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Abstract

This paper introduces a Subjective Logic based argumentation framework primar-
ily targeted at evidential reasoning. The framework explicitly caters for argument
schemes, accrual of arguments, and burden of proof; these concepts appear in many
types of argument, and are particularly useful in dialogues revolving around eviden-
tial reasoning. The concept of a sensor is also useful in this domain, representing a
source of evidence, and is incorporated in our framework. We show how the frame-
work copes with a number of problems that existing frameworks have difficulty
dealing with, and how it can be situated within a simple dialogue game. Finally,
we examine reasoning machinery to enable an agent to decide what argument to
advance with the goal of maximising its utility at the end of a dialogue.
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1 Introduction

It has long been recognised that argumentation research can be divided into
two main strands [16]. The first involves the analysis of argument, while the
second borrows ideas from argumentation theory in an attempt to create pow-
erful reasoning mechanisms. In this paper, we follow the latter strand, using
argument to create a powerful framework for evidential and diagnostic rea-
soning. Informally, we are trying to address situations where different agents,
each with their own goals and viewpoints, are attempting to reach a shared
agreement about the state of a subset of their environment. We further assume
that the environment is partially observable, and that any information about
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it is obtained through the use of fallible sensors. Finally, we assume that the
agents are self interested, and that different agents may have opposing goals.

Without a trusted third party, a centralised solution to this problem is dif-
ficult. Our proposed approach involves the agents engaging in dialogue with
each other, exchanging arguments, and probing sensors for additional informa-
tion about the environment. By combining the information from sensors and
arguments, a shared world view can be constructed. To tackle the problem,
therefore the following is needed:

• A representation mechanism for the environment, agents’ knowledge, argu-
ments and any other components with which interaction is required.

• A technique for determining which conclusions are justified when opposing
arguments interact.

• A specification detailing how agents should engage in dialogue with each
other.

• A way for the agents to decide which arguments to advance and what sensors
to probe.

Prakken [15] identified these as the logical, dialectic, procedural and heuristic
layers of an argument framework. Our logical layer is built around Subjective
Logic [6], allowing us to represent concepts such as likelihood and uncertainty
in a concise and elegant manner. The way in which arguments are constructed
in our framework and used at the dialectic level is intended to support a rich
representation of arguments; we are able to represent concepts such as accrual
of arguments, argument schemes and argument reinforcement in a natural
manner. While the logical and dialectic layers are domain independent, acting
as a general argument framework, the explicit introduction of sensors at the
procedural level allows us to attack our problem.

A sensor refers to anything that can determine the state of a subset of the
environment. Multiple sensors may exist for certain parts of the environment,
and some of these sensors may be more accurate than others. Finally, sensors
may not perform their services for free. Thus, sensors capture an abstract
notion of a source of evidence within our framework.

At the procedural level, agents engaging in dialogue, taking turns to advance
arguments and probe sensors in an attempt to achieve their goals. In this
context, an agent’s goal involves showing that a certain environment state
holds. We assume that an agent associates a utility with various goal states.
Our heuristic layer guides an agent and tells it what arguments to advance,
and which sensors to probe during its turn in the dialogue game.

Using argumentation for evidential reasoning has a number of advantages over
other approaches, including:
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• Understandability. It is much easier to follow the reasoning behind a dialogue
than to attempt to interpret a complicated formula.

• Resource bounded reasoning. It is possible to plug in different agents with
different capabilities (and hence different computational costs) and still ob-
tain some (possibly non-accurate) answers.

• Anytime. Related to the previous point, it is possible to terminate the dia-
logue at any time, with the provision that inaccurate, or incorrect answers
may be obtained.

• Ease of knowledge engineering. At any point in the argument process, it is
easy to introduce additional facts and see how they alter the dialogue.

In this section, we provided a brief overview of the problem we are trying to
tackle, and outlined our proposed solution. Next, we discuss Subjective Logic,
as it forms a core part of our formalism. Once this is done, we proceed to
describe our formalism, following which an illustrative example is provided.
We then examine the strengths and weaknesses of our approach in more detail,
and compare it with existing techniques. We also examine possible areas for
future work before concluding the paper.

2 Subjective Logic

Subjective Logic [6] provides a standard set of logical operators (such as nega-
tion, conjunction and disjunction), intended for use in domains containing
uncertainty, and, more specifically, domains in which opinions regarding the
truth or falsehood of a (set of) domain elements differ. Subjective logic also
contains a number of other operators, designed to combine opinions in an in-
tuitively correct manner. The semantics of our formalism, presented in Section
3, are based on Subjective Logic (hereafter abbreviated SL), and we therefore
now provide a brief overview of the area. Most of this description is taken
directly from Jøsang’s original paper [6].

Since SL is based on Dempster-Shafer evidence theory, it operates on a frame
of discernment, denoted by Θ. A frame of discernment contains the set of
possible system states, only one of which represents the actual system state.
These are referred to as atomic system states.

In many situations, it is difficult to determine what state one is in, and it
thus makes sense to talk about non-atomic states, consisting of the union of
a number of primitive states. If the system is in primitive atomic state xi, it
is also in all states xj such that xi ⊆ xj. The powerset of Θ, denoted by 2Θ,
consists of all possible unions of primitive states.

An observer assigns a belief mass to various states based on its strength of
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belief that the state (or one of its substates) is true:

Definition 1 (Belief Mass Assignment) Given a frame of discernment
Θ, one can associate a belief mass assignment 1 mΘ(x) with each substate
x ∈ 2Θ such that

(1) mΘ(x) ≥ 0
(2) mΘ(∅) = 0
(3)

∑
x∈2Θ mΘ(x) = 1

For a substate x, mΘ(x) is its belief mass.

