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Abstract

We present a new series of distributed constraint satisfaction algorithms, the distributed break-
out algorithms, which is inspired by local search algorithms for solving the constraint satisfaction
problem (CSP). The basic idea of these algorithms is for agents to repeatedly improve their tenta-
tive and flawed sets of assignments for variables simultaneously while communicating such tentative
sets with each other until finding a solution to an instance of the distributed constraint satisfac-
tion problem (DisCSP). We introduce four implementations of the distributed breakout algorithms:
SINGLE-DB, MULTI-DB, MULTI-DB+, and MULTI-DB++. SINGLE-DB is a distributed breakout
algorithm for solving the DisCSP, where each agent has a single local variable and its related con-
straints. MULTI-DB, on the other hand, is another distributed breakout algorithm for solving the
distributed SAT (DisSAT) problem, where each agent has multiple local variables and their related
clauses. MULTI-DB+ and MULTI-DB++ are stochastic variations of MULTI-DB. In MULTI-DB+,
we introduce a technique called random break into MULTI-DB; in MULTI-DB++, we introduce a
technique called random walk into MULTI-DB+. We conducted experiments to compare these al-
gorithms with the asynchronous type of distributed constraint satisfaction algorithm. Through these
experiments, we found that SINGLE-DB, MULTI-DB, and MULTI-DB+ scale up better than the
asynchronous type of distributed constraint satisfaction algorithms, but they sometimes show very
poor performance. On the other hand, we also found that MULTI-DB++, which uses random walk,
provides a clear performance improvement.
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1. Introduction

The distributed constraint satisfaction problem (DisCSP) [23,25] is a constraint satis-
faction problem (CSP) in which variables and constraints are distributed among multiple
agents. Even though the definition of CSP is very simple, a surprisingly wide variety of
problems in computer science can be formalized as CSPs. Similarly, various application
problems in Multi-Agent Systems (MAS) that are concerned with finding a consistent
combination of agent actions (e.g., the distributed resource allocation problem [4], the
distributed scheduling problem [21], the distributed interpretation task [14], and the multi-
agent truth maintenance task [11]) can be formalized as DisCSPs. Therefore, we have
considered an efficient distributed algorithm for solving the DisCSP as an important in-
frastructure in MAS.

The authors have previously presented two distributed algorithms for solving the
DisCSP, called the asynchronous backtracking algorithm (ABT) and the asynchronous
weak-commitment search algorithm (AWC) [25]. These algorithms are similar in their
basic operations: in both algorithms, a priority order is defined among agents, and
agents exchange their current assignments for variables and change their assignments
concurrently and asynchronously so that the assignments are consistent with those of
higher-priority agents. A major difference between ABT and AWC is the operation at
dead-ends, that is, the operation invoked when an agent cannot find a consistent assign-
ment for its variable. In ABT, an agent backtracks at dead-ends by sending a nogood,
a combination of value assignments that cannot be a part of a solution, to a higher-
priority agent to request that it change an assignment. On the other hand, in AWC,
an agent uses a technique called weak-commitment, where an agent gives up the at-
tempt to satisfy its constraints and delegates them to other agents by raising its own
priority. While doing this, an agent can send nogoods to other agents so that they
will not take the value assignments specified in the nogoods. Experimental evaluation
shows that AWC greatly outperforms ABT in finding solutions to some hard DisCSP in-
stances [25].

In ABT and AWC, nogood learning plays an important role in the search performance.
A nogood learning technique specifies how an agent generates/stores nogoods. By making
each agent generate/store all nogoods, both ABT and AWC are guaranteed to be complete,
and, moreover, the communication cost of AWC can be dramatically reduced [8]. However,
especially when solving critically hard DisCSP instances, both algorithms are likely to
produce a huge number of nogoods, and some agents may hence consume a lot of memory
to store these nogoods as well as a lot of computation to check them. This problem can be
serious, especially when an agent has to solve a DisCSP instance when it’s permitted to
use only a limited amount of memory.

In this paper, we introduce a new series of distributed constraint satisfaction algorithms
called the distributed breakout algorithms. Since these algorithms do not have to rely on
nogood learning, they can operate in a situation where each agent has a limited amount
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of memory. These algorithms are inspired by local search algorithms for the (centralized)

CSP, such as the heuristic repair method [15], the breakout algorithm [16], and GSAT
[17]. The basic idea of the distributed breakout algorithms is that the agents repeatedly
improve their tentative and flawed sets of assignments for variables simultaneously while
communicating such tentative sets with each other until finding a solution to a DisCSP
instance. To realize this, each agent first sets an initial set of assignments for its variables
and exchanges the set with its neighbors, then alternates as follows until finding a solution
to a DisCSP instance.

(1) Each agent searches for the candidate for the next set of assignments that would re-
duce a cost and exchanges information on the candidate with its neighbors to resolve
potential conflicts.

(2) Each agent sets the candidate as a new set of assignments if the candidate still remains
valid after the conflict resolution process. Then, it exchanges a set of assignments with
its neighbors.

In this procedure, the agents can sometimes be trapped in a local minimum, where no agent
can reduce a cost while some agent has a flawed set of assignments, on the way to a solution
to a DisCSP instance. To escape from such local minima, the procedure adopts a simple
escaping technique called breakout at quasi-local minima.

We introduce four implementations of the distributed breakout algorithms: SINGLE-
DB [24], MULTI-DB [9], MULTI-DB+, and MULTI-DB++. SINGLE-DB is a distributed
breakout algorithm that is basically designed for the DisCSP where each agent has a single
local variable and its related constraints. Also, it uses a simple and deterministic conflict
resolution technique when selecting valid candidates for the next set of assignments for
variables. MULTI-DB is a distributed breakout algorithm that solves the distributed SAT
(DisSAT) problem where each agent has multiple local variables and their related clauses.
Moreover, it uses a sophisticated and deterministic conflict resolution technique that allows
agents to perform more simultaneous assignment changes leading to a rapid cost decrease.
Both MULTI-DB+ and MULTI-DB++ are extensions of MULTI-DB, and they both ba-
sically follow the same procedure as MULTI-DB does, but they are extended to behave
in a stochastic manner. More specifically, we devise two stochastic techniques called ran-
dom break and random walk; we introduce random break into MULTI-DB and call the
resultant algorithm MULTI-DB+ and random walk into MULTI-DB+, calling the resultant
algorithm MULTI-DB++.

