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Abstract severe, making inference-based algorithms infeasible for
large tree-width (above 20). Search algorithms on the other

The paper introduces an AND/OR search space hand accommodates a spectrum of bounded memory algo-

perspective for graphical models that include
probabilistic networks (directed or undirected)
and constraint networks. In contrast to the tra-
ditional (OR) search space view, the AND/OR
search tree displays some of the independencies
present in the graphical model explicitly and may
sometime reduce the search space exponentially.
Indeed, most algorithmic advances in search-
based constraint processing and probabilistic in-

rithms, from linear space to tree-width bounded space. By
their nature they are likely to take more time then inference
because they are restricted in memory.

This paper is focused on search. We propose to harness the
well known notion of AND/OR search spacedeveloped

for heuristic search [Nillson1980], for processing queries
over graphical models. We demonstrate how this princi-
ple can exploit independencies in the graph model to yield
AND/OR search trees that are exponentially smaller than

ference can be viewed as searching an AND/OR
search tree or graph. Familiar parameters such
as the depth of a spanning tree, tree-width and
path-width are shown to play a key role in char-
acterizing the effect of AND/OR search graphs
vs the traditional OR search graphs.

the corresponding tradition®R search tree. In particu-
lar, we show that the size of an AND/OR search tree is
bounded exponentially by the depth of a tree spanning the
graph-model. This implies that afipear spacesearch al-
gorithm which traverses the AND/OR space, is bounded
exponentially by the tree-depth, saving exponential time
relative to OR search trees. We subsequently extend the
AND/OR search space frosearch tree¢o search graphs
Algorithms exploring the search space graph can engage
Graphical models such as constraint networks, Bayes nefn controlled memory management and cease to be linear
works, Markov Random fields and influence diagrams argpace. Yet, their time performance can be reduced substan-

knowledge representation languages that capture indepefally and monotonically with their memory use.

dencies in the knowledge and allow both concise represen- . .

tation and efficient graph-based algorithms for query pro-The AND/ OR search spaces view, provides a coherent_ac-
cessing. Algorithms for processing graphical models ar&ount of various advan(?ed sefarch _m(_ethods for gra_phlcal
of two types: inference-based or search-based. The latt&podel. anq has a potential to y|eId.S|m|Iar advances In any
class typically traverses the problem’s search space, whef&W graphl.c_allm(_)del and its queries. K.nown algquthms
each path represents a partial or a full solution. In contraonr prpbablllstlc inference (e.g:, recursive cond|t|0n|r)g
to inference algorithms which exploit the independencie Darwiche1999, F. Bacchus & Piassi2003] ) for constraint

in the underlying graphical model effectively (e.g. vari- satisfaction (caching goods and no-goods and backjump-

able elimination, tree-clustering), pure search is at risk of.ng [Dechter1990, Bayardo & Miranker1996]), for opti-

loosing this information because it is hidden in the linearMiZation [Terrioux & Jegou2003] can be placed within the

structure of the search space. Advanced search algorithn@\'P{JOIR ﬁe"’,‘mh, spacz context. quall_y, relatéqnsh|p t(;:)
developed for constraint satisfaction, and more recentl>yarla e-elimination and OBDD compilation are discussed.

for probabilis_tic _re_asoning can be viewed as attempting tollowing some preliminaries (Section 2) we present the
overcome this difficulty. notion of AND/OR search tree for graphical models and

Overall, Inference algorithms provide the best worst-caséS€Ction 3). Section 4 introduces minimal AND/OR search
time guarantees. They are time exponential in the treed'@Phs and provide analysis. Typical algorithms exploring

width of the graph model. This guarantee comes with Ahe AND/OR search tree and graph for probabilistic infer-

memory price. Any method that is bounded exponential in€nce, are introduced (section 5). Section 6 provides discus-

the tree-width time-wise, requires in the worst-case, spac§Ion and related work.
exponential in the tree-width as well. This limitation is

1 Introduction



2 Preliminaries and Background OR states and AND states, and a set of operaforsn OR
operator transforms an OR state to another state, and an
A Reasoning graphical-modelis a tripletR = (X, D, F) AND operator transforms and AND state to a set of states.
whereX a set of variablest = {X;,..., X,,}, D istheir ~ There is a set of goal statég C S and a start node.
respective domains of valugs= {D, ..., D, } andFisa  Example problem domains modelled by AND/OR graphs
set of real-valued functions = {F}, ..., F;}. Each func-  are two-player games, parsing sentences, Tower of Hanoi.

tion F; is defined over a subset of variabl€s called its The AND/OR states space model induces an explicit
scope,S; C X. The primal graph of a reasoning problem, ANp/OR searchgraph Each node is a state and its child
has a node for each \_/arl,able, and any two variables appeafydes are those obtained by applicable AND or OR opera-
ing in the same function’s scope are connected. tors. The search graph includestartnode. The terminal