Belief mass is an unwieldy concept to work with. When one speaks of belief
regarding a certain state, one refers not only to the belief mass in the state, but
also to the belief masses of the state’s substates. Similarly, when one speaks
about disbelief, that is, the total belief that a state is not true, one needs to
take substates into account. Finally, subjective logic introduces the concept
of uncertainty, that is, the amount of belief that one might be in a superstate
or a partially overlapping state. We can define these concepts formally as:

Definition 2 (Belief, Disbelief and Uncertainty) Given a frame of dis-
cernment Θ and a belief mass assignment mΘ on Θ, we can define the belief
function for a state x as

b(x) =
∑
y⊆x

mΘ(y) where x, y ∈ 2Θ

The disbelief function as

d(x) =
∑

y∩x=∅
mΘ(y) where x, y ∈ 2Θ

And the uncertainty function as

u(x) =
∑

y ∩ x 6= ∅

y 6⊆ x

mΘ(y) where x, y ∈ 2Θ

These functions have a number of features that should be noted. First, they
all range between zero and one. Second, they always sum to one, meaning that
it is possible to deduce the value of one function given the other two. If the
entire belief mass is assigned to Θ, then u(x) = 1 if x 6= Θ. This situation is
analogous to total uncertainty. Dogmatic beliefs occur when no belief mass is
assigned to Θ.

1 A belief mass assignment is often also referred to as a basic belief assignment, or
bba, within belief theory. Since our framework is Subjective Logic based, we will
refer to belief mass assignment within this paper.
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Another concept introduced in subjective logic is relative atomicity. The rela-
tive atomicity of two states x and y is the ratio of the number of states shared
between them and the number of states in y. Relative atomicity is needed
to compute the expected probability of an outcome, and captures the idea
of prior probabilities. However, by taking into account the provision that we
cannot translate directly from opinions to probabilities, we ignore atomicity
in the interests of simplifying our framework.

A focused frame of discernment for a state x is a frame of discernment con-
taining only the states x and x̄, the complement of x. Jøsang provides a trans-
formation from a frame of discernment to a focused frame of discernment.
However, for a state x, the only value that changes between the two frames is
its atomicity.

An opinion consists of the belief, disbelief, uncertainty (and relative atomicity)
as computed over a binary frame of discernment:

Definition 3 (Opinion) Given a binary frame of discernment Θ containing
x and its complement x̄, and assuming a belief mass assignment mΘ with
belief, disbelief, uncertainty and relative atomicity functions on x in Θ of
b(x),d(x),u(x) and a(x), we define an opinion over x, written ωx as

wx ≡ 〈b(x), d(x), u(x), a(x)〉

Since we ignore atomicity, we write an opinion for a state x as the triple
〈b(x), d(x), u(x)〉. When the context is clear, we may refer to (for example)
the belief component of an opinion ωx as b(ωx). For compactness, we may
occasionally write bx, dx, ux instead of b(x), d(x) and u(x).

Jøsang has defined a large number of operators that are used to combine
opinions, some of which are familiar such as conjunction and disjunction, and
some less so such as abduction. We look at three operators, namely negation,
discounting, and consensus.

The propositional negation operator calculates the opinion that a proposition
does not hold, and is defined as follows:

Definition 4 (Propositional Negation) For a ωx = 〈bx, dx, ux〉, the propo-
sitional negation is computed as ω¬x = 〈dx, bx, ux〉.

Given an agent α, we represent its opinion on a proposition x as ωα
x . Discount-

ing is a model of hearsay. That is, given that an agent α holds an opinion ωα
β

about agent β’s reliability, and given that β has an opinion ωβ
x about propo-

sition x, ωαβ
x gives the opinion α has about x.

Definition 5 (Discounting) Given two opinions ωα
β = 〈bα

β , dα
β , uα

β〉, and
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ωβ
x = 〈bβ

x, dβ
x, uβ

x〉, the discounted opinion is ωαβ
x = 〈bα

βbβ
x, bα

βdβ
x, dα

β + uα
β + bα

βuβ
x〉

The independent consensus operator represents the opinion an imaginary
agent would have about x if it had to assign equal weighting to the opin-
ions ωα

x and ωβ
x . Later work [7] suggests how one can handle situations where

κ = 0, but, by assuming that sensors reflect reality, we can ensure that κ is
never 0 in our framework.

Definition 6 (Independent Consensus) Given two independent opinions
ωα

x and ωβ
x about the same proposition x, the independent consensus opinion

is defined as ωα,β
x = 〈(bα

xuβ
x + bβ

xuα
x)/κ, (dα

xuβ
x + dβ

xuα
x)/κ, uα

xuβ
x/κ〉 Where κ =

uα
x + uβ

x − uα
xuβ

x such that κ 6= 0.

To simplify notation, we may represent the operators as follows:

ω¬x ≡ ¬ωx

ωαβ
x ≡ ωα

β ⊗ ωβ
x

ωα,β
x ≡ ωα

x ⊕ ωβ
x

With this grounding, we are now in a position to describe our framework.

3 The Framework

Following Prakken’s model[15], we build our framework in layers, starting at
the logical layer, where we describe how an argument is constructed. In the
dialectic layer, we look at how arguments interact, and then show how agents
may engage in dialogue in the procedural layer. Finally, in the heuristic layer,
we show how agents can decide which lines of argument should be advanced
in a dialogue.

One concept that cuts across a number of layers is that of an argument scheme
[20]. Argument schemes are common, stereotypical patterns of reasoning which
are, typically, non-deductive and nonmonotonic. In our framework, arguments
are instantiated instances of argument schemes. Thus, our universe of discourse
is a tuple U = (PF , AS) where PF contains (a finite number of) possible facts
about our universe, and AS is the set of argument schemes. We also assume
that we have two distinct sets of symbols Σ and Φ.

Facts are represented as grounded predicates, and have an associated opinion.
A set of predicates with an identical name acts as a frame of discernment.
Since only a single state within a frame of discernment can be true, we cannot
simply match individual predicates to states. Instead, we define the atomic

6



states by computing the powerset of the individual predicates, and associate
a non-atomic state with the predicate that encapsulates all atomic states in
which the predicate holds. The left hand side of Figure 1 provides an example
of this.

Definition 7 (Predicate) Given a universe of discourse U = (PF , AS), a
predicate is a tuple (Name,Parameters) ∈ PF where Name ∈ Σ. Parameters
is itself a tuple of finite arity whose members are elements of PF . Given
two predicates (N1,Parameters1), and (N2,Parameters2), |Parameters1| =
|Parameters2| if N1 = N2.

We refer to the frame of discernment 2P , where P is the set
{Parameters|(Name,Parameters) ∈ PF and Name = N} as ΘN . This frame
of discernment has additional states pi ∈ P containing all states s ∈ 2P such
that pi ⊆ s.

