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Abstract

We give a tutorial exposition of the analogue of the filtering equation for quan-

tum systems focusing on the quantum probabilistic framework and developing

the ideas from the classical theory. Quantum covariances and conditional ex-

pectations on von Neumann algebras play an essential part in the presentation.

Keywords: Quantum probability, quantum filtering, quantum Markovian

systems

1. Introduction

Nonlinear filtering theory is a well-developed field of engineering which is

used to estimate unknown quantities in the presence of noise. One of the

founders of the field was the Soviet mathematician Ruslan Stratonovich who

encouraged his student Viacheslav Belavkin to extend the problem to the quan-

tum domain [1]. Classically, estimation works by measuring one or more vari-

ables which are dependent on the variables to estimated, and Bayes Theorem

plays an essential role in inferring the unknown variables based on what we mea-

sure. Belavkin’s approach uses the theory of quantum stochastic calculus for

continuous-in-time homodyne and photon counting measurements. There are

several approaches: in the paper of Barchielli and Belavkin [2], the characteristic

functional method is used to derive the photon-counting case, with the diffusive

case obtained as an appropriate limit. Further details of the many approaches

and applications may be found in the books by Barchielli and Gregoratti [3] and

by Wiseman and Milburn [4].
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However, the proof of Bayes Theorem requires a joint probability distribution

for the unknown variables and the measured ones. Once we go to quantum

theory, we have to be very careful as incompatible observables do not possess a

joint probability distribution - in such cases, applying Bayes Theorem will lead

to erroneous results and is the root of many of the paradoxes in the theory.

We will derive the simplest quantum filter. The filter equation itself was

originally postulated by Gisin on different grounds of continuous collapse of the

wavefunction, but subsequently given a standard filtering interpretation [5]. It

also appeared as way of simulating quantum open systems due to Carmichael [6]

and Dalibard, Castin and Mølmer [7]: while this appears as a trick for simulat-

ing just the quantum master equation (analogue of the Fokker-Planck equation)

by stochastic processes, it is clear that the authors consider an underlying in-

terpretation based on continual measurements. The discrete-time version of the

filter also featured in the famous Paris Photon-Box experiment [8].

2. Quantum Probabilistic Setting

We start from the tradition formulation of quantum theory in terms of op-

erators on a separable Hilbert space, h. The norm of a linear operator X is

‖X‖ = sup{‖Xφ‖ : φ ∈ h, ‖φ‖ = 1}, and the collection of bounded operators

will be denoted by B(h). We will denote the identity operator by 11. The adjoint

of X ∈ B(h) will be denoted by X∗.

Our interest will be in von Neumann algebras. These are unital *-algebras

with that are closed in the weak operator topology. Here we say that a sequence

of operators (Xn) converges weakly in B(h) to X if their matrix elements con-

verge, that is 〈φ,Xnψ〉 → 〈φ,Xψ〉 for all φ, ψ ∈ h.

A pair (A, 〈·〉) consisting of a von Neumann algebra and a state is referred

to as a quantum probability (QP) space [9].

Commutative = Classical. Kolmogorov’s setting for classical probability is in

terms of probability spaces (Ω,A,P) where Ω is a space of outcomes (the sample

space), A is a σ-algebra of subsets of Ω, and P is a probability measure on
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the elements in A. The collection of functions A = L∞(Ω,A,P) will form a

commutative von Neumann algebra and, moreover, a state is given by 〈A〉 =∫
Ω
A(ω)P[dω]. (Conversely, every commutative von Neumann algebra with a

state that is continuous in the normal topology, see below, will be isomorphic

to this framework.)

Commutants. There is an alternative definition of von Neumann algebras which,

surprising, is purely algebraic. For a subset of operators A, we define its com-

mutant in B(h) to be

A′ = {X ∈ B(h) : [A,X] = 0,∀A ∈ A}. (1)

The commutant of the commutant of A is called the bicommutant and is denoted

A′′. Von Neumann’s Bicommutant Theorem states that a collection of operators

A is a von Neumann algebra if and only if it is closed under taking adjoints and

A = A′′.

B(h) itself is a von Neumann algebra. If A and B are von Neumann algebras

then B is said to be coarser than A if B ⊂ A. A collection of operators K

generates a von Neumann algebra vN(K) = (K ∪K∗)′′).

States. A state on a von Neumann algebra is a *-linear functional 〈·〉 : A 7→ C

which is positive (〈X〉 ≥ 0 whenever X ≥ 0) and normalized (〈11〉 = 1). We will

assume that the state is continuous in the normal topology, that is supn E[Xn] =

E[supnXn] for any increasing sequence (Xn) of positive elements of A. The main

point of interest is that the normal state takes the form 〈X〉 = tr{%X} for % a

density matrix.

The state satisfies the Cauchy-Schwartz identity |〈X∗Y 〉|2 ≤ 〈X∗X〉 〈Y ∗Y 〉.

Morphisms between QP Spaces. A morphism φ : (A1, 〈·〉1) 7→ (A2, 〈·〉2) between

QP spaces is a normal, completely positive, *-linear map which preserves the

identity, φ(111) = 112, and the probabilities, 〈φ(X)〉2 = 〈X〉1 for all X ∈ A1. If a

morphism is a homomorphism, that is, φ(X)φ(Y ) = φ(XY ) for all X,Y ∈ A1,

then we say that A1 is embedded into A2.
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Tomita-Takesaki Theory. As operators do not necessarily commute we may

have 〈X∗Y 〉 different from 〈Y X∗〉. Nevertheless, it is possible to write

〈Y X∗〉 = 〈X∗∆Y 〉, (2)

where ∆ is a positive (possibly unbounded operator on A known as the modular

operator. This plays a central role in the Tomita-Takesaki theory of von Neu-

mann algebras. A one-parameter group {σt : t ∈ R} of maps on A is defined by

σt(X) = ∆−itX∆it and is known as the modular group associated with the QP

space (A, 〈·〉).

Theorem 1 (Takesaki, [10]). Let (A, 〈·〉) be a QP space and let B be a von

Neumann subalgebra of A. There will exist a morphism E from A down to B

which is projective (E ◦ E = E) if and only if B is invariant under the modular

group of (A, 〈·〉).

2.1. Quantum Conditioning

We fix a QP space
(
A, 〈·〉

)
, and define the covariance of two elements

X,Y ∈ A to be

Cov(X,Y ) , 〈X∗Y 〉 − 〈X〉∗〈Y 〉. (3)

Likewise the variance is defined as Var(X) , Cov(X,X).

The idea is that we have a subset B ⊂ A, and we want to associate an

element E[A] ∈ B with each A ∈ A, see Figure 1. As B is smaller than A

we think of E[A] as a coarse-grained version of A based on a less information.

The map E therefore compresses the model (A, 〈·〉) into a coarser one on B: we

would like to do this is a way that preserves averages.

We now list some desirable features for E which we have already encountered

in the classical case: for any X,Y,A ∈ A, α, β ∈ C and B1, B2 ∈ B,

(CE1) linearity: E[αX + βY ] = αE[X] + βE[Y ];

(CE2) *-map: E[X∗] = E[X]∗;

(CE3) conservativity: E[11] = 11;
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Figure 1: A conditional expectation E is a projection from an algebra A of random objects

down into a smaller algebra B such that 〈E[A]〉 = 〈A〉.

(CE4) compatibility: 〈E[A]〉 = 〈A〉;

(CE5) projectivity: E[E[A]] = E[A];

(CE6) peelability: E[B1AB2] = B1E[A]B2;

(CE7) positivity: E[A] ≥ 0 whenever A ≥ 0.

We call property (CE6) “peelability” for the lack of a better name and we

emphasize that the order of the operators is important. Property (CE7) is

known to be insufficient to deal with quantum theory and must be strengthened

as follows:

(CE7′) complete positivity: for each integer n ≥ 1
E[A11] · · · E[A1n]

...
. . .

...

E[An1] · · · E[Ann]

 ≥ 0 whenever


A11 · · · A1n

...
. . .

...

An1 · · · Ann

 ≥ 0. (4)

Definition 2. Let A and B be a unital *-algebras with B a subalgebra of A,

then a mapping E : A 7→ B satisfying properties (CE1)-(CE6) and (CE7 ′) is a

quantum conditional expectation.

Proposition 3. A quantum conditional expectation E acts as the identity map

on B.
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Proof. Set A = B1 = 11 and B2 = B ∈ B, then peelability implies that

E[B] = E[11]B. So the result follows from conservativity.

