
AND/OR Search Spaces for Graphical Models

Rina Dechter
Department of Information and Computer Science
University of California, Irvine, CA 92697-3425

{dechter}@ics.uci.edu

Abstract

The paper introduces an AND/OR search space
perspective for graphical models that include
probabilistic networks (directed or undirected)
and constraint networks. In contrast to the tra-
ditional (OR) search space view, the AND/OR
search tree displays some of the independencies
present in the graphical model explicitly and may
sometime reduce the search space exponentially.
Indeed, most algorithmic advances in search-
based constraint processing and probabilistic in-
ference can be viewed as searching an AND/OR
search tree or graph. Familiar parameters such
as the depth of a spanning tree, tree-width and
path-width are shown to play a key role in char-
acterizing the effect of AND/OR search graphs
vs the traditional OR search graphs.

1 Introduction

Graphical models such as constraint networks, Bayes net-
works, Markov Random fields and influence diagrams are
knowledge representation languages that capture indepen-
dencies in the knowledge and allow both concise represen-
tation and efficient graph-based algorithms for query pro-
cessing. Algorithms for processing graphical models are
of two types: inference-based or search-based. The latter
class typically traverses the problem’s search space, where
each path represents a partial or a full solution. In contrast
to inference algorithms which exploit the independencies
in the underlying graphical model effectively (e.g. vari-
able elimination, tree-clustering), pure search is at risk of
loosing this information because it is hidden in the linear
structure of the search space. Advanced search algorithms
developed for constraint satisfaction, and more recently
for probabilistic reasoning can be viewed as attempting to
overcome this difficulty.

Overall, Inference algorithms provide the best worst-case
time guarantees. They are time exponential in the tree-
width of the graph model. This guarantee comes with a
memory price. Any method that is bounded exponential in
the tree-width time-wise, requires in the worst-case, space
exponential in the tree-width as well. This limitation is

severe, making inference-based algorithms infeasible for
large tree-width (above 20). Search algorithms on the other
hand accommodates a spectrum of bounded memory algo-
rithms, from linear space to tree-width bounded space. By
their nature they are likely to take more time then inference
because they are restricted in memory.

This paper is focused on search. We propose to harness the
well known notion ofAND/OR search spacesdeveloped
for heuristic search [Nillson1980], for processing queries
over graphical models. We demonstrate how this princi-
ple can exploit independencies in the graph model to yield
AND/OR search trees that are exponentially smaller than
the corresponding traditionalOR search tree. In particu-
lar, we show that the size of an AND/OR search tree is
bounded exponentially by the depth of a tree spanning the
graph-model. This implies that anylinear spacesearch al-
gorithm which traverses the AND/OR space, is bounded
exponentially by the tree-depth, saving exponential time
relative to OR search trees. We subsequently extend the
AND/OR search space fromsearch treesto search graphs.
Algorithms exploring the search space graph can engage
in controlled memory management and cease to be linear
space. Yet, their time performance can be reduced substan-
tially and monotonically with their memory use.

The AND/OR search spaces view, provides a coherent ac-
count of various advanced search methods for graphical
model, and has a potential to yield similar advances in any
new graphical model and its queries. Known algorithms
for probabilistic inference (e.g., recursive conditioning
[Darwiche1999, F. Bacchus & Piassi2003]) for constraint
satisfaction (caching goods and no-goods and backjump-
ing [Dechter1990, Bayardo & Miranker1996]), for opti-
mization [Terrioux & Jegou2003] can be placed within the
AND/OR search space context. Finally, relationship to
variable-elimination and OBDD compilation are discussed.

Following some preliminaries (Section 2) we present the
notion of AND/OR search tree for graphical models and
(section 3). Section 4 introduces minimal AND/OR search
graphs and provide analysis. Typical algorithms exploring
the AND/OR search tree and graph for probabilistic infer-
ence, are introduced (section 5). Section 6 provides discus-
sion and related work.

2 Preliminaries and Background

A Reasoning graphical-model is a tripletR = (X, D,F)
whereX a set of variablesX = {X1, ..., Xn}, D is their
respective domains of valuesD = {D1, ..., Dn} andF is a
set of real-valued functionsF = {F1, ..., Ft}. Each func-
tion Fi is defined over a subset of variablesSi, called its
scope,Si ⊆ X. The primal graph of a reasoning problem,
has a node for each variable, and any two variables appear-
ing in the same function’s scope are connected.

In constraint network R = (X, D,C) the functionsF
are constraintsC. Each constraint is a pairCi = (Si, Ri),
whereSi ⊆ X is the scope of the relationRi defined over
Si, denoting the allowed combination of values. The pri-
mary queries over constraint network is to determine if the
network is consistent, and if it is, to find, one or all solu-
tions. A related task is to compute the number of solutions.

