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Abstract

Classical work on eliciting and representing preferences over multi-attribute alterna-
tives has attempted to recognize conditions under which value functions take on partic-
ularly simple and compact form, making their elicitation much easier. In this paper we
consider preferences over discrete domains, and show that for a certain class of simple and
intuitive qualitative preference statements, one can always generate compact value func-
tions consistent with these statements. These value functions maintain the independence
structure implicit in the original statements. For discrete domains, these representation
theorems are much more general than previous results. However, we also show that it is not
always possible to maintain this compact structure if we add explicit ordering constraints
among the available outcomes.
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1. Introduction

The spectrum of practical problems that require reasoning about preferences is extremely
wide. In this paper we consider the problem of eliciting and reasoning about a user’s
ordinal preferences. We are motivated in part by the needs of large-scale, consumer product
catalogs, an area that has received growing attention in the fields of the database systems
and AI (e.g., see [1, 13, 5, 6, 9, 26, 31, 29].)

Online catalogs of products and information grow continuously, and with them grows
the number of lay users accessing these catalogs. While keyword search provides users with
some means to access these catalogs, user needs in such shopping contexts are typically
more complex than in web search. In particular, users have personal preferences regarding
price, quality, features, etc., and these preferences can be rather complex. Therefore, it is
natural to expect that systems supporting this search process will aim to allow users to
state their actual preferences, and that reasoning about such preferences can improve the
understanding of user needs.

Unfortunately, it appears that achieving both user-friendly, robust preference elicitation
and efficient reasoning about the elicited information is not easy. The conflict between
these two desiderata is reflected by the conflicting forms in which a user might be asked
to provide her preferences. On the one hand, if the user provides us with a numerical
value function over the space of the products (henceforth referred to as items), ordering the
catalog with respect to this function is easy. However, eliciting a quantitative description
of preferences from the users is generally a long, involved and time-consuming process that
is often unintuitive to users. Alternatively, we can consider allowing users to express their
preferences using natural-language like qualitative statements, providing us with pieces of
preference information like (i) “For a family car, I prefer white color to all other colors”, or
(ii) “This car is better for me than that car”, or (iii) “This mini-van would be better in blue”,
or (iv) “I like ecologically friendly cars”. This form of preference elicitation is considered
to be more natural to users [18], and thus dealing with this form of preference information
has received significant attention in the multi-disciplinary preference literature (to name
just a few works, see [19, 32, 30, 8, 13].) Unfortunately, those preference expressions that
can be reasoned about efficiently (at least for ordering a given set of items) are required
to be “syntactically homogeneous”, that is contain only statements in a certain specific
form [14, 8]. For instance, to the best of our knowledge, there is no known general class of
preference expressions containing statements of both forms (i) and (ii) as above 1 that can
be reasoned with efficiently.

Striving to enjoy the pros of both a qualitative input and a quantitative representation
of user preferences, in this paper we consider compiling qualitative preference expressions
into value functions consistent with the information carried by these expressions. The main
contributions of this paper are as follows:

1. We provide a new representation theory for generalized additive value functions [15, 2],
and specify conditions under which there exists a particular factored value function
consistent with (what is known about) the user’s preference relation. Our represen-
tation theorems show that preference orders induced over the item space by certain

1. Later we define these forms of statements in a formal manner.
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sets of qualitative statements of preference and importance can always be consistently
captured by a compact generalized additive value function. In particular, our results
extend the classical representation theorems for additive value functions over discrete
variables [21]. As the conditions we require are much weaker than those required
for an additive representation, we are able to capture a significantly wider spectrum
of sets of natural preference statements, namely those representable by the TCP-net
model [10, 12].

2. We show how our representation theory can be utilized in a computationally efficient
methodology for eliciting and reasoning about ordinal preferences of the users. In this
methodology, the user provides a set of qualitative preference statements, and these
statements are used to efficiently generate a compact value function whose structure
is based on the qualitative information supplied by the user. The key part is that the
existence of such a compact value function, its consistency with the preference state-
ments of the user, and efficiency of its generation are guaranteed by our representation
theory.

3. In many applications, it is desirable to allow the users expressing not only struc-
tured preference information, but also direct rankings between pairs of concrete items
(e.g.,see [26, 5, 20].) We consider the computational consequences of supporting both
general statements of preference and such pair-wise item rankings. On the posi-
tive side, we show that such an extension can be straightforwardly supported in our
methodology while preserving its soundness and efficiency. On the negative side, how-
ever, we formally show that completeness of structured value-function compilation is
extremely sensitive to adding such item-level rankings. Specifically, we show that
completeness of value-function compilation cannot be guaranteed even if the amount
of such pair-wise item rankings is minimal, and that this impossibility result holds for
most languages of generalizing preference statements.

The rest of the paper is organized as follows. In Section 2 we provide some essential
background on qualitative preference statements targeted in this work, the TCP-model for
modeling sets of such statements, and value functions. Section 3 is devoted to the value-
function compilation of three progressively more complicated classes of TCP-nets. For
clarity of presentation, the longer proofs are given in Appendix A. In Section 4 we consider
extending structured preference information with pairwise comparisons between completely
specified alternatives, provide an impossibility theorem on value-function compilation of
such mixed sets of statements, and generalize this result to a general impossibility theorem.
We summarize and list some open problems in Section 5.

2. Background and Notation

Let Ω be a space of alternative items, where each item is described by an assignment to
a certain finite set of attributes (= variables) X = {X1, . . . ,Xn} with domains dom(Xi),
respectively. Without loss of generality, the item space Ω is then considered to be Ω =
×dom(Xi). For instance, if Ω is the universe of descriptions of commercial flights for a
certain time period, then the attributes might correspond to the departure time, airline,

3



Brafman, & Domshlak

etc. Typically, the set of available items is a subset of Ω, and is described by some database.
However, although the user is familiar with the item’s attributes, she does not know, a-priori,
what items appear in this database. In this work, we assume that all dom(Xi) are finite,
and thus Ω is finite as well.

To fix the basic notation, in what follows we use regular uppercase letters X,Y, . . . for
variables, regular lowercase letters x, y, . . . for values of individual variables, calligraphic
uppercase letters X ,Y, . . . for sets of variables, and bold lowercase letters x,y, . . . for as-
signments to sets of variables.

In the rest of this section we define a set of qualitative preference statements, a graphical
structure that is used to analyze them, and the type of value functions into which these
statements will be compiled.

2.1 Qualitative Preference Statements

Our primary aim as a system is to build a model of the ordinal preferences of a given
user over Ω. Our basic assumption is that there exists a relatively compact and sufficiently
accurate representation of the user’s preferences in terms of X . In turn, to actually build an
effective user model we obviously need information about the user’s preference relation over
different assignments to X . Focusing on qualitative preference information, we begin with
considering two types of natural preference statements, together with a set of preferential
independence assumptions that are implicit in the user’s specification.

(1) (Conditional) preference over attribute values.
For example, “I prefer British Airways to Air France” is a statement of unconditional
value preference over the domain of the airline attribute. In turn, “I prefer British
Airways to Air France in morning flights” is a statement of conditional value pref-
erence over the domain of the airline attribute, conditioned by the value of the
departure-time attribute.

(2) (Conditional) relative importance between pairs of attributes.
For example, “Departure time is more important to me than airline” is a statement of
unconditional relative importance between the attributes departure-time and airline,
while “Departure time is more important to me than airline if I’m flying business class”
is a conditional relative importance statement; the value of the class attribute affects
the relative importance between the attributes departure-time and airline.

Each such statements is taken as defining a partial order over the items, using the ceteris
paribus semantics [19]. That is, if the user states that he prefers Delta to United, we take
it to mean that given two flights with identical attribute values, except for the airline,
we prefer that in which the airline is Delta to that in which the airline is United. If the
statement is conditioned on the fact that the flight is overnight, the same interpretation
holds, except that it applies only to comparison between overnight flights. Similarly, for
importance relations, if I state that departure time is more important than airline, then
given two flights that are identical, except for their departure time and airline, I prefer
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the one that provides a more favorable departure time. A set of preference statements
corresponds to the union of these partial orders.2

2.2 TCP-Nets

The language discussed above provides a relatively rich set of qualitative statements about
outcomes with discrete-valued attributes. We wish to compile this language into compact
value functions. In [12] it was shown that a set of preference statements from the above
families can be organized within a graphical structure called TCP-net, an extension of
the CP-nets model [8]. This graphical structure plays an important role in analyzing and
compiling this language. Here we introduce TCP-nets in depth sufficient for our purposes
only, and refer the interested reader to [12] for a detailed and systematic formalization of
this model.

TCP-nets are annotated graphs with three types of edges. The nodes in TCP-nets cor-
respond to the problem variables X (or to a subset of X if some variables are not addressed
by the user statements.) The first type of (directed) edge captures direct preferential depen-
dencies between the variables, that is, such an edge from X to Y implies that the user has
different preferences over Y values given different values of X. The second (directed) edge
type captures relative importance relations. The existence of such an edge from X to Y

implies that it is more important to satisfy preferences with respect to X rather than pref-
erences with respect to Y (denoted as X � Y ). The third (undirected) edge type captures
conditional importance relations: Such an edge between nodes X and Y exists if different
conditions (i.e., certain assignments to some set of variables S) lead to X � Y , Y � X, or
even to absence of relative importance between X and Y at all.

Each node X in a TCP-net is annotated with a conditional preference table (CPT). This
table associates a preference ordering over dom(X) with every possible value assignment to
the parents of X (denoted UX). In addition, in TCP-nets, each undirected edge is annotated
with a conditional importance table (CIT). The CIT associated with such an edge γ = (X,Y )
describes the relative importance of X and Y given the value of the conditioning variables
Sγ .

Definition 1 [12] A TCP-net N is a tuple 〈X , cp, i, ci, cpt, cit〉 where:

(1) X is a set of nodes, corresponding to the problem variables {X1, . . . ,Xn}.

(2) cp is a set of directed cp-arcs {α1, . . . , αk} (where cp stands for conditional preference).