Existence. We observe that the conditional expectation always exists in the

classical world. Here A can be identified as some L∞(Ω,A,P) and then the

subalgebra B will be then take the form L∞(Ω,B,P) where B is a coarser σ-

algebra. Conditional expectation is then well defined: For A ∈ L∞(Ω,A,P) one

sets µA[I] =
∫
I
A(ω)P[dω] for each I ∈ B then µA is absolutely continuous with

respect to P|G and its Radon-Nikodym derivative is the conditional expectation

which we denote as E[A|B]. This is explicit in Kolmogorov’s original paper.

In contrast, quantum conditional expectations need not exits. By definition,

they satisfy the requirements of the Takesaki Theorem above (and additionally

the peelability condition) so we need further invariance of the subalgebra B

under the modular group.

2.2. Quantum Covariance

Definition 4. Let E be a quantum conditional expectation from A onto a subal-

gebra B. For each A ∈ A, we define δA , A−E[A]. The conditional covariance

of X,Y ∈ A is defined to be

CovB(X,Y ) , E[δX∗ δY ]. (5)

The conditional variance is

VarB(X) , CovB(X,X). (6)

Note that

E[δA] = 〈δA〉 = 0, (7)

for every A ∈ A. It is worth emphasizing that the conditional covariance defined

here is an operator on B, not a scalar.

Lemma 5. We have E[B1 δAB2] = 0 whenever A ∈ A and B1, B2 ∈ B. In

particular, E[B δA] = 0 whenever A ∈ A and B ∈ B.
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The proof depends crucially on peelability: E[B1 δAB2] = B1 E[δA]B2 = 0.

The following result is trivial classically, but again requires peelability in the

non-commutative setting.

Proposition 6. The conditional covariance may alternatively be written as

CovB(X,Y ) = E[X∗Y ]− E[X]∗E[Y ]. (8)

Proof. From 5 we then have

CovB(X,Y ) = E

[
X∗Y − E[X]∗Y −X∗E[Y ] + E[X]∗E[Y ]

]
= E[X∗Y ]− E[X]∗E[Y ]− E[X]∗E[Y ] + E[X]∗E[Y ]

and the result follows.

Proposition 7. The conditional covariance has the invariance property

CovB(X +B1, Y +B2) = CovB(X,Y ), (9)

for all B1, B2 ∈ B.

Proof. From *-linearity and (8), we see that the left hand side of (9) equals

E
[
X∗Y +X∗B2 +B∗1Y +B∗1B2

]
−
(
E[X] +B1

)∗(
E[Y ] +B2

)
and the result follows using peelability.

Lemma 8. The covariance and conditional covariance are related by

Cov(X,Y ) = 〈CovB(X,Y )〉+
〈
(E[X]− 〈X〉)∗(E[Y ]− 〈Y 〉)

〉
. (10)

Proof. This follows from repeated application of the compatibility property.

〈CovB(X,Y )〉 = 〈X∗Y 〉 − 〈E[X]∗E[Y ]〉

= 〈X∗Y 〉 − 〈X〉∗〈Y 〉 −
(
〈E[X]∗E[Y ]〉 − 〈X∗〉〈Y 〉)

)
,

which is readily rearranged to give the result.

As a consequence we have

Var(X) = 〈VarB(X)〉+
〈
(E[X]− 〈X〉)∗(E[X]− 〈X〉)

〉
. (11)

7



2.3. Least Squares Property

Proposition 9. The conditional covariance has the least squares property, that

is, E[(X −B)∗(X −B)] is minimized over B ∈ B by B = E[X].

Proof. Let B ∈ B then B′ = B + E[X] which is in again in B. Then

E[(X −B)∗(X −B)] = E[(δX −B′)∗(δX −B′)]

= E[δX∗ δX]−B′∗δX − δX B′ +B′∗B′]

= VarB(X) + E[B′∗B′]

≥ VarB(X),

where we use the positivity property.

Corollary 10. The variance 〈(X−B)∗(X−B)〉 is also minimized over B ∈ B

by B = E[X].

Proof. Using the same notations from the proof of Lemma 9, we have

〈(X −B)∗(X −B)〉 = 〈(δX −B′)∗(δX −B′)〉

= 〈δX∗δX〉 − 〈B′∗δX〉 − 〈δX∗B′〉+ 〈B′∗B′〉

= 〈δX∗δX〉+ 〈B′∗B′〉,

since 〈B′∗δX〉 = 〈δX∗B′〉 = 0 by Lemma 5. Therefore 〈(X − B)∗(X − B)〉 is

also minimized over B ∈ B by B = E[X].

3. Classical Filtering

In this section we recall in detail Kolmogorov’s Theory of Probability. In

the process we will see the commutative analogues that motivated the our more

general definitions in the Introduction.

3.1. Kolmogorov’s Theory

Kolmogorov’s axiomatic formulation of probability theory is based on the

mathematical formalism of measure theory. The main concept is that of a

probability space. This is a triple (Ω,F ,P) where:
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• Ω, called the sample space, is the collection of all possible outcomes (typ-

ically a topological space);

• F is a σ-algebra of subsets of Ω,the elements of which are known as events;

• P is a probability measure on F .

In details, F will form a σ-algebra if it contains the empty set ∅, if it is closed

under complementation (that is, if A ∈ F then so too will be its complement

A′ = {ω ∈ Ω : ω /∈ A}), and finally if whenever {An} is a countable number of

events in F then their intersection ∩nAn and union ∪nAn will be in F . Note

that Ω will be an event since it is the complement of the empty set.

A probability measure P on F is an assignment of a probability P[A] ≥ 0 to

each event A ∈ F with the rule that P[Ω] = 1 and P[∩nAn] =
∑
n P[An] for any

countable number of events, {An}, that are non-overlapping (i.e., An ∩Am = ∅

if n 6= m)

The pair (Ω,F) comprise a measurable space. In other words, a space where

we are capable to assign possible measures of size to selected subsets in a consis-

tent manner: this is the branch of mathematics known as measure theory which

was set up to resolve pathological problems when you try and assign a measure

to all subsets. It follows that probability theory is formally just special case of

measure theory where the measure P has maximum value P[Ω] = 1.

More exactly, the setting is measure theory but probability theory brings its

own additionally concepts with it. An example is conditional probability : the

probability of event A given that B has occurred is defined by

P[A|B] =
P[A ∩B]

P[B]
(12)

which is the joint probability, P[A ∩ B], for both A and B to occur divided by

the marginal probability P[B].

The choice of F in a given problem is part of the modeling process. Essen-

tially, we have to ask what are the events that we want to assign a probability

to. Let G be a σ-algebra that is contained in F (that is every event in G there
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is also an event in F) then we say that G is coarser, or smaller, than F . The

probability space (Ω,G,Q) is then a coarse-graining of (Ω,G,P) where we take

Q to be the restriction of P to the smaller σ-algebra G.

Just as we do not consider all subsets of Ω, we do not consider all functions

on Ω either. Let X : Ω → R then we say X is measurable with respect to a

σ-algebra F if the sets

X−1[I] , {ω ∈ Ω : X(ω) ∈ I} (13)

belong to F for each interval I. A measurable function X on a probability

space is called a random variable and the probability that it takes a value in

the interval I, denoted Prob{X ∈ I} is just the value P assigns to the event

X−1[I]. We will use the term random vector for a vector-valued function whose

components are all random variables.

Let X1, · · · , Xn be random variables, then there is a coarsest σ-algebra which

contains all the events of the form X−1
j [I] for all j and all intervals I: we refer

to this as the σ-algebra generated by the random variables.

The correct way to think of an ensemble is a probability space where (Ω,F)

is collection Γ all possible microstates with F is some suitable σ-algebra, and

P is a suitable probability measure. The Hamiltonian must, at the very least,

be a measurable function with respect to whatever σ-algebra we chose. No

philosophical interpretations needed beyond this point.

3.2. Conditioning in Classical Probability

We will now restrict attention to continuous random variables with well-

defined probability densities. A random variable X has probability distribution

function (pdf) ρX so that

Pr {x ≤ X < x+ dx} = ρX (x) dx. (14)

Normalization requires
∫∞
−∞ ρX (x) dx = 1. If we have several random variables,

then we need to specify their joint probability. For instance, if we have a pair
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X and Y then their joint pdf will be ρX,Y (x, y) with

ρX (x) =

∫
ρX,Y (x, y) dy, (x−marginal) (15)

ρY (y) =

∫
ρX,Y (x, y) dx, (y−marginal) (16)

and 1 =
∫ ∫

ρX,Y (x, y) dxdy.

