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Abstract

Abduction is a fundamental form of nonmonotonic reasoning that aims at finding
explanations for observed manifestations. This process underlies many applications,
from car configuration to medical diagnosis. We study here the computational com-
plexity of deciding whether an explanation exists in the case when the application
domain is described by a propositional knowledge base. Building on previous results,
we classify the complexity for local restrictions on the knowledge base and under
various restrictions on hypotheses and manifestations. In comparison to the many
previous studies on the complexity of abduction we are able to give a much more
detailed picture for the complexity of the basic problem of deciding the existence
of an explanation. It turns out that depending on the restrictions, the problem in
this framework is always polynomial-time solvable, NP-complete, coNP-complete,
or ¥5-complete.

Based on these results, we give an a posteriori justification of what makes propo-
sitional abduction hard even for some classes of knowledge bases which allow for
efficient satisfiability testing and deduction. This justification is very simple and
intuitive, but it reveals that no nontrivial class of abduction problems is tractable.
Indeed, tractability essentially requires that the language for knowledge bases is un-
able to express both causal links and conflicts between hypotheses. This generalizes
a similar observation by Bylander et al. for set-covering abduction.
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1 Introduction

Abduction is the fundamental reasoning process which consists of explaining
observations by plausible causes taken from a given set of hypotheses. For
instance, it is an abduction problem to try to derive diseases from observed
symptoms, according to known rules relating both. This process was exten-
sively studied by Peirce [6], and its importance to Artificial Intelligence was
first emphasized by Morgan [38] and Pople [41].

From the application point of view, abduction has demonstrated its impor-
tance. It has been applied in particular to explanation-based diagnosis (e.g.,
medical diagnosis [7]), to text interpretation [29], and to planning [28]. It is
also the fundamental process underlying ATMSs [13].

The formalization and resolution of abduction problems have been studied
in numerous formalisms, among which set-covering [7], default logic [22], logic
programming [21,36]. We are interested here in its resolution in classical propo-
sitional logic.

We adopt a complexity-theoretic point of view. More precisely, we are in-
terested in the complexity of deciding whether an abduction problem has
a solution when the underlying knowledge base is propositional. Thus our
study follows Selman and Levesque’s [48] and Eiter and Gottlob’s [20] sem-
inal papers. We also build on two classifications previously obtained in our
framework [12,40].

Even in the simple setting of propositional logic, deciding whether an ab-
duction problem has a solution is in general ¥¥-complete. Consequently, like
for most hard computational problems, several approaches have been studied
for solving it efficiently: Exhibiting tractable classes obtained by restrictions
over the knowledge base [12,16,20,24,51]; heuristic approaches, in particular
through computation of prime implicates [14,15,37,49] and through reducing
the problem to QBF and using generic QBF solvers [19]; compilation [8,35];
and approximation [31,50].

In this paper we adopt the approach consisting of trying to find tractable
restrictions over the knowledge base. Our contribution is twofold.

First, we identify the complexity of abduction, with varying restrictions over
the representations of manifestations and hypotheses, for every constraint lan-
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guage and every clausal or equational language restricting the (propositional)
knowledge base, under reasonable assumptions on the representation of the
constraints. Concerning manifestations, we study the restrictions where they
are expressed as a positive, negative, or unrestricted literal, clause, term, or
CNEF. Concerning hypotheses, we study the restrictions where they are ex-
pressed by a set of literals which is positive, negative, closed under comple-
ment, or unrestricted. To that aim, we use the now well-known Schaefer’s
framework [46] and Post’s lattice [42]. Precisely, we proceed as follows.

e We first prove a relatively small number of tractability and hardness results
for particular constraint languages.

e Using Post’s classification and these results, we then derive the complexity
of abduction for any constraint language.

e In a similar manner, and at the same time, we obtain the complexity of
abduction for any clausal or equational language.

We exhibit new polynomial and new hard restrictions. We also discover that
abduction is always either in P, NP-complete, coNP-complete, or ¥:¥'-complete,
depending on the restrictions. Such a result could not be taken for granted,
due to Ladner’s result stating that if P # NP, then there exist problems
in NP that are neither in P nor NP-complete [33]. Moreover, the fact that
some restrictions yield NP-complete, and others coNP-complete problems is
surprising at first sight. It reveals in particular that abduction is a very rich
problem in terms of completeness results in different complexity classes. Thus
our results can be used as starting points for establishing complexity results
for other problems, in particular in nonmonotonic reasoning.

From the application point of view, our tables of complexity allow the design-
ers of knowledge-based agents or expert systems to choose the appropriate
knowledge representation language, according to the tradeoff between the ex-
pressiveness required and the constraints on resolution of abduction problems.
Moreover, when a representation language that is hard for abduction must be
used, the precise complexity of the corresponding problem allows to choose
heuristic approaches for solving it. For instance, with an appropriate reduc-
tion an NP-complete problem can be solved by a satisfiability solver, while a
YP-complete one cannot; a more generic QBF solver (or a specialized QBF 39
solver) must be used.

Our second contribution is to identify a simple set of minimal conditions yield-
ing NP-completeness for languages which allow for efficient deduction (and are
thus good candidates for knowledge representation). For instance, when terms
have to be explained, we discover that abduction is NP-hard exactly when
the language for knowledge bases can both express causal links from hypothe-
ses to individual manifestations and forbid some combinations of hypotheses.
This generalizes similar observations by Bylander et al. [7] about set-covering



abduction.

From this condition it follows that tractability can occur only in very restricted
cases, i.e., when there can be no causal dependency at all or when causes can
all be assumed together. For instance, in medical diagnosis this means that
diseases must not rule each other out for the task to be tractable. We also
argue that these conditions give intuitions about results beyond Schaefer’s
framework of constraint languages, and we revisit some previously known re-
sults in that manner. In this spirit, our observations allow to adopt a unified
point of view on the results exhibited with many different restrictions in the
literature.

The use of Post’s lattice and Schaefer’s framework for studying the complex-
ity of reasoning problems is sometimes considered to be overlimitating. For
instance, it does not encompass the class of all Horn formulas; this is because
Horn clauses can be arbitrarily long. In this study, we adopt these powerful
tools coming from complexity-theory and show how to overcome some of these
limitations. Indeed, we use them to show results about infinite constraint lan-
guages as well as about finite ones, and we formulate the former in terms
of classes of CNF formulas. These extensions are directly motivated by Al-
applications where it is common to model the knowledge base using an infinite
constraint language represented in terms of classes of CNF formulas.

To put our results in context, we briefly discuss the results from the literature
on the complexity of abduction that are most relevant to our present study.
Our starting point is Selman and Levesque’s [48], and Eiter and Gottlob’s [20)]
classical results. Selman and Levesque [48] proved that deciding whether an
abduction problem over a Horn knowledge base has an explanation is NP-
complete, even when the hypotheses are given as a set of positive literals and
the manifestation is a single positive literal. Similarly, Eiter and Gottlob [20]
proved that when the knowledge base is given by a general propositional for-
mula, the problem becomes X}-complete. Moreover they note that when the
knowledge base is given by a definite Horn formula, the hypotheses are pos-
itive literals, and the manifestations are given by a positive term, then the
problem is in P.

From these results it is clear that the complexity of the abduction problem
depends heavily on the representation language of the knowledge base. This
have led researchers to investigate the complexity of abduction for various
restrictions on the representation language of the knowledge base. This line
of research culminated with the two recent complexity classifications given
in [12,40]. In these papers the complexity of deciding if there exists an expla-
nation is classified for a very general class of restrictions on the representation
language of the knowledge base, that include many restrictions that have been
studied before in the literature. Although the restrictions on the representa-



tion language of the knowledge base studied in these papers are identical, the
papers differ on the representation of hypotheses and manifestations. In [12]
the hypotheses are given by a set of literals that are closed under complement
and the manifestation is given by a single literal, while in [40] the hypotheses
are allowed to be any set of literals and the manifestations are given by a
term.

When comparing the results of [12] and [40] it becomes clear that even small
variations on the representation of hypotheses and manifestations can have a
strong impact on the complexity of the abduction problem. Hence, to under-
stand the complexity of abduction one must also understand how restrictions
on the representation of hypotheses and manifestations influence the complex-
ity. This is partially the motivation for the present study where we systemat-
ically analyse the complexity of abduction under simultaneous restrictions on
the representation of hypotheses, manifestations, and the knowledge base.

The paper is organized as follows. We first give some preliminaries about
propositional logic, Schaefer’s framework and complexity classes (Section 2)
and the definition of the abduction problems we are interested in (Section 3).
We then survey previous work and give an overview of our results (Section 4).
The technical content of the paper follows: we give several generic reductions
between abduction problems (Section 5) and recall several well-known tools for
studying abduction (Section 6); we then give the complexity results (Sections 7
to 12) by distinguishing the various families of restrictions over the knowledge
base. These results are summarized in Section 13, and some further restrictions
on the problems are discussed in Section 14. Finally, we discuss what makes
abduction hard in Section 15, and we conclude in Section 16.

2 Preliminaries

In the paper we consider restrictions over knowledge bases seen either as propo-
sitional formulas or as conjunctions of constraints taken from a fixed language.
We introduce here the corresponding basic definitions and notations, define the
restrictions that we will consider, and briefly recall some complexity notions.

2.1 Propositional logic

Boolean variables are usually denoted by x, possibly with subscripts and su-
perscripts. A literal is either a variable (positive literal) or the negation of one
(negative literal). Literals are usually denoted by ¢. The opposite of literal ¢

is written /, i.e., { = x if ¢ = =z and vice-versa.



A clause is a finite disjunction of literals, written C' = ¢; V lo V ---V {,. A
formula in Conjunctive Normal Form (a CNF for short) is a finite conjunction
of clauses, written KB = C; ACy A --- AN Cy. A term is a finite conjunction
of literals, written T'= ¢; A 5 A --- A £,,. Variables, literals, clauses and terms
are considered special cases of formulas. A (linear) equation is an equation of
the form (zy @22 ® -+ - ®x, = a) with a € {0, 1} (& denotes addition modulo
2). An affine formula is a finite conjunction of linear equations. Observe that
affine formulas are not CNFs.

If ¢ is a formula, Vars(p) denotes the set of all variables that occur in ¢.
Given a set of variables V', Lits(V') denotes the set of all literals formed upon
the variables in V, i.e., Lits(V) = VU {—z | z € V}. If L is a set of literals,
A L denotes their conjunction, and N (L) denotes the set of opposite literals
{¢]¢€ L}. A clause, term, or CNF is said to be positive (resp. negative) if
all the literals which occur in it are positive (resp. negative), and a clause or
term is said to be unit if it contains exactly one literal. The empty clause is
written L. Observe that Vars(L) = () and that L is always false. Similarly,
(0 = 1) denotes the always false linear equation with no variable.

An assignment p to a set of variables V' is a mapping from V' to {0,1}. When
the order of the variables is clear, we write assignments as words, e.g., ;= 011
if pu(z1) = 0 and p(zy) = p(xz) = 1. If KB is a formula, an assignment u to
Vars(KB) or to a superset of Vars(KB) is said to satisfy KB, or to be a model
of KB, if it makes KB evaluate to 1 with the usual rules for the connectives.
We write 1 = KB.

A formula KB is said to be satisfiable if it has at least one model. It is said
to entail a formula KB’ if every assignment to Vars(KB) U Vars(KB') which
satisfies KB also satisfies KB, written KB = KB'. If moreover KB' = KB,
then KB and KB’ are said to be (logically) equivalent, written KB = KB'.

Example 1 The formula:

KB = (lL‘l V 172) VAN (_LI’Q V T3 V _|I4) A (_|[E1 V ) V _|ZL‘3) VAN (_\IL'l V _\ZL'Q)

is a CNF containing 4 clauses. We have Vars(KB) = {1, xe,x3, x4}, and thus
Lits(Vars(KB)) = {x1, ~w1, ..., x4, ~x4}. The assignment p to Vars(KB) de-
fined by p(xy) = 0, p(z) = 1, ples) = 0, and p(xy) = 0 (= 0100 for
short) is a model of KB, while 0000 is not. The formula KB' = (v, ® x5 =
1) A (22 ® x3) = 0 is an affine formula. Its set of models is {011,100}, and it
can be seen that KB' |= KB, while KB £~ KB' and thus, KB # KB'.



2.2 Classes of clauses and equations

We will first impose restrictions on the knowledge bases of abduction problems
in the form of classes of clauses and linear equations. These classes are reported
in Table 1 (page 11, second and third columns) and described below.

The class of all clauses is denoted by Coyr. A clause C' is said to be 1-valid
if it is satisfied by assigning 1 to all variables in it. Equivalently, a clause is
1-valid if it contains at least one positive literal. The class of all 1-valid clauses
is denoted by C,. Dually, Cy, is the class of all 0-valid clauses.

A clause is Horn if it contains at most one positive literal. The class of all
Horn clauses is denoted by Cporm- A clause is 1-valid Horn (also called definite
Horn) if it contains exactly one positive literal. The class of all 1-valid Horn
clauses is denoted by C;,_ gor- Analogously, a clause C' is said to be dual-Horn
(0-valid dual-Horn) if it contains at most one (exactly one) negative literal,
and the class of all dual-Horn clauses (0-valid dual-Horn clauses) is denoted
by Cattorn (Cov—arorn). Moreover, the class of all 1-valid dual-Horn clauses is
denoted by C;y_qrorn-

A clause is said to be bijunctive if it contains at most two literals, and implica-
tive if it contains zero (empty clause) or one literal, or is of the form (—z1 Vxa).
The classes of all bijunctive and of all implicative clauses are denoted by Cy;
and Cpy, respectively. A clause is said to be IHS-B— if it is implicative or
negative, and the class of all IHS-B— clauses is denoted by Crgsp_. Similarly,
a clause is said to be IHS-B+ if it is implicative or positive, and the class of
all IHS-B+ clauses is denoted by Crygpy. Moreover, a clause is said to be of
width k if it contains at most k literals. The classes of all IHS-B— and IHS-B+
clauses of width k are denoted Ciysp—/r and Crysp i, respectively.

A clause is said to be essentially negative if it is negative or unit positive. The
class Cyey,— contains all essentially negative clauses, as well as the equality
relations (z; = x3). Observe that such equality relations are not clauses, thus
we slightly abuse language. The reason why we allow the equality relation is
that it makes the class C,., — equivalent in expressiveness to a relational clone,
and thus, in particular, stable with respect to the complexity of abduction (see
Section 2.3). Nevertheless, we also discuss the case when this relation is not
allowed in the paper. Dually to C,, =, the class C,y~ contains all essentially
positive clauses and the equality relations.

Recall that a linear equation is an equation of the form (z; & --- ® z, = a),
a € {0,1}. The class of all linear equations is denoted by £,5. Similarly to the
case of clauses we say that a linear equation is 1-valid (resp. O-valid) if it is
satisfied by assigning 1 (resp. 0) to all variables in it. The classes of all 1-valid
and all 0-valid linear equations are denoted by &, .5 and £y, q5, respectively.



A linear equation is of width 2 if it contains at most two variables. The class
of all linear equations of width 2 is denoted by &, /2.

Finally, the class Cyn; — contains all unit clauses and equality relations (the
same remark as for C,., — applies). The class C;y—ynit,— contains the unit pos-
itive clauses and the equality relations, and the class Cyp,—ynit,— contains the
unit negative clauses and the equality relations.

2.3 Constraint languages and Post’s lattice

In this section we introduce the notions of constraint languages and relational
clones. We also describe Post’s classification of all Boolean relational clones,
usually referred to as Post’s lattice. A more detailed introduction to Post’s
lattice can be found in the survey articles [2,3].

Constraints generalize the notions of clauses and linear equations, and con-
straint languages generalize the notion of classes of clauses and equations. The
set of all n-tuples of elements from {0, 1} is denoted by {0, 1}". Such tuples are
denoted as sequences or as words, e.g., (0,1,1) or 011. Any subset of {0, 1}"
is called an n-ary relation on {0,1}. A (finite) constraint language over {0, 1}
is an arbitrary (finite) set of (finitary) relations over {0, 1}.