In constraint network R = (X, D, C) the functionsF  hodes (having no child nodes) are marked as Solved (S), or
are constraintg§’. Each constraint is a paif; = (S;, R;),  Unsolved (V).

wheres; cX is the scope of the rglatioﬂi defined over A solution subgraph of an AND/OR search grapé is a
S;, denoting the allowed combination of values. The pri-ghiree which 1. contains the start noge 2. if n in the
mary queries over constraint network is to determine if theg ytree is an OR node then it contains one of its child nodes

network is consistent, and if itis, to find, one or all solu-jy v and if is an AND nodes it contains all its children in
tions. A related task is to compute the number of solutions» 3|l its terminal nodes are "Solved” (S). The primary

A belief network is a graphical model defined over a di- tasks defined over an AND/OR graph is to determine the
rected acyc”c graph; over the variablesY, and the the value of the root node, and if it is solved, to find a solution
functionsF are P = {P;}, denoting conditional probabil- subtree with optimal cost if a cost is defined.

ity tables (CPTs)P;, = {P(X;|pa;)}, andpa; is the set of

parentnodes pointing toX; in G. The belief network repre- 3 AND/OR Search Tree for Graphical

sents a probability distribution ove¥ having the product Models

form P(z) = P(z1,....,xn) = O P(zi|2pe,).  Z[S]
denotes the restriction of a tupieover a subset of vari-
ablesS. The primary query over belief networks he-
lief updatingnamely determining the posterior marginals
of subsets of variables given evidence.

Consider a graphical model (e.g. a belief or a constraint
network)R = (X, D, F') and its primal grapld;. LetT be

a DFS spanning tree of its primal graph rootedat For
each nod&’, ch(Y') are its set of child nodes .

Flat CPTs. Each CPT that has some zero probability en-

tries expresses implicitly a constraint. That constraint DEFINITION 1 (AND/OR search tree based on DFS tree)

of CPT P, is a constrainR; over its scope sfX;,pa;) is  Given a graphical modeR and it DFS spanning tred’

a no-good ofR; (not in the relation) iffP; (z;|pa;) = 0.  rooted atXo, the AND/OR search tree Gt based on’,

In this paper, when we talk about a constraint networksienotedSr(R) (or just Sz whenR is unambiguous) is
we refer also to any graphica| model (e_g_, belief networks}jEﬁnEd as follows. The nodes in the search tree are either

through the set of flat constraints that can be obtained fronfPR nodes (e.g.X,Y), denoting variables, or AND nodes
the CPTs. denoting Variable-value assignment pairs (esg.X, v >).

) ) ) The path ok X, v > is the path from the initial state (the
Induced-graphs, induced width and path-width Anor- 46t X)) to < X, v >, which corresponds to aonsistent

dered graphis a pair(G, d) whereG is an undirected graph, partial value assignments to all the variables along the

andd = X, ..., X, is an ordering of the nodes. Thedth 1, The successors of a node in the AND/OR search tree
of anodes the number of the node’s neighbors that precedey e defined as follows:

it in the ordering. Thevidth of an orderingd, is the maxi-
mum width over all nodes. Thiaduced width of an ordered

graph w*(d), is the width of the induced ordered graph sible value assignments< X,v > |v € Dy} that
obtained as follows: nodes are processed from last to first; are consistent along the patr; t0 X, v >. (The path

when nodeX is processeq, all its precedmg_ nelghb(_)r_s are alternates OR and AND nodes lik&, < X, vp >
connected. Thanduced width of a graphwx, is the mini- X < X100 > X < Xi,v; > )

. . . . . s X1, 1, V1 g reey Ay iy Us
mal induced width over all its orderings. The set of maxi-
mal cliques (also called clusters) in the induced graph pro- e The successor-nodes of an AND nedeX, v > are
vide a tree-decomposition of the graph. The tree-width is all its child nodesch(X), in T.
the maximal number of variables in a cluster of an optimal
cluster-tree decomposition of the graph [Arnborg1985]. ItThe consistency of a partial path is determined by consid-
is well known that the induced-width of a graph is identical ering all the relevant (or flat) constraints whose scopes are
to its tree-width The path-width of a graph is the smallest contained in the path.
induced-width along a chain-like decomposition. The op-
timal path-width is denoteghw*. For various relationship DEFINITION 2 (Basic labeling of AND/OR nodes)
see [Arnborg1985, Bodlaender & Gilbert199 ND/OR Given an AND/OR treé(R), A terminal AND node (no
Search spacesAn AND/OR state space representation haschild nodes inT’) is always labeled "Solved” or "1”. A

e The successor-nodes of an OR nddare all its pos-



terminal OR node is always Unsolved (no consistent value s
assignments) labeled "0". The labeling of internal nodes
is defined recursively and is dependent on the specific task 1
and the specific graphical-model. For the task of finding . , ) .
a solution in a constraint network, an OR internal node | , “y

is labeled "1” iff one of its successor nodes is "1” and 3 2 7 s

an AND internal node is labeled "1” iff all its successor @ o @
nodes are labeled "1".