We say that X and Y are statistically independent if their joint probability

factors into the marginals

ρX,Y (x, y) ≡ ρX (x)× ρY (y) , ( independence). (17)

This is equivalent to pairs of events of the form X−1[I] and Y −1[J ] being sta-

tistically independent for all intervals I, J .

More generally, we can work out the conditional probabilities from a joint

probability. The pdf for X given that Y = y is defined to be

ρX|Y (x|y) ,
ρX,Y (x, y)

ρY (y)
. (18)

In the special case where X and Y are independent we have

ρX|Y (x|y) = ρX (x) . (19)

In other words, conditioning on the fact that Y = y makes no change to our

knowledge of X.

Definition 11. Let A = a(X,Y ) be a random variable for some function a :

R× R 7→ R, then its conditional expectation given Y = y is defined to be

E[A|Y = y] ,
∫
R
a(x, y)ρX|Y (x|y)dx. (20)

More generally, let Y be the σ-algebra generated by Y , then E[A|Y] is the Y-

measurable random variable taking the value E[A|Y = y] for each ω where y is

the value of Y (ω).

As
∫
ρX|Y (x|y) dx = 1, we have

E[1|Y] ≡ 1. (21)
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We note that for any random variable A = a(X,Y )

E
[
E[A|Y]

]
=

∫
R

(∫
R
a(x, y)ρX|Y (x|y)dx

)
ρY (x) dy

=

∫
R
dx

∫
R
dy a(x, y)ρX,Y (x, y)dx

= E[A]. (22)

Also, for any A = a(X,Y ) and B = b(Y ) we have

E[AB|Y](ω) =

∫
R
a(x, Y (ω)b(Y (ω))ρX|Y (x|y)dx

=

(∫
R
dx a(x, Y (ω))ρX|Y (x|Y (ω))dx

)
b(Y (ω))

= E[A|Y](ω)B(ω). (23)

This construction was specific to random variables with pdfs. However, it

extends to the general setting as follows.

Theorem 12. Let (Ω,F ,P) be a probability space and let Y be a sub-σ-algebra

of F . Then there exists a P-almost surely unique Y-measurable random variable

E[X|Y] such that E[1|Y] = 1, E
[
E[A|Y]

]
= E[A] and E[AB|Y] = E[A|Y]B

whenever B is Y-measurable.

Proposition 13. If B is Y-measurable, then

E[B|Y] = B. (24)

Proof. Setting A = 1 in the identity E[AB|Y] = E[A|Y]B whenever B is

Y-measurable, we see that E[B|Y] = E[1|Y]B which in turn equals B.

Proposition 14. Conditional expectations are projections.

Proof. For A arbitrary, we set B = E[A|Y] which is Y-measurable and so

E[E[A|Y]|Y] = E[A|Y]. (25)
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3.3. Classical Measurement

We now suppose that we have a system with phase space Γ and a measuring

apparatus with parameter space M . We let x denote the phase points of Γ as

before, and write y for the variables of the apparatus. The components of y are

sometimes referred to as pointer variables. The total space will be Ω = Γ×M

with coordinates ω = (x, y). We take P to be a probability measure on Ω and

consider the random vectors X(ω) = x and Y (ω) = y.

In an experiment, we will not measure the system directly but instead record

the value of one or more pointer variables. Let Y be the σ-algebra generated by

Y . We therefore refer to Y as the data.

We shall assume that the system variables and the pointer variables are

statistically dependent for our probability measure P, otherwise we learn nothing

about our system from the data. As before we assume a joint pdf ρ(x, y) with

marginals ρΓ(x) for the system and ρM (y) for the measuring apparatus. We

will write ρ(x|y) for the conditional pdf for our system given the data but write

λ(y|x) for the conditional pdf of the data given the system. This implies that

ρ(x, y) = ρ(x|y) ρM (y) = λ(y|x) ρΓ(x). (26)

In practice, we may not know P however we will assume that we know λ(y|x).

That is, we assume that we know the probability distribution of the pointer

variables if we prepared our system precisely in state x, for each possible x ∈ Γ.

Statisticians refer to λ (y|x) as the likelihood function of the data y given x.

Note that ∫
M

λ (y|x) dy =

∫
Γ

ρ(y|x) dx = 1. (27)

Now every random variable may be written as A = a(X,Y ) for some function

a : Ω = Γ×M 7→ R. Its conditional expectation given the data is

E[A|Y] ≡
∫

Γ

a(x, Y )ρ(x|Y )dx. (28)
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Indeed, for ω = (x, y) we have

E[A|Y](ω) =
1

ρM (y)

∫
Γ

a(x′, y)ρ(x′, y)dx′

=

∫
Γ
a(x′, y)ρ(x′, y)dx′∫

Γ
ρ(x′′, y)dx′′

. (29)

This is an average over the hypersurface Ωy = {ω ∈ Ω : Y (ω) = y}. Indeed,

the decomposition ω = (x, y) can be thought of as split into the constraint

coordinates y and the hypersurface coordinates x.

From a practical stand point, we will have access only to the data - that is,

variables measurable with respect to Y only. We are assuming that we know λ,

which is the conditional probability for data given that the system. However,

the problem is that the system is unknown and what we are given is, of course,

the data. Therefore, we need to solve the inverse problem, namely to give the

conditional probability for the unknown X given the measured values for Y .

The problem however is not well-posed. We do not have enough information in

the problem yet to write down the joint probability.

To remedy this, we introduce a pdf for X which is our a priori guess:

ρX(x)
guess!

= ρprior (x) . (30)

We then have the corresponding joint probability for X and Y :

ρprior (x, y) = λ (y|x)× ρprior (x) . (31)

If we subsequently measure Y = y then we obtain the a posteriori probability

ρpost (x|y) =
ρX,Y (x, y)

ρY (y)

=
λ (y|x) ρprior (x)∫
λ (y|x′) ρprior (x′) dx′

. (32)

The conditional expectation in (29) can be then written as

E[A|Y](ω) =

∫
Γ
a(x′, y)λ (y|x′) ρprior (x′) dx′∫

Γ
λ (y|x′′) ρprior (x′′) dx′′

. (33)

14



Example 15. Let X be the position of a particle. We measure

Y = X + σZ (34)

where Z is a standard normal variable independent of X. We may refer to X

as the signal and Z as the noise.

Now if X was known to be exactly x then Y will be normal with mean x and

variance σ2. Therefore, we can immediately write down the likelihood function:

it is

λ (y|x) =
1√
2πσ

e−(y−x)2/2σ2

, (35)

ρpost (x|y) =
ρprior (x) e−(y−x)2/2σ2∫
ρprior (x′) e−(y−x′)2/2σ2dx′

. (36)

In the special case where X is assumed to be Gaussian, say mean µ0 and variance

σ2
0, we can give the explicit form of the posterior as Gaussian with mean µ1 and

variance σ2
0 where

µ1 =
σ2

1

σ2
0

µ0 +
σ2

1

σ2
y (37)

1

σ2
1

=
1

σ2
0

+
1

σ2
. (38)

There are two desirable features here. First, the new mean µ1 uses the data y.

Second, the new variance σ2
1 is smaller than the prior variance σ2

0. In other

words, the measurement is informative and decreases uncertainty in the state

3.4. Classical Filtering

It is possible to extend the conditioning problem to estimate the state of

a dynamical system as it evolves in time based on continual monitoring. This

involves the theory of stochastic processes and we will use the informal language

of path integrals rather than the Ito calculus.

3.4.1. Stochastic Process

A stochastic process is a family, {X (t) : t ≥ 0}, of random variables labeled

by time. The process is determined by specifying all the multi-time distributions

ρ (xn, tn; · · · ;x1, t1) (39)
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for X (t1) = x1, · · · , X (tn) = xn for each n ≥ 0.

A stochastic process is said to be Markov if the multi-time distributions take

the form

ρ (xn, tn; · · · ;x1, t1) = T (xn, tn|xn−1, tn−1) · · ·T (x2, t2|x1, t1) ρ(x1, t1), (40)

where whenever tn > tn−1 > · · · > t1.

Here T (x, t|x0, t0) is the probability density for X(t) = x given that X(t0) =

x0, (t > t0).

