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Abstract

This paper gives an overview of parameter estimation and system identifica-
tion for quantum input-output systems by continuous observation of the output
field. We present recent results on the quantum Fisher information of the out-
put with respect to unknown dynamical parameters. We discuss the structure
of continuous-time measurements as solutions of the quantum Zakai equation,
and their relationship to parameter estimation methods. Proceeding beyond
parameter estimation, the paper also gives an overview of the emerging topic of
quantum system identification for black-box modeling of quantum systems by
continuous observation of a traveling wave probe, for the case of ergodic quan-
tum input-output systems and linear quantum systems. Empirical methods for
such black-box modeling are also discussed.

1. Introduction

Quantum input-output (I/O) dynamics is an effective framework for mod-
elling the evolution of Markovian quantum open systems by coupling with a
traveling quantum field such as a coherent laser beam [1, 2, 3]. After the in-
teraction between the system and the field, certain field observables can be
continuously observed by a quantum non-demolition (QND) measurement (see
[4, 5, 6] and the references therein) producing a classical stochastic process
or a quantum trajectory [7, 8, 9] as measurement record. The measurement
record from a continuous QND measurement of a traveling quantum field can
be used to extract information about the system via the process of quantum fil-
tering [5, 10], the quantum analogue of stochastic filtering for classical stochastic
Markov processes.

To our knowledge, the earliest treatment of parameter estimation on
continuously-observed quantum systems appeared in [11]. This work considers
estimating the vacuum Rabi frequency g that characterises the strength of the
coherent coupling between an atom and a cavity mode, while a photon count-
ing measurement is performed on the output of the cavity. The paper used a
Bayesian approach where the posterior distribution of the unknown parameter
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was computed using the likelihood function of the observed quantum trajec-
tory. Many other works have since addressed related problems of parameter
estimation based on stochastic records obtained via probe measurements, see
for instance [12, 13, 14, 15] and the references therein.

A problem related to our setting is that of the estimation of a classical
signal (which may be interpreted as a time-dependent parameter) coupled to
a quantum I/O system [16, 17, 18, 13]. Reference [16] considers a classical
signal that modulates the position of a quantum harmonic oscillator while this
is continuously-observed by coupling it to a probe. In [17], a quantum Cramér-
Rao bound was derived for the estimation of a signal based on the continuous-
measurement of a quantum sensor. In the case of the estimation of a signal that
modulates the position of a quantum harmonic oscillator in which all signals and
noises involved are stationary, it was shown that the bound can be saturated by
using a combination of coherent noise cancellation and time-symmetric quantum
smoothing [18] on the sensor output. In the present paper, the primary focus
will be on continuously-observed systems with fized unknown parameters and
the estimation of those parameters, and we will not consider the estimation of
a classical signal through a quantum sensor.

System identification is concerned with black-box modelling of an unknown
dynamical system from externally observed input and output signals, without
a priori knowledge of the system’s internal structure. It is an important and
well-established topic in the classical (non-quantum) setting [19] and is closely
related to the subject of time series modelling [20]. In system identification,
one chooses a model to fit to the unknown system and then designs appropriate
inputs aimed at maximising the information that can be gained from observing
the system’s output responses to these inputs. Based on the collected input-
output data, the model parameters are estimated and the resulting model is
tested through a model validation phase; further details can be found in section
5.

In the quantum setting, system identification for black-box closed Hamilto-
nian systems was proposed in [21], based on repeated projective measurements
to estimate the quantum expectations of certain system observables. These es-
timated expectation values are used as the data with which to fit a Hamiltonian
to the unknown closed system. A similar approach has been pursued for open
quantum systems, e.g., [22, 23] and the references therein, using time traces of
estimated quantum expectation values. On the other hand, quantum system
identification for continuously observed quantum systems was initiated in [24]
with the study of the identification of single input single output (SISO) passive
linear quantum I/0 systems [25], and continued in [26] with the case of general
linear quantum systems. In this setting, the transfer function encapsulates all
the information that can be captured by observing the system’s output response
for known time-dependent inputs; the papers show that for these two classes
the system matrices can be identified up to unitary and respectively symplectic
transformations, extending similar results for classical linear systems.

The identifiability of linear quantum systems driven by stationary (time-
independent) Gaussian quantum noise (see [27, §II-E| for an overview) was



investigated in [26, 28]. In this case the information is captured by the power
spectrum of the output. For pure input Gaussian states, two globally minimal
systems have the same power spectrum if and only if they have the same transfer
function, and are therefore related by a symplectic transformation [28].

The contribution [29] develops the system identification and information ge-
ometry theory for finite, non-linear ergodic quantum I/O systems. Similarly to
the linear case, in the stationary regime, output-equivalent systems are related
by a certain group of transformations acting on the hamiltonian and jump op-
erators. On the statistical side, it is shown that the output quantum Fisher
information (QFI) for unknown, identifiable parameters grows linearly in time
and the explicit rate is computed as a quantum Markov covariance of certain
generators governing parameter changes. An alternative QFI formula has been
obtained in [30]. Both approaches are intimately connected to the quantum
trajectories approach to dynamical phase transitions (DPT) for open quantum
systems [31], and indicate that systems near a DPT may exhibit large QFI, with
potential application to quantum metrology [32].

Devising continuous-time measurements that achieve the QFI rate is cur-
rently one of the main open problems in this area. In contrast, the statistical
performance of homodyne and counting measurements has been investigated in
[14, 15, 33, 34] but a general theoretical understanding is still lacking.

The results in [24, 29, 26, 28] contribute to the theoretical foundation of
system identification of quantum I/O systems. However, they do not provide
methods and algorithms to identify a black-box model given empirical single
measurement records of the output. Such algorithms are crucial for the practical
use of system identification and this aspect is discussed in section 5.2.

