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Abstract

In this survey, we describe controlled interacting particle systems (CIPS) to approximate the solution of the optimal
filtering and the optimal control problems. Part I of the survey is focussed on the feedback particle filter (FPF) algorithm,
its derivation based on optimal transportation theory, and its relationship to the ensemble Kalman filter (EnKF) and
the conventional sequential importance sampling-resampling (SIR) particle filters. The central numerical problem of
FPF—to approximate the solution of the Poisson equation—is described together with the main solution approaches.
An analytical and numerical comparison with the SIR particle filter is given to illustrate the advantages of the CIPS
approach. Part IT of the survey is focussed on adapting these algorithms for the problem of reinforcement learning. The
survey includes several remarks that describe extensions as well as open problems in this subject.

1. Introduction

In many applications, dynamic models exist only in the
form of a simulator. Our aim is to provide a survey of a
class of algorithms, that use only a model simulator, to
solve the two canonical problems of Control Theory:

e Design of optimal filter (in the sense of estimation);

e Design of optimal control law.

In this survey, such simulation-based algorithms are
broadly referred to as controlled interacting particle sys-
tems (CIPS). Our research group’s most well known con-
tribution to CIPS is the feedback particle filter (FPF),
which is also the main focus of this survey. The FPF
algorithm is useful to approximate the optimal (nonlin-
ear) filter. By making use of the duality between optimal
control and filtering, the FPF algorithm is extended to
approximate the solution of an optimal control problem.
We begin by describing the high-level idea for the two
problems of optimal filtering and optimal control.
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1.1. CIPS in optimal filtering

Mathematical problem: In continuous-time and
continuous-space settings of the problem, the standard
model of nonlinear (or stochastic) filtering is the follow-
ing It6 stochastic differential equations (SDEs):

State: dXt = G,(Xt)dt + O'B(Xt)dBt, XO ~ Do,
(1a)
Observation: dZ; = h(Xy)dt + dWy, (1b)

where X, € R% and Z, € R™ are the state and observation,
respectively, at time ¢, pg is the probability density func-
tion (PDF) at the initial time ¢ = 0 (py is referred to as the
prior density), and {B;}i>0, {Wi}i>0 are mutually inde-
pendent standard Wiener processes (W.P.) taking values
in R? and R™, respectively. The mappings a(-), h(-), o5(-),
and the density po(-) are smooth (continuously differen-
tiable) functions. The linear Gaussian model is obtained
when the drift terms a(-), and h(-) are linear functions,
op(+) is a constant matrix, and pg is a Gaussian density.

The filtering problem is to compute the conditional PDF
of the state X; given the time-history (filtration) of obser-
vations up to time ¢. The conditional PDF is denoted by
pt and is referred to as the posterior density.

CIPS algorithm: involves construction of N stochastic
processes {X; € R? : ¢t > 0,1 < i < N} where the i-th
process (particle) evolves according to the SDE:

AX} = a(X})dt + op(X))dB! + dUf, X§ =" py,
i—th copy of model

where U := {U} : t > 0,1 < i < N} is referred to as the
coupling (with U = 0, the N processes are un-coupled).

(2)
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The goal is to design the coupling U so that the empirical
distribution of the IV particles at any time ¢ approximates
the posterior p;:

1,
F LSO~ [ F@nd, ¥ ea®D, @

where “~” means that the approximation error goes to
zero (in a suitable sense) as N — oo (C,(RY) is the space
of continuous and bounded functions on R%).

A key breakthrough, that appeared around 2010, is that
U can be realized as a mean-field type feedback control law
(“mean-field type” means that the control law depends
also on the statistics of the stochastic process). Feedback
particle filter (FPF) is one such example of a mean-field
type control law. In this paper, we describe the FPF,
relate it to its historical precursor, the ensemble Kalman
filter (EnKF) algorithm, and summarize the important de-
velopments in this area.

For the filtering model , the idea of controlling the
particles to approximate the posterior appears in the work
of three groups working independently: the first example
of such a control law appears in (Crisan and Xiong, |2010))
using a certain smoothed form of observations. The FPF
formula appears in (Yang et all [2011bla) and its special
case for the linear Gaussian model is described in
[2011; Bergemann and Reich| [2012). A comparison of these
three early works can be found in (Pathiraja et al., 2021)).
For the discrete-time filtering models, closely related ideas
and algorithms were proposed, also around the same time-
frame, by (Daum and Huang}, [2008} |El Moselhy and Mar-
zouk, 2012; Reich, [2013; |Yang et al. [2014) (see (Spantini
et al for a recent review of this literature).

Our early work on FPF was closely inspired by the pi-

oneering developments in mean-field games (Huang et al.|
2007}, |2006)). The topic of mean-field games and mean-

field type optimal control is concerned with control and
decision problems arising in interacting particle systems.
Over the past decade, this topic has grown in significance
with theory and applications described in several mono-
graphs (Bensoussan et al) 2013} |Carmona et al., 2018}
|Gomes et al.,2016). In the Physics literature, the study of
interacting particle systems is a classical subject
[1985)). A canonical example of an interacting particle sys-
tem is the coupled oscillators model of Kuramoto
framoto), (1975} [Strogatz, [2000; [Dorfler and Bullo, [2014).
Extensions of the classical Kuramoto model to mean-field
games appears in (Yin et al., 2011; Carmona and Graves,

1.2. CIPS in optimal control

Mathematical problem: Consider a finite-horizon de-
terministic optimal control problem:

T
min I = [ (lele) + bur Bun) dt + glo).
(42)

subject to: & = a(xt) + b(xe)us, o = . (4b)
where z; € R is the state at time ¢ and u := {u € R™ :
0 <t < T} is the control input. The mappings a(-), b(-),
¢(+), g(-) are smooth functions and R is a strictly positive-
definite matrix (henceforth denoted as R > 0). The lin-
ear quadratic (LQ) model is obtained when a(z) = Az,
b(z) = B, ¢(z) = Cx, and g(z) = 2" Prz. The infinite-
time horizon (T = o0) case is referred to as the linear
quadratic regulator (LQR) problem.

CIPS algorithm: involves construction of N stochastic
processes {Y € RY: 0 <t <T,1<i< N} where the i-th
particle evolves according to an SDE

Ay = a(Y;)dt +b(Y;)dv; +Ujdt, 0<t<T, (5a)

i—th copy of model

where the input v := {v{ € R™ : 0 < ¢t < T} and the
coupling U := {U} € R?: 0 <t < T} are obtained as part
of the design. The goal is to design v and U so that the
empirical distribution of the N particles at time ¢ approx-
imates a smooth density p; encoding the optimal control
law u; = ¢; (z;) where

b;(x) = R (2)Viogpi(w), 0<t<T,  (5b)
and V denotes the gradient operator. In the infinite-
horizon case, a stationary policy is obtained by letting
T — oo.

The righthand-side of the formula is a consequence
of the log transformation. The transformation relates the
value function of an optimal control problem to the pos-
terior density of the dual optimal filtering problem
ing and Mitter| 1982} Mitter and Newton, [2003)). This
manner of converting an optimal control problem into an
optimal filtering problem (and vice-versa) is referred to
as the minimum energy duality (Hijab, [1980; Mortensen,
. The use of this duality to express and solve an
estimation problem as an optimal control problem is a

standard approach in model predictive control (Rawlings
2017, Ch. 4). The CIPS comes about from the

use of duality in the opposite direction whereby an op-
timal control problem is solved using a filtering-type
algorithm. Related constructions, based on somewhat dif-
ferent algorithmic approaches, is an important theme in
the Robotics literature (Todorov, 2007; [Kappen, [2005albf

2020) and to FPF is given in (Tilton et al., 2012)).

Design of CIPS to approximate the optimal control law
is a more recent development. The idea is described next.

jjayakumar et all [Toussaint], [2009}, [Hoffmann and]
Rostalskil 2017) (see (Levine, |2018) for a recent review).

Both and are examples of a “simulation-based”
algorithm because multiple copies—of the model




and , respectively—are run in a Monte-Carlo manner.
The main message of our paper is that through a suit-
able design of interactions between simulations—referred
to as coupling—uyields powerful algorithms for solving op-
timal filtering and optimal control problems.

1.8. Relationship to other simulation-based algorithms

For the two problems of filtering and control, related
simulation-based solution approaches are considered in the
data assimilation (DA) and reinforcement learning (RL)
communities, respectively. These relationships are dis-
cussed next.

1. Data assimilation (DA). The term “Data Assimila-
tion” means assimilating real-time observations (“data”)
into models—which typically exist only as a software code.
The term is used by a community of researchers working in
geophysical and atmospheric sciences (Van Leeuwen and
Fvensen, 1996} |E:vensen! [2006; Houtekamer and Mitchell,
2001}; Reich and Cotter} [2015)). The most celebrated appli-
cation is weather prediction and forecast. For the abstract
mathematical model, the nonlinear filter gives the optimal
solution. In practice, the filter must be approximated in
a computationally tractable form. For this purpose, the
EnKF algorithm was first introduced in (Evensenl [1994)
as an alternative to the extended Kalman filter (EKF).
In geophysical applications, there are two issues that ad-
versely affect the implementation of an extended Kalman
filter:

1. In high-dimensions, it is a challenge to compute the
Kalman gain. This is because the formula for the
Kalman gain is based on the solution of a certain dif-
ferential Riccati equation (DRE). The matrix-valued
nature of the DRE means that any algorithm is O(d?)
in the dimension d of the state-space.

2. The model parameters are not explicitly available to
write down the DRE let alone solve it. This is a con-
cern whenever the model exists only in the form of a
black-box numerical simulator.

In an EnKF implementation, N processes are simulated
(same as (2)). In order to compute the Kalman gain, the
solution of the DRE at time ¢ is approximated by the em-
pirical covariance of the ensemble {X;}Y . Because an
explicit solution of the DRE is avoided, an EnKF can be
implemented using only a model simulator. This property
has historically proved to be an important factor in ap-
plications. Notably, the EnKF algorithm is a workhorse
for the weather prediction application (Evensen, 2003;
Houtekamer and Zhang, 2016). The computational com-
plexity of the EnKF is O(Nd) and in high-dimensions, N
is chosen to be much smaller than d.

The historical significance of the FPF is that it repre-
sents a simulation-based solution of the nonlinear filtering
problem , for arbitrary types of non-Gaussian posterior
density p; (under some mild technical conditions). More-
over, the EnKF was shown to arise as a special case in the

linear Gaussian setting of the problem. Like the Kalman
filter, the FPF formula has a “gain times error” feedback
structure which is useful in several ways, e.g., to handle
additional uncertainty in signal and measurement models.
For these reasons, FPF can be viewed as a modern exten-
sion to the Kalman filter, a viewpoint stressed in a prior
review paper (Taghvaei et al.| [2018)).

For the nonlinear filtering problem , the FPF rep-
resents an alternative solution approach to the sequential
importance sampling-resampling (SIR) particle filters and
its many variants (Gordon et al., [1993; Bain and Crisan,
2009; Del Moral, |2004; Doucet),|2009). In an SIR filter, the
posterior is approximated as (compare with )

N
/R S@ple)de = STWI(XD, ¥ € GRY,
i=1

where X/ is a copy of the hidden state X; and {W;}X,
are the importance weights obtained from the Bayes’ for-
mula. In practice, all but a few weights can become very
small—an issue known as particle degeneracy. This is-
sue is ameliorated using a re-sampling procedure. The
salient feature of the FPF, compared to the conventional
particle filters, is that the weights are uniform (= ) by
construction. Because of this difference, FPF does not suf-
fer from the particle degeneracy issue and does not require
re-sampling. In several independent numerical evaluations
and comparisons, it has been observed that FPF exhibits
smaller simulation variance (Berntorp), [2015; [Tilton et al.|
2013} [Yang et al., [2013b; [Stano et al., [2014) and better
scaling properties with the problem dimension compared
to particle filters (Surace et all 2019} [Yang et al. [2016]).
Some of these analytical and numerical comparisons are
highlighted in the paper.

2. Reinforcement learning (RL). RL is concerned with
solving optimal control problems, such as and its exten-
sions. All of the standard choices are treated in the litera-
ture: continuous and discrete state-space and time, deter-
ministic and stochastic dynamics, discounted and average
cost structures, and finite and infinite time-horizon (Bert-
sekas and Tsitsiklis, [1996; Meyn, [2022). What makes the
RL paradigm so different from optimal control as formal-
ized by Bellman and Pontryagin in the 1950s is that in RL
the system identification step is usually avoided. Instead,
the optimal policy is approximated (“learned”) based on
input-output measurements.

In popular media, RL is described as an “agent” that
learns an approximately optimal policy based on interac-
tions with the environment. Important examples of this
idea include advertising, where there is no scarcity of real-
time data. In the vast majority of applications we are not
so fortunate, which is why successful implementation usu-
ally requires simulation of the physical system for the pur-
poses of training. For example, DeepMind’s success story
with Go and Chess required weeks of simulation for train-



ing on a massive collection of super-computers (Schrit-
twieser et al., [2020).