The remaining parts of this paper are organized as follows. First, in Section 2, we
give the background of this work, including the definition of DisCSP and the outline
of a local search algorithm for the CSP. Next, after describing the generic distributed
breakout algorithm in Section 3, we present a series of implementations: SINGLE-DB
in Section 4 and MULTI-DB and its stochastic variations in Section 5. We then experi-
mentally evaluate these implementations in Section 6 and finally conclude this work in
Section 7.
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2. Background
In this section, as background of this work, we first introduce the definition of DisCSP
with two illustrative examples: the distributed graph coloring problem and the DisSAT
problem, then give the outline of a local search algorithm for the CSP.

2.1. DisCSP

The CSP consists of n variables x1, x2, . . . , xn, whose values are taken from finite and
discrete domains D1,D2, . . . ,Dn, respectively, and a set of constraints on their values.
A constraint can be described as a nogood, i.e., a set of values for some variables that are
prohibited for the variables. A nogood is violated when its corresponding variables actually
take the values appearing in the nogood. A solution to the CSP is an assignment of values
for all of the variables whereby no nogood is violated. The problem of finding a solution
to the CSP is known to be NP-complete.

The DisCSP is a CSP in which variables and constraints are distributed among multiple
agents. It consists of the following:

• a set of agents, 1,2, . . . , k,
• a set of CSPs, P1,P2, . . . ,Pk , such that Pi belongs to agent i and consists of

· a set of local variables whose values are controlled by agent i ,
· a set of intra-agent constraints, each of which is defined over agent i’s local vari-

ables,
· a set of inter-agent constraints, each of which is defined over agent i’s local vari-

ables and other agents’ local variables.

A solution to the DisCSP is a set of solutions to all of the agents’ CSPs, i.e., a state where
all of the agents find sets of assignments of values for their local variables whereby no
intra/inter-agent constraint is violated. Obviously, the problem of finding a solution to the
DisCSP is NP-complete.

Fig. 1 illustrates an example of a DisCSP, the distributed graph coloring problem. The
graph coloring problem is a problem that requires finding a color (among available colors)
for each node of a given graph such that no adjacent pair of nodes has the same color. By
considering a node as a variable and a link as a constraint, the graph coloring problem can
be mapped into the CSP. The distributed graph coloring problem involves nodes and links
that are distributed among agents such that each agent has some nodes and all of the links
that are connected to the nodes. In Fig. 1, there are three agents, 1, 2, 3, each of which has
nodes in the corresponding ellipse and links that are connected to the nodes. For example,
agent 1 has the nodes n1 and n2 and the links l12, l13, and l26. In other words, agent 1 has a
CSP instance consisting of local variables derived from n1 and n2, intra-agent constraints
derived from l12, and inter-agent constraints derived from l13 and l26.

Next, we introduce the DisSAT problem as another example of the DisCSP. The propo-
sitional satisfiability (SAT) problem is the problem of finding a model for a propositional
formula, i.e., a truth assignment for variables in a formula that makes the formula true.
A formula is typically described in Conjunctive Normal Form (CNF), and we hence call it
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Fig. 1. Distributed graph coloring problem.

Fig. 2. DisSAT problem.

a CNF formula. A CNF formula consists of a set of clauses, where a clause is a disjunction
of a number of literals and a literal is a variable or its negation. Given a CNF formula con-
sisting of a set of clauses C1,C2, . . . ,Cm on the variables x1, x2, . . . , xn, the problem is to
determine whether the formula C1 ∧ C2 ∧ · · · ∧ Cm is satisfiable. This decision problem
was one of the first problems shown to be NP-complete. The SAT problem has attracted
considerable attention recently in the AI community since many AI tasks, such as planning
[12], theorem proving, and etc., can be encoded into it.

The DisSAT problem is the problem of finding models for formulae of multiple agents.
Each agent in the DisSAT problem has its own formula and tries to find a model for it. Each
agent’s formula is defined on its local variables and some other agents’ local variables and
consists of a number of intra-agent clauses and a number of inter-agent clauses. An intra-
agent clause is defined on only local variables, while an inter-agent clause is defined on
both local variables and non-local variables. Fig. 2 illustrates a DisSAT problem instance,
where there are two agents each having its own formula. Agent 1, for example, has the
local variables x1, x2 and the clauses C1,C2,C5,C6. Since the clauses C1,C2 are defined
on only agent 1’s local variables, they are intra-agent clauses. On the other hand, since
the clauses C5,C6 include not only agent 1’s local variables x1, x2 but also agent 2’s local
variables x3, x4, they are inter-agent clauses.
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2.2. Local search algorithm for the CSP
In the early 1990s, several researchers demonstrated that local search algorithms could
successfully solve very large instances of various NP-complete problems that had been
considered computationally expensive for traditional complete search algorithms [7,15,
17]. Although complete search algorithms have recently extended their reach and some of
them can perform as well or better than local search algorithms [2], local search algorithms
have still attracted plenty of attention because they are at least comparable to state-of-the-
art complete search algorithms.

Local search algorithms for the CSP basically follow a similar procedure: an algorithm
starts with an initial flawed “solution” and then repeats making local changes that reduce
the cost, the total number of constraint violations, until finding a solution. However, one
drawback of these algorithms is the possibility of getting stuck at a locally optimal point,
a local minimum, where no local change can reduce the cost while there still exists at
least one constraint violation. Various techniques have been proposed for escaping from
local minima [7,16–19]. Breakout is one such technique that has been proposed by Morris
[16]. The characteristics of the breakout algorithm, i.e., the local search algorithm that
incorporates the breakout technique, are summarized as follows.

• A weight is associated with each constraint. For a state (a complete set of assignments
for the variables), a cost is measured as the sum of the weights of violated constraints.
The weights have 1 as their initial value.

• The local search algorithm proceeds as usual until a local minimum is reached.
• At a local minimum, the weights of constraints violated in the current state are in-

creased so that the cost of the current state becomes larger than those of the neighbor-
ing states. The local search algorithm then resumes.

