That is, a guaranteed safe behavior
of the controlled system can be assured in real-time prior to reaching the
learning goal. This guarantee in the presence of imperfect learning is essen-
tial, and suggests that for real-time decision making, control for learning is
the practical goal in contrast to learning for control.
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4.3 Nonlinear Systems

All of the discussions above pertain to the linear plant model in (4). We now
return to the original problem in (3), where we assume that the unknown
parameter θ ∈ Ξ ⊂ RN is a vector of unknown parameters belonging to an a
priori known set Ξ. Let the control goal be

Qt ≤ ∆ for t ≥ t∗ (85)

where Qt = Q[x(s), u(s); 0 ≤ s ≤ t] is the objective functional. The task is:
to find a two-level control law

u(t) = Ut[y(s), u(s), θ(s); 0 ≤ s < t],
θ(t) = Θt(y(s), u(s), θ(s); 0 ≤ s < t)

(86)

such that in the closed loop control system (3) and (86) meets the goal (85)
and its trajectories remain in the sets x(t) ∈ Dx, u(t) ∈ Du, ξ(t) ∈ Dξ for any
ξ ∈ Ξ and (x(0), θ(0)) ∈ Q0 where Q0 ⊂ Dx ×Dθ is a prespecified set. Here
θ(t) is a vector of adjustable parameters. Note that operators Qt, Ut and Θt

are all nonanticipative.
A number of studies were aimed at relaxation of matching conditions

for nonlinearities. A breakthrough was made in the end of 1980s by sev-
eral groups. Further development made in Krstic et al. (1995) lead to an
elegant technology of iterative control design called “backstepping design”.
The number of the papers using it for adaptive control was growing rapidly
and exceeded one thousand during the decade 2011-2020 with about a quarter
dedicated to nonlinear adaptive control (counting by the number of papers
in the Web of Science database with the terms “backstepping AND adaptive
AND nonlinear” in the paper title). An approach advocated in Krstic et al.
(1995) and related papers is based on the application of the backstepping pro-
cedure directly to model (3) expressed in a standardized canonical form. An
alternative approach, proposed in Marino and Tomei (1991, 1993), assumes
the use of special filters, which are part of the adaptive controller, that make
it possible to transform the model in (3) to an “adaptive observer canonical
form”, and then apply the backstepping procedure to the transformed plant
model. The class of problems considered in the above papers was expanded
further in Seto et al. (1994) to include triangular structures.

A number of approaches to adaptive control of nonlinear systems are
based on approximation of nonlinear right hand sides by linear ones. There
are only a few publications with explicit formulations of dynamic properties

37



of the overall system, e.g. the paper Wen and Hill (1990), where reduction of
the nonlinear model is made by standard linearization via finite differences;
There are a few results dealing with high gain linear controllers for nonlinear
systems (Gusev, 1988; Marino, 1985).

Finally, it should be pointed out that adaptive control of nonlinear sys-
tems have also employed fundamental tools such as absolute stability (Had-
dad et al., 2001; Fradkov and Lipkovich, 2015), passivity (Astolfi et al., 2007)
and passification (Fomin et al., 1981; M.M.Seron et al., 1995; Andrievsky B.,
2020). Also noteworthy is a related general approach based on immersion
and invariance (Astolfi and Ortega, 2003).

4.3.1 Nonlinear Control with Neural Networks

Since the late 1980s, there has been a rapid growth in the number of works
devoted to the adaptive control of nonlinear systems based on learning and
neural networks. The basic principles of using artificial neural networks
in control problems were formulated in the seminal article (Narendra and
Parthasarathy, 1990), which received more than 5000 citations over two
decades. Neural networks are widely used as a means of approximating non-
linear functions for learning and control by many ways. In a number of works,
neural networks are used to approximate the right-hand sides of the system.
For example, in the work (Polycarpou, 1996) which got more than one thou-
sand citations it is proposed to approximate a nonlinear scalar function f(x))
in the 2nd order equation ẋ1 = x2 + f(x1), ẋ2 = u by a linear combination
of radial basis neural network functions with tunable weights and then to
adjust the weights based on the online measurements. Adaptation algorithm
for weights is based on the Lyapunov function which is quadratic with respect
to both plant state and tunable weights. An extended adaptation algorithm
for a class of nth order nonlinear systems was proposed in Sanner and Slotine
(1992) and a more general case was studied in Lewis et al. (1996).

In a number of works deep (multilayer) neural networks were used to
approximate the right-hand side of (86), but the only weights that are ad-
justed are in the outer layer of the network, with the weights in all remaining
layer fixed (Lavretsky and Hovakimyan, 2008; Ren et al., 2010a; Rovithakis
and Christodoulou, 1994; Lavretsky and Wise, 2013). This makes the prob-
lem tractable as the underlying Lyapunov function can still be chosen to be
quadratic. Very few solutions have been provided when the hidden layers are
also adjusted, as it makes it very difficult to prove convergence (Lewis et al.,
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1996; Patkar and Annaswamy, 2020). Another approach that has been used
is an approximation of Lyapunov functions in closed-loop systems using Neu-
ral Networks together with its derivative along the system, that must satisfy
the inequalities justifying the stability of the closed-loop (Chang et al., 2019;
Yu and Annaswamy, 1998). However, the verification of the fulfillment of in-
equalities should be carried out in the whole space or in a representative set
as even a small violation of the inequality V̇ < 0 may lead to an incomplete
verification or violation of the stability conditions.

4.3.2 Parameter Learning in Nonlinear Systems

Conditions for parameter learning have been investigated at length in non-
linear systems as well, by posing the underlying problem as the uniform
asymptotic stability (UAS) of a nonlinear differential equation

ẋ = F (x, t) (87)

where x corresponds to the underlying parameter error. We refer the reader
to Loŕıa et al. (2005) for an excellent exposition of the underlying results as
well as the references therein for details of this topic. We briefly summa-
rize the idea below: The challenge in all adaptive systems including those
that arise in the context of control of linear plants is that the underlying
Lyapunov function can only be shown to be negative semi-definite, while
parameter convergence, i.e. UAS of (87) requires negative definiteness of
a Lyapunov function. This challenge is tackled in Morris et al. (1977) by
applying uniform observability properties of linear systems. In Loŕıa et al.
(2005), a new definition of persistent excitation and the use of Matrosov’s
theorem are utilized to achieve UAS for nonlinear systems. Matrosov’s the-
orem can be viewed as an invariance principle for nonautonomous systems,
and revolves around constructing an auxiliary function on top of a Lyapunov
function, with a nonzero derivative on the set where the Lyapunov’s function
has a derivative that is zero. These tools are shown to be applicable for a
class of nonholonomic systems.

