
SA
Artificial Intelligence 166 (2005) 165–193

www.elsevier.com/locate/artint

Unifying tree decompositions for reasoning in
graphical models ✩

Kalev Kask a,∗, Rina Dechter a, Javier Larrosa b, Avi Dechter c

a Bren School of Information and Computer Science, University of California, Irvine, CA 92697-3425, U
b Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

c College of Business and Economics, California State University, Northridge, CA 91330, USA

Received 24 September 2004; accepted 8 April 2005

Available online 10 May 2005

Abstract

The paper provides a unifying perspective of tree-decomposition algorithms appearing in various
automated reasoning areas such as join-tree clustering for constraint-satisfaction and the clique-
tree algorithm for probabilistic reasoning. Within this framework, we introduce a new algorithm,
called bucket-tree elimination (BTE), that extends Bucket Elimination (BE) to trees, and show that
it can provide a speed-up of n over BE for various reasoning tasks. Time-space tradeoffs of tree-
decomposition processing are analyzed.
 2005 Published by Elsevier B.V.

Keywords:Automated reasoning; Graphical models

1. Introduction

This paper provides a unifying perspective of tree-decomposition algorithms that appear
in a variety of automated reasoning areas. Its main contribution is bringing together, within

✩ This work was supported in part by NSF grant IIS-0086529 and by MURI ONR award N0014-00-1-0617.
* Corresponding author.

E-mail address:kkask@ics.uci.edu (K. Kask).
0004-3702/$ – see front matter  2005 Published by Elsevier B.V.
doi:10.1016/j.artint.2005.04.004

166 K. Kask et al. / Artificial Intelligence 166 (2005) 165–193
a single coherent framework, seemingly different approaches that have been developed
over the years within a number of different communities.1

The idea of embedding a database that consists of a collection of functions or relations in
a tree structure and, subsequently, processing it effectively by a tree-processing algorithm,
has been discovered and rediscovered in different contexts. Database researchers observed,
almost three decades ago, that relational database schemes that constitute join-trees enable
efficient query processing [22]. In fact, many of the important properties of tree-based
processing were discussed and proved within the database community [2,32]. Join tree
transformations and their associated variable elimination algorithms were proposed for the
efficient solution of constraints satisfaction problems [9] and their role was re-formalized
and extended more recently in [14]. In the area of belief networks, junction-tree clustering
emerged as the leading strategy for performing probabilistic inference [21]. Variants of this
approach were subsequently offered as a means to better address time-space considerations
[15,27,28]. Tree-decomposition techniques were also introduced in the context of machine
learning [12]. Finally, the notion of tree-width, as a means for capturing the decomposition
of a hyper-graph into a hyper-tree, is well known in the area of theoretical computer science
for quite some time [1,25].

The aim of this paper is to present the central concepts and properties of cluster-tree de-
composition techniques by way of a single, unified framework for the purpose of making it
more accessible to researchers in diverse areas and facilitating the transfer of this methodol-
ogy among these areas. Specifically, we demonstrate that join-tree clustering, junction-tree
decomposition, and hyper-tree decomposition that, as mentioned above, were developed
in different contexts and for different applications, are all instances of our unified scheme.
Also, as we show, variable elimination algorithms can be viewed as processing specific
cluster-tree decompositions.

Our work is related in aim and content to the earlier work of Shenoy and Shafer [4,
31], who presented a unifying, axiomatic, approach for reasoning tasks. Several of the
technical results described in this paper have parallels in these earlier papers. Our work
expands on this work in several ways. First, we use a graph-based language, connecting
our approach explicitly to graphical models and using graph-based parameters for captur-
ing algorithmic principles. In particular, we provide graph-based complexity analysis that
focuses on the time vs. space issue. Second, we emphasize the distinction between the
generation of a structural tree-decomposition and the tree-processing algorithms that are
enabled by the decomposition. Third, we show that variable elimination algorithms can
be viewed as a specific tree-processing schemes that can be generalized to full process-
ing along special tree-decompositions called bucket trees. Finally, we note how different
tree-decompositions of a given problem yield a spectrum of time-space complexity char-
acteristics using superbuckets.

Following a review of background concepts and definitions in Section 2, Section 3
introduces the concept of reasoning problems over graphical models. In Section 4 we in-
troduce the concept of cluster-tree decompositions, present two algorithms for processing

1 Earlier versions of some parts of this paper appear in [6, Chapter 9] (restricted to constraint processing only)
and in [19,24].

K. Kask et al. / Artificial Intelligence 166 (2005) 165–193 167
tree-decompositions and analyze their time-space complexities. Section 5 introduces and
analyzes the bucket-tree elimination algorithm, and Section 5.4 briefly presents the su-
perbuckets, a general method that governs a transition between tree-decompositions and
permits a corresponding trade-off between time and space. Section 6 reviews some exist-
ing decomposition methods and places them in the context of cluster-tree decomposition
and related work. In Section 7 we provide concluding remarks.

2. Preliminaries

Notations: A reasoning problem is defined in terms of a set of variables that take their
values from finite domains and a set of functions defined over these variables. We denote
variables or sets of variables by uppercase letters (e.g., X, Y , Z, S) and values of variables
by lower case letters (e.g., x, y, z, s). An assignment (X1 = x1, . . . ,Xn = xn) can be ab-
breviated as x = (x1, . . . , xn). For a set of variables S, DS denotes the Cartesian product of
the domains of variables in S. If X = {X1, . . . ,Xn} and S ⊆ X, xS denotes the projection
of x = (x1, . . . , xn) over S. We denote functions by letters f , g, h, etc., and the scope (set
of arguments) of a function f by scope(f).

Definition 2.1 (Elimination operators). Given a function h defined over a subset of vari-
ables S, the functions (minX h), (maxX h), and (

∑
X h) where X ∈ S, are defined over

U = S − {X} as follows: For every U = u, and denoting by (u, x) the extension of tu-
ple u by assignment X = x, (minX h)(u) = minx h(u, x), (maxX h)(u) = maxx h(u, x),
and (

∑
X h)(u) = ∑

x h(u, x). Given a set of functions h1, . . . , hk defined over the sets
S1, . . . , Sk , the product function Πjhj and the sum function

∑
j hj are defined over

U = ⋃
j Sj such that for every u ∈ DU , (Πjhj)(u) = Πjhj (uSj

) and (
∑

j hj)(u) =∑
j hj (uSj

).

Definition 2.2 (Graph concepts). A directed graphis a pair G = {V,E}, where V =
{V1, . . . , Vn} is a set of vertices and E = {(Vi,Vj) | Vi,Vj ∈ V } is the set of edges (arcs).
If (Vi,Vj) ∈ E, we say that Vi points toVj . The degree of a variable is the number of arcs
incident to it. For each variable Vi , the set of parent vertices pa(Vi) or pai , is the set of
variables pointing to Vi in G, while the set of child vertices of Vi , denoted ch(Vi) or chi ,
comprises the variables that Vi points to. The family of Vi , Fi , consists of Vi and its parent
variables. A directed graph is acyclic if it has no directed cycles.

Definition 2.3 (Hyper-graph). A hyper-graphis a pair H = (V ,S) where S = {S1, . . . , St }
is a set of subsets of V , called hyper-edges.

Definition 2.4 (Primal graph, dual graph). The primal graphof a hyper-graph H = (V ,S)

is an undirected graph G = (V ,E) such that there is an edge (u, v) ∈ E for any two vertices
u,v ∈ V that appear in the same hyper-edge (namely, there exists Si , s.t., u,v ∈ Si). The
dual graphof a hyper-graph H = (V ,S) is an undirected graph G = (S,E) that has a
vertex for each hyper-edge, and there is an edge (Si, Sj) ∈ E when the corresponding
hyper-edges share a vertex (Si ∩ Sj �= ∅).

168 K. Kask et al. / Artificial Intelligence 166 (2005) 165–193
Definition 2.5 (Hyper-tree). A hyper-graph is a hyper-tree, also called acyclic hyper-graph
if and only if its dual graph has an edge subgraph (one that has the same set of vertices as
the dual graph, but a subset of the edges) that is a tree and that satisfies the connectedness
property, namely all the nodes in the dual graph that contain a common variable, form a
connected subgraph (see also definition in Section 4).

Definition 2.6 (Induced-width). An ordered graphis a pair (G,d) denoted Gd where G

is an undirected graph, and d = (X1, . . . ,Xn) is an ordering of the vertices. The width
of a vertexin an ordered graph is the number of its earlier neighbors. The width of an
ordered graph, w(Gd), is the maximum width of all its vertices. The induced width of an
ordered graph, w∗(Gd), is the width of the induced ordered graph, denoted G∗

d , obtained
by processing the vertices recursively, from last to first; when vertex X is processed, all
its earlier neighbors are connected. The induced width of a graph, w∗(G), is the minimal
induced width over all its orderings [9].

3. Reasoning tasks over graphical models

A graphical model is defined by a set of real-valued functions F over a set of vari-
ables X, conveying probabilistic and deterministic information, whose structure can be
captured by a graph.

Definition 3.1. A graphical modelR is a 4-tuple R = 〈X,D,F,⊗〉, where:

1. X = {X1, . . . ,Xn} is a set of variables.
2. D = {D1, . . . ,Dn} is a set of finite domains.
3. F = {f1, . . . , fr} is a set of real-valued functions over subsets of X.
4.