This paper is structured as follows. Section 2 introduces the class of quantum
I/O systems and their modeling by quantum stochastic differential equations.
Section 3 reviews the notion of quantum filtering, the quantum Zakai equa-
tion and positive operator valued measures (POVMs) for continuously-observed
quantum systems from solutions of the quantum Zakai equation. This is followed
in section 4 with an overview of the quantum parameter estimation problem, the
quantum Fisher information for parameter estimation of quantum I/O systems,
and estimation methods for ‘standard’ continuous-time measurements such as
counting and homodyne detection. Section 5 introduces the quantum system
identification problem for ergodic quantum I/O systems and linear quantum
systems and discusses empirical methods for black-box system identification of
linear quantum systems. Finally, section 6 discusses open problems and direc-
tions for future research.

Notation. For the remainder of the paper, we will use the following notation.
X T denotes the transpose of a matrix X, X' denotes the adjoint of a Hilbert
space operator X and if X = [X,;] is a matrix of operators then XT is the
conjugate transpose of X, XT = [X ,Z ;- I will denote an n x n identity matrix
and I can denote either an identity matrix (whose dimension can be inferred
from the context), an identity map or an identity operator. Tr denotes the
trace of a matrix or an operator and Im(X) denote the elementwise real part of



a matrix X. For a signal (a function of time) Y, Yo, = {Y> }o<r<t-

2. Mathematical model

In this review, to focus on the main ideas we consider only the case of a
quantum I/0 system (equivalently, a quantum Markov model) that is coupled
only to a single traveling field. We consider a one-dimensional field on the z-axis
travelling from right to left and the quantum system is located at z = 0. We
shall refer to the quantum system that is coupled to the field as the principal
quantum system. Under some physical assumptions and approximations, in a
large class of physical scenarios of interest the unitary propagator U; on the
system and the field is given by a Hudson-Parthasarathy quantum stochastic
differential equation (QSDE) [35]:

dU, = (—(iH + (1/2)L'L)dt + dBI L — LT SdB; + (S — I)dA)Uy;, Uy = I. (1)

Here By, BI and A; are the annihilation, creation and gauge process of the
traveling field, H is the principal system Hamiltonian, L is the coupling operator
of the principal to the field creation operator, and S is a unitary matrix (STS =
S1S = I) representing the coupling of the system to the gauge process of the
field. The three processes By, B;r and A; are referred to as fundamental processes.
For a review of this class of models, we refer to [10, 36].

The time evolution of a principal system operator X, in the Heisenberg
picture with respect to the propagator (1) is given by j:(X), where j;(X) =
U/ XU,. It is given by the QSDE:

dje(X) = Lj, (13,0 (e (X))dt + dBLjie(9)[je(X), e (L)]+
e (L), 3 (X)]dBy + t(je(S1) e (X)7e(S) = juo(X))dAr,  (2)
where Ly, z(X) is a map defined by:
Lyz(X)=i[Z,X]+(1/2) (YT[X, Y]+ [YT, X]Y).

Due to the interaction with the system, the fundamental processes that
impinges upon the system at time t, considered as an input to the system,
undergoes an instantaneous transformation according to M, = UtT MU, where
M; can be any of the fundamental processes or linear combinations thereof,
producing output fields. Let WtQ = B + B;r and WP = —iB; + Z'B;r be the
amplitude and phase quadratures of B, respectively. Then WtQ, WF and A,

undergo an instantaneous transformation after interaction with the principal to
become the output field processes Wgt, W{Dt and A, ; given by the QSDE:

o

AW, = ji(L + LY)dt + ji(S)dB; + j.(ST)dB]
AW?E, = ji(—iL +iLY)dt — iji(S)dB; + iji(ST)dB]
dAoy = j:(LT)je(L)dt + jt(ST)jt(L)dAI + 5e(L1) 5 (S)d Ay + dA,.

Two crucial properties of quantum I/O models are:



1. [M,4, M, ] = 0 for all s,# > 0 when M, is any of W&, W and A,, known
as the self-non-demolition property. It follows that they can be mapped
to classical stochastic processes and the measurement of these processes
is a QND measurement.

2. [je(X), M, ] = 0 for all principal system operators X and all 0 < s <
t when M, is any of WY, W and A,, known as the non-demolition
property. It implies that the quantum conditional expectation of j;(X)
onto M, o.¢ exists.

Measurements of W2, W are often referred to as diffusive measurements,
while measurement of A, is referred to as a counting measurement. It is common
and often useful to consider the Schrodinger picture in which the system-field
state evolves in time by applying the unitary U; to the initial state. This gives
the state

7 = Us(po @ |0¢) (0g) U
where pg is the initial state of the principal system while |0¢) is the vacuum
state of the field. The reduced system state is p; = Try;,(7;) and satisfies the
Lindblad equation
ot = Lir.1.(pt)
where L3, ; is the dual map to Lg,, defined as

4.0 (X) =4[X,H]+ LXL" — (1/2)L'LX — (1/2)XL'L. (3)

If the principal system is finite dimensional, we call the I/O dynamics ergodic
if there exists a unique full rank stationary state pss (such that £*(pss) = 0).
In this case we have convergence to stationarity

lim py = pss
t—o0

and the convergence takes place exponentially on a time scale of the order of
the inverse of the spectral gap of L*.

3. Quantum filtering, quantum Zakai equation and POVMs for
continuously-observed quantum systems

3.1. Quantum filtering equation

Let the principal system be prepared in the state pg. The joint initial state
of the system and field is then pyr = po ® |0g)(0¢|. Let p, . (-) = tr(pps-) be
a state (i.e., the quantum expectation operator) and f, . (ji:(X) | Mo 0:¢) de-
note the quantum conditional expectation of j;(X) onto M, . in the state fips
[10]. We also introduce the shorthand notation m(X) = p, ; (j:(X) | Mo 0:0)-
Depending on the continuous observation made, m:(X) will be given by given
by a QSDE. For example, under a continuous QND measurement of WOQ the
quantum filtering equation takes the form:

dr(X) = m(Lp g (X))dt + (m(XL + LX) —m(L+ LT)ﬂt(X)>dIt,



where I; is a quantum innovation process given by
t
L =W% —/ 7 (L + LY)dr,
0

or, in differential form,
dl; = dWy — m (L + LY)dt, I = 0.