These success stories are largely empirical. In order to
better understand the theoretical foundations of RL, there
has been a concerted recent interest, in the Control com-
munity, to revisit the classical linear quadratic (LQ) op-
timal control problem (Fazel et all 2018; 'Tu and Recht)
2019; [Dean et al., 2020; Malik et al., [2020; IMohammadi
et all [2022). The two issues discussed as part of DA are
relevant also to this problem: In high-dimensions, it is a
challenge to solve the Riccati equation, and typically the
model parameters are not explicitly available in RL set-
tings of the problem.

An outgrowth of this recent work is a class of simulation-
based algorithms where multiple copies of the simulator
are run in parallel to learn and iteratively improve the
solution of the DRE. The CIPS algorithm has the
same structure where the important distinction is that the
simulations are now coupled with a coupling term. We
include comparisons on a benchmark problem to show how
coupling helps improve performance over state-of-the-art.

1.4. Structure of the paper and outline
This paper is divided into two parts as follows:

e Part I on CIPS for the optimal filtering problem .
It comprises Sec. [2]- Sec.

e Part II on CIPS for the optimal control problem .
It comprises Sec. [6]

The paper is written so that the key ideas are easily ac-
cessible together with an understanding of the main com-
putational problems and algorithms for the same. For ex-
ample, a reader should to be able to implement the FPF
and EnKF algorithms after reading Sec. [3]and Sec.[d] The
more theoretical aspects related to optimal transportation
theory appear in a self-contained manner in Sec. The
other significant aspect of this survey is analytical and nu-
merical comparison against competing approaches. These
appear in Sec. for part I where a comparison with the
SIR filter is discussed; and in Sec. for part I where a
comparison with RL algorithms for the LQR problem is
described.

In writing any survey or review paper, one must make
a choice of not only the topics to include but also the
ones to leave out. Our choice is guided by our own area
of expertise and by the intended audience in the Control
community (where most of our own prior work has been
published). We have stressed the interpretation of cou-
pling as a mean-field feedback control law and highlighted
its connection to optimal transportation. Both of these are
important research themes in the community with related
work on mean-field optimal control. The mathematics is
most elegant in the continuous-time settings of the prob-
lem which is also the setting of this paper. A number of
important aspects have not been covered in detail: On
the theoretical side, the well-posedness of the mean-field

model and justification of the mean-field limit are both
hard mathematical topics. For a reader interested in some
of these topics, we have included some high level remarks
with references where additional details can be found. On
the practical side, important issues arise on account of nu-
merical discretization of the SDEs. Such numerical aspects
have been entirely left out of this paper.

We make note of two final points: (i) While the pa-
per presents some relatively novel ideas that are closely
inspired by and connected to the work in mean-field mod-
eling and control, and therefore of interest to the Control
community, these algorithms have older roots (EnKF) in
the DA community. Along with the discussion in the In-
troduction, several remarks are included to highlight these
roots and connections. (ii) While the CIPS algorithms
solve some problems (such as particle degeneracy), they
also create new ones. This informs the structure of the
paper with a dedicated Sec. [4] on the central numerical
problem of FPF. In particular, the discussion of the bias-
variance trade-off in Sec. is helpful to understand some
of the key limitations in high dimensions.

PART 1

2. Background on optimal filtering

Consider the filtering problem for the model (). The
sigma-algebra (on the time-history) of observations up to
time ¢ is denoted by Z; := 0(Zs : 0 < s < t). The posterior
density p; is defined as follows:

| J@p(@)de =E[f(X)IZ], ¥ f e CR),

where the conditional expectation on the righthand-side
is referred to as the nonlinear filter. The integral on the
lefthand-side is denoted by (p:, f).

The posterior p; is optimal in the sense that, among
all Z;-measurable random variables, (ps, f) represents the
best mean-squared error (MSE) estimate of the random
variable f(X;):

(ps, f) = argmin E[|f(X;) — S|?], (6)
Sez
where the notation “S € Z;” means S is allowed to be
Z;-measurable, i.e., an arbitrary measurable function of
observations up to time t.

For the model , the evolution of the posterior p; is
given by the Kushner-Stratonovich stochastic partial dif-
ferential equation (Xiong, |2008, Ch. 5). In the special lin-
ear Gaussian setting of the problem, the equation admits
a finite-dimensional representation given by the Kalman-
Bucy filter.

2.1. Linear Gaussian model and the Kalman-Bucy filter
The linear Gaussian model is a special case of —
and takes the following form:
dXt = AXt + O'BdBt7 X() ~ N(mo, ZQ), (7&)
dZ;, = HX,dt + dW4, (7b)



where A, H, o g are matrices of appropriate dimensions and
the prior is a Gaussian density with mean mg and variance
Y. It is denoted by N (mq, Xo).

For the linear Gaussian model , it can be shown that
the posterior p; is a Gaussian density. It is denoted by
N(my, %), where m; and ¥; are conditional mean and
covariance, respectively. Their evolution is described by
the Kalman-Bucy filter (Kalman and Bucyl, [1961)):

dmt = Amt + Kt(dZt — Hmtdt),

d :
&Et = Rice(3,),

mo (given)  (8a)

Yo (given) (8b)

where K; := 3;H" is referred to as the Kalman gain, and
the Riccati function

Rice(X) := AL + LA™ + X — SHTHY

with X p := 0pog.

Apart from the linear Gaussian model, there are very
few examples where the equation for the posterior p; ad-
mits a finite-dimensional representation (Benes, [1981)). In
the general setting of the nonlinear model (1)) with a non-
Gaussian posterior, p; is numerically approximated.

3. Feedback particle filter

Feedback particle filter (FPF) is a numerical algorithm
to approximate the posterior p; for the filtering model .
Before describing the FPF, it is helpful to consider a sim-
pler static problem.

3.1. Intuitive explanation with a simpler example

Suppose the state X and the observation Y are vector-
valued random variables of dimension d and m, respec-
tively. The probability distribution (prior) of X is denoted
by Px and the joint distribution of (X,Y’) is denoted by
Pxy. For any given function f € Cy(R?), the problem is
to obtain an MSE. estimate of the unknown f(X) from a
single observation of Y. Adapting @ to the simple case,

S3(Y) = argifl)inEHf(X) - S, (9)

where on the righthand-side Sy : R™ — R is allowed to be
an arbitrary function of the R™-valued observation (the
sub-script means that the function may depend also upon

f). The optimal estimator gives the conditional expecta-
tion, i.e., E[f(X)|Y] = S;(Y).

Example 3.1 (Linear estimation and the update formula
for Kalman filter). Consider the case where f is linear,
f(xz) =a"x, and S¢(-) is restricted to be an affine function
of its argument:

Sp(y) =u'y+0,

where u € R™ and b € R parametrize the estimator.
With such a choice, the optimization problem @D 18 finite-
dimensional whose solution is readily obtained as

S}(Y) = a"(E[X] + K(Y - E[Y])),

where K = Sxy ¥y, Yxy = E[(X — E[X])(Y —E[Y])"],
Yy = E[(Y — E[Y])(Y — E[Y])"], and it is assumed that
Yy is invertible with inverse E{,l. Because the vector a
s arbitrary, this also shows that the optimal linear esti-
mate of X is E[X] + K(Y — E[Y]). Under the stronger
assumption that X and Y are jointly Gaussian, it can be
shown that this is in fact the optimal estimate of X among
all functions Sy(-) (not necessarily affine) (Hajek, (2015,
Prop. 3.9). Therefore, in the Gaussian case

E[X|Y] = E[X] + K(Y — E[Y]).

The righthand-side is the update formula for the discrete-
time Kalman filter. Note that the interpretation of the
formula as the conditional expectation works only in the
Gaussian case. In general, the formula gives only the best
linear estimator.

The example above illustrates the special and important
case of obtaining optimal linear estimators. The question
is how to extend the procedure to the nonlinear setting,
i.e., the setting where both the function f(-) and the esti-
mator Sy(-) are allowed to be nonlinear functions of their
arguments. This is achieved through the concept of CIPS
whose construction proceeds in two steps:

Step 1: Let X, be an independent copy of X. Design a
control U such that, upon setting X1 = Xy + U,

SjY) =E[f(X)Y], ¥ f € Cy(R?),

Note that the control is not allowed to depend on the func-
tion f. It is designed to give the best estimate for any
choice of function f. It is not yet clear that such a con-
trol exists. But for now, let us assume that it exists and
moreover takes the form U = u(Xy,Y). (Typically, the
mapping u(-,-) is designed to be a deterministic function
but may in general also be random.)

Step 2: Generate N independent samples (particles)
{x¢,..., X} from Py, update each particle according
to

X=Xt +u(XEY), i=1,2,...,N,

and form a Monte-Carlo approximation of the estimate:
IREAR
S7V) &+ D7),
i=1

Example 3.2 (CIPS and the update formula for EnKF).
Continuing with Ex. where Pxy is assumed to be Gaus-
sian, two formulae are described for the transformation
Xo — Xi1. The first of these formulae is based on optimal
transportation theory. The second formula is based on the
perturbed form of the discrete-time EnKF algorithm.



e Optimal transport formula is given by a deterministic
affine mapping

X1 = A(Xo — E[Xo]) + K(Y — E[Y]) 4+ E[X],

where A is the unique such symmetric positive-definite
solution to a Lyapunov equation

AYxA=Yx - Sxy Sy Sy x.

o Perturbed EnKF formula. Let (Xg,Yy) be an indepen-
dent copy of (X,Y) then

Xl = XO +[((}/7)70)7
where the formula for K is same as in Ez. [531]

It is readily verified that, in either case, X1 is a Gaus-
sian random variable whose conditional mean and variance
equals the conditional mean and variance of X.

We defer the details on how these formulae came about
to Sec. instead remarking here on several features
which apply also to more general settings:

1. The transformation Xy — X1 is not unique.

2. Both the transformations are of “mean-field type”
whereby the transformation depends also on statistics,
e.g., E[X] and E[Y], of (X,Y).

3. In the optimal transport formula, u(-,-) is a deter-
ministic function. In the EnKF formula, u(z,y) =
K(y — Yy) is a random map because Yy is a random
variable.

These considerations provide the background for the
feedback particle filter algorithm which is described next.

3.2. Feedback particle filter

Just like the static example, the construction of FPF
proceeds in two steps.

Step 1: Construct a stochastic process, denoted by X =

{X:}+>0, according to a controlled SDE:

dXt = G(Xt)dt + O'B(Xt)dBt + Utdt + thZt, XO ~ Do,
(10)

where the controls u; and K; are designed so that the con-

ditional density of X, equals the posterior density p;.

Step 2: Simulate N stochastic processes, denoted by
Xt ={X}}>0 fori=1,2,..., N, according to .

The two steps are summarized below:

Step 2

E[f(X:)|2] =

Step 1
> =

<pt7f

exactness condition

1Y ,
¥ 2 XD,
i=1

The exactness condition refers to the fact that X; has the
same conditional density as X;. The N processes { X} |
are referred to as particles.

At this point, the first of these two steps appears to be
aspirational. Even in the case of the static example, it is
not at all clear that the function (-, -) exists in the general
non-Gaussian case, and even if it does, it can be computed
in a tractable manner. The case of the stochastic process
where u; and K; are allowed to be measurable with respect
to the past values of observations Z and state X appears,
at the first glance, to be entirely hopeless.

The surprising (at least at the time of its discovery)
breakthrough of the FPF is that the control terms w; and
K, are given by a simple feedback control law where the
computation reduces to solving a linear Poisson equation
at each time-step.

FPF: The process X is defined according to the SDE
dXt = G/(Xt)dt + O'B(Xt)dBt

copy of model

h(Xy) + he
2
FPF feedback control law

+ Kt(Xt) e] (dZt — dt), XO ~ Do

(11)

where {B;}:>¢ is a copy of the process noise {B;};>0, and
h¢ := E[h(X{)|Z¢]. The o indicates that the SDE is ex-
pressed in its Stratonovich form. At any fixed time ¢, the
gain K¢(-) is a d x m matrix-valued function obtained by
solving m partial differential equations: for j =1,2,...m,
the j-th column ng) = Vo) where ¢U) is the solution
of the Poisson equation:

V(o) V6D (@) = (O ()~ D),

d
e zeR? (12)

where the density p = p; (the conditional density of X; at
time t), h{9) is the j-th component of the observation func-
tion h, h)) = [ hl9)(x)p(x)dz, and V and V- denote the
gradient and the divergence operators, respectively. For a
succinct presentation, the functions {¢U )}]m:1 are collected
to form the vector-valued function ¢ = [p™), ... ¢(™)].
With such a notation, the gain function K; is the Jacobian
Vo =[Vel), ... Vo™

The process X is an example of a mean-field process
because its evolution depends upon its own statistics. An
SDE of this type is called a McKean-Vlasov SDE or a
mean-field SDE. Accordingly, is referred to as the
mean-field FPF.