⊗
i fi ∈ {∏i fi,

∑
i fi,
�i fi} is a combinationoperator. The scope of function fi ,

denoted scope(fi) ⊆ X, is the set of arguments of fi .

The graphical model represents the combination of all its functions or relations, namely
the set

⊗r
i=1 fi .

Definition 3.2 (Cost of a partial assignment). The cost of a partial assignment̄x =
(〈X1, x1〉, . . . , 〈Xi, xi〉) in a graphical model R = 〈X,D,F,⊗〉, is the combination of all
the functions whose scopes are included in the partial assignment, evaluated at the assigned
values. Namely, c(x̄) = ⊗

f |scope(f)⊆{X1,...,Xi } f (x̄[scope(f)]).

There are various queries/tasks that can be posed over graphical models. We refer to
them all as reasoning problems. We need one more functional operator, marginalization,
to express most of the common queries.

Definition 3.3 (A reasoning problem). A reasoning problemover a graphical model is de-
fined by a marginalization operator and a set of variable subsets. It is therefore a triplet P =
(R,⇓Y , {Z1, . . . ,Zt }) where R= 〈X,D,F,⊗〉 is a graphical model and Z = {Z1, . . . ,Zt }

K. Kask et al. / Artificial Intelligence 166 (2005) 165–193 169
is a set of subsets of variables of X. ⇓Y f ∈ { max
S−Y

f,
min
S−Y

f,
Π

S−Y
f,

∑
S−Y

f }, is a marginal-
izationoperator, where S is the scope of function f and Y ⊆ X. The reasoning problem is
to compute:

⇓Z1

r⊗
i=1

fi, . . . , ⇓Zt

r⊗
i=1

fi

For optimization tasks we have Z = {Z1}, Z1 = ∅ and S = X. Often we also seek an
assignment to all the variables that optimizes (maximizes or minimizes) the combined cost
function f . Namely, we need to find x = (x1, . . . , xn) such that f (x) =⇓∅

⊗r
i=1 fi , where

⇓∈ {min,max}.

For convenience sake we will sometimes combine the reasoning problem with its graph-
ical model. In that case a reasoning problem P denotes a six-tuple P = 〈X,D,F,⊗,⇓Y ,

{Z1, . . . ,Zt }〉.
We assume that functions are expressed in tabular form, having an entry for every com-

bination of values from the domains of their variables. Therefore, the specification of such
functions is exponential in their scopes (the base of the exponent is the maximum domain
size). Relations, or clauses, can be expressed as functions that associate a value of “0” or
“1” with each tuple, depending on whether or not the tuple is in the relation (or satisfies a
clause). The combination operator takes a set of functions and generates a new function.
Note that

∏
i stands for a product when it is a combination operator and Πi for a pro-

jection when it is a marginalization operator. The operators are defined explicitly as a list
of possible specific operators. However, they can be defined axiomatically, as we discuss
later.

Definition 3.4. The hyper-graph of a graphical modelhas the variables as its vertices and
the scopes of functions as its hyper-edges. The primal graph of a graphical modelis the
primal graph of the problem’s hyper-graph. Namely, the variables are the vertices and any
two variables that belong to a function’s scope are connected by an edge.

We next elaborate on the special cases of reasoning tasks defined over constraint net-
works and belief networks.

3.1. Constraint networks

Constraint Satisfaction[6] is a framework for formulating real-world problems, such as
scheduling, planning, etc., as a set of constraints between variables. For example, one ap-
proach for formulating a scheduling problem as a constraint problem is to create a variable
for each resource and time slice. Values of variables would be tasks that need to be sched-
uled. Assigning a task to a particular variable (corresponding to a resource at some time
slice) means that this resource starts executing the given task at the specified time. Various
constraints (such as that a given task takes a certain amount of time to execute, or that a
task can be executed at most once) can be modeled as constraints between variables.

The Constraint Satisfaction problem is to find an assignment of values to variables that
does not violate any constraints, or else to conclude that the problem is inconsistent. Such

170 K. Kask et al. / Artificial Intelligence 166 (2005) 165–193
problems are graphically represented by vertices corresponding to variables and edges cor-
responding to constraints between variables.

Definition 3.5 (Constraint networks, Constraint Satisfaction problems). A constraint net-
work (CN) is defined by a triplet (X,D,C) where X is a set of variables X = {X1, . . . ,Xn}
associated with a set of discrete-valued domains, D = {D1, . . . ,Dn}, and a set of con-
straints C = {C1, . . . ,Cr}. Each constraint Ci is a pair (Si,Ri), where Ri is a relation
Ri ⊆ DSi

defined on a subset of variables Si ⊆ X called the scope of Ci . The relation
denotes all tuples of DSi

allowed by the constraint. The primal graph of a constraint
network is called a constraint graph. A solution is an assignment of values to vari-
ables x = (x1, . . . , xn), xi ∈ Di , such that each constraint is satisfied, namely ∀Ci ∈ C

xSi
∈ Ri . The Constraint Satisfaction problem (CSP) is to determine whether a con-

straint network has a solution, and if it does, to find a solution. A binary CSP is one
where each constraint involves at most two variables, namely |Si | � 2. Sometimes (e.g.,
the Max-CSP problem defined below), we express the relation Ri as the cost function
Ci(Xi1 = xi1, . . . ,Xik = xik) = 0 if (xi1, . . . , xik) ∈ Ri , and 1 otherwise.

A constraint satisfaction problem is a reasoning task P = (R,Π,Z = ∅), where
R = 〈X,D,C,
�〉 is a constraint network, the combination operator is the join operator
and the marginalization operator is the projection operator. Namely, the problem is to find
⇓∅

⊗
i fi = ΠX
�ifi .

Example 3.1. Fig. 1 depicts the hyper-graph(a), the primal graph (b) and the dual
graph(c) representations of a constraint network with variables A,B,C, D,E,F and with
constraints on the scopes (ABC), (AEF), (CDE) and (ACE). The specific constraints are
irrelevant to the current discussion; they can be arbitrary relations over domains of {0,1},
such as C = A ∨ B , F = A ∨ E, and so on.

Real-world problems are often over-constrained and do not have a solution. In such
cases, it is desirable to find an assignment that satisfies a maximum number of constraints,
called a Max-CSP assignment. A Max-CSP problem as the name suggests is a maximiza-
tion problem, it can also be defined as a minimization problem. Instead of maximizing the

(a) (b) (c)

Fig. 1. (a) Hyper, (b) primal, (c) dual graphs of a CSP.

K. Kask et al. / Artificial Intelligence 166 (2005) 165–193 171
number of constraints that are satisfied, we minimize the number of constraints that are
violated.

Definition 3.6 (Max-CSP). Given a constraint network, R = 〈X,D,C,
�〉 the Max-CSP
task means finding an assignment x0 = (x0

1 , . . . , x0
n) that minimize the number of violated

constraints, namely
∑r

i=1 Ci(x
0
scope(Ci)

) = minx

∑r
i=1 Ci(xscope(Ci)).

A Max-CSP is a reasoning task P = 〈R,min,Z = ∅〉, where R = 〈X,D,F,
∑〉 where

F is the set of cost functions assigning 0 to all allowed tuples and 1 to all non-allowed
tuples. The combination operator is summation and the marginalization operator is the
minimization operator. Namely, the task is to find ⇓∅

⊗
i fi = minX

∑
i fi . It also requires

an optimizing assignment.

3.2. Belief networks

Belief networks[23] provide a formalism for reasoning about partial beliefs under condi-
tions of uncertainty. They are defined by a directed acyclic graph over vertices representing
variables of interest (e.g., the temperature of a device, the gender of a patient, a feature of
an object, the occurrence of an event). The arcs signify the existence of direct causal influ-
ences between linked variables quantified by conditional probabilities that are attached to
each cluster of parents-child vertices in the network.

Definition 3.7 (Belief networks). Given a set X = {X1, . . . ,Xn} of variables over multi-
valued domains D = {D1, . . . ,Dn}, a belief networkis a pair (G,P), where G is a directed
acyclic graph over X and P = {Pi} are conditional probability matrices Pi = {P(Xi |
pa(Xi))} associated with each Xi and its parents. Given a subset of variables S, we will
denote by P(s) the probability P(S = s), where s ∈ DS . A belief network represents a
probability distribution over X, P(x1, . . . , xn) = Πn

i=1P(xi | xpai
). An evidence set e is

an instantiated subset of variables. The primal graph of a belief network is called a moral
graph. It can be obtained by connecting the parents of each vertex in G and making every
directed arc, undirected. Equivalently, it connects any two variables appearing in the same
family.

Definition 3.8 (Belief updating). Given a belief network and evidence e, the belief updating
task is to compute the posterior marginal probability of assignment Xi = xi , conditioned
on the evidence, namely,

Bel(Xi = xi) = P(Xi = xi | e) = α
∑

{x=(x1,...,xi−1,xi+1,...,xn)}

n∏
k=1

P(xk, e | xpak,Xi=xi
)

where α is a normalization constant.