In the case of measurement of Ag; (photon counting) then the SME takes the
form:
m(LTXL)

dmi(X) = m(Lp,u(X))dt + (m(LTL)

—7rt(X)> dly,

where .
Iy =Nyt — / 7 (LYL)dr.
0

The quantum filtering equation is an operator-valued equation since all pro-
cesses are operator-valued. However, the processes are self-commuting (at dif-
ferent times) and commuting with each other, so they can be treated as classical
stochastic processes (and can be mapped to such). With this in mind we can
write

T(X) = tr(pes X)),
where p.; is a stochastic density operator satisfying a stochastic differential
equation (SDE) known as a stochastic master equation (SME). In the case of

continuous observation of W2 the SME takes the form of the density operator-
valued SDE:

dpey = L3, g (pe)dt + (Lpey + pey L — Tr((L + L) pet)pe)dly, (4)

where L} p is the map given by (3). For a measurement of A, . the SME takes
the form:

Lpe Lt
= * _ - I .
dpc,t ‘CL,H(pc,t)dt + (Tr(pc,tLTL) pc,t> dl (5)

3.2. Quantum Zakai equation, POVMs and likelihood functions for continuously-
observed systems

The conditional expectation 7; can be expressed as the ratio:
T (X) = o (X)oe (1) 7,

where 04(X) and o¢(I) are two commuting processes satisfying a linear QSDE
known as the quantum Zakai equation. In the case of the measurement of
Y = WO, the Zakai equation takes the form:

doy(X) = o4(Lp g (X))dt + (04(X L+ LTX)dY;, (6)

for any operator X on the principal system. The initial condition for the equa-
tion is given by o(X) = tr(ppX), where pg is the initial state of principal



system. Writing o4(X) = tr(0,X ), the unnormalised density matrix g, satisfies

doy = L7, y(0¢)dt + (Lot + o L)dY (t)

For a photon counting measurement Y = A, the Zakai equation takes the
form,
do(X) = oy(Lp,u(X))dt + (0(LTXL) — 04(X))(dY; — dt), (7)

and the unnormalized density matrix has takes the form,
dor = L7 r(or)dt + (Lo LT — o1) (dY; — dt)
The equation for the unnormalized density operator has the explicit solution:
olt) = Te% po, (8)

where .Z; is a superoperator given by the stochastic integral

t
Li0) = zH@ﬂ+[kL@+wmdn

z@w:zmm+é(@ﬁ—@wm—m>

in the case of the measurement of W& and A,, respectively.
The stochastic time-ordered exponential

&, (You) = Te? 9)

in the solution of the Zakai equation (8) is associated with a positive operator-
valued measure (POVM) for continuous measurements. For a fixed time T,
let %7 denote the o-algebra generated by the observation Yp.r (viewing Y as
an equivalent stochastic process). For any initial state p of the system, the
%r-measurable function

tr(®r(Yo.r)p)

is the Radon-Nikodym derivative of the underlying probability measure on %
with respect to an appropriate reference measure [37]. In the case of the diffusive
measurement Y = W2 this reference measure is the Wiener measure on %
while for a photon counting measurement ¥ = A, this reference measure is
the Poisson measure with intensity 1. Therefore, we can define the POVM II
associated with the measurement of Y as

1(4) = [ @r(itds)

for any A € %, where p is the reference measure on #%p. Therefore, tr(II(A)p)
for any initial density operator gives the probability of observing a trajectory
(over the time interval [0,7]) that lies in A, when Y is continuously observed
over the interval [0, T] and the system is initialized in the state p.



Heuristically, as a Radon-Nikodym derivative, tr(®r(Yo.r)p) may be viewed
as a “probability density function” with respect to the underlying reference
measure. For a single trajectory yo.r as a realization of Yj.p, it follows from the
discussion above that the function

U(yo:r) = tr(Pr(yor)p) = tr(or(I)) (10)

is the likelihood function of the trajectory. Such a likelihood function is the
basis of the maximum likelihood approach to quantum parameter estimation
and system identification that will be discussed later on.

From the expression for the likelihood, it can be straightforwardly shown
that the log likelihood log ¢(Yy.7) satisfies the equations

dlog 0(Yo.t) = tr(Lpes + pesL1)(dY; — tr(Lpes + perLT)dt) (11)

or

dlog ((Yo.t) = (1 — tr(LYLpe¢))dt 4+ dY; In(Tr(LT Lp,.;)) (12)

for a measurement of W and A,, respectively.

Remark 1. We note that [14] gives a heuristic derivation of the Zakai equation
for the photon counting case when the reference measure is a Poisson measure
with intensity A > 0 not necessarily equal to unity. The equations in this case
become

Lo, Lt
o= Chloie + (P55~ 01) (@hor — i)
108 (V) = (A (L Lpe )t + A Tos(Te(L L)/

4. Quantum parameter estimation

In quantum parameter estimation we consider the scenario of a quantum
I/O system that has dependence on a vector of k unknown parameters 6 =
(01,04, ...,0;) through either the Hamiltonian Hy or coupling operator Ly or
both of them. For instance, if L is fixed and known and Hy = Zle 0, H; then
estimating 6 amounts to a Hamiltonian identification problem. Below we give
an overview of the general quantum parameter estimation theory, and describe
how this applies to the case of parameter estimation on quantum I/0 systems.

