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ABSTRACT

In situations where self-interested agents interact repeatedly,
it is important that they are endowed with negotiation tech-
niques that enable them to reach agreements that are prof-
itable in the long run. To this end, we devise a novel negoti-
ation algorithm that generates promises of rewards in future
interactions, as a means of permitting agents to reach bet-
ter agreements, in a shorter time, in the present encounter.
Moreover, we thus develop a specific negotiation tactic based
on this reward generation algorithm and show that it can
achieve significantly bettter outcomes than existing bench-
mark tactics that do not use such inducements. Specifically,
we show, via empirical evaluation, that our tactic can lead
to a 26% improvement in the utility of deals that are made
and that 21 times fewer messages need to be exchanged in
order to achieve this under concrete settings.
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1.2.11 [Distributed Artificial Intelligence]: Multi-Agent
Systems
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Algorithms, Experimentation
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1. INTRODUCTION

Negotiation is a fundamental concept in multi-agent sys-
tems (MAS) because it enables (self-interested) agents to
find agreements and partition resources efficiently and effec-
tively. Recently, a growing body of work has advocated the
use of arguments as a means of finding good agreements [9].
Specifically, it is hypothesised that negotiation using persua-
sive arguments (such as threats, promises of future rewards,
and appeals) allows agents to influence each others’ prefer-
ences to reach better deals either individually or as a group.
Most approaches to persuasive negotiation (PN), however,
either focus mainly on the protocol [6, 8] used to argue and
do not give any insight into the negotiation strategies to be
used or fail to give clear semantics for the arguments that are
exchanged in terms of their relationship with the negotiated
issues [11, 5]. Moreover, most PN reasoning mechanisms
adopt a defeasible logic approach [1, 9], rather than the util-
itarian approach that we use here. The downside of this logic
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focus is that it cannot cope as well with the many forms of
uncertainty that inevitably arise in such encounters and that
it can hardly be benchmarked against standard negotiation
algorithms [2, 3].

Against this background, in this work we present a novel
reasoning mechanism and protocol for agents to engage in
persuasive negotiation in the context of repeated games. We
choose repeated games because it is a type of encounter
where we believe that persuasive techniques are likely to be
most effective (as arguments can be constructed to directly
impact future encounters). Now, such encounters have been
extensively analysed in game theory [7], but are seldom con-
sidered by agent-based negotiation mechanisms. This is a se-
rious shortcoming because in many applications agents need
to interact more than once. Specifically, our mechanism con-
structs possible rewards! in terms of constraints on issues to
be negotiated in future encounters (hence their semantics are
directly connected to the negotiated issues) and our protocol
is an extension of Rubinstein’s alternating offers protocol [12]
that allows agents to negotiate by exchanging arguments (in
the form of promises of future rewards or requests for such
promises in future encounters).

In more detail, our mechanism gives agents a means of in-
fluencing current and future negotiations through promises
of rewards, rather than just exchanging offers and counter
offers that only impact on the outcome of the present en-
counter [5, 11]. Thus, we make the rewards endogenous to
the negotiation process by assimilating a promise of a reward
to promised constraints on resources that need to be nego-
tiated in future. In so doing, we directly connect the value
of the argument to the value of the negotiated issues and
this allows us to evaluate arguments and offers on the same
scale. For example, a car seller may reward a buyer (or the
buyer might ask for the reward) who prefers red cars with a
promise of a discount of at least 10% (i.e. a constraint on
the price the seller can propose next time) on the price of her
yearly car servicing if she agrees to buy a blue one instead
at the demanded price (as the buyer’s asking price for the
red car is too low for the seller). Now, if the buyer accepts,
it is a better outcome for both parties (the buyer benefits
because she is able to make savings in the future that match
her preference for the red car and the seller benefits in that
he reduces his stock and obtains immediate profit).

Such promises are important in repeated interactions for
a number of reasons. First, agents may be able to reach
an agreement faster in the present game by providing some
guarantees over the outcome of subsequent games. Thus,
agents may find the current offer and the reward worth more
than counter-offering (which only delays the agreement and
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We focus on rewards because of their clear impact on agreements in
the context we consider and because we expect threats and appeals to
follow similar principles to those we elucidate here.



tiations in the present game (as in the cost of servicing in the
example above), we effectively expand the negotiation space
considered in the present game and, therefore, provide more
possibilities for finding (better) agreements [4]. For example,
agents that value future outcomes more than their opponent
(because of their lower discount factors) are able to obtain a
higher utility in future games, while the opponent who val-
ues immediate rewards can take them more quickly. Thirdly,
if guarantees are given on the next game, the corresponding
negotiation space is constrained by the reward, which should
reduce the number of offers exchanged to search the space
and hence the time elapsed before an agreement is reached.
Continuing the above example, the buyer starts off with an
advantage next time she wants to negotiate the price to ser-
vice her car and she may then not need to negotiate for long
to get a reasonable agreement.

Given this, this work advances the state of the art in the
following ways. First, we develop a Reward Generation Al-
gorithm (RGA) that calculates constraints (which act as
rewards) on resources that are to be negotiated in future
games. The RGA thus provides the first heuristics to com-
pute and select rewards to be given and asked for in our
new extension of Rubinstein’s protocol. Second, we develop
a specific Reward Based Tactic (RBT) for persuasive nego-
tiation that uses the RGA to generate combinations of offers
and rewards. In so doing, we provide the first persuasive ne-
gotiation tactic that considers the current negotiation game
as well as future ones, to generate offers and arguments and
thus reach better agreements faster than standard tactics in
the long run.