When formulated as a reasoning task, functions in F denote conditional probability ta-
bles and the scopes of these functions are determined by the directed acyclic graph (DAG):

172 K. Kask et al. / Artificial Intelligence 166 (2005) 165–193
(a) (b) (c)

Fig. 2. (a) Belief network P(g,f, d, c, b, a), (b) its moral graph and (c) its induced graph.

Each function fi ranges over variable Xi and its parents in the DAG. The combination op-
erator is

⊗
j = ∏

j , the marginalization operator is ⇓Xi
= ∑

X−Xi
, and Zi = {Xi}. Namely,

∀Zi,⇓Zi

⊗
i fi = ∑

X−{Xi }
∏

i fi .

Definition 3.9 (Most probable explanation). Given a belief network and evidence e, the
most probable explanation(MPE) task is to find a complete assignment which agrees with
the available evidence, and which has the highest probability among all such assignments,
namely, to find an assignment (xo

1 , . . . , xo
n) such that

P(xo
1 , . . . , xo

n) = P(x1, . . . , xn, e) = max
(x1,...,xn)

n∏
k=1

P(xk, e | xpak
)

When MPE is formalized as a reasoning task, the combination operator is multiplication
and the marginalization operator is maximization. An MPE task is to find ⇓∅

⊗
i fi =

maxX

∏
i fi , where X is the set of variables and fi is the set of conditional probability

tables. It also requires an optimizing assignment.

Example 3.2. Consider a belief network in Fig. 2(a). It contains variables A,B,C,D,F,G

and functions f (A,B), f (A,C), f (B,C,F), f (A,B,D), f (F,G), modelling the de-
pendency of the lawn being wet on various other phenomena, such as rain, sprinkler
system, etc. All variables, except Seasonhave two values. The domain of variable Sea-
sonis {Winter, Spring, Summer, Fall} and the prior probability associated with Seasonis
P(Season) = {0.25,0.25,0.25,0.25}. All other variables are associated with a conditional
probability. For example, P(Rain | Winter) = 0.01, P(Rain | Spring) = 0.10, P(Rain |
Summer) = 0.25, P(Rain| Fall) = 0.35; P(Sprinkler| Winter) = P(Sprinkler| Spring) =
0.3, P(Sprinkler| Summer) = P(Sprinkler| Fall) = 0.9; P(Wet| Rain,Sprinkler) = 0.95,
P(Wet | Rain,¬Sprinkler) = 0.5, P(Wet | ¬Rain,Sprinkler) = 0.75, P(Wet | ¬Rain,
¬Sprinkler) = 0.05. It was observed that the lawn is wet and we want to know what is
the probability that it was raining and the probability that the sprinkler was on. We can

K. Kask et al. / Artificial Intelligence 166 (2005) 165–193 173
compute P(Rain| Wet) = 0.38 and P(Sprinkler| Wet) = 0.59. Fig. 2(c) gives the induced-
graph in (b) along the ordering d = A,B,C,D,F,G.

4. Cluster-tree decomposition

Tree clustering schemes have been widely used for constraint processing, probabilistic
reasoning and for graphical models in general. The most popular variants are join-tree
clustering algorithms, also called junction-trees. The schemes vary somewhat in their graph
definitions as well as in the way tree-decompositions are processed [10,14,15,21,22,29,30].
However, they all involve a decomposition of a hyper-graph into a hyper-tree.

To allow a coherent discussion and extension of these methods, we present a unifying
(cluster-)tree-decomposition framework that borrows its notation from the recent hyper-
tree decomposition proposal for constraint satisfaction presented in [14]. The exposition is
declarative, separating the desired target output from its generative process.

Definition 4.1. Let P = 〈R ⇓, {Zi}〉 be a reasoning problem over a graphical model
〈X,D,F,⊗〉. A tree-decompositionfor P is a triple 〈T ,χ,ψ〉, where T = (V ,E) is a
tree and χ and ψ are labelling functions that associate with each vertex v ∈ V two sets,
χ(v) ⊆ X and ψ(v) ⊆ F , that satisfy the following conditions:

1. For each function fi ∈ F , there is exactly onevertex v ∈ V such that fi ∈ ψ(v).
2. If fi ∈ ψ(v), then scope(fi) ⊆ χ(v).
3. For each variable Xi ∈ X, the set {v ∈ V | Xi ∈ χ(v)} induces a connected subtree

of T . This is also called the running intersection or the connectedness property.
4. ∀iZi ⊆ χ(v) for some v ∈ T .

The “exactly one” requirement in the first condition of Definition 4.1 is needed to
guarantee the correctness of the Cluster-Tree Elimination algorithm we present next for
problems like belief updating, or optimization problems, since each occurrence of each
function might change the value of the combined function. For CSPs (when the combina-
tion operator is join), this requirement may be relaxed to “at least one”, because adding
a constraint to more than one vertex is safe since this does not eliminate any solutions.
In general, if the combination operator ⊗ is idempotent (f ⊗ (f ⊗ g) = f ⊗ g, for all f

and g), “exactly one” can be relaxed to “at least one”.

Definition 4.2 (Tree-width, hyper-width, separator). The width(also called tree-width) of a
tree-decomposition 〈T ,χ,ψ〉 is max

v∈V
|χ(v)|, and its hyper-widthis max

v∈V
|ψ(v)|. Given two

adjacent vertices u and v of a tree-decomposition, a separator of u and v is defined as
sep(u, v) = χ(u) ∩ χ(v).

Notice that it may be that sep(u, v) = χ(u) (that is, all variables in vertex u belong
to an adjacent vertex v). In this case the size of the tree-decomposition can be reduced
by merging vertex u into v without increasing the tree-width of the tree-decomposition.
A tree-decomposition is minimalif sep(u, v) ⊂ χ(u) and sep(u, v) ⊂ χ(v).

174 K. Kask et al. / Artificial Intelligence 166 (2005) 165–193
Fig. 3. Several tree-decompositions of the same belief network.

Example 4.1. Consider the belief network in Fig. 2(a). Any of the trees in Fig. 3 is a
tree-decomposition for this problem where the functions can be partitioned into clus-
ters that contain their scopes. The labeling χ are the sets of variables in each node. For
example, Fig. 3(C) shows a cluster-tree decomposition with two vertices, and labelling
χ(1) = {G,F } and χ(2) = {A,B,C,D,F }. Any function with scope {G} must be placed
in vertex 1 because vertex 1 is the only vertex that contains variable G (placing a func-
tion having G in its scope in another vertex will force us to add variable G to that vertex
as well). Any function with scope {A,B,C,D} or its subset must be placed in vertex 2,
and any function with scope {F } can be placed either in vertex 1 or 2. Note that the trees
in Fig. 3 are drawn upside-down, namely, the leaves are at the top and the root is at the
bottom.

A tree-decomposition facilitates a solution to an automated reasoning task. Cluster-
tree elimination algorithm for processing a tree-decomposition is presented as a message-
passing algorithm Fig. 4. Each vertex of the tree sends a function or a relation to each
of its neighbors. All the functions in vertex u and all messages received by u from all
its neighbors other than v are combined using the combination operator. The combined
function is projected onto the separator of u and v using the marginalization operator and
the projected function is then sent from u to v. Functions that do not share variables with
the eliminated variables are passed along separately in the message.

Vertex activation can be asynchronous and convergence is guaranteed. If processing is
performed from leaves to root and back, convergence is guaranteed after two passes, where
only one message is sent on each edge in each direction. If the tree contains m edges, then
a total of 2m messages will be sent.

Example 4.2. Consider a graphical model whose primal graph appears in Fig. 2(a). Assume
all functions are on pairs of variables. Two tree-decompositions are described in Fig. 6.
The induced-graphs that correspond to the two decompositions are given in Fig. 5(b), (c)
respectively.

K. Kask et al. / Artificial Intelligence 166 (2005) 165–193 175
Algorithm cluster-tree elimination (CTE)
Input: A tree decomposition 〈T ,χ,ψ〉 for a problem P = 〈X,D,F,⊗,⇓,{Z1, . . . ,Zt }〉,
X = {X1, . . . ,Xn}, F = {f1, . . . , fr }.
Output: An augmented tree whose vertices are clusters containing the original functions
as well as messages received from neighbors. A solution computed from the augmented
clusters.
Compute messages:
For every edge (u, v) in the tree, do

• Let m(u,v) denote the message sent by vertex u to vertex v.
• Let cluster(u) = ψ(u) ∪ {m(i,u) | (i, u) ∈ T }.
• If vertex u has received messages from all adjacent vertices other than v, then compute

and send to v,

m(u,v) =⇓sep(u,v)

(⊗
f ∈cluster(u),f �=m(v,u)

f

)
(1)

Endfor
Note: functions whose scope does not contain elimination variables do not need to be
processed, and can instead be directly passed on to the receiving vertex.
Return: A tree-decomposition augmented with messages, and for every v ∈ T and every
Zi ⊆ χ(v), compute ⇓Zi

⊗
f ∈cluster(v) f .

Fig. 4. Algorithm cluster-tree elimination (CTE).

(a) (b) (c)

Fig. 5. A graph (a) and two of its induced graphs (b) and (c).

Example 4.3. Fig. 7 shows the messages propagated for the tree-decomposition in
Fig. 6(b). Assume that it expresses a constraint problem, so the functions are relations.
Since cluster 1 contains only one relation, the message from cluster 1 to 2 is the projec-
tion of RFD over the separator between cluster 1 and 2, which is variable D. The message
m(2,3) from cluster 2 to cluster 3 joins the relations in cluster 2 with the message m(1,2),
and projects over the separator between cluster 2 and 3, which is {B,C}, and so on.