A cp-arc 〈
−−−−→
Xi,Xj〉 is in N iff the preferences over the values of Xj depend on the actual

value of Xi. For each X ∈ X , let UX = {X ′|〈
−−−→
X ′,X〉 ∈ cp}.

(3) i is a set of directed i-arcs {β1, . . . , βl} (where i stands for importance). An i-arc (
−−−−→
Xi,Xj)

is in N iff Xi � Xj.

(4) ci is a set of undirected ci-arcs {γ1, . . . , γm} (where ci stands for conditional importance).
A ci-arc γ = (Xi,Xj) is in N iff there are certain conditions under which one variable

2. This begs the question of the consistency of such a set, which we touch upon later. See [12] for more
details.
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is more important than the other, but the relative importance between Xi and Xj is
fully determined by the value of some selector set Sγ ⊆ X \ {Xi,Xj}.

(5) cpt associates a CPT with every node X ∈ X , where CPT (X) is a mapping from
dom(UX) (i.e., assignments to X’s parent nodes) to strict partial orders over dom(X).

(6) cit associates with every ci-arc γ = (Xi,Xj) a (possibly partial) mapping CIT (γ) from
dom (Sγ) to orders over the set {Xi,Xj}.
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Td S1s ≻ S0s

Tn S0s ≻ S1s

Td Cb ≻ Ce

Tn Ce ≻ Cb

Td ∧ Aklm S � C

Td ∧ Aba C � S

Figure 1: A TCP-net from the flight selection domain.

For those familiar with the original CP-net model, we note that a CP-net is simply a
TCP-net in which the sets i and ci (and therefore cit) are empty. Figure 1 illustrates an
example TCP-net for selecting a business flight from Israel to a conference in USA, borrowed
from [12]. This network consists of five variables, standing for various parameters of the
flight4:

• D – Departure day. Our busy, married user prefers flights leaving one day (D1d)
before the conference to flights leaving two days (D2d) before the conference.

• A – Airline. Our user prefers British Airways (Aba) to KLM (Aklm).

• T – Departure time. When leaving two days before the conference, our user prefers
the later night flight (Tn) to the earlier day flight (Td). When leaving just one day
before the conference, these preferences are reversed.

• S – Stop-overs. On day flights, our user would like to have a smoking break, so he
prefers an indirect flight (S1s) to a direct flight (S0s). On night flights, he sleeps well,
and so prefers the shorter, direct flight.

3. That is, the relative importance relation between Xi and Xj may be specified only for certain values of
the selector set.

4. Variables in this example are binary, but the semantics of TCP-nets is defined with respect to arbitrary
finite domains.
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• C – Class. On a night flight, our user prefers the cheaper economy (Ce) seats because
he sleeps anyways, but wants to enjoy business class (Cb) service on day flights.

CP-arcs and CPTs in Figure 1 capture these preference statements and the underlying
preferential dependencies. Our user’s relative importance relations are as follows: There is
an i-arc from T to A: getting a more suitable flying time is more important than getting the
preferred airline. There is a ci-arc between S and C, where the relative importance of S and
C depends on the values of T and A (see the corresponding CIT): (i) On KLM day flights,
an intermediate stop in Amsterdam is more important than flying business class. (Our user
likes the casino in Amsterdam’s airport.) (ii) On British Airways day flights, business class
is more important than a stop-over. (Smoking areas in Heathrow are depressing.)

The semantics of a TCP-net N is defined in terms of preference rankings consistent with
the constraints imposed by cpt and cit of N , that is, strict partial orders consistent with
the partial order induced by N . The local constraints are interpreted ceteris paribus. For
example, the fact that in the CPT for departure time (T ) we have that Tm ≻ Tn given
D = D1d implies that, given two flights departing one day before the conference that differ
only in their departure time, the user prefers the one leaving in the morning to the one
leaving at night. (Preference between alternative values x1, x2 of a variable X ∈ X given
an assignment u to the parents UX is denoted as N |= x1 ≻u x2, or simply as N |= x1 ≻ x2

if the assignment to parent variables u is clear from the context.) The fact that T is more
important than A implies that given two flights that are identical, except for the value of T

and A, the user prefers the one in which T is assigned a better value regardless of the value
of A. Similar semantics is given to conditional importance relation, taking into account the
requirement for the conditioning variables (the selector set). A TCP-net N is consistent iff
there is some strict partial order ≻ consistent with it. For all o, o′ ∈ Ω, o ≻ o′ is implied
by a TCP-net N (denoted as N |= o ≻ o′) iff it holds in all strict partial orders consistent
with N , and this preferential entailment with respect to a consistent TCP-net is transitive.
(For the formal semantics in detail, see [12].)

The structure of the TCP-net was shown to be useful for (a) recognizing the (in)consistency
of user preference statements, and (b) performing efficient inference. In Section 3 we will
show that it can also be exploited in identifying compact value functions consistent with
the user’s preferences. We reemphasize that this graphical structure is used for analysis
purpose (although it can be used for describing preferences, if so desired). Users are not
expected to specify the explicit graphical model nor need they be aware of its existence.
They simply need to verbalize statements of the two kinds discussed earlier. The system can
easily construct the corresponding TCP-net automatically. Nor are the users required to
provide statements that specify the CPTs completely (e.g., as in Bayes nets). This property
is especially important in practice as users should not be required to express every nuance
of their preferences.

2.3 Value functions and GA-decomposition

We wish to map a set of preference statements into a numeric value function. A value
function v : Ω → R is a real-valued function defined over the space of all possible assignments
on X , that is, over our item space. Value function v is consistent with a (possibly partial)
preference ordering � of the user iff v(o) > v(o′) for all o ≻ o′, and v(o) ≥ v(o′) for all
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o � o′. As the size of Ω is exponential in the number of problem variables, only compactly
representable value functions can be practically useful.

In this work we focus on one such family of compactly representable value functions,
namely generalized additive (GA) value functions. The notion of GA value functions closely
corresponds to the notion of generalized additive independence for cardinal utility func-
tions [15, 2], but addresses only the structural assumptions of the latter. A value function v

over the variables X is GA if there exists a cover of X by some of its subsets X1, . . . ,Xk such
that v(X ) =

∑k
i=1 vi(Xi). In what follows, we refer to these variable subsets X1, . . . ,Xk as

the factors of v. Notice that any value function can be seen as GA (for k = 1), but working
with a GA value function is practically feasible only if its factors are sufficiently compact and
the number of essential factors k is small, e.g., both k and the size of each Xi are bounded
by a constant. In general, this brings us to the specify the notion of GA-decomposition of
a preference ordering.

Definition 2 Given a (possibly partial) preference ordering � over Ω = dom(X ), and a
cover X1, . . . ,Xk of X , we say that � is GA-decomposable over X1, . . . ,Xk if there exists a
real-valued function

v(X ) =
k

∑

i=1

φi(Xi), (1)

consistent with �. In particular, we say that a TCP-net N over X is GA-decomposable
over X1, . . . ,Xk if there exists a real-valued function v as in Eq. 1 such that, for all ø, o′ ∈ Ω,
if N |= o ≻ o′, then v(o) > v(o′).

3. From Qualitative Preferences to GA Value Functions

Value functions provide a mathematically general and efficient way of representing and
reasoning with preference information. Given a value function, we can quickly sort a given
database of items or determine the top-k of its items. However, obtaining a value function
directly from the user is significantly more involved than obtaining a set of simple preference
statements. Therefore, we propose to

1. use a TCP-net to initially organize the qualitative preference statements obtained
from the user,

2. compile this information to a value function that maintains the qualitative structure
and independence assumptions implicit in this TCP-net ,

3. use the obtained value function as the model of user’s ordinal preference,

4. as new information comes from the user, refine this value function, while still main-
taining independence assumptions implied by the original TCP-net, if possible.

Note that the basic idea of such value-function compilation framework is not new, and
it was considered in the literature before with respect to some other forms of qualitative
preference information [3, 17, 27]. The precise relation to previous works is established later
in Section 5.
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The main theoretical question we face is: Given a TCP-net N as input, can we efficiently
generate a value function v that is consistent with N? Of course, it is quite trivial to see
that, for any consistent TCP-net, there exists at least one value function consistent with
it. Indeed, this is true for any partial order. However, what we would really like to know
is whether we can find a structured value function that, in some sense, is as compact as
the original TCP-net. Specifically, we would like to know whether there exists a GA value
function defined over small factors ”implied” by the structure of the network.

To answer this question, we consider three progressively more complicated classes of
TCP-nets, and show how the factors of GA value functions representing these TCP-nets
relate to their graphical structure. We prove this relation by showing that for every TCP-
net in each of these network classes there exists a GA value function over a particular set
of factors. Likewise, our representation results provide us with a concrete computational
mechanism for generating such GA value functions, tractable for a wide class of TCP-nets.

3.1 GA-decomposition of CP-nets

First, we consider CP-nets [8], that is, TCP-nets with only cp-arcs, and start with some
notation. Given a CP-net N = 〈X , cp, ∅, ∅, cpt, ∅〉 over variables X , let UX and YX be the
sets of parents and (immediate) children of X in N , respectively. Let FX = {X} ∪ UX

denote the CP-family of X, and EFX = FX ∪
⋃

Y ∈YX
FY denote the extended CP-family of

X. That is, the set EFX contains X, its parents, its children, and the parents of its children.
This set is also known as the Markov Blanket of X, and it is illustrated in Figure 2. Finally,
given two assignments z, z′ to a pair of subsets Z,Z ′ ⊆ X , respectively, we say that z and
z′ are compatible, denoted by z ⊲⊳ z′, if z and z′ provide the same value to all the shared
variables Z ∩ Z ′.

The following CP-condition, originally introduced in [7] for defining real-valued value
functions representable as UCP-nets, plays a central role in our discussion. To understand
this condition better, one has to understand that our goal now is to show that for a CP-net,
we can define a consistent value function that is a sum of smaller functions, each of which
depends on a single family within the network. That is, we would like a GA value function
whose factors are the families of the CP-net.