4.1. Quantum Cramer-Rao lower bound and quantum Fisher information

Consider a quantum system whose state p? depends smoothly on an unknown
multidimensional parameter § € R*. To estimate 6, we perform a measurement
and construct an estimator 6 = f(X) where X is a vector of measurement
outcomes. According to the quantum Cramér-Rao (QCR) bound [38, 39], the
covariance matrix of any unbiased estimator 6 is lower bounded as

Cov(f) :=E [(é —0)(6 — a)t} > F(0)"! (13)



where the right side is the inverse of the quantum Fisher information (QFI)
matrix, which is defined as

1
F(0)i; = ST (p7(S?87 + 5957))

ii =5
with SY,...,S¢ the symmetric logarithmic derivatives defined via the Lyapunov
equation
1 op’
Pl = S(80" +p80),  where pf = S0
2 04;

In particular, if p? is a family of pure states of the form p? = |?)(x)?| with
|¢?) = e~ |4) for some given reference state |1) and selfadjoint generator G,
then the QFT is independent of 6 and is proportional to the variance of G

F = 4Vary(G) = 4((0|G2|0) — (|G|v)2). (14)

In general, the QCR bound (13) is not achievable for a single quantum
system, but it is asymptotically achievable for one-dimensional parameters in the

limit of large sample size n, i.e. for independent systems with joint state (pa) “n

In this case, by measuring S? (more precisely we measure S? for some rough
estimate 6 obtained from a small subsample [40]), and computing the maximum

likelihood estimator Oyr, (see section 4.3 for the definition) one obtains

Jim nE [(éML - 9)2} — F(6).
In addition, under appropriate regularity conditions, éML has an asymptotically
normal distribution with variance F(§)~!. For higher dimensional parameters,
the QCR bound on the covariance matrix is asymptotically achievable if and only
if Im(F'(0)) = 0. When this is not the case, one aims to replace the QCR matrix
lower bound, by a bound for the mean square error MSE(6) := Tr(Cov()) of
the estimator é, or other quadratic forms of the covariance. The trivial bound
Tr(F(0)~!) follows from the QCR bound (13) but is generally not achievable.
A more refined bound was introduced by Holevo [38§]

MSE(6) > H(0) := min {Te(V) : V > Te(p’XXT)}, (15)

where the minimum runs over all kxk real matrices V', and k-tuples of selfadjoint
system operators X = (X1,..., X;)T, which satisfy the constraints Tr(pf X;) =
0;; for all 4,5 = 1,...,k. The Holevo bound is at most twice as large as the
simple bound Tr(F(0)~!) [41]; using the theory of local asymptotic normality
[42] it can be shown that the Holevo bound is asymptotically achievable [43, 44]
(more precisely, it is equal to the minimax constant of the asymptotic estimation
problem). We conclude that, in spite of its limitations, the QFI is a key tool in
assessing the limits of precision in quantum estimation and we will return to it
when analysing the statistical structure of quantum Markov models.



4.2. Estimation of quantum I/O dynamics

We now consider the problem of estimating dynamical parameters of quan-
tum I/O systems by means of output measurements. Let us assume that the
Hamiltonian and jump operators depend on an unknown parameter 6§ € R* so
that H = Hy, L = Ly, and for simplicity we take S = I. Therefore the unitary
evolution depends on # and we denote by Uf the corresponding unitary, cf.
equation (1). Furthermore we assume that the dynamics is ergodic and denote
the unique stationary state by pY,. If the initial system state is |to) then the
system-output state at time ¢ is given by the vector

[¥0.2) = Ut ([0} @ [05)).

This state exhibits finite-time correlations of the order of the convergence time
to stationarity, and can be seen as a continuous-time generalization of a matrix
product state [45]. The output state can be written as

Pg,t = Try, |UL(po ® |05) (0 US| po = |vo) (tol

where H is the principal system Hilbert space. The QFT of the states |zp§07t>
and pgvt has been investigated in [30, 29, 33], while the discrete time case has
been analysed in [46, 47]. While the former state is generally more informative
than the latter, for large ¢t the QFI of both states grows linearly in time with

QFI rate
F(0)a = Tr [pis (Lo — ilL0.£5" (Bo))) - (Lo ilLo, cgw@,m)] (16)

where _ ) _ _ _
Fpo = Hpo+Im(L) Lg) — Tr [pf,s(Ha +Im(L aLg))] I

and £, denotes the inverse of the restriction of Ly to the space of zero-mean
operators {A : Tr(p?, A) = 0}. An alternative QFI formula can be found in [30],
expressed in terms of the dominant eigenvalue of a deformed Lindblad operator.

Note that the expression (16) is explicitly positive and its magnitude is
relatedt to the spectral gap of the generator Ly, so that systems with small
gap may exhibit large QFI, with potential applications for quantum enhanced
metrology [32]. For example, consider the simple case of a system with fixed
Hamiltonian H and jump operator Ly = e~ "’ L; in this case, the system-output
state has the following dependence on 6

|7/}£o,t> - eiieAt |1/)207t>'

where A; is the counting operator. This can be understood in terms of the
unraveling of |ts,+) as superposition of p-photon quantum trajectories of the
form

efiHE(t*tp) . L- efiHE(tp*tp—l) ..... L - efiHﬁtl |¢0> [ |t1, e tp>



where [t1,...,t,) is the p-photon (singular) field state with excitations at times
(t1,...,tp), and H, = H —iLTL/2 is the effective Hamiltonian.

According to equation (14), the QFT rate of the state is given by the asymp-
totic normalised variance of the counting operator

4
F6) = tlirrolo ¥Var(At).

This expression can be interpreted in terms of the theory of dynamical phase
transitions in open systems [32]. Borrowing the language of statistical me-
chanics, one considers counting trajectories as random ‘configurations’, with
time playing the role of the extensive variable. Systems near a dynamical phase
transitions exhibit trajectories which switch between active (high counting rate)
and inactive (low counting rate) ‘phases’ on time scales of the order of the in-
verse spectral gap of £, and consequently have a large counting variance. This
example points to a deeper connection between quantum enhanced metrology
and dynamical phase transitions, which is currently under investigation (see also
the related paper [48]).