Similarly to other local search algorithms, this algorithm is incomplete; namely, it cannot
prove the unsatisfiability of a problem explicitly, and, furthermore, it may fail to find a
solution to a problem even if the problem is satisfiable. Therefore, for practical usage, we
may need to set an upper bound of the number of repetitions to halt the procedure.

3. The distributed breakout algorithms

Recently, several researchers have developed distributed constraint satisfaction algo-
rithms for solving the DisCSP [1,3,5,20,22,24,25]. In distributed constraint satisfaction
algorithms, all of the agents perform their search procedures concurrently while communi-
cating information on their search processes with each other. In this paper, we introduce a
new series of distributed constraint satisfaction algorithms called distributed breakout al-
gorithms. This is inspired by the breakout algorithm for the (centralized) CSP. This section
gives a macroscopic view of the distributed breakout algorithms by describing three func-
tionally divided operations: core operation, breakout operation, and termination detection
operation.
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3.1. Core operation
A macro-level behavior of the distributed breakout algorithms is that all of the agents
repeatedly make local changes concurrently while coordinating their actions through a
communication protocol. A major characteristic is that search and coordination are sep-
arated, i.e., all of the agents alternate search and coordination synchronously. Before
describing the core operation of the distributed breakout algorithms, we first define the
term neighbors as follows.

Definition 1 (Neighbors). For each agent i , i’s neighbors are a subset of the agents that i

has to contact in order to examine whether its inter-agent constraints are violated.

For example, in Fig. 1, agent 1’s neighbors consist of agents 2 and 3 since agent 1 has
inter-agent constraints (derived from l13 and l26) that include variables belonging to agents
2 and 3.

The core operation of the distributed breakout algorithms is as follows: each agent first
sets an initial set of assignments for variables and exchanges the set with its neighbors,
then repeats the following until a solution to a DisCSP instance is found or a predetermined
upper bound is reached. We call one such cycle a round.

(1) Each agent performs search to find a set of local changes that would reduce the cost
(the sum of the weights of violated constraints) and then exchanges information on the
set of local changes with its neighbors to identify potential conflicts.

(2) Each agent makes all of the local changes in the set found in the above step if they
do not involve any potential conflict; otherwise, the agent makes all/some of the local
changes in the set if they are still valid after the conflict resolution with its neighbors.
Then, the agent exchanges a set of assignments for variables with its neighbors.

The details of identifying and resolving potential conflicts are specified in our implemen-
tations described in Sections 4 and 5.

Using this core operation, the agents can make multiple local changes concurrently in
one round, where two types of messages are exchanged in turn. The first message is for
notifying information on a set of local changes, called the improve message; the second is
for notifying a set of assignments for variables, called the ok? message.

3.2. Breakout operation

Similar to local search algorithms for the CSP, the distributed breakout algorithms have
the drawback of possibly getting stuck at local minima. In the distributed breakout algo-
rithms, the local minimum is defined as follows.

Definition 2 (Local minimum). A state is called local minimum if some of the agents are
violating constraints and no subset of the agents can make local changes resulting in a state
with a lower cost.
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Detecting the fact that the agents as a whole are in a local minimum requires global

communication among agents. In a distributed environment, however, such global commu-
nication is usually expensive. Therefore, we introduce a weak notion of local minimum, a
quasi-local minimum, which is detectable by local communication among agents.

Definition 3 (Quasi-local minimum). A state is called quasi-local minimum if there ex-
ists an agent that violates some of its constraints, and neither this agent nor some of its
neighbors can make local changes resulting in a state with a lower cost.

We should note that if a state is a local minimum, that state is also a quasi-local min-
imum; on the other hand, if a state is a quasi-local minimum, it is not necessarily a local
minimum since, in the state, there may exist some agents that can make local changes
resulting in a state with a lower cost.

To escape from local minima, the distributed breakout algorithms use a technique called
breakout at quasi-local minima, where an agent increases the weights of constraints that
are known to be violated at a quasi-local minimum. Note that, in the distributed breakout
algorithms, a weight is associated with each constraint, and each agent measures its cost as
the sum of the weights of violated constraints.

3.3. Termination detection operation

A distributed constraint satisfaction algorithm has to be terminated when all of the
agents obtain solutions to their local problems. To achieve this, each agent maintains a
counter called t_counter in the distributed breakout algorithms. In each round agent i up-
dates the counter, which is initialized to zero, as follows.

(1) If having constraint violations, agent i sets the value of its t_counter to zero; otherwise,
it keeps the current value of its t_counter. Then, agent i sends the value of its t_counter
to its neighbors.

(2) After receiving t_counters from all of its neighbors, agent i sets the value of its
t_counter to the minimum value of i’s and the neighbors’ t_counters. Then, if nei-
ther agent i nor some of its neighbors have constraint violations, agent i increases the
value of its t_counter by 1.

With these operations, we can ensure the following.

Theorem 1. If the value of agent i’s t_counter is d , every agent whose distance from agent
i is within d obtains a solution to its local CSP.

Note that the distance between agents is measured using the concept of neighbors. That
is, if agent i has agent j among its neighbors, the distance from agent i to agent j is one;
if agent i does not have agent j in its neighbors but one of agent i’s neighbors does, the
distance is two (i �= j ); generally, if agent i can reach agent j via at least d − 1 agents, the
distance is d .

A proof of this theorem is as follows.
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Proof. We can prove this inductively. When the value of agent i’s t_counter is 1, the the-

orem obviously holds since the value of the counter is increased from 0 to 1 when neither
agent i nor some of its neighbors have constraint violations. Next, we assume that the the-
orem holds when d is up to some specific value, say du. According to the operation for
updating the counter, the value of agent i’s counter increases from du to du + 1 if and only
if neither agent i nor some of its neighbors have constraint violations and the value of their
counters is equal to or larger than du. By the assumption, this is when every agent whose
distance from agent i is within du+1 obtains a solution to its local CSP. This means that the
theorem also holds when d is du + 1. Therefore, the theorem is proved by induction. �

According to this theorem, if the value of some agent’s t_counter reaches a distance that
covers all of the agents, then all of the agents obtain solutions to their local CSPs, i.e., the
DisCSP is solved. It may be difficult to know the exact value of the counter that can cover
all of the agents, but fortunately it is sufficient to know an upper-bound value of it. Such
an upper-bound value could be the diameter of the agent network in the DisCSP.