Consider the family FX of some variable X. Let φX be the component of a GA value
function as above that corresponds to this family. Consider some assignment u to the
parents of X. φX(·,u) is then a function of X. We would expect it to provide higher
values to assignment to X that the user prefers given u. However, this condition is not
sufficient to ensure that the value function be consistent with the stated preferences. To see
this, suppose that N |= x1 ≻u x2. It is possible that φX(x1,u) > φX(x2,u), yet for some
assignment w to the rest of the variables, v(x1,u,w) < v(x2,u,w). This can be the case
because in the context of w, the value of some child of X is much higher given x1 than given
x2. Thus, while x2 does not seem to contribute too much directly, it makes the contribution
of some other assignment much higher. For an illustration, consider a CP-net N over two
variable X and Y , with (parent-less) X being the parent of Y . Let N |= x1 ≻ x2 for some
x1, x2 ∈ dom(X). From the semantics of TCP-nets, we then have N |= x1y ≻ x2y for any
y ∈ dom(Y ). Now, let v(X,Y ) = φX(X) + φY (Y,X) be a GA value function with the
structure as required such that φX(x1) = 1, φX(x2) = 0, φY (y, x1) = 0, and φY (y, x2) = 2.
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Figure 2: CP-family and extended CP-family of X.

While the condition φX(x1) > φX(x2) is satisfied, we have φY (y, x1) < φY (y, x2), violating
the consistency of v with N .

The CP-condition as specified in Definition 3 below rules out this possibility, making
the sum of direct and indirect contributions of a less favored value smaller than that of
a more favored value. Note that the direct and indirect contributions of an assignment
to X depend on (and only on) the extended family of X: its parents determine its direct
contribution, and its children’s parents determine its indirect contribution.

Definition 3 Given a CP-net N , and a set of non-negative real-valued functions Φ =
{φX1 , . . . , φXn} over FX1 , · · · ,FXn , respectively, we say that Φ satisfies the CP-conditions
of N if and only if for each variable X ∈ X , each u ∈ dom(UX), and each x1, x2 ∈ dom(X),
if N |= x1 ≻u x2, then for each v ∈ dom(EFX \ {X}) compatible with u we have:

φX(x1,u) +

|YX |
∑

i=1

φYi(vi, x1) > φX(x2,u) +

|YX |
∑

i=1

φYi(vi, x2) (2)

where vi is the value provided by v to (FYi
\ {X}).

Developed by Boutilier et al. [7], Lemma 1 below exploits the CP-conditions of N to pro-
vide a necessary and sufficient condition for a GA value function with factors FX1 , · · · ,FXn

to be consistent with N .

Lemma 1 ([7]) Given a CP-net N , and a function

v(X ) =

n
∑

i=1

φXi(FXi
), (3)

we have v consistent with N iff {φX1 , . . . , φXn} satisfy the CP-conditions of N .

In fact, Lemma 1 provides us with even stronger knowledge on GA-decomposability
of N . First, reasonably assuming that no preferential dependency between X and UX is
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redundant, one could not expect a more compact GA-decomposition of N . Second, CP-
conditions actually provide us with a concrete procedure for generating such a value function
v:

(1) Given a CP-net N , construct a system of linear inequalities L, the variables of which
stand for the entries of the factors φX1 , . . . , φXn and inequalities correspond to all the
required instances of Eq. 2. Let HL be the polytope defined by L.

(2) If L is satisfiable (that is, HL is not empty), pick any solution for L. The latter selection
can be done, for instance, by solving a linear program defined by L and an arbitrary
linear objective function bounded on HL [4], or by sampling a point from HL).

Step (2) is correct because any solution of L constitutes a value function v of form (3),
consistent with N . The complexity of L is only locally exponential: the number of variables
and inequalities in L is O(ndλ) and O(nd2µ), respectively, where d = maxX∈X {|dom(X)|},
λ = maxX∈X {|FX |}, and µ = maxX∈X {|EFX |}. Finally, since linear programming is in P,
we obtain the following corollary of practical interest.

Corollary 2 If a CP-net N is GA-decomposable over its CP-families, and we have
maxX∈X {|EFX |} = k for some constant k, then a value function v(X ) =

∑n
i=1 φXi(FXi

)
consistent with N can be constructed in time polynomial in the size of N .

Corollary 2 presents a wide class of efficiently GA-decomposable CP-nets. However,
notice that nothing so far prevents HL from being empty, since Lemma 1 provides no
guarantees for the actual GA-decomposability. It is possible that, for some CP-nets, value
functions of form (3) simply do not exist. As we would like to assume that user’s statements
provide us with sufficient information about value independence, such incompleteness would
clearly be problematic. Fortunately, Theorem 3 below shows that polytopes HL for acyclic
CP-nets are always non-empty.

Theorem 3 Every acyclic CP-net is GA-decomposable over its CP-families.

To relate Theorem 3 to the classical results in multi-attribute decision theory, consider a
CP-net without any edges. According to Theorem 3, such a CP-net induces an additive
value function, that is, for 1 ≤ i ≤ n, the factor Xi consists of exactly one variable Xi.
Indeed, variables in such a CP-net are mutually preferentially independent, a necessary
and sufficient condition for additive decomposition (see Theorem 3.6 in [21]). Thus, a
representation theorem for standard additive value functions over discrete variables5 is a
special case of our Theorem 3. As far as we know, results on conditional structures and
generalized additive decomposability exist for cardinal utility functions [2], but require
complex conditions which do not seem to relate in any simple manner to the above result.

Example 1 To illustrate the above procedure for value-function generation, consider the
CP-net N depicted in Figure 3(a). This CP-net is defined over three binary-valued variables

5. Here we note that the classical results on additive decomposition cover continuous variables as well,
whereas we deal with discrete variables only.
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Figure 3: (a) The CP-net for Example 1; (b) The value function generated for that CP-
net–each table associated with a variable captures the sub-function over the cor-
responding factor.

X, Y , and Z, and one ternary variable U . The linear system L encoding the CP-conditions
of N is as follows.

First, for the parent-less variable U , we have N |= u1 ≻ u3 and N |= u2 ≻ u3, YU = {X},
and FX \ {U} = {X}. Given that, the CP-conditions “for U” are

φU (u1) + φX(x1, u1) > φU (u3) + φX(x1, u3)

φU (u1) + φX(x2, u1) > φU (u3) + φX(x2, u3)

φU (u2) + φX(x1, u2) > φU (u3) + φX(x1, u2)

φU (u2) + φX(x2, u2) > φU (u3) + φX(x2, u2)

(4)

Similarly, for the parent-less variable Z, we have N |= z1 ≻ z2, children YZ = {Y }, but not
the set FY \ {Z} = {Y,X} is not a singleton. The CP-conditions “for Z” are thus

φZ(z1) + φY (y1, x1, z1) > φZ(z2) + φY (y1, x1, z2)

φZ(z1) + φY (y1, x2, z1) > φZ(z2) + φY (y1, x2, z2)

φZ(z1) + φY (y2, x1, z1) > φZ(z2) + φY (y2, x1, z2)

φZ(z1) + φY (y2, x2, z1) > φZ(z2) + φY (y2, x2, z2)

(5)

Next, consider the variable X with UX = {U}. Considering dom(U) and the CPT of X, we
have only N |= x1 ≻u1 x2. Thus, given YX = {Y }, and FY \ {X} = {Y,Z}, we have

φX(x1, u1) + φY (y1, x1, z1) > φX(x2, u1) + φY (y1, x2, z1)

φX(x1, u1) + φY (y1, x1, z2) > φX(x2, u1) + φY (y1, x2, z2)

φX(x1, u1) + φY (y2, x1, z1) > φX(x2, u1) + φY (y2, x2, z1)

φX(x1, u1) + φY (y2, x1, z2) > φX(x2, u1) + φY (y2, x2, z2)

(6)
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Finally, from the CPT of the child-less variable Y with UY = {X,Z}, we have N |= y1 ≻x1z1

y2, N |= y2 ≻x2z1 y1, and N |= y2 ≻x2z1 y1. Hence, the CP-conditions “for Y ” are

φY (y1, x1, z1) > φY (y2, x1, z1)

φY (y2, x2, z1) > φY (y1, x2, z1)

φY (y2, x2, z2) > φY (y1, x2, z2)

(7)

Together, Eqs. 4-7 provide us with 15 linear constraints L over 19 variables, and these
constraints constitute the CP-conditions of N . At the second step of the value-function
generation procedure we should then pick an arbitrary solution to L, and this can be done
in numerous ways. For instance, solving (in polynomial time [4]) the quadratic program
aiming at resolving L with margin ǫ > 0 while (i) keeping the vector of variables in the
positive quadrant, and (ii) minimizing the ℓ2-norm of that vector, provides us with the
solution (= value function) depicted in Figure 3(b). (For readability, and without loss of
generality, we have subtracted ǫ from the values of all the variables of L.)

3.2 GA-decomposition of TCP-nets with no ci-arcs

Now, let us consider a wider class of TCP-nets, namely TCP-nets with no ci-arcs. Here we
show that, assuming the TCP-net remains acyclic, the GA-decomposability of this class of
networks N = 〈X , cp, i, ∅, cpt, ∅〉 is not affected by the relative importance statements. We
do need, however, to change the constraints used to generate this value function. We begin
by formalizing a new set of conditions essential for analysis of GA-decomposability of this
class of networks.

Definition 4 Given a TCP-net N with no ci-arcs, and a set of non-negative real-valued
functions Φ = {φX1 , . . . , φXn} over FX1 , · · · ,FXn , respectively, we say that Φ satisfies the

I-conditions of N if and only if for each i-arc (
−−−→
X,X ′) ∈ N , each u ∈ dom(UX), and each

x1, x2 ∈ dom(X), if N |= x1 ≻u x2 then, for each x′
1, x

′
2 ∈ dom(X ′), each u′ ∈ dom(UX′)

compatible with u, and each v ∈ dom(EFX\{X,X ′}), v′ ∈ dom(EFX′\{X,X ′}) compatible
with u and u′, we have:

φX(x1,u) + φX′
(x′

1,u
′) +

|YX |
∑

i=1

φYi(vi, x1, x
′
1) +

|YX′\YX |
∑

i=1

φY ′
i (v′

i, x
′
1, x1) >

φX(x2,u) + φX′
(x′

2,u
′) +

|YX |
∑

i=1

φYi(vi, x2, x
′
2) +

|YX′\YX |
∑

i=1

φY ′
i (v′

i, x
′
2, x2)

(8)

where vi and v′
i are the values provided by v and v′ to (FYi

\{X,X ′}) and (FY ′
i
\{X,X ′}),

respectively. Note that x′
1 and x′

2 (similarly, x1 and x2) might be redundant parameters for
some φYi (respectively, φY ′

i ).