The rest of the paper is structured as follows. Section 2
provides the basic definitions of the negotiation games we
consider, while section 3 describes how persuasive negotia-
tion can be used in such games. Section 4 details RGA and
section 5 shows how offers and promises are evaluated. Sec-
tion 6 describes RBT and section 7 evaluates its effectiveness.
Finally, section 8 concludes.

2. REPEATED NEGOTIATION GAMES

Let Ag be the set of agents and X be the set of negotiable
issues. Agents negotiate about issues x1,--- ,x, € X where
each one has a value in its domain Di,---,D,. Then, a
contract O € O is a set of issue-value pairs, noted as O =
{(x1 = v1), -+, (Tm = vm)}.2 We will also note the set
of issues involved in a contract O as X(0O) C X. Agents
can limit the range of values they can accept for each issue,
termed its negotiation range and noted as [v™", v™*?]. Each
agent has a (privately known) utility function over each issue
Uy : Dy — [0,1] and the utility over a contract U : O — [0, 1]
is defined as U(O) = >_(,,_,,)co Wi - Uz (vi), where w; is the
weight given to issue z; and Y w; = 1. We consider two
agents o, € Ag having utility functions designed as per
the Multi-Move Prisoners’ Dilemma (MMPD) (this game is
chosen because of its canonical and ubiquitous nature) [13].
According to this game, a’s marginal utility U is higher
than (’s for some issues, which we note as O, and less for
others, noted as O?, where 0% U O” = O.

While it is possible to apply rewards to infinitely or fi-
nitely repeated games, we focus on the base case of one rep-
etition in this work because it is simpler to analyse and we
aim to understand at a foundational level the impact that
such promises may have on such encounters. These games
are played in sequence and there may be a delay 6 between

2Other operators >, < could also be used.

the end of the first game and the beginning of the second
one. In a game, one agent (a or 3) starts by making an
offer O € O and the opponent may then counter-offer or ac-
cept. The agents may then go on counter-offering until an
agreement is reached or one of the agents’ deadlines (t3..q
or tgead) is reached. If no agrement is reached before the
deadline, the agents obtain zero utility (in either the first
or second game). We also constrain the games, and further
differentiate them from the case where agents play one game
each time independently of the previous one, by allowing the
second game to happen if and only if the first game has a
successful outcome (i.e. an agreement is reached within the
agents’ deadlines and the contract is executed). In so do-
ing, there is no possibility for agents to settle both outcomes
in one negotiation round. The agents may also come to an
agreement in the first game but fail to reach one in the sec-
ond one, in which case the agents only obtain utility from
the outcome of the first game.

If an agreement is reached, the agents are committed to
enacting the deal settled on. This deal comes from the set of
possible contracts which, in the first game, is captured by O,
and, in the second one, by O,. During these games, as time
passes, the value of the outcome decreases for each agent
according to their discount factor (noted as €, for agent «).
This factor denotes how much the resources being negotiated
decrease in usefulness over time.‘The time between each il-
locution trasmitted is noted as 7. Then, the discount due
to time is calculated as e “(?T") between the two games and
e <"t between offers [7] where t is the time since the nego-
tiation started (note that we expect 6 >> 7 generally). The
value of € scales the impact of these delays, where a higher
value means a more significant discounting of an offer and a
lower value means a lower discounting effect. Each agent is
also assumed to have a target utility to achieve over the two
games (noted as L € [0,2]). This target can be regarded as
the agent’s aspiration level for the combined outcomes of the
two games [3]. This target must, therefore, be less than or
equal to the sum of the maximum achievable utility over the
two games (2 in the case an agent has a ¢ = 0 and exploits
both games completely); that is L < 1+ e+t where 1 is
the maximum achievable utility in an undiscounted game.

Agents use the illocutions propose(a, 8,0) and accept(a,
B3,0) to make and accept offers respectively. Additionally,
they may use persuasive illocutions such as reward(a, S,
01,02) and askreward(a, 8,01,02). The former means «
makes an offer O; and promises to give reward O2. The lat-
ter that o asks (3 for a promise to give reward Oz (we detail
the contents of Oz in the next section). Hence, while the
promise of a reward aims to entice an opponent to accept
a low utility contract in the current encounter, asking for a
reward allows an agent to claim more in future negotiations
(in return for concessions in the current one).

3. APPLYING PERSUASIVE NEGOTIATION

In persuasive negotiation, agents either promise to give re-
wards to get their opponent to accept a particular offer or
ask for such promises in order to accept an offer. In our
case, rewards are specified in the second game in terms of a
range of values for each issue. Thus, giving a reward equates
to specifying a range such as v, > k (where k € D, is a
constant) for issue z in O2 € Oz to an agent whose utility
increases for increasing values of z. Conversely, asking for a
reward means specifying v, < k in O for the asking agent
(whose utility increases for decreasing values of z). Now,



agents may find it advantageous to accept such rewards if
it costs them more to counter-offer (due to their discount
factor) or if they risk passing their deadline (or their op-
ponent’s). Here, we do not deal with the issues related to
whether the agents keep to their promises or how to tackle
the uncertainty underlying this (we simply assume they do),
but rather we focus on the reasoning mechanism that the
agents require in order to negotiate using rewards.

Specifically, we propose that agents use the level to which
they concede in the first game in order to decide on what
to offer or ask for as a reward in the second one. This is
graphically illustrated in figure 1 where O; € O; and O; €
O are the proposed offer and reward respectively.
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Figure 1: Representation of an offer O; made in the
first game and a reward O; for (§ in the second game.