4.4 Nonlinearly Parameterized Systems

All of the problems described thus far, both in deterministic and in stochas-
tic systems have assumed that the parametric uncertainties appear linearly.
A class of problems that have relaxed this assumptions can be found in
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(Fradkov, 1980; Andrievsky and Fradkov, 2021; Ortega, 1995; Annaswamy
et al., 1998a,b; Loh et al., 1999; Fradkov et al., 2001) and have provided
solutions for problems when parameters occur nonlinearly. The starting
point for these solutions is speed-gradient method (Fradkov, 1980; Andrievsky
and Fradkov, 2021) which not only works for nonlinear systems such as in
(3) but also for nonlinearly parameterized systems. It is assumed that a
parametric stabilizing feedback law u = U∗(x, θ, t) is known such that if
θ = θ∗ then Q(x, t) along trajectories of the closed loop (3) are such that
w(x, θ, t, ξ) = ∂Q/∂t+∂Q/∂xF (x, U∗(x, θ, t, ξ) is negative definite in x. Then
the speed-gradient control is designed as follows:

θ̇ = −Γ∇θw(x, θ, t), (88)

where Γ = ΓT > 0 is positive definite matrix gain with a Lyapunov function

V (x, θ, t) = Q(x, t) + (θ − θ∗)TΓ−1(θ − θ∗). (89)

An assumption that w(x, θ, t) is convex in θ is required. Inspired by this
approach, further extensions were reported in (Ortega, 1995; Annaswamy
et al., 1998a; Loh et al., 1999) and is briefly summarized below.

Suppose the underlying nonlinear system is of the form

Ẋp = ApXp + b(f(Xp, θ)Xp + u) (90)

where Xp ∈ Rn is the plant state assumed accessible for measurement, Ap ∈
Rn×n, b ∈ Rn, u ∈ Rm is the control input. The function f is nonlinear not
only with respect to Xp but also with respect to the parameter θ. Typical
examples of such nonlinear parameterizations are all types of neural networks
including deep networks and radial basis functions, and all physical systems
with complex constitutive relations (Annaswamy et al., 1998b). The main
difficulty posed by the nonlinearity in θ is briefly explained below.

The structure of the plant dynamics in (90) suggests that when Ap and
θ are known, a control input of the form

u = −f(Xp, θ) + αTXp + r (91)

leads to a closed-loop system with BIBO properties, given by

Ẋp = AmXp + br
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where α satisfies the matching condition Ap + bpα
T = Am, and Am is a Hur-

witz matrix. Inspired by the control structure in (91), the adaptive counter-
part of the same that attempts to control (90) and learn the parameters α
and θ through an estimation process is given by

u = −f(Xp, θ̂) + α̂TXp + r (92)

One can now derive an error equation

ė = Ame+ b(f − f̂ + α̂TXp) (93)

where e = Xp −Xm, f̂ = f(Xp, θ̂), and Xm is the state of a reference model

Ẋm = AmXm + br (94)

With a few transformations, the vector equation in (93) can be reduced to a
scalar error equation

ėc = −kec + f − f̂ (95)

where ec = hT e and k > 0 (Annaswamy et al., 1998a). If one were to choose a

standard quadratic Lyapunov function candidate V = e2
c+θ̃

2, where θ̃ = θ̂−θ,
its time-derivative is of the form

V̇ = −ke2
c + ec

[
f − f̂ + θ̃∇fθ̂

]
(96)

Unlike the case when f is linear in θ, where one could choose an adaptive law
for adjusting θ̃ so that the term within the brackets will become identically
zero, one cannot find an adaptive law that will lead to a negative semi-
definite V̇ . The efforts in Fomin et al. (1981); Ortega (1995); Annaswamy
et al. (1998a); Loh et al. (1999) developed a theory of adaptive control for
nonlinearly parameterized systems. The resulting controller structure for the
case when f is concave/convex in θ is summarized below:

u = −f(Xp, θ̂) + α̂TXp + r − a∗s
(ec
ε

)
(97)

s(y) =

{
y(2β+1) if |y| < 1

sgn(y) otherwise
(98)

a∗ = λmax min
ω∈Rn

max
θi∈Θs

sgn(ec)J (99)

ω∗ = arg. min
ω∈Rn

max
θi∈Θs

sgn(ec)J (100)

J = β
(
f(Xp, θ)− f(Xp, θ̂) + θ̃Tω

)
(101)
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where β is a known constant and Θs is a known compact set that the param-
eter θ belongs to. The update laws for the adjustable parameters in (97) are
chosen as:

˙̂α = −ΓαeεXp (102)

˙̂
θ = Γθeεω

∗ (103)

where eε = ec − εs(ec/ε), and Γα and Γθ are symmetric positive definite
matrices. Closed-form expressions for a∗ and ω∗ can be found when βf(Xp, θ)
is convex for all θ ∈ Θs or concave for all θ ∈ Θs. While the solutions for
ω∗ coincide with the gradient of f in some cases, they do not in other cases.
Extensions to the case when f(., θ) is a general function of θ can be found
in Loh et al. (1999). Properties of persistent excitation that guarantees
parameter learning have been addressed in Cao et al. (2003).

Three main points should be noted: Adaptive control approaches can
be applied to problems where the underlying nonlinearities are convex (or
concave). This makes the methodology applicable for nonlinearities that
can be approximated by neural networks with convex activation functions
such as ReLU (Patkar and Annaswamy, 2020). The second point to note
here is that even for these convex functions, new tools that are beyond the
deployment of gradient methods such as min-max tools have to be introduced
to lead to global solutions. The third point is that powerful tools as Lyapunov
functions based on Bregman divergence (Boffi and Slotine, 2021), that allow a
better accommodation of nonlinearly parametrized systems, may still have a
problem when dealing with deep neural networks. This may be because of the
latter introducing significant nonconvexities such as nonconvex dependence
of the underlying loss function on weights of hidden layers.

4.5 Stochastic and discrete-time Systems: Stability

The major milestone in adaptive control of stochastic and discrete-time sys-
tems is the proof of stability (Goodwin et al., 1981; Åström and Wittenmark,
1995; Solo, 1979; Landau, 1982; Bitmead, 1983; Kumar, 1983; Clarke et al.,
1985; Caines and Lafortune, 1984). We summarize this result by grouping
various highlights in the literature under two headings: (1) SA and RLS
algorithms; (2) Proof of stability of STR.
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4.5.1 Parameter estimation algorithms

Several problems in system identification and adaptive control can be reduced
to the identification of an unknown parameter vector θ∗ in (16) using input-
output data stemming from regression vector φk and the output yk. Two
well known algorithms, recursive in nature, have been developed in the 70s
and 80s and played a major part in adaptive control. These are described
below:

Stochastic approximation based algorithm Denoting θk as the recur-
sive estimate of θ∗ as using an estimator, an estimated output for the system
in (16) can be derived as

ŷk = φ>k−1θk−1. (104)

The stochastic approximation (SA) algorithm takes the form (Becker et al.,
1985)

θk = θk−1 −
γ

rk−1

φk−1(ŷk − yk), γ > 0 (105)

rk = rk−1 + φTk φk; r0 = 1 (106)

Several variations of the algorithm in (105)-(106) have been proposed in the
literature. Denoting Mk = γ/rk, Mk can be chosen to be a matrix rather than
as in (105). Instead of (106), a non-recursive choice of rk = 1 + φTk φk can be
introduced, which coincides with the projection algorithm in Goodwin et al.
(1981). The following theorem summarizes the properties of the projection
algorithm when there is no noise:

Theorem 1 For the system in (16) with vk ≡ 0, it can be shown that

1. ||θ̂k − θ∗|| ≤ ||θ̂0 − θ∗|| ∀ k

2. limk→∞ ||θ̂k − θ̂k−t|| = 0 for any finite t.