This condition may look complicated, but the intuition behind it is simple. The idea is
to provide constraints on the value function that ensure that X is more important than X ′.
Recall that if X is more important than X ′ then given two assignments that are identical
on variables other than X and X ′, we prefer the one that has a better X value, regardless

13
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of its value on X ′. This requirement translates into the above I-condition. Previously, the
CP-condition required that if x1 is preferred to x2 given u then the sum of contributions of
the factors that correspond to the extended family of X be higher for x1 than for x2 given
any fixed context. This context consisted of the extended family of X. Now, we require
that this condition will hold even if we change the value of X ′. Thus, we must take into
account the direct and indirect effects of this change in the value of X ′. These depend only
on the extended family of X ′. Thus, at each side of the inequality in Eq. 8, we see a sum
that corresponds to the extended families of X and X ′.

It turns out that the I and CP-conditions together constitute for TCP-nets with no
ci-arcs exactly what the CP-conditions alone constitute for CP-nets.

Lemma 4 Given a TCP-net N with no ci-arcs, and a function v(X ) =
∑n

i=1 φXi(FXi
),

we have that v is consistent with N if and only if {φX1 , . . . , φXn} satisfy both the CP and
I-conditions of N .

Notice that, similarly to the case of CP-nets, Lemma 4 provides TCP-nets with no ci-
arcs with a procedure for generating consistent GA value functions of the form as in Eq. 3.
However, an immediate concern should be its usefulness: At first sight, such decomposition
does not seem to be very likely, as the functional form in Eq. 3 is based only on preference
dependencies, completely ignoring the importance relations induced by the i-arcs. Theo-
rem 5 shows that these concerns are not entirely justified, and that value decomposition
of form (3) is complete for acyclic TCP-nets with no ci-arcs. (Since all the arcs in such
networks are directed, the corresponding notion of acyclicity is straightforward.)

Theorem 5 Every acyclic TCP-net with no ci-arcs is GA-decomposable over its CP-families.

Theorem 5 shows that additional unconditional relative importance relation do not affect
GA-decomposability of the network (assuming it remains acyclic). Lemma 4 shows that any
such GA value function corresponds to a solution of a linear system L, as in the case of
CP-nets. Still locally exponential, the complexity of L, however, is affected by i-arcs, since
now L consists of both instances of Eq. 2 and Eq. 8. As a result, the number of variables
in L is still O(ndλ), but the number of equations grows to O((n + l)d2µ), where l is the
number of i-arcs in N . Notice that the order of description complexity of L remains the
same as for CP-nets, thus Corollary 2 can be re-stated for TCP-nets with no ci-arcs, all else
being equal.

Example 2 Consider the TCP-net N in Figure 4(a) that extends the CP-net from Exam-

ple 1 by an i-arc (
−−→
X,Z). The CP-conditions of N are identical to these in Example 1, that

is, given by the linear constraints in Eqs. 4-7. The I-conditions of N are (only) due to the

i-arc (
−−→
X,Z), and these correspond (only) to the preference of X = x1 to X = x2 given

U = u1. Thus, the I-conditions of N are

φX(x1, u1) + φZ(z1) + φY (y1, x1, z1) > φX(x2, u1) + φZ(z2) + φY (y1, x2, z2)

φX(x1, u1) + φZ(z1) + φY (y2, x1, z1) > φX(x2, u1) + φZ(z2) + φY (y2, x2, z2)

φX(x1, u1) + φZ(z2) + φY (y1, x1, z2) > φX(x2, u1) + φZ(z1) + φY (y1, x2, z1)

φX(x1, u1) + φZ(z2) + φY (y2, x1, z2) > φX(x2, u1) + φZ(z1) + φY (y2, x2, z1)

(9)
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Figure 4: (a) TCP-net with no ci-arcs for Example 2; (b) The value function generated for
that TCP-net.

Figure 5: TCP-family of X.

Solving the linear system L obtained from the union of Eqs. 4-7 and Eq. 9 using the same
quadratic programming approach as in Example 1 we generate the value function depicted
in Figure 4(b). Note that the only difference between the value functions in Figures 3(b)
and 4(b) is that the former has φX(x1, u1) = 2 while the latter has φX(x1, u1) = 3—the
relative importance of preference over X is getting captured.

3.3 GA-decomposition of TCP-nets

We now consider TCP-nets capturing all our types of preference statements, thus consisting
of both directed (cp and i) and undirected (ci) arcs. Recall that the selector set of a ci-arc
is the set of variables that determine which end of this edge is more important. Let SX be
the union of selector sets of ci-arcs involving X, that is,

SX =
⋃

γ=(X,X′)

Sγ .
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Reversely, let WX be the set of end-point variables of ci-arcs where X acts as a selector,
that is,

WX =
{

X ′ | X ∈ SX′

}

.

Let Y⋆
X = YX ∪ WX be the set of all X’s “direct dependents”. Let IX|s be the set of all

variables X ′ that are directly more important than X given s ∈ dom(SX). That is, for

each X ′ ∈ IX|s, either we have an i-arc (
−−−→
X ′,X) ∈ N , or we have a ci-arc (X ′,X) ∈ N

and CIT of this arc stipulates that, given s, we have that X ′ is more important than X.
Finally, let F⋆

X = FX ∪SX denote the TCP-family of X (see Figure 5, where the dashed arcs
schematically connect between SX and X), and EF⋆

X = F⋆
X

⋃

Y ∈Y⋆
X
F⋆

Y denote the extended

TCP-family of X.
TCP-nets with ci-arcs are significantly richer than these without, and a GA-decomposition

as in Eq. 3 is not expressive enough to cover this type of networks. However, here we show
that there exists a sufficiently expressive (yet often compact) extended counterpart of Eq. 3,
namely:

v(X ) =

n
∑

i=1

φXi(F⋆
Xi

). (10)

Definition 5 Consider a TCP-net N , and a set of non-negative, real-valued functions Φ =
{φX1 , . . . , φXn} over F⋆

X1
, · · · ,F⋆

Xn
, respectively. We say that Φ satisfies the CI-conditions

of N if and only if for each ci-arc (X,X ′) ∈ N (and, similarly, each i-arc (
−−−→
X,X ′) ∈ N), each

x1, x2 ∈ dom(X), and each u ∈ dom(UX) and s ∈ dom(SX), if X ∈ IX′|s and N |= x1 ≻u x2,
then, for each x′

1, x
′
2 ∈ dom(X ′), and each set of (all pairwise compatible) u′ ∈ dom(UX′),

s′ ∈ dom(SX′), v ∈ dom(EF⋆
X \ {X,X ′}), v′ ∈ dom(EF⋆

X′ \ {X,X ′}), we have:

φX(x1,u, s) + φX′
(x′

1,u
′, s′) +

|Y⋆
X |

∑

i=1

φYi(vi, x1, x
′
1) +

|Y⋆
X′\Y

⋆
X |

∑

i=1

φY ′
i (v′

i, x
′
1, x1) >

φX(x2,u, s) + φX′
(x′

2,u
′, s′) +

|Y⋆
X
|

∑

i=1

φYi(vi, x2, x
′
2) +

|Y⋆
X′\Y

⋆
X
|

∑

i=1

φY ′
i (v′

i, x
′
2, x2)

(11)

where vi and v′
i are the value provided by v and v′ to (F⋆

Yi
\ {X,X ′}) and (F⋆

Y ′
i
\ {X,X ′}),

respectively. As in Definition 4, x′
1 and x′

2 (similarly, x1 and x2) might be redundant in
some φYi (respectively, φY ′

i ).

The form of the CI-condition is identical to that of the I-condition. The difference is
that it is more constrained, requiring a particular assignment to the appropriate selector
sets.

For GA-decomposition as in Eq. 10, the CP-conditions that work for CP-nets and TCP-
nets with no ci-arcs will not work anymore. To understand this, recall that the original
CP-conditions ensured that the total contribution of a more preferred value for X will be
larger than the total contribution of a less preferred value. This total contribution included
the effect of an assignment to X on its children. Now, the total contribution of X depends on
additional elements. First, X might participate in a ci-arc, in which case its value depends on
the selector set for this edge. Moreover, X might influence the relative importance of other

16



Value-Function Compilation

variables in whose selector sets it belongs. Here we provide a modified set of CP-conditions
compatible with value decomposition as in Eq. 10. In fact, the modification brought by
Definition 6 is schematically simple: To fit the functional form 10, the CP-conditions as in
Definition 3 should be simply reformulated from CP- to TCP-families.

Definition 6 Consider a TCP-net N , and a set of non-negative real-valued functions Φ =
{φX1 , . . . , φXn} over F⋆

X1
, · · · ,F⋆

Xn
, respectively. We say that Φ satisfies the CP-conditions

of N if and only if for each X ∈ X , each u ∈ dom(UX) and s ∈ dom(SX), and each
x1, x2 ∈ dom(X), if N |= x1 ≻u x2 then, for each v ∈ dom(EF⋆

X \ {X}) compatible with u
and s we have:

φX(x1,u, s) +

|Y⋆
X |

∑

i=1

φYi(vi, x1) > φX(x2,u, s) +

|Y⋆
X |

∑

i=1

φYi(vi, x2) (12)

where vi is the value provided by v to F⋆
Yi

\ {X}.

Lemma 6 below shows that the (modified) CP-conditions and CI-conditions are neces-
sary and sufficient for GA-decomposability of general TCP-nets along the functional form
as in Eq. 10.

Lemma 6 Given a TCP-net N , and a function v(X ) =
∑n

i=1 φXi(F⋆
Xi

), we have v consis-

tent with N if and only if {φX1 , . . . , φXn} satisfy CP- and CI-conditions of N .