176 K. Kask et al. / Artificial Intelligence 166 (2005) 165–193
(a) (b)

Fig. 6. Two tree-decompositions of a graphical model.

Fig. 7. Example of messages sent by CTE.

Once all vertices have received messages from all their neighbors, a solution to the
problem can be generated using the output augmented tree (as described in the algorithm)
in output linear time. For some tasks the whole output tree is used to compute the solution
(e.g., computing an optimal tuple).

K. Kask et al. / Artificial Intelligence 166 (2005) 165–193 177

e

4.1. Correctness of CTE

Theorem 4.4 (Soundness and completeness). Assuming that the combination operator
⊗

i

and the marginalization operator⇓Y satisfy the following properties(these properties wer
first formulated by[30,31]):

1. Order of marginalization does not matter:

⇓X−{Xi}
(⇓X−{Xj } f (X)

) =⇓X−{Xj }
(⇓X−{Xi} f (X)

)
2. Commutativity: f ⊗ g = g ⊗ f .
3. Associativity: f ⊗ (g ⊗ h) = (f ⊗ g) ⊗ h.
4. Restricted distributivity:

⇓X−{Xk}
[
f (X − {Xk}) ⊗ g(X)

] = f (X − {Xk})⊗ ⇓X−{Xk} g(X)

Algorithm CTE is sound and complete.

A proof of this theorem follows from the work of Shenoy [30,31]. For completeness we
provide a proof which is different and we believe to be clearer.

Proof. By definition, solving an automated reasoning problem P requires computing a
function F(Zi) =⇓Zi

⊗r
i=1 fi for each Zi . Using the four properties of combination and

marginalization operators, the claim can be proved by induction on the depth of the tree as
follows.

Let 〈T ,χ,ψ〉 be a cluster-tree decomposition for P . By definition, there must be a
vertex v ∈ T , such that Zi ⊆ χ(v). We create a partial order of the vertices of T by making
v the root of T . Let Tu = (Nu,Eu) be a subtree of T rooted at vertex u. We define χ(Tu) =⋃

w∈Nu
χ(w) and χ(T − Tu) = ⋃

w∈{N−Nu} χ(w).
We rearrange the order in which functions are combined when F(Zi) is computed. Let

d(j) ∈ N , j = 1, . . . , |N |, be a partial order of vertices of the rooted tree T , such that a
vertex must be in the ordering before any of its children. The first vertex in the ordering is
the root of the tree. Let Fu = ⊗

f ∈ψ(u) f . We define

F ′(Zi) =⇓Zi

|N |⊗
j=1

Fd(j)

Because of associativity and commutativity, we have F ′(Zi) = F(Zi).
We define e(u) = χ(u) − sep(u,w), where w is the parent of u in the rooted tree T .

For the root vertex v, e(v) = X − Zi . In other words, e(u) is the set of variables that are
eliminated when we go from u to w. We define e(Tu) = ⋃

w∈Nu
e(w), that is, e(Tu) is the

set of variables that are eliminated in the subtree rooted at u. Because of the connectedness
property, it must be that e(Tu) ∩ {Xi | Xi ∈ χ(T − Tu)} = ∅. Therefore, variables in e(Tu)

appear only in the subtree rooted at u.
Next, we rearrange the order in F ′(Zi) in which the marginalization is applied. If Xi /∈

Zi and Xi ∈ e(d(k)) for some k, then the marginalization eliminating Xi can be applied

178 K. Kask et al. / Artificial Intelligence 166 (2005) 165–193

po-
s
he
to
⊗|N |

j=k Fd(j) instead of
⊗|N |

j=1 Fd(j). This is safe to do, because as shown above, if a
variable Xi belongs to e(d(k)), then it cannot be part of any Fd(j), j < k. Let ch(u) be
the set of children of u in the rooted tree T . If ch(u) = ∅ (vertex u is a leaf vertex), then
we define Fu =⇓X−e(u) Fu. Otherwise we define Fu =⇓X−e(u) (Fu

⊗
w∈ch(u) F

w). If v

is the root of T , we define

F ′′(Zi) = Fv

Because of properties 1 and 4, we have F ′′(Zi) = F(Zi). However, F ′′(Zi) is exactly what
the cluster-tree algorithm computes. The message that each vertex u sends to its parent
is Fu. This concludes the proof. �
4.2. Complexity of CTE

Algorithm CTE can be subtly varied to influence its time and space complexities. The
description in Fig. 4 may imply an implementation whose time and space complexity are
the same. At first glance, it seems that the space complexity is also exponential in w∗.
Indeed, if we first record the combined function in Eq. (1) and subsequently marginal-
ized on the separator, we will have space complexity exponential in w∗. However, we can
interleave the combination and marginalization operations, and thereby make the space
complexity identical to the size of the sent message as follows. In Eq. (1), we compute the
message m, which is a function defined over the separator, sep, because all the variables
in the eliminator, elim(u) = χ(u) − sep, are eliminated by combination. This can be im-
plemented by enumeration (or search) as follows: For each assignment a to χ(u), we can
compute its combined functional value, and use this for accumulating the marginalization
value on the separator, sep, updating asep, of the message function m(sep).

Theorem 4.5 (Complexity of CTE). LetN be the number of vertices in the tree decom
sition, w its tree-width, sep its maximum separator size,r the number of input function
in F , deg the maximum degree inT , andk the maximum domain size of a variable. T
time complexity of CTE isO((r + N) · deg· kw) and its space complexity isO(N · ksep).

Proof. The time complexity of processing a vertex u is degu · (|ψ(u)|+ degu − 1) · k|χ(u)|,
where degu is the degree of u, because vertex u has to send out degu messages, each being
a combination of (|ψ(u)| + degu − 1) functions, and requiring the enumeration of k|χ(u)|
combinations of values. The time complexity of CTE, Time(CTE) is

Time(CTE) =
∑
u

degu · (∣∣ψ(u)
∣∣ + degu − 1

) · k|χ(u)|

By bounding the first occurrence of degu by degand |χ(u)| by the tree-width w, we get

Time(CTE) � deg· kw ·
∑
u

(∣∣ψ(u)
∣∣ + degu − 1

)

Since
∑

u |ψ(u)| = r we can write

Time(CTE) � deg· kw · (r + N) = O
(
(r + N) · deg· kw

)

K. Kask et al. / Artificial Intelligence 166 (2005) 165–193 179

po-
For each edge CTE will record two functions. Since the number of edges is bounded
by N and the size of each function we record is bounded by ksep, the space complexity is
bounded by O(N · ksep).

If the cluster-tree is minimal (for any u and v, sep(u, v) ⊂ χ(u) and sep(u, v) ⊂ χ(v)),
then we can bound the number of vertices N by n. Assuming r � n, the time complexity
of a minimal CTE is O(deg· r · kw). �
4.3. Using more space to save time by ICTE

Algorithm CTE presented in Fig. 4 is time inefficient in that when a vertex is processed,
many computations are performed repeatedly. By precomputing intermediate functions we
can reduce the time complexity of the algorithm by a factor of the tree degree. This fact
was first observed by Shenoy who proposed a binary tree-architecture [29]. Here we give
an alternative formulation of the same idea.

When vertex u is processed, it contains two kinds of functions—original functions (the
number of which is |ψ(u)|) and messages that u received from its neighbors (there are
degu of these, one from each neighbor). When a vertex u computes a message to be sent to
an adjacent vertex v, it combines all original functions ψ(u) with the degu − 1 messages
received from its neighbors other than v, and marginalizes over the separator between u

and v.
Let the neighbors of u be enumerated as v1, . . . , vdegu . We can define a set of interme-

diate functions:

1. Let f u = ⊗
ψ(u).

2. Let m(i,j) = ⊗j
k=i m(vk,u).

A message that u sends to vk can be defined as

m(u,vk) =⇓sep(u,vk) (f u ⊗ m(1,k−1) ⊗ m(k+1,degu))

In Fig. 8 we present an improved version of the CTE algorithm (called ICTE) that pre-
computes intermediate functions for each vertex. The following theorem proves that ICTE
is faster than CTE by a factor of deg. However, because ICTE needs to store intermediate
functions, its space complexity is exponential in the tree-width, and not in the separator
size, as the case is with CTE.

Theorem 4.6 (Complexity of ICTE). LetN be the number of vertices in the tree decom
sition,w be its tree-width,r be the number of input functions inF , andk be the maximum
domain size of a variable. The time complexity of ICTE isO((r + N) · kw) and its space
complexity isO(N · kw).