{

Figure 2: A graph (a), a DFS trég (b), a legal tred, (c
The above AND/OR search tree is well defined for any, Igegal chairgfg Ph (2) % (b) 9 2 ()

graphical model, not just for constraint networks. The var-

ious tasks can be distinguished by the function associated

with a solution subtree which dictates the labels associatetle included inE. Given a legal tred” of GG, the extended
with terminal and intermediate nodes. For counting solu-graph ofG relative to7 is defined a&i” = (V, E U E').
tions, the value of an OR node is the sum values of its child

nodes and the value of an AND node is their product. ForClearly, any DFS tree and any chain are legal trees.
computing the probability of evidence or computing belief ) i o

in a Bayesian network the labeling of nodes is based offX@mple 2 Consider the graptt- displayed in Figure 2a.
their CPTs, instantiated appropriately and propagated b{rderingd: = 1,2,3,4,7,5,6is a DFS ordering of a DFS

sum and products over the OR and AND nodes. (More det€€ 71 having the smallest DFS-tree depth of 3 (Figure
tails ahead) 2(b)). The tree/I; in Figure 2c is legal and has a tree

depth of 2 only. The two tree-arcs (1,3) and (1,5) are not
An AND/OR search tree becomes an OR search tree whef, ;. In 2d, treeTs is a legal chain. The extended graphs

its DFS tree is a chain. The virtue of an AND/OR searchGT: G2 and G* are presented in 2(b,c,d) when we ig-
tree representation is that its size may be far smaller thaRore directionality.
the traditional OR) tree representation.

It is easy to see that,
Example 1 Consider a graphical model in Figure 1a, over
domains{1,2,3}. It can represent a graph-coloring prob- THEOREM3 Given a graphical modeR and a legal tree
lem or a belief network whose flat constraints are identicalT’, its AND/OR search tre€(R) is sound and complete
to the graph-coloring costraints. Its OR search tree along(i.e., it contains all and only solutions) and its siz&lén -
a DFS ordering is given in 1(b) and its AND/OR search ezp(m)) wherem is the legal tree’s depth
tree based on DFS tre€ rooted atX, is given in Figure o o ]
1c. A solution subtree is highlighted in 1c. We see thafinding a legal or a DFS tree of minimal depth is known
the size of the traditional OR search tree@¥27), while ~ t© be NP-complete. However the problem was studied,
the size of the AND/OR search treeGg4 - 23). We ig- ~@nd various greedy heuristics are available. For example,
nore OR nodes when counting nodes because they providl%ga| trees can be obtained by generating a heuristically
a constant factor (k) at the most and we believe a non-naivg00d induced-graph along orderidgand then traversing
implementation does not need to express OR nodes exp"g_depth—flrst search breaking ties in favor of earlier vari-
itly. Notice that if we add one constraint betwe¥rand R ables [Bayardo & Miranker1996]. The following relation-
to this problem, we can still use the same DFS ffegeld- ship between induced-width and legal trees is well known
ing a similar structure AND/OR search tree, except that[Bayardo & Miranker1996, Dechter2003].
some values of variabl& are no longer consistent with all

their predecessors on the partial path. For example, in thatpropﬁSitir?n,l Given a treﬁ-decompogitiﬁp tha primal
case,< R, 1 > in 1c will not be present under the subtree 9"@PhG havingn nodes, whose tree-widthis’, there ex-
of< X.1>. ists a legal treel” of G whose depthm, satisfies:m <

w* - logn. O
3.1 From DFS Trees to Legal Trees THEOREM4 A graphical model that has a tree-width*

The construction of AND/OR search graphs can use as ithas an AND/OR search tree whose sizeUifezp(w” -

basis not just a DFS spanning tree but a larger collectionogn))' -
of spanning trees that we cdégal trees This general-
ization accommodates many more trees and can therefo
yield better AND/OR search trees.