Again, Lemma 6 provides us with a mechanism for generating GA value functions con-
sistent with TCP-nets, similar to the procedures provided by Lemmas 1 and 4. Of course,
the complexity of the corresponding linear system L is not as before: The number of vari-
ables and inequalities in L is now O(ndλ′

) and O(nd2µ′
), where λ′ = maxX∈X {|F⋆

X |}, and
µ′ = maxX∈X {|EF⋆

X |}. Clearly, adding ci-arcs reduce the general compactness of GA-
decomposition, but factoring on TCP-families instead of CP-families seems unavoidable.

Corollary 7 If a TCP-net N is GA-decomposable over its TCP-families, and we have
maxX∈X {|EF⋆

X |} = k for some constant k, then a corresponding value function v(X ) =
∑n

i=1 φXi(F⋆
Xi

) can be constructed in time polynomial in the size of N .

Considering the completeness of GA-decomposition for general TCP-nets, it is unlikely
that every consistent TCP-net is GA-decomposable along the functional form as in Eq. 10.
Yet, in Theorem 8 below we show that such decomposability is complete for acyclic TCP-
nets. Since TCP-nets may contain both directed and annotated undirected arcs, the corre-
sponding notion of acyclicity is non-standard.

Definition 7 ([12]) The dependency graph N⋆ of TCP-net N contains all the nodes and
edges of N . Additionally, for every ci-arc (Xi,Xj) in N and every Xk ∈ S(Xi,Xj), N⋆

contains a pair of directed edges (Xk,Xi) and (Xk,Xj), if these edges are not already in N .

Figure 6 illustrates the notion of the dependency graph on the ”Flight to USA” TCP-net
example from [12].
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Figure 6: ”Flight to USA” TCP-net (a), and its dependency graph (b) (from [12].)

Definition 8 A TCP-net N is acyclic if each cycle in the undirected graph induced by
the dependency graph N⋆, when projected back to N⋆, contains a pair of directed arcs in
different directions6.

For instance, the TCP-net N in Figure 6(a) is acyclic—considering the cycle T—C—S
in the undirected graph induced by dependency graph N⋆, we see that the directed arcs
from T to S and from T to C in N⋆ are oriented in two different directions with respect to
that cycle (and the same property holds for all the cycles in the undirected graph induced
by N⋆.)

Based on the notion of acyclic TCP-nets, Theorem 8 finalizes our representation theory.

Theorem 8 Every acyclic TCP-net is GA-decomposable over its TCP-families.

Example 3 Consider the TCP-net N in Figure 7(a) that extends the CP-net from Exam-
ple 1 by a ci-arc γ = (X,Z) with Sγ = {U} and CIT (γ) as in Figure 7(a).

First, note that the TCP-families of U , X, and Y are identical to the CP-families of
these variables. While it is easy to see for U and Y , for X this is the case because the
only selector U of X already belongs to the parents UX of X. From that, it is not hard
to verify that the extended TCP-families of U , X, and Y are identical to their extended
TCP-families, and thus the CP-conditions of N for U , X, and Y are given by Eq. 4, Eq. 6,
and Eq. 7, respectively.

The situation with the variable Z is different because for Z we have FZ = {Z}, SZ =
{U}, and thus F⋆

Z = {Z,U}. Hence, in contrast to Example 1, the function φZ should

6. In particular, acyclic CP-nets are a sub-class of what is called conditionally acyclic TCP-nets, which
today is probably the widest known sub-class of consistent TCP-nets defined in terms of structural
properties of the networks [12].
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now be defined from dom(Z)× dom(U), and the CP-conditions for Z should be formulated
according to Definition 6. These CP-conditions are given by Eq. 13 below.

∀u ∈ {u1, u2, u3} :

φZ(z1, u) + φY (y1, x1, z1) > φZ(z2) + φY (y1, x1, z2)

φZ(z1, u) + φY (y1, x2, z1) > φZ(z2) + φY (y1, x2, z2)

φZ(z1, u) + φY (y2, x1, z1) > φZ(z2) + φY (y2, x1, z2)

φZ(z1, u) + φY (y2, x2, z1) > φZ(z2) + φY (y2, x2, z2)

(13)

Next, the CI-conditions of N are given by Eqs. 14 and 15 below. For the domain of the
selector set Sγ = {U} we have

(1) IX|u1
= ∅, IZ|u1

= {X} (X being more important than Z given u1),

(2) IX|u2
= ∅, IZ|u2

= ∅ (given u2, the ci-arc γ simply vanishes), and

(3) IX|u3
= {Z}, IZ|u3

= ∅ (Z being more important than X given u3).

The CI-constraints corresponding to the case (1) are

φX(x1, u1) + φZ(z1, u1) + φY (y1, x1, z1) > φX(x2, u1) + φZ(z2, u1) + φY (y1, x2, z2)

φX(x1, u1) + φZ(z1, u1) + φY (y2, x1, z1) > φX(x2, u1) + φZ(z2, u1) + φY (y2, x2, z2)

φX(x1, u1) + φZ(z2, u1) + φY (y1, x1, z2) > φX(x2, u1) + φZ(z1, u1) + φY (y1, x2, z1)

φX(x1, u1) + φZ(z2, u1) + φY (y2, x1, z2) > φX(x2, u1) + φZ(z1, u1) + φY (y2, x2, z1)

(14)

Note that Eq. 14 is similar to Eq. 9 with φZ(z1) and φZ(z2) being respectively replaced
with φZ(z1, u1) and φZ(z2, u1), all else being identical. This similarity is not incidental as,

given u1, the ci-arc (X,Z) is equivalent to the i-arc (
−−→
X,Z) from Example 2.

The CI-constraints corresponding to the case (3) are

φZ(z1, u3) + φX(x1, u3) + φY (y1, x1, z1) > φZ(z2, u3) + φX(x2, u3) + φY (y1, x2, z2)

φZ(z1, u3) + φX(x1, u3) + φY (y2, x1, z1) > φZ(z2, u3) + φX(x2, u3) + φY (y2, x2, z2)

φZ(z1, u3) + φX(x2, u3) + φY (y1, x2, z1) > φZ(z2, u3) + φX(x1, u3) + φY (y1, x1, z2)

φZ(z1, u3) + φX(x2, u3) + φY (y2, x2, z1) > φZ(z2, u3) + φX(x1, u3) + φY (y2, x1, z2)

(15)

Eq. 15 is structurally identical to Eq. 15, with the roles of X of Z being reversed.
Solving the linear system L obtained from the union of Eq. 4, Eqs. 6-7, and Eqs. 13-15

sing the same quadratic programming approach as in Examples 1-2 we generate the value
function depicted in Figure 7(b).

4. Refinement by Item-level Rankings

The goal of most preference elicitation systems is to help the user recognize the most
preferred item among the set of candidate items. The ceteris paribus semantics we used to
model natural preference statements is intuitive, but also weak. This implies that, typically,

19



Brafman, & Domshlak

u1 ≻ u3,

u2 ≻ u3

GFED@ABCU

��

GFED@ABCX

��

�

U
?>=<89:;Z

����
��

��
��

��
�

GFED@ABCY

u1 X � Z

u3 Z � X

u1 x1 ≻ x2 z1 ≻ z2

x1 ∧ z1 y1 ≻ y2

x2 y2 ≻ y1

u1 u2 u3
1 1 0

GFED@ABCU

��

GFED@ABCX

��

�

U
?>=<89:;Z

����
��

��
��

��
�

GFED@ABCY

x1 x2
u1 2.72 0
u2 0.21 0
u3 0.21 0

z1 z2
u1 1 0
u2 1 0
u3 1.5 0

y1 y2

x1, z1 1.29 0.29
x1, z2 0.29 0.29
x2, z1 0 1
x2, z2 0 1

(a) (b)

Figure 7: (a) Acyclic TCP-net with a ci-arc for Example 2; (b) The value function generated
for that TCP-net.

generalizing preference statements will only specify a partial order over the items. Phrased
differently, the set of value functions consistent with a set of statements will correspond to
many different orderings. Various systems attempt to further refine the user’s preference
information at this point. Here, we concentrate on the case the user is asked to rank
a small set of items. For instance, in [11], the user is presented with the 10 top items
according to one value function, and asked to point to the one most preferred amongst
them. This immediately yields 9 pairwise orderings between items. The question that
we ask in this section is whether we can integrate such explicit item rankings with the
generalizing preference statements, while maintaining the compact structure derived from
these generalizing preference statements.

Our results are somewhat surprising. Obviously, if the user’s ranking contradict the gen-
eralizing statements (e.g., she ranks a red car above an identical blue car, despite stating
that blue is her preferred color for cars), no value function can model both. But what hap-
pens when the user’s rankings are consistent with her generalizing preference statements?
That is, there exists an ordering that satisfies both the user’s generalizing preference state-
ments, as well as her explicit relative ranking of some items. Clearly, such information
can be modeled by some value function. What is perhaps surprising, is that it is not al-
ways possible to model this information using the type of compact value functions that can
model the generalizing information alone. The proof of this result is unconstructive, and
what we find puzzling about it, is that it is not obvious to see how such rankings violate
the structural assumptions of the underlying TCP-net.

For reasons that will be clear shortly, let us begin by considering preference expressions
from the simplest class for which we provide a polynomial time GA-decomposition, that is,
preference expressions representable as acyclic CP-nets with extended CP-families of the
variables all being of size bounded by a constant. According to Corollary 2, given such an
expression N we can efficiently generate a value function v as in Eq. 3 consistent with N .
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In addition, Theorem 3 shows that this value-function compilation is not only efficient and
sound, but also complete, that is, our ability to generate v is guaranteed.

Now, suppose that the user provides the system with a set of m item-level rankings
R = {oi

i1
≻ oi

i2
}m

i=1, oij ∈ Ω. The task of the system is now to incorporate R in the process
of generating a value-function.