The atomic states of a frame of discernment ΘN are referred to as atomic(ΘN).
We differentiate between atomic and non-atomic states by writing the latter
in bold.

A predicate is thus embedded within a frame of discernment, which in itself is
another predicate. We assume the existence of an anonymous, top level frame
of discernment in which predicates reside. While it is possible to remove this
nesting, and store all predicates within a single universal frame of discernment,
embedding them in this way helps reduce the exponential explosion in the
number of atomic states.

We place one restriction on the nesting of frames of discernment, and that is
that the graph of nestings must be acyclic, that is, a predicate may not nest
other predicates such that it eventually nests itself.

As an example, consider the symbols a, b, fred , holds, geologist, expert and
geology. We may have the following predicates:

(holds, {a}), (holds, {b}), (holds, {geologist})
(geologist, {fred}), (expert, {(geologist, geology)})

For convenience, we rewrite a predicate of the form (A, B) as A(B). Thus,
some of our possible facts include holds(a), expert(geologist, geology), as well
as holds(geologist) and holds(geologist(fred)). Note that atomic(Θholds) is
{a, b, geologist}.

Let us examine a subset of the holds frame of discernment, containing the
predicates geologist (which in turn contains the predicate fred) and a. Figure 1
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g

a,g

f

{}

{}

Holds

Geologist

A

G
0.1

0.4

0.3

0.60.2

0.3

0.1

Fig. 1. The frames of discernment and associated belief mass assignments for the
predicates (holds, {a, geologist}), (geologist, {fred}). g stands for geologist, and f
for fred . Capitalised letters show non-atomic states.

a
gfa

gf

a
g{}

g{}

{}

G

A

0.2

0.1

0.18
0.07

0.09

0.12

0.24

F

Fig. 2. The merged frame of discernment for the predicates
(holds, {a, geologist}), (geologist, {fred}). gf stands for the predicate
geologist(fred), and g is the primitive state obtained from the empty set of
the original (unmerged) geologist frame of discernment. The dotted ellipses,
together with the associated capitalised letters show non-atomic states.

shows these frames of discernment, together with a belief mass assignment to
the various states.

One question that we must answer is how nested belief masses (and from
them opinions) are computed. For example, what would the belief mass of
holds(geologist(fred)) be? To answer this question, we need to merge our
frames of discernment. Figure 2 shows the merged frame of discernment.

To create a merged frame of discernment from the frame of discernment of
two predicates Θpr1 , Θpr2 where pr1 = (n1, {p11, . . . , p1m}), pr2 = p1i for some
1 < i < m, and pr2 = (n2, {p21, . . . , p2n}), we first define pa, the reduced set
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of parameters as {p11, . . . , p1m}\p2n.

Then the atomic states in the merged frame of discernment are

Θpa ∪ ((Θpa\{})×Θpr2) ∪Θpr2

Note that we must differentiate between the empty sets found in both predi-
cates when in the merged state, and will thus refer to the former as {}1 and
the latter as {}2.

The new frame of discernment contains n + m non-atomic states. As before,
these non-atomic states encapsulate all atomic states containing a parameter of
the same name. The only exception to this is the state p1i, which encompasses
any atomic state with elements in p2j for j = 1 . . . n.

The belief mass assignments (BMAs) for all atomic states from pr1 remain
the same. BMAs for atomic states containing elements from pr2 are computed
by multiplying the BMA from the relevant state in pr1 with the state from
pr2. Thus for example, the BMA for state a, f in Figure 2 is 0.4× 0.6 = 0.24.
As can be seen from the figure, compound state G was also assigned a BMA.
This was because the frame of discernment in the original predicate had an
associated BMA. The BMA for the p1i compound state is computed as the
BMA assigned to the original frame of discernment multiplied by the BMA
assigned to all its substates in pr1.

Converting BMAs to opinions, we see that an opinion about a proposition
remains the same in both the merged and unmerged models. This is an
important result for the rest of our framework, as arguments are based on
opinions rather than BMAs. It should be noted that ω(geologist(fred)) 6=
ω(holds(geologist(fred)), even though the belief mass assignments remain
the same. However, ω(a) remains the same in both cases.

Argument schemes, while mainly used in the higher levels of our framework,
form the second part of our universe of discourse. They are instantiated to
form concrete arguments. We assume that our framework contains only a
finite number of argument schemes:

Definition 8 (Argument Scheme) Given a universe of discourse U =
(PF , AS), an argument scheme as ∈ AS is a tuple

(Name,Premises ,Conclusions , F, A)

Name uniquely identifies the argument scheme, Premises and Conclusions are
tuples of the form (li, (s1, . . . , sn)) such that ∃(li,Parameters) ∈ PF where n =
|Parameters|. si ∈ Φ are symbols. All tuples within Premises and Conclusions
must differ from each other. A : 2Premises → {true, false} is the applicability
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function. F is a user-defined function mapping opinions over all premises to
opinions over all conclusions.

The admissibility function A is used to compute whether an argument (defined
below) can be used given a specific set of premises. If it can, the F function is
used to assign a set of opinions to the conclusions of the argument based on
the opinions assigned to its premises. Both the A and F functions can make
use of the following:

• The standard arithmetic operators (+,−, etc).
• Comparison operators (<,≥, etc).
• Boolean operators (not, or, etc).
• The functions b(ω), d(ω), u(ω) on an opinion ω.
• Subjective logic boolean (Definition 4), independent consensus and dis-

counting (Definitions 5 and 6), and other [7] operators, operating on opin-
ions.

• References to predicates mentioned in Premises and Conclusions.
• An if/then conditional.
• An “unpacking” operator to refer to the parameters of a predicate.

As an example, Modus Ponens can be represented with the argument scheme
(ModusPonens , {holds(A), implies(A, B)}, {holds(B))}, F, true). Here, F is:

ω(holds(B)) =



〈0, 0, 1〉 b(holds(A)) < 0.5 or

b(implies(A, B)) < 0.5

ω(holds(A)) b(holds(A) < b(implies(A, B))

ω(implies(A, B) otherwise

The first condition is not strictly necessary, as the applicability function can
be crafted to prevent it from ever being evaluated. The second and third
conditions choose an opinion based on the strength of the premises. Clearly,
other F functions are also possible.