A belief network is a graphical model defined over a di-
rected acyclic graphG over the variablesX, and the the
functionsF areP = {Pi}, denoting conditional probabil-
ity tables (CPTs)Pi = {P (Xi|pai)}, andpai is the set of
parentnodes pointing toXi in G. The belief network repre-
sents a probability distribution overX having the product
form P (x̄) = P (x1,, xn) = Πn

i=1P (xi|xpai). x̄[S]
denotes the restriction of a tuplex over a subset of vari-
ablesS. The primary query over belief networks isbe-
lief updatingnamely determining the posterior marginals
of subsets of variables given evidence.

Flat CPTs. Each CPT that has some zero probability en-
tries expresses implicitly a constraint. Theflat constraint
of CPTPi is a constraintRi over its scope s.t(Xi, pai) is
a no-good ofRi (not in the relation) iffPi(xi|pai) = 0.
In this paper, when we talk about a constraint networks
we refer also to any graphical model (e.g., belief networks)
through the set of flat constraints that can be obtained from
the CPTs.

Induced-graphs, induced width and path-width. An or-
dered graphis a pair(G, d) whereG is an undirected graph,
andd = X1, ..., Xn is an ordering of the nodes. Thewidth
of a nodeis the number of the node’s neighbors that precede
it in the ordering. Thewidth of an orderingd, is the maxi-
mum width over all nodes. Theinduced width of an ordered
graph, w∗(d), is the width of the induced ordered graph
obtained as follows: nodes are processed from last to first;
when nodeX is processed, all its preceding neighbors are
connected. Theinduced width of a graph, w∗, is the mini-
mal induced width over all its orderings. The set of maxi-
mal cliques (also called clusters) in the induced graph pro-
vide a tree-decomposition of the graph. The tree-width is
the maximal number of variables in a cluster of an optimal
cluster-tree decomposition of the graph [Arnborg1985]. It
is well known that the induced-width of a graph is identical
to its tree-width. The path-width of a graph is the smallest
induced-width along a chain-like decomposition. The op-
timal path-width is denotedpw∗. For various relationship
see [Arnborg1985, Bodlaender & Gilbert1991].AND/OR
Search spaces.An AND/OR state space representation has

OR states and AND states, and a set of operatorsO. An OR
operator transforms an OR state to another state, and an
AND operator transforms and AND state to a set of states.
There is a set of goal statesSg ⊆ S and a start nodes0.
Example problem domains modelled by AND/OR graphs
are two-player games, parsing sentences, Tower of Hanoi.

The AND/OR states space model induces an explicit
AND/OR searchgraph. Each node is a state and its child
nodes are those obtained by applicable AND or OR opera-
tors. The search graph includes astart node. The terminal
nodes (having no child nodes) are marked as Solved (S), or
Unsolved (U).

A solution subgraphof an AND/OR search graphG is a
subtree which 1. contains the start nodes0, 2. if n in the
subtree is an OR node then it contains one of its child nodes
in G and ifn is an AND nodes it contains all its children in
G. 3. All its terminal nodes are ”Solved” (S). The primary
tasks defined over an AND/OR graph is to determine the
value of the root node, and if it is solved, to find a solution
subtree with optimal cost if a cost is defined.

3 AND/OR Search Tree for Graphical
Models

Consider a graphical model (e.g. a belief or a constraint
network)R = (X,D, F) and its primal graphG. Let T be
a DFS spanning tree of its primal graph rooted atX0. For
each nodeY , ch(Y) are its set of child nodes inT .

DEFINITION 1 (AND/OR search tree based on DFS tree)
Given a graphical modelR and it DFS spanning treeT
rooted atX0, the AND/OR search tree ofR based onT ,
denotedST (R) (or just ST whenR is unambiguous) is
defined as follows. The nodes in the search tree are either
OR nodes (e.g.,X,Y), denoting variables, or AND nodes
denoting Variable-value assignment pairs (e.g.,< X, v >).
The path of< X, v > is the path from the initial state (the
root X0) to < X, v >, which corresponds to aconsistent
partial value assignments to all the variables along the
path. The successors of a node in the AND/OR search tree
are defined as follows:

• The successor-nodes of an OR nodeX are all its pos-
sible value assignments{< X, v > |v ∈ DX} that
are consistent along the path to< X, v >. (The path
alternates OR and AND nodes like (X0, < X0, v0 >
,X1, < X1, v1 >, ...,Xi, < Xi, vi > ...)

• The successor-nodes of an AND node< X, v > are
all its child nodes,ch(X), in T .

The consistency of a partial path is determined by consid-
ering all the relevant (or flat) constraints whose scopes are
contained in the path.

DEFINITION 2 (Basic labeling of AND/OR nodes)
Given an AND/OR treeST (R), A terminal AND node (no
child nodes inT) is always labeled ”Solved” or ”1”. A

terminal OR node is always Unsolved (no consistent value
assignments) labeled ”0”. The labeling of internal nodes
is defined recursively and is dependent on the specific task
and the specific graphical-model. For the task of finding
a solution in a constraint network, an OR internal node
is labeled ”1” iff one of its successor nodes is ”1” and
an AND internal node is labeled ”1” iff all its successor
nodes are labeled ”1”.