The main result, first proved in |Yang et al. (2013b)), is
that the mean-field process thus defined is exact.

Theorem 3.3 (Thm 3.3, |Yang et al| (2013b)). Consider
the filtering model . Suppose {p; }+>0 denotes the condi-
tional density of the process {Xi}i>0. Suppose the mean-
field process {X,}i>0 defined by (11)-(12) is well-posed
with conditional density denoted by {pi}1>0. Then, pro-
vided po = po,

pt=pi, YVit>0.



Remark 3.4 (Well-posedness and Poincaré inequality).
The well-posedness of — means that a strong solu-
tion X exists with a well-defined density {p; }i1>0. To show
well-posedness, apart from the standard Lipschitz condi-
tion on the drift terms a(-) and op(-), the main technical
condition is that the posterior density p; (of X¢) satis-
fies the Poincaré inequality (PI), and [ |h(z)*p(z)dz <
oo (Laugesen et al., 2015, Theorem 2.2). (A probability
density p = e~V satisfies the PI if x*VV (x) > alz| for
|z| > R where o and R are positive constants (Bakry et al.)
2008, Cor. 1.6). This condition is true, e.g., whenever p
has a Gaussian tail.) An explanation of the relevance of
the PI for the well-posedness (existence, uniqueness, and
reqularity) of the solution ¢ of the Poisson equation 18
deferred to Sec.[J), where algorithms for its approzimation
are also described. Once a solution ¢ of the Poisson equa-
tion is obtained together with necessary apriori estimates,
well posedness of X follows from the standard theory of
mean-field SDEs (Carmona et all| |2018). Although the
general case remains open, it has been possible to prove
the PI under certain additional conditions on the filtering
model (Pathiraga et all, 2021, Lemma 5.1), (Laugesen
et al., 2015, Prop 2.1).

We next describe the finite-N algorithm which is how
the FPF is implemented in practice.

CIPS: The particles {X} : t > 0,1 < i < N} evolve
according to:

dX] = a(X})dt + o(X})dB;

h(X)) + bV

+ KM (X 0 (dZ, - ==

dt), (13)

; iid

X6 ™~ po, i=1,...N,
where {B}}>, for i = 1,2,..., N, are mutually indepen-
dent W.P., hﬁN) =N-1! Zf\il h(X}), and KEN) is the out-
put of an algorithm that is used to approximates the so-
lution to the Poisson equation :
KEN) := Algorithm({ X/ }¥ ,; h).

The notation is suggestive of the fact that algorithm is
adapted to the ensemble { X} | and the function h; the
density p; is not known in an explicit form. Before de-
scribing the algorithms for gain function approximation in
(the following) Sec. |4} we discuss the linear Gaussian case.

The main computational challenge to simulate the finite-
N FPF is the computation of the gain function. The
difficulty arises because, for a general nonlinear observa-
tion function i and a non-Gaussian density p, there are no
known closed-form solutions of the Poisson equation .
In the linear Gaussian special case, with a linear obser-
vation function h(x) = Hz and a Gaussian density, the
Poisson equation admits an explicit solution whereby the
gain function is given by the Kalman gain:

Proposition 3.5 (Lem. 3.4, Yang et al.| (2013b))). Con-
sider the Poisson equation . Suppose p is a Gaussian
density N'(m, %) and h(z) = Hx. Then its unique solution
s giwen by:

o(z) = (HS)(z —m), xR
Consequently, the gain function V¢(x) = ZHT is the
Kalman gain.

Using the Kalman gain, the FPF algorithm simplifies to
a square-root form of the ensemble Kalman filter (EnKF)
algorithm. This is described next.

3.3. Ensemble Kalman filter

In the linear Gaussian case, upon replacing the gain
function with the Kalman gain, the mean-field FPF (11))
is the It6-SDE

_ _ _ HX;+ Hnm
dXt = AXtdt + O'BdBt + EtHT(dZt - %dt%

(14)

where

e = E[X4|24),
S = E[(X; — ) (Xe — )" | 2]

As a corollary of Thm. the mean-field process X is
exact which, in the linear Gaussian case, means that the
conditional density of X, is Gaussian whose mean m; and
the covariance matrix ¥; evolve according to the Kalman
filter . A direct proof showing is exact appears
in Sec. 511

The finite-N FPF is obtained as follows:

dX! = AX!dt+opdBi+S N HT (A7, — LT gy
(15a)
where the mean-field terms in are approximated em-

pirically as follows:

N
1 i
m{™ = NZXt, (15b)
j=1
1 N
N i N i N
S = g SO X = m) (X = m)T (150)
Jj=1

The linear Gaussian FPF is identical to the square-
root form of the ensemble Kalman filter (Bergemann and
Reich) 2012, Eq. 3.3).

Remark 3.6 (Historical context for EnKF). The EnKF
algorithm was first introduced in |Evensen| (1994), in the
discrete-time setting of the filtering problem. At the
time, the algorithm was introduced as an alternative to
the extended Kalman filter (EKF). As already mentioned
in Sec. |1, a major reason for using an EnKF is that, un-
like EKF, it does mot require an explicit solution of the
DRE (Van Leeuwen and Evensen), |1996; |Burgers et al.,



|1998; |Houtekamer and Mitchell, |1998). Since its intro-
duction, a number of distinct types of EnKF algorithms
have appeared in the literature. Amongst these, the most
well-known types are as follows: (i) EnKF based on per-
turbed observation (Evensen, 2003); and (i) The square
root EnKF (Andersonl, |2001; |Whitaker and Hamall, |2002;
Bishop et al., |2001|). The details for these algorithms can
be found in (Reich and Cotter, 2015, Ch. 6-7). The
two aforementioned types of the EnKF algorithm have also
been extended to the continuous-time setting
land Reich|, [2012). In these settings, the EnKF is usually
referred to as the ensemble Kalman-Bucy filter (EnKBF).
A review of the EnKBF algorithm and its connection to
the FPF algorithm can be found in (Taghvaei et al.,|2018).
The EnKBF algorithm and the linear FPF admits several
extensions: (i) EnKBF with perturbed observation (Berge-
|mann and Reich, |2012) (Del Moral and Tugaut, |2018);
(ii) Stochastic linear FPF (Yang et al), |2016, Eq. (26))
which is same as the square root EnKBF (Bergemann an

Reich|,[2012); (iii) Deterministic linear FPF (Taghvaei an

Mehtd, Eq. (15)) (de Wiljes et all, |2018). EnKF
was recently extended to the case with correlated observa-
tion noise (Ertel and Stannat, |2022). An excellent recent
survey on this topic appears in|Calvello et al| (2022).

Remark 3.7 (Current research on EnKF). Error analysis
of the EnKF algorithm remains an active area of research.
For the discrete-time EnKF algorithm, these results ap-
pear in (Le Gland et al., |2009; |Mandel et all |2011); | Tong
et all, [2016; [Kelly et all, [201]; [Kwiatkowski and Mandel,
2015 ). The analysis for continuous-time EnKF is more re-
cent (Del Moral and Tugaut, |2018;|Bishop and Del Moral,
[2018; [Taghvaei and Mehtd, [2018; [Del Moral et all, [2017;
de Wiljes et all, [2018; [Bishop and Del Moral, [2020; |Cher)
et al, |2021). Typically, one is interested in obtaining a
uniform error bound as follows:

C
N N
B = me] + B 5% < o0 (16)

where (my, %) are the solutions of the Kalman filter
and (mEN), EEN)) are obtained from simulating an EnKF;
and C > 0 is a time-independent constant. In the most
recent result (Bishop and Del Moral, |2020), is shown
under the assumption that H*H is a positive-definite ma-
triz. It is expected that also holds under the weaker
condition of the pair (A, H) being detectable, which is the
condition for the stability of the Kalman filter. However, a
complete resolution is still open. A comprehensive review
of recent developments in this area can be found in|Bishop
land Del Moral (2020).

3.4. Comparison with importance sampling

In this section, we provide an analytical comparison of
the FPF with the importance sampling-based particle fil-
ter. For this purpose, consider a parameter estimation

example with a fully observed model as follows:

dX; =0,  Xo~N(0,0514) = po, an
dZt = Xtdt + O'det,

where the time ¢ € [0,1], ow, 009 > 0, and I is the d x d

identity matrix. The posterlor p1 at time t = 1 is a Gaus-

2 _2
sian N (mq, %) with my = 2+ —71 and X1 = 2f;“2 1.
Let {X{}N, be N iid samples from the prior py. The
importance sampling-based particle filter yields an empir-

ical approximation of the posterior p; as follows:

i |2
_1Z1 X3
e 202,
21— 2

Zfil e
(18)

In contrast, given the initial samples {X¢}Y ,, the FPF
approximates the posterior by implementing a feedback
control law as follows:

’—‘s.

7TPF Z W1 Xo

23<N>

Xi+ mEN)
2

() : NZ F(XD), dX| = (dZt— dt),

(19)
where the mean mEN) and covariance EEN) are empirically

approximated using and , respectively.

The MSE in estimating the conditional expectation of a
given function f is defined as follows:
MSE. (f) = E[lx") () = (p1. £)I*);

where the subscript * is either the PF or the FPF.

For f(z) = %lTx, a numerically computed plot of the
level-sets of MSE, as a function of N and d, is depicted
in Figure [I} (a)-(b). The expectation is approximated by
averaging over M = 1000 independent simulations. It is
observed that, in order to have the same error, the im-
portance sampling-based approach requires the number of
samples N to grow exponentially with the dimension d,
whereas the growth using the FPF for this numerical ex-
ample is O(dz). This conclusion is consistent with other
numerical studies reported in the literature
[2019; |Stano et al., 2014} Berntorp), 2015).

For the purposes of the analysis, a modified form of the
particle filter is considered whereby the denominator is
replaced by its exact form:

N _|zl—§3|2
N = i < e 7w
F(PiF)(f) ::Z 1f(X0>7 Wl = 17, X2 .
i=1 NEle % |Z]

(20)

Proposition 3.8 (Prop. 4 in (Taghvaei and Mehtal
2020)). Consider the filtering problem l} with state di-
mension d. Suppose o9 = 0, = 0 > 0 and f(z) = a"x
where a € RY with |a| = 1. Then:
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Figure 1: Numerical comparison for the filtering model . Level sets of the MSE. using: (a) importance sampling-based algorithm (18]
and (b) the FPF . As the state dimension d grows, in order to have same performance (MSE), the number of particles N must increase

as 2¢ for while they increase as d% for (119).

1. The MSE. for the modified importance sampling esti-
mator s given by

o? 1 o?
MSEs#(f) = N (3(2d) - 2) > ﬁ2d+1.

2. The MSE for the FPF estimator 1s bounded as
2

MSEppe(f) < 5= (3 +2d), (21)

Remark 3.9 (Curse of Dimensionality (CoD)). In the
limit as d — oo, the performance of the importance
sampling-based particle filters is studied in the litera-
ture (Buickel et all, |2008; |Bengtsson et all |2008; |Snyden
let all, |2008; |Rebeschini et all, |2015]). The main focus of
these studies is on the particle degeneracy (or the weight
collapse) issue: it is shown that if W — 0 then the
largest weight maxi<;<ny W{ — 1 in probability. Conse-
quently, in order to prevent the weight collapse, the number
of particles must grow exponentially with the dimension.
This phenomenon is referred to as the curse of dimension-
ality for the particle filters. In contrast, the weights in
an FPF are uniform by design (see ) Therefore, the
FPF does not suffer from the weight collapse issue and, in
particular, does not require resampling. A complete com-
parison of the two types of particle filters remains open
(see (Abedi et all,|2022) for recent progress on this topic).

Remark 3.10 (Scaling with the dimension). The scal-
ing with dimension depicted in Fig.|1] (b) suggests that the
O(d?) bound in is loose. This is the case because, in
deriving the bound, the inequality || - ||l2 < || - ||F is used,
where || - || and || - ||r denote the induced and Frobenius
norms, respectively (Taghvaei and Mehtd, 2020, Appendix
E). The inequality is loose particularly so as the dimension

grows. Also, it is observed that the MSE for the particle
filter grows slightly slower than the lower-bound 2¢. This is
because the lower-bound is obtained for the modified parti-
cle filter , while the MSE is numerically evaluated for
the standard particle filter . The correlation between
the numerator and denominator in reduces the MSE.

3.5. Extensions of FPF

In deriving the FPF, the main modeling assumption is
the nature of observation model (Ib)). (Such a model is
referred to as the white noise observation model.) In sev-
eral follow on works, the basic FPF is extended to handle
more general types of models for the state process. These
extensions are briefly described next.