We make use of first order unification to transform an argument scheme into
a concrete argument. Symbols found in the argument scheme’s premises and
conclusions are replaced with symbols found in the predicate’s frame of dis-
cernment. As in most forms of unification, identical symbols are transformed
into identical variables. Arguments are thus instantiated argument schemes.

Definition 9 (Instantiated Argument) An instantiated argument for an
argument scheme (Name,Premises ,Conclusions , F, A) is a tuple of the form
A = (Name, M) where M is a set of symbol pairs (s, l) such that s ∈ Σ and
l ∈ Φ. Given that the argument scheme’s Premises and Conclusions are of the
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form (li, (s1, . . . , sn)), we have the restriction that s ∈ {s1, . . . , sn}. Finally,
given two pairs (s1, l1), (s2, l2) ∈ M , such that s1, s2 ∈ S and l1, l2 ∈ L, l1 = l2
iff s1 = s2.

We name the set of all possible instantiated arguments Args.

Thus, for example, given the argument scheme for Modus Ponens defined
above, and assuming a knowledge base containing the predicates holds(a) and
implies(a, b) associated with sufficiently high levels of belief, we may generate
the instantiated argument (ModusPonens , {(A, a), (B, b))}. Using instantiated
arguments in this form is unwieldy as references to premises and conclusions
from the argument scheme must constantly be made. We can write an instan-
tiated argument in an abbreviated form. For example, given the previously
described argument scheme for Modus Ponens, and the previously described
instantiated argument, we will write

(ModusPonens , {holds(a), implies(a, b)}, {holds(b)}, A, F )

If the A and F functions are not used in the context in which we refer to the
argument, we may leave them out.

Until now, we have described what individual arguments look like. However,
arguments do not exist in isolation. Instead, they interact with each other,
reinforcing or weakening opinions about predicates in the process. Unlike most
other argumentation frameworks, we do not explicitly model rebutting and
undercutting attacks to show how arguments interact. Instead, we use the
concept of accrual of arguments to allow for both argument strengthening and
weakening. To represent interactions between arguments, we must be able to
answer the following question: what happens when two different arguments
have opinions about a (partially shared) set of predicates in their conclusions?

The independent consensus operator gives us a default technique for applying
accrual. Thus, given a set of arguments for and against a certain conclusion,
and given no extra information, we apply the consensus operator based on
the opinions garnered from the arguments to arrive at a final opinion for the
conclusion. While the consensus operator works well in most cases, it fails in a
number of situations. Specifically, accruals do not always accrue in the manner
captured by this operator. We now explore some situations where this occurs.

Prakken [14] lays out three principles that the scheme of accrual of arguments
adheres to. These are:

(1) Accruals are sometimes weaker than their elements.
(2) An accrual makes its elements inapplicable.
(3) Flawed reasons or arguments may not accrue.
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The weakening of an accrual, according to Prakken, is due to the possibility
that the accruing reasons are not independent. As an example, he suggests
the case where two reasons exist not to go running, namely that it is hot,
and that it is raining. However, for some runners, this specific combination of
conditions may be less unpleasant than either condition alone, or may even be
a reason to go running. Prakken claims that the interactions between reasons
means that, in general, it is impossible to calculate the strength of an accrual
from is accruing elements. We believe that while this claim is true in specific
cases, in the general case the consensus operator combines accrual elements in
an intuitively correct manner. Our framework is, however, designed to cater
for special cases where the consensus operator should not be used. In these
cases, a custom function is used instead of the consensus operator to perform
the accrual.

While relatively obvious, the second principle is critical. Any framework sup-
porting accrual of arguments must not count evidence twice. However, if the
accrual is defeated, its component parts should be reinstated.

The final point states that if a component within an accrual is defeated, it
should not be counted when performing the accrual; otherwise this might mean
that the accrual as a whole becomes invalid.

While some researchers have suggested that accrual of arguments is an argu-
ment scheme and can be treated as such (arguably, for example [13]), Prakken’s
view, in our understanding, is that the best way to handle accrual of argu-
ments is by following a two stage process. First, determine what arguments
may enter into an accrual, and second compute the effects of the accrual. We
agree that accrual of arguments cannot be treated as “just another” argument
scheme due to its role and nature. We believe, however, that in certain situ-
ations (usually obeying principle 1), accrual of evidence can be treated as an
argument scheme. The way in which our framework aligns these two views is
one of its most unique aspects.

We will provide an informal outline of how we approach accrual of arguments
before giving a formal description of the process. Informally, given multiple
arguments for a conclusion, we apply the standard consensus rule. However, if
an argument is advanced which subsumes (some of the) arguments which take
part in the consensus, the subsumed argument’s conclusions are ignored, and
the subsuming rule is used instead. If any of those arguments are attacked and
defeated, then our accrual rule is itself defeated, allowing all its undefeated
(and previously subsumed) members to act again. If some of the newly acti-
vated sub-members were, in turn, part of accruals, those accruals would enter
into force again.

We claim that an argument subsumes another if the subsumed argument’s
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premises are a subset of the subsuming argument’s premises, and at least one
conclusion is shared. However, any conclusions that are not shared are still in
force. Thus, for example, given the three arguments “if it is raining, we do not
run”, “if it is hot, we do not run”, and “if it is hot and raining, we do run”,
it is clear that the third argument would subsume the other two. It is also
clear that if the first argument is changed to read “if it is raining, we do not
run and do not hang washing out to dry”, we would run, but still not hang
washing out to dry. Formally,

Definition 10 (Argument Subsumption) Given two instantiated argu-
ments (written in abbreviated form),
(Arg1, {p11, . . . , pl1}, {c11, . . . , cm1}), and (Arg2, {p12, . . . , pn2}, {c12, . . . , co2}),
we say that Arg2 subsumes Arg1 for a set of conclusions C iff the following
two conditions hold:

(1) for all pi1, i = 1 . . . l there is a j ∈ {1 . . . l} such that pi1 = pj2.
(2) for some 1 < i < m and 1 < j < o, ci1 = cj2 and ci1, cj2 ∈ C

If Arg2 subsumes Arg1 for a set of conclusions C, we may write Arg2 �C

Arg1.