The above AND/OR search tree is well defined for any
graphical model, not just for constraint networks. The var-
ious tasks can be distinguished by the function associated
with a solution subtree which dictates the labels associated
with terminal and intermediate nodes. For counting solu-
tions, the value of an OR node is the sum values of its child
nodes and the value of an AND node is their product. For
computing the probability of evidence or computing belief
in a Bayesian network the labeling of nodes is based on
their CPTs, instantiated appropriately and propagated by
sum and products over the OR and AND nodes. (More de-
tails ahead)

An AND/OR search tree becomes an OR search tree when
its DFS tree is a chain. The virtue of an AND/OR search
tree representation is that its size may be far smaller than
the traditional (OR) tree representation.

Example 1 Consider a graphical model in Figure 1a, over
domains{1, 2, 3}. It can represent a graph-coloring prob-
lem or a belief network whose flat constraints are identical
to the graph-coloring costraints. Its OR search tree along
a DFS ordering is given in 1(b) and its AND/OR search
tree based on DFS treeT rooted atX, is given in Figure
1c. A solution subtree is highlighted in 1c. We see that
the size of the traditional OR search tree isO(27), while
the size of the AND/OR search tree isO(4 · 23). We ig-
nore OR nodes when counting nodes because they provide
a constant factor (k) at the most and we believe a non-naive
implementation does not need to express OR nodes explic-
itly. Notice that if we add one constraint betweenX andR
to this problem, we can still use the same DFS treeT yield-
ing a similar structure AND/OR search tree, except that
some values of variableR are no longer consistent with all
their predecessors on the partial path. For example, in that
case,< R, 1 > in 1c will not be present under the subtree
of < X, 1 >.

3.1 From DFS Trees to Legal Trees

The construction of AND/OR search graphs can use as its
basis not just a DFS spanning tree but a larger collection
of spanning trees that we calllegal trees. This general-
ization accommodates many more trees and can therefore
yield better AND/OR search trees.

DEFINITION 3 (A Legal tree of a graph) Given an undi-
rected graphG = (V, E), a directed rooted treeT =
(V, E′) defined on all its nodes islegal if any arc of G
which is not included inE′ is a back-arc, namely it con-
nects a node to an ancestor inT . The arcs inE′ may not all

(a)

61

23

4

7 5

3

4

2

1

7

5

6

(b)

3

42

1

7

5

6

(c)

3

7

4

2

1

(d)

6

5

Figure 2: A graph (a), a DFS treeT1 (b), a legal treeT2 (c)
a legal chainT3

be included inE. Given a legal treeT of G, the extended
graph ofG relative toT is defined asGT = (V, E ∪ E′).

Clearly, any DFS tree and any chain are legal trees.

Example 2 Consider the graphG displayed in Figure 2a.
Orderingd1 = 1, 2, 3, 4, 7, 5, 6 is a DFS ordering of a DFS
tree T1 having the smallest DFS-tree depth of 3 (Figure
2(b)). The tree,T2 in Figure 2c is legal and has a tree
depth of 2 only. The two tree-arcs (1,3) and (1,5) are not
in G. In 2d, treeT3 is a legal chain. The extended graphs
GT1 , GT2 and GT3 are presented in 2(b,c,d) when we ig-
nore directionality.

It is easy to see that,

THEOREM 3 Given a graphical modelR and a legal tree
T , its AND/OR search treeST (R) is sound and complete
(i.e., it contains all and only solutions) and its size isO(n ·
exp(m)) wherem is the legal tree’s depth.2

Finding a legal or a DFS tree of minimal depth is known
to be NP-complete. However the problem was studied,
and various greedy heuristics are available. For example,
legal trees can be obtained by generating a heuristically
good induced-graph along orderingd and then traversing
it depth-first search breaking ties in favor of earlier vari-
ables [Bayardo & Miranker1996]. The following relation-
ship between induced-width and legal trees is well known
[Bayardo & Miranker1996, Dechter2003].

Proposition 1 Given a tree-decomposition of a primal
graphG havingn nodes, whose tree-width isw∗, there ex-
ists a legal treeT of G whose depth,m, satisfies:m ≤
w∗ · logn. 2

THEOREM 4 A graphical model that has a tree-widthw∗

has an AND/OR search tree whose size isO(exp(w∗ ·
logn)). 2

Table 1 shows the difference in hight between dfs span-
ning trees and legal spanning trees generated using com-
mon heuristics over randomly generated directed graphs
that are moralized.