Table 1 shows the difference in hight between dfs span-
Fﬁng trees and legal spanning trees generated using com-
mon heuristics over randomly generated directed graphs

DEeFINITION 3 (A Legal tree of a graph) Given an undi- that are moralized.

rected graphG = (V, E), a directed rooted tred” =  Table 2 demonstrate the size saving of AND/OR vs OR
(V, E’) defined on all its nodes ikgal if any arc of G~ search spaces for 3 random networks having 20 bi-valued
which is not included inE’ is a back-arc, namely it con- variables, 18 CPTs with 2 parents per child and 2 root
nects a node to an ancestorih The arcsinE’ may notall  nodes. The size of the OR space is the full binary tree of
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Figure 1: OR vs. AND/OR search trees; note the connector for AND arcs

[__Model(DAG) | widfh [ Legaliree depih] DFS tree depih] When expanding a® R node X, the algorithm associates
(N=50,P=2.C=48) | 95 16.82 36.03 . ) -
(N=50,P=3,C=47) | 16.1 23.34 70.60 each of its child nodes X, v > with the product of CPTS
(N=50,P=4,C=46) 20.9 28.31 43.19 H H H
(N=T00P=3,c=08) | 183 s R in B(X) mstantlat_ed by the values of the pathtaX, v >.
(N=100,P=3,C=97) | 31.0 4112 80.47 In other words, given a pathy, = (< Xo,vg >,... <
(N=100,P=4,C=96) | 40.3 50.53 86.54

X;,v; >), the node< X;,v; > is labeled initially by
Table 1: Average depth of legal trees vs. DFS trees. 100(%i) = ep(x,)f(v:).

instances of each random model. The g values are propagated from leaf to root as follows.

The g values of deaf AND node< X, v > is equal to its

OR space AC space [ values. They values of terminal OR nodes are 0. The
width height | time(sec.) nodes time(sec.) | AND nodes | OR nodes . .
7 - S LI W T =508 2503 g values of mterna_\I OR nodes are obtained by _the sum of
6 o 3124 | 2,097,150 | 0.2 6,318 3,159 the g values of their successors. Thealue of an internal
5 10 3.114 2,097,150 0.02 7,326 3,663

AN D node< X, v > is the product of its owvalue and
Table 2: OR versus AND/OR search size, 20 nodes the g-values of its successors. Since thD-OR-TREE-
BELIEF explores each node it exactly once, we get:

depth 20. The size of the AND/OR space varies based on HEOREMS The Co.mplem)anAND'OR'TREE'BEL'EF
the legal tree. IS linear space qnd tlmé)(n_k: ), whenm is the depth of a
legal tree spanning the belief network’s moral graph. When
the moral graph has a tree-decomposition having tree-
3.2 Searching the AND/OR Search Tree width w, the algorithm can be bounded bYn - exp(logn -
Any algorithm that traverses the AND/OR search tree in a
depth-first manner is guaranteed to have time bound expdRelating to backjumping.  Algorithm backjumping
nential in the depth of the legal tree of the graphical mode[Gaschnig1979], graph-based or conflict-based for con-
and may operate using linear space. Given a belief netstraint satisfaction was designed to overcome the redun-
work, we can use its moral graph as the primal graph andancy imposed by the OR structure of the search tree.
any of its legal trees to yield a well defined AND/OR searchlt can be shown that graph-based backjumping mimics
tree. the exploration of an AND/OR search tree. Indeed, it

. . i . was shown that the depth of a DFS-tree or a legal-tree
Figure 3 introduces a depth-first search algorithm travers:, b 9

ing the AND/OR search tree computing the probability of [Freuder & Quinn1987, Bayardo & Miranker1996] plays

evidence we refer to #ND-OR-TREE-BELIEF, The pos- an important role in bounding backjumping complexity. It

. . . can be shown that the linear-space version of recursive-
terior beliefs of the root node can be obtained by normal- b

o . X . conditioning explores the AND/OR search tree as well
izing. The reader should ignore all the lines with brack- moning exp W

ets. Those lines will be active for a graph searching al_[DarW|che1999].

gorithm we introduce later. (we present two algorithms at

once for space considerations.) Given an AND/OR searcd Minimal AND/OR Search Graphs

tree based on a legal trd& the algorithm labels the arcs

emanating from OR nodes, using the bucket data structurk is often the case that certain states in the search tree
as follows. Letdys(T') be a DFS ordering of legal treé  can be merged because the subtree they root are identi-
and let each variabl¥ be associated with a buckB{X).  cal. Any two such nodes are callehifiable and when

The algorithm first partitions the CPTs relativeg, plac-  merged, transform the search tree into a search graph. For
ing each CPT-function into the bucket of the latest variableexample, in Figure 1c, the search tree below any appear-
mentioned in its scope. ance of< Y, 1 > are all unifiable. In the remainder of the



procedure AND-OR-BELIEF
Input: A belief networkBN = (X, D, G, P), ev-
idencee. constraints are the flat CPTs in
¥ Is partial instantiation to current AND node. A
legal tre€l” rooted atX
Output: The probability of the evidencg( X).
1. OPEN«+ X, type(Xy) = OR, assign evidence.
Create a search gragh, < X, ,7 < ¢
Create a list called LOSE D (CL), initially empty.
2. n < first node in OPEN, move to CL

3. Expandn generating all its successors as follows:

if type(n) =OR,n=X

succ(X)«— {< X,v > | consistent(< X,v >)}

if suce(X)=®, g(X) =0 ;(deadend)

[ no — good(X) «+ Tpa, ;update flat CPTs ]

else, add allsuce(X) to G/, set pointers to¥.

for each< X, v >€ succ(X) do,

v — (0,< X,v>)

[ if Upsay is @anew context noti® P UCL]]
[[thenc = c(< X, v >) = Tpsay 1]
type(< X,v >) «— AND
l(< X,v >) = erBuck;etxf(@)-
add< X,v > to OP.