Prob
{
x ≤ X(t) ≤ x+ dx|X(t0) = x0

}
= T (x, t|x0, t0) dx, (41)

for t > t0. It is called the transition mechanism of the Markov process. For con-

sistency we should have the following propagation rule, known as the Chapman-

Kolmogorov equation in probability theory,∫
T (x, t|x1, t1)T (x1, t1|x0, t0) dx1 = T (x, t|x0, t0), (42)

for all t > t1 > t0.

Example 16. The Wiener process (Brownian motion) is determined by

T (x, t|x0, t0) =
1√

2π (t− t0)
e
− (x−x0)2

2(t−t0) , (43)

ρ (x, 0) = δ0 (x) . (44)

The transition mechanism here is the Green’s function for the heat equation

∂

∂t
ρ =

1

2

∂2

∂x2
ρ. (45)

(In other words, given the data ρ(·, t0) = f(·) at time t0, the solution for later

times is ρ(x, t) =
∫
T (x, t|x0, t0)f(x0) dx0.)

Norbert Wiener gave an explicit construction - known as the canonical ver-

sion of Brownian motion, where the sample space is the space of continuous

paths, w = {w (t) : t ≥ 0}, starting a the origin as sample space, with a suitable

σ-algebra of subsets and a well defined measure PtWiener.
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The corresponding stochastic process is denote W (t). Ito was able to con-

struct a stochastic differential calculus around the Wiener process, and more

generally diffusions, and we have the following Ito table

× dt dW

dt 0 0

dW 0 dt

. (46)

3.4.2. Path Integral Formulation

Indeed, we have

ρ (xn, tn; · · · ;x1, t1) dxn · · · dx1 ∝ e
−

∑
k

(xk−xk−1)2

2(tk−tk−1) dxn · · · dx1. (47)

Formally, we may introduce a limit “path integral” with probability measure on

the space of paths

PtWiener [dw] = e−SWiener[w]Dw. (48)

where we have the action

SWiener [w] =

∫ t

0

1

2
ẇ (τ)

2
dτ. (49)

For a diffusion X (t) satisfying the Ito stochastic differential equation

dX = v (X) dt+ σ (X) dW (50)

we have the corresponding measure

PtX [dx] = e−SX [x]Dx. (51)

where we have the action (substitute ẇ = ẋ−w
σ into SWiener [w], and allow for a

Jacobian correction)

SX [x] =

∫ t

0

1

2

[ẋ− v(x)]2

σ(x)2
dτ +

1

2

∫ t

0

∇.v(x)dτ. (52)
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3.4.3. The Classical Filtering Problem

Suppose that we have a system described by a process {X (t) : t ≥ 0}. We

obtain information by observing a related process {Y (t) : t ≥ 0}.

dX = v (X) dt+ σ (X) dW (stochastic dynamics), (53)

dY = h (X) dt+ dZ (Noisy observations). (54)

Here we assume that the dynamical noise W and the observational noise Z are

independent Wiener processes.

The joint probability of both X and Y up to time t is

PtX,Y [dx, dy] = e−SX,Y [x,y]DxDy, (55)

where

SX,Y [x,y] = SX [x] +

∫ t

0

1

2
[ẏ − h (x)]

2
dτ (56)

= SX [x] + SWiener[y]−
∫ t

0

[
h (x) ẏ − 1

2
h (x)

2

]
dτ, (57)

or

PtX,Y [dx, dy] = PtX [dx]PtWiener [dy] λ (y|x) . (58)

where the Kallianpur-Streibel likelihood1 is

λt (y|x) = e
∫ t
0 [h(x)dy(τ)− 1

2h(x)2dτ]. (59)

The distribution for X (t) given observations y = {y (τ) : 0 ≤ τ ≤ t} is then

ρt (x|y) =

∫ x(t)=x

x(0)=x0
λt (y|x)PtX [dx]∫

x(0)=x0
λt (y|x′)PtX [dx′]

(60)

Let us write Yt for the σ-algebra generated by the observations {Y (τ) :

0 ≤ τ ≤ t}. The estimate for f(X(t)) for any function f conditioned on the

1Readers with a background in stochastic processes will recognize this as a Radon-Nikodym

derivative associated with a Girsanov transformation.
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observations up to time t is called the filter and, generalizing (33) to continuous

time, we may write this as

Et(f) = E[f(X(t))|Yt]

=

∫
ρt (x|y) f(x) dx =

∫
σt(x|y)f(x)dx∫
σt(x′|y)dx′

(61)

where σt(x|y) =
∫ x(t)=x

x(0)=x0
λ (y|x)PtX [dx] is a non-normalized density. We intro-

duce the stochastic process σt(x) : ω 7→ σt(x|y) and it can be shown to satisfy

the Duncan-Mortensen-Zakai equation

dσt(x) = L∗σt(x) dt+ h(x)σt(x) dY (t). (62)

This implies the filtering equation

dEt(f) = Et(Lf) dt+
{
Et(fh)− Et(f)Et(h)

}
dI(t), (63)

where the innovations process is defined as

dI(t) = dY (t)− Et(h) dt. (64)

4. Quantum Filtering

We now consider the quantum analogue of filtering. See also [11]-[15].

4.1. Quantum Measurement

The Basic Concepts. The Born interpretation of the wave function, ψ(x), in

quantum mechanics is that |ψ(x)|2 gives the probability density of finding the

particle at position x. More generally, in quantum theory, observables are rep-

resented by self-adjoint operators on a Hilbert space. The basic postulate of

quantum theory is that the pure states of a system correespond to normalized

the wave functions, Ψ, and we will follow Dirac and denote these as kets |Ψ〉.

When we measure an observable, the physical value we record will be an eigen-

value. If the state is |Ψ〉 then the average value of the observable represented

by Â is 〈Â〉 = 〈Ψ|Â|Ψ〉.
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Let us recall that a Hermitian operator P̂ is called an orthogonal projection

if it satisfies P̂ 2 = P̂ . Then if we have a Hermitian operator Â with a discrete

set of eigenvalues, then there exists a collection of orthogonal projections P̂a

labeled by the eigenvalues a, satisfying P̂aP̂a′ = 0 if a 6= a′ and
∑
a P̂a = Î, such

that

Â =
∑
a

a P̂a. (65)

This is the spectral decomposition of Â. The operators P̂a project onto Ea which

is the eigenspace of Â for eigenvalue a. In other words, Ea is the space of all

eigenvectors of Â having eigenvalue a. The eigenspaces are orthogonal, that is

〈ψ|φ〉 = 0 whenever ψ and φ lie in different eigenspaces (this is equivalent to

P̂aP̂a′ = 0 if a 6= a′), and every vector |ψ〉 can be written as a superposition of

vectors
∑
a |ψa〉 where |ψa〉 lies in eigenspace Ea. (In fact, |ψa〉 = P̂a|ψ〉.)

We note that, for any integer n,

Ân =
∑
a

an P̂a (66)

and any real t

eitÂ =
∑
a

eitaP̂a. (67)

Suppose we prepare a quantum system in a state |Ψ〉 and perform a measure-

ment of an observable Â. We know that we may only measure an eigenvalue a

and quantum mechanics predicts the probability pa. In fact, using the spectral

decomposition

〈Ân〉 = 〈
∑
a

an P̂a〉 =
∑
a

〈an P̂a〉 =
∑
a

an pa, (68)

and so

pa = 〈P̂a〉 ≡ 〈Ψ|P̂a|Ψ〉. (69)

For the special case of a non-degenerate eigenvalue a, we have that the

eigenspace Ea is spanned by a single eigenvector |a〉, which we take to be nor-

malized. In this case we have P̂a = |a〉〈a|
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pa = 〈Ψ|P̂a|Ψ〉 = 〈Ψ|a〉〈a|Ψ〉 ≡ |〈a|Ψ〉|2 . (70)

We see that if an observable Â has a non-degenerate eigenvalue a with normal-

ized eigenvector |a〉, then if the system is prepared in state |Ψ〉, the probability

of measuring a in an experiment is |〈a|Ψ〉|2. The modulus squared of an overlap

in this way may therefore have the interpretation as a probability.

The degenerate case needs some more attention. Here the eigenspace Ea can

spanned by a set of orthonormal vectors |a1〉, |a2〉, · · · so that P̂a =
∑
n |an〉〈an|,

and so pa =
∑
n |〈an|Ψ〉|

2
. The choice of the orthonormal basis for Ea is not

important!