Table 2 demonstrate the size saving of AND/OR vs OR
search spaces for 3 random networks having 20 bi-valued
variables, 18 CPTs with 2 parents per child and 2 root
nodes. The size of the OR space is the full binary tree of

X

Y Z

T R L M

(a) A constraint tree

1 2 3

2 3 1 3 1 2

1 3 1 2

X

T

R

Y

Z

L

M

2 3 1 2 2 3 1 3

1 3 1 3 1 2 1 2 1 2 1 2 2 3 2 3

2 3 2 3 2 3

1 3

1 3 1 3

(b) OR search tree

1 2 3

X

Y Z Y Z Y Z

2 32 3

T R L M

1 3 1 3 1 2 1 2

OR

OR

AND

AND

OR

AND

(c) AND/OR search tree with one of its solution
subtrees

Figure 1: OR vs. AND/OR search trees; note the connector for AND arcs

Model (DAG) width Legal tree depth DFS tree depth

(N=50,P=2,C=48) 9.5 16.82 36.03
(N=50,P=3,C=47) 16.1 23.34 40.60
(N=50,P=4,C=46) 20.9 28.31 43.19
(N=100,P=2,C=98) 18.3 27.59 72.36
(N=100,P=3,C=97) 31.0 41.12 80.47
(N=100,P=4,C=96) 40.3 50.53 86.54

Table 1: Average depth of legal trees vs. DFS trees. 100
instances of each random model.

OR space AO space
width height time(sec.) nodes time(sec.) AND nodes OR nodes

4 10 3.125 2,097,150 0.02 7,806 3,903
6 9 3.124 2,097,150 0.02 6,318 3,159
5 10 3.114 2,097,150 0.02 7,326 3,663

Table 2: OR versus AND/OR search size, 20 nodes

depth 20. The size of the AND/OR space varies based on
the legal tree.

3.2 Searching the AND/OR Search Tree

Any algorithm that traverses the AND/OR search tree in a
depth-first manner is guaranteed to have time bound expo-
nential in the depth of the legal tree of the graphical model
and may operate using linear space. Given a belief net-
work, we can use its moral graph as the primal graph and
any of its legal trees to yield a well defined AND/OR search
tree.

Figure 3 introduces a depth-first search algorithm travers-
ing the AND/OR search tree computing the probability of
evidence we refer to asAND-OR-TREE-BELIEF. The pos-
terior beliefs of the root node can be obtained by normal-
izing. The reader should ignore all the lines with brack-
ets. Those lines will be active for a graph searching al-
gorithm we introduce later. (we present two algorithms at
once for space considerations.) Given an AND/OR search
tree based on a legal treeT , the algorithm labels the arcs
emanating from OR nodes, using the bucket data structure
as follows. Letddfs(T) be a DFS ordering of legal treeT
and let each variableX be associated with a bucketB(X).
The algorithm first partitions the CPTs relative toddfs plac-
ing each CPT-function into the bucket of the latest variable
mentioned in its scope.

When expanding anOR nodeX, the algorithm associates
each of its child nodes< X, v > with the product of CPTS
in B(X) instantiated by the values of the path to< X, v >.
In other words, given a path̄vXi

= (< X0, v0 >, ... <
Xi, vi >), the node< Xi, vi > is labeled initially by
l(v̄i) = Πf∈B(Xi)f(v̄i).

The g values are propagated from leaf to root as follows.
Theg values of aleaf AND node< X, v > is equal to its
l values. Theg values of terminal OR nodes are 0. The
g values of internal OR nodes are obtained by the sum of
theg values of their successors. Theg value of an internal
AND node< X, v > is the product of its ownl-value and
theg-values of its successors. Since theAND-OR-TREE-
BELIEF explores each node inST exactly once, we get:

THEOREM 5 The complexity ofAND-OR-TREE-BELIEF

is linear space and timeO(nkm), whenm is the depth of a
legal tree spanning the belief network’s moral graph. When
the moral graph has a tree-decomposition having tree-
widthw, the algorithm can be bounded byO(n ·exp(logn ·
w)).

Relating to backjumping. Algorithm backjumping
[Gaschnig1979], graph-based or conflict-based for con-
straint satisfaction was designed to overcome the redun-
dancy imposed by the OR structure of the search tree.
It can be shown that graph-based backjumping mimics
the exploration of an AND/OR search tree. Indeed, it
was shown that the depth of a DFS-tree or a legal-tree
[Freuder & Quinn1987, Bayardo & Miranker1996] plays
an important role in bounding backjumping complexity. It
can be shown that the linear-space version of recursive-
conditioning explores the AND/OR search tree as well
[Darwiche1999].

4 Minimal AND/OR Search Graphs

It is often the case that certain states in the search tree
can be merged because the subtree they root are identi-
cal. Any two such nodes are calledunifiable, and when
merged, transform the search tree into a search graph. For
example, in Figure 1c, the search tree below any appear-
ance of< Y, 1 > are all unifiable. In the remainder of the

procedure AND-OR-BELIEF

Input: A belief networkBN = (X, D, G, P), ev-
idencee. constraints are the flat CPTs inP .
v̄ is partial instantiation to current AND node. A
legal treeT rooted atX0

Output: The probability of the evidenceg(X0).
1. OPEN← X0, type(X0) = OR, assign evidence.