[ else, if exists,n =< X,v > OPUCL]]

[[ste(n) =c,then]]

[[ merge< X,v > withnin G';]]
if type(n) = AND,n =< X,v >
suce(< X,v>) —{Y|Y € ch(X) in T}
if X terminal inT" (no successors)
g< X, v>— 1< X,v>).
put succ(< X, v >) on top of OPEN and i+’
4. Propagate: whileyou can, propagatg values:
a. For a non-terminal AND node X, v >
[ifY € suce(< X,v >)andg(Y) =0,1]
[[ remove siblings ofY” from OPEN. ]]
[[setg(< X,v>)=0.]]
else,
if all succ(< X,v >) evaluated,
g(< X,’U >> = l(< X7’U >>HY€ch(X)g<Y)
b. For a non-terminal OR nodg:
if all succ(X) havey values

g(X) = Z<X,7}>Esucc(X) g(< X,v >)

end while

c. if Xy is evaluated, exit witly(Xo)

d. Remove portion oy’ that is not relevant
5. Go to step 2.

end procedure

Figure 3: The belief-updating for graphs algorithm.

Figure 4: Condensed OR graph for the tree problem

ables andz is their corresponding sequence of value as-
signments, o&; if X is clear.

DEFINITION 4 (legal transformation) Given two partial
paths over the same set of variables,= (X;, a;), so =
(X;,b;) wherea; = b;, we say thats; and s, are unifi-
ableat < X;,v > (can be merged) iff the search subgraphs
rooted ats; andss are identical. TheVlergeoperator over
search graphsMerge,, ,) transformsSz into a graph
S7. by mergings; with s.

It is clear that the merge operator preserves soundness and
completeness of search graphs (OR or AND/OR), and it
shrinks the search graph with each application. It can be
shown that given an AND/OR search tree, its closure under
the merge operator yields a fixed point, called the minimal
AND/OR search graph.

DEFINITION 5 (minimal AND/OR search graph) The
minimal AND/OR search graph relative fois the closure
undermergeof the AND/OR search treg;.

The above definition is applicable, wheéns a legal-chain,

to the traditional OR search tree as well. But, in many cases
we will not be able to reach the same compression we see in
the AND/OR search graph, because of the linear structure
imposed by the OR search tree.

Example 6 The smallest OR search graph of the problem
in Figure 1a is given in Figure 4 along the DFS order
X, Y, T R, Z, L, M. The smallest AND/OR graph of the
same problem along some tree is given in Figure 5. We see
that some variable-value pairs must be repeated in Figure
4 while in an AND/OR case they appear just once. For ex-
ample, the subgraph below the pathsX,1 >, < Y2 >
and< X, 3 >, < Y, 2 > cannot be merged.

paper we will characterize the smallest search graph that
may result from merging nodes and will analyze the impact )
of graph search vs tree-search in the context of AND/ORP  Rules for merging nodes

spaces. Given an AND/OR search graph of a network

R relative to a legal tre&. A partial path in the AND/OR  Given a graphical mod& = (X, D,C) and a legal tre&’,

search-tred< Xi,a1 >, < Xg,a2 >,... < X;,a; >)is

there could be many AND/OR graphs relativeltahat are

abbreviated tq X, a;), where X is the sequence of vari- equivalent to the AND/OR search tré-, each obtained



GT, an extended graph o relative to a legal T,
the induced width ofG relative to T, wr(G) is the
induced-width of7” alongd,ys (7).

We can show that,

Proposition 3 1. The minimal induced-width d rela-
tive to all legal trees is identical to the induced-width (tree-
width) of G. 2. The induced-width of a legal chain is iden-
tical to its path-widthpw alongd.