The probability pa is equal to the length-squared of P̂a|Ψ〉, that is,

pa = ‖P̂aΨ‖2. (71)

To see this, note that ‖P̂aΨ‖2 is the overlap of the ket P̂a|Ψ〉 with its own bra

〈Ψ|P̂ †a so

‖P̂aΨ‖2 = 〈Ψ|P̂ †a P̂a|Ψ〉 = 〈Ψ|P̂ 2
a |Ψ〉 = 〈Ψ|P̂a|Ψ〉 = pa (72)

where we used the fact that P̂a = P̂ †a = P̂ 2
a .

In the picture below, we project |Ψ〉 into the eigenspace Ea to get P̂a|Ψ〉.

In the special case where |Ψ〉 was already in the eigenspace, it equals its own

projection (P̂a|Ψ〉 = |Ψ〉) and so pa = 1 since the state |Ψ〉 is normalized. If

the state |Ψ〉 is however orthogonal to the eigenspace then its projection is zero

(P̂a|Ψ〉 = 0) and so pa = 0.

In general, we get something in between. In the picture below we see that

|Ψ〉 has a component in the eigenspace and a component orthogonal to it. The

projected vector P̂a|Ψ〉 will then have length less than the original |Ψ〉, and so

pa < 1.

Von Neumann’s Projection Postulate. Suppose the initial state is |Ψ〉 and we

measure the eigenvalue a of observable Â in an given experiment. A second
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Figure 2: The state |Ψ〉 is projected into the eigenspace Ea corresponding to the eigenvalue a

of Â.

measurement of Â performed straight way ought to yield the same value a

again, this time with certainty.

The only way however to ensure that we measure a given eigenvalue with

certainty is if the state lies in the eigenspace for that eigenvalue. We therefore

require that the state of the system immediately after the result a is measured

will jump from |Ψ〉 to something lying in the eigenspace Ea. This leads us

directly to the von Neumann projection postulate.

The von Neumann projection postulate: If the state of a system is

given by a ket |Ψ〉, and a measurement of observable Â yields the eigenvalue a,

then the state immediately after measurement becomes |Ψa〉 =
1
√
pa
P̂a|Ψ〉.

We note that the projected vector P̂a|Ψ〉 has length
√
pa so we need to

divide by this to ensure that |Ψa〉 is properly normalized. The von Neumann

postulate is essentially the simplest geometric way to get the vector |Ψ〉 into the

eigenspace: project down and then normalize!

Compatible Measurements. Suppose we measure a pair of observables Â and B̂

in that sequence. The Â-measurement leaves the state in the eigenspace of the

measured value a, the subsequent B̂-measurement then leaves the state in the

eigenspace of the measured value b. If we then went back and remeasured Â

would be find a again with certainty? The state after the second measurement

will be an eigenvector of B̂ with eigenvalue b, but this need not necessarily be

an eigenvector of Â.
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Let A and B̂ be a pair of observables with spectral decompositions
∑
a aP̂a

and
∑
b bQ̂b respectively. Let us measure Â and then B̂ recording values a

and b respectively. If the initial state was |Ψin〉 then we obtain after both

measurements the final state will be

|Ψout〉 ∝ Q̂bP̂a |Ψin〉. (73)

In particular |Ψout〉 is an eigenstate of B̂ with eigenvalue b. However suppose

we also wanted |Ψout〉 to be an eigenstate of Â with the original eigenvalue a,

the we must have P̂a|Ψout〉 = |Ψout〉 or equivalently

P̂aQ̂bP̂a |Ψin〉 = Q̂bP̂a |Ψin〉. (74)

If we want this to be true irrespective of the actual initial state |Ψin〉 then we

arrive at the operator equation

P̂aQ̂bP̂a = Q̂bP̂a. (75)

Proposition 17. Let P̂ and Q̂ be a pair of orthogonal projections satisfying

P̂ Q̂P̂ = Q̂P̂ then P̂ Q̂ = Q̂P̂ .

Proof. We first observe that R̂ = Q̂P̂ Q̂ will again be an orthogonal pro-

jection. To this end we must show that R† = R and R2 = R. However,

R† =
(
Q̂P̂ Q̂

)†
= Q̂†P̂ †Q̂† = Q̂P̂ Q̂ = R and

R̂2 =
(
Q̂P̂ Q̂

)(
Q̂P̂ Q̂

)
= Q̂P̂ Q̂2P̂ Q̂

= Q̂P̂ Q̂P̂ Q̂ = Q̂(P̂ Q̂P̂ )Q̂

= Q̂(Q̂P̂ )Q̂ = Q̂2P̂ Q̂

= Q̂P̂ Q̂ = R̂.

However we also have R̂ = Q̂P̂ , so the relation R̂ = R̂† implies that Q̂P̂ =

P̂ †Q̂† = P̂ Q̂.

We see that our operator identity above means that Q̂a and P̂b need to

commute! If we wanted the B̂-measurement not to disturb the Â-measurement

for any possible outcome a and b, then we require that all the eigen-projections

of Â commute with all the eigen-projections of B̂, and this implies that .
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Definition 18. A collection of observables are compatible if they commute. We

define the commutator of two operators as[
Â, B̂

]
= ÂB̂ − B̂Â (76)

So Â and B̂ are compatible if
[
Â, B̂

]
= 0.

Von Neumann’s Model of Measurement. The postulates of quantum mechanics

outlined above assume that all measurements are idealized, but one might expect

the actual process of extracting information from quantum systems to be more

involved. Von Neumann modeled the measurement process as follows. We

wish to get information about an observable, X̂, say the position of a quantum

system. Rather than measure X̂ directly, we measure an observable Ŷ giving

the pointer position of a second system (called the measurement apparatus).

We will reformulate the von Neumann measurement problem in the language

of estimation theory. First we assume that apparatus is described by a wave-

function φ. The initial state of the system and apparatus is |Ψ0〉 = |Ψprior〉⊗|φ〉,

i.e.,

〈x, y|Ψ0〉 = Ψprior (x) φ (y) . (77)

(Note that we are already falling in line with the estimation way of thinking by

referring to the initial wave function of the particle as an a priori wave function

- it is something we have to fix at the outset, even if we recognize it as only a

guess for the correct physical state.)) The system and apparatus are taken to

interact by means of the unitary

Û = eiµX̂⊗P̂app/~ (78)

where P̂app = −i~ ∂
∂y is the momentum operator of the pointer conjugate to Ŷ .

After coupling, the joint state is

〈x, y|ÛΨ0〉 = Ψprior (x) φ (y − µx) . (79)

If the measured value of Ŷ is y, then the a posteriori wave-function must be

ψpost(x|y) =
1√
ρY (y)

ψprior (x) φ (y − µx) (80)
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where

ρY (y) =

∫
|ψprior (x) φ (y − µx) |2dx. (81)

Basically, the pointer position will be a random variable with pdf given by

ρY : the a posteriori wave-function may then be thought of as a random wave-

function on the system Hilbert space:

ψprior(x) −→ ψpost(x|Y ). (82)

In the parlance of quantum theorists, the wave function of the apparatus col-

lapses to |y〉, while we update the a priori wave function to get the a posteriori

one.

We have been describing events in the Schrödinger picture where states

evolve while observables remain fixed. In this picture, we measure the observ-

able Ŷ in = I ⊗ Ŷ , but the state is changing in time. It is instructive to describe

events in the Heisenberg picture. Here the state is fixed as |Ψ0〉 = |Ψprior〉⊗ |φ〉,

while the observables evolve. In fact, the observable that we actually measure

is

Ŷ out = Û∗
(
I ⊗ Ŷ

)
Û = µ Û∗

(
X̂ ⊗ I

)
Û︸ ︷︷ ︸

signal

+ Ŷ in︸︷︷︸
noise

, (83)

from which it is clear that we are obtaining some information about X̂. Note

that the measured observable Ŷ out is explicitly of the form signal plus noise as

in Example 15. The noise term, Ŷ in, is independent of the signal and has the

prescribed pdf |φ(y)|2.