If T is a constraint language, then a constraint over I' is an application of
an n-ary relation R € I' to an n-tuple of variables, written R(x1,...,%,)
(possibly with repeated variables). A formula over I' (or I'-formula) is a finite
conjunction of constraints over I', written KB = Ry(T11,...,T1n) A -+ A
Ri(Tk1, .- ., Tkn, )- A constraint over I' is considered a special case of I'-formula.
Like for propositional formulas, we write Vars(KB) for the set of all variables
occurring in KB.

If C = R(xq,...,x,) is a constraint, an assignment p to {z1,...,x,} or to
a superset of {x1,...,x,} is said to satisfy C, or to be a model of C, if the
n-tuple (u(xy), p(z2), ..., p(xy,)) is in R. If KB is a I'-formula, then p is said
to satisfy KB if it satisfies all its constraints. The notions of satisfiability,
entailment and equivalence are defined like for propositional formulas, and
similarly for entailment and equivalence between a propositional formula and
a I'-formula.

Example 2 (continued) The set R ={0100,0110,0111,1000, 1001} is a 4-
ary relation, and R’ = {01,10} and R" = {00,11} are binary relations. Thus
I' ={R,R,R"} is a constraint language. Then R(xq,xs,x3,14) N R"(x3,24)
is a I'-formula. It can be seen that this formula entails KB of Example 1.

Now C' = R(x1,x9,x3,23) is a I'-constraint (over three variables) satisfied by
exactly 010,011, 100.



The unary relations F = {0} and T = {1} have a special role for abduction
problems, as well as the binary relations R- = {00, 11} and R, = {01, 10}.

Relations and formulas are linked to each other by the following definition.

Definition 3 (representation) An n-ary relation R is said to be repre-
sented by a formula ¢ if Vars(p) = {x1,...,x,} and p = R(z1, ..., 2,).

Thus, slightly abusing notation, we will identify a clause (or equation) C' on
variables x1, ...,z with the k-ary relation consisting of its set of satisfying
assignments. In particular, we will often identify the literal = (resp. —x) and
the unary constraint T(z) (resp. F(x)), so that if KB is a I'-formula and L is
a set of literals, then KB A A L is considered a I' U {T, F }-formula.

We also say that a relation is Horn if it can be represented by a Horn CNF.
A constraint language I' is said to be Horn if every relation in I' is Horn.
Thus, slightly abusing notation, we write Cg, both for the class of all Horn
clauses and for the (infinite) constraint language containing all the relations
represented by Horn clauses. We use the same shorthands for the other classes
of clauses and equations.

Example 4 (continued) Relation R in Example 2 is represented by formula
KB in Example 1. Relation R' = {01,10} is represented by the formula (zq V
x9) A\ (1 V —xe), and thus it is bijunctive. Observe that it is also represented
by the formula x1 @ xo = 1, and thus it is affine (of width 2).

Central to our approach is the notion of a relational clone. Intuitively, the
relations in the relational clone (I') are those which can be simulated by exis-
tentially quantified conjunctions of constraints over I' U {R-}. We will show
(in Section 5.2) that the complexity of abduction is stable under such sim-
ulations, from which it follows that the complexity for all (finite) constraint
languages is determined by the complexity for one (finite) language in each
relational clone.

Definition 5 Let I' be a constraint language. The relational clone of I', writ-
ten (I'), is the set of all relations R such that R(xy, ..., x,) is logically equiv-
alent to AV KB (where n is the arity of R) for some set of variables V' dis-
joint from {x1,...,x,} and some I' U {R_}-formula KB with Vars(KB) =
{z1,...,2,}UV.

Example 6 Let R be the 4-ary relation represented by the CNF (x1VxaV a3V
xg) A (21 V g V oz V xy), and recall that F s the unary relation {0}. Let
R’ be the ternary relation represented by the formula (x1V x9) A (2@ 3 = 0).
It is easily seen that R'(xy, o, x3) = ey R(x1, 21, T2, x4) AN F(24) AR (22, 23),
and thus R' € ({R,F}).



Definition 7 A constraint language I' is said to be a relational clone if I' =

().

Emil Post gave a remarkable classification of all classes of Boolean func-
tions which are closed under composition and projection [42]. Such classes
of functions are referred to as clones and, as a result of Post’s classification,
the inclusion structure (under set inclusion) among Boolean clones is com-
pletely known. Later it was shown that there is a bijection between clones
and relational clones [26,43] and that the inclusion structure (under set inclu-
sion) among the relational clones follows from the inclusion structure among
the clones. The classification of Boolean clones/relational clones is called
Post’s lattice and is presented in Figure 1 in terms of relational clones. The
lines in the lattice represent set inclusion, i.e., a line from a relational clone
I1Cl; to a relational clone ICl;y lying above ICl; in the lattice, means that
ICl; C ICly. The dotted lines represent infinite chains of relational clones
(e.g., ISZ, 1S3, ..., ISy, ... for the rightmost line).

We give a definition of each relational clone that is relevant to our study in
Table 1, taken from [11]. The other relational clones are not relevant in the
sense that their complexity for abduction is always the same as one of its
super-clones and one of its sub-clones.

As it turns out from the results in [11], most relational clones I' correspond to
a class C of clauses or equations, in the sense that every relation in I' can be
represented by a conjunction of clauses (equations) from C, and every clause
(equation) from C, viewed as a relation, is in I'. In particular, I" = (C).

Thus we define relational clones in the following manner. For each entry in
the table, the relational clone named in the first column is the set of all
relations which can be represented by a conjunction of clauses or equations
as in the third column. For instance, the class BR is the relational clone of
all relations which can be represented by a conjunction of clauses (that is, the
class of all relations); I Fs is the relational clone containing all Horn relations;
1Ly is the class of all relations which can be represented by a conjunction of
linear equations all with 0 as their right member, and so on. When there is a
standard name for the relational clone or class of formulas, it is given in the
fourth column.

Only two relational clones cannot be defined in this manner. A relation is
said to be complementive if for every tuple (u1, ..., u,) in it, the tuple (u; @
1,..., u,®1) is also in it. Then I Ny denotes the relational clone containing all
complementive relations, and I N denotes that containing all complementive
and 0-valid (and thus also 1-valid) relations.

Given a relational clone (I') it is easy to locate (I' U {F}) and (I' U {T}) in
Post’s lattice. This will be useful several times, so we state this easy fact for

10



H R. cl. ‘ Class ‘ Clauses/equations Name H
H General case H
H BR ‘ ConF ‘ all clauses — H
H Complementive H
INy — see page 10 complementive
IN — see page 10 —
H 1-valid and 0-valid H
I Civ clauses containing at least one positive literal 1-valid
11y Coo clauses containing at least one negative literal 0-valid
H Horn and dual Horn H
IE> CHorn clauses with at most one positive literal Horn
IFE, Civ—Horn clauses with exactly one positive literal definite Horn
I1Ey — (mz1 V- Vozg),n>1, (x1Voz2 V- Voxg), n>2 | —
1E — (x1Vza V- Vozy),n>2 —
1V, CdHorn clauses with at most one negative literal dual Horn
JA% Civ—dHorn | (M1 VX2V - VIn),n>2 (x1V---Va,),n>1 —
IAA) Cov—dHorn | clauses with exactly one negative literal definite dual Horn
v — (mz1 Va2 V---Van),n>2 —
H Bijunctive and THS-B H
1Dy Chij clauses containing at most 2 literals bijunctive
IMs Cimpl (mz1 V z2), (21), (m21), L implicative
M — (mz1 V x2) -
1S10 Crusp— (z1), (mz1 Va2), (21 V-V n),n>0 IHS-B—
18k CiusB—/k (z1), (mz1 Va2), (hz1 V-V zg), k>n>0 IHS-B— of width &
1512 Crieg,= (z1), (mz1 V-V zg), n >0, (z1 = z2) essentially negative
IS11 — (mz1Va2), (-z1 V-V ox,), n >0 —
IS{“1 — (mz1 Vz2), (T1 V-V oz,), k>n>0 —
IS{C — (z1 =a2), ("1 V- Vxn),n <k —
ISo00 Crusp+ (—z1), (mz1 Vx2), (T1 V- Vay),n>0 IHS-B+
IS(’)“O CrHsB+/k (mz1), (tz1 Vz2), (1 V- Van),k>n>0 IHS-B+ of width k&
1502 Cpos,= (mz1), (1 V-~ Van), n >0, (x1 =x2) essentially positive
I1S01 — (mz1 Va2), (@1 V- Van),n>0 —
ISk — (mz1 Veaz), (1 V---Vap), k>n>0 —
1Sk — (x1=z2), (@1 V- Vzn),n<k —
H Affine H
1Ly Eapy all linear equations affine
ILo Eov—aff (z1 @ - ®zn=0),n>0 .
1Ly Etv—af (z21®-- Dzn=a),n>0,a=n (mod 2) —
ILs — (1P -Pxn =a),neven, a€ {0,1} —
1L — (1@ P an =0), n even —
1D, Eaf /2 (0=1), (z1 = a), (z1 Dz2 =a), a € {0,1} affine of width 2
ID — (0=1), (1 ®z2 =a), a € {0,1} —
H Unit H
IRy Cunit,= (z), (=), (z1 = z2) _
1R, Cro—unit,= | (@), (x1 = z2) —
IRy Cov—unit,= | (), (x1 = z2) 11 —
IBF — (1 = x2) —

Table 1

Classes of clauses and equations






2.4 Complexity notions

We assume that the reader is familiar with the basic notions of complexity
theory, but we briefly recall the following. P is the class of decision problems
solvable in deterministic polynomial time. NP is the class of decision problems
solvable in nondeterministic polynomial time. ¥ = NP™P is the class of de-
cision problems solvable in nondeterministic polynomial time with access to
an NP-oracle. A problem is NP-hard (X}-hard) if every problem in NP (2V)
is polynomial-time reducible to it. A problem is NP-complete (XF-complete)
if it is in NP and NP-hard (resp. in X5 and ¥5-hard). Throughout the paper
we assume that P, NP, and X5 are pairwise distinct.

coNP is the dual complexity class of NP. That is, a problem is in coNP (resp.
coNP-complete) if its complement is in NP (resp. NP-complete).

If a problem II can be reduced to a problem II" under polynomial-time many-
one reductions, then we write IT <p II'. If II <p II' and II' <p II, then we
write IT =p IT'. We write II <p II;, I, if IT <p II; and II <p I, and dually
for H17 H2 Sp II.

3 The abduction problem

We define here the various abduction problems which we study. In order to
clarify the presentation, we first define the general abduction problem, without
any restriction on hypotheses and manifestations, and then its restrictions.

3.1 General abduction problem

The abduction problem with restrictions on the knowledge base only is defined
as follows. Recall that classes of clauses or equations are identified to constraint
languages, so that the following definition encompasses them.

Problem 9 (Abd(T")) Let T be a constraint language. An instance P of the
abduction problem ABD(T") is a tuple (V, H, M, KB), where

o V is a set of variables,

o H C Lits(V) is the set of hypotheses,

e M is a propositional formula (the manifestation), with Vars(M) C V', and
e KB is a I'-formula, with Vars(KB) C V.

The question is whether there exists an explanation for P, i.e., a set E C H
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such that KB N\ E is satisfiable and KB N\ E entails M.

We need to make assumptions on how the relations in the I'-formula for the
KB are represented. When the constraint language I" is not specified by giving
a class of equations or clauses, then we naturally assume that all the relations
in all constraints in the I'-formula are given in extension. That is, by listing
all the tuples belonging to each relation explicitly. When I' is specified by
giving a class of equations or clauses, then we choose to let the I'-formula
be represented by a system of equations or CNF-formula, respectively. For
complexity matters, the size of P = (V, H, M, KB) is defined to be the total
number of occurrences of variables in it, and additionally in the case where
the I'-formula is given in extension, the number of tuples in the relations in
the I'-formula.

As an illustration, consider, e.g., the language I' = {R_, R}, that is, the
language containing the binary equality and difference relations. Then an in-
stance of ABD(I") is a tuple (V, H, M, KB), where KB is a conjunction of
equality and difference constraints over V', H is a set of literals over V', and
M is a propositional formula over V. Similarly, an instance of ABD(Cpopm) is
a tuple (V, H, M, KB), where KB is a Horn CNF and H and M are as before.

Observe that we can assume without loss of generality that KB is satisfiable in
an instance. Indeed, if KB is unsatisfiable, then KB A A E cannot be satisfiable
(for any F), and thus there can be no explanation. Nevertheless, we do not
enforce this assumption since satisfiable KBs cannot be distinguished from
unsatisfiable ones efficiently in general.

The notion of explanation is illustrated in the following example.

Example 10 (continued) Consider again KB = (x1 V z3) A (nxe V 23 V
—z4) A (mx1 Vg V 1) A (e V —xe) of Example 1. The tuple

P = (V = {x1,$27$37x4}, H = {I37 _‘1’4,‘%‘4}, M = T2, KB)

is an instance of ABD(Cenr). It has exactly three explanations, namely Ey =
{23, ~w4}, B = {x3, 24}, and B3 = {x3}.

On the contrary, {x1} is not an explanation, because it is not a subset of H,
{4} is not because it does not entail M together with KB, and finally {zy,x3}
is not because it is not consistent with KB (and it is not a subset of H ).

In the literature it is common to impose a preference relation on the differ-
ent explanations in order to concentrate on the most interesting/preferred
explanations. One common preference criterion is subset minimality, i.e., an
explanation E is said to be subset minimal (C-minimal) if there is no other
explanation E’ such that E' C E. We want to emphasize that in this paper

14



we do not impose any preference relation on explanations. Note that in the
example above F3 C FEy, Fy, which does not matter in our setting but would
make Fj3 the only preferred explanation with respect to the subset minimality
criterion.

3.2  Abduction under restrictions

We now define the abduction problem under restrictions on manifestations
and hypotheses. We will use the following notation for restrictions on mani-
festations:

PosLiTs denotes the class of all positive literals,
NEGLITS denotes the class of all negative literals, and
L1Ts denotes the class of all literals.

Similarly, POSCLAUSES, NEGCLAUSES and CLAUSES denote classes of clauses,
PosTErMS, NEGTERMS and TERMS denote classes of terms, and
PosCNFs, NEGCNFs and CNF's denote classes of CNF's.

Problem 11 (abduction under restrictions) Let I' be a constraint lan-
guage, and let M be a class of propositional formulas. An instance P of one
of the decision problems P-ABD(I',M), N-ABD(I',M), V-ABD(I',M), or
L-ABD(I',M) is an instance (V, H, M, KB) of the problem ABD(I') such that
M € M holds and

H CV, that is, every h € H is positive, for P-Abd,

e HC N(V) (every h € H is negative) for N-Abd,

e H=VyUN(Vy) for some Vg CV (H is closed under complement) for
V-Abd,

e H C Lits(V') (H is unrestricted) for L-Abd.

For all four problems, the question is whether there is an explanation for P.

Our motivation for studying various restrictions on the hypotheses and mani-
festations is to understand how these restrictions affect the complexity of the
problem. We note that as far as no restriction is imposed to the knowledge
base, generic polynomial-time reductions exist between all these restrictions.
For instance, moving from a term M to a (fresh) variable m as the manifes-
tation can be done up to adding M < m, or even M — m, to the knowledge
base. Similarly, a negative hypothesis of the form —=h € H can be removed by
replacing —h with a fresh variable A’ in H, and adding —h < b’ to KB.

This is the motivation for studying only restricted cases, such as positive hy-
potheses and single-variable manifestations, in generic heuristic approaches to
solving abduction problems (see, e.g., Marquis’ survey [37]). However, when
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the knowledge base is restricted to a particular language, as is the case here,
such reductions in general fail to preserve the language. This is why we study
various restrictions on H and M, and investigate their impact on the complex-
ity of the problem. Note that in the particular case of Horn knowledge bases
and single-literal manifestations, Eiter and Makino were similarly interested
in the impact of the polarity imposed to the manifestation [23]. In our terms,
among other results they compared the complexity of L- ABD(C gy, POSLITS)
to that of L-ABD(Cgon, NEGLITS).