Example 7 In Figure 2b, the induced graph «f relative

to T} contains also the arcs (1,3) and (1,5) and its induced-
width is 2. G2 is already triangulated and its induced-
‘width is 2 as well. The induced-graph 6f* has the ad-
ditional (1,5) and (1,3) edges having induced-width 2 as
well.

by some sequence of merging. In this section we will dis-
cuss effective rules for unifying subtrees, targeting the min5.2 A general merging rule.

imal AND/OR search graph as much as computational re- ] ) ] o
sources allow. The rules provide an efficient way for gen-Th'S section provides a general generative rule for unifying

erating the graph without creating the whole search tre&0des in the AND/OR search graph and will use the gener-

Sr. To get the basic idea we focus first on AND/OR search?lized width parameter to characterize its effect. Given the
graphs for graphical-models having no cycles, catred-  induced graph OGT' denoted="", each variable and its
models parent set is a cligue. We associate each variable with its

parent-separator as follows:

Figure 5: The AND/OR search graph of the tree graphical
model in Figure 1a and one of its solution subtrees

5.1 The case of tree-models DEFINITION 8 (parent-separators) Given the induced-

Rgraph, G*T', the parent-separators ok denotedpsay,
are its earlier neighbors in the induced-graph that are also
neighbors of some future variable in.

Consider again the graph in Figure 1a and its AND/O
search tree in Figure 1c. Observe that at level 3, th
node< Y,1 > appears twice, (and so is Y,2 > and

<Y,3 >). Clearly however, the subtrees rooted at each of | 1 ¢, every nodeX;, the parent-separators &f sep-

these 2 AND nodes are identical because any assignment Wates inr its ancestors on the path from the root, and all
Y uniquely determined its subtree. Indeed, the AND/OR:

P . ; its descendents i6”. Therefore,
search graph in Figure 5 is equivalent to the AND/OR
search tree in Figure 1c. Its size however, is far more conTyeorem8 Given G*7 Let s; = (ai, < Xiy1,v >)
densed (note that Figure 1c displays only a small portion ofnd s, = (b;, < X,,1,v >) be two partial paths of as-
the AND/OR tree.) signments in its AND/OR search trég, ending with the

. same assignment variable X, 1,v >. If s1[psa;11] =
D'EFINITION 6 (Explicit AND/OR graphs for tree-models) sa[psai+1], then the AND/OR search subtrees rooted at
Given a tree-model and a rooted DFS tfégnote that we s, and s, are identical ands; and s, can be merged at

restrict ourselves to the special case of DFS trees here), the Xi1,0 >,
explicit AND/OR search grapbf the tree-model relative o

to T' is obtained fromSr, by merging all identical AND  DeriNITION 9 (context) For every states;, s;[psa;] is
nodes< X, i > that reside in the same level 6f. called the context of; whenpsa, is parent-separators set

» ) of X; relative to the legal treq".
Proposition 2 Given a rooted tree-modél’, 1. Its ex-

plicit AND/OR searchgraph is equivalent toSt and is  THEOREM9 GivenG, a legal treel” and its induced width
therefore sound and complete. 2. The size of the explicily = wr(G), the size of the AND/OR search graph based
AND/OR search graph of a tree-model@§nk). 3. For  onT obtained when every two nodesdn having the same
some tree models the explicit AND/OR search graph is mineontext are merged i9(n-k™), whenk bounds the domain
imal. Namely, the minimal AND/OR search graph for tree-sjze.
models i9(nk).

Thus, the minimal AND/OR search graph Gfrelative to
Generalized width parameter. Next we introduce the Tis O(n - k") wherew = wr(G). Sinceming{wr(G)}
induced-width of a legal tree of @hich is instrumental for  equalsw* and sinceminrepain{wr(G)} equalspw* we
characterizing Or graphs vs AND/OR graphs. We denoteyet

by dqss(T") a DFS ordering of a tre€.
Corollary 1 The minimal AND/OR search graph is

DEeFINITION 7 (induced-width of a legal tree) Given bounded exponentially by the graph-model tree-width



while the OR minimal search graph is bounded exponenstep will cause pruning of the search tree (the following

tially by its path-width. section ellaborates). Otherwise, for each consistent, value
v of X the algorithm computes the contextofX, v > de-

Example 10 For the balanced tree in Figure 1 we see notedc(< X,v >) and check it against recorded contexts.

the AND/OR tree in Figure 5 vs the OR tree on Fig-

ure 4. The induced-width is 2 along the legal-chain THEOREM11 The complexity of algorithmAND-OR-

(X,Y,T,R,Z,L,M). Since the context of T alongjis = GRAPH-BELIEF is time and space exponential in the in-

TXY in the first 3 levels of the OR search graph in Figure duced width of the legal tree.

4 there are no merged nodes. Along the DFS tree the con-

text of every node is itself and indeed all AND nodes havings  The backtrack-free AND/OR space
the same variable-value pairs are merged.