Fig. 3 summarizes the distributed breakout algorithms, where the above three operations
are merged into one procedure.

Fig. 3. Distributed breakout algorithms (sketch of the procedure for agent i).
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4. SINGLE-DB
SINGLE-DB, formerly called the distributed breakout algorithm in our previous paper
[24], is one implementation of the distributed breakout algorithms. It is basically designed
for the DisCSP where each agent has a single local variable and its related constraints.
In this section we provide the basic ideas and the details of SINGLE-DB followed by an
illustration of the solution process.

4.1. Basic ideas

Since an agent has only one local variable, searching for a set of local changes that
would reduce the cost is equivalent to selecting an assignment for the variable that would
reduce the cost. In SINGLE-DB, by following the min-conflict heuristic [15], we have an
agent select an assignment for the variable that would maximally reduce the cost. Although
this requires an agent to sweep all values in a variable domain, we can generally expect the
size of a variable domain not to be so large.

To avoid a potential conflict among local changes, we allow an agent to make a local
change if it would reduce the cost by more than any of its neighbors would; otherwise we
make an agent withdraw a local change. Ties are broken deterministically such that, given
that each agent has a unique ID number, we give priority to the agent with the smaller ID
number if a pair of neighboring agents has the same degree of cost reduction. By resolving
a potential conflict in this way, no pair of neighboring agents make their local changes
simultaneously. On the other hand, if two agents are not neighboring, it is possible for them
to make local changes simultaneously. This means that we can eliminate an oscillation
among multiple states that might be typically caused by simultaneous local changes made
by neighboring agents. To realize this, before making a local change, an agent needs to
send its neighbors the degree of cost reduction that would be achieved by the local change,
called the improve, as the information on the local change.

4.2. Details

The details of SINGLE-DB are illustrated in Figs. 4–6. Each agent follows these proce-
dures, each of which is summarized as follows.

• In the MAIN procedure in Fig. 4, an agent sends an initial assignment for the vari-
able to its neighbors via ok? messages (step 06) and repeats calling WAIT_OK and
WAIT_IMPROVE until a solution is found or a predetermined upper bound of rounds,
Maxrounds, is reached (step 07–10).

• In the WAIT_OK procedure in Fig. 5, an agent waits for all of the ok? messages is-
sued by its neighbors and invokes SEND_IMPROVE (step 10 in WAIT_OK), where
the agent selects an assignment for its variable that would give the maximal cost
reduction (step 03 in SEND_IMPROVE) and sends improve messages, which include
quadruples: variable, improve, current cost, and t_counter, to its neighbors (step 17 in
SEND_IMPROVE).
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Fig. 4. MAIN of SINGLE-DB.

Fig. 5. WAIT_OK of SINGLE-DB.
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Fig. 6. WAIT_IMPROVE of SINGLE-DB.

• In the procedure WAIT_IMPROVE in Fig. 6, an agent waits for all of the improve mes-
sages issued by its neighbors and invokes SEND_OK (step 18 in WAIT_IMPROVE),
where, depending on the state the agent is in, the agent increases the value of t_counter
by 1 (step 03 in SEND_OK), increases the weights of violated constraints by 1 (step
11 in SEND_OK), or makes a local change (step 16 in SEND_OK). It then sends its
neighbors ok? messages, which include triplets: its variable, a current assignment of
its variable, and information on constraints whose weights are updated (if weight up-
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Fig. 7. Snapshots of the solution process of SINGLE-DB.

date occurs) (step 18 in SEND_OK). The current round ends at this step, and agent i

then turns to the next round, where it starts again with the WAIT_OK procedure to wait
for the ok? messages issued by its neighbors in the previous round.

We show snapshots of the solution process of SINGLE-DB in Fig. 7. This illustrates
an instance of the distributed graph coloring problem, where agent i having the node xi ,
whose possible colors are black and white, tries to find a color so that its related constraints,
derived from links connected to xi , are satisfied. We assume that initial assignments are
chosen as in Fig. 7(a). Each agent communicates the initial assignment with its neighbors
via ok? messages. After receiving ok? messages from all of its neighbors, each agent iden-
tifies a local change by selecting an assignment for a node that would achieve the maximal
cost reduction under its current view and exchanges improve messages with its neigh-
bors. Since the weight of all constraints is 1, no agent has a positive improve in this state.
Therefore, agents increase weights of violated constraints, x1 = white and x6 = white,
x2 = black and x5 = black, and x3 = white and x4 = white, by 1 as in Fig. 7(b). Then, the
improve of agents 1, 3, 4, and 6 becomes 1, since each of them can reduce its cost from 2
to 1 by changing its assignment from white to black. On the other hand, those of agents 2
and 5 are still not positive. Through conflict resolution, both agents 1 and 3 are selected as
the agents that have the right to make local changes, since each one of them has the largest
improve among itself and its neighbors and has a smaller ID number than its competitor
(agent 6 for agent 1 and agent 4 for agent 3). Each of them thus makes a local change
from white to black as in Fig. 7(c). Next, the improve of agent 2 is 4, while those of the
other agents are not positive. Therefore, only agent 2 makes a local change, and all of the
constraints are satisfied as in Fig. 7(d).

5. MULTI-DB

MULTI-DB [9] is another implementation of the distributed breakout algorithms. A no-
table feature of MULTI-DB is that it can solve the DisSAT problem where each agent has
multiple local variables and their related clauses. In this section we present the basic ideas
and the details of MULTI-DB followed by its stochastic variations.
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5.1. Basic ideas
To find a set of local changes that would reduce the cost, an agent in SINGLE-DB
simply selects an assignment for its variable from the variable domain that would give the
maximal degree of cost reduction. However, in MULTI-DB, since an agent has multiple
local variables, it has to search in the space of combinations of assignments for the multiple
local variables. Such a search space is usually much larger than the domain of one local
variable. Therefore, we make each agent run a local search algorithm for a certain number
of steps to find a set of local changes that would reduce the cost.

We use a variant of WalkSAT [18], which is known to be one of the most efficient
local search algorithms for the SAT problem, as a local search algorithm for each agent. In
each round of MULTI-DB, each agent starts from a current set of assignments for its local
variables and searches for the set of assignments that would reduce the cost as follows:
repeat the following procedure Maxflips (given as a parameter) times.