As in the case of independent ensembles, the quantum Cramér-Rao bound
for Markov dynamics is achievable asymptotically with respect to time for one-
dimensional parameters, while for multidimensional parameters one needs to
consider the corresponding Holevo bound for the mean square error. This follows
from a general local asymptotic normality result which shows that for large times
the output state model can be approximated by a simpler Gaussian shift model
[29] for which such bounds can be verified directly [49]. However, standard
measurements such as counting and homodyne are in general not optimal, and
devising realistic optimal measurements is still an open problem in general.

4.8. Parameter estimation for standard measurements

Traditionally, the study of estimation of dynamical parameters of quantum
open systems has focused on the standard classes of continuous-time measure-
ments: counting and homodyne/heterodyne detection. The problem was first
posed by Mabuchi [11] who considered the estimation of the Rabi frequency of a
two-level atom in a driven cavity, based on counting trajectories of the photons
leaving the cavity. A more refined analysis was carried out in [12], which com-
pared the performance of different measurement schemes, and considered the
trade-offs between estimating of dynamical parameters and the initial system
state.

Although both works adopt a Bayesian estimation framework, the problem
can equally be posed in the frequentist setting. Suppose that the dynamics
Uy depends on a parameter § € © C R*, and let Yo:+ be a continuous time
measurement record. As discussed in section 3.2, the likelihood function of the
trajectory is given by 6 — €(yo.t|0) = tr(o?) where ¢f is the unnormalised condi-
tional state of the principal system, corresponding to the parameter value 6. In
numerical implementations it is more convenient to work with the log-likelihood
function which satisfies the equations (11) for for homodyne detection and (12)

11



for counting. To estimate € one can use several likelihood-based methods such
as the maximum likelihood estimator (ML) in the frequentist framework,

Ot = arg maxgycg log £(yo:¢|0).

and the posterior mean (PM) and maximum aposteriori (MAP) estimator in
Bayesian statistics. To define the latter we will assume that 6 is drawn randomly
from a prior distribution f(df) = f(0)d6f over the parameter space ©. According
to the Bayes rule, the posterior distribution of 8 is given by:

_ Uyorl0) £(6)
f(9|y0:t) - f@ g(yOOTw/)f(da/)

Using the posterior distribution one can construct credible intervals (error bars)
and the point estimators mentioned above

fpn = / 6. f(8]yo.)do, Onap = argmaxyco f(0lyo:e).
o

The Bayesian estimation setup has been studied in [14], which derives the
equations of the log-likelihood function, and provides a Monte-Carlo method
for estimating the classical Fisher information of the continuous-measurement.
A more detailed analysis of the homodyne measurement case is carried out
in [15]. Using asymptotic normality results [50] for time integrated statistics
(see also [33, 51]), the authors investigate the classical Fisher information of
the integrated homodyne current W(?t/ P as well as the additional information
contained in the two-time correlation statistics

c?) = / k(v — w)dWR/Paw /P
’ 0<u<v<t ’ ’

where k is a kernel function. Similarly, for counting measurements one can
consider the total number of counts statistic A, [33]; this satisfies the Central

Limit Theorem 1

Vi
where pf = Tr(p?, LOTLY) is the counting rate, and the convergence holds in law
to the centered, normal distribution with variance

(Ao — tu®) 2% N(0,V?)

VO =Tr [pf (LOTLY +2L9T4°L7)]

where A% = £;* (LOTLY — Tr [p%,LTL?] I). From this, one can compute the
asymptotic classical Fisher information of the total counts statistics as the Gaus-
sian signal to noise ratio

_ (/.‘0)2 -0 _ dﬂe
1.(0) = , =0

12



Such ‘linear’ statistics are straightforward to compute, and in specific mod-
els can be a viable alternative to the general methods described above, as the
latter tend to be computationally expensive, especially for multi-dimensional
estimation problems. Other Bayesian methods such as approximate Bayesian
computation (ABC) [52] can be used without the need to explicitly compute the
likelihood [34]. Here the general idea is that the experimental data is compared
repeatedly with simulation data (generated for random parameter values), ac-
cording to certain statistically meaningful distances. The parameters for which
the synthetic data is ‘close’ to the real data are retained to build an approxi-
mation of the posterior distribution.

So far we have assumed that our measurement data is obtained exclusively
by monitoring the environment. However, depending on the experimental setup,
it may be possible to perform an additional final measurement M on the system
after the trajectory yo.+ has been generated. At this point the system’s state is
given by the filter pit computed in equations (4), and (5) and the maximum
amount of information that can be extracted is the QFI of the conditional state,
denoted Fs(0|yo.t). The corresponding Cramér-Rao bound (for one-dimensional
parameters) can be written as [53, 54]

1
>
o o,t + EFS(0|YOZt)

Var(0)

where I, ; is the classical Fisher information of the output, and the second term
is the expected QFT of the conditional system state. The usefulness of the last
step depends strongly on the output measurement. If the latter achieves the QFI
rate (16) then the final measurement can at most add a sub-linear contribution
to the total Fisher information [29]. On the other hand, for certain models,
the continuous measurement may provide no information while the conditional
state does. The scheme was also shown to be useful in achieving Heisenberg
scaling in a quantum magnetometry problem [53].

5. Quantum system identification

Quantum parameter estimation is essentially based on the assumption that
one knows in advance everything about the system, for example from first prin-
ciples modelling, except for the values of a few unknown parameters, which will
be determined by a parameter estimation procedure.

In the problem of quantum system identification for continuously-observed
quantum systems, not much is known about the system beyond that it can be
described by a QSDE of the form (1) and that it can be observed continuously.
That is, the system is essentially a black box and therefore quantum system
identification is in essence a blackbox modeling procedure.

The aim in quantum system identification is to build and validate a model for
the unknown system based on the continuously observed data. As in stochastic
modelling and system identification for classical systems [19], the procedure
typically proceeds in the following stages:
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1. A candidate model is proposed. The system will have a candidate Hilbert
space and is interacting with a traveling field via the QSDE (1).

2. Some assumptions are made on the structure of the QSDE, for instance
assumptions about the forms of the operators S, L and H.