Most advanced constraint processing algorithms incor-
porate no-good caching during search, use variable-
elimination algorithms such asadaptive-consistency
[Dechter2003] to generate all no-goods prior to search, or
apply constraint propagation at each node. Such schemes
can be viewed as traversing, piluned AND/OR search
Consider a balanced rooted trde of depth r having treeor graph that we calbacktrack-free The backtrack-
branching degre@, n = p” — 1. Clearly, the induced- free AND/OR search tree oR based on7', denoted
width of 7" is 1 and indeed its AND/OR search graph size, BFr(R), is obtained by pruning all subtrees labeled "0”

It is well known [Bodlaender & Gilbert1991] that for any
graphw* < pw* < w*logn. Itis also easy to placer*
(the minimal depth legal tree) yielding* < pw* < m* <
w* - logn. We next demonstrate that the boupd* <
w*logn is tight.

denoteds,, isO(n - k) = O(p” - k). In contrast, from Sr(R). It can be shown that the constraint algorithm
adaptive-consistengompiles a constraint netwofR into
Proposition 4 Consider a legal-chain off’ along d =  a graphical modeR’ whose AND/OR search tree is iden-

dass(T). The induced-width df relative to the legal-chain tical to BF(R) (details are omitted).

alongd isr. Namelywq(T) = r. . L . . .
9 " Yaa(T) =r The notion of minimality vs that of pruning of inconsistent

We can show that for a balanced tree of deptthe min-  Subtrees (aiming at the backtrack-free search space) are re-
imal induced-width along any legal chain is not less than'ated but not the same. While recording the context of a

r. Thus, for a balanced tree of depthand branching dead-end is a no-good, no-goods can effect and prune the
degreep, there exists” whose minimal AND/OR search Search tree itself being used as new constraints. Therefore,

graph isO(p"k), while the smallest minimal OR search We can have a minimal seargraphthat is NOT backtrack-
graph for any ordering i©(n - k”). Therefore, ifs: free as well as a seartieethat is backtrack-free.

is the minimal search graph over all chains whilg, is  when the search space is backtrack-free (no dead-end

the minimal one over all AND/OR search graphs, we gethodes) and if we seek a single solution, the size of the min-

that 2= = () " When we move from trees to tree- imal AND/OR search graph and its being OR vs AND/OR

decompositions of cluster size(e.g., w-tree¥ we canex- ~ are irrelevant. Minimality and AND/OR will affect a

tend the above conclusion 12% — (%ﬁ)w‘logpn (details t_raversal algorithm that counts all solutions or compute be-

are omitted for space reasongs. ?efs, however, even when the search space is backtrack-
ree.

5.3 Searching AND/OR search graphs ) ) )

7 Conclusions, Discussion, Related Work
Any algorithm traversing the AND/OR search graph needs
to record nodes during search so merging would be possiFhe primary contribution of this paper is in viewing search
ble. To do that the algorithm associates a context with eacfor graphical model in the context of AND/OR search
AND node and whenever a new AND node is generatedspaces rather than OR spaces. We introduced the AND/OR
its context is compared against the list of contexts for thesearch tree, and showed that its size can be bounded ex-
same variable in the same level. If it was generated alreadgonentially by the depth of its legal tree. This implies ex-
only pointers will be established appropriately. ponential saving for any linear space algorithms travers-
ing the AND/OR graph. We observe that many known

Algorithm AND-OR-GRAPH-BELIEF is presented in Fig- ) ) .
ure 3. For this version the reader should include all the?dvanced algorithms for constraint processing and sat-

bracketed lines. In step 3, the algorithm expands the nei?fiabi"ty can be explain_ed as traversing the AND/OR
node in OPEN (OP). If this is an OR node that has nosearch tree (e.g. backjumping [Freuder & Quinn1987,

consistent successors, it is identified as dead-end, assign@@yardo &.Ml_rankerlg%]). Also, rece_nt algorllt.hm.s

g = 0. A no-good is recorded and the set of flat con-" pro_bablhstlc reasoning such as recur5|ve—cond|t|on|n.g

straints are modified to include this new constraint. This['DarW|che1999, F. Bacchqs & P|a55|2003]'can operate in

- - linear space and can be viewed as searching the AND/OR
'a k-tree of size k+1 is a clique. Given a k-tree of size n, asearch tree.

k-tree of size k+1 can be obtained by connecting a new node to

each node in a clique of size k The AND/OR search tree was extended into a graph by



merging identical subtrees. We showed that the size of thkeferences

minimal AND/OR search graph is exponential in the tree-

width while the size of the minimal OR graph is exponen-[Arnborg1985] Arborg, S. A. 1985. Efficient algorithms
tial in the path-width. Since for some graphs the difference for combinatorial problems on graphs with bounded de-
between the path-width and tree-width is substantial (e.g., composability - a surveyBIT 25:2-23.