As can be seen, « exploits 3 (by taking a larger share of the
pie) through the offer O; or alternatively 3 concedes more
than « (depending on who makes the offer). The promised
reward offered or asked for in the second game then tries to
compensate for the exploitation/concession applied to the
first game. Now, one strategy that produces this behaviour
is the following: the higher the concession, the higher will
be the reward demanded, while the lower the concession, the
higher will be the reward given.® This strategy can be seen
as a type of trade-off mechanism whereby agents take gains
in the present (or the future) in return for losses in the future
(or in the present) [10].

4. REWARD GENERATION

Building on the reasoning mechanism presented in section 3,
we now develop our reward generation algorithm (RGA) that
determines the level of concession made in the first game and
hence determines the value of the corresponding reward, and
finally decides whether to send it or not. First, we assume
that an agent has some means of generating offers O;. In line
with most work on negotiation in the presence of deadlines,
we assume the agent’s negotiation tactic concedes to some
extent until an agreement is reached or the deadline is passed
[2]. Then, at each step of the negotiation, based on the
concessions made in an offer O; € O, RGA computes the
reward Oz € Oz and decides if it is to be asked for or given.
In more detail, algorithm 1 outlines the main steps of RGA
which are then detailed in the following subsections.

4.1 Step 1: Compute Concession Degrees

In this context, the degree to which an agent concedes in

any game is equivalent to the value it loses on some issues

to its opponent relative to what the opponent loses to it on

other issues. Assuming (z = v,) € O is the value of an issue
max min

z, and [v] s Vg | is its negotiation range, then we define
po = Us(vz), Up = max{Us(vy""), Us(vy ")}, and U, =

31t should be noted that while the figure pictures a zero-sum game,
the applicability of rewards is not limited to such situations. Instead,
they can be applied to more complex games such as the MMPD, for
which we detail the procedure in the next section (and which we use
in our experiments in section 7).

Algorithm 1 Main steps of the RGA

Require: O; € O, L
1: Compute concessions in Of and Of. {Here the agent
determines how much both agents concede on the issues for
which they have a higher and lower 6U than their opponent.}
2: Select O3 € Oy that matches the level of concession in O
3: Check whether the combination of O and Os satisfies L, adjust
min
)

[v v™*] for second game according to values in Oz and send

offer and reward.

min{U, (v7**®), U,(vZ*™)}. From these, we can compute the
maximum an agent could get as U = ZIEX(O) weUyg, the
minimum as U = Zmex(o) wzU, and the actual utility as
T = erx(o) Wg iz Where wy is a’s relative weight of issue
xz and Y w; = 1. These weights can be ascribed the same
values given to the weight the issue has in the utility function
and can be normalised for the number of issues considered
here. Then, an agent a computes the concession degree on
the offer O as:

-7

cona (O) = ﬂ

(1)
It is then possible to calculate concessions on issues with
higher and lower 6U for a using con®(0%) and con®(0?)
respectively. Then, the complement of these functions (i.e.
1 — con®(0%) and 1 — con®(0O®)) represents how much 3
concedes to a from a’s perspective (or how much « exploits

).
4.2 Step 2: Determine Rewards

To determine which agent concedes more in the game (given
that they play a MMPD), a needs to compare its degree of
concession on the issues with higher 6U than 3 (i.e. Of) and
those with lower 6U than 3 (i.e. O?) (in a zero sum game
this is calculated for all issues). To this end, we define three
conditions which refer to the case where o concedes as much
as B (COOP), concedes more to 8 (CONC), and concedes
less than 3 (EX PL) respectively as follows:

e COOP = true when con®(0f) + con®(0F) =1 (i.e. o
has no grounds to give or ask for a reward).

e CONC = true when con®(Of) 4+ con®(0?) > 1 (ie.
can ask for a reward).

e EXPL = true when con®(Of) 4 con®(0Y) < 1 (i.e. «
should give a reward).

The above conditions capture the fact that an agent can only
ask for a reward if it is conceding in the first game and can
only give one if it is exploiting in the first game. It is possible
to envisage variations on the above rules as agents may not
always want to give a reward to their opponent if they are
exploiting in the first game or they may want to ask for one
even if they are not conceding. However, these behaviours
could be modelled in more complex strategies (which we will
consider in future work). But, in so doing, an agent may also
risk a failed negotiation. Here, therefore, we focus on the
basic rules that ensure agents try to maximise their chances
of reaching a profitable outcome.

Now, having determined whether an argument is to be sent
or not and whether a reward is to be asked for or given, we
can determine the value of the reward. Given that an agent
aims to achieve its target L, the value chosen for a reward
will depend on L and on (con®(Of), con®(07)) (i.e. the



degrees of concession of the agent). We will consider each of
these points in turn.

Given Oy, the first game standing offer, the minimum util-
ity o needs to get in the second game is lp = L — U(O1).
We then need to consider the following two cases (remember
e~ (%Y is the maximum that can be obtained in the second
game with discounts). Firstly, if lo < e~ <O+ it i still
possible for a to reach its target in the second game (pro-
vided the agents reach an agreement in the first one) and,
therefore, give (or ask for) rewards as well. The larger l5 is,
the less likely that rewards will be given (since less can be
conceded in the second game and still achieve L). Secondly,
if I > e @7+ it is not possible to give a reward, but an
agent may well ask for one in an attempt to achieve a value
as close as possible to [a.