Similar results exist for the case when vk 6= 0. The reader is referred to
Becker et al. (1985) and Goodwin et al. (1981)(Chapter 8) for further details.

43



RLS algorithm: A simple variation of the adaptive gain Mk in the SA
algorithm leads to the well known recursive least squares (RLS) algorithm,
summarized below:

θk = θk−1 − Γk−1φk−1(ŷk − yk), (107)

Γk = Γk−1 − Γk−1
φkφ

T
k Γk−1

1 + φTk Γk−1φk
; (108)

It is easy to see that the RLS algorithm in (107)-(108) is a matrix version of
the SA algorithm above as well as the well known Robbins-Munro algorithm
where Γk is replaced by a scalar gain γk satisfying additional conditions as
in Eq. (18).

Similar to the discussions of parameter estimation in the continuous-time
case, here too, convergence of the parameter estimates to their true values
is predicated on the persistent excitation of the regressor φk. Formally this
is stated as follows Anderson and Johnson (1982), and can be viewed as a
discrete-time analog of Definition 1:

Definition 2 A bounded function φ : N → RN is persistently exciting (PE)
if there exists T > 0 and α> 0 such that

t+T∑
t

φkφ
T
k dτ ≥ αI, ∀t ≥ 0.

4.5.2 Adaptive control: Proof of stability

As in the previous section, we state the main result for the noise-free case, and
defer the reader to Kumar (1985); Goodwin et al. (1981) for the noisy case.
The starting point is the system in (11), with wk = 0. Defining polynomials
F (z) and G(z) as

1 = AF + zdG (109)

it is easy to see that a control input uk chosen in the form of

uk = −(G/FB)(yk + rk) (110)

where rk = y∗k+d for any bounded sequence y∗k ensures that yk+d = y∗k+d. That
is, the tracking problem is solved by choosing the control input in the form
(110) when the parameters of A and B are known, provided the system is
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minimum-phase, that is, all roots of B(z) are inside the unit circle. With this
restriction, one can proceed to determine the stabilizing adaptive controller.

We reparameterize the polynomials F and G in the form

F (z)B(z) = β0[1 + β(z)]; β(z) = β1z + . . .+ βm+d−1z
m+d−1

1

β0

G(z) = α0 + α1z + . . .+ αn−1z
n−1

and collect the coeffcients ofG and FB as θ∗c = [α0, . . . , αn−1, β1, . . . , βm+d−1,
1
β0

]>.

We then write the system (16) in a predictor form

uk = φTc,kθ
∗
c (111)

where φc,k = [−yk, . . . ,−yk−n+1,−uk−1, . . . ,−uk−m−d+1, yk+d]
>. This allows

us to express the desired control input u∗k in (110), when the parameters are
known, as

u∗k = ϕTk θ
∗
c (112)

where ϕk = [−yk, . . . , yk−n+1,−uk−1, . . . ,−uk−m−d+1, rk]
>. This leads to an

adaptive controller
uk = ϕTk θc,k (113)

with the parameter estimate θ̂ck adjusted using a variation of the SA algo-
rithm

θck = θck−1
+

γ

c+ φTc,k−dφc,k−d
φc,k−d(uk−d − φTc,k−dθck−1

), (114)

where 0 < γ < 2 (Goodwin et al., 1981). The following theorem summarizes
the main stability result:

Theorem 2 Under the assumptions that (i) d, n, and m are known, (ii) the
zeros of B(z) lie inside the unit circle, (iii) that there are no common factors
between A(z) and B(z), and (iv)β0 6= 1, the following hold:

1. {yk} and {uk} are bounded sequences,

2. limN→∞ |yk − y∗k| = 0, and

3. limN→∞
∑N

i=d[yi − y∗i ]2 <∞
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The result above establishes clearly that a minimum variance controller can
be obtained when the underlying parameters of a system as in (16) are not
known. The adaptive algorithms can either be of SA-type as in (114) or an
RLS-type as in (107)-(108).

As in the continuous time case presented in Section 4.1, an equivalent
set of assumptions needs to be satisfied for the stability result here to hold.
These correspond to the following: (i) the order n, and the delay d have to
be known. (ii) the sign of β0 and a lower bound on the magnitude of β0 need
to be known. (iii) the zeros of B(z) have to lie inside the unit circle. As
outlined in Theorem 2, when these assumptions hold, a real-time adaptive
control solution can be derived for the control input which ensures that for
any initial conditions of the states and the parameter estimates, that the
output error converges and is in l2. Parameter learning follows as in the
continuous-time case with persistent excitation of ϕk.

4.5.3 Adaptive LQG control

The problem of adaptive control when the underlying cost is quadratic both
in the states and the inputs, as in (20), becomes much more difficult, and
requires several more additional assumptions and results in weaker results.
These are summarized below.

We return to the problem statement in Eqs. (19) and (20). It is well
known that for this linear-quadratic-guassian system the following control
input is optimal:

uk = K(A,B)xk (115)

where
K(A,B) = −[BTPB + T ]−1BTPA

and
P = ATPA− ATPB(BTPB + T )−1BTPE +Q.

The results in Becker et al. (1985); Campi and Kumar (1996, 1998) clearly
show that the problem becomes significantly more complex when A,B are
unknown, and the control gain in (115) has to be replaced with that which
depends on parameter estimates of A,B. Suppose we define (ALSk , BLS

k ) as
the least squares estimate of [A,B],i.e.

(ALSk , BLS
k )

def
= argmin(A,B)∈Θ

k∑
s=1

||xs − Axs−1 −Bus−1||2 (116)
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It is shown in Becker et al. (1985) for ARMAX systems that the parameter
estimates can converge to false values with positive probabilities; an example
of the above statement for general Markov chains can be found in Borkar
and Varaiya (1979).

A few interesting extensions have been reported in Campi and Kumar
(1996, 1998) towards a suboptimal and stable solution under additional as-
sumptions. This is accomplished by adding a bias term to the cost J in (16)
so as to lead to estimates of the form

(ALSk , BLS
k ) = argmin(A,B)∈Θ

k∑
s=1

||xs − Axs−1 −Bus−1||2

+ µtJ(A,B) if k is even (117)

= (Âk−1, B̂k−1) if k isodd (118)

In addition to the above, the use of diminished persistent excitation with
time was utilized to lead to adaptive optimal control in stochastic systems
in (Guo and Chen, 1991; Guo, 1995; Duncan et al., 1999).

4.6 Adaptive control of Continuous-time systems: Ro-
bustness

Suppose we start with an input-output model of an uncertain linear dynamic
system (4). The question that immediately arises is as to what is uncertain
in (4). The path that has been adopted in the field of adaptive control
is to lump the uncertainty entirely into θ in (4), the parameter of the dy-
namic system. The results outlined above, in Sections 4.1-4.5, proceeded
with such a problem statement as the starting point. The next step in the
evolution of adaptive control expanded the scope of the problem from (4) to
(8), where parametric uncertainties in θ were assumed to be accompanied
by non-parametric uncertainties in the form of d(t), ϑ(t), and ∆(s). The
question that was addressed was how the solutions developed for (8) can re-
main satisfactory even with these non-parametric perturbations. Two broad
classes of solutions were proposed in the literature, one that sought to modify
the adaptive controller in (6)-(7), by changing the adaptive law in (7) to a
form

θ̇c = C2(θc, φ, t)− h(θc, φ) (119)
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where the correction term h(·) is designed to produce robustness. The sec-
ond type of results retained the adaptive control structure as in (6)-(7) but
invoked conditions of persistent excitation on the exogenous signal. These
are summarized in the following sections.