(1) Randomly select one of the clauses that is violated under a set of assignments for its
local variables and a set of the most recently notified assignments for its neighbors’
variables.

(2) In the selected clause, pick up one local variable to flip (change an assignment from
true to false or vice versa) such that: if there are local variables in the clause that can be
flipped without violating other clauses, pick up one of them randomly; otherwise, with
probability p pick up any local variable in the clause randomly and with probability
1 − p pick up a local variable that minimizes the sum of weights of clauses that are
currently satisfied but would be violated if the variable were flipped. Then, perform
the flip to virtually change an assignment for its local variables.

After finishing the procedure, the agent identifies the best set of assignments (in terms of
the degree of cost reduction) among those found during the repetitions to obtain a set of
flips, called Possflips, whereby it can turn the initial set of assignments that our WalkSAT
variant starts from into the best set of assignments.

Our WalkSAT variant uses the techniques called sideway rule and tabu list for efficiency.
In the sideway rule, when choosing the best set of assignments, each agent breaks ties in
favor of the one with the largest hamming distance from the initial set of assignments
that our WalkSAT variant starts from. On the other hand, each agent maintains a tabu list
that keeps the history of the sets of assignments for its local variables that have been sent
to its neighbors in the latest T L rounds. The agent is prohibited from taking the sets of
assignments in its tabu list during the procedure.

As described earlier, SINGLE-DB uses a simple method for resolving potential conflicts
among local changes of neighboring agents. Using this method, no pair of neighboring
agents make their local changes simultaneously. Although we could apply this method for
the DisSAT problem where each agent has multiple local variables, such an approach may
not be a good idea, since it misses the opportunity to make more local changes in parallel.
We therefore introduce a more sophisticated conflict resolution method, that allows neigh-
boring agents to make local changes simultaneously while ensuring that the total cost is
reduced by their local changes. In this method, each agent exchanges Possflips, a set of
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possible flips the agent is planning to perform, with its neighbors, and looks ahead to rea-

son what the state in the next round would be like. Then, each agent identifies a conflict
among possible flips, which is defined as follows.

Definition 4 (Conflict among possible flips). Two (or more) possible flips conflict with each
other if (1) they belong to different agents, and (2) in the next round they would violate a
clause that is currently satisfied.

In other words, two possible flips conflict with each other if they make a “fallacy of
composition”, that is, each of the possible flips contributes to reducing the cost if the other
is not performed, but their composition accidentally contributes to non-reducing the cost.

If an agent detects that no possible flip in its own Possflips conflicts with those in its
neighbors’ Possflips, the agent can perform all of the flips in the Possflips. On the other
hand, if an agent detects that one of the possible flips in its own Possflips conflicts with
those in its neighbors’ Possflips, the agent resolves the conflict by withdrawing the possible
flip if it has the lowest improve, i.e., the lowest degree of cost reduction, among conflicting
agents. Ties are broken deterministically such that we make an agent having a larger ID
number withdraw its possible flip when two conflicting agents have the same improve.

After this conflict resolution process, there may be a case in which an agent’s Possflips
are partially withdrawn, i.e., some elements are withdrawn and the others are not. To deal
with a partially withdrawn Possflips, one option would be that we make an agent withdraw
it because we cannot say for certain whether the partially withdrawn Possflips can reduce
the cost. However, in MULTI-DB, since an agent can flip (or keep the value of) any vari-
able associated with a partially withdrawn Possflips without causing any conflict with its
neighbors’ possible flips, we make an agent execute the WalkSAT variant again over the
variables associated with the partially withdrawn Possflips to find Backupflips, a subset of
the partially withdrawn Possflips that can certainly reduce the cost. Since any possible flip
in Backupflips obviously does not conflict with its neighbors’ possible flips, an agent can
perform all of the possible flips in Backupflips immediately.

5.2. Details

Details of MULTI-DB are illustrated in Figs. 8–12. MULTI-DB also consists of five
procedures: MAIN, WAIT_OK, SEND_IMPROVE, WAIT_IMPROVE, and SEND_OK.

MULTI-DB and SINGLE-DB have almost the same main procedure. Fig. 8 shows that
agent i starts MULTI-DB by randomly determining a set of assignments for its variables
(step 03) and sending it to the neighbors via ok? messages (step 07). Then, agent i repeats
WAIT_OK and WAIT_IMPROVE until a solution to a DisSAT problem instance is found or
a predetermined upper bound of rounds, Maxrounds, is reached (steps 08–11).

In the WAIT_OK procedure in Fig. 9, agent i collects ok? messages from its neighbors
while constructing Currentviewi , which records a set of current assignments for all of i’s
and its neighbors’ variables (step 09). When ok? messages come from all of its neighbors,
agent i calls SEND_IMPROVE in Fig. 10.

In SEND_IMPROVE, agent i makes Possflips, a set of possible flips that agent i can
perform under Currentviewi , and sends such a set to its neighbors via improve messages.
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Fig. 8. MAIN of MULTI-DB.

Fig. 9. WAIT_OK of MULTI-DB.

More specifically, agent i first measures costi , the sum of weights of violated clauses un-
der Currentviewi (step 01). If costi = 0, agent i makes the state variable consistenti true
(step 05), prohibits flips for all of its variables in the current round (step 32), and sends
improve messages to its neighbors (step 33). On the other hand, if costi �= 0, after making
consistenti false and t_counteri zero (steps 07, 08), agent i performs local search (steps
09–26) to make Possflips (step 31), prohibits any other flips except for Possflips in the
current round (step 32), and sends improve messages (step 33).

In WAIT_IMPROVE shown in Fig. 11, agent i collects improve messages from all of
its neighbors while updating the state variables and the views. The views updated here
are Nextviewi (step 07) and Improveviewi (step 08). Nextviewi records a set of possible
assignments for all of i’s and its neighbors’ variables in the next round; namely, it indicates
what the state in the next round would be like. Improveviewi , on the other hand, records
improves, i.e., the degrees of cost reduction, of agent i and its neighbors. When improve
messages come from all of its neighbors, agent i calls SEND_OK shown in Fig. 12.
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Fig. 10. SEND_IMPROVE of MULTI-DB.