Further restrictions on the problem, such as assuming that the manifestation
is satisfiable or that every hypothesis occurs in the knowledge base, are of
interest for practical purposes. Nevertheless, apart from very restricted cases
they do not affect the complexity of the problem, so we only discuss them
briefly in Section 14.

To conclude this section, observe that we do not consider DNF manifestations,
that is, disjunctions of terms as manifestations. The reason for that is that
already deciding KB = M, where M is a DNF formula, is coNP-complete even
if KB is empty (tautological), since then it is equivalent to deciding whether M
is tautological. Consequently, there is no hope in finding interesting (tractable)
classes of knowledge bases for abduction with such manifestations.

4 Related work and overview of results

In this section we first survey relevant literature on the complexity of abduc-
tion, and then give an overview of our results. We finally discuss how our
results may be used in several contexts.

4.1 Related work

The earliest work about assumption-based propositional abduction is Reiter
and de Kleer’s, in the ATMS framework [45]. As far as this paper is concerned,
the main result there is a characterization of explanations by means of prime
implicates, reported in Section 6.2.

Subsequently, in the early nineties, several results were given concerning the
computational complexity of abduction. Among them, Bylander et al. [7] con-
sider set-covering abduction. That is, they assume that each hypothesis comes
with the set of atomic manifestations which it can explain, and the ques-
tion is to find a set of hypotheses which explains all manifestations. Under
various assumptions on the interaction between hypotheses (incompatibility,
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independence, etc.), the authors investigate the frontier between tractable and
intractable such problems. Since this objective is similar to ours, we give a de-
tailed comparison of our work with theirs in Section 15.2. The complexity of
abduction has also been studied for other representations of the knowledge
base, for example when the knowledge base is represented by ordered binary
decision diagrams [30].

The first complexity results in the logic-based setting were given by Selman
and Levesque [48] for abduction problems with propositional Horn knowledge
bases. Then Eiter and Gottlob performed a more systematic complexity anal-
ysis [20]. The main results, which we will use for our classification purposes,
are the following ones.

Proposition 12 ([48]) P-ABD(Cpopm,POSLITS) is NP-complete. Hardness
holds even if the knowledge base is also restricted to be acyclic Horn.

Proposition 13 ([20]) The general problem ABD(Ccyr) is X -complete. Hard-
ness holds even if all hypotheses are positive and manifestations are restricted
to positive terms, that is, P-ABD(Ccyr,POSTERMS) is also X5 -complete.

Proposition 14 ([20]) P-ABD(C;y— gorm,POSTERMS) is in P.

Due to the intractability results of Propositions 12 and 13, several authors
investigated polynomial classes of the abduction problem. Eshghi [24] gives a
rather technical class based on acyclic Horn formulas (see also del Val’s discus-
sion of this result [16]); however, this class is not captured by our framework.
Zanuttini [51] also gives several polynomial classes using the notion of projec-
tion, which is presented in Section 6.3. He also gives new proofs for several
folklore polynomial classes (discussed by, e.g., Marquis [37]) and for classes of
DNF formulas (which are not captured by our framework). The results which
are relevant here are the following ones.

Proposition 15 ([51]) V-ABD(&,5,CLAUSES) is in P.

Proposition 16 (see [37,51]) V-ABD(Cpos,—,CLAUSES), V-ABD(C,,ey—,CLAUSES),
and V-ABD(Cy;;,CLAUSES) are in P.

Finally, two classification results have recently been given in Schaefer’s frame-
work, concerning some restrictions which we study here. We however wish to
emphasize that these results were given for finite constraint languages only,
whereas we are interested here in both finite constraint languages and infinite
(clausal) languages.

Theorem 17 (L-Abd [40]) Let I' be a finite constraint language. Then L-
ABD(I',TERMS) is in P if I is in I1D;. Otherwise, it is NP-complete if T' is
in [Ey, IVy, 1Dy, or ILy. Otherwise, it is X5 -complete.
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Theorem 18 (V-Abd [12]) LetI' be a finite constraint language. Then V-
ABD(T,PosLITS) is in P if T is in I Ly, [ Dy, 1510, [So2, [SE, (for some k),
or 1E,. Otherwise, it is NP-complete if I' is in [ Ey or IV,. Otherwise, it is
¥ -complete.

V-ABD(T,L1TS) is in P if I is in I Ly, I Do, [S1a, [ Soa, ISk, or ISY, (for some
k). Otherwise, it is NP-complete if T is in [Ey or IV,. Otherwise, it is X5 -
complete.

As concerns Theorem 18, observe in particular that there is no finite language
which is in I.Sgy or .S, but not in IS5 or IS for any k € N. In fact, infinite
constraint languages T" such that (I') = ISy, yield NP-complete problems (see
our Proposition 63).

4.2 Qverview of results

In this paper, building on the aforementioned results, we perform a systematic
study of the computational complexity of propositional abduction. This study
allows us to give the complexity of problems P-ABD(I', M), N-ABD(I',M),
V-ABD(I',M), and L-ABD(I', M) when

e M is any of PosLiTs, NEGLITS, LiTS, and similarly for clauses, terms, and
CNFs instead of literals,
e ['is any constraint language or any clausal or equational language.

To that aim, we reuse the results given in the literature for specific languages.
In particular, we reuse the classifications in [40] and [12]. Observe in particular
that the latter concerns some maximally easy problems for us, in the sense
that no other problem which we study can be reduced to them in polynomial
time in a generic manner. So it proves very helpful for deriving hardness re-
sults. Dually, the former classification proves helpful for deriving membership
results, as well as hardness results for CNF manifestations.

Nevertheless, these classifications leave large “gaps”. For instance, if I' is a fi-
nite constraint language such that (I') = I Ly (unrestricted affine constraints),
V-ABD(I',PosLits) is in P [12] while L-ABD(I', TERMS) is NP-complete [40].
Thus these classifications tell nothing about the tractability frontier between
both restrictions.

In this paper, for filling several such gaps we strengthen some results given in
the literature. Nevertheless, we also give a number of brand new results.

e We study the complexity of P-ABD and N-ABD for 0-valid and 1-valid
languages. We exhibit new trivial and new 5-hard problems.
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o We study the complexity of P-ABD and N-ABD for complementive lan-
guages, and identify one minimal coNP-hard and two minimal Y}-hard
problems.

e We complete the literature on abduction with Horn and dual Horn knowl-
edge bases (mainly Selman and Levesque’s [48] and Eiter and Gottlob’s [20]
results). Our main new result is that P-ABD(Cyporm,CNF'S) is in P.

e We complete the literature on abduction with bijunctive and ITHS-B knowl-
edge bases. Abduction over bijunctive and IHS-B constraint languages are
particularly interesting since the borderline between tractability and NP-
hardness is mainly situated among problems over such constraint languages.
We identify two new polynomial problems, namely L-ABD(Cjynp, POSCNFS)
and L-ABD(C,y—,POSCNF'S), and many new hardness results with a uni-
fied reduction from satisfiability problems.

e Similarly, we complete the literature for affine knowledge bases. We give
two new tractability results, namely for L-ABD(E.,s,CLAUSES) and V-
ABD(E,y,TERMS), and several new hardness results using original reduc-
tions from satisfiability problems.

We also wish to emphasize that as far as we know, CNF manifestations had
never been studied before.

These results allow us to complete the picture on the complexity of proposi-
tional abduction, and in particular to identify the tractability frontier (between
P and NP-hard). This frontier, as we discuss in Section 15, can be character-
ized by very simple conditions. Moreover, it parallels the frontier identified by
Bylander et al. for set-covering abduction [7].

4.8  Applications

As already evoked, our results are essentially interesting from a complexity-
theoretic and from an Al point of view. On the complexity-theoretic side, we
give the complexity of abduction for various, fine-grained restrictions, and it
turns out that abduction is always either in P, NP-complete, coNP-complete,
or ¥¥-complete. This is interesting since Ladner’s result states that if P # NP,
then there exist problems in NP that are neither in P nor NP-complete [33].
Such problems are said to be of intermediate complexity.

One way to interpret our results is that the infinite class of abduction problems
that we study do not contain such problems of intermediate complexity. For
further discussions on the complexity-theoretic topic of finding large subclasses
of NP which do not contain problems of intermediate complexity, we refer the
reader to Feder and Vardi’s seminal paper [25].

Finally, since the complexity of abduction spans four classes (P, NP, coNP,
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and YY) and because abduction is a central problem in nonmonotonic rea-
soning (see, e.g., [5,37]), our results may serve as starting points for deriving
complexity results for other problems, by using reductions to or from abduc-
tion.

From the AI point of view, our results may help the designers of knowledge-
based agents or expert systems to choose the appropriate knowledge repre-
sentation language. Indeed, depending on the application, and especially on
the constraints on resolution of abduction problems, it might be necessary to
ensure that such problems will be solved efficiently, or it may be acceptable
that they are NP-hard?. Moreover, depending on the application, the sets
of hypotheses and the manifestations may be restricted to particular classes.
Then, using our results and the characteristics and requirements of the appli-
cation, the designer of a knowledge-based system can choose the appropriate
knowledge representation language. In particular, she might choose the most
expressive one while respecting the tractability constraints.

We acknowledge that our restrictions on knowledge bases cannot capture all
possible propositional knowledge representation languages. For instance, they
cannot capture the class of Horn-renamable CNF formulas, or that of acyclic
Horn formulas, since they impose global restrictions on formulas.

Nevertheless, classes defined by local properties are very important for knowl-
edge representation. Indeed, they are stable under conjunction, that is, if KB,
and KB, are in one of these classes, then so is KB A KB,. This makes them
suitable for merging mutually consistent theories without losing computa-
tional properties of each (simply conjunct both) and is important for knowl-
edge approximation purposes, since such classes define a unique least upper
bound [47]. Moreover, they have been given complete pictures of complexity for
various reasoning tasks (e.g., inference under circumscription [39] and several
tasks in default reasoning [9]), which allows to choose a knowledge represen-
tation language under constraints stemming from several tasks. Last but not
least, the relational clone generated by any constraint or clausal/equational
language can be recognized in polynomial time [11]. Thus an agent may make
decisions depending on its current knowledge base. It can, for instance, decide
not to try to find an exact solution to a planning problem through abduction
because its current knowledge base is not tractable for it, and adopt another
strategy, such as approximate planning.

2 Note that even if the problem at hand is NP-hard, or even EQP—hard7 most instances
may be solved efficiently in practice. This may be done, for instance, using state-
of-the-art solvers for Quantified Boolean formulas, which is the approach in [19].
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5 Reductions between abduction problems

We have defined restrictions on the abduction problem along three dimensions:
12 different types of manifestations, 4 different types of hypotheses, and an
infinite number of restrictions over knowledge bases. Since our goal is to give
a complexity classification of the problem for each combination of restrictions,
this section explains how to restrict to a finite and limited number of cases.

5.1 Reductions between restrictions on manifestations and hypotheses

The following reductions are obvious.

Lemma 19 Let I' be a constraint language and let M and M’ be classes
of propositional formulas such that M C M'’'. Then L-ABD(I') M) <pL-
ABD(I',M"). The same result holds for P-ABD, N-ABD, or V-ABD instead
of L-ABD.

Lemma 20 Let I" be a constraint language, and let M be a class of proposi-
tional formulas. Then P-ABD(I',M), N-ABD(I',M), V-ABD(I',M), <pL-
ABD(I'\M).

5.2 Reductions between restrictions on knowledge bases

In this section we show how Post’s lattice can be used to reduce the number
of restrictions on knowledge bases that need to be considered when classifying
the complexity of the abduction problem. This approach via Post’s lattice is
crucial for obtaining our complexity classifications. We conclude this section
by demonstrating how the approach can be used to classify the complexity
of P-ABD(I',TERMS) for every constraint language I" and every clausal or
equational language C.

The key for the approach via Post’s lattice is Lemma 22, which states that
ABD(I) <pABD(I") whenever I'" is a finite and " C (I') (for all restrictions
over hypotheses and manifestations considered here). Hence, when studying
the complexity of the abduction problem for finite constraint languages I, it
is enough to consider one generating constraint language per relational clone.
In particular, if I' and I are two finite constraint languages and (I") = (I"),
then ABD(I") and ABD(I"”) are polynomial-time equivalent to each other.

We first need the following lemma, which allows to get rid of equality relations
in knowledge bases.
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Lemma 21 Let ' be a constraint language, and let M be any class of manifes-
tations considered in this paper. Then L-ABD(I'U{R-},M) <pL-ABD(I',M).
The same holds for V-ABD, P-ABD, or N-ABD instead of L-ABD.

PROOF. Let (V, H, M, KB) be an instance of L-ABD(T' U {R_-},M). Build
a knowledge base over I' from KB in the following manner. For all constraints
R_(z;,z;) in KB replace every occurrence of x; with z; in KB, H, M, remove
the constraint from KB, and remove z; from V. Perform this identification it-
eratively, until KB does not contain any equality constraint any more. Clearly,
this transformation can be performed in polynomial time and preserves the
existence of an explanation. Finally, it is easily seen that it preserves any
restriction on hypotheses and manifestations in the statement. O

We can now give the central lemma of our study. The proof checks that addi-
tional variables introduced while replacing a constraint in IV with its equivalent
expression over I' do not affect the existence of a solution.

Lemma 22 Let I' be a constraint language, and let T C (') be a finite con-
straint language (or a finite clausal or equational language). Let M be a class
of propositional formulas. Then L-ABD(I",M) <pL-ABD(I',M). The same
holds for V-ABD, P-ABD, or N-ABD instead of L-ABD, and for a class of
clauses or equations C instead of a constraint language I'.

PROOF. Let P’ = (V' H', M', KB') be an instance of L-ABD(I",M). Write
KB' = Nier Ri(w},, ..., 2},.) and for all i € I, V] = {],,..., 2}, } By the
definition of a relational clone we know that for all ¢ € I, the constraint
Ri(xj,, ... 2}, ) of KB is logically equivalent to some formula 3V; KB; where
V;NV! =0 and KB; is a ' U {R_}-formula over V; U V}. Importantly, for
all i € I we assume V; N V' = () and for all 4,4" € I with i # ¢, we assume
ViNVy =0, i.e., all existentially quantified variables are fresh with respect to
V' and different from each other. This is without loss of generality since the
names of these variables are unconstrained.

We define an instance P = (V, H, M, KB) of ABD(I' U{R.}) by

o V=V'"UUg/ Vi
e H=H'

e M =M’ and

o KB =\, KB,

In other words, we simply replace every constraint in KB" with its expression
over I' U{R_}, and we forget existential quantification. Clearly, this can be
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performed in linear time since languages are fixed and I" is finite, and thus all
expressions of relations in I can be stored in a lookup table once and for all.

We now claim that P and P’ have exactly the same explanations. First, let
E’ be an explanation for P’. Then KB’ A A\ E' is satisfiable, thus the formula
Nier AViKB; N \ E' is satisfiable. Since all existentially quantified variables
are fresh with respect to V’ and different from each other, it follows that
KB AN\ E' is satisfiable. Now assume that KB A A\ E’ does not entail M. Then
KB AN\ E' AN =M is satisfiable. By the assumption on fresh variables again, it
follows that A;c; IV;KB; AN\ E' A—=M is satisfiable, i.e., that KB'AA\ E' A\—M
is satisfiable. Since M = M’, this contradicts the fact that £’ is an explanation
for P’.

Thus every explanation E’ for P’ is an explanation for P, and the proof is
similar for showing the converse. We conclude by invoking Lemma 21 for
getting rid of equality constraints. O

It is important to note that the reduction in the proof above preserves all the
restrictions on hypotheses and manifestations considered in this paper. For
example, if we reduce from a V-ABD(I",POSLITS) instance, then the resulting
instance will be a V-ABD(I',PosLiTs) instance. Thus, using Lemma 22, we
will be able to give the complexity of all the restrictions on the ABD problem
for any finite constraint language (Section 13) by considering the complexity
of only one language per relational clone.

We now demonstrate the use of Post’s lattice for classifying the complexity of
ABD(I") problems by giving the complete classification of P-ABD(I", TERMS)
for every constraint language I" and class of clauses/equations C. The rea-
soning is similar for the other combinations of restrictions on hypotheses and
manifestations.