4.6.1 Modifications in the adaptive law

For ease of exposition, we restrict our discussion to linear systems with single-
input, whose states are accessible. The reader is referred to textbooks such
as (Narendra and Annaswamy, 2005; Ioannou and Sun, 1996) for further
details. Consider a plant-model of the form

ẋ = Ax+ bu+ v (120)

where A is an unknown matrix, b is a known vecor, u is the control input and
is a scalar, x is the state and is accessible for measurement, v is a disturbance
that is unknown, time-varying, and bounded. The use of matching conditions
(40) suggests that a reference model of the form

ẋm = Amxm + br (121)

where Am = A + bk∗T is known and Hurwitz generates a class of command
signals xm(t) that the plant state can be guaranteed to track, by choosing a
control input u = k∗Tx+ r. As A is unknown, an adaptive control input and
adaptive law of the form

u = kTx+ r, k̇ = −γ(eTPb)x (122)

where γ > 0 is a positive constant, e = x− xm, and P solves the Lyapunov
equation (43) guarantees that

V = eTPe+ (k − k∗)T (k − k∗) (123)

is a Lyapunov function with V̇ = −eTQe and that limt→∞ e(t) = 0, pro-
vided v(t) ≡ 0. When v(t) 6= 0, the same stabilizing control input in (122)
contributes to a parameter drift in k to −∞ (Rohrs et al., 1985; Narendra
and Annaswamy, 1986). This is because of a windup effect and the fact that
the adaptive controller is a nonlinear integral controller; in the presence of a
disturbance, it can cause the parameter to wind-up to infinity.
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The solutions suggested in the literature introduce anti-windup actions
in the form of a correction to the adaptive law in 122 as

k̇ = −γ(eTPb)x− h(e, x, k) (124)

which causes the time-derivative to take the form

V̇ = −eTQe+ 2eTPv − 2kTh(k, e, k) (125)

The approaches in the literature pertain to different choices of h(e, x, k) such
that V̇ < 0 outside a compact set in the (e, k) space. An equivalent approach
is to modify the underlying loss function such as the one in (45) with a
regularization term that involves the L2 norm of k. It should be noted
that existing literature (Narendra and Annaswamy, 2005; Ioannou and Sun,
1996) includes results for the case when partial set of states are available for
measurement, when there are multiple inputs or when the underlying system
is in discrete-time (Ioannou and Tsakalis, 1986b; Tao and Kokotović, 1995;
Wen and Hill, 1992; Cluett et al., 1988).

The discussions above were focused on the perturbed model in (8) where
there is either a disturbance d(t) or the parameter θ is a function of time.
Robustness to unmodeled dynamics such as ∆(s) in (8) is a considerably more
challenging problem compared to robustness to either bounded disturbances
or time-varying parameters. Of equal difficulty is robustness to time delays,
which are ubiquitous in large-scale and networked systems. Several results
have been proposed in the context of robustness to unmodeled dynamics
(for example, Narendra and Annaswamy (2005); Ioannou and Sun (1996);
Naik et al. (1992); Pomet et al. (1992) and time-delays (for example, Ortega
and Lozano (1988); Niculescu and Annaswamy (2003); Yildiz et al. (2010b);
Bresch-Pietri and Krstic (2009)), and more recently in Hussain et al. (2017);
Hussain (2017); Dogan et al. (2016); Hussain et al. (2013)) many of which
employ a projection operator (Lavretsky et al., 2012). These establish that
adaptive systems can be designed to be robust with respect to unmodeled
dynamics by having the parameters adapt inside a bounded set and guarantee
bounded solutions.

4.6.2 Use of Persistent Excitation

An alternate approach to establish robustness, i.e. bounded solutions in the
presence of the disturbance v in the adaptive system defined by (120)-(122)
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is to invoke conditions of persistent excitation of xm in (121). Two classes
of results have been reported in the literature, in Narendra and Annaswamy
(1986) and in Anderson et al. (1986) using such an approach. The results
in (Narendra and Annaswamy, 1986) are briefly summarized below for the
adaptive system in (120)-(122). Let us assume that the exogenous input r
is such that xm(t) is persistently exciting in Rn with the level of persistent
excitation ε0, which is defined as

| 1

T0

∫ t2+δ0

t2

xTm(τ)wdτ | ≥ ε0 ∀ t ≥ t0

where [t2, t2 +δ0] ⊂ [t, t+T0] and w is a unit vector in Rn. Then the adaptive
system will have globally bounded solutions if

ε0 > k0vmax

where |v(t)| ≤ vmax and k0 = 2λP−max/λQ−min. That is, if the level of
persistent excitation is large compared to the size of the disturbance, then
boundedness follows. It is also shown in Narendra and Annaswamy (1986)
that the converse is true - for a class of adaptive systems, for a class of
disturbances, it can be shown that there exists a signal xm(t) for which
solutions of the adaptive system will be guaranteed to exhibit instability in
the form of limt→∞ k(t) = −∞. A similar phenomenon was shown in Rohrs
et al. (1985) to hold in numerical simulations. The results of Anderson et al.
(1986) established a similar result for the harder problem when v(t) is not
necessarily bounded, but state-dependent, which occurs when it is due to
unmodeled dynamics excited in closed-loop. The authors therein showed
that when the underlying regressors are persistently exciting, the properties
of the adaptive system can be locally approximated by an averaged system
that has exponential stability properties and therefore shown to be robust.

4.7 Bursting Phenomenon and Imperfect Learning

The results in the above section clearly indicate the close relationship be-
tween the trajectories that the parameter estimates take, persistent excita-
tion, and disturbances. We point out another interesting property that has
been observed in the context of adaptive systems and learning, which is the
bursting phenomenon (Anderson et al., 1986). The milestones above indi-
cate three distinct facts: (1) Persistent excitation of the underlying regressor
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leads to parameter convergence (Morgan and Narendra, 1977; Anderson and
Johnson, 1982); (2) Persistent excitation at a sufficient level relative to the
disturbance ensures robustness (Narendra and Annaswamy, 1986; Anderson
et al., 1986); (3) When the excitation level is not sufficient or if there is simply
no persistent excitation, then parameters will not converge to the true values
(Kumar, 1983), i.e. leads to imperfect learning. A fourth fact that rounds off
this topic is this: (4) When there is no persistent excitation, and when there
are disturbances present, the closed-loop system can produce large bursts of
tracking error (Morris et al., 1977; Fortescue et al., 1981; Anderson, 1985).
That is, imperfect learning exhibits a clearly non-robust property that leads
to a significant departure from a tracking or a regulation goal: exhibit an un-
desirable behavior over short periods during when the tracking error becomes
significantly large.