Create a search graphG′,← X0 , v̄ ← φ
Create a list calledCLOSED (CL), initially empty.

2. n ← first node in OPEN, move to CL
3. Expandn generating all its successors as follows:

if type(n) = OR, n = X
succ(X)← {< X, v > | consistent(< X, v >)}
if succ(X) = Φ , g(X) = 0 ;(deadend)

[[no− good(X) ← v̄paX
,update flat CPTs]]

else, add allsucc(X) to G′, set pointers toX.
for each< X, v >∈ succ(X) do,

v̄ ← (v̄, < X, v >)
[[if v̄psaX

is a new context not inOP ∪ CL]]
[[then c = c(< X, v >) = v̄psaX

]]
type(< X, v >) ← AND
l(< X, v >) = Πf∈BucketX f(v̄).
add< X, v > to OP.

[[else, if exists,n =< X, v >∈ OP ∪ CL]]
[[s.t c(n) = c , then]]

[[merge< X, v > with n in G′;]]
if type(n) = AND, n =< X, v >

succ(< X, v >) ← {Y |Y ∈ ch(X) in T}
if X terminal inT (no successors)
g < X, v >← l(< X, v >).
putsucc(< X, v >) on top of OPEN and inG′

4. Propagate: whileyou can, propagateg values:
a. For a non-terminal AND node< X, v >

[[if Y ∈ succ(< X, v >) andg(Y) = 0,]]
[[remove siblings ofY from OPEN.]]

[[setg(< X, v >) = 0.]]
else,

if all succ(< X, v >) evaluated,
g(< X, v >) = l(< X, v >)ΠY ∈ch(X)g(Y)

b. For a non-terminal OR nodeX:
if all succ(X) haveg values

g(X) =
∑

<X,v>∈succ(X) g(< X, v >)
end while
c. if X0 is evaluated, exit withg(X0)
d. Remove portion ofG′ that is not relevant

5. Go to step 2.

end procedure

Figure 3: The belief-updating for graphs algorithm.

paper we will characterize the smallest search graph that
may result from merging nodes and will analyze the impact
of graph search vs tree-search in the context of AND/OR
spaces. Given an AND/OR search graphST of a network
R relative to a legal treeT . A partial path in the AND/OR
search-tree(< X1, a1 >,< X2, a2 >, ... < Xi, ai >) is
abbreviated to(X̄, āi), whereX̄ is the sequence of vari-

1 2 3

2 3 1 3 1 2

1 3 1 2

X

T

R

Y

Z

L

M

2 3 1 2 2 3 1 3

1 32 1 2 3

123

1 2

1 2

2 3 1

1 3

3

2 3

Figure 4: Condensed OR graph for the tree problem

ables and̄a is their corresponding sequence of value as-
signments, or̄ai if X̄ is clear.

DEFINITION 4 (legal transformation) Given two partial
paths over the same set of variables,s1 = (X̄i, āi), s2 =
(X̄i, b̄i) whereai = bi, we say thats1 and s2 are unifi-
ableat < Xi, v > (can be merged) iff the search subgraphs
rooted ats1 ands2 are identical. TheMergeoperator over
search graphs,Merge(s1,s2) transformsST into a graph
S′T by mergings1 with s2.

It is clear that the merge operator preserves soundness and
completeness of search graphs (OR or AND/OR), and it
shrinks the search graph with each application. It can be
shown that given an AND/OR search tree, its closure under
the merge operator yields a fixed point, called the minimal
AND/OR search graph.

DEFINITION 5 (minimal AND/OR search graph) The
minimal AND/OR search graph relative toT is the closure
undermergeof the AND/OR search treeST .

The above definition is applicable, whenT is a legal-chain,
to the traditional OR search tree as well. But, in many cases
we will not be able to reach the same compression we see in
the AND/OR search graph, because of the linear structure
imposed by the OR search tree.

Example 6 The smallest OR search graph of the problem
in Figure 1a is given in Figure 4 along the DFS order
X, Y, T,R, Z, L, M . The smallest AND/OR graph of the
same problem along some tree is given in Figure 5. We see
that some variable-value pairs must be repeated in Figure
4 while in an AND/OR case they appear just once. For ex-
ample, the subgraph below the paths< X, 1 >,< Y, 2 >
and< X, 3 >,< Y, 2 > cannot be merged.

5 Rules for merging nodes

Given a graphical modelR = (X ,D, C) and a legal treeT ,
there could be many AND/OR graphs relative toT that are
equivalent to the AND/OR search treeST , each obtained

1 2 3

X

Y Z Y Z Y Z

2 32 3

T R

1 3

1 1

2

T R T R

1 32

L M

1 32

L M L M

1 32

Figure 5: The AND/OR search graph of the tree graphical-
model in Figure 1a and one of its solution subtrees

by some sequence of merging. In this section we will dis-
cuss effective rules for unifying subtrees, targeting the min-
imal AND/OR search graph as much as computational re-
sources allow. The rules provide an efficient way for gen-
erating the graph without creating the whole search tree
ST . To get the basic idea we focus first on AND/OR search
graphs for graphical-models having no cycles, calledtree-
models.