Gathering together results for positive hypotheses and terms as manifestations
from subsequent sections in the paper, and applying the (obvious) reductions
in Section 5.1, we get the minimal set of results in Table 2. These results are
minimal in the sense that they are irredundant with respect to reductions of
the form P-ABD(I', TERMS) <pP-ABD(I",TERMS) as soon as I' C (I'). In
this table, for each clausal language C, we give inside parentheses the corre-
sponding relational clone, i.e., the relational clone ICI such that ICl = (C).

The complete picture of complexity can now be obtained as follows.

First, as explained in Section 13.2, a upper bound for the complexity of a
clausal or equational language C corresponding to a relational clone IC1 carries
over to every language I' such that (I') C ICIl. Now, since all lower bounds
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R. Clone/class Complexity | Result
Cenr (BR) in ¥ Proposition 41
II, »¥-hard Proposition 46
INy ¥ hard Proposition 47
Cip (I1) in coNP Proposition 44
IN coNP-hard | Proposition 48
CHorn (I1E2), Eap (IL2), Cpyj (ID2) | in NP Proposition 35
15% NP-hard Proposition 62 (dual)
ILg NP-hard Proposition 69
ILg NP-hard Proposition 70
Civ—Horn (IE1), Erv—ag (1L1) inP Proposition 44
Carorn (IV2) inP Proposition 52
Eapr/2 (ID1) in P Theorem 17
Table 2

Minimal set of results for P-ABD(I", TERMS)

are given for finite languages, the results on Figure 2 follow from the results
in Table 2, where

e every result reported from the table is given by a bolded circle, and
e cvery other result follows from these together with reductions of the form
P-ABD(I',TERMS) <pP-ABD(I",TERMS) as soon as I' C (I") (Lemma 22).

Consequently, we have the complexity for every constraint language. For more
details, we refer the reader to Section 13.2.

5.8 Exploiting the symmetry between 0 and 1

We now show how to exploit the symmetry between 0 and 1 (or positive and
negative) in order to reduce the number of cases that need to be considered.
We will use the notion of duality.

Definition 23 (dual) The dual of a clause C'= (€1 V --- V ) is the clause
Cl= (6 V---VL). The dual of a class of clauses C is the class C¢ = {C? |
C € C}. The dual of an equation Eqn = (x1 @ -+ ® x, = a) is Eqn® = Eqn
if n is even, and Eqn® = (z1 ® - ® x,, = a ® 1) otherwise. The dual of an
n-ary Boolean relation R is R* = {(pn & 1,..., 1y ® 1) | (1, .., 1) € R}.
The dual of a constraint language I' is T = {R? | R € T'}.
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Fig. 2. Results for P-ABD(I", TERMS), white is in P, light grey is NP-complete, mid
grey is coNP-complete, dark grey is XF-complete.

Observe that in the graphical representation of Post’s lattice of Boolean re-
lational clones (Figure 1), the dual of a relational clone is simply its mirror
image with respect to the vertical line through the center of the lattice [4].
Moreover, it is easy to see that if a relation R is represented by a conjunction
of clauses (or equations) Cj A -+ ACy, then R? is represented by C{ A -+ ACY.
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Example 24 (continued) The dual of clause C = (11 V zy V —~3) is C¢ =
(—x1 V —xe Vas). The dual of equation Eqn = (x1 @ xo = 1) is Eqn itself, and
that of Eqn’ = (x1 ® x9 ® 23 = 0) is (Eqn’)¢ = (v, ® 2o ® 23 = 1). The dual
of relation R = {000,010,111} is R? = {111,101,000}. As for languages, we
have, e.9., Clip, = Catiorn, Eagy /o = Eapyye and (1S5,)* = 1S,

These definitions allow us to state the following easy equivalences between
problems which are in some sense symmetric to each other. The intuition
is simply that switching the polarity of all literals in all components of the
instance and replacing all relations (clauses/equations) by their duals preserve
the existence of explanations.

Lemma 25 Let I' be a constraint language or a class of clauses/equations.
Then the following equivalences hold:

P-ABD(I',PosLiTS) =pN-ABD(I'Y, NEGLITS),
N-ABD(T',PosLiTs) =pP-ABD(I'Y, NEGLITS),
V-ABD(I',PosLiTs) =pV-ABD(I'Y, NEGLITS), and
L-ABD(I',PosLiTs) =pL-ABD(I',NEGLITS).

They also hold when the manifestations are restricted to positive or negative
clauses, terms, or CNF's instead of literals.

Consequently, in the rest of the paper we will only consider positive and un-
restricted manifestations. The complexity for negative manifestations can be
derived using Lemma 25.

Similarly, the lack of positive/negative polarity for manifestations and/or hy-
potheses allows to reduce the number of cases to consider. The following lemma
is straightforward.

Lemma 26 Let I" be a constraint language or a class of clauses or equations,
and let M be any of LiTs, CLAUSES, TERMS, or CNFs. Then,

e N-ABD(I'\M) =pP-ABD(I',M),

e L-ABD(I'\M) =pL-ABD(I'Y, M), and
e V-ABD(I',M)) =pV-ABD(['\, M).

5.4 Other reductions

The following lemma allows to impose polarities to hypotheses and manifes-
tations when the language contains the disequality relation R, = {01, 10}.

Lemma 27 Let I' be a constraint language such that R, € (L), and let M be
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either PosLiTs or NEGLITS. Then L-ABD(T',LiTs) <pP-ABD(I',M), N-
ABD(I',M). The same result holds for clauses, terms, or CNFs instead of
literals.

PROOF. Consider an instance (V, H, M, KB) of L-ABD(I",TERMS). The de-
sired instance of P-ABD(I',POSTERMS) is simply obtained by introducing a
fresh variable 2’ for any negative literal —z in H or M, replacing —x with
«" and adding the constraint R.(z,2') to KB. Finally, Lemma 22 allows to
assume R € (I') instead of the stronger R € I'. The reasoning is similar for
the other restrictions. O

The two following lemmata concern conjunctive manifestations. The proof of
the first one follows firstly from the definition of the abduction problem.

Lemma 28 Let P = (V,H, M, KB) be an instance of an abduction problem,
where M = (p1 A -+ A\ p) is a conjunction of formulas, and let E C H.

Then E is an explanation for P if and only if for alli € {1,...,p} it is an
explanation for (V, H, p;, KB).

Lemma 29 Let P = (V,H, M, KB) be an instance of an abduction problem
where M is a term. Let € be a literal formed upon a fresh variable m ¢ V| and

write C' for the clause (€N \Vpep ). Then P has an explanation if and only
if PP=(Vu{m},H,{, KB AC) has one.

PROOF. Assume first that P’ has an explanation E’. We first show that
KB NN\ E'" entails Apcp /. Assume to the contrary that there is a model p
of KBANE' A (Vpep 0). Then since m occurs only in C and Vyey 0 C C,
extending p by p = £ yields a model of KB A C A A E' A ¢, which contradicts
the fact that £’ is an explanation for P’. Thus KB A A E' entails Apeps O,
that is, M. Now since KB A C AN A\ E’ is satisfiable, a fortiori KB AN \ E' is
satisfiable. Finally, E’ is an explanation for P.

Conversely, assume that P has an explanation E. Then by definition of an
explanation, there is a model u of KB A A\ E; thus p' defined to agree with
w over V and to satisfy ¢ is a model of KB AN C AN A E. Now we also have
KB ANNANE E M. It follows that KB AC AAFE | ¢, and finally, F is an
explanation for P'. O
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6 Tools and methods for studying abduction

In this section we present the main generic methods used in the literature for
studying abduction problems from a computational point of view.

6.1 Complexity of satisfiability and deduction

By definition, solving an abduction problem involves solving a satisfiability
and a deduction problem. We therefore recall some definitions and well-known
complexity results about these two problems.

Problem 30 (Sat(T")) Let T' be a constraint language. An instance P of
SAT(T") is a knowledge base KB over I', and the question is whether there
exists at least one model of KB.

Problem 31 (Deduction(I',M)) Let T" be a constraint language and let

M be a class of formulas. An instance P of DEDUCTION(I',M) is a tuple
(KB, Q), where

e KB is a knowledge base over I', and
e Q) is a formula in M.

The question is whether KB entails ().

Schaefer classified the complexity of SAT(I") for all possible finite constraint
languages I' [46]. Together with well-known results about the infinite languages
studied here (see in particular [17] and [1]) we have the following theorem.

Theorem 32 (complexity of Sat) Let I' be a finite constraint language.
Then SAT(T) is in P if ' C IIy, T' C I}, T' C IE,, ' C IV,, T" C IDs,
or I' C ILy. Otherwise, it is NP-complete. Moreover, SAT(C) is in P when C
is one OfCHorn; CdHorny Cbij) gaﬁy COU; and Clv-

From the well-known facts that KB entails ) if and only if KB A =@ is
unsatisfiable, and that KB entails ()1 A ()7 if and only if it entails ()7 and it
entails ()2, we have the following two corollaries of Theorem 32, which we will
use in the paper.

Theorem 33 (upper bounds for Deduction) Let C be a class of clauses
or equations. Then DEDUCTION(C,CNFS) is in coNP. Moreover, DEDUCTION(C,CNF's)
is in P when C is one of Cromn, Cattorn, Crij, and Eqg .

Theorem 34 (lower bound for Deduction) LetT be a constraint language
with (I') = 11;. Then DEDUCTION(I",POSLITS) is coNP-hard.
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PROOF. It follows from Post’s lattice and Proposition 8 that (11, U{F}) =
BR. Thus from Theorem 32 it follows that SAT(/I; U {F}) is NP-complete.
Let KBrp,ury = KB, AN\ier F(;) be a knowledge base over 11 U{F}, where
KBy, is a knowledge base over I1; and I is nonempty (clearly, the problem
remains NP-complete even with this assumption). Now let iy € I, and let KB
be the knowledge base obtained from KB, by replacing every occurrence of
x; for some i € I'\ {ip} with z;,. By construction, KB is a knowledge base over
II,, and KB AF(x;,) is satisfiable if and only if KB,y is. But KB AF(z4,)
is unsatisfiable if and only if KB entails z;,, which concludes the proof. O

Schaefer languages are precisely those maximal languages (for inclusion) for
which deduction of clauses is tractable, i.e., Crom, Camorm, Cpij and Eqg. From
the results above we immediately get the following result.

Proposition 35 For any type of restriction on hypotheses and manifestations
considered in this paper and for all Schaefer languages C, ABD(C) is in NP.

6.2 Prime implicates

The notion of a prime implicate is widely used for studying various computa-
tional problems in propositional logic, especially for problems in nonmonotonic
reasoning. The relevance of this notion to abduction has been first pointed out
by Reiter and de Kleer [45]. Marquis [37] gives a survey of the various notions
of prime implicates, their use for nonmonotonic reasoning (including abduc-
tion), and methods for computing them.

Definition 36 (prime implicate) Let KB be a propositional formula or a
conjunction of constraints. A clause C' is said to be a prime implicate of KB
if KB entails C' but no proper subclause of it.

The following characterization of explanations, first shown by Reiter and de
Kleer in the ATMS setting [45], will be of great use to us.

Lemma 37 ([45]) Let P = (V,H, M, KB) be an instance of an abduction
problem, where M = (my V ---V m,) is a nonempty clause, and let E C H.
Then E is an explanation for P if and only if there is a prime implicate
of KB of the form ((yN ---NV €,V my, V .-V mj,) with {¢;,...,0,} C E,
{71, . ds} CHL, ....p} and {j1,...,js} # O (with possibly ¢; = m; for some
i,7)

Finally, recall from Quine’s result [44] that all the prime implicates of a CNF
KB can be generated by resolution, i.e., by repeatedly adding C; V C5 to KB
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if there are a variable z and two clauses of the forms (z V Cy) and (—z Vv Cy)
in KB, and removing clauses which are tautological or include others.

6.3 Projection

We will also use the notion of projection as a tool for studying the abduction
problem. This notion is similar to the well-known notion of elimination of
middle terms, or existential abstraction, and its use for abduction has been
proposed in [51]. As for the complexity of computing projection in proposi-
tional logic, we refer the reader to [34].

Intuitively, projecting onto a set of variables IV amounts to existentially quan-
tifying every other variable.

Definition 38 (projection of assignments) Let p be an assignment to a
set of variables V', and let V' C V. The projection of u onto V', denoted by
pyyvr, is the assignment to V' which agrees with p.

Definition 39 (projection of formulas) Let KB be a propositional formula
or a conjunction of constraints, and let V' C Vars(KB). A projection of KB
onto V' is any knowledge base KB' with Vars(KB') C V' and whose set of
models over V' is {yyy: | p = KB}.

Importantly, the projection of a formula is unique only up to logical equiva-
lence. We will mainly use the following result. Its proof follows from Lemma 37
when the manifestation is a literal or clause, since it is well-known that a pro-
jection of a knowledge base KB onto a set of variables preserves the prime
implicates of KB over this set [34, Proposition 16]. When the manifestation is
a term of CNF, the proof follows from the literal or clause case together with
Lemma 28.

Lemma 40 Let P = (V, H, M, KB) be an instance of any abduction problem.
Let V' be any set of variables with Vars(H)U Vars(M) CV' CV, and let KB’
be a projection of KB onto V'. Then the explanations for (V', H, M, KB') are
exactly the explanations for P.

When computable efficiently, projection used as above allows to circumvent
the difficulty of what Selman and Levesque call the support selection task [48].
They argue that this task lies at the core of the computational difficulty of
abduction, as witnessed by their study of the Horn case. We come back to this
issue in our discussion (Section 15).

One case when a projection of a knowledge base can be computed efficiently is
when this knowledge base has a polynomial number of prime implicates, all of
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which can be enumerated efficiently. This is so, e.g., for bijunctive knowledge
bases, which allows us to derive most results in Section 11. However, this is
not the only case, as the affine case shows (Section 12).

7 General case

In this section we only strengthen Eiter and Gottlob’s statements [20] a little
and adapt their proofs to our framework.

Proposition 41 (adapted from [20]) L-ABD(Ccyr,CNFS) is in ¥F.

PROOQOF. Guess an explanation £ C H and check that KBAA FE is satisfiable.
This verification is in NP by Theorem 32. Now, check that KB A A\ E |=

M. This verification is in coNP by Theorem 33. Hence, the problem is in
NPNPUCONP — EZP 0

Proposition 42 (adapted from [20]) Let I' be a constraint language sat-
isfying (I') = BR. Then P-ABD(I',PosLiTs) and N-ABD(I',PosLITS) are
¥ -hard.

PROOF. Eiter and Gottlob [20] show that P-ABD(Conr,POSLITS) is Xb-
complete. Let I's be the constraint language containing all ternary relations
that are the set of models of exactly one clause. It is well-known that every
CNF is logically equivalent to a 3CNF formula with existentially quantified
auxiliary variables. Reasoning as for Lemma 22, we get that P-ABD(C¢np,P0S-
LiTs) =pP-ABD(I'3,POsSLITS), and thus P-ABD(I'3,POSLITS) is ¥¥ -complete.
Now, since (I's) = BR, we get that P-ABD(I',PosLITS) is X} -complete.

The claim for N-ABD(I",PosLiTs) follows since any positive hypothesis h can

be changed to a negative one —h’, where b’ is a fresh variable, up to adding
(hVA)A(=hV=h), ie, h =k to KB. O

Note that, in particular, the hardness result in the preceding proposition holds
for any finite constraint language I" such that (I') = BR. We want to emphasize
that, unless explicitly stated otherwise, all the hardness results in the paper
for constraint languages I' hold for any finite constraint language I"” such that
(I'") = (T"). This is important for us since we can only use Lemma 22 to derive
new hardness results if the original (hard) abduction problem is defined over
a finite constraint language.
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8 O0-valid and 1-valid languages

The “easy” abduction problems which we exhibit in this section are of a par-
ticular type. Indeed, for them the search space can be reduced to only one
candidate explanation. The reasoning is similar to that for the definite Horn
case (see, e.g., [20, Corollary 5.4]).

Lemma 43 Let P = (V, H, M, KB) be an instance of any abduction problem.
If KBAN H is satisfiable, then P has an explanation if and only if KBAN H |=
M.