A specific example that illustrates this behavior is the following (Ander-
son, 1985): Consider a first-order plant with two unknown parameters a and
b of the form

yk+1 = ayk + buk (126)

whose adaptive control solution is given by Goodwin et al. (1981)

uk =
1

b̂k

[
−âkyk + y∗k+1

]
(127)

The results of Goodwin et al. (1980) in (113) and (114) reparameterize (127)
as

uk = −θc1,kyk + θc2,ky
∗
k+1 (128)

and propose a parameter adjustment rule as in (114) where φc,k = [−yk, yk+1]>

and d = 1. Clearly, the results in the literature guarantee that the adaptive
controller defined in (128),(114) guarantee that (i) θci,k and yk are bounded
(Goodwin et al., 1981) (ii) θci,k converge to constants θ0

ci
, which may not coin-

cide with the true values (Becker et al., 1985), and that (iii) yk approaches y∗k
as k →∞ (Goodwin et al., 1981). In addition, when φc,k is persistently excit-
ing, i.e., satisfies Definition 2, we also have that the estimates θci,k approach
the true values θ∗ci . When such a persistent excitation is not present and
when perturbations are present, bursting can occur, which can be explained
as follows:

Suppose we consider a simple regulation problem with y∗k ≡ 1. The
control input in (128) leads to a closed-loop system of the form

yk+1 = g(θc1,k)yk + h(θc2,k) (129)
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where
g(θc1,k) = (a− bθc1,k) , h(θc2,k) = bθc2,k (130)

This implies that the closed-loop system is (a) unstable if |g(θc1,k)| > 1, and
(b) stable if |g(θc1,k)| < 1. The most troublesome scenario occurs if θc1,k = θbc1
where g(θbc1) = −1. Such a case will cause bursting. When disturbances are
present, the discussions in Section 4.6 showed that parameters can drift. It
is therefore possible that parameters θci,k become arbitrarily close to θbci for
some k = k0; at k+

0 a disturbance pulse is introduced, causes the parameters
to drift with θc1,k approaching θbc1 , which in turn causes yk to oscillate, which
then causes θci,k to readjust, once again approach another set of constant val-
ues θ0′

ci
. Such a phenomenon has been shown to occur in Anderson (1985) and

in continuous-time systems (Narendra and Annaswamy, 1987a). It should be
noted that this occurs with imperfect learning, that is, when the underlying
regressors are not persistently exciting. Such a phenomenon is not peculiar
to the specific systems in question, but for any arbitrary dynamic systems
where simultaneous identification and control are attempted.

4.8 Adaptive Control in the Presence of Input and
State Constraints

The adaptive controllers outlined in Sections 4.1-4.5 were focused on ensur-
ing that the closed-loop system has bounded solutions and that the output
error was minimized. No restrictions were imposed on the requisite control
input. A wider problem statement with the goal of stable adaptive control
in the presence of magnitude and rate constraints on inputs and states was
addressed in a number of publications including (Karason and Annaswamy,
1994; Lavretsky and Hovakimyan, 2004, 2008; Leonessa et al., 2009; Gaudio
et al., 2018) and is briefly summarized below.

Suppose that the output of the adaptive controller is denoted as u(t), and
the actual input into the plant is denoted as up(t). Suppose that an elliptical
saturation function is defined as Es denotes an elliptical saturation function
of a vector v(t) defined as (Gaudio et al., 2018)

Es(v(t), vmax) =

{
v(t), ||v(t)|| ≤ g(v(t))

v̄(t), ||v(t)|| > g(v(t))
(131)
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where the function g(v(t)) is expressed as

g(v(t)) =

(
m∑
i=1

[
êi

(vmax)i

]2
)−1/2

, (132)

where ê = v
||v|| and v̄ = êg(v). The plant input up is then generated using Es

as

ur(t) =
1

τ
(Es(u(t), umax)− up(t)) (133)

u̇p(t) = Es(ur(t), ur,max) (134)

Such an input up(t) is guaranteed to meet the magnitude limit, with |up(t)| ≤
umax, and coincides with u(t) when the magnitude of u(t) is small. In terms
of rate, first we note that |ur(t)| ≤ ur,max. In addition, since the variable
ur(t) ≈ u̇, it follows that up(t) is rate limited with a bound of ur,max. The
reader is referred to the Appendix and (Karason and Annaswamy, 1994;
Gaudio et al., 2018) for details.

The saturation functions in magnitude (133) and rate (134) introduce two
nonlinearities, which poses a problem in the overall analysis. The main idea
articulated in (Karason and Annaswamy, 1994; Lavretsky and Hovakimyan,
2008; Gaudio et al., 2018) that overcomes this problem is to represent them as
additive known disturbances. In particular, defining two known disturbance
terms ∆um and ∆ur as

∆um(t) = Es(u(t), umax)− u(t),

∆ur(t) = Es(ur(t), ur,max)− ur(t),
(135)

it is easy to see that if u does not reach its magnitude saturation limit umax,
then ∆um(t) ≡ 0. Similarly, if the input rate ur does not reach its rate
saturation limit ur,max, then ∆ur(t) ≡ 0, that is, these known disturbance
terms become non-zero only if the magnitude or rate limits are exceeded.

Using (133), (134), and (135) we obtain a compact relation between the
plant input and the controller output of the form

u̇p(t) = −1

τ
up(t) +

1

τ
u(t) +

1

τ
∆u(t), (136)

where ∆u(t) = (∆um(t) + τ∆ur(t)) represents the combined effects of mag-
nitude and rate saturation.That is, both magnitude and rate limits can be
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accommodated in the form of an additive disturbance ∆u(t) and a filter
1/(τs+ 1). This in turn implies that an underlying plant model of the form

yp = Wp(s)up (137)

where the input up is subject to magnitude limits and rate limits can be
rewritten as

yp =
Wp(s)

τs+ 1
(u+ ∆u) (138)

The effect of the magnitude limit is in the form of a disturbance while that
of rate limit is in a combined form of both a filter and a disturbance. The
adaptive control solutions propose in the literature address the problem of
determining the control input (138) when the parameters of Wp(s) are un-
known. We briefly describe the solution for the simple case when states are
accessible and only magnitude limits are imposed.

We start with the problem statement in Section 4.1.2

ẋ = Apx+ bpup (139)

where up is the plant input and is required to meet a hard magnitude con-
straint umax. Using the procedure described above, it is easy to show that

up = u+ ∆u

where u is the output of an adaptive controller derived as in (40) and

∆u =

{
0 if|u(t)| ≤ umax

u− umax if|u(t)| ≥ umax
(140)

This in turn leads to an error model of the form

ė = Ame+ bp(θ̃
Tω + ∆u) (141)

where θ̃ = [(theta − θ∗)T , (k − k∗)]T , and ω = [xTp , r]
T . As ∆u is a known

disturbance, an augmented error eu is generated as eu = e+ ea, where

ėa = Amea + bmks(t)∆u (142)

which includes an additional adjustable parameter ks(t). This in turn allows
an error model to be derived in a standard form as

ėu = Ameu + bpθ̃
Tω + bm(ks(t)− k∗)∆u (143)
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A Lyapunov function similar to (44) can be found that guarantees the bound-
edness of eu and the adaptive parameters θ, k, and ks. An additional and
significant hurdle now needs to be overcome to show boundedness of the
plant states, as it can no longer be concluded that the original state error e
is bounded, as eu is a sum of two signals, both produced by the control input
in closed-loop. Properties of linear systems with bounded inputs are em-
ployed in (Karason and Annaswamy, 1994; Lavretsky and Hovakimyan, 2008;
Gaudio et al., 2018) in order to show global boundedness for all open-loop
stable plants and boundedness in a domain of attraction otherwise. Similar
results have been derived for discrete-time plants as well in (Annaswamy and
Karason, 1995; Zhang and Evans, 1987; Chaoui et al., 2001).