Definition 9 Given a set of finite-domain variables X and k,m ∈ N
+, Φ(k) is the language

of CP-nets with maxX∈X {|EFX |} ≤ k, and Φ(k,m) is the language of expressions 〈N,R〉
consisting of a CP-net N ∈ Φ(k) and a set of item-level rankings R = {oi

i1
≻ oi

i2
}m′

i=1,

m′ ≤ m, consistent with N . (In particular, we have Φ(k,0) = Φ(k).) We use Φ
(k)
a and Φ

(k,m)
a

to denote the restrictions of Φ(k) and Φ(k,m) to acyclic CP-nets.

For a CP-net N , let LN be the system of linear constraints corresponding to the CP-
conditions of N (Definition 3.) Considering the GA-decomposiiton of 〈N,R〉 ∈ Φ(k,m) over
the CP-families of X (Eq. 3), as we have done so far, observe that each pairwise ranking
o1 ≻ o2 in R can be encoded as a linear constraint

∑

X∈X

φX(x1,u1) >
∑

X∈X

φX(x2,u2), (16)

where x1,u1 (respectively x2,u2) are the values provided by o1 (respectively o2) to the
variable X and its parents UX , respectively. Let LR denote the set of all m such constraints
corresponding to R. Let HLN,R

be the polytope defined by the LN ∪ LR. It is easy to
verify that any point in HLN,R

provides us with a value function as in Eq. 3 consistent with

both N and R. Likewise, for any fixed k ∈ N
+ and any N ∈ Φ(k), we can construct such

a value function efficiently. Hence, it appears that the value-function compilation scheme
as in Section 3.1 preserves both its soundness and efficiency when extended from Φ(k) to
Φ(k,m).

Corollary 9 Given a preference expression 〈N,R〉 ∈ Φ(k,m), if 〈N,R〉 is GA-decomposable
over the CP-families of N , then a value function v(X ) =

∑n
i=1 φXi(FXi

) consistent with N

and R can be constructed in time polynomial in k and m.

Having the positive result provided by Corollary 9, what is left to be studied is the
completeness of GA-decomposition of 〈N,R〉 ∈ Φ(k,m) over the CP-families of N , and in

particular, the completeness of this procedure for acyclic CP-nets. For 〈N, ∅〉 ∈ Φ
(k)
a ,

completeness is guaranteed by Theorem 3. At first view, there seems to be no reason why

it should not hold for 〈N,R〉 ∈ Φ
(k,m)
a , too. After all, (i) R is consistent with N , and

thus a value function consistent with both N and R does exists, and (ii) the assumptions
that the ceteris paribus interpretation of preference statements underlying CP-nets makes
about the information these statements communicate are arguably minimal [18]. However,
Theorem 10 shows that, in general, extending the preference specification language from
Φ(k) to Φ(k,m) does not preserve the completeness of GA-decomposition as in Eq. 3, unless
we have P = NP . Even more surprisingly, it shows that the completeness is not guaranteed
even if R contains only a single ranking between a pair of items.
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Theorem 10 Unless P = NP, for k ≥ 22, m ≥ 1, there exists a preference expression

〈N,R〉 ∈ Φ
(k,m)
a such that HLN,R

is empty.

Proof: The proof combines the results provided by Lemma 1 and Corollary 2, and the
results on complexity of dominance testing in CP-nets established in [8]. Given a CP-net
N and a pair of complete assignments o, o′ on the variables of N , the problem of testing
dominance of o over o′ is this of deciding N |= o ≻ o′. By a reduction from the classical
3-SAT problem, Theorem 15 in [8] shows that dominance testing in acyclic CP-nets is NP-
hard. For the detailed reduction, see [8]. Two points about the reduction are important for
us here:

1. The 3-SAT problem remains NP-hard for the subclass of 3-SAT formulae in which no
propositional variable appears (in both its positive and negated forms) in more than
three clauses (e.g., see [16], p. 259).

2. The reduction of satisfiability of this class of 3-SAT formulae to the problem of domi-
nance testing in acyclic CP-nets is effectively a reduction to the problem of dominance

testing in CP-nets Φ
(22)
a . Thus, dominance testing in CP-nets Φ

(22)
a is NP-hard as well.

Now, assume to the contrary that the polytope HLN,R
is empty for no 〈N,R〉 ∈ Φ

(22,1)
a ,

where k ≥ 22 and m ≥ 1, and consider the following procedure for dominance testing in

CP-nets Φ
(22)
a .

(1) Given a CP-net N ∈ Φ
(22)
a and a pair of complete assignments o, o′ on the variables

of N , construct two instances 〈N,R1〉, 〈N,R2〉 ∈ Φ
(22,1)
a with R1 = {o ≻ o′} and

R1 = {o′ ≻ o}, respectively.

(2) Create two linear programs LP1 and LP2 with constraints LN ∪LR1 and LN ∪LR2, and
arbitrary linear objective function bounded on HLN,R1

and HLN,R2
, respectively.

(3) Solve LP1 and LP2. If LP1 is feasible and LP2 is infeasible, return true. Otherwise,
return false.

First, Corollary 9 implies that the time complexity of this procedure is polynomial. Sec-

ond, our assumption of non-emptiness of HLN,R
for all 〈N,R〉 ∈ Φ

(22,1)
a implies that the

procedure returns true if and only if N |= o ≻ o′. However, unless we have P = NP , this

contradicts our previous result that dominance testing in CP-nets Φ
(22)
a is NP-hard. Given

the correctness of Corollary 9, we arrive into contradiction with our assumption regarding

universal non-emptiness of HLN,R
for Φ

(22,1)
a , and thus prove our theorem.

We end this section by generalizing the impossibility result of Theorem 10 to a wide
range of other languages for preference specification, including some yet to be proposed.

Theorem 11 (Generalized Impossibility) Given a language Φ of preference expres-
sions over a space of alternatives Ω, let Φ′ be an extension of Φ to include consistent
item level rankings, i.e.,

Φ′ = {N ∪ R | N ∈ Φ ∧ R = {o1 ≻ o2}, o1, o2 ∈ Ω ∧ N |= o1 ≻ o2} .
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Let V be the space of real-value functions over Ω, and let ΓΦ′ : Φ′ 7→ V ∪ {⊗} be a sound
value-function compilation scheme that either maps preference expressions N ′ ∈ Φ′ to value
functions consistent with them (if ΓΦ′(N ′) ∈ V ), or fails (if ΓΦ′(N ′) = ⊗.)

Given that, at least one of the following three properties holds.

(1) Dominance testing in Φ is in P.

(2) ΓΦ′ is not in P.

(3) ΓΦ′ is incomplete, that is, there exists N ′ ∈ Φ′ such that ΓΦ′(N ′) = ⊗.

It is not hard to verify that the basic idea underlying the proof of Theorem 10 extends in
a straightforward manner to a proof for Theorem 11. Note that the generality of the claim
in Theorem 11 is due to the fact that it poses no syntactical conditions on the preference
language Φ, or on the way the functions in V are physically specified. And since value-
function compilation is of a wide theoretical and practical interest, while dominance testing
has been shown to be NP- or coNP-hard for most non-trivial existing qualitative preference
specification languages [8, 25], the relevance of Theorem 11 is apparent.

In fact, below we show that Theorem 11 already provides an answer to at least one
open problem from the literature. Considering a preference specification language (referred
to here as Φcp) that strictly extends the language of TCP-nets, McGeachie and Doyle [27]
suggest a sound and complete value-function compilation scheme for this language. While
the compilation schemes suggested in [27] was shown by the authors to be worst-case com-
putationally intractable, McGeachie and Doyle left the necessity of such intractability as
an open question ([27], p. 174). Now, given that

(i) dominance testing in Φcp is known to be PSPACE-complete [25], and

(ii) Φ′
cp = Φcp because pairwise comparisons between completely specified elements of Ω

are simply part of the language Φcp,

Theorem 11 implies that no sound and complete compilation scheme for Φcp can be com-
putationally efficient, unless, of course, PSPACE collapses to P.

5. Summary, related work and open problems

In this work we have studied representational and computational issues of compiling a set
of qualitative statements of ordinal preference into a value-function consistent with these
statements. Specifically, we considered partial orders induced by certain sets of qualitative
statements of conditional preference and conditional relative importance, namely the sets
of statements representable by the TCP-net model [10, 12]. We presented a new representa-
tion theory for factored value functions that allow for more useful preferential independence
structures than those appearing in classical textbook results in this area [21]. In particular,
these representation results show that preference orders induced by a wide class of TCP-nets
can be consistently captured by compact generalized additive value functions. Moreover,
we show that for many such sets of statements, the corresponding generalized additive value
function can be efficiently generated. Next we considered a practically important problem
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of value-function compilation of a mixed set of generalizing and item-level preference state-
ments. Adding item-level preference statements does not affect neither the complexity nor
the soundness of compiling a set of generalizing preference statements. However, we showed
that the completeness of such compilation is affected, and provide a general impossibility
theorem on this matter.

The idea of representing partial preference information as a constraint over a space of
candidate value functions lies in the very foundations of measurement and multi-attribute
decision theory [24]. Given that, numerous works in the area of multi-attribute decision
making consider the computational and algorithmic issues of generating value functions con-
sistent with given preference information (e.g., see [33, 23, 22, 28].) Targeting the complexity
issues, these works a priori restrict the space of candidate value functions to be (in increasing
order of generality) linear, quasi-concave, or monotonic. However, it is easy to show that,
by definition, such functions cannot capture many intuitive preference statements, such as,
for instance, statements of conditional preference and/or importance. On the other hand,
some recent work in the field of artificial intelligence considers value-function compilation of
these (as well as some other) statements of preference [17, 27]. However, to the best of our
knowledge, our work is the first to provide a non-trivial preference specification language
for which value functions can be generated efficiently in a sound and complete manner.

Finally, our work raises numerous open theoretical questions, such as:

1. When (if at all) GA-decomposition is complete for cyclic TCP-nets, or even just cyclic
CP-nets?

2. What is the most compact form of GA-decomposition that is complete for all consis-
tent TCP-nets?

3. Can we characterize the representation theorem purely in terms of conditional inde-
pendence, without using the graph structure explicitly, or, alternatively, what are the
core properties of the graph that allow for a compact GA decomposition?