Proof. For each vertex u, ICTE has to first compute intermediate functions f u, m(1,j)

and m(j,degu), j = 2, . . . ,degu − 1, and then messages m(u,vk) for each adjacent vertex v.
Computing intermediate functions takes time O((|ψ(u)| + 2degu) · kw) (note that m(1,k)

can be computed as m(1,k) = m(1,k−1) ⊗ m(vk,u)). Once intermediate functions are com-
puted, we can compute messages to all neighbors in time O(3degu · kw) (degu neighbors

180 K. Kask et al. / Artificial Intelligence 166 (2005) 165–193
Algorithm improved-cluster-tree elimination (ICTE)
Input: A tree decomposition 〈T ,χ,ψ〉 for a problem P = 〈X,D,F,⊗,⇓, {Z1, . . . ,Zt }〉.
Output: An augmented tree whose vertices are clusters containing the original functions as well
as messages received from neighbors. A solution computed from the augmented clusters.
1. Compute messages:
For every edge (u, vl) in the cluster tree, such that neighbors of u are enumerated
v1, . . . , vl , . . . , vdegu , do

• If vertex u has received messages from all adjacent vertices other than vl , then Compute
f u = ⊗

ψ(u), if not yet computed.

• For all j , 1 < j < degu, compute m(1,j) = ⊗j
k=1 m(vk,u) and m(j,degu) = ⊗degu

k=j
m(vk,u),

if not yet computed.
• Compute m(u,v), the message that vertex u sends to vertex v,

m(u,vl)
=⇓sep(u,vl)

(f u ⊗ m(1,l−1) ⊗ m(l+1,degu))

2. Return: The cluster-tree augmented with messages and for every v ∈ T and every Zi ⊆ χ(v),
compute ⇓Zi

⊗
f ∈cluster(v) f .

Fig. 8. Algorithm improved-cluster-tree elimination (ICTE).

and O(3 · kw) per neighbor). Therefore the time complexity of processing vertex u is
O((|ψ(u)| + 5degu) · kw). The time complexity of ICTE is

∑
u

O
((∣∣ψ(u)

∣∣ + 5degu
) · kw

)

Since
∑

u |ψ(u)| = r and
∑

u degu = 2(N − 1) time complexity of ICTE is = O((r + N) ·
kw).

For each vertex u, we need to store O(2degu) intermediate functions of size kw . By
summing over all vertices, the space complexity of storing all intermediate functions is
O(N · kw). Also, for each edge, ICTE has to store two messages of size ksep. Since the
total number of edges is N − 1, the space complexity of storing messages is O(N · ksep).
However, since sep� w the total space complexity of ICTE is O(N · kw). �

As we have mentioned, Shenoy [29] introduced binary join trees to organize computa-
tions more efficiently. For any cluster-tree, there exists a binary cluster-tree such that CTE
has the same time and space complexity on the binary tree as ICTE has on the original tree.
So, our ICTE algorithm can be viewed as a reformulation and rederivation of Shenoy’s re-
sult without the actual construction of the binary tree. Our derivation also pinpoints the
associated space-time complexity tradeoff.

5. Bucket-tree elimination

This section extends the bucket elimination scheme into a message passing algorithm
along a bucket-tree, and shows that the extended algorithm is an instance of the cluster-tree
elimination scheme.

K. Kask et al. / Artificial Intelligence 166 (2005) 165–193 181
5.1. Bucket elimination

Bucket elimination(BE) is a unifying algorithmic framework for dynamic-programming
algorithms applicable to any graphical model such as probabilistic and deterministic net-
works. The input to a BE algorithm consists of a collection of functions or relations of a
reasoning problem. Given a variable ordering, the algorithm partitions the functions into
buckets, each associated with a single variable. A function is placed in the bucket of its
latest argument in the ordering. The algorithm processes each bucket, top-down, from the
last variable to the first, by a variable elimination procedure that computes a new func-
tion using combination and marginalization operators in each bucket. The new function is
placed in the closest lower bucket whose variable appear in the function’s scope. When the
solution of the problem requires a complete assignment (e.g., finding the most probable
explanation in belief networks) a second, bottom-up phase, assigns a value to each variable
along the ordering, consulting the functions created during the top-down phase. For more
information see [5].

For the sake of completeness we present in Fig. 9 the BE algorithm [5]. It is well known
that the complexity of BE is exponential in the induced-width of the problem’s graph along
the order of processing. We provide a formal result for the complexity of BE in Section 5.3.

5.2. Bucket-tree elimination

Definition 5.1 (Singleton-optimality tasks). An automated reasoning problem P =
〈X,D,F,⊗,⇓, {Z1, . . . ,Zt }〉, where F = {f1, . . . , fr}, is a singleton-optimality problem
if t = n and for all i, Zi = {Xi}. In this case, we write Opt(Xi) =⇓Xi

⊗r
i=1 fi .

Algorithm BE
Input: A problem description P = 〈X,D,F,⊗,⇓,∅〉; F = {f1, . . . , fr }, an ordering of
the variables d = (X1, . . . ,Xn).
Output: Augmented buckets containing the original functions and all the message-
functions received.
1. Initialize: Partition the functions in F into buckets denoted BX1 , . . . ,BXn , where ini-
tially BXi

contains all input functions whose highest variable is Xi (ignore instantiated
variables).
During the algorithm’s execution BXi

= {h1, h2, . . . , hj }
2. Backward: For p ← n down-to 1, process BXi

:

• Generate the function λp

λp =⇓Up

⊗
h∈BXi

h

where Up = ⋃
h∈BXi

scope(h) − {Xp}.
• Add λp to the bucket of the largest-index variable in Up .

3. Return: The set of augmented buckets and the function computed in the first bucket.

Fig. 9. Bucket elimination algorithm.

182 K. Kask et al. / Artificial Intelligence 166 (2005) 165–193
Singleton-optimality tasks, require repeated execution of the BE algorithm, for example,
when the belief distribution is required for every variable in a belief network. Another
example is computing the optimal cost associated with each value of every variable that
is used to guide a search algorithm [8]. In order to compute the singleton-optimality task,
BE would have to be run n times, each initiated by a different variable. We next propose
a more efficient alternative, extending bucket-elimination into a bucket-tree elimination
(BTE) scheme. While the essence of this extension can be found in [30], its derivation
within the tree-decomposition framework adds clarity. It extends BE’s view as message-
passing from leaves to root along a bucket-tree [5] with a root-to-leaves message-passing
phase similar to the recent suggestion for probabilistic inference [3].

Let P = 〈X,D,F,⊗,⇓, {Zi}〉 be a reasoning problem and d be an ordering d =
(X1, . . . ,Xn). Let BX1, . . . ,BXn denote a set of buckets, one for each variable. Each bucket
BXi

contains those functions in F whose latest variable in d is Xi . A bucket-treeof a prob-
lem P has buckets as its nodes. Bucket BX is connected to bucket BY if the function
generated in bucket BX by BE is placed in BY . The variables of BX , are those appearing
in the scopes of any of its new and old functions. Therefore, in a bucket tree, every ver-
tex BX other than the root, has one parent vertex BY and possibly several child vertices
BZ1, . . . ,BZt . The structure of the bucket-tree can also be extracted from the induced-
ordered graph of P along d using the following definition.

Definition 5.2 (Bucket tree, graph-based). Let G∗
d be the induced graph along d of a rea-

soning problem P whose primal graph is G. The vertices of the bucket-tree are the n

buckets each associated with a variable. Each vertex BX points to BY (or, BY is the parent
of BX) if Y is the latest neighbor of X that appear before X in G∗

d . Each variable X and its
earlier neighbors in the induced-graph are the variables of bucket BX . If BY is the parent
of BX in the bucket-tree, then the separator of X and Y is the set of variables appearing in
BX ∩ BY , denoted sep(X,Y).

Example 5.1. Consider the Bayesian network defined over the DAG in Fig. 2(a). Fig. 10(a)
shows the initial buckets along the ordering d = A,B,C, D,F,G, and the messages (la-
belled λ’s in this case) that will be passed by BE from top to bottom. The message from

(a) (b)

Fig. 10. Execution of BE along the bucket-tree.

K. Kask et al. / Artificial Intelligence 166 (2005) 165–193 183

ing a
BX to BY is denoted λ(X,Y). Notice that the ordering is displayed bottom-up and messages
are passed top-down in the figure. Fig. 10(b) displays the same computation as a message-
passing along its bucket-tree.

Theorem 5.2. A bucket tree of a reasoning problemP is a tree-decomposition ofP .

Proof. We need to provide two mappings, χ and ψ , and show that the following two
tree-decomposition properties hold for a bucket tree:

1. χ(BX) contains X and its earlier neighbors in the induced graph (G∗
d) along order-

ing d .
2. ψ(BX) contains all functions whose highest-ordered argument is X.

By construction, conditions 1, 2 and 4 of tree-decomposition property holds. In order to
prove connectedness, let’s assume to the contrary that there are two buckets BX and BY ,
both containing variable Z, but that on the path between BX and BY , there is a bucket BU

that does not contain Z. Let Bi be the first bucket on the path from BX to BU containing Z,
but whose parent does not contain Z but whose parent does not contain Z. Let Bj be the
first bucket on the path from BY to BU containing Z. Because BU is on the path between
Bi and Bj , it must be that i �= j . Since the parents of Bi and Bj do not contain Z, variable
Z must have been eliminated at nodes Bi and Bj during the top-down phase of bucket-tree
elimination. This is impossible, however, because each variable is eliminated exactly once
during the top-down phase. Therefore, BU cannot exist. �

Since the bucket-tree is a tree-decomposition, algorithm CTE is applicable. The correct-
ness of the extension of BE to that adds a bottom-up message passing can be established
by showing equivalence with CTE when applied to the bucket-tree. Algorithm bucket-tree
elimination(BTE) is given in Fig. 11. We describe the algorithm using two types of mes-
sages, λs and πs, as is common in some message propagation schemes. In the top-down
phase, each bucket receives λ messages from its children and sends a λ message to its
parent. This portion is equivalent to BE. In the bottom-up phase, each bucket receives a π

message from its parent and sends a π message to each child.