In SEND_OK, agent i detects the termination condition (steps 03–05), increases the
weights of violated clauses (steps 08–12), or performs variable flips (steps 14–35) depend-
ing on the situation in the current round, and then sends ok? messages to its neighbors
(step 40). In detecting the termination condition, an agent in SINGLE-DB and MULTI-DB
follows the same procedure. In increasing the weights of violated clauses, agent i first
checks whether its Nextviewi and Currentviewi are the same (step 07). If this is true, it
means that neither agent i nor its neighbors have a possible flip, and thus agent i detects
a quasi-local minimum. When detecting a quasi-local minimum, an agent in SINGLE-DB
and MULTI-DB basically follows the same procedure.

On the other hand, in performing variable flips, agent i proceeds as follows. For each
clause that is not violated in the current round but would be violated in the next round,
agent i identifies the possible flips (Culprit_flips) that would cause the violation and the
agents (Culprit_ag) who plan to perform those flips (steps 15, 16); agent i also checks
whether the following three conditions hold (step 17): (1) agent i is responsible for the
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Fig. 11. WAIT_IMPROVE of MULTI-DB.

violation, (2) the violation is caused by at least two agents, and (3) agent i has the lowest
improve among Culprit_ag. Ties in the third condition are broken deterministically by
comparing agent ID numbers, i.e., the third condition holds when agent i has the largest
ID number among agents with the same lowest improve. If the first two conditions hold, it
is clear that Culprit_flips are in conflict with each other; in other words, this clause would
be accidentally violated in the next round by the flips simultaneously performed by agents
in Culprit_ag. To avoid this, an agent that meets the third condition withdraws one of its
flips in Culprit_flips (step 18) (ties are broken randomly), thereby resolving a conflict in
Culprit_flips.

As a result of the above procedure (steps 14–19), agent i sometimes withdraws some
of its possible flips. However, when agent i does not have to withdraw any of its possible
flips, this means that it can perform all of them without causing any accidental new clause
violation. In this case, agent i performs those flips (step 21) and sends ok? messages to
its neighbors (step 40). On the other hand, when agent i withdraws some of its possible
flips, it performs local search again (steps 23–33) over the flippable variables, meaning
the variables whose flips are not prohibited or withdrawn. The flips obtained from this
local search obviously do not conflict with those of other agents, and agent i can therefore
perform these flips immediately (step 34) to send ok? messages to its neighbors (step 40).

Fig. 13 depicts snapshots of a typical solution process of MULTI-DB for the DisSAT
problem instance shown in Fig. 2. As shown at the top of Fig. 13, we assume that both
agents 1 and 2 assign TRUE for all of their variables and exchange them via ok? mes-
sages. As a result, each finds that the current cost is 3 because agent 1 violates the clause
C2,C5,C6 and agent 2 violates the clause C4,C5,C6 (we assume that the weight of all
clauses is one). Then, each performs local search to find Possflips. Agent 1 finds that flip-
ping x1 can reduce the cost from 3 to 1 and agent 2 also finds that flipping x3 can do
this. These possible flips, x1 by agent 1 and x3 by agent 2, are exchanged via improve
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Fig. 12. SEND_OK of MULTI-DB.

messages. After exchanging the possible flips, each checks whether there is a conflict
among them. Agent 1, for example, can reason that in the next round the state would
be {x1 = F, x2 = T, x3 = F, x4 = T}, which violates only C6. Accordingly, agent 1 finds
that flipping x1 does not conflict with flipping x3, since they will not cause accidental new
clause violation, and hence performs the flip of x1. Agent 2, on the other hand, follows the
same and performs the flip of x3. After flipping these variables, both exchange their new
values with each other and go to the second round.
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Fig. 13. Snapshots of the solution process of MULTI-DB (the clauses marked by ∗ are violated).

In the second round shown in the middle of Fig. 13, since each agent violates C6, it
performs local search to find possible flips. As a result, agent 1 finds that flipping x1 and x2

leads to no violation, while agent 2 also finds that flipping x3 and x4 leads to no violation.
Then, they exchange these possible flips. After exchanging them, both agents now find
that these possible flips are in conflict with each other, since these flips would make the
state in the next round {x1 = T, x2 = F, x3 = T, x4 = F}, where C5 is accidentally violated.
Therefore, agent 2 withdraws the flip of x3 in this case because agent 2’s improve is one,
which ties with agent 1’s improve, and its ID number is larger than agent 1’s ID number.
After the withdrawal, agent 2 reconsiders whether x4 should be flipped. More specifically,
agent 2 performs local search again over x4, the only flippable variable, to determine an
assignment for x4. In this case, agent 2 determines that an assignment for x4 should be
TRUE. To sum up, in the second round agent 1 flips x1 and x2 just as planned, while agent
2, on the other hand, flips no variable. After such flipping, they exchange their new values
and reach the state shown at the bottom of Fig. 13. This state is obviously a solution to this
problem instance, which is to be detected by the agents within a few more rounds.
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5.3. Stochastic variations
The original version of MULTI-DB used random restart, where the agents simultane-
ously reinitialize a set of assignments for variables if a solution has not been discovered
after a fixed number of rounds [9]. This is a simple and effective method for agents to avoid
stagnation of the search caused by a bad set of initial assignments for variables. Indeed, we
observed that MULTI-DB was improved by random restart with a carefully chosen cutoff
round. However, it is difficult to set an appropriate cutoff round at which the agents restart
randomly, since the search performance is very sensitive to the cutoff round. Moreover,
when restarting, the agents waste all the effort that they have put into searching for a so-
lution and restart their search from scratch. Clearly, this process is wasteful. Therefore,
we introduce new methods for agents to avoid stagnation of the search: random break and
random walk.

Random break is similar in its basic idea to DBA(wp) [27]. DBA(wp) is a stochastic
variation of SINGLE-DB, which proceeds as SINGLE-DB, except that when two neighbor-
ing agents have the same improve, they make local changes probabilistically (both of them
may or may not change, or just one of them may change). DBA(wp) adds some randomness
to SINGLE-DB but does not always ensure cost reduction. However, random break ensures
cost reduction in a non-deterministic way. In this method, each agent keeps a random vari-
able whose value is randomly chosen in each round and sends this value to its neighbors
via improve messages. When two neighboring agents have the same improve, they break
the tie by giving the right to make changes to the agent with the smaller value for the ran-
dom variable instead of the agent with the smaller ID number. Note that, in this method, a
tie break does not always occur only in one direction, since a value for the random variable
varies in each round.