4.2. Quantum Markovian Systems

Quantum Systems with Classical Noise. We consider a quantum system driven

by Wiener noise. For H and R self-adjoint, we set

U(t) = e−iHt−iRW (t), (84)

which clearly defines a unitary process. From the Ito calculus we can quickly

deduce the corresponding Schrödinger equation

dU(t) =
[
− iH − 1

2
R2
]
U(t) dt− iRU(t) dW (t). (85)
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If we set jt(X) = U(t)∗XU(t), which we may think of as an embedding of the

system observable X into a noisy environment, then we similarly obtain

djt(X) = jt
(
L(X)

)
dt− ijt

(
[X,R]

)
dW (t). (86)

where

L(X) = −i[X,H]− 1

2

[
[X,R], R

]
. (87)

An alternative is to use Poissonian noise. Here we apply a unitary kick, S,

at times distributed as a Poisson process with rate ν > 0. Let N(t) count the

number of kicks up to time t, then {N(t) : t ≥ 0} is a stochastic process with

independent stationary increments (like the Wiener process) and we have the

Ito rules

dN(t) dN(t) = dN(t), 〈dN(t)〉 = ν dt. (88)

The Schrödinger equation is dU(t) = (S− I)U(t) dN(t) and for the evolution of

observables we now have

djt(X) = jt
(
L(X)

)
dN(t), L(X) = S∗XS −X. (89)

Lindblad Generators. A quantum dynamical semigroup is a family of CP maps,

{Φt : t ≥ 0}, such that Φt ◦ Φs = Φt+s and Φ(I) = I. Under various continuity

conditions one can show that the general form of the generator is

L(X) =
∑
k

1

2
L∗k[X,Lk] +

∑
k

1

2
[L∗k, X]Lk − i[X,H]. (90)

These include the examples emerging from classical noise above - in fact, com-

binations of the Wiener and Poissonian cases give the general classical case.

But the class of Lindblad generators is strictly larger that this, meaning that

we need quantum noise! This is typically what we consider when modeling

quantum optics situation.

4.3. Quantum Noise Models

Fock Space. We recall how to model bosonic fields. We wish to describe a

typical pure state |Ψ〉 of the field. If we look at the field we expect to see a
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certain number, n, of particles at locations x1, x2, · · · , xn and to this situation

we assign a complex number (the probability amplitude) ψn(x1, x2, · · ·xn). As

the particles are indistinguishable bosons, the amplitude should be completely

symmetric under interchange of particle identities.

The field however can have an indefinite number of particles - that is, it can

be written as a superposition of fixed number states. The general form of a pure

state for the field will be

|Ψ〉 =
(
ψ0, ψ1, ψ2, ψ3, · · ·

)
. (91)

Note that the case n = 0 is included and is understood as the vacuum state.

Here ψ0 is a complex number, with p0 = |ψ0|2 giving the probability for finding

no particles in the field.

The probability that we have exactly n particles is

pn =

∫
|ψn (x1, x2, · · · , xn)|2 dx1dx2 · · · dxn, (92)

and the normalization of the state is therefore
∑∞
n=0 pn = 1.

In particular, we take the vacuum state to be

|Ω〉 =
(
1, 0, 0, 0, · · ·

)
. (93)

The Hilbert space spanned by such indefinite number of indistinguishable

boson states is called Fock Space.

A convenient spanning set is given by the exponential vectors

〈x1, x2, · · · , xn| exp (α)〉 =
1√
n!
α (x1)α (x2) · · ·α (xn) . (94)

They are, in fact, over-complete and we have the inner products

〈exp (α) | exp (β)〉

=
∑
n

1

n!

∫
α (x1)

∗ · · ·α (xn)
∗
β (x1) · · ·β (xn) dx1 · · · dxn

= e
∫
α(x)∗β(x)dx

= e〈α|β〉. (95)
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The exponential vectors, when normalized, give the analogues to the coherent

states for a single mode.

We note that the vacuum is an example: |Ω〉 = | exp(0)〉.

Quanta on a Wire. We now take our space to be 1-dimensional - a wire. Let’s

parametrize the position on the wire by variable τ , and denote by F[s,t] the

Fock space over a segment of the wire s ≤ τ ≤ t. We have the following tensor

product decomposition

FA∪B = FA ⊗ FB , if A ∩B = ∅. (96)

In is convenient to introduce quantum white noises b(t) and b(t)∗ satisfying

the singular commutation relations

[b(t), b(s)∗] = δ(t− s). (97)

Here b(t) annihilates a quantum of the field at location t. In keeping with the

usual theory of the quantized harmonic oscillator, we take it that b(t) annihilates

the vacuum: b(t) |Ω〉 = 0. More generally, this implies that

b(t) | exp(β)〉 = β(t) | exp(β)〉. (98)

The adjoint b(t)∗ creates a quantum at position t.

The quantum white noises are operator densities and are singular, but their

integrated forms do correspond to well defined operators which we call the

annihilation and creation processes, respectively,

B(t) =

∫ t

0

b(τ)dτ, B(t)∗ =

∫ t

0

b(τ)∗dτ. (99)

We see that

[B(t), B(s)∗] =

∫ t

0

dτ

∫ s

0

dσ δ(τ − σ) = min(t, s). (100)

In addition we introduce a further process, called the number process, ac-

cording to

Λ(t) =

∫ t

0

b(τ)∗b(τ)dτ. (101)
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Quantum Stochastic Models. We now think of our system as lying at the origin

τ = 0 of a quantum wire. The quanta move along the wire at the speed of light,

c, and the parameter τ can be thought of as x/c which is the time for quanta at

a distance x away to reach the system. Better still τ is the time at which this

part of the field passes through the system. The process B(t) =
∫ t

0
b(τ)dτ is

the operator describing the annihilation of quanta passing through the system

at some stage over the time-interval [0, t].

Fix a system Hilbert space, h0, called the initial space. A quantum stochastic

process is a family of operators, {X(t) : t ≥ 0}, acting on h0 ⊗ F[0,∞). .

The process is adapted if, for each t, the operator X(t) acts trivially on the

future environment factor .

QSDEs with adapted coefficients where originally introduced by Hudson &

Parthasarathy in 1984. Let {Xαβ(t) : t ≥ 0} be four adapted quantum stochastic

processes defined for α, β ∈ {0, 1}. We then define consider the QSDE

Ẋ(t) = b(t)∗(t)X11(t)b(t) + b(t)∗X10 +X01(t)b(t) +X00(t), (102)

with initial condition X(0) = X0 ⊗ I. To understand this we take matrix

elements between states of the form |φ⊗exp(α)〉 and use the eigen-relation (98)

to get the integrated form

〈φ⊗ exp(α)|X(t)|ψ ⊗ exp(β)〉 = 〈φ|X0|ψ〉 〈exp(α)| exp(β)〉 (103)

+

∫ t

0

α(τ)∗〈φ⊗ exp(α)|X11(t)|ψ ⊗ exp(β)〉β(τ)dτ

+

∫ t

0

α(τ)∗〈φ⊗ exp(α)|X10(t)|ψ ⊗ exp(β)〉dτ

+

∫ t

0

〈φ⊗ exp(α)|X01(t)|ψ ⊗ exp(β)〉β(τ)dτ

+

∫ t

0

〈φ⊗ exp(α)|X00(t)|ψ ⊗ exp(β)〉dτ. (104)

Processes obtain this way are called quantum stochastic integrals.

The approach of Hudson and Parthasarathy is actually different [16, 17].

The arrive at the process defined by (102) by building the analogue of the Ito
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theory for stochastic integration: that is the show conditions in which

dX(t) = X11(t)⊗ dΛ(t) +X10(t)⊗ dB(t)∗ +X01(t)⊗ dB(t) +X00(t)⊗ dt,

(105)

makes sense as a limit process where all the increments are future pointing.

That is ∆Λ ≡ Λ(t+ ∆t)− Λ(t) with ∆t > 0, etc.

One has, for instance,

〈φ⊗ exp(α)|X00(t)⊗∆B(t)|ψ ⊗ exp(β)〉

=

(∫ t+∆t

t

β(τ)dτ

)
× 〈φ⊗ exp(α)|X00(t)⊗ I|ψ ⊗ exp(β)〉, (106)

etc., so the two approaches coincide.

Quantum Ito Rules. It is clear from (102) that this calculus is Wick ordered

- note that the creators b(t)∗ all appear to the left and all the annihilators,

b(t), appear to the right of the coefficients. The product of two Wick ordered

expressions in not immediately Wick ordered and one must use the singular

commutation relations to achieve this. This results in a additional term which

corresponds to a quantum Ito correction.

We have

dB(t)dB(t) = dB(t)∗dB(t) = dB∗(t)dB∗(t) = 0 (107)

To see this, let Xt adapted, then

〈exp(α)|XtdB(t)∗dB(t)| exp(β)〉 = α(t)∗〈exp(α)|Xt exp(β)〉β(t) (dt)2 (108)

As we have a square of dt we can neglect such terms.