balanced legal trees) the AND/OR representation implie . .
exponential time and space savings for algorithms traver Ba:ll);agrgo 8AL\hél(l)rrigll(:;ﬁyg/ge?r]\gl?é?srdoof,st-élggfjblt\)ALIJrr?gll(ee;rEihg
ing the AND/OR graph. Searching the AND/OR search ; ; . ;

. . . algorithms for the constraint satisfaction problem. In
graphcan be implemented by goods caching during search, AE\AI’%' Proceedings of the Thirteenth Ngtional Con-
while no-good recording is interpreted as pruning and col- ¢ ) Artificial Igt li ©08-304
lapsing portions of the search space independent of it be- erence on Artiticial Intetligena A
ing a tree or a graph, an OR or an AND/OR. For finding [Bodlaender & Gilbert1991]Bodlaender, H., and Gilbert,
a single solution, pruning the search space is the most sig- j R, 1991. Approximating treewidth, pathwidth and

nificant action. For counting and probabilistic inference, minimum elimination tree-height. Iffechnical report
using AND/OR graphs can be of much help even ontop of RyyU-CS-91-1, Utrecht University

no-good recording.
. . lqorith be Vi q [Darwiche & Marquis2002]Darwiche, A., and Marquis,
Many memory-intensive algorithms can be viewed as' p 5007 A knowledge compilation maplournal of

searching the AND/OR seargraph  For example, re- Artificial Intelligence Research (JAIRR9-264.
cent work [Terrioux & Jegou2003] perform search guided

by a tree-decomposition either for constraint satisfac{Darwiche1999]Darwiche, A. 1999. Recursive condition-
tion andoptimization is searching the AND/OR search ing. In Proceedings of the 11th Conference on Uncer-
graph whose legal tree is constructed along the tree- tainty in Artificial Intelligence (UAI99)

decomposition. Algorithm recursive-conditioning in its

full caching mode, for belief updating [Darwiche1999], [Pechter1990]Dechter, R. 1990. Enhancement schemes
is a depth-first search of an AND/OR search graph. for constraint processing: _Backjumplng, learning and
Another variant is value-elimination, introduced recently ~Ccutset decomposition. Artificial Intelligence 41:273—

[F. Bacchus & Piassi2003] both for belief updating and 312.

counting models of a CNF formula. Most advanced SAT ho htero003]Dechter, R. 2003 Constraint Processing

solvers employ both backjumping , clause learning (e.g., Morgan Kaufmann Publishers
no-good learning) thus search the AND/OR search tree. '

[F. Bacchus & Piassi2003F. Bacchus, S. D., and Piassi,
T. 2003. Value elimination: Bayesian inference via
backtracking search. ldncertainty in Al (UAIO3)

Relationship with bucket-elimination. The worst-case
complexity of AND-OR-GRAPH-BELIEF is identical to
that of variable-elimination and join-tree clustering. This
is not surprising. We can show that bucket elimination,[Freuder & Quinn1987]Freuder, E. C., and Quinn, M. J.

if applied along any reversed order of the legal tree, will 1987, The use of lineal spanning trees to represent con-
generate every context node exactly once, and with each straint satisfaction problems. Technical Report 87-41,

it associates the final value. The bucket-elimination al- University of New Hampshire, Durham.
gorithms can be viewed as searching the merged AND/OR
graph that is backtrack-free. [Gaschnig1979]Gaschnig, J. 1979. Performance measure-

. . . , . ment and analysis of search algorithms. Technical Re-
Realtionships vylth.OBDDs. The notion of minimal OR port CMU-CS-79-124, Carnegie Mellon University.
search graphs is similar to the known concepOofiered
Binary Decision Diagrams (OBDD)n the literature of [McMillan1993] McMillan, K. L. 1993. Symbolic Model
hardware and software design and verification. The prop- Checking Kluwer Academic.
erties of OBDDs were studied extensively in the past two ] ) . .
decades [McMillan1993]. It is well known that the size of [McMillan1994] McMillan, K. L. 1994. Hierarchical

OBDDs is bounded exponentially by thath-widthof the representation of discrete functions with application to
CNF's interaction graph. Our notion of minimal AND/OR ~ Model checking. IrComputer Aided Verification, 6th
search graphs, if applied to CNFs, resemittes OBDDS International conference, David L. Dill ed41-54.

developed subsequently [McMillan1994]. The OBDDs
definitions incorporates also inconsistent subtree prunin
and consistent subtree collapse. Some relationship between

graphical model compilation and OBDDs were studied in[Terrioux & Jegou2003]Terrioux, C., and Jegou, P. 2003.
[Darwiche & Marquis2002]. Hybrid backtracking bounded by tree-decomposition of

constraint networks. IArtificial Intelligence

Nillson1980] Nillson, N. J. 1980.Principles of Artificial
Intelligence Tioga, Palo Alto, CA.