For now, assuming we know Iz < e it is possible
to determine how much it is necessary to adjust the negoti-
ation ranges for all or some issues in Oz in order to achieve
l2. Specifically, the agent calculates the undiscounted min-
imum utility P_F(éﬁ it needs to get in the second game.
Then, it needs to decide how it is going to adjust the utility
it needs on each issue, hence the equivalent bound vy, for
each issue, in order to achieve at least e_e(;ﬁ Here, we
choose to distribute the utility to be obtained evenly on all
issues.* Thus, the required outcome v,y of an issue in the

—e(0+71+t)
)

second game can be computed as Vout = Uy * (e*el(i%“))

Having computed the constraint v, the agent also needs
to determine how much it should reward or ask for. To this
end, the agent computes the contract O which satisfies the
following properties:

con®(0%) =1 — con®(0Y) and con®(0F) = 1 — con®(0F)

This is equivalent to our heuristic described in section 3
where the level of concession or exploitation in the offer
in the first game (i.e. here O; = Of U OY) is mapped to
the reward asked for or given in the second one (i.e. here
0y = 0% U 0'5 ). Here also we adopt the same approach as
for vour and distribute the concessions evenly on all issues.
Then, assuming linear utility functions and finite domains
of values for the issues, the above procedure is equivalent to
reflecting the level of concession on issues with higher U
by a onto those with higher 6U for 8. This is the same as
inverting equation 1 given a known U and U (as defined in
step 1), and finding v, by assigning p, = T and inverting
1z for each issue (a procedure linear in time with respect to
the number of issues considered). Let us assume that for an
issue z this results in a bound v, (a maximum or minimum
according to the type of argument to be sent). Thus, from
Oz, « obtains bounds for all issues in the rewards it can ask
from or give to 3. Given this, we will now consider whether
to send a reward based on how v, and v, compare for an
issue x.

4.3 Step 3: Sending Offers and Rewards

Assume that o prefers high values for x and [ prefers low
ones and that it has been determined that a reward should be
offered (the procedure for asking for the reward is broadly
similar and we will highlight differences where necessary).

4 Other approaches may involve assigning a higher v,,: (hence a
higher utility) on some issues which have a higher weight in the util-
ity function. In so doing, v,,¢ may constrain the agent’s negotiation
ranges so much for such issues that the two agents’ ranges may not
overlap and hence result in no agreement may be possible. Our ap-
proach tries to reduce this risk.

Now, a can determine whether a reward will actually be
given and what its value should be according to the following
constraints:

1. vy > Vout : « can promise a reward implying an upper
bound v, on the second game implying that o will not
ask for more than v,. This is because the target vout

is less than v, and « can, therefore, negotiate with a

maac/

revised upper bound of v = v, and a lower bound

.

™ = Vout. When asking for a reward, o will ask
.

™" = p,.) and negotiate

maac/

of v
for a lower bound v, (ie. v

with the same upper bound v in order to achieve
a utility that is well above its target.

2. Vout > Vr : « cannot achieve its target if it offers a
reward commensurate with the amount it asks 3 to
concede in the first game. In this case, a revises its ne-
gotiation ranges to pm™in — Vout (with v™*® remaining

the same). In this case, the agent does not send a re-

ward but simply modifies its negotiation ranges. Now,
if it were supposed to ask for a reward, o cannot achieve
its target with the deserved reward. However, it can
still ask 3 for the reward v, (as a lower bound) and

privately bound its future negotiation to ™ =
while keeping its upper bound at v™**. In so doing, it
tries to gain as much utility as possible.

Now, coming back to the case where I3 > e~ c(0+7+t) (im-

plying vou: > v, as well), the agent that intends to ask for
a reward will not be able to constrain its negotiation range
to achieve its target (as in point 2 above). In such cases, the
negotiation range is not modified and the reward may still
be asked for (if CONC = true).

Given the above final conditions, we can summarise the
rules that dictate when particular illocutions are used and
negotiation ranges adjusted, assuming an offer O; has been
calculated and O2 represents the associated reward as shown
below:

Algorithm 2 Step 3 of RGA.

if COOP or (EXPL and vout > vy) for at least one z € X(O2)
then
propose(a, 3,01).
end if
if CONC and Iy < e ¢(®+7+%) then ‘
askreward(a, 8,01,02) and modify [v™*",v™**] for second
game.
end if
if CONC and Iy > e~ ®+7+1) then
askreward(a, 8,01, 03).
end if
if EXPL and vyt < v,V € X(O2) then
reward(a, 8,01, O2) and modify [v™'™, v™?*] for second game.

end if

With all this in place, the next section describes how the
recipient of the above illocutions reasons about their con-
tents.

5. EVALUATING OFFERS AND REWARDS

We now describe how an agent evaluates the offers and re-
wards it receives. Generally, when agents negotiate through
Rubinstein’s protocol, they accept an offer only when the
next offer Oneqt they intend to put forward has a lower (addi-
tionally discounted due to time) utility than the offer Og;ven
presented to them by their opponent. However, agents using
persuasive negotiation also have to evaluate the incoming
offer together with the reward they are being asked for or



are being promised. To address this, we follow a similar
line of reasoning as above and evaluate a received offer and
reward against the offer and reward the agent would have
sent in the next negotiation step. From the previous section,
we can generally infer that a reward will imply a value v,
for a given issue which defines either a lower or an upper
bound for that issue in the next negotiation game. There-
fore, given this bound, the agent may infer that the outcome
ev of any given issue will lie in [v vm”,} which might
be equivalent to or different from the agent’s normal nego-
tiation ranges [vmi”,, v™?*] and may take into account the
agent’s target voyu+ (given its target l2) or the value v, itself
(as discussed in the previous section).