Random walk is a method that allows randomized up-hill moves with a fixed probability
[10,18]. With a fixed probability rw, this method works in the following way: (1) select a
currently violated clause randomly, (2) select one of the variables in the clause randomly,
and (3) flip the variable. This is called a random walk step. We introduce random walk into
our algorithm by having each agent perform a random walk step with a fixed probability.
More specifically, an agent proceeds as usual, except that just before flipping some vari-
ables, with a fixed probability rw it replaces those variables with a variable determined by
the random walk step and flips it. Obviously, since this new variable flip is selected with
no regard as to how it contributes to the current cost, it may increase the cost.

We first combine random break with MULTI-DB and call the resultant algorithm
MULTI-DB+. Then, we add random walk to MULTI-DB+ and call the resultant algorithm
MULTI-DB++.

6. Evaluation

We evaluated the performance of SINGLE-DB and the family of MULTI-DB through
experiments using satisfiable problem instances from the uniform random 3-SAT in
SATLIB (http://www.satlib.org/). The uniform random 3-SAT is generally considered to
be one of the hardest classes of the 3-SAT problem. In these experiments, to convert a SAT
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problem instance into a DisSAT problem instance, we evenly partitioned n variables of a

SAT problem instance among k agents and assigned each clause to all of the agents having
variables in the clause.

To apply SINGLE-DB to a DisSAT problem instance in which each agent has multiple
local variables and their related clauses, we used the following method: first, introduce
additional virtual agents to distribute multiple local variables so that each resulting agent
will have exactly one variable, then run SINGLE-DB for the given instance involving these
virtual agents.

We compared our algorithms with MULTI-AWC [26]. MULTI-AWC is one of the most
efficient algorithms for solving the DisCSP where each agent has multiple local variables
and their related constraints. Just as with AWC, the performance of MULTI-AWC can
be enhanced by employing an appropriate nogood learning technique. Nogood learning,
however, generally requires agents to have a lot of extra memory. For example, AWC with
full learning demands extra memory during algorithm execution, and such memory de-
mand grows exponentially in the worst case. In addition, agents have to check whether the
nogoods that have been learned are violated, which also requires a lot of computation to
be performed. Accordingly, MULTI-AWC used in the experiments did not employ nogood
learning for a fair comparison with our algorithms, which requires agents to have very little
memory.

In order to implement a distributed algorithm, we have to determine an underlining
distributed system on which the algorithm is executed. Although the assumption of a com-
munication model for our algorithm is so common that we can implement the algorithm on
any type of distributed system, for simplicity we used the synchronous distributed system
in our experiments. The synchronous distributed system is a distributed system in which all
of the agents repeat the cycle of communication and computation simultaneously [13]. One
cycle consists of the following three steps: (1) all of the agents read incoming messages
that were issued in the previous cycle, (2) all of the agents perform their local computation,
and (3) all of the agents send messages to other agents. We implemented all of the algo-
rithms on a simulator of the synchronous distributed system and measured the following
as their communication and computation costs, respectively.

#cycles: the number of cycles consumed until the agents find one solution to a DisCSP
instance. Since agents communicate with each other in every cycle, the number
of cycles increases with the amount of communication among agents. Thus, we
regard one cycle as the unit of communication cost and used the number of cycles
as the communication cost of an algorithm. Note that one round in the distributed
breakout algorithms, in which the agents perform one series of WAIT_OK and
WAIT_IMPROVE, corresponds to two cycles on this simulator.

#flips: the total sum of the maximal number of flips over the agents at each cycle until the
agents find one solution. More specifically, we calculate such a measure like this:
at each cycle we first identify the bottleneck agent, which performed the maximal
number of flips in its local computation, and sum all of the maximal numbers
of flips over all consumed cycles. Although the amount of computation at each
cycle varies among the agents, the total amount of computation is dominated by
the bottleneck agents. This measure can thus be considered the computation cost
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of an algorithm. Note that for MULTI-AWC, we measured the total sum of the

maximal number of visited search nodes (instead of the maximal number of flips)
over the agents at each cycle until the agents found one solution.

We set the upper bound of the number of cycles to 5000n, where n is the total number
of variables, and cut off a run if it exceeded the upper-bound cycle in order to finish our
experiments within a reasonable amount of time. For a run cut off, we used #cycles and
#flips at the time the run was cut off.

We set the parameters in the MULTI-DB family as follows.

• Maxrounds = 2500n. Since we cut off a run at 5000n cycles, we set Maxrounds in this
way.

• Maxflips = n/k,p = 0.3, T L = 5. These are the parameters for the local search pro-
cedure, the WalkSAT variant, each agent performs. Maxflips specifies the number of
flips each agent performs at each call of the local search procedure. Since n is the
total number of variables and k is the number of agents, setting Maxflips in this way
allows each agent to perform flips at most the number of times that corresponds to the
average number of variables of each agent. The parameter p is the probability used
in the WalkSAT variant, with which a variable to flip is selected randomly from a se-
lected violated clause. The parameter T L is the length of the tabu list also used in the
WalkSAT variant.

• rw = 1/(5k). This is a parameter only for MULTI-DB++ that specifies the probability
with which each agent performs a random walk step. By setting rw in this way, we
can expect that one agent performs a random walk step for every five rounds.

In the uniform random 3-SAT in SATLIB, there are 100 satisfiable problem instances
for each n (1000 for n = 100). We gave one randomly chosen initial set of assignments for
variables for each problem instance of each combination of (n, k) and made each algorithm
run. Fig. 14 indicates the mean #cycles and the mean #flips over 100 (or 1000) runs for each
combination of (n, k). Table 1 indicates the ratio of runs that were successfully completed
within the upper bound of the number of cycles. Note that the results of SINGLE-DB do not
depend on k, since SINGLE-DB converts an original problem instance involving k agents
into the one where each virtual agent has exactly one variable. From these results, we can
observe the following.