Arg2 maximally subsumes Arg1 for a set of conclusions C if Arg2 subsumes
Arg1 for a set of conclusions C and there is no set of conclusions D for which
Arg2 subsumes Arg1 such that |D| > |C|.

When given multiple arguments for a conclusion, we apply only the argument
that maximally subsumes all other arguments for that conclusion. If any ar-
guments remain that can be applied, they are combined using the Subjective
Logic independent consensus operator.

We are now in a position to provide an algorithm for evaluating how sets of
(instantiated) arguments interact. Our algorithm is shown in Figure 3; it is
inspired by the way reasoning is performed in probabilistic networks, and, in
fact, is best explained by thinking of our sets of arguments and predicates
as a graph. Both predicates and arguments can be thought of as nodes, with
a directed edge between the two if the predicate appears in the premises or
conclusions of an argument. The edge enters the argument in the case of the
predicate being a premise, and exits the argument otherwise.

One weakness of our approach is the assumption that our argument graph is
acyclic. This makes it difficult to represent certain classes of arguments such
as “a holds iff b holds”. Another family of cycles that can arise in the graph
involves self reinforcing, or self defeating chains of argument. However, due
to the nature of our algorithm, this class of argument does not pose as big a
problem. Some possible solutions to this issue are discussed in Section 5.
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Given: a set of instantiated arguments A
a set of possible facts and associated opinions PF , ωPF

Variables:
visitedFacts VF
visitedArguments VA

VF = PF

repeat until A = VA
∀a = (p, c, applicable, F ) ∈ A\VA

if ∀pi ∈ p, pi ∈ VF
if admissible(a)
VA = VA ∪ A

else
A = A\a

∀r ∈ PF\VF
if 6 ∃a ∈ A\VA such that r ∈ c(a)
∀a ∈ VA such that r ∈ c(a) and 6 ∃a2 ∈ VA such that a2(c(a)) � a(c(a))
ωPF (r) =

⊕
(F (a))

VF = VF ∪ r
else if 6 ∃a ∈ A such that r ∈ c(a)
ωPF (r) = 〈0, 0, 1〉
VF = VF ∪ r

Fig. 3. An algorithm to compute conclusions given a set of argument schemes, in-
stantiated arguments, and optionally, some opinions. c(a) represents the conclusions
of instantiated argument a, F (a) the application of a’s F function, and a2(c(a)) and
a(c(a)) represent the arguments whose conclusions are c(a). Note that the abbrevi-
ated form of an instantiated argument is used in the algorithm.

To operate, our algorithm requires an argument graph, as well as a starting
set of opinions. We assume that these opinions are not under dispute, and
the associated nodes must, therefore, have no edges leading into them. Our
algorithm then propagates these opinions forward through the graph, until all
applicable arguments in the graph have been taken into account. A few issues
need to be taken into consideration to ensure the proper functioning of our
algorithm:

• Only justified arguments should be used.
• Defaults must be taken into account.
• It must be possible to differentiate between visited and unvisited nodes.
• All, or only some of an argument’s conclusions may participate in an accrual.

A predicate node is assigned an opinion if all the argument nodes leading into
it have associated opinions (taking into account accrual of arguments). An
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argument node is evaluated if all predicate nodes leading into it are assigned
an opinion, unless the predicate node has no arguments leading into it (for
example due to argument defeat) in which case they are assigned a default
opinion of 〈0, 0, 1〉. Our algorithm terminates in O(n) time, where n is the
number of edges.

If an argument is not admissible, it is removed from evaluation. It should be
noted that once an argument is removed, it cannot be reinstated. However,
arguments are only removed when there is no chance that they will be ad-
missible, so the framework yields the same results as our intuition. As we
will discuss in Section 5, there is only a weak relation between our seman-
tics and Dung’s argumentation semantics. We also defer discussion of other
representational issues relating to the underlying frameworkto Section 5.

At this point, we have a way of determining which conclusions hold given a set
of arguments. Next, we describe a procedure for how the set of arguments is
generated. This is done in two parts. We assume that our argument framework
is used within the context of a dialogue. The utterances made in the course
of the dialogue result in the set of arguments. Thus, we begin by formalising
the dialogue process, after which we provide a decision rule which dialogue
participants can use to determine which arguments they should advance at any
point in the dialogue. Once this is done, we can show how agents, arguments
and argument schemes interact to form our complete framework.

To specify the dialogue, we need to further constrain and describe the environ-
ment in which it takes place. We assume that dialogue occurs between two or
more agents, each of which has a private knowledge base, opinions about the
environment, and goals. The dialogue environment contains a public commit-
ment store into which the agent’s arguments are inserted, as well as the set of
valid argument schemes. Since we are interested in arguing about evidence in
partially observable domains, we make the assumption that the environment
holds a set of sensors. These sensors may be probed to obtain opinions about
the value of various relations. In practise, sensors may be agents, static parts of
the environment, or some other entity capable of providing an opinion about
the environment. We assume that multiple sensors can give opinions about
the same relations, and that some sensors are more reliable than others.

Definition 11 (Environment) Given a universe of discourse (PF, AS),
The environment Env is a tuple (Agents, CS, S, PC) where Agents is the set
of agents operating in the environment, CS ⊆ PF is the commitment store
(a public knowledge base of arguments), and S is the set of sensors present in
the environment. PC : 2S → R is the sensor probing cost function.

Definition 12 (Agents) Given environment Env = (Agents, CS, S, PC),
an agent α ∈ Agents is a tuple (Name,KB,G,C) consisting of the agent’s
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name, Name, a private knowledge base KB ⊆ PF containing opinions about
the environment, a goal function G : Θ → R mapping combinations of opin-
ions on predicates (obtained by looking at the frame of discernment) to utility
values, and a variable C ∈ R to keep track of the agent’s utility cost.

Definition 13 (Sensors) A sensor s is a structure (Ωs, Ωp). Ωs is a set
containing predicate, opinion pairs representing the reliability of a sensor with
respect to the predicate. Ωp is another predicate, opinion pair which stores the
sensor’s opinion regarding the state of the predicate.