Specifically, assume [ is the agent that is the recipient
of a reward (given or asked for) and that 3 prefers small
values for the issue z being considered. Then, let 3’s ne-
gotiable range be [v™" v™] for the issue x and B’s tar-
get be 15 in the second game (which implies that it needs
at least vou: for the issue in the second game). Now, if
receives reward(a, 3,0, 0,) (or askreward(a, 3,0, 0%)) for
the second game, O, implies that v is the upper bound
proposed for each issue z in O, (v would be a lower bound
in O0,). In the meantime, 3 has calculated another offer
Onew With a reward Oy in which a bound uf is to be given
to each issue x in Op. Then, for each issue x, 8 calculates
the negotiable ranges given v as [v™™, min{v<, Vout }] (or
[v2, min{vous, v™**}] if O is asked for®) while it calculates
[V2, min{veut,v™*®}] given v. We assume § can then cal-
culate (e.g. by picking a value over a normal distribution
defined in the negotiation range®) the expected outcome of
each range as ev? for [v™™ v2] (or [V, min{veus, v™**}] in
the case of O,) and ev? for [V, min{r? ,,v™*}] in the case
of Op. Given each of these expected outcomes for each issue,
the overall expected outcomes, EO, € O2 and FO;, € Oa,
of the second game can be calculated given a reward. Thus,
EO, is the expected outcome of the reward given by o and
FEOy is that for the promise of 8. Given that these outcomes
have been calculated, the agent then decides to accept or
counter offer using the rule below. This evaluates the of-
fer generated against the offer received to decide whether
to accept the offer and promise received or send a reward
illocution (note the addition of discount factors to reflect
the time till the next game and between illocutions, that is,
sending the counter offer, receiving an accept, and sending
the first offer in the second game):

min’
)

if U(Onew) - e B80T 4 (U(EO) - e80T < y0) -
e~ BT L (U(EO,) - e *BUO+37+Y then

accept(f, a, O)
else

reward(B, a, Onew, Op)

end if

As can be seen above, if the sum of the utility of the offer
and the expected utility of the promise is higher than the of-
fer and reward to be proposed by 3 (discounted over time),
a’s proposition is accepted. Otherwise,  counteroffers with
its promise. If instead, a reward O; were to be asked for
by @ along with an offer Opew, then 8 will apply a similar
decision rule as above (where EO; is the expected outcome

5This range assumes Vou¢ > Vi, but in cases where this is not true
the reward proposed by « is automatically rejected.

6This is the technique we adopt here. However, other techniques such
as fuzzy reasoning or learning mechanisms could also be used to get
this value.

B calculates for the reward it asks from «) in which we sim-
ply replace EO, with EQj,. Finally, in the case where 3 has
received a persuasive offer and can only reply with another
offer without any argument, 3 calculates the expected out-
come of the second game using only its altered negotiation
range 0™, min{veut, v} to elicit FO} (which we use to
replace EOp with in the rule above). Note that the second
game is left more uncertain in the latter case since the nego-
tiation range has not been tightened by any reward and so
the agents may take more time to reach an agreement in the
second game (as per section 1).

Having described our mechanism for sending and evaluat-
ing rewards and offers, we will now propose a novel tactic
that uses it to perform persuasive negotiation.

6. THE REWARD BASED TACTIC

As described in section 4, RGA requires an offer to be gen-
erated by some negotiation tactic in order to generate the
accompanying reward. In this vein, the most common such
tactics can be classified as: (i) behaviour-based (BB) — using
some form of tit-for tat or (ii) time-based — using Boulware
(BW) (concedes little in the beginning before conceding sig-
nificantly towards the deadline) or Conceder (CO) (starts
by a high concession and then concedes little towards the
deadline) [2].” Now, many of these tactics start from a high
utility offer for the proponent (here o) and gradually concede
to lower utility ones. In our model, this procedure automat-
ically causes RGA to start by promising rewards and then
gradually move towards asking for rewards.

To ground our work, we present a novel reward-based tac-
tic (RBT) (based on Faratin’s trade-off tactic [3]) that either
asks for or gives a reward at any point in the negotiation in
order to reach an agreement. To do so, however, the agent
needs to know how to evaluate incoming offers and rewards
and generate counter-offers accordingly. Given this, we will
consider the three main cases in calculating the response to
having received an offer and a proposed reward (see algo-
rithm 3).

CASE 1: An offer and a reward have been received and it is
possible to counter offer with a reward.
In this case, a needs to calculate combinations of rewards
and offers and choose the combination that it deems most
appropriate to send to 3. To calculate these combinations, «
first needs to determine the overall utility each combination
should have. To achieve this, we use a hill climbing method
similar to Faratin et al.’s tactic. In this method, the agent
tries to find an offer that it believes is most favourable to its
opponent, while not necessarily conceding too much. In our
case (particular for the MMPD), this procedure equates to
the agent trying to gain more utility on the issues on which
it has a higher 6U and less on those for which it has a lower
SU than $.° In so doing, the strategy can maximise joint
gains in the repeated negotiation encounter.

Thus, the utility to be conceded in the next offer (or utility
step), Su, is calculated according to the difference that exists
between the agent’s previous offer and the last one sent by

7Othcr negotiation tactics might also be resource-based or dependent
on other factors. The tactics we select here have been chosen because
they have been demonstrated to be relatively successful and are among
the most common ones studied in the literature [10, 2].

8Note this is different from the point discussed in footnote 4 since
here we do not constrain the negotiation ranges, but rather search for
offers that may be profitable to both parties.



its opponent.