1) FPF on Riemannian manifolds. The feedback control
form of the FPF formula holds not only for the
Euclidean state-space but also for the cases where the
state {X;}+>0 evolves on a Riemannian manifold, such as
the matrix Lie groups. These extensions are described
in (Zhang et al) 2016blal 2017a]b). In these papers, the
FPF is shown to provide an intrinsic description of the fil-
ter that automatically satisfies the geometric constraints
of the manifold. The gain is expressed as grad ¢ and ob-
tained as a solution of the Poisson equation. It is shown
that the gain is also intrinsic that furthermore does not
depend upon the choice of the Riemannian metric. For
the special case when the manifold is a matrix Lie group,
explicit formulae for the filter are derived, using the ma-
trix coordinates. Filters for two example problems are
presented: the attitude estimation problem on SO(3) and
the robot localization problem in SE(3). Comparisons are
also provided between the FPF and popular algorithms
for attitude estimation, namely the multiplicative EKF,
the invariant EKF, the unscented quaternion estimator,




the invariant ensemble Kalman filter, and the bootstrap
particle filter. Specifically, under a certain assumption of
a “concentrated distribution”, the evolution equations for
the mean and the covariance are shown to be identical to
the left invariant EKF algorithm.

2) FPF on discrete state-space. In[Yang et al.[(2015)), FPF
is extended to the filtering problem where the hidden state
{X:}+>0 is a continuous-time Markov process that evolves
on a finite state-space. (For this model, the optimal non-
linear filter is called the Wonham filter.) A standard algo-
rithm to simulate a Markov process is based on the use of
Poisson counters to simulate transitions between discrete
states. In order to define the process X, a control process
U is introduced that serves to modulate the rates of these
counters based on causal observations of data Z. An ex-
plicit formula for the FPF feedback control law is derived
and shown to be exact. Similar to 7 the formula is
in the form of “gain times error” where the gain is now
obtained by solving a certain linear matrix problem. The
linear matrix problem is the finite state-space counterpart
of the Poisson equation .

3) FPF with data association and model uncertainty. In
applications such as multiple target tracking, the filter-
ing problem often involves additional uncertainties in the
state model and the observation model . In the
classical linear Gaussian settings, algorithms based on the
Kalman filter have been developed to provide a solution
to these problems. These algorithms are referred to as
the interacting multiple model (IMM) filter (Blom) |2013])
and the probabilistic data association (PDA) filter (Bar-
Shalom et al.l 2009)). In the PDA filter, the Kalman gain is
allowed to vary based on an estimate of the instantaneous
uncertainty in the observations. In the IMM filter, mul-
tiple Kalman filters are run in parallel and their outputs
combined to form an estimate.

Like the Kalman filter, the FPF is easily extended to
handle additional uncertainties in the observation and sig-
nal models: These extensions, namely, the probabilistic
data association (PDA)-FPF and the interacting multiple
model (IMM)-FPF are derived in our prior works (Yang
et al., [2012, |2013a; [Yang and Mehta, 2018). Structurally,
the FPF based implementations are similar to the classical
algorithms based on the Kalman filter. In the linear Gaus-
sian settings, the equations for the mean and the variance
of the FPF-based filters evolve according the classical PDA
and IMM filters.

4) Collective inference FPF. The term “collective infer-
ence” is used to describe filtering problems with a large
number of aggregate and anonymized data (Sheldon and
Dietterichl [2011; |Singh et all 2020). Some of these
problems have gained in importance recently because of
COVID-19. Indeed, the spread of COVID-19 involves dy-
namically evolving hidden processes (e.g., number of in-
fected, number of asymptomatic etc..) that must be de-
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duced from noisy and partially observed data (e.g., num-
ber of tested positive, number of deaths, number of hos-
pitalized etc.). In carrying out data assimilation for such
problems, one typically only has aggregate observations.
For example, while the number of daily tested positives
is available, the information on the disease status of any
particular agent in the population is not known.

In [Kim et al,| (2021Db)), the FPF algorithm is extended
for a model with M agents and M observations. The M
observations are non-agent specific. Therefore, in its ba-
sic form, the problem is characterized by data association
uncertainty whereby the association between the observa-
tions and agents must be deduced in addition to the agent
state. In |Kim et al.| (2021b), the large-M limit is inter-
preted as a problem of collective inference. This viewpoint
is used to derive the equation for the empirical distribu-
tion of the hidden agent states. An FPF algorithm for this
problem is presented and illustrated via numerical simula-
tions. Formulae are described for both the Euclidean and
the finite state-space case. The classical FPF algorithm is
shown to be the special case (with M = 1) of these more
general results. The simulations help show that the algo-
rithm well approximates the empirical distribution of the
hidden states for large M.

Before closing this section, we remark on the
Stratonovich form of the mean-field FPF SDE (11). The
FPF is expressed in this form because of two reasons:

1. The feedback control law is “gain times error” which is
appealing to control engineers, and structurally sim-
ilar to the update formula in a Kalman filter. More-
over, for the linear Gaussian model, the gain is the
Kalman gain.

2. Expressed in its Stratonovich form, the gain times er-
ror formula carries over to the Riemannian manifolds
settings. This is because of the intrinsic nature of the
Stratonovich form (Zhang et al.| [2017bl Remark 1).

Notably, for the linear Gaussian model, the gain function is
a constant (i.e., does not depend upon x) and therefore the
Stratonovich form and the It6 form are the same. For the
general case, the It6 form involves a Wong-Zakai correction
term as described in the following remark.

Remark 3.11 (It6 form of FPF). In its It6 form, the
mean-field FPF 18 expressed as

h(X:) + he

dXt :a()_(t)dt + U(Xt)dBt + Kt(Xt)(dZt — dt)

LS o) 5012
+Z;V|Kt (Xo)Pdt,

where iZ;nzl V|K£J)()_(t)|2 is the Wong-Zakai correction
term. The Ito-Stratonovich relationship discussed here is
based on interpreting Ki(x) as a function of space x and
time t, and interpreting the o in the Stratonovich form only
with respect to the space x. In a recent paper (Pathiraja



Figure 2: Gain function approximation problem in the feedback par-
ticle filter. The exact gain function K(z) = V¢(z) where ¢ solves
the Poisson equation . The numerical problem is to approximate
Ké = V¢(x)|,_x: using only the particles {X?: 1 < i < N} sam-
pled from density p (depicted as shaded region). The dashed line
indicates the constant gain approximation, where the gain function
is approximated by its expected value according to .

et all, {2021, Sec. 3), the gain function is defined and in-
terpreted as a function of space x and the density. This is
natural because the dependence upon time t comes because
of the changes in density (p;) as the time evolves. Because
the density is a stochastic process, it is arqued that the
appropriate interpretation of o in the Stratonovich form
should involve both space x and the density. Using such an
interpretation, the Stratonovich form involves extra-terms
that are solutions to accompanying Poisson equations.

4. Algorithms for gain function approximation

The exact gain K is a d X m matrix-valued function,
where the j-th column of K is the solution of the Poisson
equation for j = 1,...,m. For the ease of presen-
tation, the exposition in this section is restricted to the
scalar-valued observation setting, i.e. m = 1, so that K
becomes a d-dimensional vector-valued function and the
superscript j is dropped from the Poisson equation .

In practice, the Poisson equation must be solved numeri-
cally. The numerical gain function approximation problem
is as follows:

input: samples {X?:1<i< N} L p, h(*)
output: gain function {Ki :1<i< N}

where p is the (posterior) density and K := K(X*). The
explicit dependence on time ¢ is suppressed in this section.
An illustration of the gain function approximation problem

appears in Fig. 2]

4.1. Motivation and overview of approaches

The Poisson equation is a linear PDE. In order to mo-
tivate the various solution approaches, it is useful to first
consider a finite-dimensional counterpart

Ax =b, (22)
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where A is a n X n (strictly) positive-definite symmetric
matrix and the righthand-side b is a given n x 1 vector.
The problem is to compute the unknown n x 1 vector =x.
For this purpose, the following equivalent formulations of
the finite-dimensional problem are first introduced:

1. z is the solution of the weak form
y"Ar =y"b, VyeR™

2. For some chosen positive €, x is the solution to the
fixed-point equation
€
/ e *4b ds.
0

3. x is the solution of an optimization problem

r=c “z+

T = argmin %ZTAZ —2"b.
z€R"

When n is large, these formulations are useful to numeri-
cally approximate the solution of :

1. For each fixed y € R", the weak form is a single equa-
tion. By restricting y to a suitable low-dimensional
subspace S C R™, the number of linear equations is
reduced for the purposes of obtaining an approximate
solution (possibly also in S).

2. The fixed-point equation is useful because e™¢* is
a strict contraction for € > 0 (because A is strictly
positive-definite). So, a good initial guess for x can
readily be improved by using the Banach iteration.

3. The optimization form is useful to develop alternate
(e.g., search type) algorithms to obtain the solution.

€A

With this background, we turn our attention to the Pois-

son equation expressed succinctly as

_APQI) = (h - h‘)7

where h := [ h(z)p(z)dz and A, := %V - (pV). The lin-
ear operator A, is referred to as the probability weighted
Laplacian. Functional analytic considerations require in-
troduction of the function spaces: L?(p) is the space of
square integrable functions with respect to p with inner
product {f,g) := [ f(z)g(z)p(x)dx; H'(p) is the Hilbert
space of functions in L?(p) whose first derivative, defined
in the weak sense, is the also in L?(p); and Hg(p) = {¢ €
HY(p)| [ v()p(a)da = 0}.

These definitions are important because H{(p) is the
natural space for the solution ¢ of the Poisson equa-
tion (I2). The operator —A, is symmetric (self-adjoint)
and positive definite because

_<f’ Apg> = <Vf, Vg> = _<Apfag>v

In the infinite-dimensional settings, one requires an addi-
tional technical condition—the Poincaré inequality (PI)—
to conclude that the operator is in fact strictly positive-
definite (Taghvaei et al. 2020, Sec. 2.2). Assuming the

Vf.g € Hy(p).



PI holds, it is also readily shown that A;l is well de-
fined, i.e., a unique solution ¢ € H{ (p) exists for any given
h € L*(p) (Yang et all 2016, Thm. 2).

For the purposes of numerical approximation, entirely
analogous to the finite-dimensional case, the following

equivalent formulations of the Poisson equation are intro-
duced:

1. ¢ is a solution of the weak form

(Vi) Vo) = (Y, h —h) Vo € Hy(p). (23)
2. For some chosen positive €, ¢ is a solution of the fixed-

point equation

¢=crp+ / e*®e (h — h)ds. (24)
0

The notation e“*» is used to denote the semigroup as-

sociated with A, (Bakry et al.,[2013). The semigroup
is readily shown to be a Markov operator.

3. ¢ is the solution of an optimization problem

¢ = arg min %(Vf,Vf)—F(f,h—i_L). (25)

feH;(p)

Each of the three formulations has been used to develop
numerical algorithms for gain function approximation. A
review of the resulting constructions appears in the follow-
ing three subsections:

4.2. Galerkin and constant gain approximation

The starting point is the weak form . A relaxation is
considered whereby ¢ € S = span{t1,...,¥n}, a finite-
dimensional subspace of H{ (p). The functions w1, ..., ¥ar
need to be picked and are referred to as the basis functions.
The resulting algorithm is referred to as the Galerkin algo-
rithm (Yang et al., 2016} Sec 3.3). The algorithm is given
in Table 4.2l

Algorithm 1 Synthesis of the gain function: Galerkin
approximation
Input: {X}N 1 {h(Xl)}z 1» basis functions {¢;(z)} ;.
Output: {K‘}¥

. Calculate hY) =

1 N Zz 1 ( )

2: Calculate by = Nzizl( (X7) = M)y (X7).

3: Calculate A = Zfil Vb (X)) "V (X7).

4: Solve the linear matrix equation Ax = b for x, where
A =[Ay] and b = [bg].

5. Ki= 0 sV (X)),

The most important special case of the Galerkin al-
gorithm is obtained upon picking S to be the subspace
spanned by the d coordinate functions {x,zs,..., x4}
The special case yields the constant gain approximation
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Algorithm 2 Synthesis of the gain function: constant

gain approximation
Input: {X"}}1 1 {h(X") Ly
Output: {K}N,

1: Calculate h) = + SN h(X).
2 K= £V X/ (h(Xg) - 15<N>)

of the gain K as its expected value. Remarkably, the ex-
pected value admits a closed-form expression which is then
readily approximated empirically using the particles:

[ vo@ntorts = [ (hlz) ~ Wyap(e)ds
N
Z
- (26)

where h(V) 1= N=13° h(X?). (See Fig. [2| for an illus-
tration of the constant gain approximation.) With the
constant gain approximation, the FPF algorithm is a non-
linear EnKF algorithm (Taghvaei et al., |2018). While
its derivation starting from an FPF is novel, the for-
mula has been used as a heuristic in the EnKF liter-
ature (Evensen, 2006; Bergemann and Reich, [2012).