However, we have

[B(t)−B(s), B(t)∗ −B(s)∗] = t− s, (t > s) (109)

and so ∆B∆B∗ = ∆B∗∆B + ∆t. The infinitesimal form of this is then

dB(t)dB(t)∗ = dt. (110)
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This is strikingly similar to the classical rule for increments of the Wiener pro-

cess!

In fact, we have the following quantum Ito table

× dt dB dB∗ dΛ

dt 0 0 0 0

dB 0 0 dt dB

dB∗ 0 0 0 0

dΛ 0 0 dB∗ dΛ

. (111)

Each of the non-zero terms arises from multiplying two processes that are not

in Wick order.

For a pair of quantum stochastic integrals, we have the following quantum

Ito product formula

d
(
XY

)
= (dX)dY + dX(dY ) + (dX)(dY ). (112)

Unlike the classical version, the order of X and Y here is crucial.

Some Classical Processes On Fock Space. The process Q(t) = B(t) + B(t)∗ is

self-commuting, that is [Q(t), Q(s)] = 0, ∀t, s, and has the distribution of a

Wiener process is the vacuum state

〈Q̇(t)〉 = 〈Ω|[b(t) + b(t)∗]Ω〉 = 0, (113)

〈Q̇(t)Q̇(s)〉 = 〈Ω|b(t)b∗(s)Ω〉 = δ(t− s). (114)

The same applies to P (t) = 1
i [B(t)−B(t)∗], but

[Q(t), P (s)] = 2imin(t, s). (115)

So we have two non-commuting Wiener processes in Fock space. We refer to Q

and P as canonically conjugate quadrature processes.

One see that, for instance,

dQdQ = dBdB∗ = dt. (116)
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We also obtain a Poisson process by the prescription

N(t) = Λ(t) +
√
νB∗(t) +

√
νB(t) + νt. (117)

One readily checks that dNdN = dN from the quantum Ito table.

Emission-Absorption Interactions. Let us consider a singular Hamiltonian of

the form

Υ(t) = H ⊗ I + iL⊗ b(t)∗ − iL∗ ⊗ b(t). (118)

We will try and realize the solution to the Schrödinger equation

U̇(t) = −iΥ(t)U(t), U(0) = I. (119)

as a unitary quantum stochastic integral process.

Let us first remark that the annihilator part of (118) will appear out of Wick

order when we consider (119). The standard approach in quantum field theory

is to develop the unitary U(t) as a Dyson series expansion - often re-interpreted

as a time order-exponential:

U(t) = I − i
∫ t

0

Υ(τ)U(τ)dτ

= 1− i
∫ t

0

dτΥ(τ) + (−i)2

∫ t

0

dτ2

∫ τ2

0

dτ2Υ(τ2)Υ(τ1) + · · ·

= ~Te−i
∫ t
0

Υ(τ)dτ . (120)

In our case the field terms - the quantum white noises - are linear, however, we

have the problem that they come multiplied by the system operators L and L∗

which do not commute, and don’t necessarily commute with H either.

Fortunately we can do the Wick ordering in one fell swoop rather than having

to go down each term of the Dyson series. We have

[b (t) , U (t)] =

[
b (t) , I − i

∫ t

0

Υ (τ)U (τ) dτ

]
= −i

∫ t

0

[b (t) ,Υ (τ)]U (τ) dτ

=

∫ t

0

[
b (t) , Lb (τ)

∗]
U (τ) dτ

= L

∫ t

0

δ (t− τ)U (τ) dτ =
1

2
LU (t) , (121)
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where we dropped the [b(t), U(τ)] term as this should vanish for t > τ and took

half the weight of the δ-function due to the upper limit t of the integration.

However, we get

b (t)U (t) = U (t) b (t) +
1

2
LU (t) . (122)

Plugging this into the equation (119), we get

U̇ (t) = b (t)
∗
LU (t)− L∗b (t)U (t)− iH (t)U (t)

= b (t)
∗
LU (t)− L∗U (t) b (t)−

(
1

2
L∗L+ iH

)
U (t) . (123)

which is now Wick ordered. We can interpret this as the Hudson-Parthasarathy

equation

dU (t) =

{
L⊗ dB (t)

∗ − L∗ ⊗ dB (t)−
(

1

2
L∗L+ iH

)
⊗ dt

}
U (t) . (124)

The corresponding Heisenberg equation for jt(X) = U(t)∗[X ⊗ I]U(t) will

be

djt (X) = dU (t)
∗

[X ⊗ I]U (t) + U (t)
∗

[X ⊗ I] dU (t)

+dU (t)
∗

[X ⊗ I] dU (t)

= jt (LX)⊗ dt+ jt ([X,L])⊗ dB (t)
∗

+ jt ([L∗, X])⊗ dB (t)(125)

where

LX = −X
(

1

2
L∗L+ iH

)
−
(

1

2
L∗L− iH

)
X + L∗XL

=
1

2
[L∗, X]L+

1

2
L∗ [X,L]− i [X,H] . (126)

We note that we obtain the typical Lindblad form for the generator.

Scattering Interactions. We mention that we could also treat a Hamiltonian

with only scattering terms Let us set Υ (t) = E ⊗ b (t)
∗
b (t). The same sort of

argument leads to

[b (t) , U (t)] = −iE
∫ t

0

[
b (t) , b (τ)

∗]
b (τ)U (τ) dτ = − i

2
Eb (t)U (t) , (127)
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which can be rearranged to give

b (t)U (t) =
1

I − i
2E

U (t) b (t) . (128)

So the Wick ordered form is

U̇ (t) = Eb (t)
∗
b (t)U (t) =

E

I − i
2

b (t)
∗
U (t) b (t) (129)

or in quantum Ito form

dU (t) = (S − I)⊗ dΛ (t) U (t) ,

(
S =

I + i
2E

I − i
2E

, unitary!

)
. (130)

The Heisenberg equation here is djt (X) = jt (S∗XS −X)⊗ dΛ (t).

This is all comparable to the classical Poisson process driven evolution in-

volving unitary kicks.

The SLH Formalism. We now outline the so-called SLH Formalism - named

after the scattering matrix operator S, the coupling vector operator L and

Hamiltonian H appearing in these Markov models [18]-[20]. The examples con-

sidered up to now used only one species of quanta. We could in fact have n

channels, based on n quantum white noises:

[bj(t), b
∗
k(s)] = δjk δ(t− s). (131)

The most general form of a unitary process with fixed coefficients may be

described as follows: we have a Hamiltonian H = H∗, a column vector of

coupling/ collapse operators

L =


L1

...

Ln

 , (132)

and a matrix of operators

S =


S11 · · · S1n

...
. . .

...

Sn1 · · · Snn

 , S−1 = S∗. (133)
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For each such triple (S,L,H) we have the QSDE

dU(t) =

{∑
jk

(Sjk − δjkI)⊗ dΛjk(t) +
∑
j

Lj ⊗ dB∗j (t)

−
∑
jk

L∗jSjk ⊗ dBk(t)− (
1

2

∑
k

L∗kLk + iH)⊗ dt
}
U(t) (134)

which has, for initial condition U(0) = I, a solution which is a unitary adapted

quantum stochastic process. The emission-absorption case is the n = 1 model

with no scattering (S = I). Likewise the purse scattering corresponds to H = 0

and L = 0.

Heisenberg-Langevin Dynamics. System observables evolve according to the

Heisenberg-Langevin equation

djt(X) =
∑
jk

jt(S
∗
ljXSlk − δjkX)dΛjk(t) +

∑
jl

jt(S
∗
lj [Ll, X])⊗ dBj(t)∗

+
∑
lk

jt([X,L
∗
l ]Slk)⊗ dBk(t) + jt(LX)⊗ dt. (135)

where the generator is the traditional Lindblad form

LX =
1

2

∑
k

L∗k[X,Lk] +
1

2

∑
k

[L∗k, X]Lk − i[X,H]. (136)

Quantum Outputs. The output fields are defined by

Bout
k (t) = U(t)∗[I ⊗Bk(t)]U(t). (137)

From the quantum Ito calculus we find that

dBout
j (t) =

∑
k

jt(Sjk)⊗ dBk(t) + jt(Lk)⊗ dt, (138)

Or, maybe more suggestively in quantum white noise language [21],

bout
j (t) =

∑
j

jt(Sjk)⊗ bk(t) + jt(Lj)⊗ I. (139)

4.4. Quantum Filtering

We now set up the quantum filtering problem. For simplicity, we will take

n = 1 and set S = I so that we have a simple emission-absorption interaction.
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We will also consider the situation where we measure the Q-quadrature of the

output.