U(O1)e™t + U(EOz)e~+)
Su(01,02,01,0%) = 7U(Oi)€_(7—+t) n U(EO§)6_<9+QT+t)

where O1 and FQO2 are the previous offer and expected out-
come in the second game from a’s reward Oz respectively
and O] and EOj are the current offer and the expected out-
come of 3’s argument O%, respectively. If o does not specify
a reward Oz, EO3 is calculated as per section 5 given the
normal negotiation ranges. Similarly, £O5 is also calculated
in the same way if # does not specify a reward with the
previous offer.

Given the utility step Swu, it is then possible to calculate
the utility Nu of the combination of the next offer and re-
ward using the following equation:

Nu = U(Ol)e—(27+t)+ U(EOQ)e—(e+3T+t)
7SU(OI7023 II7O/27f)

The next step involves generating combinations of offers and
rewards whose combined utility is as close as possible to Nu.
To this end, we use an optimisation function OptComb :
[0,2] X O1 x Oz x O1 X Oz — O1 x Oz, based on linear
programming, that calculates the reward and offer whose
values are most favourable to 8 (but still profitable for «).
OptComb therefore runs through RGA to find the best possi-
ble rewards and the associated offers whose combined utility
is less than or equal to Nu and that concede more on is-
sues for which 8 has a higher marginal utility. RGA also
informs RBT whether the reward is to be asked for or given
and whether negotiation ranges need to be modified (as de-
scribed in section 4). However, OptComb can also fail to
find an optimal output (as a result of the constraints being
too strong (e.g. the target L being too high) or the optimizer
not being able to find the solution in the specified number
of steps) and in these cases, we resort to another procedure
described next (i.e. Cases 2 and 3).

CASE 2: OptComb fails and the last offers made involved
rewards.

The agent cannot find a combination of a proposal and a
reward whose utility matches Nu. Therefore, it calculates
an offer using the time-based heuristics presented earlier.”

CASE 3: OptComb fails and the last offers made did not
involve rewards.

It is possible to continue the same step-wise search for an
agreement as in case 1. Here, our tactic calculates the offer
whose utility is as close as possible to Nu (without U(EO3)
or U(EQO3)). Moreover, the offer calculated is such that it is
the one that is most similar to the offer by 8. This is achieved
by running an optimization function OptProp : [0,2] x O1 x
01 — O that calculates an offer O such that O1 maximises
the level of concession on issues with higher marginal utility
for the opponent (as in case 1) while still achieving Nu. In
case the issues being negotiated are qualitative in nature, the
similarity based algorithm by [3] may be used.

9n this case, BB tactics would not be appropriate to generate an
offer given previous offers by the opponent. This is because some
offers have been proposed in combination with a reward such that the
concessions in the offers may not be monotonic (an asked for reward
may compensate for a concession in the offer or a concession in the
given reward may be compensated for by the higher utility of the
offer). The latter property is a requirement for BB (or even all hill-
climbing tactics [3]) to work . Therefore, either BW or CO is used to
generate the offer since these are independent of the previous offers
made by the opponent.

Algorithm 3 The RBT algorithm.

Require: O1, 02,0}, 0}

1: Use a mechanism to calculate EO», EO5 {a calculates the
expected outcomes of the arguments as discussed in section
5.}

2: step = Su(O1, 02,07, 04) {calculate the utility concession.}

3:nu = UO01)e” @) 4 U(EO3)e™ 037+ _ step {calculate
the utility of the combination of offer and reward to be
generated. }

4: (0, 0%) = OptComb(nu, O1, 02,0}, 0))

s. b UOY)e 7Y 4 g(BEOY)e= 37+ < nu {here the
values in the combination are optimised to be more favourable
to B and as close as possible to nu.}

5: if OptComb succeeds then {Case 1}
6: send O} and OJ {RGA decides whether the reward is asked
from or given to 3.}
7: else if OptComb fails & (both or one of Oy or O} is not null)
then {Case 2}
8: use BW or CO to generate OF
9:  send offer O} and modify [v™",v™**] to achieve L as in RGA.
10: else if OptComb fails & (both O and O} are null) then {Case
3}
11: step’ = Su(O1,null,O},null) {calculate the step in
utility.}

12: nw =U(0;)e”®"tY_ step’ {calculate the utility of the
offer to be generated.}

13: Oy = OptProp(nu’,01,0]) s.t. U(0)) < nu {find
the offer that is most favourable to (3 but as close as
possible to nu’.}

14:  send offer O} and modify [v™'™, v™%®] to achieve L as in RGA.

15: end if

We capture all the above three cases in algorithm 3. As can
be seen, RBT only generates offers and rewards in the first
game. In the second one, we use a time-based or behaviour-
based heuristic to calculate offers. While it is certainly possi-
ble to generate offers using the optimisation function of RBT
in the second game, we do not do so in order to focus our
analysis on the effect the bounds imposed by rewards have
on the outcome of the second game when agents use basic
tactics.

7. EXPERIMENTAL EVALUATION

In this section, we describe a series of experiments that aim
at evaluating the effectiveness and efficiency of our PN model
in repeated interactions. To this end, we evaluate it against
basic tactics using standard benchmark metrics. In the fol-
lowing sections, we first detail the experimental settings and
then provide the results of these experiments.