The main issue with the Galerkin approximation is that
it is in general very difficult to pick the basis functions.
There have been a number of studies to refine and improve
upon this formula (Yang et al., 2016} 2013b; [Berntorp and
Grover, 2016; [Matsuura et al., 2016} [Radhakrishnan et al.|
2016 Radhakrishnan and Meyn, |2018; Berntorp), 2018]). In
the following two subsections, we describe two approxima-
tions which appear to be more promising approaches in
general settings.

K(cnst‘ apprx.) .__

(N))Xl

= \

4.8. Diffusion map-based algorithm

The starting point is the fixed-point equation based
on the Markov semigroup e“». For small values of ¢, there
is a well known approximation of e“®# in terms of the so-
called diffusion map (which too is a Markov operator):

ge(|lz —yl)
(ly = z|)p

(Tef) (= f(y)p(y)dy,

/]Rd \/ J ge (2)dz
(27)
22
where g(z) := e~ % is the Gaussian kernel in R and n.(z)
is the normalization factor chosen so that [(7.1)(z)dz =
1 (Coifman and Lafon| |2006). A representative approxi-
mation result is as follows:

Proposition 4.1 (Prop. 3.4 in (Taghvaei et all 2020)).
Letn € N, tg < 00, and t € (0,ty) with € = % Then, for
all functions f such that f,Vf € L*(p):

~+
M\w

(T2

where the constant C depends only on ty and p.

2 fllzze) < —C Il + IV ),



Because the diffusion map is defined using Gaussian
kernels, its empirical approximation is straightforward:

N

1 ge(|1‘—Xi|)
@ & o g - 0

(T f) () = FX7),

where nEN)(x) is the normalization factor. The nature of

the approximation is as follows:

Proposition 4.2 (Prop. 3.5 in [Taghvaei et al.| (2020)).
Consider the diffusion map kernel T. and its empirical ap-

proximation {TE(N)}NeN. Then for any bounded continu-
ous function f € Cp(RY):

1. (Almost sure convergence) For all x € R?

lim (T f)(z) = (T.f)(z), a.s.

€
N—o00

2. (Convergence rate) For any 6 € (0,1), in the asymp-
totic limit as N — 00,

/ (T f) (@) - (T.f

with probability higher than 1 — 6.

log(%)

)(@)|*p(x)dz < O(

With these approximations, the fixed-point equa-
tion is approximated in two steps:

1. The semigroup e® is approximated by the diffusion
map T¢:
(Step 1) ¢e = Te(be + 6(h - B6)7 (28&)
where h. = [h(z)p9(z)dz with p(z) =
ne(z)p(x)
S ne(@)p(z)dz
2. T, is approximated by its empirical approximation
TE(N):
(step2) ¢V = T§N>¢£N> +e(h = hY), (28b)

where EEN) [ h(z z)dz with pM(z) =
Zl uu(Xl) '
Based on the finite-dimensional fixed-point equa-
tion , an algorithm for gain function approximation
is given in Table [3| In the algorithm, the gain function is

approximated by the formula
KW = v [T§N>¢>§N> + T (h— B§N>)} .

There are alternative ways to approximate the gain func-
tion in terms of q/)EN). While these solutions have the same
asymptotic in the limit as € — 0, they behave differently
when € is large. The specific approximation selected here
does not require derivative of the observation function and
converges to the constant gain approximation as ¢ becomes
large (Taghvaei et al.| [2020, Remark 4.8).

Algorithm 3 Synthesis of the gain function: diffusion
map-based algorithm

Input: {X}Y 1 {h(XZ) s, Pprevs € L.
Output: {K}N,

|x— J\"‘
1. Calculate g;; := e~ 0

—3u _____ fori,j=1to N.
V221 9inN/ 221 95t ot L ©

3: Calculate d; = Zj k;j fori=1to N.

4: Calculate T;; := Zi_’ fori,j =1 to V.

5: Calculate m; = E‘fidj fori=1to N.
6: Calculate h = N m;h(X7).

fori,j=1to N.

2: Calculate k;; :=

7: Initialize ® = Ppyey.

8: fort=1to L do .
9. & =" Tyd;+eh—h)fori=1toN.

10: end for

11: Calculate r; = ®; +¢h; for i =1 to N.

12: Calculate s;; = iTij(rj — 25:1 Tiery) for 4,5 =1 to
N.

13: Calculate K? = > ;X7 for i =1 to N.

Error analysis. The error in diffusion map approximation
comes from two sources:

1. The bias error due to the diffusion map approximation
of the semigroup (step 1); and

2. The variance error due to empirical approximation in
terms of particles (step 2).

The error is analyzed in (Taghvaei et al., 2020) where the
following result is proved:

Proposition 4.3 (Thm. 4.3 and 4.4 in (Taghvaei et al.
2020) ). Consider the fized-point formulation of the Pois-

son equation , its diffusion-map approximation (28a)),
and its empirical approzimation (28b)).

1. For each fixred ¢ > 0, there exists a unique solu-

tion to (28a) with a wuniform bound ||¢c||r2¢p.) <
Cllhllz2(p.y- In the asymptotic limit as € — 0

I$e = llz2(pr) < OCe).

2. The operator Te( ) is a strict contmctwn on L (p (N))
and the fized-point equation admits a unique

solution. The approximate solution ¢§N)
the kernel solution ¢,

converges to

. N _
Jim (|6 — bl pe) =0, as.

The following diagram illustrates the convergence and
the respective types of errors:

N 0
Too . el

(N)
¢E (bias)

(variance)



10 A °
exact
8 L] £=0.02
= €£=0.10
6 1 v €=0.50
K s+ £=2.00
ol
21 const. gain
o_

< % o

(a

—e— diffusion map
---- constant gain

100 4

Error

bias
dominates

variance
dominates

107 T T
1073 1072

10° 10!

Figure 3: Bias variance trade-off in the diffusion map-based gain function approximation algorithm: (a) Gain function computed for different
values of € with N = 200 particles. The dashed line is the constant gain solution . As e gets larger, the diffusion map gain converges to
the constant gain. (b) Plot of the MSE as a function of e. The shaded area in the background of part (a) is the density p which is taken as
sum of two Gaussians N (—1,02) and N (+1,0?) with 02 = 0.2. The exact gain function K(z) is computed for h(z) = = by using an (exact)
integral formula forr the solution (Taghvaei et al., [2020, Eq. 4.6). In part (b), the MSE is computed as an empirical approximation of the

lefthand-side of by averaging over 1000 simulation runs.
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Figure 4: Bias-variance trade-off as a function of (a) the state dimension d € {1,2,5,10} (for a fixed N = 1000); and (b) the number of
particles N € {100, 200, 500, 1000} (for a fixed d = 1). In the vector case, p(z) = pp(x1) Hi:z pg(zn) where pp is the bimodal density (same

as in Fig. |3) and pg is the Gaussian density.

A quantitative bound on the mean-squared error (MSE)
is obtained in the asymptotic limit as e | 0 and N — oo
as follows:

N

1 . . 1
]E[N ; K = Vo(X")?] ) < O(e?) +O(m)’

bias

variance

MSE
(29)

where {K‘}Y , is computed from the Algorithm (Table (3)
and V¢ is the exact gain function from solving the Poisson
equation . The error due to bias converges to zero as
€ — 0 and the error due to variance converges to zero as
N — oo. There is trade-off between the two errors: To
reduce bias, one must reduce e. However, for any fixed
value of N, one can reduce e only up to a point where
the variance starts increasing. The bais-variance trade-off
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is illustrated with the aid of a scalar (d = 1) example in
Fig.[3} If € is large, the error due to bias dominates, while
if € is small, the error due to variance dominates. An
numerical illustration of scalings with N and d appears in
Fig. [ Additional details on both these examples can be
found in (Taghvaei et al., 2020, Sec. 5).

Remark 4.4 (Relationship to the constant gain for-
mula ) There is a remarkable and somewhat unex-
pected relationship between the diffusion map and the con-
stant gain approzimation (Taghvaei et all 2020, Prop.
4.7). In particular, in the limit as € — oo, the diffusion
map gain converges to the constant gain . This sug-
gests a systematic procedure to improve upon the constant
gain by de-tuning the value of € away from the e = oo]
limit. For any fixed N, a finite value of € is chosen to
minimize the MSE according to the bias variance trade-




Table 1: Applications and evaluation of the feedback particle filter

Authors ‘ Applications of FPF Reference ‘ Year ‘
del Moral and Horton | Quantum harmonic oscillators del Moral and Horton] (2021)) 2021
Wang et. al. Unmanned aerial vehicle tracking Wang et al| (2021) 2021
Su et. al. Soil estimation Su et al.| (2019) 2021
Kumar and Mishra Marine applications Zheng et al.| (2019) 2019
Berntorp and Grover | Satellite tracking and re-entry Berntorp| (2015) 2015
Surace et. al. Evaluation and comparison of FPF | |Surace et al.[ (2019) 2017
Stano Hopper-dredger model Stano| (2018); [Stano et al.| (2014) | 2014
Matsuura et. al. Target state estimation Matsuura et al.| (2016)) 2016
Kutschireiter et. al. Neuronal dynamics Kutschireiter et al.| (2017) 2016
Tilton et. al. Coupled oscillators Tilton et al.| (2012) 2013
Tilton et. al. Marine estimation Tilton et al.| (2013) 2013

off. Based on this, a rule of thumb for choosing the €
value appears in (Taghvaei et all 2020, Remark 5.1).

Remark 4.5 (Analysis of FPF with diffusion map approx-
imation). An analysis of the finite-N FPF using the diffu-
sion map approximation appears in (Pathiraja and Stan-
nat, |2021). Under mild technical conditions on the drift
a(-),o(:), (), it is shown that the finite-N FPF is well-
posed, i.e., a strong solution exists for all time t (Pathiraja
and Stannat, |2021, Thm. 1.1). Based on a propagation of
chaos type analysis, convergence estimates are derived to
relate the finite-N system to its mean-field limit (Pathiraja
and Stannat, 2021, Thm. 1.2). These estimates are shown
to hold up to a certain stopping time. For arbitrary time t,
well-posedness and convergence remains an open problem.

4.4. Variational approximation

The starting point is the variational form . The
objective function is denoted by J(f) with its empirical
approximation is obtained as

N
D IVAXH? = FXH(XT) = BMY)

i=1

1

(N) —
JN(f) =
The problem of minimizing the empirical approximation
over all functions is ill-posed: the minimum is unbounded
and minimizer does not exist. (Abstractly, this is because
the empirical probability distribution does not satisfy the
Poincaré inequality.) Therefore, we consider

: JN)
min (fo)

where Fg is a parameterized class of functions. A function
in the class Fg is denoted by fyo(z) or f(z;0) where § € ©
is the parameter, and © is the parameter set. The two
main examples are as follows:

1. Fo {Zj]\/il 0;v;;, v; € H&,@j € Rforj
1,...,M} is a linear combination of selected basis
functions. With a linear parametrization, the solution
of the empirical optimization problem is given by the
Galerkin algorithm (Yang et all 2016, Remark 5).
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2. Fo is a neural network where the parameters 6 are
the weights in the network.

In practice, it is not possible to solve the optimization
problem exactly, but up to some optimization gap. In par-
ticular, let ¢éN) be the output of an optimization algorithm
that solves the problem up to € error, i.e.,

J(o5) < min J(f) +e.

The good news is that it is possible to upper-bound the
error in approximating the gain function in terms of this
optimization gap.

Proposition 4.6 (Prop. 1 in |Olmez et al.| (2020)). Let
KéN) = VqSém where éN) is the output of an optimization
algorithm that solves the minimization objective J(f) with
€ optimality gap. Then

K = K7 < 2,

where K = V¢ is the exact gain function.

The optimization gap € depends on the selected
parametrization Fy, number of particles N, and the it-
eration number of the employed optimization algorithm.
Its characterization and analysis is open and the subject
of ongoing work. In general, such analysis falls under the
framework of statistical learning theory (Anthony et al.
1999; |[Shalev-Shwartz and Ben-David, [2014).

The numerical results using this approach are depicted
in Fig. These results are for the bimodal example in-
troduced in Fig. The gain function is parameterized
using a two-layer residual NN with 32 neurons per layer.
The Adam algorithm is used to learn the parameters of
the NN. Additional details on the numerics can be found
in (Olmez et al., [2020]).

4.5. Numerical evaluation of FPF

Numerical evaluations of the FPF algorithm, and com-
parisons with the nonlinear extensions of the Kalman
filer and conventional particle filters, have been subject
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Figure 5: Results of the variational gain function approximation using a neural network parameterization: Plot of (a) the gain function; and
(b) the optimization gap as the number of iterations of the Adam algorithm. The problem setup is the same as Fig.

of several publications (some of these studies are tabu-
lated in the Table . Notable amongst these is the early
work of who both extended the algo-
rithm and applied it to two highly nonlinear applications
in aerospace, namely, the re-entry and two-body problems.
Another notable early work is (Stano et al., [2014)) on the
application of estimating soil-dependent time-varying pa-
rameters of the hopper sedimentation model. The study
includes extensive comparisons with the conventional par-
ticle filters. While these studies report favorable accu-
racy and computational cost, the application of FPF to
truly high-dimensional and nonlinear problems remains
still open. In particular, beyond the toy examples, we
do not know of any application where the diffusion map
approximation has been applied.