The initial state is taken to be |ψ0〉⊗ |Ω〉, and in the Heisenberg picture this

is fixed for all time.

The analogue of the stochastic dynamical equation considered in the classical

filtering problem is the Heisenberg-Langevin equation

djt (X) = jt (LX)⊗ dt+ jt ([X,L])⊗ dB (t)
∗

+ jt ([L∗, X])⊗ dB (t) (140)

where LX = 1
2 [L∗, X]L+ 1

2L
∗ [X,L]− i [X,H].

Some care is needed in specifying what exactly we measure: we should really

work in the Heisenberg picture for clarity. The Q-quadrature of the input field

is Q (t) = B (t) +B (t)
∗

which we have already seen is a Wiener process for the

vacuum state of the field. Of course this is not what we measure - we measure

the output quadrature!

Set

Y in (t) = I ⊗Q (t) . (141)

As indicated in our discussion on von Neumann’s measurement model, what we

actually measure is

Y out(t) = U(t)∗Y in(t)U(t) = Bout(t) +Bout(t)∗. (142)

The differential form of this is

dY out(t) = dY in(t) + jt(L+ L∗)dt. (143)

Note that

dY in (t) dY in (t) = dt = dY out (t) dY out (t) . (144)

The dynamical noise is generally a quantum noise and can only be considered

classical in very special circumstances, while the observational noise is just its

Q-quadrature which can hardly be treated as independent!
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In complete contrast to the classical filtering problem we considered earlier,

we have no paths for the system - just evolving observables of the system.

What is more these observables do not typically commute amongst themselves,

or indeed the measured process.

We can only apply Bayes Theorem in the situation where the quantities

involved have a joint probability distribution, and in the quantum world this

requires them to be compatible. At this stage it may seem like a miracle that

we have any theory of filtering in the quantum world. However, let us stake

stock of what we have.

What Commutes With What?. For fixed s ≥ 0, let U(t, s) be the solution to

the QSDE (134) in time variable t ≥ s with U(s, s) = I. Formally, we have

U (t, s) = ~Te−i
∫ t
s

Υ(τ)dτ (145)

which is the unitary which couples the system to the part of the field that

enters over the time s ≤ τ ≤ t. In terms of our previous definition, we have

U(t) = U(t, 0) and we have the property

U (t) = U (t, s)U (s) , (t > s > 0) . (146)

In the Heisenberg picture, the observables evolve

jt (X) = U (t)
∗

[X ⊗ I]U (t) , (147)

Y out (t) = U (t)
∗

[I ⊗Q (t)]U (t) . (148)

We know that the input quadrature is self-commuting, but what about the

output one? A key identity here is that

Y out (t) = U (t)
∗
Y in (s)U (t) , (t > s) , (149)

which follows from the fact that
[
Y in (s) , U (t, s)

]
= 0.

From this, we see that the process Y out is also commutative since

[
Y out (t) , Y out (s)

]
= U (t)

∗ [
Y in (t) , Y in (s)

]
U (t) = 0, (t > s) . (150)
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If this was not the case then subsequent measurements of the process Y out would

invalidate (disturb?) earlier ones. In fancier parlance, we say that process is

not self-demolishing - that is, all parts are compatible with each other.

A similar line of argument shows that[
jt (X) , Y out (s)

]
= U (t)

∗
[X ⊗ I, I ⊗Q (t)]U (t) = 0, (t > s) . (151)

Therefore, we have a joint probability for jt (X) and the continuous collection of

observables {Y out (τ) : 0 ≤ τ ≤ t} so can use Bayes Theorem to estimate jt(X)

for any X using the past observations. Following V.P. Belavkin, we refer to this

as the non-demolition principle.

The Conditioned State. In the Schrödinger picture, the state at time t ≥ 0 is

|Ψt〉 = U (t) |φ⊗ Ω〉, so

d|Ψt〉 = −
(

1

2
L∗L+ iH

)
|Ψt〉dt+ LdB (t)

∗ |Ψt〉 − L∗dB (t) |Ψt〉

= −
(

1

2
L∗L+ iH

)
|Ψt〉dt+ LdB (t)

∗ |Ψt〉+ LdB (t) |Ψt〉

= −
(

1

2
L∗L+ iH

)
|Ψt〉dt+ LdY in(t)|Ψt〉. (152)

Here we have used a profound trick due to A.S. Holevo. The differential

dB(t) acting on |Ψt〉 yields zero since it is future pointing and so only affects

the future part which, by adaptedness, is the vacuum state of the future part of

the field. To get from the first line to the second line, we remove and add a term

that is technically zero. In its reconstituted form, we obtain the Q-quadrature

of the input. The result is that we obtain an expression for the state |Ψt〉 which

is “diagonal” in the input quadrature - our terminology here is poor (we are

talking about a state not and observable!) but hopefully wakes up physicists to

see what’s going on.

The above equation is equivalent to the SDE in the system Hilbert space

d|χt〉 = −
(

1

2
L∗L+ iH

)
|χt〉dt+ L|χt〉dyt (153)

where y is a sample path - or better still, eigen-path - of the quantum stochastic

process Y in.
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We refer to (153) as the Belavkin-Zakai equation.

The Quantum Filter. Let us begin with a useful computational

〈φ⊗ Ω|jt (X)F
[
Y out

[0,t]

]
|φ⊗ Ω〉 = 〈φ⊗ Ω|U(t)∗

(
X ⊗ F

[
Y in

[0,t]

] )
U(t)|φ⊗ Ω〉

= 〈Ψt|X ⊗ F
[
Y in

[0,t]

]
|Ψt〉

=

∫
〈χt(y)|X ⊗ |χt(y)〉F [y] PWiener[dy].

(154)

A few comments are in order here. The operator jt (X) will commute with

any functional of the past measurements - here F
[
Y out

[0,t]

]
. In the first equality

is pulling things back in terms of the unitary U(t). The second is just the

equivalence between Schrödinger and Heisenberg pictures. The final one just

uses the equivalent form (153): note that the paths of the input quadrature gets

their correct weighting as Wiener processes.

Setting X = I in (154), we get the

〈φ⊗ Ω|F
[
Y out

[0,t]

]
|φ⊗ Ω〉 =

∫
〈χt(y|χt(y)〉F [y] PWiener[dy] (155)

So the probability of the measured paths is

Q[dy] = 〈χt(y)|χt(y)〉PWiener[dy]. (156)

Now this last equation deserves some comment! The vector |Ψt〉, which lives

in the system tensor Fock space, is properly normalized, but its corresponding

form |χt〉 is not! The latter is a stochastic process taking values in the system

Hilbert space and is adapted to input quadrature. However, we never said that

|χt〉 had to be normalized too, and indeed it follows from or “diagonalization”

procedure. In fact, if |χt〉 was normalized then the output measure would follow

a Wiener distribution and so we would be measuring white noise!

From (154) again, we an deduce the filter: we get (using the arbitrariness of

the functional F )

Et(X) =
〈χt(y)|X|χt(y)〉
〈χt(y)|χt(y)〉

. (157)
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This has a remarkable similarity to (61). Moreover, using the Ito calculus

see that

d〈χt(y)|X|χt(y)〉 = 〈χt(y)|LX|χt(y)〉dt

+〈χt(y)|
(
XL+ L∗X

)
|χt(y)〉 dy(t). (158)

This is the quantum analogue of the Duncan-Mortensen-Zakai equation.

So small work is left in order to derive the filter equation. We first observe

that the normalization (set X = I) is that

d〈χt(y)|χt(y)〉 = 〈χt(y)|
(
L+ L∗

)
|χt(y)〉 dy(t). (159)

Using the Ito calculus, it is then routine to show that the quantum filter is

dEt(X) = Et(LX) dt+
{
Et(XL+ L∗X)− Et(X)Et(L+ L∗)

}
dI(t) (160)

where the innovations are defined by

dI(t) = dY out(t)− Et(L+ L∗) dt. (161)

Again, the innovations have the statistics of a Wiener process. As in the classical

case, the innovations give the difference between what we observe next, dY out(t),

and what we would have expected based on our observations up to that point,

Et(L+L∗) dt. The fact that the innovations are a Wiener process is a reflection

of the efficiency of the filter - after extracting as much information as we can

out of the observations, we are left with just white noise.

Acknowledgements

I would like to thank the staff at CIRM, Luminy (Marseille), and at Institut
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