7.1 Experimental Settings

Agents a and 3 negotiate over 4 issues 1, ...,z4 and their
preferences are as per a MMPD. Thus, 6US > 6U2, where
T € x1,x2 such that x1 and z2 are more valued by « than 3,
while 3 and x4, are more valued by § than a (i.e. éU, <
5U5, where y € x3,%4). tmaz 1S set to 2 seconds which
is equivalent to around 300 illocutions being exchanged be-
tween the two agents (in one gaume).10 The agents’ deadlines,
t5eaq and tgm 4> are defined according to a uniform distribu-
tion between 0 and 2 seconds. The discount factors, €, and
€3, are set to a value between 0 and 1 and are drawn from a
uniform distribution. The targets of the agents L® and L°
are drawn from a uniform distribution between 0 and 2. We
set 6 = 0.5 and 7 = 0.0001 to simulate instantaneous replies
and set the degree of intersection of the negotiation ranges

10Preliminary experiments with the negotiation tactics suggest that if

the agents do not come to an agreement within this time period, they
never achieve any agreement (even if the maximum negotiation time
is extended).



to 0.8 (which means that [v;"i",vgnaz] overlap [vTi™, vT®]

and [v5""", v5**] by 80%).

Utility function and weight of each issue
Ua:17 Wy Uz27 Wy Ua:37 W Uz47 Wy
a 0.4z, 0.5 0.922, 0.2 1—-0.22;,0.2 | 1 —0.6x2, 0.1
B | 1—-0.2z1,04 | 1—0.6zs, 0.1 0.9z2, 0.3 0.4z, 0.2

Table 1: Utility functions and weights of issues for
each agent.

We will further assume that the first offer an agent makes
in any negotiation is selected at random from those that
have the highest utility. Also, the agent that starts the ne-
gotiation is chosen at random. This reduces any possible
first-mover advantage that one strategy may have over an-
other (i.e. which loses less utility due to discount factors).
Moreover, in order to calculate the expected outcome of the
second game (as discussed in section 5), agents draw the out-
come for each issue from a normal distribution with its mean
centred in the middle of the agent’s negotiation range for the
second game with a variance equal to 0.5. Finally, in all our
experiments we use ANOVA (ANalysis Of VAriance) to test
for the statistical significance of the results obtained.

Given these game settings, we define the populations of
negotiating agents in terms of the tactics they use. As dis-
cussed in section 6, a number of tactics are available in the
literature for experimentation and we will use BB tactics, as
well as BW and CO, to generate offers for the RGA algo-
rithm. Moreover, we will compare the performance of these
with RBT. The settings of the strategies (i.e. the combi-
nation of tactics for the two games) played by the agents
is given in table 2. Here, the populations of standard non-
persuasive agents (i.e. disconnected from RGA) using only
BB, BW, or CO in both games are noted as NT (negotiation
tactics), while those that are connected to RGA are noted
as PNT (persuasive negotiation tactics). The population of
agents using RBT is noted as RBT.

Game Strategies
Non-Persuasive Persuasive
Type NT PNT RBT
1 BB, BW, CO PBB, PBW, PCO | RBT

2 BB, BW, CO BB, BW, CO ANY
Table 2: Settings for agents’ tactics.

As can be seen from the above table, agents can use re-
wards in the first game and revert to standard tactics for
the second one. For example, a PNT agent, using BW with
RGA in the first game, uses BW in the second game. For
RBT agents, we randomly select among the three standard
tactics.

Given that persuasive strategies like PNT and RBT can
constrain their rewards and negotiation ranges according to
their target L (as shown in section 4.2), we also need to
allow other non-persuasive tactics to constrain their ranges
accordingly to ensure a fair comparison. Thus, we allow all
tactics to constrain the ranges of the issues in the second
game according to their target whenever they reach agree-
ments without the use of any arguments. The procedure to
do so is similar to that described in section 4.2.*! In the
following experiments, we use homogeneous populations of
80 agents for each of NT, PNT, and RBT and also create a
population of equal numbers of RBT and PNT agents (40
each) which we refer to as PNT&RBT to study how RBT
and PNT agents perform against each other.

11The difference between the constraint applied by the reward and by
the target is that the former applies the constraint to both agents,
while the latter only applies separately to each agent according to
their individual targets.

Given the populations of agents described above we next
define the means used to decide whether PN indeed achieves
better agreements faster than standard negotiation mecha-
nisms. We therefore apply the following metrics:

1. Average number of offers — the average number of
offers that agents need to exchange before coming to
an agreement. The smaller this number the less time
the agents take to reach an agreement.

2. Success rate — the ratio of agreements to the number
of times agents meet to negotiate.

3. Average utility per agreement — the sum of utility of
both negotiating agents over all agreements divided by
the number of agreements reached.

4. Expected utility — the average utility weighted by the
probability that an agreement is reached.

Given these requirements, in the following subsection we de-
tail experiments with populations defined above and evaluate
their performances.

7.2 Empirical Results

In this section, we postulate a number of hypotheses regard-
ing the performance of RGA and RBT and describe the re-
sults which validate them.

H1 Negotiation tactics that use RGA are more time efficient
than those that do not.

This hypothesis follows from the fact that we expect ar-
guments to help agents find agreements faster. Here we
record the average number of offers (the lower this num-
ber the more time efficient the agents are) an agent makes in
order to reach an agreement. For all populations of tactics,
each agent meets another agent 50 times and this is repeated
15 times and the results averaged. Thus it was found that
NT takes an average of 547 offers to reach an agreement,
while PNT strategies take 58 and PNT&RBT takes 56.5 of-
fers per agreement (nearly 10 times less than N'T). Thus, the
performance of RBT is significantly better than the other
populations since it reaches agreements within only 26 of-
fers (which is less than NT by a factor of 21). Now, the
reason for the superior performance of persuasive tactics in
general is that the rewards make offers more attractive and,
as we expected, the shrinkage of negotiation ranges in the
second game (following from the application of the rewards)
further reduces the negotiation space to be searched for an
agreement. The additional improvement by RBT can be at-
tributed to the fact that both negotiating agents calculate
rewards and offers (through the hill-climbing algorithm) that
give more utility to their opponent on issues for which they
have a higher marginal utility (as explained in section 6).
Hence, this is faster than for PNT&RBT in which only one
party (the RBT) performs the hill-climbing.