4.8.1 State Constraints and Barrier Functions

Novel extensions to nonlinear systems with state constraints have been ad-
dressed in the literature through the use of Barrier Lyapunov functions (Tee
et al., 2009; Ren et al., 2010b; Ames et al., 2014). The main idea here is
to construct Lyapunov functions that become large when the error variables
approach certain limits. For example, rather than choose a quadratic term
in x, a log function of the form log(x2

0/(x
2
0−x2)) is utilized to make sure that

the state variable x does not exceed its limit x0.

4.9 Assumptions and Challenges

The solutions outlined in Sections IV-A through IV-H correspond to decision-
making in a dynamic system in real-time by a controller. As shown in the
schematic in Fig. 1 the dynamic system S is described as in (4), (11), (120)

Figure 1: Closed-loop control of a nonlinear dynamic system using adaptive
control

for the linear case, or (3), or (90) in the nonlinear case. The adaptive con-
trollers C1, C2 have a general form as in (6)-(7), which in linear systems are of
the form (36) in simple cases, (40)-(42) when states are accessible, (50) and
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(54)-(55) or (63) for adaptive output feedback. For nonlinear problems, a few
examples were outlined in (97)-(103). In most of the cases, it should be noted
that the solutions provided are global, with the adaptive system starting from
arbitrary initial conditions, and are applicable in real-time. No training, ex-
ploration or simulation experiments are required. These are unique features
and advantages of the adaptive control method. The guarantees that the
adaptive control solutions provide are predicated on assumptions that some
prior information is available about the plant. Examples are information
about its order, net-order, and the sign of the high frequency gain for the
linear case. In a nonlinear plant, the assumptions pertain to a certain type
of interconnection such as strict-feedback form (Krstić et al., 1995), triangu-
lar structures (Seto et al., 1994), or feedback linearization (Slotine and Li,
1991). It should again be mentioned that in almost all of these cases, the un-
derlying solutions are provably correct, with firm analytical guarantees and
precise descriptions of the nature of the solutions.

Several efforts have been consistently and continuously applied over the
years to relax these assumptions. An approach credited to Nussbaum (Nuss-
baum, 1983) relaxes the requirement that the sign of the high frequency gain
be known. The approach outlined in section 4.1.6 under high-order tuners
only requires the net-order, but not the order, to be known. Several exten-
sions to nonminimum phase systems have been reported over the years (El-
liott et al., 1985). In some cases, these extensions come with other drawbacks
such as lack of robustness due to an intrinsic high-gain nature, requirements
of persistent excitation, or significant increase in the computational burden.

The importance of the interconnection between adaptation and learn-
ing cannot be over emphasized. The stability results outlined in Section
4.1 focused on just that, stability. No requirements on learning the un-
known parameter were involved. Additional conditions of persistent excita-
tion, if imposed, led to learning. In closed-loop, as one cannot guarantee
that such PE conditions can be satisfied, one cannot guarantee learning.
Rather, with imperfect learning, the adaptive control solutions guaranteed
closed-loop boundedness and asymptotic guarantee of performance. If addi-
tional conditions are met, then learning follows. Optimality of the adaptive
controller, when learning is complete, can subsequently be ensured. As was
evident from the discussions in Section 4.6, robustness of these performance
goals under various conditions and perturbations have also been guaranteed.

As we proceed to expand the scope of the class of dynamic systems under
consideration, we articulate one of the main challenges that is encountered
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due to the interconnection and compelling tradeoffs between adaptation and
learning. Suppose we address the closed-loop control in Figure 1, where S is
given by (3).

Suppose that the control input C1 is generated using a neural network
with its input ω as follows:

yi =

Ni∑
j=1

W iT
2j φ

(
W i

1jyi−1 + bij
)
, i = 2, . . . L (144)

where L denotes the number of layers, W i
kj, k = 1, 2, bij, j = 1, . . . Ni de-

note the weights in the ith layer, y1 = ω, and yN = u are respectively the
input and output of the neural controller. φ denotes the activation function.
Suppose that the neural network is trained extensively for a given set of pa-
rameters in the dynamic system so that the closed-loop system generates a
performance that is satisfactory. It should be noted that the parameters of
the neural network, W i

kj converge (if they do; no analytical guarantees exist
as of today that they converge) to some value W i0

kj such that the mapping
between ω and u approximate the desired nonlinear mapping. At this point,
suppose that the plant parameter θ in S changes in an unbeknownst manner
that cannot be anticipated beforehand and accompanied by non-parametric
changes in disturbances or unmodeled dynamics. The closed-loop system in
such a case is highly prone to the bursting phenomenon described in Section
IV-I, in the multi-dimensional space made up of weights, states, and inputs
of the overall closed-loop system, as the system may not have been trained
satisfactorily at these changed conditions. It is the analysis of this resulting
closed-loop system together with guarantees of boundedness, convergence,
and optimality that is needed. This is an open problem that needs to be
addressed.

4.10 Loci of Adaptive Control

As mentioned in the introduction, the focus of this article is on those aspects
of adaptive control that has an identifiable learning component with tractable
problem formulations and solutions. It should be noted that huge swaths of
efforts have been expended in several other branches of adaptive control over
the past five decades with enormous success. We mention but a few of those
classes that capture the loci of adaptive control.
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Extensions to adaptive control of infinite dimensional systems can be
found in (Smyshlyaev and Krstic, 2010) and a special class of problems which
corresponds to systems with delays (Ortega and Lozano, 1988; Niculescu
and Annaswamy, 2003; Yildiz et al., 2010a; Bresch-Pietri and Krstic, 2009,
2014). They have found applications in traffic control (Burkhardt et al.,
2021), power-train control (Yildiz et al., 2010b), rocket pressure control (Alan
et al., 2018), and drilling (Krstic, 2013), to name a few. In most of these
cases, these approaches consist of adaptive controller designs with an in-
built parameter estimate, with requisite complexities in both the control and
adaptive law as well as in the machineries employed. Additional tools from
infinite dimensional systems and Lyapunov functions need to be utilized to
derive stable solutions. The goals of these designs are to primarily accomplish
the control goal; learning, i.e. convergence of the underlying estimates to the
true value are very hard to establish.

Interesting extensions have been reported in (Guo, 1997; Xie and Guo,
2000; Huang and Guo, 2012) for necessary and sufficient conditions for con-
trol of classes of systems under uncertainties, in an attempt to examine
fundamental limitations of the feedback mechanism. A computationally
tractable solution to the adaptive stabilization problem addressed in Huang
and Guo (2012) is proposed in (Sokolov, 2016a,b) based on set estimation
with Yakubovich’s method of recursive goal inequalities. This and related
directions are surveyed in (Guo, 2020).