5.1 The case of tree-models

Consider again the graph in Figure 1a and its AND/OR
search tree in Figure 1c. Observe that at level 3, the
node< Y, 1 > appears twice, (and so is< Y, 2 > and
< Y, 3 >). Clearly however, the subtrees rooted at each of
these 2 AND nodes are identical because any assignment to
Y uniquely determined its subtree. Indeed, the AND/OR
search graph in Figure 5 is equivalent to the AND/OR
search tree in Figure 1c. Its size however, is far more con-
densed (note that Figure 1c displays only a small portion of
the AND/OR tree.)

DEFINITION 6 (Explicit AND/OR graphs for tree-models)
Given a tree-model and a rooted DFS treeT (note that we
restrict ourselves to the special case of DFS trees here), the
explicit AND/OR search graphof the tree-model relative
to T is obtained fromST , by merging all identical AND
nodes< X, i > that reside in the same level ofST .

Proposition 2 Given a rooted tree-modelT , 1. Its ex-
plicit AND/OR searchgraph, is equivalent toST and is
therefore sound and complete. 2. The size of the explicit
AND/OR search graph of a tree-model isO(nk). 3. For
some tree models the explicit AND/OR search graph is min-
imal. Namely, the minimal AND/OR search graph for tree-
models isθ(nk).

Generalized width parameter. Next we introduce the
induced-width of a legal tree of Gwhich is instrumental for
characterizing Or graphs vs AND/OR graphs. We denote
by ddfs(T) a DFS ordering of a treeT .

DEFINITION 7 (induced-width of a legal tree) Given

GT , an extended graph ofG relative to a legal T ,
the induced width ofG relative to T , wT (G) is the
induced-width ofGT alongddfs(T).

We can show that,

Proposition 3 1. The minimal induced-width ofG rela-
tive to all legal trees is identical to the induced-width (tree-
width) ofG. 2. The induced-width of a legal chain is iden-
tical to its path-widthpw alongd.

Example 7 In Figure 2b, the induced graph ofG relative
to T1 contains also the arcs (1,3) and (1,5) and its induced-
width is 2. GT2 is already triangulated and its induced-
width is 2 as well. The induced-graph ofGT3 has the ad-
ditional (1,5) and (1,3) edges having induced-width 2 as
well.

5.2 A general merging rule.

This section provides a general generative rule for unifying
nodes in the AND/OR search graph and will use the gener-
alized width parameter to characterize its effect. Given the
induced graph ofGT , denotedG∗T , each variable and its
parent set is a clique. We associate each variable with its
parent-separator as follows:

DEFINITION 8 (parent-separators) Given the induced-
graph, G∗T , the parent-separators ofX denotedpsaX ,
are its earlier neighbors in the induced-graph that are also
neighbors of some future variable inT .

In G∗T , for every nodeXi, the parent-separators ofXi sep-
arates inT its ancestors on the path from the root, and all
its descendents inGT . Therefore,

THEOREM 8 Given G∗T Let s1 = (āi, < Xi+1, v >)
and s2 = (b̄i, < Xi+1, v >) be two partial paths of as-
signments in its AND/OR search treeST , ending with the
same assignment variable< Xi+1, v >. If s1[psai+1] =
s2[psai+1], then the AND/OR search subtrees rooted at
s1 and s2 are identical ands1 and s2 can be merged at
< Xi+1, v >.

DEFINITION 9 (context) For every statesi, si[psai] is
called the context ofsi whenpsai is parent-separators set
of Xi relative to the legal treeT .

THEOREM 9 GivenG, a legal treeT and its induced width
w = wT (G), the size of the AND/OR search graph based
onT obtained when every two nodes inST having the same
context are merged isO(n·kw), whenk bounds the domain
size.

Thus, the minimal AND/OR search graph ofG relative to
T is O(n · kw) wherew = wT (G). SinceminT {wT (G)}
equalsw∗ and sinceminT∈chain{wT (G)} equalspw∗ we
get

Corollary 1 The minimal AND/OR search graph is
bounded exponentially by the graph-model tree-width

while the OR minimal search graph is bounded exponen-
tially by its path-width.

Example 10 For the balanced tree in Figure 1 we see
the AND/OR tree in Figure 5 vs the OR tree on Fig-
ure 4. The induced-width is 2 along the legal-chain
(X,Y, T, R, Z, L,M). Since the context of T alongd is
TXY in the first 3 levels of the OR search graph in Figure
4 there are no merged nodes. Along the DFS tree the con-
text of every node is itself and indeed all AND nodes having
the same variable-value pairs are merged.