On comparing MULTI-DB and MULTI-AWC, MULTI-DB is better than MULTI-AWC
in all cases in terms of both the mean #cycles and the mean #flips. Moreover, the differences
become greater as the number of variables increases, and MULTI-DB achieves at least one
order of magnitude improvement in many cases. On the other hand, MULTI-DB obtains a
lower success ratio in the following four cases: (n, k) = (100,5), (100,10), (100,20), and
(125,5). These results indicate that although MULTI-DB scales up better than MULTI-
AWC, it sometimes shows very poor performance regardless of the problem size. We
conjecture that this poor performance of MULTI-DB is caused by its lack of random-
ness. Indeed, except for each agent making Possflips by using the WalkSAT variant, which
involves some randomness, the search process of MULTI-DB is inherently deterministic.
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Fig. 14. Mean costs of algorithms (showing MultiAWC, MultiDB, MultiDBp, and MultiDBpp from the back to
the front at every n/k and SingleDB separately from the rest at every n).

On comparing MULTI-DB+ and MULTI-DB, we can see that MULTI-DB+ is slightly
better for some cases but not for others. These results are not so impressive, so it does not
follow that adding only random break is effective.

On the other hand, on comparing MULTI-DB++ and MULTI-DB, MULTI-DB++
shows very clear performance improvement. We should point out that MULTI-DB++ suc-
cessfully completes its run within the upper bound of the number of cycles (5000n cycles)
in all cases. Furthermore, for almost all cases, MULTI-DB++ has fewer mean #cycles and
mean #flips, with the only exception being the mean #flips for (n, k) = (150,5), although
we can say that the difference is relatively minor. However, although the results are not
shown, we also observed that in MULTI-DB++ the median #cycles and #flips slightly in-
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Table 1

Success ratio on uniform random (Dis)3-SAT where n variables are divided by k agents

n k SINGLE-DB MULTI-AWC MULTI-DB MULTI-DB+ MULTI-DB++

100 2 0.991 1.000 1.000 1.000 1.000
4 1.000 1.000 0.999 1.000
5 1.000 0.998 1.000 1.000

10 0.999 0.996 0.997 1.000
20 0.998 0.995 0.996 1.000

125 5 0.98 1.00 0.99 1.00 1.00
25 0.97 1.00 0.97 1.00

150 3 0.95 0.98 0.99 0.99 1.00
5 0.91 1.00 0.98 1.00

10 0.90 1.00 0.97 1.00
15 0.87 0.96 0.97 1.00
25 0.83 0.92 0.98 1.00
30 0.90 0.96 0.97 1.00

crease in many cases. These results suggest that the stagnation of the search processes of
multiple agents, which is observed in a very few runs of MULTI-DB, can be avoided by
adding random walk at the cost of slightly distracting their search processes.

On comparing SINGLE-DB and MULTI-DB, MULTI-DB is better in almost all cases in
terms of both the mean #cycles and the mean #flips. The reason would be that in SINGLE-
DB a real agent, which originally owns multiple local variables, fails to make better use
of the knowledge of its local problem. By introducing additional virtual agents and distrib-
uting its multiple local variables so that each resulting agent will have one variable, a real
agent obtains the applicability of SINGLE-DB but loses quick access to the knowledge of
its local problem. This increases the amount of communication among the agents and thus
SINGLE-DB results in deteriorated performance.

Recently, some researchers have investigated the distributed stochastic algorithm (DSA)
[5,6,28]. In DSA, agents sometimes act incoherently in such a way that at a certain proba-
bility each agent i makes a local change without caring the possibility that its local change
would conflict with those of neighboring agents. Among some variations of DSA, Fitz-
patrick and Meertens have reported that the CFP algorithm shows the best performance on
satisfiable instances of the distributed k-coloring problem [6]. In CFP, each agent acts as
follows. It first randomly chooses an assignment for its variable and sends the assignment
to its neighbors. Then, it repeats a sequence of steps until a termination condition is met.
Each agent collects the assignments of neighbors at each step; if there are constraint viola-
tions, with probability α the agent chooses an assignment giving the largest cost reduction,
and with probability 1 − α it keeps its current assignment, after which the agent sends an
assignment to its neighbors if the assignment is new. Zhang and Xing show experimen-
tal results to compare DSA and SINGLE-DB on the distributed scan scheduling problem,
which can be formulated as the distributed graph coloring problem, in terms of solution
quality and communication cost [28]. Their conclusion is that CFP is superior to SINGLE-
DB in terms of both solution quality and communication cost. However, the distributed
scan scheduling problem is an optimization problem whose goal is to minimize the total
weight of violated (soft) constraints. For a decision problem whose goal is to completely
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Table 2

Success ratio on uniform random (Dis)3-SAT where n variables are divided by k agents (Note:
first 100 instances are tried in the n = 100 case)

CFP CFP CFP
n k α = 0.3 α = 0.5 α = 0.7

100 10 0.03 0.09 0.11
20 0.01 0.00 0.03

125 25 0.00 0.00 0.03

150 15 0.00 0.00 0.05
25 0.01 0.01 0.04
30 0.00 0.00 0.03

satisfy all of the constraints, the conclusion must be different because CFP can reach a
sub-optimal solution very quickly but has no explicit technique for escaping from local
minima. In fact, we adapted the CFP algorithm to the DisSAT problem and tested its per-
formance on some sets of instances in the uniform random (Dis)3-SAT. Table 2 indicates
the success ratios of the CFP algorithm within the upper bound of 5000n cycles when we
control α over 0.3, 0.5, and 0.7. From this, it is clear that the CFP algorithm rarely reaches
a solution. Recall that the success ratio of MULTI-DB++ is 1 in all cases.

7. Conclusions

We have presented the distributed breakout algorithms along with four implementations:
SINGLE-DB, MULTI-DB, MULTI-DB+, and MULTI-DB++. SINGLE-DB is a distributed
breakout algorithm for solving the DisCSP, where each agent has only one local variable
and its related constraints. MULTI-DB, on the other hand, is another distributed breakout
algorithm for solving the DisSAT problem, where each agent has multiple local vari-
ables and their related clauses. MULTI-DB+ and MULTI-DB++ are stochastic variations
of MULTI-DB, where we introduce random break to MULTI-DB to make MULTI-DB+
and random walk to MULTI-DB+ to make MULTI-DB++. According to our experimen-
tal evaluation, SINGLE-DB, MULTI-DB, and MULTI-DB+ scale up better but show very
poor performance in a few cases. On the other hand, MULTI-DB++, which uses random
walk, shows remarkable performance improvement.
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