Agents take turns to advance a line of argument (consisting of one or more
instantiated arguments), and probe sensors to obtain more information about
the environment. Such an action is called an utterance. In each turn, the
contents of an agent’s utterance is added to the commitment store; any sensors
probed are marked as such (a sensor may not be probed more than once for
the value of a specific relation), and costs are updated. Once made, there is
no way to withdraw the contents of an utterance from the commitment store.

Definition 14 (Utterances) The utterance function

utterance : Environment×Name → 2Args × Probes

takes in an environment and an agent (via its name), and returns the utterance
made by the agent. The first part of the utterance lists the arguments advanced
by the agent, while the second lists the probes the agents would like to undertake
where Probes ∈ 2S.

Definition 15 (Turns) The turn function

turn : Environment×Name → Environment

takes in an environment and an agent label, and returns a new environment
containing the effects of an agent’s utterance.

In our framework, the turn function is defined as turn = (NewAgents, CS ∪
Ar, NewSensors, PC) where Ar, NewAgents and NewSensors are computed
from the results of the utterance function. Assuming that the agent mak-
ing the utterance is agent α, if utterance(Env, Name) = (Ar, Probes) then
NewAgents = (Agents\{α})∪(Name,KB,G,C +PC(Probes)) and, ∀s, l ∈
Probes, where l is a predicate that sensor s is able to probe, NewSensors =
(Sensors \ {s}) ∪ (Ωs, Ωp ∪ ωp(l))).

It should be noted that the utterance depends on agent strategy; one possible
utterance function was described in [11], and will be described briefly later.
Before doing so, we must define a protocol which agents may use to argue with
each other. This protocol, often referred to as a dialogue game [9], contains only
one locution (in which agents advance an argument and probe sensors), and
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allows agents to alternate in making utterances. More complicated dialogue
games are also possible, but are not examined here as they are auxiliary to
the focus of this paper.

We may assume that our agents are named Agent0, Agent1, . . . , Agentsn−1

where n is the number of agents participating in the dialogue. We can de-
fine the dialogue game in terms of the turn function by setting turn0 =
turn((Agents, CS0, S, admissible, PC), Agent0), and then having turni+1 =
turn(turni, Agent

i mod n
). The game ends if turni . . . turni−n+1 = turni−n.

When the dialogue starts, CS0 contains publicly known arguments. It is usu-
ally empty. It should be noted that an agent may make a null utterance {, }
during its turn to (eventually) bring the game to an end. In fact, given a fi-
nite number of arguments and sensors, it should be clear that the dialogue
is guaranteed to terminate, as, eventually, no utterances will be possible that
will modify the public knowledge base CS.

At any time, we may compute an agent’s utility by combining its utility gain
(for achieving its goals) with its current costs. At any stage of the dialogue,
given the environment’s CS, and the set of all opinions probed by the sensors
{Ωp|s = (Ωs, Ωp) ∈ S}, as well as the set of legal argument schemes, we can
run the reasoning algorithm to compute the set of “proven” relations; that is,
relations for which an opinion exceeds a predetermined admissibility bound.
Similarly, we can determine which relations have their negation proven, and
which relations are simply unproven.

Given an environment CS, the set of all opinions probed by the sensors
{Ωp|s = (Ωs, Ωp) ∈ S)} and an admissibility function on opinions
Admissible(ω) → [true, false, unknown], we can run the reasoning algorithm
over all possible facts to create a set of true, false and unproven predicates. If
we name these sets ftrue, ffalse and funknown, then the agent’s net utility gain
is G(ftrue, ffalse , funknown)− C, where C is the agent’s utility cost.

At the end of the dialogue, we assume that agents agree that literals in the
ftrue and ffalse sets hold in the environment.

One simple decision procedure for an agent (described in detail in [11]) involves
it performing one step look-ahead to decide which utterance to make. The
agent computes what probes it can make by looking at what sensors have
not yet been probed, and what arguments it can advance (by looking at its
knowledge base, the commitment store, and the set of argument schemes). It
then calculates the utility gain for each combination of probes and advanced
arguments, advancing the ones that maximise its utility.
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4 Example

In this section, we describe a dialogue in a hypothetical bridge building sce-
nario. Two agents, α and β must use these argument schemes to have a discus-
sion about the amount of concrete and steel needed to build a bridge. Agent
α’s goal involves attempting to minimise the amount of steel needed — α
is responsible for the supply of steel. This may be achieved by showing that
the environment is in such a state where little steel, and lots of concrete is
needed. β is responsible for providing the bridge’s concrete, and would like to
minimise the amount of concrete used. In the interests of clarity, our descrip-
tion is semi-formal.

Assume we have the following general argument schemes (here, ArgExpertOp
is the scheme for an argument from expert opinion [20]:

Name Premises Conclusions A F

ModusPonens {A, implies(A, B)} {B} A1 F1

ArgExpertOp {expert(E, D), claims(E, A), {A} A2 F2

inDomain(A, D)}

D1 {sand(L), support(X, L)} {concrete(X)} A3 F3

D2 {rock(L), support(X, L)} {steel(X)} A4 F4

D3 {mud(L), support(X, L)} {concrete(X)} A5 F5

D4 {rock(L), sand(L), {steel(X), A6 F6

support(X, L)} concrete(X)}

where

A1 : true if b(A) and b(implies(A, B)) are both ≥ 0.5 else false

F1 : ω(B) =



〈0, 0, 1〉 if b(holds(A)) < 0.5 or

b(implies(A, B)) < 0.5

ω(holds(A)) if b(holds(A) < b(implies(A, B))

ω(implies(A, B)) otherwise

A2 : true if d(expert(E, D)) < 0.5 & d(inDomain(A, D)) < 0.5

F2 : ω(A) = claims(E, A)

For D1 . . . D4, the admissibility function requires that the belief in rock, sand

18



or mud be greater than 0.5, and the F function sets the conclusions to the
same strength as the premises, except for D4. Here, steel(X) is set to the
average value of rock(L) and sand(L), while concrete(X) is set to ¬steel(X).