It is well known [Bodlaender & Gilbert1991] that for any
graphw∗ ≤ pw∗ ≤ w∗logn. It is also easy to placem∗

(the minimal depth legal tree) yieldingw∗ ≤ pw∗ ≤ m∗ ≤
w∗ · logn. We next demonstrate that the boundpw∗ ≤
w∗logn is tight.

Consider a balanced rooted treeT of depth r having
branching degreep, n = pr − 1. Clearly, the induced-
width of T is 1 and indeed its AND/OR search graph size,
denotedsaor is O(n · k) = O(pr · k). In contrast,

Proposition 4 Consider a legal-chain ofT along d =
ddfs(T). The induced-width ofT relative to the legal-chain
alongd is r. Namely,wd(T) = r.

We can show that for a balanced tree of depthr, the min-
imal induced-width along any legal chain is not less than
r. Thus, for a balanced tree of depthr and branching
degreep, there existsT whose minimal AND/OR search
graph isO(prk), while the smallest minimal OR search
graph for any ordering isO(n · kr). Therefore, ifs∗or

is the minimal search graph over all chains whiles∗aor is
the minimal one over all AND/OR search graphs, we get

that s∗or

s∗aor
= (k

p)
logpn

. When we move from trees to tree-

decompositions of cluster sizew (e.g., w-trees1) we can ex-
tend the above conclusion tos

∗
or

s∗ao
= (k

w
√

p)w·logpn (details
are omitted for space reasons).

5.3 Searching AND/OR search graphs

Any algorithm traversing the AND/OR search graph needs
to record nodes during search so merging would be possi-
ble. To do that the algorithm associates a context with each
AND node and whenever a new AND node is generated,
its context is compared against the list of contexts for the
same variable in the same level. If it was generated already
only pointers will be established appropriately.

Algorithm AND-OR-GRAPH-BELIEF is presented in Fig-
ure 3. For this version the reader should include all the
bracketed lines. In step 3, the algorithm expands the next
node in OPEN (OP). If this is an OR node that has no
consistent successors, it is identified as dead-end, assigned
g = 0. A no-good is recorded and the set of flat con-
straints are modified to include this new constraint. This

1a k-tree of size k+1 is a clique. Given a k-tree of size n, a
k-tree of size k+1 can be obtained by connecting a new node to
each node in a clique of size k

step will cause pruning of the search tree (the following
section ellaborates). Otherwise, for each consistent, value
v of X the algorithm computes the context of< X, v > de-
notedc(< X, v >) and check it against recorded contexts.

THEOREM 11 The complexity of algorithmAND-OR-
GRAPH-BELIEF is time and space exponential in the in-
duced width of the legal tree.

6 The backtrack-free AND/OR space

Most advanced constraint processing algorithms incor-
porate no-good caching during search, use variable-
elimination algorithms such asadaptive-consistency
[Dechter2003] to generate all no-goods prior to search, or
apply constraint propagation at each node. Such schemes
can be viewed as traversing, apruned AND/OR search
tree or graph that we callbacktrack-free. The backtrack-
free AND/OR search tree ofR based onT , denoted
BFT (R), is obtained by pruning all subtrees labeled ”0”
from ST (R). It can be shown that the constraint algorithm
adaptive-consistencycompiles a constraint networkR into
a graphical modelR′ whose AND/OR search tree is iden-
tical toBFT (R) (details are omitted).

The notion of minimality vs that of pruning of inconsistent
subtrees (aiming at the backtrack-free search space) are re-
lated but not the same. While recording the context of a
dead-end is a no-good, no-goods can effect and prune the
search tree itself being used as new constraints. Therefore,
we can have a minimal searchgraphthat is NOT backtrack-
free as well as a searchtreethat is backtrack-free.

When the search space is backtrack-free (no dead-end
nodes) and if we seek a single solution, the size of the min-
imal AND/OR search graph and its being OR vs AND/OR
are irrelevant. Minimality and AND/OR will affect a
traversal algorithm that counts all solutions or compute be-
liefs, however, even when the search space is backtrack-
free.

7 Conclusions, Discussion, Related Work

The primary contribution of this paper is in viewing search
for graphical model in the context of AND/OR search
spaces rather than OR spaces. We introduced the AND/OR
search tree, and showed that its size can be bounded ex-
ponentially by the depth of its legal tree. This implies ex-
ponential saving for any linear space algorithms travers-
ing the AND/OR graph. We observe that many known
advanced algorithms for constraint processing and sat-
isfiability can be explained as traversing the AND/OR
search tree (e.g. backjumping [Freuder & Quinn1987,
Bayardo & Miranker1996]). Also, recent algorithms
in probabilistic reasoning such as recursive-conditioning
[Darwiche1999, F. Bacchus & Piassi2003] can operate in
linear space and can be viewed as searching the AND/OR
search tree.