PROOF. Obviously, if KB A A\ H is satisfiable and KB A AN H = M, then
E = H is an explanation. Conversely, assume KBAA H [~ M. Then there is a
model p of KB A\ H such that p [~ M; then, forany E C H, u = KBAAE
and p [~ M, hence KB A A\ E = M and hence, E is not an explanation. O

As a direct consequence of Lemma 43, Theorems 32 and 33, we have the
following results. The algorithm simply consists of deciding whether KBAA H
entails M.

Proposition 44 (1-valid) P-ABD(C;,,CNFS) isin coNP, and P-ABD(Cy—morm,CNF'S),
P-ABD(Ey—q ,CNFS) are in P.

We now give two new results, which give some upper and lower bounds, re-
spectively, for the complexity of P-ABD and N-ABD.

Proposition 45 The problem N-ABD(Cy,,POSCNF'S) is trivial, in the sense
that an instance (V, H, M, KB) has an explanation if and only if M is empty.

PROQOF. If M is empty, then it is tautological, thus KB entails M. It follows
that there is an explanation if and only if KB is satisfiable, which is necessarily
the case since it is 0-valid.

Now if M is nonempty, let po be the assignment of 0 to every variable in V.
Since KB is 0-valid and H is a set of negative literals, we have py = KBAAE
for any £ C H. But since M is positive but not tautological, we also have
o = M. It follows that for all E C H we have KB AN\ E [~ M and hence, no
E C H can be an explanation. O

Proposition 46 Let T' be a constraint language satisfying (I') = I11y. Then
P-ABD(I',PosSLITS) is XY -hard. Similarly, if T is a constraint language sat-
isfying (T') = I1,, then N-ABD(T',PosLITS) is X5 -hard.

32



PROOF. Let I' be a constraint language such that (I') = II;. By Post’s
lattice and Proposition 8, (I' U {T}) = BR and thus, by Proposition 42 P-
ABD(T' U {T},PosLits) is ¥:¥-complete. We give a reduction of this latter
problem to P-ABD(I",PosSLiITS).

To this aim, let P’ = (V', H',;m’, KB') be an instance of P-ABD(I'U{T},Pos-
Lits). Write KB’ = KBr A Ayev, T(2), where KBr is a conjunction of con-
straints over I and Vr is a set of variables. We assume Vi # () without loss of
generality. Then we define KB to be any conjunction of constraints (possibly
with existentially quantified auxiliary variables) over I' and logically equiva-
lent to KBr A Ayev,. (—m' V x); such a formula exists because (I') = I is the
set of all 0-valid relations and (—m/V x) is 0-valid. We also define H = H'UVr,
and P = (V' H,m', KB). Then, clearly P has an explanation if and only if
P’ has one, since KB is logically equivalent to KBp A (m' — A,ey, T(2)) (the
reasoning is similar to that in [12, Lemma 19]). O

9 Complementive languages

We give two new lower bounds.

Proposition 47 Let T' be a constraint language satisfying (I') = INy. Then
P-ABD(T',PosLiTs) and N-ABD(T',PosLITS) are XY -hard.

PROOF. We know from Theorem 18 that V-ABD(I',POSLITS) is ¥5-comp-
lete. Now V-ABD(I',PosLits) <pL-ABD(I',LiTS) (Lemmata 19 and 20),
and since Rz € IN,, we have L-ABD(I',LiTs) <pP-ABD(I',PosLiTs), N-
ABD(I",PosLitTs) (Lemma 27), which concludes the proof. O

Proposition 48 Let T' be a constraint language satisfying (I') = IN. Then
P-ABD(I",PosLiTS) is coNP-hard.

PROOF. We know from Post’s lattice and Proposition 8 that (I' U {T}) =
I1;. Thus it follows from Theorem 34 that DEDUCTION(I'U {T},POSLITS) is
coNP-hard. We give a reduction of this latter problem to P-ABD(I",POSLITS).

Let (V, KBr,q) be an instance of DEDUCTION(I" U {T},PosSLiTS), where
q € V, and write KBt = KB A Ayey,. T(x), where KB is a knowledge base
over I'. Now define an instance P of P-ABD(I',PosLits) by P = (V,H =
Vr,q, KB). Since KB is 1-valid we have that KB A\ H is satisfiable, and thus,
by Lemma 43, P has an explanation if and only if KB A A H entails ¢, i.e., if
and only if KBt entails ¢. O
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10 Horn and dual Horn languages

In this section we build over a number of results given in the literature for
Horn knowledge bases, mainly by Selman and Levesque [48], Eiter, Gottlob,
and Makino [20,23], and Khardon and Roth [32].

Lemma 49 (see [32] and [50, Lemma 1)) Let P = (V, H, M, KB) be an
instance of ABD(Cror, ), where M € PoSLITSUPOSCLAUSESUPOSTERMSU
PosCNFs. Then P has an explanation if and only if it has a positive one.

Corollary 50 LetT" be a Horn language, and let M be PosLiTs, POSCLAUSES,
PosTERMS, or POSCNFSs. Then L-ABD(I',M) =pV-ABD(I', M) =pP-ABD(I',M).

Proposition 51 (adapted from [20, Corollary 5.4]) L-ABD(Cy— gom,POS-
CNFs) is in P.

PROOF. Let P = (V,H, M, KB) be an instance. From Lemma 49 it follows
that P has an explanation if and only if P’ = (V, HNV, M, KB) has one. Now
KB is 1-valid, thus KB A \(H NV) is satisfiable. Thus, by Lemma 43 P’ has
an explanation if and only if KB A A(H NV') entails M, which can be decided
in polynomial time since KB is Horn (Theorem 33). O

The following result is new and gives quite a broad class of tractable abduction
problems. Observe that by duality, it also shows that it is tractable to decide
whether a CNF has a negative explanation with respect to a Horn knowledge
base.

Proposition 52 P-ABD(Cyyom,CNFS) is in P.

PROOF. Let P = (V,H, M, KB) be an instance. We assume without loss of
generality that KB is satisfiable (see the end of Section 3.1). Let H’ be the
set of all (positive) literals h € H such that KB A h is satisfiable; H' can be
computed efficiently by testing every h € H since KB is dual Horn. Then P
has an explanation if and only if the instance (V, H', M, KB) has one, since
every candidate explanation containing h for some literal h € H \ H' would
be inconsistent with KB. Now the set of models of a dual Horn knowledge
base is closed under componentwise logical or (this is dual to the well-known
closure of Horn theories under logical and, see, e.g., [46]). Hence, since KB A h
is satisfiable for every h € H', KB AN )\ H' is satisfiable. We now conclude from
Lemma 43 that P has an explanation if and only if KBAA H' entails M, which
can be decided in polynomial time since KB is dual Horn (Theorem 33). O
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We finally give two hardness results. The proof of the first one follows directly
from [12] (V-ABD case, as reported in Theorem 18) together with Corollary 50.

Proposition 53 Let I' be a constraint language satisfying (I') = I Ey. Then
P-ABD(I',PosLiTS) is NP-hard.

Proposition 54 Let I' be a constraint language satisfying (I') = I Ey. Then
P-ABD(I',NEGLITS) and V-ABD(I',NEGLITS) are NP-hard.

PROOF. By Proposition 53, P-ABD(I',PosLiTs) is NP-hard. Now the clause
(maxV—y) is in [ Ey, thus Lemma 29 gives a reduction from P-ABD(I",POSLITS)
to P-ABD(I',NEGL1TS) with choosing a negative literal for £. The proof is sim-
ilar for V-ABD, using Theorem 18 for hardness of V-ABD(I',PosLiTs). O

11 Bijunctive and IHS-B languages

Bijunctive and THS-B restrictions share an important property, summarized
in the next lemma.

Lemma 55 Let C be any of Cyij, Cimpi, Crasp+/k, or Crusp—sk for some k.
Then every prime implicate of a knowledge base KB over C is in C, and the
set of all these prime implicates can be computed in time polynomial in the
size of KB. In particular, there are only a polynomial number of them.

PROQOF. It is easily seen that all the prime implicates are in C. Indeed, all
of them can be generated by resolution, and as is easily seen from the forms
of the clauses, resolution preserves each class in the statement. Thus, starting
from a formula over C, only clauses in C can be generated.

Clearly, the number of prime implicates of a theory over Cyi;, Cimpi, Crrsp+/k;
or Crgsp— i is polynomial in the size of the theory, since the size of clauses
over C is bounded by 2 or k in all cases. All can be generated in polynomial
time since one can simply generate all clauses of size 2 (resp. k) and for each
one, test whether it is entailed by KB and none of its proper subclauses is, in
polynomial time in all cases (Theorem 33). O

Remark 56 The fact that the language is fized, and thus that k is fized for
languages Cigsp— /i and Cigsp k., 15 crucial in the proof of Lemma 55. Indeed,
the statement does not hold for infinite languages Crgsg— and Crysp -
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11.1  Bijunctive and IHS-B languages: Upper bounds

We first give easy consequences of Lemmata 37 and 55, which generalize folk-
lore results based on prime implicate generation (see in particular Marquis’
survey [37]. The algorithm consists of generating the prime implicates of KB
over Vars(H) U Vars(M) until one as in Lemma 37 is found or all have been
tested.

Proposition 57 Let C be any of Cyij, Cheg—, o7 Crusp—si for some k € N.
Then 1L-ABD(C,CLAUSES) is in P.

PROOF. The only case not handled by Lemma 55 is C,, —, because of the
equality relation. We show that if a knowledge base KB over C,, — contains
no equality constraint, then it has a polynomial number of prime implicates,
all of which can be generated efficiently. We then conclude with Lemma 21.

Indeed, since clauses in KB are either unit positive or negative, it can be seen
that once resolution has been applied to each pair of clauses consisting of a
positive and a negative one, it cannot be applied any more. Since there can be
at most one positive clause per variable, all prime implicates can be generated
in polynomial time. 0O

Proposition 58 L-ABD(Ciysp—,POSCLAUSES) is in P.

PROOF. By a reasoning similar to that in the proof of Lemma 55 we have
that every prime implicate of a IHS-B— theory is IHS-B—. Now since the
only THS-B— clauses which contain at least one positive literal are unary and
implicative ones, from Lemma 37 we get that the only minimal candidate
explanations of an instance of L-ABD(C;gsp_,POSCLAUSES) are the empty
one and those restricted to only one (positive) literal, all of which can be
tested efficiently. O

We now give two new tractability results, for which some more work is needed
because of conjunctive manifestations.

Proposition 59 L-ABD(C,,,POSCNFS) is in P.

PROQOF. First observe that since KB is bijunctive, one can decide in polyno-
mial time whether () is an explanation, by deciding whether KB is satisfiable
and entails M. Thus we assume hereafter that () is not an explanation.
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Let P = (V,H, M, KB) be an instance of the problem, and assume first that
M consists of a single (positive) clause C'. In this case, since the only prime
implicates of a knowledge base over Ci,; are in C;,,; (Lemma 55), we conclude
that a set £ C H is an explanation for P if and only if KB A A E is satisfiable
and there is a literal £ € E such that KB A ({) entails C' (or, as a subcase,
E = ( is an explanation); moreover, such an ¢ has to be a positive literal.
Thus the set E¢ of all such £’s can be computed in polynomial time by testing
the |H| candidates.

Now consider the case when M is a CNF of the form (C; A--- AC,). Then by
Lemma 28 and the reasoning above, a set £ C H is an explanation for P if and
only if KB A A E is satisfiable and for all ¢ € {1,...,p}, 0 is an explanation
for C; or there is some h; € E such that h; € E¢,. As is easily seen, this
is true if and only if the formula KB A /\?zl,KBb&CQ(\/hGECi h) is satisfiable.
Since for all i € {1,...,p}, E¢, contains only positive literals, this formula is
[HSB+ and thus, it can be decided in polynomial time whether it is satisfiable
(Theorem 32, since CIHSB+ g CdHorn)- O

Proposition 60 L-ABD(C,,, —,POSCNFS) is in P.

PROOF. Let (V,H, M, KB) be an instance. We first invoke Lemma 21 for
assuming without loss of generality that KB contains no equality constraint.
Now, reasoning as in Lemma 57 we get that the only prime implicates of KB
which contain at least one positive literal are unit clauses. Thus, by Lemma 37
there is an explanation for a positive clause C' of M if and only if () or {m},
for some m in C, is an explanation. It then follows from Lemma 28 that there
is an explanation for M if and only if H contains at least one variable in
each clause of M which is not entailed by KB alone, which can be decided
efficiently. O

11.2  Biunctive and IHS-B languages: Lower bounds

We will mainly use the following lemma, which provides a class of reductions
from satisfiability problems to abduction problems. The intuition behind the
reduction is that we reduce the test for satisfiability of a set of clauses in a
formula to a test for explainability of the satisfaction of these clauses, where
satisfaction of a clause is explainable by any of the literals in this clause. The
clauses which are not transformed by the reduction serve as constraints over
the possible explanations. Importantly, this is exactly the intuition behind our
characterization of tractable vs. NP-complete abduction problems, as we shall
see in Section 15.
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Lemma 61 Let ¢ = Ny C; be a CNF formula, where for all i, C; = Ve, li
and every {; ; is a literal. Let I' C I be a set of indices. For alli € I' let z; be a
new variable (x; ¢ Vars(y)), and let s; be a literal formed upon x; (intuitively,
“clause C; is satisfied”). Finally, define

KB = Niennw Ci A Nier Nje, (i V si),

V= Vars(p)U{z; |ie€l},

H: {&J |Z€I,j S Jz}U{&J |Z€I,j S Jz}, cmd
M: /\iGISi'

Then ¢ is satisfiable if and only if the abduction problem P = (V, H, M, KB)
has an explanation. The same result holds with H ={{;; |i € I,j € J;}.

PROOF. Assume first that ¢ has a model p, and define E to be the set of
all literals in H which are satisfied by . Then since y satisfies C; for all ¢« € I,
it satisfies C; for all i € I'\ I’; now define the assignment y' to V' to agree with
wover Vars(p) and to satisfy every s;. Then ' satisfies C; for every i € I'\ I
and (0;; V s;) for every i € I,j € J;, thus it satisfies KB. Moreover, clearly y/
satisfies A E. Finally, KB A A\ E is satisfiable.

We now show that KB A A\ E entails M. Assume to the contrary that KB A
A E A (Vicr Si) is satisfiable. Then there is an ¢ € I such that KBAAEA; is
satisfiable. Write p’ for one of its models. Then ' satisfies A F, thus it agrees
with p over Vars(H); then since p satisfies o, 1/ satisfies ¢; ; for at least one
j € J;. Thus p' satisfies ¢; ; A'5;, which contradicts the fact that it satisfies
KB. Finally, KB A \ E entails M, and F is an explanation for P.

Conversely, assume that P has an explanation E. Then there is a model p of
KB AN\ E, and we show that fivars(e) is @ model of ¢. First, for all i € I'\ I’,
u satisfies C; since C; is in KB. Now assume, towards a contradiction, that
there is an i € I’ such that for all j € .J;, u satisfies ; ;. Define the assignment
i to agree with p over V' \ {z;} and to satisfy 5;. Then y satisfies KBAAE
but does not satisfy M, which contradicts the fact that E is an explanation
for P. It follows that for all ¢ € I’, ju satisfies ¢; ; for at least one j € J;, and
thus it satisfies C;. Finally, u satisfies ¢, as desired. O

Based on this general reduction, we are able to give new hardness results for
several abduction problems with bijunctive and THS-B knowledge bases.

Proposition 62 Let I' be a constraint language. Then,

e if () = 15%, V-ABD(I',POSTERMS) and P-ABD(I",POSTERMS) are NP-
hard;
o if (I') = IM, V-ABD(I',TERMS) is NP-hard;

38



e if (I') =152, V-ABD(I',POSTERMS) and N-ABD(I',POSTERMS) are NP-
hard.