Remark 4.7. Curse of dimensionality (CoD) is one of
the main issues motivating the recent work on particle fil-
ters (Bengtsson et all, |2008; |Bickel et al., |2008; |Beskod
let all 2014 |Rebeschini et all, |2015). The analysis pre-
sented in Sec. helps show that, at least in the lin-
ear Gaussian settings of the problem, the FPF/EnKF al-
gorithm does not suffer from CoD. This is because the
Poisson equation admits an explicit solution in this case.
Because FPF is an exact algorithm, if/when CoD can
be avoided in the nonlinear case really depends on the
quality of the gain function approzimation. The bias-
variance analysis of the diffusion map algorithm, presented
in Sec. [{-3, is helpful to see some of the tradeoffs. The
analysis suggests that to avoid CoD one must take advan-
tage of (i) the underlying regularity of the gain function
(e.g., constant in the linear Gaussian case), and/or (ii)
inherent low-dimensional structure in the problem (e.g.,
approximation of posterior density in a low-dimensional
manifold where a good diffusion map approrimation can
be obtained). One promising avenue is the variational
gain function approximation using neural networks, as de-
scribed in[{.4 It remains to be seen whether some of the
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outstanding successes of neural networks in other fields can
be replicated to avoid CoD in the particle filters.

5. Optimal transport theory

In this section, we describe a systematic procedure to
construct the exact mean-field process X introduced as
step 1 in (10). The first aspect to note is that while the
FPF provides an explicit formula for u and K, the
formula is not unique: One can interpret as trans-
porting the prior density py at time ¢ = 0 to the posterior
density p; at time t. Clearly, there are infinitely many
maps that transport one density into another. This sug-
gests that there are infinitely many choices of control laws
that all lead to exact filters. This is not surprising: The
exactness condition specifies only the marginal density at
times ¢, which is not enough to uniquely identify a stochas-
tic process, e.g., the joint density at two time instants has
not been specified.

In the following, we first discuss the non-uniqueness
issue for the simpler linear Gaussian model. The non-
uniqueness naturally motivates optimal transport ideas to
uniquely solve for v and K. This is the subject of the re-
mainder of this section to derive the feedback control law
for the FPF (L1).

5.1. Non-uniqueness issue in linear-Gaussian setting

Consider the linear Gaussian FPF for the mean-
field process {X;}+>0. The conditional mean and variance
of X, are denoted by m, and ¥, respectively. The condi-
tional mean evolves according to

dmy = Amydt + Ky (dZ; — Hmydt),

where K, := ¥, H". Define an error process & := X; —my.
Its equation is given by

1_ _
dgt = (A — ithTH)gt + O'BdBt.



This is a linear system and therefore the variance of &,
which equals ¥; (by definition), evolves according to the
Lyapunov equation
d - IS T T 3 IS T T
= Rice(%y).

The derivation helps show that the equations for the
mean and variance are identical to the Kalman filter equa-
tions, and , respectively, and thus proves the ex-
actness property of the linear FPF .

These arguments suggest the following general proce-
dure to construct an exact X process: Express )_(t as a
sum of two terms:

Xe=me+&, t>0,
where m; evolves according to and the evolution of &
is defined by the SDE:

dﬁt = thtdt + O'tdBt + U;th,

where {W};>0 and {B};>¢ are independent copies of the
measurement noise {W},;>¢ and the process noise { B};>0,
respectively, and G4, o, and o} satisfy the matrix equation
(for each time)

Gtit + Sth + O'tO';F + O'I/S(UQ)T = RiCC(it), t Z 0. (30)

By construction, the equation for the variance is given by
the Riccati equation . The result is summarized in the
following Proposition:

Proposition 5.1 (Prop. 1 in Taghvaei et al| (2022)).
Consider the linear-Gaussian filtering problem and the
following family of the mean-field processes

dXt == Amtdt + Rt(dZt - H’n_?,tdt)
+ Gt(Xt — ﬁlt)dt + O'tdBt + O';th, Xo ~ N(mo, EQ),

where Gy, oy, and o} satisfy the consistency condition .
Then, X; is exact, i.e. the density of X; is Gaussian
N(my¢, X)) where my and Xt solve the Kalman filter equa-

tions, and , respectively.

In general, with different choices of o; and o}, there are
infinitely many solutions for . Below, we describe three
solutions that lead to three established form of EnKF and
linear FPF:

1. EnKF with perturbed observation (Reich, 2011, Eq.
(27)):
Gt - A - itHTH,

/ N T
or=0Rp, O0y=2xH".

2. Stochastic linear FPF (Yang et al., [2016 Eq. (26)) or
square-root form of the EnKF (Bergemann and Reich),

Hq (3.3)) :

1_
Gt =A- §ZtHTH’ 0Ot = 0B, 0'; =0.

3. Deterministic linear FPF (Taghvaei and Mehtal 2016,
Eq. (15)) (de Wiljes et al., 2018 Eq. (82)):

1 1. -
Gy=A— §EtHTH + 5232;1, oy =0, o, =0.

Fix 04, 0. Then given any particular solution Gy of (30)),
one can construct a family of solutions Gy + X 10, where
), is any arbitrary skew-symmetric matrix (Taghvaei and
Sec. III-B). For the linear Gaussian problem,
the non-uniqueness issue is well known in literature: The
two forms of EnKF, the perturbed observation form (Re-
ich| [2011)) and the square-root form (Bergemann and Re-
ichl 2012) are standard. A homotopy of exact determinis-
tic and stochastic EnKF's is given in . An
explanation for the non-uniqueness in terms of the Gauge
transformation appears in (Abedi and Surace, 2019). An
extension to the case with correlated noise appears in
2022)

Given the non-uniqueness issue, a natural question is
how to identify a unique X process? For this purpose, opti-
mal transport theory is described in the following Sec.
For the linear Gaussian case, the theory is used to derive
the following optimal transport form of the linear FPF
(see (Taghvaei and Mehta), 2016 [2020) for details):

_ _ 1 _ _
dX, =AX,dt + 5232;1 (X; —my)dt

1- HX, + Hnm - -
+ 5Kz, - #dt) FOETNX, — my)dt,
(31)
where Q; = QPFT is a specific skew-symmetric matrix.

The optimal transport FPF is exact and has two dif-
ferences compared to the linear FPF (14):

1. The stochastic term opdB; is replaced with the de-
terministic term X5, " (X, —m,)dt. Given a Gaus-
sian prior, the two terms yield the same posterior.
However, in a finite-IN implementation, the stochastic
term serves to introduce an additional error of order

O(-%) (lTaghvaei and Mehtau|7 |2018|, Prop. 4).

VN

2. The SDE has an extra term involving the skew-
symmetric matrix ;. The extra term does not effect
the posterior, i.e., X is exact for all skew-symmetric
choices of §2;. The specific optimal choice ; = QPFT
serves to pick the symmetric solution G of the consis-
tency equation . For the scalar (d = 1) case, the
skew-symmetric term is zero. Therefore, in the scalar
case, the update formula in the linear FPF (14]) is op-
timal. In the vector case, it is optimal iff QP"T = 0.

5.2. FPF formula

In this section, we provide a justification for the feedback
control formula in the FPF . It is helpful to begin with
the simpler deterministic case.



5.2.1. Deterministic path

Let P2(R%) be the space of everywhere positive proba-
bility densities on R? with finite second moment. Given
a smooth path {p; € Po(R?) : ¢ > 0} the problem is to
construct a stochastic process {X; }+>0 such that the prob-
ability density of X;, denoted as p;, equals p; for all t > 0.
The exactness condition is expressed as

pt=pt, YV 1>0. (32)

As has already been noted, there are infinitely many
stochastic processes that satisfy the exactness condition.
A unique choice is made by prescribing an additional op-
timality criterion based on the optimal transport theory.

To make these considerations concrete, assume that the
given path {p;};>0 evolves according to the PDE

Ope
ot

where V(+) is an operator (e.g., the Laplacian) that acts
on probability densities. (This necessarily restricts the op-
erator V, e.g., [V(p)(z)dz = 0 for all p € P2(R?).) The
following model is assumed for the process {X;};>o:

d - _
—X; = ut(Xt)»

X ~J
ar 0 ~ Do,

(33)
where ui(+) is a control law that needs to be designed.
From the continuity equation, the exactness condition
is satisfied if
-V (ﬁtut) = V(ﬁt), vV t>0. (34)
The non-uniqueness issue is now readily seen: The first-
order PDE admits infinitely many solutions. A unique
solution uy () is picked by minimizing the transportation
cost from X; to X;ya¢ in the limit as At — 0. The L*-
Wasserstein cost is particularly convenient because

. 1 _
Jim 3B = X = [ ().

Therefore, for each fixed ¢, the control law u,(+) is obtained
by solving the constrained optimization problem

min

°p = _ _
“t(')/ﬂw ue(@)["pe()dz, st =V (Prug) = V(pr).

By a standard calculus of variation argument, the opti-
mal solution is obtained as uf = V¢; where ¢; solves the
Poisson equation —V - (p;Veé;) = V(p:). The resulting
stochastic process X is defined by

dX,

dt v(bt(Xt)a
¢¢ solves the PDE — V- (p:V:) = V(py).-

XO ~ Po;

The process is exact by construction.
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Example 5.2. Suppose the given path is a solution of
the heat equation % Ap, (V(-) is the Laplacian).
The solution of the Poisson equation is easily obtained as
¢+ = log(pt). The optimal transport process then evolves
according to

d

&Xt = —Vlog(p(Xy)),

XO ~ Do- (35&)

This process should be compared to the well known example

dX, =dB;, Xo ~ po, (35b)

where {B}i>0 is a W.P.. The density for X; also solves
the heat equation. In the language of optimal transporta-
tion theory, the coupling defining is deterministic
while it is stochastic in .

5.2.2. Stochastic path

In the filtering problem, the path of the posterior prob-
ability density is stochastic (because it depends upon the
random observations {Z;};>0). Therefore, the preceding
discussion is not directly applicable. Suppose the stochas-
tic path {p;};>0 is governed by a stochastic PDE

dp: = H(pe)d1y,

where H(-) is an operator that acts on probability densities
and {I; : t > 0} is a W.P..
Consider the following SDE model:

dXt = Ut(Xt)dt + Kt(Xt)dIt, XO ~ Do

where, compared to the deterministic model , an addi-
tional stochastic term is now included. The problem is to
identify control laws u(-) and K¢(-) such that the condi-
tional density of X; equals p;. Upon writing the evolution
equation for the conditional density of X; (Yang et al.|
2016, Prop. 1), the exactness condition is formally satis-
fied by all such u:(-) and K¢(+) that solve

=V (piKe) = H(pr),
1
-V (ﬁtut> + §(V . (ﬁth)Kt +}5thVKt) =0.

(36a)
(36b)

These equations are the stochastic counterpart of , and
as with , their solution is not unique.

The unique solution is obtained by requiring that the
coupling from X, and XHM is optimal in the limit as
At — 0. In contrast to the deterministic setting, the lead-
ing term in the transportation cost E[|X;ia: — X¢|?] is
O(At) whereby

N -2
A, A Bl Xeeas = Xef] =

[ Ke@)Ppi ().
Rd

Therefore, for each fixed t, the control law K;(-) is obtained
by solving the constrained optimization problem

min

/ Ki(2)Ppe(z)dz, st — V- (0:Kyi) = He(pr)-
Ke() JRra



As before, the optimal solution is given by K} = V¢, where
¢4 solves the second-order PDE —V - (5, V) = H(Dy).

It remains to identify the control law u,(-). For this pur-
pose, the second-order term in the infinitesimal Wasser-
stein cost is used:

(E[|Xt+At - X - A’5/

R

lim —
ArSo At?

/ e (2)[250 ()
Rd

K@) P2

The righthand-side is minimized subject to the con-
straint (36b)). Remarkably, the optimal solution is ob-

tained in closed form as

uy = —%H(ﬁt)v@ + 1V2¢>tv¢t + &,
Pt 2

where & is the (unique such) divergence free vector field

(i.e.,, V- (pi&) = 0) such that u] is of a gradient form.

That can be solved in an explicit manner was a major

surprise at the time of its discovery (Yang et all [2011b

2013b)). The resulting optimal transport process is

_ _ 1 _ _
dXt = VqSt(Xt) O (d[t — g%(ﬁt)dt) + ft(Xt)dt, XO ~ Do-
t

(37)

It is also readily shown that the process {X;};>o is in
fact exact for any choice of divergence free vector field
{&}t>0. The most convenient such choice is to simply set
& = 0. The resulting filter is exact and furthermore also
(infinitesimally) optimal to the first-order.