Several other branches of adaptive control have been investigated over
the years. The first include decentralized and distributed adaptive control
based on notions of cooperation and consensus, and adaptive control for syn-
chronization of complex networks (Ioannou, 1986; Lellis et al., 2009; Olgren
et al., 2004; Zhou et al., 2006; Cao et al., 2008; Hou et al., 2009; Das and
Lewis, 2010). Another area is adaptive control in the presence of commonly
present algebraic nonlinearities such as hysteresis (Tao and Kokotovic, 1995)
and deadzones (Tao and Kokotovic, 1994), which are useful in all applica-
tions where actuator nonlinearities have to be contended with (Tao et al.,
2004). Along with actuator nonlinearities, actuator redundancy has been
addressed in (Tohidi et al., 2020) via adaptive control allocation methods.
The use of a filter and high-gain in closed-loop (Hovakimyan and Cao, 2010)
has been explored as well with significant successes reported in applications.
Yet another related topic that intersects with adaptive control and machine
learning based optimization is extremum seeking. Here, the goal is to adjust
a parameter, but not with the purpose of learning the parameter or an un-
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derlying function but to rather maximize a function (Krstić and Wang, 2000;
Ariyur and Krstic, 2003). We expect interesting discoveries related to the
intersections between these topics to unfold over the coming years.

The topics covered in this paper are by no means an exhaustive account
of all control methods are adopted for dynamic systems with uncertain pa-
rameters. The most notable methods that we have not covered in this paper
include adaptive sliding mode control (see for example, Bartolini et al. (1995);
Huang et al. (2008); Lee et al. (2009)), iterative learning control (see for ex-
ample, Bristow et al. (2006),Moore (2012)), and linear-parameter-varying
systems (see for example, Mohammadpour and Scherer (2012); Hoffmann
and Werner (2014)). The reader is referred to the cited papers for a deeper
dive into these methods.

5 Applications

Progress in theory has been accompanied throughout the past five decades
with explorations of applications of adaptive control in various sectors. This
is evidenced by edited books (Narendra, 1980 (reprinted 2012), surveys (Åström,
1983; Astrom, 1996), chapters in textbooks (Landau et al., 2011; Naren-
dra and Annaswamy, 2005; Ulsoy and Koren, 1989), or entire textbooks
(Lavretsky and Wise, 2013). Applications span process control (Dumont
and Huzmezan, 2002; Ismail et al., 2003; Dumont et al., 1990; Allison et al.,
1995; Ismail et al., 2003), automotive systems (Yildiz et al., 2010b,c), po-
sitioning systems (Ulsoy and Koren, 1989; Smith et al., 1995), propulsion
systems (Evesque et al., 2003b; Riley et al., 2004), and a huge effort in
flight control (see for example, (Thompson and Welsh, 1970),(Taylor et al.,
1964; Dydek et al., 2010; Calise and Rysdyk, 1998; Jenkins, 2000; Boskovic
et al., 2004),(Gregory et al., 2011),(Achtelik et al., 2011),(Dydek et al., 2012,
2013b,a)).

Since the early 1990’s, the US Air Force, US Navy, and NASA working
with industry and academia have made significant progress towards maturing
adaptive control theory for aerospace applications (Gregory et al., 2011). Sev-
eral adaptive control architectures have been implemented in unmanned flight
platforms (Sharma et al., 2006). A specific observer-based adaptive control
with Loop Transfer Recovery (OBLTR) has been developed in Lavretsky and
Wise (2013). As pointed out in (Wise, 2018), a technology transition of con-
ventional MRAC applications and adaptive OBLTR based architectures, has

59



been continuously ongoing (see Figure 1, Figure 4 in (Wise, 2018)) which
includes aerial platforms such as JDAM, X-36, and several others.

The reader is referred to the surveys and textbooks mentioned above for
several more applications in addition to all of the above, for autopilots for
ships, and coworkers, cement mills, chemical reactors, diesel engines, glass
furnaces, heating and ventilation, motor drives, paper machines, optical tele-
scopes and titanium oxide kilns, and more. The reader is referred to Samad
and Annaswamy (2011) for additional success stories.

Several industrial products exist that implement MRAC and STR de-
scribed above. NOVATUNE and NOVAMAX produced by ASEA AB were
early examples mentioned in the 80s in Åström (1983). The reference Du-
mont and Huzmezan (2002) lists BrainWave, an adaptive MPC, and Micro-
Controller 2000X, both implemented in several process control problems. We
also refer the reader to the proceedings of several workshops in conferences
such as the ACC, CCTA, and CDC, that have presented recent applications
of adaptive control to aerospace problems (see for example (Hull and Cichella,
2021)).

In much of these applications, the need for adaptive control stems from a
scenario where a control problem arises and a satisfactory solution requires
a retuning of the control parameters due to aging, drift, or other untoward
changes in the plant being controlled. The existing baseline controller be-
comes, as a result, incorrect, and needs to be retuned. In several of these
applications, such as in autonomous vehicles either in air, ground, or water,
may require this self-tuning or adaptation, to occur on the fly, in real time.
The flight platforms considered in (Sharma et al., 2006) and other flight
platforms listed above fall under this category. Often the existing baseline
controllers become inadequate under these anomalies, may be destabilizing,
and need to be retuned. And under these circumstances, adaptive control
enables a procedure by which real-time adjustment of controllers is possi-
ble. That adaptive controllers are finding a pathway for technology transi-
tion, systematic validation, and field implementation is clear from the above
discussions. The relatively slower pace of implementation of adaptive tech-
nologies, compared to say MPC, may be a combination of the need for a
truly real-time tuning in a given application and the requisite bandwidth
and complexity for implementation. As applications become more complex
and as computing and communication technologies become more advanced,
both of this impediments may very likely diminish and disappear.
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6 Summary and Concluding Remarks

In this paper, we have sketched a historical perspective of the field of adaptive
control over the past seven decades. Given the recent upsurge of interest
in learning, both offline and online, in the Machine Learning and control
communities, such a perspective is timely and warranted. The scope of this
article is large - we have attempted to cover highlights of the field which
span 70 years, chronicled in ∼15 textbooks, ∼20 edited books, hundreds of
surveys, and thousands of research publications in journals and conferences
in 30 pages, which is a formidable task. We have therefore showcased just
the highlights of this field, and emphasized key lessons learned, problems
that have already been solved, important takeaway messages, and cautionary
remarks. While our attempts at chronology span the footprint of this topic
from the 1950s to the present, it should be acknowledged that there is a
large vigorous set of activities in this area over the last five to ten years,
especially at the intersection of parameter learning, reinforcement learning,
neural networks, and adaptive control that we have not addressed in this
paper. We refer the reader to recent plenary talks, papers in recent control
and machine learning conferences, and special issues in related journals for
the exposition of the latest advances.

Over the last seventy years, the field of adaptive control has witnessed
advances in both deterministic and continuous-time systems and stochastic
discrete-time systems. We have attempted to cover both domains in this
article. Key advances in different parts of the globe have all been attempted
to be covered. We have not offered a deep technical discussion of theorems,
but rather the idea behind key results and their implications. No proofs have
been provided either. The reader is referred to the list of copious references
at the end of the paper for in-depth technical expositions of all problems
and solutions outlined here. We presented a chronological taxonomy of the
advances in the field in Section II, a cross-section of problem statements in
Section III, and highlights of key solutions in Section IV. Major applications
of adaptive control are addressed in Section V.