The AND/OR search tree was extended into a graph by

merging identical subtrees. We showed that the size of the
minimal AND/OR search graph is exponential in the tree-
width while the size of the minimal OR graph is exponen-
tial in the path-width. Since for some graphs the difference
between the path-width and tree-width is substantial (e.g.,
balanced legal trees) the AND/OR representation implies
exponential time and space savings for algorithms travers-
ing the AND/OR graph. Searching the AND/OR search
graphcan be implemented by goods caching during search,
while no-good recording is interpreted as pruning and col-
lapsing portions of the search space independent of it be-
ing a tree or a graph, an OR or an AND/OR. For finding
a single solution, pruning the search space is the most sig-
nificant action. For counting and probabilistic inference,
using AND/OR graphs can be of much help even on top of
no-good recording.

Many memory-intensive algorithms can be viewed as
searching the AND/OR searchgraph. For example, re-
cent work [Terrioux & Jegou2003] perform search guided
by a tree-decomposition either for constraint satisfac-
tion andoptimization is searching the AND/OR search
graph, whose legal tree is constructed along the tree-
decomposition. Algorithm recursive-conditioning in its
full caching mode, for belief updating [Darwiche1999],
is a depth-first search of an AND/OR search graph.
Another variant is value-elimination, introduced recently
[F. Bacchus & Piassi2003] both for belief updating and
counting models of a CNF formula. Most advanced SAT
solvers employ both backjumping , clause learning (e.g.,
no-good learning) thus search the AND/OR search tree.

Relationship with bucket-elimination. The worst-case
complexity of AND-OR-GRAPH-BELIEF is identical to
that of variable-elimination and join-tree clustering. This
is not surprising. We can show that bucket elimination,
if applied along any reversed order of the legal tree, will
generate every context node exactly once, and with each
it associates the finalg value. The bucket-elimination al-
gorithms can be viewed as searching the merged AND/OR
graph that is backtrack-free.

Realtionships with OBDDs. The notion of minimal OR
search graphs is similar to the known concept ofOrdered
Binary Decision Diagrams (OBDD)in the literature of
hardware and software design and verification. The prop-
erties of OBDDs were studied extensively in the past two
decades [McMillan1993]. It is well known that the size of
OBDDs is bounded exponentially by thepath-widthof the
CNF’s interaction graph. Our notion of minimal AND/OR
search graphs, if applied to CNFs, resemblestree OBDDS
developed subsequently [McMillan1994]. The OBDDs
definitions incorporates also inconsistent subtree pruning
and consistent subtree collapse. Some relationship between
graphical model compilation and OBDDs were studied in
[Darwiche & Marquis2002].

References

[Arnborg1985] Arnborg, S. A. 1985. Efficient algorithms
for combinatorial problems on graphs with bounded de-
composability - a survey.BIT 25:2–23.

[Bayardo & Miranker1996]Bayardo, R., and Miranker, D.
1996. A complexity analysis of space-bound learning
algorithms for the constraint satisfaction problem. In
AAAI’96: Proceedings of the Thirteenth National Con-
ference on Artificial Intelligence, 298–304.

[Bodlaender & Gilbert1991]Bodlaender, H., and Gilbert,
J. R. 1991. Approximating treewidth, pathwidth and
minimum elimination tree-height. InTechnical report
RUU-CS-91-1, Utrecht University.

[Darwiche & Marquis2002]Darwiche, A., and Marquis,
P. 2002. A knowledge compilation map.Journal of
Artificial Intelligence Research (JAIR)229–264.

[Darwiche1999]Darwiche, A. 1999. Recursive condition-
ing. In Proceedings of the 11th Conference on Uncer-
tainty in Artificial Intelligence (UAI99).

[Dechter1990]Dechter, R. 1990. Enhancement schemes
for constraint processing: Backjumping, learning and
cutset decomposition.Artificial Intelligence 41:273–
312.

[Dechter2003]Dechter, R. 2003.Constraint Processing.
Morgan Kaufmann Publishers.

[F. Bacchus & Piassi2003]F. Bacchus, S. D., and Piassi,
T. 2003. Value elimination: Bayesian inference via
backtracking search. InUncertainty in AI (UAI03).

[Freuder & Quinn1987]Freuder, E. C., and Quinn, M. J.
1987. The use of lineal spanning trees to represent con-
straint satisfaction problems. Technical Report 87-41,
University of New Hampshire, Durham.

[Gaschnig1979]Gaschnig, J. 1979. Performance measure-
ment and analysis of search algorithms. Technical Re-
port CMU-CS-79-124, Carnegie Mellon University.

[McMillan1993] McMillan, K. L. 1993. Symbolic Model
Checking. Kluwer Academic.

[McMillan1994] McMillan, K. L. 1994. Hierarchical
representation of discrete functions with application to
model checking. InComputer Aided Verification, 6th
International conference, David L. Dill ed., 41–54.

[Nillson1980] Nillson, N. J. 1980.Principles of Artificial
Intelligence. Tioga, Palo Alto, CA.

[Terrioux & Jegou2003]Terrioux, C., and Jegou, P. 2003.
Hybrid backtracking bounded by tree-decomposition of
constraint networks. InArtificial Intelligence.