The top level frame of discernment is created using the predicates

sand, rock,mud, implies, expert, claims, inDomain, fastWater

The sand, rock,mud and fastWater frames of discernment contain l (rep-
resenting a location). The implies frame of discernment contains the tuple
(fastWater , mud), while expert contains geologist. inDomain contains the
tuple (geology, sand), and claims contains

(geologist, sand), (geologist, mud), (geologist, rock)

Let α have an opinion of 〈0.9, 0, 0.1〉 regarding sand(l) stored in it’s knowledge
base. Assume that it also believes fastWater(l) and claims(geologist, sand(l)).

Finally, let the environment contain sensors s1, s2, s3, s4, with the first two
being able to monitor the status of sand(l), s3 able to observe all states in
the claims frames of discernment, and s4 being able to detect fastWater(l).
Let s1 also be able to discern the status of rock(l). We associate opinions
〈0.7, 0.2, 0.1〉,〈0.8, 0.2, 0.1〉,〈0.9, 0, 0.1〉 and 〈0.8, 0.1, 0.1〉 regarding the sensors’
respective reliabilities.

Agent α begins the conversation by making the utterance

((D1, {sand(l), support(bridge, l)}, {concrete(bridge)}), {(s1, sand(l))})

That is, it probes whether sand exists in the location the bridge is to be built,
and instantiates an argument based on D1 claiming that since it is sandy, a
large amount of concrete is required for the bridge 2 . Assume that s1 returns
a value of 〈0.7, 0, 0.3〉. This means that sand(l) is now associated with an
opinion of 〈0.56, 0.07, 0.37〉 in the CS.

Agent β responds by probing another sensor

(, {(s2, sand(l))})

to show that the bank is not in fact sandy. This sensor returns an opinion
〈0.3, 0.6, 0.1〉, meaning that the ω(sand(l)) is now 〈0.45, 0.36, 0.09〉. Agent α’s
argument is now no longer admissible.

2 The probe may return values, contrary to the agent’s belief, that cause the argu-
ment to be inapplicable.
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No more sensors exist that can be used to determine whether sand(l) holds
or not. Agent α thus advances the argument

((ArgExpertOp, {expert(geologist, geology),

claims(geologist, sand(l)), indomain(geology, sand(l))}, {sand(l)}),

{(s3, claims(geologist, sand(l)))})

The probe here represents asking the witness for their testimony. Assume
that the witness returns an opinion of 〈0.8, 0.1, 0.1〉. sand(l) would now once
again be a justified conclusion. At this point, it should be noted that the
admissibility requirements for the argument from expert opinion mean that
the burden of proof is assigned to the agent challenging the argument. More
complex behaviour, such as requiring the agent introducing the argument to
justify their assumptions, is easily introduced by changing the form of A and
F .

Agent β now turns to an argument using accruals. It points out that

((D4, {rock(l), support(bridge, l)}, {concrete(bridge), steel(bridge)}),

{(s1, rock(l))})

In other words, the presence of rock together with sand means that steel
rather than concrete is required. Since this argument scheme’s F function is
not dogmatic, the conclusion for concrete is weakened, but not eliminated.

Finally, α responds with the argument

({(ModusPonens , {fastWater(l), implies(fastwater(l), mud(l))},
{mud(l)}), ((D3, {mud(l), support(bridge, l)},
{concrete(bridge)})}, {(s4, fastWater(l))})

That is, by showing that there is fast water at location l, it supports the
conclusion that mud exists at l. The existence of mud means that argument
scheme D3 can be used, which accrues (via the default consensus operator)
with the current opinion regarding the need for concrete.

At this point in the conversation, the agents have no further arguments to
advance, and the dialogue terminates. predicates concrete(l) and steel(l) have
opinions associated with them. Depending on the form of the admissibility
function, they, or their negation, may be judged as proven or unproven. If, for
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sand(L),support(X,L)->concrete(X)sand(l)

concrete(bridge)

expert(E,D),claims(E,A),
inDomain(A,D)->A

expert(geologist,geology)

claims(geologist,sand(l))

indomain(geology,sand(l))

support(bridge,l)

1
2

3

sand(L),support(X,L)->concrete(X)sand(l)

concrete(bridge)

support(bridge,l)

1 sand(l)1
2

Fig. 4. The argument graph obtained after the first three utterances are made. The
numbers show during which turn a sensor probe was made. Solid arrows indicate
support for an argument or predicate, while dashed lines represent an attack.

example, concrete(l) is judged to be admissible, both agents would agree that
more concrete should be used at the site.

The first three utterances of the dialogue are shown in Figure 4. It is assumed
that any unprobed predicates were in the commitment store at the start of
the dialogue, together with their associated opinions. As can be seen, after
the second utterance, the low opinion associated with sand(l) means that the
argument advanced at the start of the dialogue is no longer deemed applicable.
Thus, the opinion associated with concrete(bridge) would revert to its default
value. The argument graph for the entire dialogue is shown in Figure 5.

5 Discussion

In this section, we examine some of the novel features of our framework in
detail, as well as looking at related research and possible future work.

Our framework was designed to allow for complex argument to take place, par-
ticularly in the domain of evidential reasoning. Uncertainty is a key feature of
such domains, hence our decision to base our framework on Subjective Logic.
Catering for uncertainty in argumentation frameworks is by no means new.
Pollock [13] made probability a central feature of his OSCAR architecture.
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sand(L),support(X,L)->concrete(X)

sand(l)

concrete(bridge)

expert(E,D),claims(E,A),
inDomain(A,D)->A

expert(geologist,geology)

claims(geologist,sand(l))

indomain(geology,sand(l))
rock(L),sand(L),

support(X,L)->steel(X),concrete(X)

rock(l)

support(bridge,l)

steel(bridge)

fastWater(l)

implies(fastwater(l),mud(l))

mud(l)

A,implies(A,B)->B

support(bridge,l)
mud(L),support(X,L)->concrete(X)

1

2

3

4

5

Fig. 5. The complete argument graph for the dialogue. The numbers show during
which turn a sensor probe was made. Solid arrows indicate support for an argument
or predicate, while dashed lines represent an attack.

We disagree with his extensive use of the “weakest link” principle, however,
believing that, while it may hold in general, it is not always applicable (as
mentioned in [14]. His use of probability, rather than uncertainty is another
point at which our approaches diverge. Other notable work includes that of
Vreeswijk [18], and Haenni [5]. The latter suggests an approach called “Prob-
abilistic argumentation systems”. These systems are designed to perform in-
ference under uncertainty within conflicting knowledge bases. While lacking a
dialogical aspect, he shows a relation between his work and Dempster-Schafer
theory.