Example 5.3. Fig. 12 shows the complete execution of BTE along the linear order of
buckets and along the bucket-tree. The π and λ messages are viewed as messages placed
on the outgoing arcs in the lower portion of the figure.

Theorem 5.4. Algorithm BTE is a special case of CTE applied to the bucket tree us
specific order of message computation.

Proof. It is easy to see that messages computed by BTE are exactly the same as those
computed by CTE. Since a bucket-tree is a specific case of a cluster-tree decomposition
and CTE is correct and complete for cluster-tree decompositions, it follows that BTE is
correct and complete. Notice that the actual computation of a message λ(X,Y) in the BTE
algorithm is identical to the computation of message m(BX,BY) in CTE. We need only to

184 K. Kask et al. / Artificial Intelligence 166 (2005) 165–193
Algorithm bucket-tree elimination (BTE)
Input: A problem P = 〈X,D,F,⊗,⇓, {X1, . . . ,Xn}〉, ordering d.
Output: Augmented buckets containing the original functions and all the π and λ functions
received from neighbors in the bucket-tree. A solution to P computed from augmented
buckets.
0. Pre-processing:
Place each function in the latest bucket along d that mentions a variable in its scope. Con-
nect two bucket nodes BX and BY if variable Y is the latest among the earlier neighbors of
X in the induced graph Gd .
1. Top-down phase: λ messages (BE)
For i = n to 1, process bucket BXi

:
Let h1, . . . , hj be all the functions in BXi

at the time BXi
is processed. The message

λ(Xi ,Y) sent from Xi to its parent Y , is computed over the separator by sep(Xi , Y)

λ(Xi ,Y) =⇓sep(Xi ,Y)

⊗
hi∈BXi

hi

2. Bottom-up phase: π messages
For i = 1 to n, process bucket BXi

:
Let h1, . . . , hj be all the functions in BXi

at the time BXi
is processed, including the

original functions of P . BXi
takes the π message received from its parent Y , π(Y,Xi)

, and
computes a message π(Xi ,Zj) for each child bucket Zj over the separator sep(Xi ,Zj) by

π(Xi ,Zj) =⇓sep(Xi ,Zj) π(Y,Xi)
⊗

(⊗
hi∈BXi

,hi �=h(Zj ,Xi)

hi

)

3. Compute optimal solution cost: In each augmented bucket compute: ⇓Xi

⊗
f ∈BXi

f .

Fig. 11. Algorithm bucket-tree elimination.

Fig. 12. Propagation of π ’s and λ’s along the bucket-tree.

K. Kask et al. / Artificial Intelligence 166 (2005) 165–193 185

e

d

of BTE
show that the order of message computation by BTE is also a valid order of message
computation for the CTE algorithm.

Algorithm CTE specifies that a message m(BX,BY) can be computed when vertex BX has
received messages from all neighbors other than BY . Therefore, the top-down phase of the
BTE, where a bucket BX sends a message to its parent BY after it has received messages
from all its children, is a valid order of message computation for CTE. Also, the top-down
phase is a valid order of message computation for CTE, since by the time a bucket BX is
processed by BTE, it has received messages from all neighbors. �
5.3. Complexity

Clearly, the induced-width w∗ along d is identical to the tree-width of the bucket-tree
when viewed as a tree-decomposition. We next provide a refined complexity analysis of
BE followed by complexity analysis of BTE and IBTE.

Theorem 5.5 (Complexity of BE). Given a reasoning problemP = 〈X,D,F,⊗,⇓,

{X1, . . . ,Xn}〉, let w∗ be the induced width of its primal graphG along orderingd , let
k be the maximum domain size of any variable andr the number of functions. The tim
complexity of BE isO(r · kw∗+1) and its space complexity isO(n · kw∗

).

Proof. During BE, each bucket sends a λ message to its parent and since it computes a
function defined on all the variables in the bucket, the number of which is bounded by w∗,
the size of the computed function is exponential in w∗. Since the number of functions that
need to be consulted for each tuple in the generated function in bucket BXi

is bounded by
the number of its original functions, denoted rXi

plus the number of messages received
from its children, which is bounded by degi , the overall computation, summing over all
buckets, is bounded by∑

Xi

(rXi
+ degi − 1) · kw∗+1

The total complexity can be bound by O((r + n) · kw∗+1). Assuming r > n, this becomes
O(r · kw∗+1). The size of each λ message is O(kw∗

). Since the total number of λ messages
is n − 1, the total space complexity is O(n · kw∗

). �
Theorem 5.6 (Complexity of BTE). LetP = 〈X,D,F,⊗,⇓, {X1, . . . ,Xn}〉 be a reason-
ing problem, letw∗ be the induced width along orderingd , k be the maximum size an
let r be the number of functions. The time complexity of BTE isO(r · deg· kw∗+1), where
deg is the maximum degree of any vertex in the bucket-tree. The space complexity
is O(n · kw∗

).

Proof. Since the number of buckets is n, and the induced width w∗ equals w − 1, where
w is the tree-width, it follows from Theorem 5.4 that the time complexity of BTE is
O((r + n) · deg· kw∗+1). Assuming that r > n we get the desired bound for time com-
plexity. Since the size of each message is ksep, and since here sep= w∗, we get space
complexity of O(n · kw∗

). �

186 K. Kask et al. / Artificial Intelligence 166 (2005) 165–193

e

cent
We can apply the idea of precomputing intermediate functions described in Section 8 to
BTE, resulting in new algorithm IBTE. However, in this case, we have an improvement in
speed with no increase in space complexity.

Theorem 5.7 (Complexity of IBTE). Letw∗ be the induced width ofG along orderingd

of a reasoning problemP = 〈X,D,F,⊗,⇓, {X1, . . . ,Xn}〉 and letk be the maximum siz
andr the number of functions. The time complexity of IBTE isO(r · kw∗+1) and the space
complexity isO(n · kw∗+1).

Proof. Follows from Theorems 4.6 and 5.4. �
Speed-up of BTE vs n-BE. Next we will compare the complexity of BTE and IBTE

against running BE n times (n-BE) for solving the singleton optimality task. While both
BTE and n-BE have the same space complexity, the space needs of IBTE is larger by a
factor of k, where k is the domain size of any variable.

In theory, the speedup expected from running BTE vs running n-BE is at most n. This
may seem insignificant compared with the exponential complexity in w∗. However, in
practice it can be significant, especially when these computations are used as a procedure
within more extensive search algorithms [17]. The actual speedup of BTE relative to n-BE
may be smaller than n, however. We know that the complexity of n-BE is O(n · r · kw∗+1),
whereas the complexity of BTE is O(deg· r · kw∗+1). These two bounds cannot be com-
pared directly because we do not know how tight the n-BE bound is. However, there are
classes of problems (e.g., w-trees) for which the complexity of n-BE is �(n · r · kw+1),
and the maximum degree of a vertex in the bucket tree can be bounded by w. Therefore,
the speedup of BTE over n-BE for these classes of problems would be �(n/deg) (also
�(n/w)). Similar considerations appear when comparing IBTE with n-BE. Clearly, the
speedup of IBTE over n-BE is at least as the speedup of BTE over n-BE.

5.4. Using more time to save space: Superbuckets

The main drawback of CTE is its memory demands. The space complexity of CTE
is exponential in the largest separator size. In Section 4.3 we showed how we can save
some time by using more space. Here we will go in the opposite direction. We will show
how we can save space if we are willing to allow weaker time bounds for the algorithm.
This is because in practice, the space complexity that is exponential in the separator size
may be computationally prohibitive. To overcome this limitation time-space tradeoffs were
introduced [7]. The idea is to trade off space for time by combining adjacent vertices (that
is, combining the variable/function labels), thus reducing separator sizes, while increasing
their width.

Proposition 1. If T is a tree-decomposition, then any tree obtained by merging adja
vertices inT , is a tree-decomposition.

Proof. It is straightforward to verify that all the conditions of Definition 4.1 still hold. �
Since a bucket tree is a tree-decomposition, by merging adjacent buckets, we get what

we call a super-bucket-tree(SBT). This means that in the top-down phase of processing

K. Kask et al. / Artificial Intelligence 166 (2005) 165–193 187
SBT, several variables are eliminated at once. Note that one can always generate various
tree-decompositions starting at a bucket-tree and merging adjacent vertices. For illustration
see Fig. 3.

6. Comparing tree-decomposition methods

In this section we will discuss the relationships between several known tree-decomposi-
tion structuring schemes, their processing schemes and related work.