PROOF. We first prove the case (I') = IS%. From Theorem 32 it follows
that SAT({(z1VxaVas), (-2 V-xe)}) is NP-complete. Now Lemma 61 gives a
reduction from this problem to V-ABD(I',POSTERMS) or to P-ABD(I",Pos-
TERMS). Indeed, let ¢ = /\igp(:ﬁm V oV xis) A Ner, (41 V 22 2), where
I,, I,, are two disjoint sets of indices. Then by Lemma 61 we have the desired
reduction by choosing I = I, and for all i € I', s; = x;.

The proof is similar for cases (I') = IM and (I') = IS2, up to considering
respectively,

o SAT({(x1 V2V as), (mx1 V—x9)}), I'=1,Ul,, foralli € I, s; = z;, and
forallz € I, s; = —x;, and
o SAT({(z1 Vxg), (mx1 V2oV —x3)}), I'=1,,and foralli e I’ s, = ;. O

The next proposition is a special case. Indeed, observe that I' is necessarily
infinite, since any finite language included in 7.S7; must have bounded width
and thus, be included in IS}, for some k € N (yielding (I') C IS¥, € IS1;).
This special case is discussed in Section 13.2.

Proposition 63 Let I' be an (infinite) language satisfying (I') = 1.S1,. Then
V-ABD(I',NECGLITS) and P-ABD(I',NEGLITS) are NP-hard.

PROOF. Proposition 62 shows that V-ABD(I',POSTERMS) is NP-hard if
(T'Y = 15%. Now Lemma 29 gives a reduction from this problem to V-
ABD(I",NEGLITS), where (I'") = I.S1;, by choosing a negative literal for /.
The proof is similar for P-ABD(I",POSTERMS). O

12 Affine languages

The main tool which we will use with affine formulas is projection. This will
be done through the following lemma.

Lemma 64 ([51]) Let KB be an affine formula, and let V' C Vars(KB).
Then there is a projection of KB onto V' which is affine, and such a projection
can be computed in polynomial time.

Interestingly, contrary to the case of bijunctive and bounded IHS-B knowledge
bases, tractability of projection here is not a consequence of a polynomial
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number of prime implicates. Indeed, even in the case of a single linear equation
of the form (z; @ --- @ x,, = 0), an affine formula may have an exponential
number of prime implicates (2" in the example, namely all clauses over
exactly z1,...,z, with an odd number of negative literals).

12.1  Affine languages: Upper bounds

We first restate Nordh and Zanuttini’s result [40] about affine formulas of
width 2. Indeed, they state it for finite languages, but their proof obviously
holds for the corresponding infinite language as well.

Proposition 65 (adapted from [40]) L-ABD(E.y/2, TERMS) is in P.

We now give new tractability results. So as to use projection consistently
with its definition, observe that in the affine case we can assume Vars(H) U
Vars(M) C Vars(KB) without loss of generality. Indeed, for any variable

x € (Vars(H)U Vars(M))\ Vars(KB), a fresh variable new, can be introduced
and x @ new, = 0 added to KB without changing the set of explanations.

Proposition 66 L-ABD(E,s,CLAUSES) is in P.

PROOF. Consider an instance (V, H, M, KB). Note that since (z # y) =
(x@y = 1) € E,p we can use Lemma 27 to reduce the instance to an equivalent
one (V' H', M', KB') where M’ is a positive clause and H' is a set of negative
literals. Now, in order to eliminate all variables that are neither in H’ nor in
M'; project KB" onto V" = Vars(H')U Vars(M'), getting a formula KB"” over
the set of variables V",

Now since (z = y) = (z®y = 0) € &, we can assume Vars(H')N Vars(M') =
() without loss of generality, since any variable z in the intersection could be
duplicated into xy and z; up to adding (xy = z,7) to KB".

We now have an instance P = (V" H', M', KB") where KB" is a set of linear
equations, H' is the set of negative literals {—x |z € V" \ Vars(M')}, and M’
is a positive clause. We can then use exactly the same reduction as in [40,
Proposition 11] to show that P has an explanation if and only if the negative
term =M’ does not follow from KB” when circumscribing all variables. Since
this problem is in P if =M’ is a single literal [18, Theorem 7], and the case
of a term is easily seen to be polynomial-time reducible to it, we have the
result. O
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The next proposition will use the notion of a full explanation. Given an in-
stance P = (V, H, M, KB) of any abduction problem, an explanation F for P
is said to be full if Vars(E) = Vars(H). What we will use is the fact that an
instance of V-ABD, for any restriction on the manifestation, has an explana-
tion if and only if it has a full one. Indeed, given a nonfull explanation E since
KB A A\ E has at least one model p, it is easily seen that the set £’ defined to
be the set of all literals over H assigned true by u is a full explanation for P.

Proposition 67 V-ABD(E,4, TERMS) is in P.

PROOF. Let P = (V,H, M, KB) be an instance, and write Vy for Vars(H).
We first consider the case of a positive literal as a manifestation, i.e., M =m
for some m € V (the case of a negative literal is dual). Assume m ¢ H,
which is without loss of generality since otherwise P has an explanation if
and only if KB A m is satisfiable, which can be decided efficiently. Write
KB pupmy for an affine projection of KB onto Vi U {m}. By Lemma 64 such
a knowledge base can be computed in polynomial time. Now define Pyymy =
(Vuu{m}, H,m, KB yimy). By Lemma 40, Pyign,y has an explanation if and
only if P has one. Moreover, obviously, if m does not occur in KB gy then
Prugmy has no explanation. Otherwise, let Eqn,, = (m ® @xr = a) be an
equation of KB pyyy containing m.

Now let KBpy,;,—1 be an affine projection of KBpyugmy A m onto Vy. We
claim that the full explanations of Py, are in bijection with the models of
KBH,m:l'

Indeed, let E be a full explanation for Ppgygmy. Then by definition of an
explanation, there is a model p of KBpygmy A A E A m; thus gy, satisfies
KBy m=1 AN E, and thus KB y,—1. Conversely, let i be a model of KB g -1,
and write F for the set of all literals over Vi and satisfied by u; we show that
E is a full explanation of Pgygmy. First, KBy ,—1 A A E is satisfiable, thus
KBuupmy ANm A A\ E is satisfiable, and thus KB gugm) A A E is satisfiable. We
are thus left with proving KB gugmy AN E = m. Assume towards a contradic-
tion that there is a model p’ of KB gugmy AN EA—m. In particular, 1 satisfies
—m and agrees with p over Vars(E) = Vp. Moreover, since p is a model of
KBy m—1, it satisfies the equation @y z = a @ 1 (i.e., Eqn,, with m = 1); it
follows that p’ satisfies @y x = a @ 1; since it also satisfies —m, it satisfies
m@dBx x = a@d1. Thus it does not satisfy equation Eqn,,, which contradicts
the fact that it satisfies KB gypny.

We conclude that in the case of a single literal m as the manifestation, the
full explanations of Py are exactly the models of KBy ,—;. It follows
from Lemma 28 that the full explanations in the case of a manifestation M =
mi A -+ Amy, are exactly the models of KBy =1 A -+ A KBp m,=1. Since
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every KBy ;=1 is an affine formula and can be computed in polynomial time,
we finally get a polynomial algorithm. 0O

12.2  Affine languages: Lower bounds

We finally give hardness proofs for affine languages, all of which are new. To
that aim, we use original reductions from satisfiability problems, inspired by
the clausal case (Lemma 61).

Proposition 68 Let I' be a constraint language satisfying (I') = IL. Then
L-ABD(I',POSTERMS) is NP-hard.

PROOF. We give a reduction from SAT({(z1®zo®x3B x4 = 0), (21), (021 V
—x9)}), which is NP-complete by Theorem 32. Let ¢ = oo AN;cr(mxi1V—a,) A
Niek (xr = 1), where ¢y contains only equations of the form (z1Gro®rsdry =
0). For all i € I let s; ¢ Vars(y) be a fresh variable (intuitively meaning that
clause i is satisfied), and for all ¢ € I let p;1,mi1,pi2, ni2 ¢ Vars(y) be four
fresh variables (“p” stands for “positive” and “n” for “negative”). Write H,
for the set of all p;;’s and H,, for that of all n,;;’s. We define an instance

P = (V,H,M,KB) of L-ABD(I',POSTERMS) by

V= Vars(p)U{s; | i€ I} UH,UH,,

H = N(Vars(¢)) U{x, | k€ K} UH,UN(H,),

M= {s;|iel}U{xy| ke K}, and

KB = @o A Nier(in @ pii @nia @ 8 = 0) A Njer(Tia @ pia Bnia®s; =0).

The intuition is that the new equations play the role of “implications” —xz;; —
s; and —x; 9 — S;.

We claim that P has an explanation if and only if ¢ is satisfiable. First, if p
is a model of ¢, then clearly {—z | z € Vars(¢) and p(zx) = 0} U{zy | k €
K} U{pi;,—n;; |1 €I and p(x; ;) = 0} is an explanation for P. Conversely,
assume E is an explanation for P. Then since for all © € 1, s;, pi1, Pi2, i1, 12
only occur in equations (z;; ® p;; ® n;; ® s; = 0), £ has to contain p; ; or
—p;.; and n; j or —n; ; for at least one j € {1,2}. Indeed, otherwise flipping the
values of s; and some p; ;’s or n; ;’s in a model of KBAA EAA M would yield
a model of KB A \ E A —s;, contradicting the fact that F is an explanation
for P. Thus for all ¢ € I there is a j € {1,2} such that E contains p; ; and
—n; ;, since —p; ;j,n;; ¢ H. Now by definition of an explanation, there is a
model of KB AAE AAM, and it follows from the reasoning above that this
model satisfies —z; ; or -z, o for all 7 € I, since otherwise one of the equations
(i; B pi; B ni; s, =0) would not be satisfied. Finally, it satisfies z;, for all
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k € K because these literals are in M. Thus, defining i to be the projection
of this model onto Vars(y), we get that u is a model of ¢, as desired. O

Proposition 69 Let I' be a constraint language satisfying (I') = ILy. Then
N-ABD(T',POSTERMS) is NP-hard. Similarly, if T is a constraint language
satisfying (I') = I Ly, then P-ABD(I',POSTERMS) is NP-hard.

PROOF. Asregards I Ly, the proof is similar to that of Proposition 68, except
that we start from SAT({(z1 B zo ® x5 = 1), (-1 V ~29)}), we introduce only
one fresh variable n; ; per occurrence of variable in a negative clause, we build
equation (x;; @ n;; ® s; = 1) instead of (z;; ® p;; ®ni; & s; = 0), and we
only add —n; ; to H.

The proof is dual for ILg, starting from SAT({(z1 ® z2 ® x3 = 0), (x1 V x2)})
and building (z;; © p; ; ® p;; ® s; = 0) with p; j,p;; € H. O

Proposition 70 Let I' be a constraint language satisfying (I') = ILs. Then
P-ABD(I',POSTERMS) and N-ABD(I',POSTERMS) are NP-hard.

PROOF. Since IL C IL3, by Proposition 68 L-ABD(I',POSTERMS) is NP-
hard. Now we know L-ABD(I',POSTERMS)<pL-ABD(I',TERMS) (Lemma 19).
Finally, since R (x,y) is the set of models of z @y = 1, Ry is in I L3. Thus
by Lemma 27 we know that L-ABD(I',TERMS) <pP-ABD(I',POSTERMS),
N-ABD(T',POSTERMS), which concludes the proof. O

Proposition 71 LetT be a constraint language satisfying (I') = ID. Then V-
ABD(I",POSCNFs), P-ABD(I',POosCNFs), and N-ABD(I',POSCNFS) are
NP-hard.

PROOF. We consider the case of V-ABD. The other cases follow from it
using Lemmata 20 and 27.

We give a reduction from the satisfiability problem for CNF formulas. Let ¢ =
Nicr Ci be a CNF formula. For every variable x € Vars(p) let p,,n, ¢ Vars(p)
be two fresh variables (“p” stands for “positive” and “n” for “negative”). Let ¢’
be the CNF formula obtained from ¢ by replacing every positive occurrence
x of a variable in a clause with the positive literal p,, and every negative
occurrence —x of a variable with the positive literal n,. By construction, ¢’ is

a positive CNF.

We define an instance P of V-ABD(I',POSCNFs) as follows:

e KB = /\xEVars(g@)(piK 7é nl’)’
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o V=A{p,|x€ Vars(p)} U{n, | z € Vars(p)},
e M = and
o H={p,|x€ Vars(p)} U{—p, | © € Vars(p)}.

Then it is easily seen that if ¢ is satisfiable with a model p, then E defined to
be {p, | p(z) = 1}U{=p, | u(x) = 0} is an explanation for P. Conversely, if £
is an explanation for P, then it is easily seen that any assignment to Vars(p)
satisfying p(z) = 1 (resp. u(x) = 0) for all p, € E (resp. =p, € F) is a model
of ¢, which concludes the proof. O

Proposition 72 Let I' be a constraint language satisfying (I') = IL. Then
V-ABD(I',POSCNEFS) is NP-hard.

PROOF. We give a reduction from the satisfiability problem for CNF for-
mulas, similar to the one in the proof of Proposition 71. Let ¢ = A,c; C; be
a CNF formula. For every variable x € Vars(p) let p,,n, ¢ Vars(y) be two
fresh variables (“p” stands for “positive” and “n” for “negative”). Let ¢’ be
the CNF formula obtained from ¢ by replacing every positive occurrence x of a
variable in a clause with the positive literal p,, and every negative occurrence
—x of a variable with the positive literal n,. By construction, ¢ is a positive

CNF. Moreover, let xq,...,x4 & Vars(yp).
We define an instance P of V-ABD(I',POSCNFs) as follows:

KB = (Il DroDr3Dry= O) A /\LBGV(ZTS(LP)(pIE Dng Dr3 Dy = O),
V=Ap: | x € Vars(p)} U{n, | © € Vars(p)} U{x1, x2, 3,24},

M =z A (x3V x4) N, and

H =A{ps,p. | © € Vars(p)} U{zy, ~21, 29, 722 }.

The idea is that the manifestations z1 A (23 V x4) together with the equation
r1PxePr3Pxy = 0in KB force every model p of KBAA E (for any explanation
E) to satisfy u(xs) # p(zs). Consequently, the equations (p, &n,Grs®xy = 0)
force pu(p,) # p(n,) for any model p of KB A A E (and any explanation E).

It is easily seen that if ¢ is satisfiable with a model u, then E defined to
be {p. | p(z) = 1} U{=p, | p(z) = 0} U {1, 722} is an explanation for P.
Conversely, if E is an explanation for P, then KB A A\ E is satisfiable and
entails x; A (z3 V 24) A ¢’. Now, assume that there is a model p of KBAAE
such that pu(x3) = p(rs) = 1. Note that x3 and x4 do not occur in H and
that they occur together in every equation in KB. So, it is easy to see that
there is also a model p' of KB A A E such that p/(x3) = p/(z4) = 0. This
is a contradiction with the fact that E is an explanation, since u' does not
satisfy (x3 V z4). Hence, any model p of KB A A\ E satisfy u(x3) # p(zy) and
consequently, p(p;) # p(n,) for all x € Vars(p). Hence, the assignment 4 to
Vars(p) defined by p/(x) = p(p,) for all z € Vars(y) is a model of p. O
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For the next proposition, observe that even the empty language I' = () satisfies
(I') = IBF.

Proposition 73 Let T be a constraint language satisfying (I') = IBF. Then
V-ABD(I',CNFS) is NP-hard.

PROOQOF. Recall than IBF only contains the equality relations. We give a
reduction from the satisfiability problem for CNFs. Let ¢ be a CNF, we define
the following instance P of V-ABD(I',CNFs):

e KB is the empty CNF (always satisfied),
o V = Vars(yp),

o M =, and

o H = Lits(Vars(p)).

Then it is easily seen that the (full) explanations of P correspond exactly to
the models of ¢. O

13 Summary and complete classification

We are now in position to give a complete picture of the complexity of propo-
sitional abduction for the 48 restrictions over hypotheses and manifestations.
By a “complete” picture, we mean that our results give the complexity of ab-
duction for any constraint language and for any class of clauses or equations,
as explained in Section 13.2.