4. What are the concrete limits of our impossibility theorem for various preference spec-
ification languages? For instance, for what values of m and k < 22 can we obtain
completeness of GA-decomposition of Φ(k,m) over the CP-families of the variables?

We believe that addressing these questions will provide a better understanding of the
practical expressiveness and limitations of reasoning about ordinal preference information.
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Appendix A. Proofs

Theorem 3 Every acyclic CP-net is GA-decomposable over its CP-families.

Proof: To prove this claim we constructively show that, for every acyclic CP-net N , there
exists a function v(X ) =

∑n
i=1 φXi(FXi

) such that Φ = {φX1 , . . . , φXn} satisfy the CP-
conditions of N .

Given an acyclic CP-net N , for each variable X ∈ N , each value x ∈ dom(X), and each
assignment u ∈ dom(UX) we define a parameter p(x,u) to quantify the local preference for
x given u:

p(x,u) = |{x′ | x′ ∈ dom(X) and N |= x ≻u x′}|

For instance, if x is one of the least preferred value of X given u, then we have p(x,u) = 0,
and for each x ∈ dom(X) we have p(x,u) ≤ |dom(X)| − 1. (Recall that ≻u is a partial
order over dom(X).)

Next, we define weight coefficients wX1 , . . . , wXn . They are defined recursively, in a
top-down manner, as follows: If X is a root node of N (i.e., UX = ∅), then wX = K for
some arbitrary constant K > 0. Now, consider a variable X that is already assigned its
weight wX . We will distribute the weight of X is evenly between its children. This is done
by defining the following coefficient for each variable Y ∈ YX .

α
X→Y

=
wX

|YX | · |dom(Y )|
(17)

Since N is assumed to be acyclic, prior to processing a non-root node Y , the parameters
α

X→Y
are known for each X ∈ UY , and we assign:

wY = min
X∈UY

{α
X→Y

} (18)

Having the parameters p(x,u) and wX as above, we define the set of functions Φ =
{φX1 , . . . , φXn} in terms of these parameters as follows. For each variable X, each x ∈
dom(X), and each u ∈ dom(UX), we have:

φX(x,u) = wX · p(x,u) (19)

To prove the correctness of the construction, it is sufficient to show that Φ = {φX1 , . . . , φXn}
satisfy the CP-conditions of N . Consider a variable X, a pair of values x1, x2 ∈ dom(X),
and an assignment u ∈ dom(UX), such that N |= x1 ≻u x2. For each v ∈ dom(EFX −{X})
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compatible with u we have:

|YX |
∑

i=1

[

φYi(vi, x2) − φYi(vi, x1)
]

=

|YX |
∑

i=1

wYi (p(vi, x2) − p(vi, x1))

≤

|YX |
∑

i=1

α
X→Yi

(p(vi, x2) − p(vi, x1))

<

|YX |
∑

i=1

α
X→Yi

|dom(Yi)|

= wX < wX (p(x1,u) − p(x2,u))

= φX(x1,u) − φX(x2,u)

Lemma 4 Given a TCP-net N with no ci-arcs, and a function v(X ) =
∑n

i=1 φXi(FXi
),

we have that v is consistent with N if and only if {φX1 , . . . , φXn} satisfy both the CP and
I-conditions of N .

Proof: By definition, a value function v is consistent with N iff, for each pair of complete
assignments x1,x2 ∈ dom(X ) such that N |= x1 ≻ x2, we have v(x1) > v(x2). By the
semantics of TCP-nets, for TCP-nets with no ci-arcs, we can reduce this test to just two
cases of x1,x2 (the rest of the cases will be implied by the transitivity of the preference
relation induced by N):

(1) x1,x2 differ only in the value of a single variable X, and N |= x1 ≻u x2, and

(2) x,x′ differ only in the values of a pair of variables X,X ′ with i-arc (
−−−→
X,X ′) ∈ N , and

N |= x1 ≻u x2.

where x1 and x2 are the values provided to X by x1 and x2, respectively, and u is the
assignment provided by x1 (and x2) to UX .

Considering case (1), recall the notation used in Definition 3. From GA-decomposition
of v it follows that v(x1) > v(x2) iff

φX(x1,u) +

|YX |
∑

i=1

φYi(vi, x1) > φX(x2,u) +

|YX |
∑

i=1

φYi(vi, x2)

since all other sub-value functions of v take on the same values on x1 and x2. However,
since N |= x1 ≻u x2, this is exactly the formulation of the CP-condition of N with respect
to X.

Considering case (2), recall the notation used in Definition 4. Let x′
1 and x′

2 be the
values provided to X ′ by x1 and x2, respectively. From GA-decomposition of v it follows
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that v(x1) > v(x2) iff

φX(x1,u) + φX′
(x′

1,u
′) +

|YX |
∑

i=1

φYi(vi, x1, x
′
1) +

|YX′−YX |
∑

i=1

φY ′
i (v′

i, x
′
1, x1) >

φX(x2,u) + φX′
(x′

2,u
′) +

|YX |
∑

i=1

φYi(vi, x2, x
′
2) +

|YX′−YX |
∑

i=1

φY ′
i (v′

i, x
′
2, x2)

(20)

since all other sub-value functions of v take on the same values on x1 and x2. Again, since
N |= x1 ≻u x2, this is exactly the formulation of the I-condition of N with respect to X.

Finally, suppose that Φ does not satisfy the I-conditions of N . It means that there exists

an i-arc (
−−−→
X,X ′) ∈ N , an assignment u ∈ dom(UX), and a pair of values x1, x2 ∈ dom(X),

such that N |= x1 ≻u x2, yet there exist a pair of values x′
1, x

′
2 ∈ dom(X ′), and a set of

(all compatible) u′ ∈ dom(UX′), v ∈ dom(EFX −{X,X ′}), v′ ∈ dom(EFX′ −{X,X ′}) such
that:

φX(x1,u) + φX′
(x′

1,u
′) +

|YX |
∑

i=1

φYi(vi, x1, x
′
1) +

|YX′−YX |
∑

i=1

φY ′
i (v′

i, x
′
1, x1) ≤

φX(x2,u) + φX′
(x′

2,u
′) +

|YX |
∑

i=1

φYi(vi, x2, x
′
2) +

|YX′−YX |
∑

i=1

φY ′
i (v′

i, x
′
2, x2)

(21)

Let A = X − (EFX ∪ EFX′). Due to the GA-decomposition of v, for all a ∈ dom(A),
Eq. 21 implies v(x1) < v(x2), where x1 = x1x

′
1uu′vv′a, and x1 = x2x

′
2uu′vv′a. However,

this implies that N 6|= x1 ≻ x2, which contradicts the semantics of i-arc (
−−−→
X,X ′). Hence,

we accomplished the proof that Φ = {φX1 , . . . , φXn} satisfying the CP-conditions and I-
conditions of N is a necessary and sufficient condition for v as in Lemma 4 to be consistent
with N .

Theorem 5 Every acyclic TCP-net with no ci-arcs is GA-decomposable over its CP-
families.

Proof: First, extending our notation, for each variable X ∈ X , let IX denote the set of
all variables X ′ ∈ X that are directly and unconditionally more important that X, i.e., for

each X ′ ∈ IX , there is an i-arc (
−−−→
X ′,X) ∈ N .

The proof of Theorem 5 is based on the construction similar to this in the proof of
Theorem 3, but with Eq. 18 replaced by:

wY = min

{

min
X∈UY

{α
X→Y

}, min
X∈IY

{

wX

δ2

}}

(22)

where
δ = 1 + max

X∈X
|dom(X)|

First, observe that replacing Eq. 18 by Eq. 22 has no impact on the satisfying the CP-
conditions, since w(Y ) in Eq. 22 is at least as small (comparatively to all wX , X ∈ UY ) as
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this in Eq. 18. Therefore, we only should prove that Φ = {φX1 , . . . , φXn} constructed this

way will satisfy the I-conditions of N . Consider an i-arc (
−−−→
X,X ′), rewrite Eq. 8 as:

φX(x1,u) − φX(x2,u) −

|YX |
∑

i=1

[

φYi(vi, x2, x
′
2) − φYi(vi, x1, x

′
1)

]

>

φX′
(x′

2,u
′) − φX′

(x′
1,u

′) −

|YX′−YX |
∑

i=1

[

φY ′
i (v′

i, x
′
1, x1) − φY ′

i (v′
i, x

′
2, x2)

]

(23)

and denote the left and right sides of Eq. 23 by (⋆) and (⋆⋆), respectively.

(⋆) = w
X (p(x1,u) − p(x2, u)) −

|YX |
X

i=1

w
Yi
`

p(vi, x2, x
′
2) − p(vi, x1, x

′
2)
´

≥

≥ w
X −

|YX |
X

i=1

w
Yi (|dom(Yi)| − 1) ≥

≥ w
X −

|YX |
X

i=1

α
X→Yi

(|dom(Yi)| − 1) =

= w
X −

|YX |
X

i=1

„

wX

|YX |
−

wX

|YX | · |dom(Yi)|

«

=

=
wX

|YX |

|YX |
X

i=1

1

|dom(Yi)|
>

>
wX

δ

(24)

(⋆⋆) = w
X′ `

p(x′
2,u

′) − p(x′
1,u

′)
´

−

|Y
X′ |
X

i=1

w
Y ′

i

`

p(v′
i, x

′
1, x1) − p(v′

i, x
′
2, x1)

´

≤

≤ w
X′ `

|dom(X ′)| − 1
´

+

|Y
X′ |
X

i=1

w
Y ′

i

`

|dom(Y ′
i )| − 1

´

≤

≤ w
X′ `

|dom(X ′)| − 1
´

+

|Y
X′ |
X

i=1

α
X′→Y ′

i

`

|dom(Y ′
i )| − 1

´

=

= w
X′ `

|dom(X ′)| − 1
´

+

|Y
X′ |
X

i=1

 

wX′

|YX′ |
−

wX′

|YX′ | · |dom(Y ′
i )|

!