3. Continuous-observation data is collected from the system. Part of the
record is used for estimating the parameters of the candidate model (Step
4 below) while another part of the record is used to validate the model
(Step 5 below)

4. A quantum parameter estimation procedure is developed to estimate the
S, L and H parameters of the model

5. Validation of the model is performed to assess if it can adequately model
previously unseen observation data

Below we discuss the quantum system identification problem for both non-
linear and linear ergodic input output systems.

5.1. Quantum system identification of ergodic quantum I/O systems

Here we describe the results of the quantum system identification theory for
ergodic quantum 1/0 systems developed in Gutd and Kiukas [29].

Consider a finite dimensional, ergodic quantum I/O system with dynami-
cal parameters D = (H, L) and unique, full rank stationary state p2. As we
are interested in the long time identification theory, we will assume that the
dynamics is stationary, which is equivalent to the principal system starting in
the stationary state. Note that for other initial states it may be possible to ac-
quire information about parameters which are not identifiable in the stationary
regime. However, it can be shown [29] that the associated Fisher information
does not scale linearly with time and therefore the parameters cannot be esti-
mated at standard precision scaling.

The stationary output state at time ¢ is

pB, = try, (UL pE @ [0¢) (0¢|UT),

where H; is the Hilbert space of the principal system. Two I/O systems with
parameters D = (H,L) and D’ = (H',L') are called output equivalent if their
stationary output states are the same, i.e. p2, = p2;, for all times ¢. In [29] it
was shown that two systems are equivalent if and only if their parameters are
related by the action of the cartesian product of a real translation group and
the projective unitary group described by the following transformations’

(HS) Shifting the Hamiltonian by a real number r (H,L) — (H +rI,L).

(UC) Unitary conjugation, (H, L) — (WTHW, WTLW) for any unitary operator
W on the principal system.

1We note that [29] treats the more general case of multiple input-output channels
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More precisely, the group G =R x U(d) acts on the space of parameters
Derg = {D = (H,L) : UP is ergodic } € M, (C?%) x M(CP)

where M,,(C?) denotes the space of selfadjoint matrices, and the orbits of this
action are the equivalence classes of undistinguishable parameters. Along such
orbits the QFT rate (16) is equal to zero, which means that phase and unitary
conjugation parameters cannot be estimated at standard rate even if the systems
were started in a non-stationary state. The identifiable parameters are then
described by the quotient space of equivalence classes P := D,,,/G. Thanks
to the fact that the group action is free, the quotient has a smooth manifold
structure and the QFI rate (16) induces a non-degenerate Riemannian metric

on P.

5.2. Quantum system identification of linear quantum systems

Linear quantum systems are a special class of quantum I/0 systems that can
be viewed as the quantum analogue of continuous-time classical linear stochas-
tic systems; for a detailed introduction, see [25]. They model a wide range of
linear quantum devices in quantum optics, optomechanics and superconduct-
ing circuits, which are of interest for continuous-variable quantum information
processing with Gaussian states, linear quantum signal processing and sensing.
These include devices such as optical and microwave cavities, parametric ampli-
fiers, linear quantum memories and gravitational wave interferometers; see [25,
Chapters 1 and 6] and the references therein.

A linear quantum system represents a collection of single-mode quantum
harmonic oscillators that are mutually coupled by a quadratic Hamiltonian and
the oscillators are also linearly coupled to an external traveling field. Let there
be n oscillators with the position and momentum operators collected in the
column vector = (q1,P1,---,qn,Pn)’. The Hamiltonian of the system takes
the form H = %xTRx, where R is a real symmetric 2n x 2n matrix. The
coupling operator takes the form L = Kz for some complex row vector K
of length n. The travelling field will be taken to be in a coherent state |f)
or more general Gaussian states, where f is a complex square-integrable am-
plitude function ([;°|f(7)|?dr < o) given by f(t) = fr(t) + ifi(t), where
fr and f; are real-valued functions. For simplicity, we will only discuss the
case with § = I. The time evolution of the vector x is given by the vector
Xt = (Gelqr), 5e(p1), - - -5 5t (gn)s Gt (pn))T, which satisfies the linear QSDE:

dX; = AX.dt+ B(f(t)dt +dW,), Xo ==z

17
AW, = CXydt + f(t)dt + dWy, W, 0 =0, (17)

Where f(t) - (fR(t)afI(t))T7 Wt = (Wthth)Ta Wo,t = (Woc?ta W(ft)—r' Unhke
classical linear stochastic systems, quantum mechanics imposes a constraint on
the A, B, C matrices of linear quantum systems, known as the physical realiz-
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ability constraints [25]:

AJ, +J,AT + BIBT =0,

18
J,.CT +BI =0, (18)

where J = Pl (1) ] and J, = I, ® J.
Consider the case of asymptotically stable linear quantum systems where
the A matrix is Hurwitz (all its eigenvalues lie in the left half plane). In the

Laplace domain, the input and output fields are related by

W, ==(s)W,

)

where
E(s)=C(sI — A)'B+ 1.

is the transfer function and Y, = fooj e~*'dY; is the Laplace transform of the
process Y. In an asymptotic setting, this means that if the input is prepared in
a state of the frequency mode w, with mean m then the output will be a of the
same mode with mean m’ = Z(—iw)m. Therefore by probing the systems with
time-dependent inputs (e.g. coherent signals) and measuring the corresponding
outputs, we obtain information about the transfer function =(s), and implicitly
about the system parameters H, K. The system identification problem in the
time-dependent input setting is twofold [24, 26]: firstly to characterise which
systems are equivalent, i.e. have the same transfer, and secondly how to estimate
the identifiable parameters.