13.1  Summary of results

The complete complexity picture of abduction in given in Table 3. In this
table, for each restriction on hypotheses and manifestations and each com-
plexity class, the minimal and maximal languages in this class (with respect
to language inclusion) are listed. More precisely, the languages listed on the
first line in each cell are the maximal languages in the complexity class, and
the languages on the second line are the minimal languages hard for the class.

As an example, consider the cell for NP-complete L-ABD problems where the
manifestations are expressed by POSCNF'S. The first row in this cell is Cp;;,
Cattorns Eaffs Chom, and the second row is 1S3, 1S3, ID, IV, IL. This means
that L-ABD(I',POSCNF's) is NP-complete for any I" such that I' is a subset
of one of the languages listed in the first row, and one of the languages on the
second row is a subset of (I'). To further exemplify, consider the constraint
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language I' = { R}, where R = {001,010, 100,111} (i.e., the relation expressed
by 1 @ z2@® x5 = 1). Then, I' C €, and IL C (I'). Hence, by Proposition 35,
L-ABD(I',POosCNFSs) is in NP, and by Proposition 72 (together with the
obvious reduction from V-ABD to L-ABD) L-ABD(I",POSCNF's) is NP-hard.

The fact that all the results in Table 3 can be derived from the results reported
in the paper (in the manner described above) has been checked by a computer
program, which is available from the authors.

Also note that the results for negative restrictions on manifestations have been
omitted from the table; to recover them, simply use Lemma 25.

Finally, we collapsed the rows concerning (positive) clauses and (positive)
literals. Indeed, it turns out that the complexity is always the same for both
types of manifestations. Section 15.4 gives an explanation for that fact.

13.2  On the completeness of the classification

In this section we motivate our claims that the classifications are complete in
the sense that all constraint languages and classes of equations and clauses
are covered.

We begin by noting that the upper bounds on the complexity of abduction
problems in the paper, which are all given in terms of clausal and equational
languages C, also hold for any constraint language I' such that I' C (C). If T"
is a finite constraint language, then this is obvious since we can use a simple
lookup table to translate a I'-formula into a CNF or system of equations over
C. For infinite constraint languages I' the situation is slightly more involved.
We make use of a result from [11], stating that we can transform (in poly-
nomial time) any I'-formula where the relations are given in extension into
an equivalent CNF-formula/system of equations over any clausal /equational
language C from Table 1 such that (I') C (C). Since all the upper bounds
on the complexity of abduction in the paper are given for clausal and equa-
tional languages C from Table 1, we get that these upper bounds also apply
to constraint languages I' such that I" C (C).

All our hardness results, except for a few special cases discussed below, are
proved for finite constraint languages I'. Obviously, using Lemma 22, these
hardness results implies hardness for any constraint language I such that
[’ C (I'). The exceptional constraint languages I" for which we cannot prove
hardness by first proving that some finite constraint language IV C (I") is hard
and then applying Lemma 22, are:

o L-ABD(I',M), where (I') € {ISp1, IS0}, M € {(Pos)Lits, (P0S)CLAUSES},
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[ I p NP-C. [ conp-c. | mp-c. |
PosLits or CiusB+/k> Cpos,=s CrusB—; Coij, Eaffs C1v—Horn CaHorns CHorn Cenr
PosCLAUSES 1501, IV, IEy IN

L1TS or Crisp+ k> Cpos,=> C1asB— ks Cneg,=» Chijs Eaff CaHorn> CHorn Conr
CLAUSES I1So1, 1511, IV, IE IN
POSTERMS cimplu Cn@g,=7 gaﬁ': Clfom"rL cbij7 cdH(?T’l?,7 cHurn CCNF

182,153, 1V IN
V-ABD
TERMS ga_ff Cbij? CaHorns CHorn Cenr
IM, IS2, 152 IN
PosCNFs Cimpl: Cn&g,:7 Clv—Hnrn Csz7 CdHo’r‘n7 gaff7 CHm‘n, CCNF
182,182, ID, IV, IL IN
CNFs cbij7 CdHa'r‘na gaﬁa CHo’r'n CCNF
IBF IN
PosLiTs or Crusp—» Cbij7 CaHorns ga,ﬁ'» Civ—Horn CHorn Crv Conr
PosCLAUSES IEy IN INs, Iy
LiTs or cIHSB*/kv Cneg,:a Cbij7 CaHorn, 8aﬁ7 Cio—Horn CHorn Civ Cenr
CLAUSES ISll IN INQ, IIp
POSTERMS Cneg,=7 ga,ﬁ/27 CdHor'ru gl'ufaﬁv Cl'ume‘n Cbi]'27 gaﬁ: CH()T’VL Crv CCNF
1S2., ILs, IL IN INa, I,
P-ABD 11 3 0 2 0
TERMS gafj‘/?v CdHorru glv—a,ﬁ'y Clfoorn csz7 5aﬁ7 cHorn Crv CCNF
IS?,1L3, ILg IN INs, I
PosCNFs cneg,iy CdHo’r‘m glvfuﬁv Clv—Hm"n cbz‘jy gaﬁy CHorn Civ CCNF
18%,,1ID, ILg IN INs, I
CNFs CaHorn, glvfaffv Civ—Horn Cbz‘]: gaﬁ: CHorn Crv Cenr
182, 1D, ILo IN INa, I
PosL1Ts or Ci11sB+/k> Cpos,=s Cuijs Eaffs CHorns Cov CaHorn Cenr
PosCLAUSES I1S01 INy, 11
LiTs or CIHSB+/1€7 CPOS,:7 Cbij7 COU—dHOT‘TH gaff7 CHorn Cde'n C()v CC’NF
CLAUSES ISOl IN INQ, I
POSTERMS Ear 2> CHorns Cov Cuij 72CdHo7'n7 Ear Cenr
182, ILy, IL INo, IT
N-ABD 0 1 3 2 1
TERMS gaﬁ/,?,u C()vdeo'rn7 g(]vfaﬁv cHur'rL Cbij7 CdHGT‘?‘U 5‘a,jf Cov CCNF
IS2,ILy, IL3 IN INy, I,
PosCNFs cHarnv CUU Cbij7 cde‘n,7 ga,ff CC'NF
182, 1D, ILy INo, I,
CNFs CO’U*LZHUT"IL: £0U74ﬁ7 CHm‘n Cbij7 CdHo’r'm gaﬁ COU CCNF
IS2, 1D, I, IN INo, IT;
PosLITS or CiusB+/k> Cpos,=s CisB—; Coijs Eaffs C1v—Horn CaHorn> CHorn Cenr
PosCLAUSES 1S01, IV, I[Ey IN
LiTs or C]HSB+/k7 Cpos,:7 C]HSBf/kv Cneg,:7 Cl)ij7 gaﬁ' cdHorna cHorn CCNF
CLAUSES ISo1, 1511, IV, IE IN
POSTERMS ci7er17 Cneg,iv 8aﬂ/27 C1v—Horn Cbij7 CaHorn, S(Lﬁv CHorn Cenr
IS2,18%,1V,IL IN
L-ABD
TERMS Ear /2 Chvijs Catiorn, Eafry CHorn Cenr
IM, 1S3, 182, IL IN
PosCNFs Cimpl7 cner],:7 Clfoo'rn Cbija CdHn'r‘na Eajj'a CHa'rn CCNF
IS2,18%,1ID, IV, IL IN
AT
CNFs Cbij7 CdHornv gaff7 CHarn CCNF
IBF IN
Table 3
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° L—ABD(F,M), where <F> € {IS(H, 1So9, 1511, 1510}, M e {LITS, CLAUSES},

e N-ABD(I',M), where (T") € {ISo1, [So0}, M € {(Pos)LiTs, (Pos)CLAUSES},

e P-ABD(I',M), where (') € {IS11,1S10}, M € {LiTS, CLAUSES},

e V-ABD(I',M), where (I') € {ISp1, 1500}, M € {(Pos)Lits, (P0os)CLAUSES},
and

. V—ABD(F,M), where <F> S {1501, 1Sy, 1511, 1510}, M e {LITS, CLAUSES}.

These cases are exceptional since they are all NP-complete (by Proposition 63
and obvious reductions), but if I' is replaced by any finite [V C I, then the
problems are in P. This is because these languages include relations described
by clauses of arbitrary length, while their finite subsets only allow to express
clauses of bounded length. Indeed, they only contain binary clauses and clauses
with only one polarity, such as (—z1 V- - -V —zy). So the only clauses with can
be resolved against each other to infer a new clause are two binary clauses, or
a “long” clause and a binary one, so in no case can a clause of length greater
than £ be inferred.

As a sidenote we want to remark that in the literature on computational prob-
lems over restricted constraint languages there are two notions of tractability:
local and global. A problem over a constraint language I" is said to be locally
tractable if the problem is tractable over every finite subset of I', and global
tractability coincides with the tractability notion used in this paper. Thus, as
first noted by Creignou [10] (and as should be obvious from the discussion
above), the notions of global and local tractability disagree for the abduction
problem. This highlights a difference between the complexity of abduction
and many other computational problems over constraint language restrictions,
such as SAT(T"), for which the notions of local and global tractability coincide.

Coming back to the completeness of the classification, it is a tedious but
straightforward task (thanks to Post’s classification) to check that, for all
constraint languages [" and restrictions on hypotheses and manifestations con-
sidered in the paper (which are not in one of the special cases already treated
above), our results show that either

e the abduction problem over I' is in P as a consequence of I' C (C) for some
tractable clausal or equational language C, or

e the abduction problem over I' is NP-complete (coNP-complete, 35 -complete)
as a consequence of I C (T') for some finite NP-hard (coNP-hard, ¥5-hard)
constraint language IV, and I" C (C) for some clausal or equational language
C which is in NP (coNP, ¥1).

Hence, we have a classification for the complexity of abduction over any con-
straint language I' and any combination of restrictions on hypotheses and
manifestations considered in the paper.

When it comes to clausal and equational languages C, the reasoning is very
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similar. First note that all finite clausal /equational languages C are covered by
our discussion about constraint languages above. This is because abduction
over C has the same complexity as abduction over I' when I' and C are both
finite and (I') = C. This is because finite languages allow us to use a simple
lookup table to translate between the different representations in polynomial
time. Hence, we can concentrate on infinite clausal/equational languages C.
Now, by Lemma 22 any lower bound on the complexity of abduction over a
finite constraint language I" carries over to any (infinite) clausal or equational
language C such that I' C (C). Moreover, the infinite clausal languages C
corresponding to the exceptional cases discussed above (where lower bounds
cannot be proved by reductions from finite constraint languages) can all be
proved to be NP-hard by Proposition 63. For infinite clausal or equational
languages C consisting only of either clauses or equations (and not in the
exceptional cases discussed above) the results in the paper show that either

e the abduction problem over C is in P as a consequence of C C C’ for some
tractable clausal or equational language C’, or

e the abduction problem over C is NP-complete (coNP-complete, X5 -complete)
as a consequence of I" C (C) for some finite NP-hard (coNP-hard, ¥F-hard)
constraint language IV, and C C C’ for some clausal or equational language
C’ which is in NP (coNP, XF).

The only remaining problem is upper bounds for infinite clausal and equa-
tional languages C expressed by both equations and clauses. For example,
C = Cpeg= U {(z1 ® 22 ® 3 = 1)}. Post’s classification yields that all these
infinite clausal/equational languages C satisfy (C) € {(Conr), (Cov), (C1v)}. Tt
is very easy to verify that the (trivial) upper bounds that hold for abduction
problems over Conr, Cy,, and Cy, also hold for the corresponding abduction
problems over C (see the proofs of Propositions 41, 44, and 45). Hence, our
results cover any clausal and equational language.

As already mentioned, the authors have used a computer program to double-
check the completeness of the classification.

14 Further restrictions

As evoked in Section 3.2, several restrictions on the problem were not consid-
ered until now but are worth investigating. It turns out that most of them do
not affect the complexity of the problem.
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14.1 Unsatisfiable and tautological manifestations

The first kind of restrictions is about the satisfiability of manifestations. For
instance, in typical applications, abduction is the process of explaining a given
observation of the world. As a consequence, one may assume that manifesta-
tions are always satisfiable.

We first give a straightforward result.

Proposition 74 Let P = (V,H, M, KB) be an instance of any abduction
problem. If M is tautological, then P has an explanation if and only if KB is
satisfiable. If M is unsatisfiable, then P has no explanation.

Observe that one can efficiently recognize unsatisfiable and tautological lit-
erals (vacuously), clauses, or terms. Thus the complexity of abduction is not
affected by the extra assumption that such manifestations are nontautologi-
cal or satisfiable, since deciding whether the knowledge base is satisfiable is
always at least as hard as abduction. As for CNF's, tautological ones can be
efficiently recognized, but not unsatisfiable ones. Nevertheless, it turns out
that the complexity is not affected either.

Proposition 75 L-ABD(I',CNFS) is polynomial-time reducible to L-ABD(I',CNF'S)
where the manifestation is guaranteed to be satisfiable. The same result holds
for V-ABD, P-ABD, or N-ABD instead of L-ABD.

PROOF. Let (V,H, M, KB) be an instance of L-ABD(I',CNFs). Let new
be a fresh variable (new ¢ V), and let V' = V U {new}, M' = M V new.
Clearly, from the CNF M a CNF M" for M V new can be computed effi-
ciently by distributing Vnew to each clause, and M” is satisfiable. We claim
that (V', H, M", KB) has an explanation if and only if (V, H, M, KB) has
one. Indeed, if KB A E is satisfiable and entails M, this is still true for M".
Conversely, if KB A E is satisfiable and entails M V new, then we have that
KB N EN—-M A —new is unsatisfiable. Since new does not occur at all in
KB AN EN—-M (and —new alone is satisfiable), we have that KB A E AN -M
alone is unsatisfiable, that is, KB A E = M. O

14.2  Variables in hypotheses and manifestations

Another interesting kind of restrictions is over the variables allowed to occur
in the set of hypotheses and in manifestations. In particular, it is interesting
to consider cases where variables which do not occur in the knowledge base
occur in hypotheses and manifestations. This indeed allows to model situations
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where the knowledge base tells nothing about a part of the abduction problem
at hand.

First of all, it turns out that allowing or not such extra variables in the set of
hypotheses does not affect the complexity of abduction.

Proposition 76 Let I' be a constraint language, and let P = (V,H, M, KB)
be an instance of ABD(L'). Then for any explanation E for P there is an
explanation By for P such that Ey C E and Vars(Ey) C Vars(KB)U Vars(M).

PROOF. Let E be an explanation for P, and let £y = E'N Lits(Vars(KB) U
Vars(M)) and Ey = E \ E;. Then clearly KB A A E; is satisfiable, since
so is KB AN A\ E. Now by definition of an explanation we have KB A A\ Fy A
ANE> = M. Since the left-hand side is satisfiable and Vars(FE,) is disjoint
from Vars(KB), Vars(E,), and Vars(M), we get that A Fs is irrelevant to the
entailment relation. Thus FE; alone is an explanation. 0O

As concerns variables occurring in manifestations, the situation is a bit more
involved. The following lemma is relevant to the cases of literals, clauses, or
terms, for which the complexity is not affected. Indeed, it shows that for such
manifestations, one can consider independently the part of the manifestation
which is over Vars(KB) and the other part, with almost no computational
overhead for the latter.

Proposition 77 Let I" be a constraint language, and let P = (V,H, M, KB)
be an instance of ABD(T"). If M = M; N My with Vars(M;) C Vars(KB)
and Vars(Ms) N Vars(KB) = 0, then for any explanation E for P there is a
partition of E into {E1, Ex} such that Ey is an explanation for (V, H, My, KB)
and \ Ey = My holds.

Dually, if M = M; vV My with Vars(M;) C Vars(KB) and Vars(Msy) N
Vars(KB) = 0, then for any explanation E for P there is a partition of E
into { Ey, By} such that Ey is an explanation for (V, H, My, KB) or \ Es = M,
holds.