=

= w
X′

0

@|dom(X ′)| −
1

|YX′ |

|Y
X′ |
X

i=1

1

|dom(Y ′
i )|

1

A <

< w
X′

|dom(X ′)|

(25)

From Eqs. 24 and 25 it follows that Φ = {φX1 , . . . , φXn} will satisfy the I-conditions of
N if:

wX

δ
≥ wX′

|dom(X ′)|,

which is ensured by the new definition of wX in Eq. 22.
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Lemma 6 Given a TCP-net N , and a function v(X ) =
∑n

i=1 φXi(F⋆
Xi

), we have v consis-

tent with N if and only if {φX1 , . . . , φXn} satisfy CP- and CI-conditions of N .

Proof: By definition, a value function v is consistent with N iff, for each pair of complete
assignments x1,x2 ∈ dom(X ) such that N |= x1 ≻ x2, we have v(x1) > v(x2). By the
semantics of TCP-nets, we can reduce this test to just two cases of x1,x2 (the rest of the
cases will be implied by the transitivity of the preference relation induced by N):

(1) x1,x2 differ only in the value of a single variable X, and N |= x1 ≻u x2, and

(2) x,x′ differ only in the values of a pair of variables X,X ′, such that N |= x1 ≻u x2, and

we have either i-arc (
−−−→
X,X ′) ∈ N , or ci-arc (X,X ′) ∈ N and X being more important

than X ′ given sγ ,

where x1 and x2 are the values provided to X by x1 and x2, respectively, while u and sγ

are the assignments provided by x1 (and x2) to UX and S(X,X′), respectively. Analysis of
these two cases with respect to Eq. 12 and 11 is similar to the analysis of the corresponding
two cases in the proof of Lemma 4 regarding Eqs. 2 and 8, respectively.

Theorem 8 Every acyclic TCP-net is GA-decomposable over its TCP-families.

Proof: Given an acyclic TCP-net N , we define a set of functions Φ = {φX1 , . . . , φXn} over
{

F⋆
X1

, · · · ,F⋆
Xn

}

, respectively, where for 1 ≤ i ≤ n, each x ∈ dom(Xi), u ∈ dom(UXi
),

s ∈ dom(SXi
), we have:

φXi(x,u, s) = wXi(s) · pXi(x,u) (26)

The functions pX are defined exactly as in the proof for Theorem 3. Let a ⊲⊳ b denote
the fact that two assignments a and b on some sets of variables are compatible, i.e. agree on
the assignment provided to their overlapping variables. The weight function wX is defined
as:

wX(s) = min

{

min
X′∈UX∪SX

{α
X′→X

(s)}, min
X′′∈IX|s

{β
X′′→X

(s)}

}

(27)

where, for each X ′ ∈ UX ∪ SX ,

α
X′→X

(s) = min
s
′∈dom(S

X′ )

s
′⊲⊳ s

{

wX′
(s′)

|Y⋆
X′ | · |dom(X)|

}

(28)

and, for each X ′′ ∈ IX|s,

β
X′′→X

(s) = min
s
′′∈dom(S

X′′ )

s
′′⊲⊳ s

{

wX′′
(s′′)

δ2

}

(29)

We claim that the function

v(X ) =
n

∑

i=1

φXi(F⋆
Xi

)

with Φ = {φX1 , . . . , φXn} constructed according to Eq. 26:
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1. satisfies the CP- and CI-conditions of N , and

2. have well-defined weight functions wX1 , · · · , wXn .

CI-conditions: Let us rewrite Eq. 11 as:

φX(x1,u, s) − φX′
(x2,u, s) −

|Y⋆
X
|

∑

i=1

[

φYi(vi, x2, x
′
2) − φYi(vi, x1, x

′
1)

]

>

φX′
(x′

2,u
′, s′) − φX′

(x′
1,u

′, s′) −

|Y⋆
X′−Y⋆

X |
∑

i=1

[

φY ′
i (v′

i, x
′
1, x1) − φY ′

i (v′
i, x

′
2, x2)

]

(30)

and denote the right and left sides of Eq. 30 by (⋆) and (⋆⋆), respectively. For (⋆), we have:

(⋆) = w
X(s) (p(x1,u) − p(x2,u))

+

|Y⋆

X
|

X

i=1

h

w
Yi(si, x1)p(yi,ui, x1, x

′
1) − w

Yi(si, x2)p(yi,ui, x2, x
′
2)
i (31)

where yi is the value provided by vi to Yi, while si and ui are the projections of vi on
SYi

−{X ′} and UYi
−{X ′}, respectively. (Note that x′

1 and x′
2 might be redundant in some

p(vi, . . .) and wYi .) Now, since p(x1,u) > p(x2,u), from Eq. 31 we have:

(⋆) ≥ w
X(s) −

|Y⋆

X
|

X

i=1

w
Yi(si, x2)(|dom(Yi)| − 1) ≥

≥ w
X(s) −

|Y⋆

X
|

X

i=1

α
X→Yi

(si, x2)(|dom(Yi)| − 1) =

= w
X(s) −

|Y⋆

X
|

X

i=1

min
s̄∈dom(SX )

s̄⊲⊳ si



wX(s̄)

|Y⋆
X | · |dom(Yi)|

ff

· (|dom(Yi)| − 1) ≥

≥ w
X(s) −

|Y⋆

X
|

X

i=1

„

wX(s)

|Y⋆
X |

−
wX(s)

|Y⋆
X | · |dom(Yi)|

«

=

=
wX(s)

|Y⋆
X |

|Y⋆

X
|

X

i=1

1

|dom(Yi)|
>

>
wX(s)

δ

(32)

Writing (⋆⋆) similarly to (⋆) in Eq. 31, we have:

(⋆⋆) = w
X′

(s′)
`

p(x′
2,u

′) − p(x′
1,u

′)
´

+

|Y⋆

X′ |
X

i=1

h

w
Y ′

i (s′i, x
′
2)p(u′

i, x
′
2, x2) − w

Y ′
i (y′

i, s
′
i, x

′
1)p(y′

i,u
′
i, x

′
1, x1)

i (33)

where y′
i is the value provided by v′

i to Y ′
i , while s′i and u′

i are the projections of v′
i on

SY ′
i
− {X} and UY ′

i
− {X}, respectively. (Again, note that x1 and x2 might be redundant
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in some p(v′
i, . . .) and wY ′

i .) From Eq. 33 we have:

(⋆⋆) ≤ w
X′

(s′)
`

|dom(X ′)| − 1
´

+

|Y⋆

X′ |
X

i=1

w
Y ′

i (s′i, x
′
2)
`

|dom(Y ′
i )| − 1

´

≤

≤ w
X′

(s′)
`

|dom(X ′)| − 1
´

+

|Y⋆

X′ |
X

i=1

α
X′→Y ′

i

(s′i, x
′
max)

`

|dom(Y ′
i )| − 1

´

=

= w
X′

(s′)
`

|dom(X ′)| − 1
´

+

|Y⋆

X′ |
X

i=1

min
s̄∈dom(S

X′ )

s̄⊲⊳ s
′
i

(

wX′

(s̄)

|Y⋆
X′ | · |dom(Y ′

i )|

)

`

|dom(Y ′
i )| − 1

´

=

= w
X′

(s′)
`

|dom(X ′)| − 1
´

+ min
s̄∈dom(S

X′ )

s̄⊲⊳ s
′
i

n

w
X′

(s̄)
o

−

min
s̄∈dom(S

X′ )

s̄⊲⊳ s
′
i

n

wX′

(s̄)
o

|Y⋆
X′ |

|Y⋆

X′ |
X

i=1

1

|dom(Y ′
i )|

≤

≤ w
X′

(s′) · |dom(X ′)| <

< w
X′

(s′) · δ

(34)

From Eq. 32 and 34 it follows that our set of functions Φ = {φX1 , . . . , φXn} satisfies the
CI-conditions of N if we have:

wX(s)

δ
≥ wX′

(s′) · δ,

and, since X ∈ IX′|s′ , this relation is ensured by the construction of wX1 , · · · , wXn (Eqs. 27
and 29).

CP-conditions: Considering Eq. 12, let yi is the value provided by vi to Yi, while si and ui

be the projections of vi on SYi
and UYi

, respectively. Satisfaction of Eq. 12 can be shown
as follows:

|YX∪WX |
X

i=1

h

φ
Yi(yi, x2,ui, si) − φ

Yi(yi, x1,ui, si)
i

=

|YX∪WX |
X

i=1

w
Yi(si, x2)p(yi, x2,ui) − w

Yi(si, x1)p(yi, x1, ui)

≤

|YX∪WX |
X

i=1

α
X→Yi

(si, x2)p(yi, x2,ui, zi)

<

|YX∪WX |
X

i=1

α
X→Yi

(si, x2)|dom(Yi)|

≤

|YX∪WX |
X

i=1

wX(s)

|YX ∪WX |

= w
X(s)

< w
X(s) (p(x1,u) − p(x2,u))

= φ
X(x1, u, s) − φ

X(x2,u, s)

(35)

Well-definedness: The last thing that remains to be shown is that the functions wX1 , · · · , wXn
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as in Eq. 27 are well-defined. Given a variable X ∈ X and an assignment s ∈ dom(SX),
from Eq. 27 it follows that (i) wX(s) = fs(w

X′
(s′)) for some X ′ ∈ (UX ∪ SX ∪ IX|s) and

some s′ ∈ dom(SX′) compatible with s, and (ii) wX(s) < fs(w
X′

(s′)). Since for the root
variables X of N the (only) function wX(∅) is explicitly specified as wX(∅) = K, the set of
functions wX1 , · · · , wXn is not well-defined if and only if there exists a sequence of variables
Xi1 , . . . ,Xik and a set of assignments s1, . . . , sk on SXi1

, . . . ,SXik
, respectively, such that:

wXi1 (s1) = fs1(w
Xi2 (s2))

wXi2 (s2) = fs2(w
Xi3 (s3))

. . .

w
Xik−1 (sk−1) = fsk−1

(wXik (sk))

wXik (sk) = fsk
(wXi1 (s1))

(36)

However, assuming that such a sequence exists will immediately violate the acyclicity of N .
Hence, wX1 , · · · , wXn as in Eq. 27 are well-defined.
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