Our use of Subjective Logic as the basis of the framework provides us with
a large amount of representational richness. Not only are we able to repre-
sent probability (via belief), but we are also able to speak about ignorance
(via uncertainty). Differentiating between these two concepts lets us repre-
sent defaults in a natural, and elegant way. A default can be represented by
specifying, within the A function, that a conclusion may hold as long as the
disbelief for a premise remains below a certain threshold. By requiring that
belief remain above some threshold, normal premises can also be represented.
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A simple example of this was provided in the previous section, where everyone,
by default, is assumed to be an expert. Burden of proof [19] is very closely
related to defaults, and we model it in the same way.

Argument schemes have been extensively discussed in the literature (see for
example [3,20]). A small, but growing number of argumentation frameworks
provide explicit support for argument schemes (e.g. [17]). We believe that
supporting argument schemes in our framework not only enhances argument
understanding, but that such support also provides clear practical advantages,
including the separation of domain and argument knowledge, re-usability, and
a possible reduction in computational complexity when deciding what argu-
ments to advance. The separation between arguments and agent knowledge
created by argument schemes raises the intriguing possibility of the modifica-
tion and dynamic creation of argument schemes during a dialogue.

We have separated out the F and A functions within our representation of
argument schemes as we believe that in some situations, the decision regarding
whether an argument scheme is applicable, and how strongly it supports its
conclusions, are independent of each other. Separating out the two functions is
also practically useful; by explicitly excluding an argument based on the result
of its A function, we can avoid extra calculations in our algorithm. Agents can
also use the A function in the heuristic to avoid considering the application
of invalid argument schemes.

Jøsang has proposed a large number of additional operators for use in Sub-
jective Logic which have not been mentioned in this paper (see for example
[8]). Many of these operators appear to encapsulate common forms of reason-
ing about evidence, and can thus (with appropriate restrictions on premises
and conclusions) form the basis of an argument scheme’s F function. We be-
lieve that using our framework as a basis for investigating additional possible
Subjective Logic operators may be fruitful.

Another area in which we plan to extend the framework involves unification
and quantification. At the moment, we perform universal quantification over
all the elements of a frame of discernment. That is, if the expert frame of
discernment contains (geologist, mud), we could deduce

expert(geologist(fred), mud(l)), expert(geologist(mary), mud(m))

with no way of specifying that in fact, fred is only an expert in mud at location
l, not location m.

The interplay between sensors and arguments is an area in which little formal
work has been done [12]. While our model is very simple, it elegantly captures
the fact that sensor data is inherently unreliable in many situations. Enriching
our model of sensors is one area in which we plan to do future work.
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Our model was designed with support for accrual of arguments in mind. The
way in which we deal with accrual of arguments, while powerful, is still limited,
and overcoming these limitations is a priority. We are unable to handle accruals
in which the accrued and accruing arguments share no conclusions. While it is
often possible to add an explicit negated conclusion so as to negate the accrued
argument’s conclusions, this is incorrect in some situations. Instead, we recom-
mend extending the framework by introducing an explicit accrual relationship
between argument schemes. Representing such situations requires inputting
additional domain knowledge into the framework, the domain-specific nature
of such accruals means that no other way to handle them exists.

We are currently investigating what effects a mapping between our model and
a Dung-like abstract model [4] will have. By allowing for linked arguments [10]
and support between arguments [1], the translation of the graph that results
from an application of the model to one embedded in an abstract model allows
us to cater for some types of loops. However, this approach does not allow us to
deal with argument strength in a satisfactory manner, meaning that techniques
for representing self-reinforcing arguments must still be investigated.

The dialogue game we have proposed is very simple, and only guarantees
dialogue termination (given a finite number of argumentation schemes, finite
knowledge bases, and a finite number of sensors sensors). Dispute focus, that
is, ensuring that agents advance arguments relevant to the conversation, is
provided by the utility based argument heuristic. Also related to the dialogue
game, as well as the structure of the agents and environment, is the problem
of advancing an argument without proof. Depending on the structure of an
argument scheme’s F function, a sensor must always be probed before an
argument may be advanced. Thus, the initial burden of proof always falls on
the agent making an utterance. While some may claim that such an approach
makes sense (after all, even commonsense knowledge requires some sort of
shared experience, which could be viewed as a sensor), others may view this
as a weakness of the system. There are a number of ways to avoid this issue.
The most obvious is to set up initial predicates in the commitment store with
the appropriate belief values. Another way would involve the addition of a
single zero utility cost sensor that an agent may probe to set a predicate’s
initial value. It is also possible to craft the F function to allow for certain
claims with no proof. None of these approaches are fully satisfying, as they
allow for only one side of a claim to be made without the need for proof.
Allowing agents to act as sensors might be a better way of overcoming this
problem, and the addition of explicit “claim” and “challenge” moves in the
dialogue is another way to attack this issue. The decision procedure we have
described is based on some of our earlier work [11]. Other researchers have
advanced other possible approaches to argument selection [2], and it would be
interesting to integrate these techniques into our work.
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6 Conclusions

Argumentation is a well recognised, powerful reasoning technique. With a few
notable exceptions however, argument frameworks have had difficulty operat-
ing in domains where uncertainty was present. Furthermore, most argument
frameworks have examined only a single aspect of the problem of argument,
be it the underlying logical representation, the interaction between arguments,
or an illustration of a protocol for argument.

In this paper, we presented a framework for argumentation in domains contain-
ing uncertainty. The concept of argument schemes is built into the framework,
allowing for a rich set of primitives to be utilised in the argumentation process.
We have also attempted to cater for other important concepts in argument
such as accrual of arguments, defaults, and burden of proof. While the lowest
levels of the framework are general enough to be applied to almost area in
which argument is used, the higher levels are aimed at evidential reasoning.
To this end, we introduced the concept of sensors, abstracting the notion of
obtaining information from the environment. Finally, we introduced a dia-
logue game and a very simple decision procedure allowing agents using the
framework to decide which arguments to advance.
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