The primary focus of the adaptive controllers has been to ensure that (a)
the closed-loop system have bounded solutions, and (b) asymptotic proper-
ties of the outputs (and in some cases inputs) are achieved. The results in
4.8 have extended this focus and have made inroads in making sure that the
requisite constraints of magnitude and rate for the control input and state
constraints are met as well. It should be noted that in all cases, the perfor-
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mance goals have been limited to the system behavior in real-time, at time
t, and not for all future instants. As the premise in all these problems is that
parametric uncertainties can be introduced at any time, optimization of a
cost function over all time, with a cold-start of the controller that simultane-
ously estimates, adapts, and optimizes, is difficult if not impossible. Some of
the recent results that propose clever combinations of both adaptive control
and machine learning concepts may overcome this formidable challenge.
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Appendix

Stability framework

The first and foremost challenge introduced by adaptive control is a non-
linearity. As the controller is proposed as a real-time control solution, the
nonlinearity is introduced due to the simultaneous estimation and control.
That is, the control input is a function of the parameter estimate which in
turn depends on the control input as well as several other system variables.
As a result, the closed-loop system becomes nonlinear, with its solutions cor-
responding to the true responses of the plant being controlled. As a result,
the well behavedness of the overall adaptive system, i.e. its stability is the
first property that needs to be assured. The typical tool employed here is
due to Lyapunov and is summarized below Narendra and Annaswamy (2005).
The dynamic system of interest is of the form

ẋ = f(x, t), f(0, t) ≡ 0 (145)

It is assumed that f : R→ Rn is such that a solution x(t;x0, t0) exists for all
t ≥ t0.
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Theorem 3 The equilibrium state x = 0 of (145) is uniformly asymptoti-
cally stable in the large if a scalar function V (x, t) with continuous first par-
tial derivatives w.r.t x and t exists such that V (0, t) = 0 and if the following
conditions are satisfied:

(i) V (x, t) is positive-definite,

(ii) V (x, t) is decrescent,

(iii) V̇ (x, t) is negative-definite, and

(iv) V (x, t) is radially unbounded.

V (x, t) that satisfies these conditions is referred to as a Lyapunov function.
If instead of (iii), V̇ (x, t) is only negative semi-definite, only uniform stability
can be ensured; if instead of (iii), a stronger condition V̇ (x, t) < −α(||x||) <
−βV (x, t), then exponential stability of the equilibrium can be ensured. We
refer the reader to Narendra and Annaswamy (2005) for all further technical
details.

A typical approach in adaptive control is to express the underlying system
in the form of (145) with the state x corresponding to errors in the system
that are either to be driven to zero or required to be bounded. These error
can be broadly grouped into two categories, tracking error and parameter
error. Often adaptive systems consider quadratic Lyapunov function and
only lead to a negative semi-definite V̇ (x, t).

Rational SPR functions and the KYL

The definition of SPR and one of the simplest versions of the KYL Anderson
and Johnson (1982) is given below.

Definition: An n × n matrix Z(s), whose elements are rational transfer
function, is SPR if for some ε > 0 and all Re[s− ε] > 0,

1. all elements of Z(s− ε) are analytic

2. Z∗(s− ε) = Z(s∗ − ε), and

3. ZT (s∗ − ε) + Z(s− ε) is positive semi-definite.
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The Kalman Yakubovich Lemma

Let Z(s) be a matrix of rational functions with Z(∞) = 0, a minimal real-
ization {A,B,C}, and with all its poles only in Re[s] < −µ. Then Z(s) is
SPR if and only if there exist symmetric positive definite matrices P,Q such
that

ATP + PA = −Q
PB = C (146)

Bregman Divergence

Further extensions can be obtained based on the Bregman divergence con-
struction Boffi and Slotine (2021). Let f(x) be a twice differentiable function,
x ∈ Rn. Let Df (x, y) = f(x) − f(y) − (∇f(y), x − y), where ∇f(x) is the
gradient of the function f(x). The function Df (x, y) turns out to be con-
venient to use for the convergence proofs as a part of extended Lyapunov
function. For example, extended versions of the speed-gradient algorithm
can be designed via a Lyapunov function Boffi and Slotine (2021)

V (x, θ, t) = Q(x, t) +Df (θ, θ∗). (147)

It leads to the algorithms

θ̇ = −∇2Df (θ, θ∗)∇θw(x, θ, t), (148)

generalizing algorithms (88).

Averaging

A standard method that has been studied extensively in the area of non-
linear oscillations has been utilized often in adaptive systems in the con-
text of robustness with respect to disturbances and unmodeled dynamics
Anderson et al. (1986). This is briefly summarized below. Originally sug-
gested in Krylov and Bogoliubov (1937 (Translated by Princeton University
Press, Princeton, 1947) and expanded in Bogoliubov and Mitropolskij (1961);
Sanders and Verhulst (1985), this method is associated with the solutions of
a differential equation

ẋ = µf(x, t, µ), x(0) = x0 (149)
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where µ is a positive constant. An approximate solution for (149) can be
found if ẋ is small and the solution x(t) varies slowly using the process
of averaging. The underlying idea here is that as x(t) is varying slowly,
the rapidly varying terms in f do not affect the slow variation of x in the
long run. We briefly outline the application of this tool to adaptive systems
Anderson et al. (1986); Kokotovic et al. (1985): The underlying error model
for the perturbed system in (8), when only unmodeled dynamics are present
and the adaptive law as in (54) and (55) is used can be written as[

ė
˙̃
θ

]
=

[
A bωT

−µωcT 0

]
(150)

where {c, A, b} corresponds to the realization of the closed-loop transfer func-
tion that arises when there is no parametric uncertainty, and ω denotes the
system variables that are accessible. That is, W̄m(s) = cT (sI − A)−1b. The
robustness of the adaptive system is assured if the solutions of (150) are well
behaved. The following theorem outlines this result Kokotovic et al. (1985):
Let ω(t) be bounded, almost periodic, and persistently exciting. Then

1. there exists a c∗ > 0 such that for all µ ∈ (0, c∗], the origin of (150) is
exponentially stable if

Re

[
λi

(∫ T

0

ω(t)W̄m(s)ωT (t)dt

)]
> 0 ∀i = 1, . . . n (151)

2. The condition (151) is satisfied if

∞∑
k=−∞

Re
[
W̄m(iνk)

]
Re
[
Ω(iνk)Ω̄

T (iνk)
]
> 0 (152)

An expansion of ω(t) using an inverse Fourier transform expansion such as
ω(t) =

∑∞
k=−∞Ω(iνk)exp(iνkt) is leveraged in this context. Eq. (152) implies

that the stability property of (150) critically depends on the spectrum of the
excitation of ω in relation to the closed-loop transfer function W̄m(s). More
importantly, the condition in (151) can be met by a large class of problems
where W̄m(s) is not SPR.
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Åström, K.J., 1983. Theory and applications of adaptive control—a survey.
Automatica 19, 471–486.

Astrom, K.J., 1996. Adaptive control around 1960. IEEE Control Systems
Magazine 16, 44–49.
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