6.1. Join-tree clustering

In both the constraint satisfaction and the Bayesian networks communities the common
tree-clustering methods, called join-tree (or junction-tree) clustering [10,21], are based on a
triangulation algorithm that transforms the primal graph G = (V ,E) of a problem instance
P into a chordal graph G′. A graph is chordal, if any cycle of length 4 or more has a
chord. To transform a primal graph G into a chordal graph G′, the triangulation algorithm
processes G along the reverse order of an ordering d and connects any two non-adjacent
vertices if they are connected through a vertex later in the ordering. A join-tree clustering
is defined as a tree T = (V ,E), where V is a set of maximal cliques of G′ and E is a set
of edges that form a tree between cliques satisfying the connectedness property [22]. The
width of a join-tree clustering is the cardinality of its maximal clique, which coincides with
the induced-width (plus 1) along the order of triangulation. Subsequently, every function
is placed in one clique containing its scope. It is easy to see that a join-tree satisfies the
properties of tree-decomposition.

Proposition 2. Every join-tree clustering is a tree-decomposition.

Join-trees correspond to minimal tree-decompositions, where minimality, as we de-
fined earlier, means that separators are always strict subsets of their adjacent clusters, thus
excluding some decompositions that can be useful (see [14]). Moreover, they are cluster-
minimal, no vertex and its variables can be partitioned further to yield a more refined
tree-decomposition. This restriction exclude the super-bucket methods that accommodates
time-space trade-offs.

Example 6.1. Consider a graphical model having functions defined on all pairs of vari-
ables, whose graph is complete. Clearly, the only possible join-tree will have one vertex
containing all the variables and all the functions. An alternative tree-decomposition has
vertex C1 whose variables are {1, . . . , n} and whose functions are defined over the pairs
of variables: {(1,2)(3,4), . . . (i, i + 1)(i + 2, i + 3) . . .}. Then, there is a vertex, Ci,j , for
each other function that is not contained in C1, and the tree connects C1 with each other
vertex. While this is a legitimate tree-decomposition, it is not a legitimate join-tree. This is
an example of a hyper-tree decomposition, discussed next.

188 K. Kask et al. / Artificial Intelligence 166 (2005) 165–193

of a
r-
6.2. Hyper-tree decomposition

Recently, Gottlob et al. [14] presented the notion of hyper-tree decompositions for
Constraint Satisfaction, and showed that for CSPs the hyper-width parameter can capture
tractable classes that are not captured by tree-width.

Definition 6.1 (Hyper-tree decomposition) [14]. A (complete) hyper-tree decomposition of
a hyper-graph HG= (X,S) is a triple 〈T ,χ,ψ〉, where T = (V ,E) is a rooted tree, and χ

and ψ are labelling functions which associate with each vertex v ∈ V two sets χ(v) ⊆ X

and ψ(v) ⊆ S, and which satisfies the following conditions:

1. For each edge h ∈ S, there exists v ∈ V such that h ∈ ψ(v) and scope(h) ⊆ χ(v) (we
say that v strongly covers h).

2. For each variable Xi ∈ X, the set {v ∈ V | Xi ∈ χ(v)} induces a (connected) subtree
of T .

3. For each v ∈ V , χ(v) ⊆ scope(ψ(v)).
4. For each v ∈ V , scope(ψ(v)) ∩ χ(Tv) ⊆ χ(v), where Tv = (Vv,Ev) is the subtree of

T rooted at v and χ(Tv) = ⋃
u∈Vv

χ(u).

The hyper-width hw, of a hyper-tree decomposition is hw= maxv |ψ(v)|.

A hyper-tree decomposition of a graphical model R is a hyper-tree-decomposition of
its hyper-graph that has the variables of R as its vertices and the scopes of functions as
its hyper-edges. In [14] the complexity of processing hyper-tree decomposition for solving
a constraint satisfaction problem is analyzed as a function of the hyper-width hw. The
processing algorithm used for this analysis is similar to tree-clustering (T -C) algorithm
presented in [10] described as follows. Once a hyper-tree decomposition is available, 1)
join all the relations in each cluster, yielding a single relation on each cluster. This step
takes O((m + 1) · thw) time and space, where t bounds relation size and m is the number
of edges in the hyper-tree decomposition, and it creates an acyclic constraint satisfaction
problem. 2) Process the acyclic problem by arc-consistency. This step can be accomplished
in O(m · hw· thw · log t) time.

Theorem 6.2 [13]. Let m be the number of edges in the hyper-tree decomposition
constraint networkR, hw its hyper-width andt be a bound on the relation size. A hype
tree decomposition of a constraint problem can be processed in time

O(m · hw· log t · thw) (2)

and in spaceO(thw).

Not every hyper-tree decomposition is a tree-decomposition. Hyper-tree decomposition
allows a function to be placed in more than one vertex. This cannot be allowed for general
graphical models and it is therefore made illegal in our Definition 4.1 of tree-clustering.
We therefore define a restricted form of hyper-tree decomposition.

K. Kask et al. / Artificial Intelligence 166 (2005) 165–193 189
Definition 6.2. A restricted hyper-tree decomposition is a complete hyper-tree decomposi-
tion such that for every hyperedge h ∈ S there is exactly one v ∈ V s.t. h ∈ ψ(v).

It is easy to see that,

Proposition 3. Any restricted hyper-tree decomposition of a reasoning problemP is a
tree-decomposition ofP .

Notice that the opposite is not true. There are tree-decompositions that are not (re-
stricted) hyper-tree decompositions, because hyper-tree decompositions require that the
variables labelling a vertex will be contained in the scope of its labelling functions (con-
dition 3 of Definition 6.1). This is not required by the tree-decomposition Definition 4.1.
For example, consider a single n-ary function f . It can be mapped into a bucket-tree with
n vertices. Vertex i contains all variables {1,2, . . . , i} but no functions, while vertex n con-
tains all the variables and the input function. Both join-tree and hyper-tree decomposition
will allow just one vertex that include the function and all its variables.

The complexity bound in Eq. (2) can be extended to any graphical model that is ab-
sorbing relative to 0 element (a graphical model is absorbing relative to 0 element if its
combination operator has the property that x ⊗ 0 = 0; for example, multiplication has this
property while summation has not) assuming we use a restricted hyper-tree decomposi-
tion, and if the relational nature of constraints is extended to functions in general graphical
models. The tabular representation of functions can be converted into relations by remov-
ing their zero-cost tuples. For examples, in probabilistic networks all the rows in a CPT that
have zero probability can be removed (an idea that was explored computationally in [18]).

In order to apply the hyper-width bound we will consider a specific implementation of
the message computation expressed in Eq. (1) of algorithm CTE. Recall that given a hyper-
tree decomposition, each node u has to send a single message to each neighbor v. We can
compute m(u,v) as follows:

1. Combine all functions ψ(u) in node u yielding function h(u). namely,

h(u) =
⊗

f ∈ψ(u)

f

This step can be done in time and space O(t |ψ(u)|).
2. For each neighbor c of u, c �= v iterate the following:

h(u) ← h(u)⊗ ⇓χ(u)∩χ(c) m(c,u)

This step can be accomplished in O(deg· hw · log t · thw) time and O(thw) space.
3. Take m(u,v) ← h(u).

The complexity of the second step can be derived as follows. The marginalization step
can be done in linear time in the size of the message sent from c to u whose size is O(thw).
The combination of a relation with one that is defined on a subset of its scope can be
done in a brute force way quadratically in the size of the respective relations, namely
O(t2hw). Or, we can sort each relation first in O(thw log(thw)) time and then combination

190 K. Kask et al. / Artificial Intelligence 166 (2005) 165–193

ing

tion

to
can be accomplished in linear time in the largest relation, yielding, O(hw· log t · thw). The
space required to store the result is bounded by O(thw). Since this computation must be
done for every neighbor c, we get complexity of O(deg· hw · log t · thw) time and O(thw)

space. Finally, the above computation must be accomplished for every neighbor v of u

yielding overall complexity of CTE of O(m · deg· hw · log t · thw) time and O(thw) space.
The discrepancy between this bound and the one in 6.4 is that the later requires message
passing in one direction only. We can conclude:

Theorem 6.3. A (restricted) hyper-tree decomposition of a reasoning problem absorb
relative to0 element can be processed in time

O(m · deg· hw· log t · thw)

andO(thw) space, wherem is the number of edges in the hyper-tree decompositionhw its
hyper-width andt is a bound on the size of the relational representation of each func
in R.

Theorem 6.3 does not apply for the general definition of tree-decomposition 4.1, even if
we use relational representation. The main problem is that the complexity analysis assumed
condition 3 of Definition 6.1 (which can be thought of as “every variable in a vertex of a tree
must be covered by a function” in that node). We can remedy this problem if we think of all
uncovered variables in a node as having a unit-cost universal relation associated with their
scope. For a constraint problem this is the universal relation that allows all combinations
of values. For a general graphical model the universal relation will assign each tuple a unit
cost of “1” assuming that combining with “1” is not changing the cost. Provided this, we
can show

Theorem 6.4 [26]. A tree-decomposition of a reasoning problem absorbing relative0
element can be processed in time

O(m · deg· hw∗ · log t · thw∗
)

by CTE, whereN is the number of vertices in the hyper-tree decomposition,t is a
bound on the relation size, and hw∗(v) = (|ψ(v)| + |{Xi | Xi /∈ scope(ψ(v))}|) and
hw∗ = max

v∈V
hw∗(v).