The first question can be answered by appealing to the notion of minimal
realisation. For a given transfer function =(s), a linear quantum system G =
(A, B, C) is said to be a realization of Z(s) if C(sI — A)~!B+1 = Z(s) and it is
said to be a minimal realization if there is no other linear quantum system with
fewer oscillators that realize the same transfer function. In [26], generalizing
a result of [24] for the special case of passive linear quantum systems, it was
shown that if two minimal linear quantum systems G; = (A;, B1,C1,I) and
Go = (Ag, Bs, Cs, I) have the same transfer function = then they have the same
dimension and there exists a symplectic matrix V such that

Ay =VAV By, =VB; and Cy =C,V L (19)

This means that the identifiable parameters form the quotient of the space of
(stable, minimal) system matrices G by the action (19) of the symplectic group.

We now consider a second, time-independent system identification setting
analysed in [26, 28], which is closer in spirit to the non-linear system identi-
fication problem of section 5.1. In this case, the input field is prepared in a
stationary zero-mean pure Gaussian state (quantum noise) with (symmetrized)
covariance matrix I'

1
5<(ththT + (AW dW,) ™)) = Tdt.
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In this case the output W, is a stationary Gaussian processes and is completely
characterised by it covariance or power spectrum. The SISO case was treated in
[26] while the general multiple input-multiple output (MIMO) case was given in
[28]. For a given linear quantum system G, the output power spectrum @ (iw)
of W, is defined as

P(iw) = Eq(iw)* TEq(iw) ", w e R,

where Z=¢ is the transfer function of G. For a given input covariance I'; a
linear quantum system G is said to be globally minimal if there is no linear
quantum system G’ with a smaller number of oscillators that has the same power
spectrum. For the class of systems with D = I, global minimality is equivalent to
minimality, and two globally minimal systems have the same transfer function.
In this case it follows that the equivalence class of globally minimum linear
quantum systems are those related by a symplectic similarity transformation.
That iS, if G1 = (1417 B1, Ol, I) and GQ = (Ag, BQ, 0271) are globally minimal
with the same power spectrum, there is symplectic matrix V' such that Ay =
VA1V*1, Ay = VA1V71 and Cy = Cﬂ/*l.

There is a subtlety when one considers the case where D is symplectic and
not a priori fixed to some value (like D = I). In this case, two globally minimal
systems need not have the same transfer function. To see this, suppose that the
input field is in the vacuum state. Then the systems G = (4, B,C, D) and G’ =
G = (A, BO, C, DO) have the same output power spectrum for any orthogonal-
symplectic matrix O # I (that is O is both symplectic and orthogonal) but
they will not have the same transfer function. Indeed 2g = Z2¢0O. To force two
globally minimal systems to have the same transfer function we require that
the input covariance matrix I' should satisfy the condition that VIV =T =
V = 1. When this condition on I' is satisfied then again the equivalence class of
globally minimal linear quaatum systems with the same output power spectrum
is equal to the equivalence class of minimal linear quantum systems with the
same transfer function. Note that when D is unknown, the condition imposed
on I' implies that the vacuum input should not be used as it does not satisfy
this condition.

Given that the equivalence class of minimal linear quantum systems that
have the same transfer function or output power spectrum are those whose
system matrices are related by a symplectic similarity transformation, we need
to generalize the notion of physical realizability to allow this additional degree of
freedom. The physical realizability constraints can be generalized to be (again
for the case where D = I5):

AZ + ZA" + BIBT =0,

20
ZCT +BJ =0, (20

for some real invertible skew-symmetric 2n x 2n matrix Z. Such a matrix Z
can be decomposed as Z = V],V T for some symplectic matrix V. This means
that if a system G = (A, B, C,I) satisfies the generalized physical realizability
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constraint (20) then G’ = (V YAV, V1B, CV, 1) satisfies the original physical
realizability constraint (18). The actual physically meaningful system is G’ but
if a system G is found that satisfies (20) then a physical realization of G is given
by G’ via the symplectic transformation given above. The utility of (20) is that
due to the additional degree of freedom Z, given a transfer function of a linear
quantum system it is easier to first determine a system satisfying (20) having
this transfer function; see [55]. This system can then be converted to a physical
system satisfying (18).

5.3. Empirical methods for quantum system identification

The results discussed in sections 5.1 and 5.2 are foundational results for quan-
tum system identification of ergodic quantum I/O systems and linear quantum
systems, as they give precise statements about what can be extracted about
the black-box model when one knows the output field state of an ergodic quan-
tum I/O system or the transfer function or output power spectrum of a linear
quantum system. From a practical perspective, however, one cannot have ac-
cess to any of the latter ideal quantities. The only information that can be
gained about the quantum I/O systems in practice is through performing mea-
surements on the output field, in particular continuous measurements. What
this means is that the information required to perform quantum system identi-
fication, whether it is the output field state, transfer function or output power
spectrum of a linear quantum system, must be estimated from performing mea-
surements on the quantum system to be identified. Thus empirical methods to
construct these estimates from measurement data is crucial for the actual prac-
tice of quantum system identification of continuously observed quantum I/O
systems.

There are important differences that separate system identification for clas-
sical input-output systems and their quantum counterpart. This is primarily
due to constraints enforced by quantum mechanics in that not all observables
are compatible and can be measured simultaneously. For instance, in (17), the
two components of W, in a linear quantum system cannot be simultaneously
measured. On the other hand, if (17) were the equations for a classical linear
stochastic system then there is no restriction on simultaenously measuring all
elements of W,. As a consequence, methods for system identification of clas-
sical linear stochastic systems based on data from simultaneous measurements
of all accessible outputs cannot be applied to linear quantum systems and new
approaches are required.

A step towards developing empirical methods for quantum I/O systems
was proposed in [56] for asymptotically stable linear quantum systems G =
(A,B,C,D) when D is known. The work considers linear quantum systems
driven by a time-varying coherent input field |f) and information is extracted
by measuring the amplitude or phase quadrature of the output field of the sys-
tem.