For the special case of the nonlinear filtering prob-
lem, H(p) = (h — h)p where h = [h(z)p(z)dz and
dI; = (dZ; — hydt) is the increment of the innovation pro-
cess. For these choices, the optimal transport stochastic

process becomes
_ _ 1 _ _ _
dXt = quﬁt(Xt) o (dZt — §(h(Xt) + ht)dt) + §t(Xt)dt

The feedback control law in the FPF algorithm repre-
sents the particular sub-optimal choice & = 0. The choice
is optimal for d = 1.

Remark 5.3. The sub-optimality of FPF is not a problem
because the filter is exact. A case for FPF may be made
on computational grounds. Because it requires a solution
of a single Poisson equation, the FPF control law is the
simplest possible control law leading to an exact filter. A
natural question then is whether there is any advantage to
be had by using the optimal transport control law? As of
yet, the answer to this question is not clear. The same
question arises in the optimal transport map estimation
problem (Makkuva et all |2020): why aim for the opti-
mal transport map as opposed to say Knothe—Rosenblatt
rearrangement (Villani, [2009, Ch. 1)? As an additional
point, there is also a freedom in replacing the quadratic cost
function in the optimal transport problem. An argument
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for the optimal transport map with quadratic cost function
can be made on the account of its special geometrical struc-
ture: the optimal map is the gradient of a convex function.
This may lead to nice computational and stability proper-
ties when the map is approximated with particles/samples.

5.3. Optimal transport formula for the static example

We now revisit the static example introduced in Sec. [3.1]
with the aim of deriving an explicit form of the control U
and relating it to the FPF. As explained in Sec. the
problem is to find a control U such that E[f(X)|Y]
E[f(X1)|Y] for all functions f € Cu(R?), where X;
Xo + U and X is an independent copy of X. This con-
dition is equivalently expressed as (X;,Y) ~ Pxy, and
the problem of finding U is formulated as the following
optimal transportation problem:

min
Uea(Xo,Y)

s.t X1 :Xo—‘rU,

E[lUI?],
_ (38)
(X1,Y) ~Pxy,

where the notation U € o(Xj,Y) means that U is allowed
to be measurable with respect to Xy and Y. This is an op-
timal transportation problem between (Xy,Y) ~ Px @ Py
and (X,Y) ~ Pxy where the transportation is constrained
to be of the form (X,Y) — (Xo + U,Y), i.e., the second
argument Y remains fixed. Its solution is obtained as an
extension of the celebrated Brenier’s result (Brenier} [1991))
as follows:

Theorem 5.4 (Thm. 1 in Taghvaei and Hosseini (2022)).
Consider the optimal transportation problem . Sup-
pose Px admits a density with respect to the Lebesgue mea-
sure. Then the optimal control is

U =V&(Xo;Y) — Xo,
where ® is the minimizer of the dual Kantorovich problem

min

Y .- * .
PECVX, E[‘D(X(),Y)—F(I) (Xay)]v

(39)
where ® € CVX, means x — ®(x;y) is convex in z for all
y and ®*(x;y) = sup, z"x — ®(z;y) is the conver conju-
gate of ® with respect to x.

Remark 5.5 (Relationship to the update formula for
FPF). In the continuous-time limit, the dual Kantorovich

problem is related to the wariational form of
the Poisson equation . In particular, with AZ; =
h(X:)At + AW, the solution to the problem (39) is as

follows (Taghvaei and Hosseini, |2022, Prop. 2):
_ 1 - _ _
(X AZy) = §\Xt|2 + (X)) AZ + (X)) At + O(AL)

where ¢ is the solution to the Poisson equation with
p taken as the density of Px, and v is the unique such
function such that Vip = —2EET ¢+ LV|V@|? + & where &



is divergence free. Therefore, the optimal transformation
Xy — Xy ae is given by,
Xt+At = Vm(i)(Xﬁ AZt)
h(Xt) + he
2
1 - _
+ 7 VIVO(X)P AL+ E(X) AL+ O(AF)

= X+ Vo(X)(AZ, - At)

which in the limit as At — 0 is the SDE for the optimal
transport FPF .

Remark 5.6 (Stochastic optimization and DNNs). The
variational problem s a stochastic optimization prob-
lem which allows for application of machine learning tools
to approximate its solution. In particular, deep neural net-
works (DNNs) can be used to parameterize the function ®
and stochastic optimization algorithms employed to learn
the parameters. Preliminary results in this direction are
presented in (Taghvaei and Hosseind, |2022) with a com-
prehensive development the subject of ongoing work.

PART II

6. CIPS for optimal control

In order to elucidate the ideas as clearly as possible, our
focus in this paper is entirely on the linear quadratic (LQ)
problem. Its extension to the nonlinear optimal control
problem can be found in (Joshi et al., [2022).

6.1. Problem statement and background

The finite-horizon linear quadratic (LQ) optimal control
problem is a special case of as follows:

T
min  J(u) = / 2 (|ICxy* + uf Ruy) dt + 23 Pray
w 0
(40a)
subject to: &y = Axy + Bu;, x9==x (40b)

It is assumed that (A, B) is controllable, (4, C) is observ-
able, and matrices Pr, R > 0. The [T = oo| limit is re-
ferred to as the linear quadratic regulator (LQR) problem.

It is well known that the optimal control u; = ()
where the optimal policy is linear

¢i(r) = Kz where Ky =R 'B'P,, 0<t<T

is the optimal gain matrix and {P; : 0 < ¢ < T} is a solu-
tion of the backward (in time) differential Ricatti equation
(DRE)

4
dt

P, = A"P,+PLA+C"C—-P.BR'B"P;,, Pr (given)

(41)
The algebraic Ricatti equation (ARE) is obtained by set-
ting the left-hand side to 0. As T' — oo, for each fixed
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time ¢, P, — P, exponentially fast (Kwakernaak and
Sivan, 1972, Thm. 3.7), where P> > 0 is the unique such
positive-definite solution of the ARE, and therefore the
optimal gain converges, K; — K> := —R™!BTP>*. Ap-
proximation of the gain K is a goal in recent work on
model-based RL for the LQR problem (Fazel et al.l 2018;
Mohammadi et al.l 2022]).

6.2. Objectives and assumptions

For the reasons noted in Sec. [I, we are interested in a
simulation-based solution that does not rely on an explicit
solution of the DRE (41). To clarify what is meant by
a simulation-based solution in the context of model-based
RL, we make a formal assumption as follows:

Assumption 1. 1. Functions f(xz,a) = Azr + Ba and
c(x) = Cx are available in the form of an oracle
(which allows function evaluation at any state action
pair (v,a) € R4 x R™).

2. Matrices R and Pr are available. Both of these ma-
trices are strictly positive-definite.

Simulator is available to simulate (40Db]).

Sitmulator provides for an ability to add additional in-

puts outside the control channel (e.g., see (Ba))).

This assumption is motivated from the data assimila-
tion literature where it is entirely standard and widely
used in applications, such as weather prediction, involving
EnKF. Part 1 of the assumption means that the matri-
ces A, B,C are not available explicitly. Rather, for any
given (z,a) € R? x R™, the vectors f(x,a) and ¢(x) can
be evaluated. Function evaluation forms for the dynamics
and the cost function is also a standard assumption for
any model-based RL algorithm. Part 2 of the assumption
is not too restrictive for the following two reasons:

1. In physical systems, one is typically able to assess
relative costs for different control inputs (actuators).
This knowledge can be used to select R.

2. For the LQR problem, under mild technical condi-
tions, the optimal policy is stationary and does not
depend upon the choice of Pr.

If these matrices are not available, one possibility is to
take R and Pr to be identity matrices of appropriate di-
mensions. The main restriction comes from part 3 of the
assumption. However, as the widespread use of EnKF am-
ply demonstrates, it is not un-realistic to assume it for a
simulation-based solution. Of course, it will not be possi-
ble with a physical experiment.

6.3. Dual EnKF

The dual EnKF algorithm is obtained from making use
of duality between optimal control and filtering. For this
purpose, we need to first dualize the DRE . Under the
assumptions of this paper, P, > 0 for 0 < ¢t < T whenever
Pr = 0 (Brockett| 2015, Sec. 24). Set S, = P! It is



readily verified that {S; : 0 < ¢t < T} also solves a DRE
(which represents the dual of (41])

%St = AS, + S;A™ — BR"'B* + 5,C*CS,,

Sr=P;t
(42)

The strategy is to approximate {S; : 0 < ¢ < T} using
simulations. As before, the construction proceeds in two
steps: (i) definition of an exact mean-field process; and (ii)

its finite-N approximation.

Step 1. Mean-field process: Define a stochastic process
Y ={Y; € R?:0<t<T} as a solution of the following
backward (in time) SDE:

dY, = AY,dt + Bdn, + $8,C™(CY; + Cay)dt, 0< t < T
Y7 ~ N(0, Sr) (43)

wheren = {n, € R™ : 0 < ¢ < T}isa W.P. with covariance
matrix R~!, and

th = ]E[KL St = E[(Y;g - ’ITLt)(Y/t - ”FLt)T], 0 S t<T

(44)

The meaning of the backward arrow on d7 in is that
the SDE is simulated backward in time starting from the
terminal condition specified at time ¢ = T'. The reader is
referred to (Nualart and Pardoux, [1988), Sec. 4.2) for the
definition of the backward Ito-integral. The mean-field
process is useful because of the following proposition.

Proposition 6.1 (Prop. 1 in Joshi et al| (2022)). The
solution to the SDE is a Gaussian stochastic process,
in which the mean and covariance of Yy are given by

ng=0, S;=8, 0<t<T

Consequently, X; := S; '(Y; — ) is also a Gaussian ran-
dom variable with
E[X:] =0, EX;X[]=P, 0<t<T

The significance of Prop. [6.1]is that the optimal control
policy ¢¢(-) can now be obtained in terms of the statis-
tics of the random variable X;. Specifically, we have the
following two cases:

1. If the matrix B is explicitly known then the optimal
gain matrix

K, = —R™'B"E[X,X]]

2. If B is unknown, define the Hamiltonian
(the continuous-time counterpart of the Q-
function (Mehta and Meyn, [2009)):

H(z,a,t)
= 2|Cz|* + 1a"Ra +2"E[X, X]'] (Az + Ba)
—_—— ———
cost function model
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from which the optimal control law is obtained as

b () = argmin H(z, a, t)
by recalling the minimum principle, which states
that the optimal control is the unique minimizer of
the Hamiltonian. It is noted that the Hamiltonian

H(x,a,t)is in the form of an oracle because (Az+ Ba)
is the right-hand side of the simulation model (40b)).

Step 2. Finite-N approximation: The particles {Y,’ €
R?:0<t<T,i=1,..,N} evolve according to the
backward SDE:

dv; = AYidt+ Bdy, +85™NMc" (
—_———

vy +cnV
f dt7
i-th copy of model (40b)

coupling

5 iid

Yi XN, PR, 1<i<N

n':={ni:0<t<T}is an iid copy of n and

SRR
N .

o ia

i=1

St(N) _ (N))T

N i
—nf™)(Y] —nf

The CIPS is referred to as the dual EnKF.

Optimal control: Set X} = (St(N))’l(Yti - ngN)). There
are two cases as before:

1. If the matrix B is explicitly known then
;X
N - i i
KM = - DORTUBTXD(X)T (46)
i=1

2. If B is unknown, define the Hamiltonian
HMN (z,0,t) == $Cz* + 1" Ra
—_——
cost function
;X
+ > (@"X))(X])" (Az + Ba)
N -1 —y —_———
= model
from which the optimal control policy is approximated
as
§N) (z) = argmin H™N) (2, a,t)
a€R™
There are several zeroth-order approaches to solve the
minimization problem, e.g., by constructing 2-point
estimators for the gradient. Since the objective func-
tion is quadratic and the matrix R is known, m queries
of HN)(z,-,t) are sufficient to compute d),EN) (z).

The overall dual EnKF algorithm can be found in (Joshi
et al, 2022, Algorithm 1 and 2).
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6.4. Relating dual EnKF to model-based RL

EnKF and relate these to the model-based RL:

In designing any RL algorithm,
the first issue is the representation of the unknown
value function (P, in the linear case). Our novel idea
is to represent P; is in terms of statistics (variance) of
the particles. Such a representation is distinct from
representing the value function, or its proxies, such

The following remarks are included to help provide an
intuitive explanation of the various aspects of the dual

1. Representation.

as the Q function, within a parameterized class of

functions.

2. Value iteration. The algorithm is entirely simula-
tion based: N copies of the model (40b)) are simulated
in parallel where the terms on the right hand-side

of have the following intuitive interpretations:

(a) Dynamics: The first term “AY;'dt” on the right-
hand side of is simply a copy of uncontrolled

dynamics in the model (40b]).

(b) Control: The second term “Bd%;” is the con-

trol input for the i-th particle.