Proof. Once we add the universal relation on uncovered variables we have a restricted
hyper-tree decomposition to which we can apply the bound in Theorem 6.3 assuming the
same implementation of CTE. The number of uncovered variables in a node v is n(v) =
|{Xi | Xi /∈ scope(ψ(v))}|. So time processing of a node is O(thw · kn(v)) when k bounds
the domain size, yielding O((max(t, k)hw∗

). Assuming that t > k we can use the bound
O(thw∗

) time and space. Subsequently, message passing between all nodes yields overall
complexity as in 6.3 when hw is replaced by hw∗. �

Notice that in some cases the tree-width would provide a far better bound on the com-
plexity of CTE than the hyper-width while at other cases it does not. To exploit both para-
meters when bounding the complexity of CTE we can define hw∗

ψ ′(v) relative to any sub-
set of the functions ψ ′ ⊆ ψ(v) as follows. hw∗ ′(v) = |ψ ′(v)|+|{Xi | Xi /∈ scope(ψ ′(v))}|.
ψ

K. Kask et al. / Artificial Intelligence 166 (2005) 165–193 191
CTE’s performance will be bounded by any selection of a subset ψ ′(v) from ψ(v). In
particular, if we choose the empty function set, n(v) becomes equal to χ(v) yielding
hw∗ = w∗. Clearly finding ψ ′

v that minimize hw∗
ψ ′(v) can be hard. In any case for restricted

hyper-tree decomposition the bound is obtained using ψ ′(v) = ψ(v), and hw∗ = hw, while
when ψ ′ = ∅ hw∗ = w∗.

6.3. Comparing the tree-processing algorithms

Algorithms that processtree-decompositions fall into two classes. The first compiles all
the functions in a cluster into a single function, and then sends messages between clus-
ters. The other class avoids precompilation into a single function, and works similarly to
CTE. For example, algorithm join-tree clustering [9] for processing constraint networks
first creates a single joined function or relation from all the functions in each cluster and
then applies message-passing. The same idea is used in junction-tree algorithm [21] for
probabilistic networks. In the later case, the combined function is called “potential”. The
time and space complexity of both algorithms is exponential in the tree-width. The join-
tree (junction-tree) clustering underlying Lauritzen–Spiegelhalter (LS) [20,21] and Hugin
[15,16] architectures belong to this class. On the other hand, the Shafer and Shenoy archi-
tecture [31] for probabilistic networks (as noted earlier, a binary join-tree is constructed by
transformation from a join-tree clustering into a binary tree) is similar to CTE, and to its
time-space sensitive predecessor presented in [11]. Like CTE, these variants have a more
efficient space complexity as they are exponential in the separator’s width only.

7. Summary and conclusion

The paper unifies and clarifies the language and algorithms associated with tree-
decomposition. Its main novelty is that it provides a graph-based unifying framework
for tree-decomposition algorithms that draws on notations and formalizations that appear
in wide sources and in diverse communities, such as probabilistic reasoning, optimiza-
tion, constraint satisfaction and graph theory. We present these classes of algorithms by
harnessing the formal notation appearing in [14] (which is restricted there to constraint
satisfaction). This allows separating tree-structuring from tree-processing. In particular,
we provide two variants of tree-processing algorithms (CTE and ICTE) that have different
time-space performance qualities. Algorithm CTE is a message passing algorithm along
the cluster tree whose space complexity is exponential in the separator’s width. ICTE en-
hance the time performance by using more space that is exponential in tree-width. We
also show that the bucket-elimination algorithm, BE, can be extended to a message prop-
agation along a specialized tree-decomposition called bucket-tree decomposition yielding
algorithm BTE. The super-bucket and super-clustering schemes are tree-decompositions
that trade time space.

We also showed how the new hyper-width parameter that characterize tractability for
constraint satisfaction, can be made relevant in analyzing the complexity of tree-processing
algorithms for generalgraphical models.

192 K. Kask et al. / Artificial Intelligence 166 (2005) 165–193
We believe that the current exposition clarifies the different nuances in existing schemes
which will benefit researchers in different communities and will accommodate technology
transfer. Several of the technical results described here have parallels in these earlier papers,
which we cite throughout.

References

[1] S.A. Arnborg, Efficient algorithms for combinatorial problems on graphs with bounded decomposability—
a survey, BIT 25 (1985) 2–23.

[2] C. Beeri, R. Fagin, D. Maier, M. Yannakakis, On the desirability of acyclic database schemes, J. ACM 30 (3)
(1983) 479–513.

[3] F.G. Cozman, Generalizing variable-elimination in bayesian networks, in: Workshop on Probabilistic Rea-
soning in Bayesian Networks at SBIA/Iberamia 2000, 2000, pp. 21–26.

[4] R. Dechter, Decomposing a relation into a tree of binary relations, J. Comput. System Sci. (Special Issue on
the Theory of Relational Databases) 41 (1990) 2–24.

[5] R. Dechter, Bucket elimination: A unifying framework for reasoning, Artificial Intelligence 113 (1999) 41–
85.

[6] R. Dechter, Constraint Processing, Morgan Kaufmann, San Mateo, CA, 2003.
[7] R. Dechter, Y. El Fattah, Topological parameters for time-space tradeoff, Artificial Intelligence 125 (2001)

93–118.
[8] R. Dechter, K. Kask, J. Larrosa, A general scheme for multiple lower-bound computation in constraint

optimization, in: Principles and Practice of Constraint Programming (CP-2001), 2001, pp. 346–360.
[9] R. Dechter, J. Pearl, Network-based heuristics for constraint satisfaction problems, Artificial Intelligence 34

(1987) 1–38.
[10] R. Dechter, J. Pearl, Tree clustering for constraint networks, Artificial Intelligence 38 (1989) 353–366.
[11] Y. El-Fattah, R. Dechter, An evaluation of structural parameters for probabilistic reasoning: results on bench-

mark circuits, in: Uncertainty in Artificial Intelligence (UAI-96), 1996, pp. 244–251.
[12] B.J. Frey, Graphical Models for Machine Learning and Digital Communication, MIT Press, Cambridge,

MA, 1998.
[13] G. Gottlob, N. Leone, F. Scarello, A comparison of structural CSP decomposition methods, in: Proc. IJCAI-

99, Stockholm, Sweden, 1999, pp. 394–399.
[14] G. Gottlob, N. Leone, F. Scarello, A comparison of structural CSP decomposition methods, Artificial Intel-

ligence 124 (2) (2000) 243–282.
[15] F.V. Jensen, S.L. Lauritzen, K.G. Olesen, Bayesian updating in causal probabilistic networks by local com-

putations, Computat. Statist. Quart. 4 (1990) 269–282.
[16] F.V. Jensen, K.G. Olesen, S.K. Andersen, An algebra of bayesian belief universes for knowledge based

systems, Networks 20 (1990) 637–659.
[17] K. Kask, R. Dechter, A general scheme for automatic generation of search heuristics from specification

dependencies, Artificial Intelligence 129 (2001) 91–131.
[18] D. Larkin, R. Dechter, Bayesian inference in the presence of determinism, in: AI and Statistics (AISTAT03),

2003.
[19] J. Larrosa, On the time complexity of bucket elimination algorithms, UCI Technical Report, 2000.
[20] S.L. Lauritzen, F.V. Jensen, Local computation with valuations from commutative semigroups, Ann. Math.

Artificial Intelligence 21 (1997) 51–69.
[21] S.L. Lauritzen, D.J. Spiegelhalter, Local computation with probabilities on graphical structures and their

application to expert systems, J. Roy. Statist. Soc. Ser. B 50 (2) (1988) 157–224.
[22] D. Maier, The Theory of Relational Databases, Computer Science Press, Rockville, MD, 1983.
[23] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, San Mateo, CA, 1988.
[24] K. Kask, R. Dechter, R. Mateescu, Iterative join-graph propagation, in: Proc. UAI 2002, 2002, pp. 128–136.
[25] N. Robertson, P. Seymour, Graph minors a survey, in: Anderson (Ed.), Surveys in Combinatorics, 1985,

pp. 153–171.

K. Kask et al. / Artificial Intelligence 166 (2005) 165–193 193
[26] F. Scarello, Private communication, 2004.
[27] T. Schmidt, P.P. Shenoy, Some improvements to the Shenoy–Shafer and Hugin architecture for computing

marginals, Artificial Intelligence 102 (1998) 323–333.
[28] G.R. Shafer, P.P. Shenoy, Probability propagation, Ann. Math. Artificial Intelligence 2 (1990) 327–352.
[29] P.P. Shenoy, Binary join trees, in: Proceedings of the 12th Conference on Uncertainty in Artificial Intelli-

gence (UAI-96), 1996, pp. 492–499.
[30] P.P. Shenoy, Binary join trees for computing marginals in the Shenoy–Shafer architecture, Internat. J. Ap-

prox. Reason. 17 (2–3) (1997) 239–263.
[31] P.P. Shenoy, G. Shafer, Axioms for probability and belief-function propagation, in: R.D. Shachter,

T.S. Levitt, J.F. Lemmer, L.N. Kanal (Eds.), Uncertainty in Artificial Intelligence, vol. 4, North-Holland,
Amsterdam, 1990, pp. 169–198.

[32] R.E. Tarjan, M. Yannakakis, Simple linear-time algorithms to test chordality of graphs, test acyclicity of
hypergraphs and selectively reduce acyclic hypergraphs, SIAM J. Comput. 13 (3) (1984) 566–579.