These results suggest the outcomes of RBT and PNT pop-
ulations should be less discounted and should also reach more
agreements (since they take less time to reach an agreement
and hence do not go over the agents’ deadlines). However,
it is not clear whether the utility of the agreements reached
will be significantly higher than for NT agents.

H2 Negotiation tactics that use the RGA achieve a higher
success rate, expected utility, and average utility than those
that do not.

To test this hypothesis, we run the same experiments as
above and record the average utility per agreement and the
number of agreements reached. Thus, it is possible to calcu-
late the expected utility, average utility per encounter, and
the success rate per game as explained earlier.



It was found that the success rate of persuasive strategies
is generally much higher than NT (0.87/encounter for NT,
0.99/encounter for PNT only, 1.0/encounter for PNT&RBT,
and 1.0/encounter for RBT). This result'? clearly shows that
the use of RGA increases the probability of reaching an
agreement. The similar performance of RBT and PNT&RBT
and the difference between PNT&RBT and PNT shows that
RBT agents, as well as being able to find agreements read-
ily with their similar counterparts, are also able to persuade
PNT agents with more attractive offers. This is confirmed
by the fact that the average utility of persuasive strategies is
generally higher'® (i.e. 1.9/encounter for PNT, 1.95/encoun-
ter for PNT&RBT, and 2.03/encounter for RBT) than NT
(i.e. 1.84/encounter). Note that the difference in utility
between N'T and other tactics would be much greater if dis-
count factors €, and €z were bigger (given the high average
number of offers NT uses (i.e. 547)).

Given the trends in success rate and average utility, the
expected utility followed a similar trend with NT agents ob-
taining 1.6/encounter, PNT 1.88/encounter (i.e. a 17.5% im-

provement over NT'), PNT&RBT 1.95 /encounter, and 2.03/en-

counter for RBT agents only (representing a 26% better per-
formance than NT). Generally speaking, from the above re-
sults, we can infer that RGA, used together with basic tac-
tics, allows agents to reach better agreements much faster
and more often.

These results also suggest that PNT agents reach broadly
similar agreements (in terms of their utility) to NT agents
(if we discount the fact that rewards significantly reduce
the time to reach agreements and increase the probability of
reaching an agreement). Now, as discussed in section 6, PNT
agents usually generate offers first (starting from high utility
ones as for the NT agents) and then calculate the rewards
accordingly. Given this, the agents tend to start by giving
rewards and end up asking for rewards. As the negotiation
proceeds (if the offers are not accepted), the offers generally
converge to a point where agents concede nearly equally on
all issues (irrespective of the marginal utilities of the agents)
and the rewards converge to a similar point. This, in turn,
results in a lower overall utility over the two games than
if each agent exploits the other one in each game in turn.
Now, if rewards are selected in a more intelligent fashion,
as in RBT, the agents reach much higher overall utility in
general. This is because agents exploit each other more on
the issues for which they have a higher marginal utility than
their opponent. This is further demonstrated by the results
of the RBT agents which suggest they reach agreements that
have high utility for both participating agents. However, it
is not apparent whether RBT agents are able to avoid be-
ing exploited by their PNT counterparts in such agreements
which RBT tries to make more favourable to PNT agents
(as described in section 6).

H3 Agents using RBT are able to avoid exploitation by stan-
dard tactics connected to RGA (i.e. PNT).
In order to determine which tactic is exploited, we recorded

12Using ANOVA, it was found that for a sample size of 15 for each
population of PNT, PNT and RBT, and PNT only, with a = 0.05,
F = 88 > Fepit = 3.15 and p = 4.41 x 10~*. These results prove
that there is a significant difference between the means of PNT and
the other strategies. The success rate of NT agents was found to be
always lower than the other populations.

B hese results were validated statistically using ANOVA, where it
was found that F = 3971 > Fe.;y = 2.73, and p = 7.36 x 10789,
for a sample size of 15 per population and a = 0.05. These results
imply that there is a significant difference between the means of the
populations.

PNT’s and RBT’s average utility separately. Thus, it was
found that on average, both RBT and PNT agents obtained
about the same average utility per agreement (i.e. 0.96/agree-
ment). This result'? validates H3 and suggests that the hill-
climbing mechanism of RBT agents calculates offers that can
convince the opponent without reducing the utility of both
RBT and PNT agents significantly (i.e. in small steps) and
also that it maximises joint gains through OptComb.

8. CONCLUSIONS

In this paper we introduced a novel persuasive negotiation
protocol that allows agents in the present encounter to give
and ask for rewards in future encounters. To complement
this protocol, we also developed a reasoning mechanism that
consists of a reward generation algorithm (RGA) and a re-
ward based tactic (RBT). We then showed that RGA can
improve the utility gain of standard negotiation tactics by
up to 17%, and that RBT provides an additional utility gain
of 26% while using 21 times fewer messages to reach a deal
in our context.

Future work will look at extending RGA and RBT to more
than two games and exploring other strategies to generate
rewards, as well as other types of arguments such as threats
and appeals. Furthermore, using trust models, we will de-
velop techniques to deal with agents that may not fulfill their
promises.
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