It is specified

as a W.P. with covariance R~!. One may inter-
pret this as an approach to exploration whereby
cheaper control directions are explored more.
(¢) Coupling: The third term, referred to as the cou-
pling, effectively implements the value iteration

step. Coupling has a “gain times error” structure
where St(N)C’T is the gain and 1(CY} + C’n(N))

t

is the counterpart of the error in the linear

FPF (T4).

3. Arrow of time. The particles are simulated

backward—from terminal time ¢ = T to initial time
t = 0. This is different from most model-based RL

but consistent with the dynamic programming (DP)
equation which also proceeds backward in time.

6.5. Convergence and error analysis
In (Joshi et al. 2022, Prop. 3), under certain additional
assumptions on system matrices, the following error bound

is derived:

_ C -~ _ _

B[S = Sillr] < 7 + Coe” MTOEISEY — Sl
(47)

where C1, Co, A are positive constants and || - || denotes

Frobenius norm for matrices. The significance of the

bound is as follows: The constant A is same as the
rate that governs the convergence of the solution of the

DRE to the stationary solution (of the infinite-horizon
LQR problem). This means that the dual EnKF learns the
optimal LQR gain exponentially fast with a rate that is as
good as one would obtain from directly solving the DRE.
Convergence is numerically illustrated for a d-
dimensional system expressed in its controllable canonical

form
0O 1 0 O 0 0
0O 0 1 o0 0 0
A= , B=].
1

ad

22



where the entries (ay,...,aq) € R? are i.i.d. samples from
N(0,1). The matrices C, R, Pr are identity matrices of
appropriate dimension. For numerics, we fix T' = 10, chose
the time-discretization step as 0.02, and use N = 1000
particles to simulate the dual EnKF.

Fig. depicts the convergence of the four entries of
the matrix Pt(N) for the case where d = 2. Fig. depicts
the analogous results for d = 10. Fig. and Fig.
depict the open-loop poles (eigenvalues of the matrix A)
and the closed-loop poles (eigenvalues of the matrix (A +
BKSN))), for d = 2 and d = 10, respectively. Note that
the closed-loop poles are stable, whereas some open-loop
poles have positive real parts.

6.6. Comparison to literature

We present a comparison of the dual EnKF with policy
gradient algorithms in [Mohammadi et al.| (2022)) (denoted
as [M21]) and [Fazel et al.| (2018) (denoted as [F18]). In
these prior works, by restricting the control policies to the
linear form u; = Kz, the LQR problem reduces to the
finite-dimensional static optimization problem:

K* = argmin J(K)
K

E </ xy Qry + uy Ruy dt) (48)
0

where the expectation is over the initial condition. The
authors apply a pure-actor method using “zeroth order”
methods to approximate gradient descent, much like the
early REINFORCE algorithm for RL (Sutton and Barto,
2018).

A qualitative comparison of the dual EnKF with these
prior algorithms is given in Table Choosing t = 0
in , the error is smaller than ¢ if the number of particles
N > O(Z%) and the simulation time 7' > O(log(1)), while
the iteration number is one. This is compared with pol-
icy optimization approach in |[Fazel et al.| (2018) where the
number of particles and the simulation time scales poly-
nomially with e, while the number of iterations scale as
O(log(1)). This result is later refined in Mohammadi et al.
(2022)) where the required number of particles and the sim-
ulation time are shown to be O(1) and O(log(1)) respec-
tively (although this result is valid with probability that
approaches zero as the number of iterations grow (Moham-
madi et al) [2022] Thm. 3).).

A numerical comparison is made on the benchmark
spring mass damper example borrowed from (Mohammadi
et al) 2019, Sec. VI). Fig. [§| depicts the relative mean-
squared error, defined as

N
1p /T 17— PR
T\l TRIZ

Two trends are depicted in the figure: the O(+;) decay of
the MSE as N increases (for d fixed), which is a numerical
illustration of the error bound , and a plot of the MSE
as a function of dimension d (for N fixed).

MSE :=
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A side-by-side comparison with [F18] and [M21] is de-
picted in Fig.[0] The comparison is for the following met-
rics (taken from Mohammadi et al. (2022))):

_ ”Kest _ Koo”F

error8®n = erroraue M
K=l o

init

_COO

where the LQR optimal gain K and the optimal value
c* are computed from solving the ARE. The value cl(r]l\ft)
is approximated using the initial gain K = 0 (Note such
a gain is not necessary for EnKF). Because [F18] is for
discrete-time system, an Euler approximation is used to
obtain a discrete-time model.

In the numerical experiments, the dual EnKF is found
to be significantly more computationally efficient—Dby two
orders of magnitude or more. The main reason for the
order of magnitude improvement in computational time is
as follows: An EnKF requires only a single iteration over
a fixed time-horizon In contrast, [F18] and [M21] require
several steps of gradient descent, with each step requiring
an evaluation of the LQR cost, and because these opera-
tions must be done serially, these computations are slower.

In carrying out these comparisons, the same time-
horizon [0,T] and discretization time-step At was used for
all the algorithms. It is certainly possible that some of
these parameters can be optimized to improve the perfor-
mance of the other algorithms. In particular, one may
consider shorter or longer time-horizon T or use paral-
lelization to speed up the gradient calculation. Codes are
made available on Github for interested parties to inde-
pendently verify these comparisonsﬂ

o0

6.7. Extension to the nonlinear problem

An extension of the dual EnKF algorithm for the non-
linear optimal control problem appears in (Joshi et al.|
2022, Sec. 3). In the general nonlinear setting, the empiri-
cal distribution of the IV particles approximates the minus
log of the value function, leading to the optimal control
law . The algorithm involves the solution of a Poisson
equation, similar to the Poisson equation that appears in
the FPF algorithm. The dual EnKF algorithm for the LQ
problem arises as a special case when the Poisson equa-
tion admits an analytical solution. An interested reader
can find additional details in (Joshi et all 2022)) where
some numerical results for the problem of stabilizing an
inverted pendulum on the cart are also described.

7. Discussion and conclusion

In this survey, we described CIPS to approximate the
solution of the optimal filtering and the optimal control
problems (in parts I and II, respectively). As explained
in Sec. |1} there are close parallels with DA and RL. In
this section, we expand on some of these parallels with the
goal of highlighting some important points and directions
for future work.

Thttps://github.com/anantjoshi97/EnKF-RL
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Algorithm particles/samples | simulation time | iterations

dual EnKF O(%) O(log(1)) 1
|Faze1 et al.| (]2018') poly (1) poly (1) O(log(1))
|Mohammadi et al.l (]2022') o(1) O(log(1)) O(log(1))

Table 2: Computational complexity comparison of the algorithms to achieve € error in approximating the infinite-horizon LQR optimal gain.

1. Data assimilation, sampling, optimal transportation.
CIPS may be viewed as a sampling algorithm. The FPF
control law (coupling) is designed to sample from the pos-
terior. Compared to the conventional particle filters, cou-
pling is beneficial because the issue of particle degener-
acy is avoided (as discussed in Sec. . To design the
coupling, optimal transportation theory provides a useful
framework (as described in Sec.[f]). Variations of the basic
approach described here have been used in construction of
a class of filtering algorithms (Halder and Georgioul, 2017,
[2018] |2019; |Garbuno-Inigo et al., 2020} Luol 2019). The
optimal transport formulation has also been extended to
the Schrodinger bridge setting by considering a cost with
respect to the (prior) dynamics, or considering an entropic
regularization (Chen et al.| [2016; [Reichl [2019)). In related
works, the coupling viewpoint along with geometric no-
tions from optimal transportation theory, have enabled
application of optimization algorithms to design sampling
schemes (Liu and Wang| |2016; Richemond and Maginnis
[2017}; [Zhang et al., 2018} [Frogner and Poggiol, [2018} [Chizat
and Bachl 2018}, [Chen et al., 2018} [Liu et al. 2018} [Zhang]
et all 2019} [Taghvaei and Mehtal, [2019)).

Part II of this paper is motivated by the enormous suc-
cess of the CIPS (EnKF) in DA.

2. Reinforcement learning and optimal control. Com-
pared to typical RL approaches, there are two key innova-
tions/differences:

1. Representation of the unknown value function in
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terms of the statistics (variance) of a suitably designed
process; and

2. Design of interactions (coupling) between simulations
for the purposes of policy optimization.

We fully believe that the two key innovations may be useful
for many other types of models including MDPs and par-
tially observed problems. In the LQ setting of the problem,
doing so is beneficial because of the learning rate: Since
the [N = oo] limit is exact tor the LQ problem, the dual
EnKF algorithm yields a learning rate that closely approx-
imates the exponential rate of convergence of the solution
of the DRE. This is rigorously established with the aid of
error bound . In numerical examples, this property is
shown to lead to an order of magnitude better performance
than the state-of-the-art algorithms.

Apart from RL, model predictive control (MPC) is an-
other area where a model in the form of a simulator
is assumed to design optimal control for problems such
as () (Rawlings et al) 2017). Using duality, MPC meth-
ods have been adapted to design the moving horizon es-
timator (MHE). A big selling point of MPC is its ability
to handle constraints which has not been a major theme
in the DA literature. Another notable distinction is that
while MPC aims to find a single (optimal) trajectory, CIPS
simulate multiple stochastic trajectories in a Monte Carlo
manner. Notably, the solution of the deterministic optimal
control problem is based on simulating which is an
SDE. For the stochastic MPC problems, multiple simula-
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tions have been considered in the scenario-based approach
(Campi and Garatti, [2018)).

Some perspectives on future research. In basic sciences,
there are a number of important examples of interacting
particle systems. This paper presents results on the theme
of “CIPS as an algorithm”. The most historical of such
algorithms is the EnKF which is used to solve the problem
of data assimilation. It is hoped that this survey convinces
the reader that the paradigm is also useful for solving other
problems in estimation and control. A major selling point
of CIPS, and also the reason for widespread use of the
EnKF, is that it is able to work directly with a simulator.
Therefore, it is amenable as a solution method for complex
systems where models typically exist only in the form of a
simulator. Apart from the open problems described in the
main body of the paper, a few themes for future research
are as follows:

e MPC offers a useful benchmark for CIPS. With the
exception of the geometric approaches, e.g., FPF on
Riemannian manifolds (Zhang et all 2017b), con-
straints has not been an important theme in design
of CIPS. It is an important problem to extend the
design of mean-field process to handle general types
of constraints in inputs and states. One possible next
step is to extend the dual EnKF to the inequality-
constrained LQR problems.

e RL could be an important application for CIPS. A key
difference is that CIPS-based solution does not rely
on function approximation. Instead, the value func-
tion is approximated in terms of the distribution of
the particles. This has some advantages, e.g., avoids
the need to select basis functions, and some disadvan-
tages, e.g., availability of computational resources. It
will be useful to understand some of these trade-offs.
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e Relationship to mean-field games and optimal control
should be further developed. CIPS represent simple
examples of mean-field type control laws. However,
derivation of these control laws is, more often than
not, rooted in methods from optimal transportation
theory (Sec. [5). It remains an open problem to de-
rive the FPF control law starting from a mean-field
optimal control type objective (some partial results in
this direction appear in (Zhang et al., 2019)).

e The lack of progress to obtain FPF as a solution of
an optimal control problem is symptomatic of a sat-
isfactory duality theory between optimal filtering and
optimal control . Recent progress in
this direction has been made in some work originating
in our group (Kim et al., 2019; Kim) 2022; Kim and|
2022Db)). While the focus of this new work has

thus far been on dual characterization of stochastic
observability (Kim and Mehta) 2022a) [2021a)) and its
use in filter stability analysis (Kim et al.,|2021a} [Kim|
land Mehtal 2021b)), it will be interesting to explore
connections both to FPF and to mean-field control.
Duality-based derivation of the EnKF has previously
been considered in Kim et al. (2018).

e Extensions to partially observed optimal control prob-
lems. For the linear Gaussian model, algorithms de-
scribed in parts I and II are easily combined to obtain
a CIPS for the partially observed problem. The solu-
tion is based on the separation principle: A forward
(in time) EnKF is run to solve the optimal filtering
problem; and a completely independent backward (in
time) dual EnKF is run to solve the optimal control
problem. For the nonlinear problem, there may be
benefit to couple the forward and backward CIPS.

e Distributionally robust FPF. In order to handle un-
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Figure 9: Comparison with algorithms in |[Fazel et al.| (2018)) (labeled [F'18]) and Mohammadi et al.| (2022) (labeled [M21]). The comparisons
depict the computation time (in Python) as a function of the relative error in approximating the LQR gain and cost.

certainty in signal and observation models, it may be
useful to explore methods from distributionally ro-
bust optimization framework (Rahimian and Mehro-
tral 12019). The framework has been used to develop
the Wasserstein robust Kalman filter for the linear
Gaussian model (Shafieezadeh Abadeh et al., 2018).
Its extension to the nonlinear filtering model is
open and may be possible based on the optimal trans-
port formulation of the FPF.
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