The starting point is that under continuous measurement of one of the
quadratures at steady state, the evolution of the conditional expectation of
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X, given the observation Yy.; up to time t is given by the quantum Kalman
filtering equation:

dX, = AX,dt + Bfydt + L, (dY; — Cop Xydt — Dy, fodt), (21)

where X; = (7(q1),7(p1),---,7(qn), 7(pn))T and L,, is the steady-state quan-
tum Kalman filter gain given by,

Ly = QmC,, + BD,),,
where Q,, = Q,} > 0 satisfies the algebraic Riccati equation :
AQum + QA" + BBT —(QnC, + BD] )(DinD,,) " (QmC, + BD,)T = 0.

The matrices C), and D,, are determined from C and D by the type of mea-
surement that is being performed. For measurement of W&, C,, and D,, would
be the the first row of C' and D, respectively, while for measurement of W}/
they would be the second row of the latter matrices.

Consider the classical linear stochastic system:

dz, = Az dt + Bfydt + Ly,dvy,

. (22)
dyvt = Omtht + Dm(ftdt + th>,

where v; is a standard Wiener process. The system above is the so-called inno-
vation form for the linear stochastic system,

dzy = Azydt + B(fydt + dw,),
dY; = Cpzydt + Dy (fodt 4 duwy),

where w; is a standard Wiener process.

Many important system identification algorithms to determine the matri-
ces A, B,C,, of a classical linear systems have been developed for the innova-
tion form (22), including subspace identification algorithms [57, 58]. Since the
innovation form coincides with the steady-state quantum Kalman filter for a
corresponding linear quantum system under continuous-measurement of Y, an
obvious approach to identify the system matrices of a linear quantum system
is to exploit existing classical system identification algorithms. However, there
are two issues that need to be addressed with this approach:

1. The system matrices A and B identified by the algorithms will in gen-
eral not satisfy the physical realizability constraints required of a lin-
ear quantum system. The constraints also require that C,, must satisfy
ZC = BJID,) for some invertible skew-symmetric matrix Z.

2. The algorithm only identifies C,,, (corresponding to the choice of measure-
ment) rather than the full matrix C.

The second issue can in fact be resolved as follows. Suppose that B and
C,, have been identified such that ZC! = BJD, for some invertible skew-
symmetric matrix Z. Then, given that D is known, from the physical realiz-
ability constraint ZCT = BJDT, the other row of C besides C,,, which we
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denote by C,,/, can be recovered as Cp, = (Z_IBJD;,)T. Here D,, denotes
the other row of D besides D,,. Thus, in fact, resolving issue 1 also resolves
issue 2. To address issue 1, [56] proposes a two-step procedure:

1. Fix a choice of n (the dimension n is typically not known a priori). Use
a classical system identification algorithm to identify system matrices
A,B,C’m of the corresponding dimension from the data. These matri-
ces need not satisfy the physical realizability constraints.

2. Execute a second optimization algorithm to determine another set of sys-
tem matrices A, B, C,, that do satisfy the physical realizability constraints
and are also close to the original estimate [L B, Cyn according to some suit-
able cost function. The optimization algorithm can use A, B,C,, as the
starting point or initial guess.

In [56], the above two-step procedure was considered using subspace identi-
fication to compute /L B , C,, based on the measurement data yo.r (over some
fixed finite time interval [0,7]). Both output amplitude and phase quadrature
measurements were considered. The elements of f were chosen to be inde-
pendent pseudo-random binary sequences (PRBS) for persistency of excitation
[19]. The matrices A, B, C,, were determined by minimizing the cost function
M(A,B,Cy) = L(|A—= A|> + | B — B||? +||Cp — Cin||?) over all triplets of sys-
tem matrices (A, B, Cy,,) satisfying the physical realizability constraints. It was
shown that this optimization problem can be reformulated as a rank constrained
LMI problem, by adopting an approach from [59]. Numerical experiments re-
ported in [56] indicate that this approach can succeed in identifying a physically
realizable linear quantum system from the measurement data yo.r. However,
due to the noise v, in the system, the quality of the approximation depends
on the amplitude of the PRBS signal used as input to the system, with higher
amplitudes giving a better fitting model according to a normalized mean square
error criterion. For the examples considered therein, the approach was also able
to select the correct unknown model order n based on the Akaike final predic-
tion error (FPE) criterion [19], when models with different values of n are fitted
to the same measurement data.

6. Conclusion and outlook

This review covers some of the recent developments in parameter estimation
and system identification for quantum input-output systems, with an empha-
sis on mathematical theory and statistical methodology. A first set of results
dealt with statistical properties of the output process at the ‘quantum level’,
such as the structure of the space of identifiable parameters and the expression
of the QFT [30, 29, 33]. These results give general bounds on the estimation
accuracy for arbitrary measurements; together with the local asymptotic nor-
mality theory of [29, 33] they indicate that a complete asymptotic theory can be
developed similarly to that of state estimation, including a Markovian version
of the Holevo bound and the existence of optimal estimators with asymptot-
ically normal errors. A second set of results deals with the likelihood theory

20



for ‘standard measurements’ (counting, homodyne, heterodyne) and the statis-
tical analysis of various estimation methods from simple linear estimators to
more the more informative but computationally expensive maximum likelihood
[14, 15]. Generally, such measurements are not optimal, and a theoretical un-
derstanding of their properties is still lacking. An interesting, and little explored
area is that between the ‘quantum level’ and the ‘standard measurements’, for
instance understanding the effectiveness of adaptive measurements [12], the use
of quantum networks and feedback control techniques [36] to enlarge the class of
accessible measurements and improve estimation accuracy. A second direction
is towards more realistic models including un-monitored channels, non-vacuum
inputs, non-Markovian dynamics. A third topic of interest concerns the overlap
between dynamical phase transitions and estimation, with potential application
in high precision metrology [32].

Empirical methods for construction of a black-box quantum I/O model from
continuous-measurement data, including estimation of the model parameters,
are crucial for applications involving unknown quantum I/O systems but they
are still lacking beyond the preliminary study in [56]. Thus the development of
empirical methods for linear and non-linear systems will be an important future
research direction in quantum system identification.
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