PROOF. Consider M = M; N\ Ms; the case M = M; V M is similar. Let FE
be an explanation for P, and let Fy = E N Lits(Vars(KB)) and Ey = E'\ Ej.
Then by definition of an explanation we have KB A A Ey A\ Ey = M, and
KB ANNE; ANNEy |E M. In the first entailment relation, since Vars(M;) C
Vars(KBAN Ey) and Vars(E2) N Vars(KB AN E1) = () hold, and the left-hand
side is satisfiable, we get that Es is irrelevant, that is, KB A A\ E; alone entails
My; since moreover KB A\ E4 A N\ Es is satisfiable, 7 is an explanation for
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(V, H, My, KB). Similarly, in the second entailment relation both KB and F;
are irrelevant, thus A\ Fy = My holds. O

We now turn to CNF manifestations. The following lemma shows that for
almost all languages, we can assume Vars(M) C Vars(KB) or not without
affecting the complexity of abduction.

Proposition 78 Let I' be any constraint language with I' € IRy or R- €
I'. Then one can assume up to polynomial-time reductions that an instance

(V,H, M, KB) of ABD(I") satisfies Vars(M) C Vars(KB).

PROOF. If I' IRy or R_ € T', then I contains at least one relation R which
is nonempty, n-ary and not equivalent to any term of length n. Then there is
at least one place ¢ € {1,...,n} and two tuples (f1, ..., 1,0, flix1, -, fin),
(s iy L gy - o, i) in R. Then the assumption Vars(M) C Vars(KB)
can be enforced as follows. For each variable z in Vars(M)\ Vars(KB) add n—1

fresh variables new, 1, . . ., new, ,—1 to V and add the constraint R(newy 1, ..., newy —1, T, neWy ;, . . .

to KB. Write KB' and V' for the resulting KB and V. By construction z is
unconstrained by KB’, and thus (V’, H, M, KB') has an explanation if and
only if (V, H, M, KB) has one. 0O

The only special case is the following, for the class of CNF formulas containing
only unit clauses (and no equality relations), when Vars(M) C Vars(KB).

Proposition 79 L-ABD(Cynit —\{R=},CNFS) is in P if instances (V, H, M, KB)
are required to satisfy Vars(M) C Vars(KB). This holds even if nothing is
known about the satisfiability of M.

PROOQOF. Obvious since with the assumptions, KB is logically equivalent to
a term which defines a complete assignment to Vars(M). Thus we only have
to decide whether this assignment satisfies M. O

15 Discussion

We now explain in an intuitive manner what makes propositional abduction
hard. We focus on Schaefer languages (Horn, dual Horn, bijunctive and affine),
i.e., those languages for which deduction of CNFs is tractable, since they are
the most interesting ones for reasoning and knowledge representation. Recall
from Proposition 35 that abduction is in NP for all such languages. Thus we
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explain what makes it NP-complete. We also compare our observations with
Bylander et al.’s about set-covering abduction [7].

We discuss the two most meaningful cases first, namely those of clausal Schae-
fer languages (Horn, dual Horn and bijunctive) with terms and literals as
manifestations. The other cases are only briefly discussed afterwards.

15.1 Manifestations expressed by terms

Given restrictions on the abduction problem, we say that a literal is a valid hy-
pothesis (resp. individual manifestation) if it can be part of H (resp. of M) for
some instance (V, H, M, KB) of the problem. For instance, the valid individual
manifestations for N-ABD(Cconp,POSTERMS) are all positive literals.

Fact 80 Let C be a clausal Schaefer language, and assume a restriction on
hypotheses and a restriction of manifestations to POSTERMS, NEGTERMS,
or TERMS. Then propositional abduction is NP-hard for C if and only if it is
so with stronger restrictions or C can express both

e implication from hypotheses to individual manifestations, that is, €y — Cyy
for any valid hypothesis £y and valid manifestation £y, and

e forbidden combinations of hypotheses, that is, {1 V Uy o for any two valid
hypotheses L1, lp 2.

For instance, P-ABD(C,POSTERMS) is NP-hard exactly when C can express
both (x; — 25) and (—x;V—xs) for any two variables x;, 2. P-ABD(C, TERMS)
is NP-hard exactly when P-ABD(C,POSTERMS) or P-ABD(C,NEGTERMS)
is NP-hard, or when C can express (1 — x2), (x; — —23) (implication) and
(mxy V xg).

Importantly, observe from Fact 80 that if abduction is NP-hard for, e.g., unre-
stricted terms as manifestations, then so it is for positive or for negative terms
with the same restriction on hypotheses. That is, arbitrary combinations of
polarities in the manifestation do not add to the complexity of the problem.
The same holds for hypotheses, that is, being able to explain with unrestricted
hypotheses (or sets of hypotheses closed under complement) is not harder than
being able to explain with only positive or with only negative hypotheses.

The validity of Fact 80 is proved by the generic reduction given by Lemma 61,
applied to each precise problem. More intuitively, the idea is that in the NP-
hard cases, each literal m to be explained in a term gives rise to several possi-
ble explanations, one for each implication h — m expressed by the knowledge
base. Thus, each m gives rise to a disjunction of hypotheses, and the whole
manifestation M gives rise to a conjunction of disjunctions (CNF) of hypothe-
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ses. Now if the knowledge base can forbid some combinations of hypotheses,
we thus have a second CNF, which excludes some models of the first one as
explanations. Since the clauses in the first CNF are unbounded, it is easily
seen that this characterization of explanations captures a whole class of hard
satisfiability problems.

As for the tractable cases, if no implication from hypotheses to individual
manifestations can be expressed, then there cannot be any explanation, since
an explanation for a term is an explanation for each of its literals (Lemma 28).
Now if no conjunction of hypotheses can be forbidden, then the search space
can be reduced to the conjunction of all hypotheses (Lemma 43).

Importantly, Fact 80 gives some intuition about the complexity of abduction
for some classes of formulas which are not captured by Schaefer’s framework
of constraint languages. Consider for instance the class of acyclic Horn CNF's,
that is, of Horn CNF's which do not contain any cyclic set of clauses of the
form {(---V-z1 V- Vag), (-~ Voxo V- Vag),...(«-Voxg V- V), |
Clearly, such a formula can contain an arbitrary number of clauses equivalent
to (h — m) and (—hy V —hg) for variables h,m, hy, ho. Thus Fact 80 gives the
intuition that explaining positive terms with positive hypotheses is NP-hard
when the knowledge base is restricted to be an acyclic Horn CNF. This result
has indeed been shown by Selman and Levesque [48]. Note however that we
cannot, formally state Fact 80 for such general classes of formulas, since the
ability to express a given relation would not be properly defined.

Another important remark is that in our generic reduction from the satisfia-
bility problem, all variables (or all positive, all negative literals) not occurring
in the query can be hypotheses while the problems remains hard. We come
back to this point when comparing to the case of manifestations expressed by
single literals and in the conclusion.

15.2 A parallel with set-covering abduction

In their seminal paper [7], Bylander et al. study the complexity of set-covering
abduction, and also identify a frontier between some polynomial and some NP-
complete abduction problems.

In their framework, an abduction problem is given by a set of manifestations
M, a set of hypotheses H (hypotheses and manifestations are atoms), and by
a map e (“explains”) from subsets of H to subsets of M. An explanation is a
subset E of H such that e(F) = M and E is minimal for inclusion. The only
assumptions about e is that the size of its representation is polynomial in the
size of H and M, and that it is tractable to compute e(F) for E C H as well
as a kind of inverse of e (we refer to their paper for details).
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Bylander et al. study the complexity of abduction under various further as-
sumptions about e. Of direct relevance to our study are the following restric-
tions. The problem is said to be

e independent if VE C H,e(E) = Upep e({h}),

e monotonic if VE,E' C H/E C E' = ¢(F) Ce(E'), and

e an incompatibility problem if there is a set I of pairs of elements of H
(incompatible hypotheses) such that VE C H,(3{h,h'} € I,h,h € H) =
e(E) =1.

Observe that all independent problems are also monotonic. The notion of in-
dependence is adapted to incompatibility as follows. An incompatibility prob-
lem is said to be independent if e(E) = Upepe({h}) as soon as there is no

{h,1'} € I such that h,h' € E.

Proposition 81 ([7]) The problem of deciding whether an explanation ex-
ists is in P for independent abduction problems and for monotonic abduction
problems. It is NP-complete for independent incompatibility problems.

Although the framework is different from ours, it is clear that the condition
for NP-hardness in Proposition 81 is very close to our Fact 80.

Incompatible pairs of hypotheses of Bylander et al.’s framework clearly cor-
respond in our framework to sets of hypotheses F which are not consistent
with the knowledge base (KB A A E is unsatisfiable) . Now, since we study
abduction in classical propositional logic, where the consequence relation |= is
monotonic, our abduction problems are monotonic. Thus, leaving details out,
our abduction problems are incompatibility monotonic problems in the terms
of [7], where e is represented in intension by the knowledge base KB. It is also
easily seen that any independent incompatibility problem can be transformed
into a problem in our framework.

With this correspondence in mind, it is clear that Fact 80 confirms Bylander
et al.’s results. Indeed, the condition for NP-hardness in Proposition 81 states
that abduction is hard when some combinations of hypotheses are forbidden
(expressiveness of implication from hypotheses to manifestations is implicit in
their framework), but becomes tractable without this assumption. Thus our
observation for terms as manifestations can be seen as generalizing Bylan-
der et al.’s to more complex interactions between hypotheses, and between
hypotheses and manifestations.

3 As observed in [7], considering incompatible pairs, triples, etc. instead of only
pairs does not affect the complexity results.
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15.3  Manifestations expressed by literals

The condition for manifestations expressed by literals is a bit more involved
than that for terms, but it can intuitively be seen as the condition allowing
to capture the complexity of conjunctive manifestations because it allows to
express (myq A --+ A my — m). Call submanifestation any literal which is
neither a hypothesis nor the manifestation (intuitively, the m;’s in the previous
implication). Given a polarity restriction (to positive, to negative, or to any
literal), a submanifestation is said to be valid if it satisfies the restriction.

Fact 82 Let C be a clausal Schaefer language, and assume a restriction on hy-
potheses and a restriction of manifestations to PosLiTs, NEGLITS, or LITS.
Then propositional abduction is NP-hard for C if and only if it is so with
stronger restrictions or there is a polarity restriction on submanifestations
such that C can express

e implication from hypotheses to individual submanifestations, that is, (g —
ls for any valid hypothesis Ly and valid submanifestation (g,

e implication from arbitrary conjunctions of submanifestations to individual
manifestations, that is, (bs1 N --- Nlsx — Lar) for any k € N and any k
valid submanifestations ls1, ..., lsk,

e forbidden combinations of hypotheses, that is, (g1 \V lyo for any two valid
hypotheses L1, Cp 2.

For instance, N-ABD(C,PosLiTs) is NP-hard when, among other cases, C
can express implication from hypotheses to individual (negative) submanifes-
tations (—z; — —g), implication from arbitrary conjunctions of submanifes-
tations to manifestations ((—xy A+ -+ A=z, — Z,41), for any n), and forbidden
conjunctions of hypotheses (z1 V x3).

Observe that in general, depending on the restriction on submanifestations,
there may be several different expressiveness conditions for the same restric-
tions on hypotheses and manifestations. Nevertheless, as in the case of terms
as manifestations, it can be seen from Fact 82 that allowing arbitrary combina-
tions of polarities for hypotheses makes the problem no harder than allowing
only positive or negative sets of hypotheses (the corresponding statement for
manifestations is obvious).

The proof of our observation can be derived from Lemmata 61 and 29. Intu-
itively, the “intermediate layer” serves to generate conjunctions of (intermedi-
ate) hypotheses needed to explain the manifestation, through each implication
Y1 N\ - Ay, — m where the y;’s are submanifestations. Thus the manifesta-
tion can be explained by a disjunction of conjunctions of submanifestations,
each of which can be seen as a term which has to be explained by hypotheses.
Thus, provided arbitrarily long conjunctions of submanifestations can entail
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the manifestation, the complexity is the same as in the case of a term.

An important difference to manifestations expressed by terms is that in gen-
eral, NP-hardness arises when some “intermediate” set of literals can be ex-
pressed, where these literals can neither be hypothesized nor observed. For in-
stance, this explains why the complexity of explaining single literals from Horn
CNFs falls from NP-complete to polynomial when all variables except those
in the manifestation are hypotheses, as shown by Selman and Levesque [48].
This also confirms their intuition that selecting the right set of literals is the
computational core in abduction. Nevertheless, this intuition is confirmed only
as far as literals are considered as manifestations. Indeed, as we have seen this
is not the case for manifestations expressed by terms.

Finally, like for terms our characterization gives intuition about the complex-
ity of abduction for classes of formulas which are not captured by Schaefer’s
framework. Consider for instance the class of monotone CNF formulas, that is,
formulas in which every variable occurs always negated or always unnegated.
A variable which always occurs with the same polarity cannot be a submani-
festation for an abduction problem like in Fact 82, since it should occur both
on the right of implications coming “from the hypotheses layer” (and thus,
unnegated) and on the left of implications “going to the manifestation layer”
(and thus, negated). Thus if all variables are monotone, the intermediate layer
has to be empty and thus, abduction should be tractable. We thus recover (the
intuition about) a well-known result (see, e.g., [37, Section 4.2]).

15.4  Manifestations expressed by clauses or CNFs

We are now able to explain a posteriori why one can observe that the com-
plexity of the abduction problem is always the same, may (positive) clauses
or (positive) literals be used as manifestations.

To this aim, first observe that naturally, when the problem is hard for liter-
als, then so it has to be for clauses. Now concerning tractable cases, we use
the condition exhibited above for literals. Indeed, the condition states that
abduction is tractable for literals if either

(1) the knowledge bases cannot express a “two-layers” set of implications,
from hypotheses to literals, and from arbitrary combinations of the latter
to the manifestation,

(2) or no conjunction of hypotheses can be forbidden.

It is easily seen that Condition 2 is the same, may literals or clauses (or terms)
be considered as manifestations. Now regarding Condition 1, if it is true with
literals, then it has to be true for clauses, since literals are a special case of
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clauses. We thus deduce tractability exactly as for literals.

Let us mention that, as noted for example by Eiter and Makino [23, Section
5.2], there is a rather generic polynomial-time reduction from clausal mani-
festations to single-literal manifestations. The idea is that M = (¢, V -+ -V ;)
can be replaced with a literal ¢, over a fresh variable, up to adding constraints
l; — ¢ (i = 1,...,k) to the knowledge base. This reduction covers many
cases, but fails to explain, for instance, why P-ABD(Cy,_ gorn, CLAUSES) has
the same complexity as P-ABD(Cy— gorm,LITS). Indeed, the added constraints
would not preserve C;,_ pgor in general.

Similarly to the case of clauses vs. literals, we can observe that, as far as
clausal, Schaefer language are concerned, the complexity of abduction with
manifestations expressed by CNFs is the same as that with manifestations
expressed by terms. The case of affine knowledge bases is different, with prob-
lems harder for CNFs than for terms. Nevertheless, we do not elaborate on
that point here, since most of the hardness for CNF manifestations simply
comes from deciding whether the manifestation alone is satisfiable.

15.5 Affine knowledge bases

The case of equational instead of clausal languages is a bit more involved, but
follows the same reasoning. We only sketch the idea, since equational languages
are less interesting than CNF ones for knowledge representation purposes.

The main difference to the clausal case is that implications cannot be directly
expressed. Indeed, if, for instance, h — m is a prime implicate of an affine
knowledge base, then so must m — h be. In other words, in this case, the
knowledge base entails h <> m. It follows that if the knowledge base entails
both h; — m and hy — m, in fact it entails both hA; < m and hy < m, and
finally, any explanation for m must also satisfy h; and hs.

In general this makes the problem easier. The hard cases arise when impli-
cation can be simulated by imposing polarities on some hypotheses, just as
is done, for instance, in the proof of Proposition 68. This also explains why
the complexity for equational languages sometimes changes from V-ABD to
L-ABD, contrary to clausal languages.

15.6 A note on NP-complete and coNP-complete cases

As can be seen from the results presented in the previous sections, it turns out
that some restrictions on knowledge bases yield NP-complete problems, while
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others yield coNP-complete problems. This may seem strange at first sight,
and deserves some explanation. In particular, we are not aware of any pre-
vious results in the literature where coNP-complete propositional abduction
problems have been identified.

Recall that X5 is NP or, equivalently, NPNPUeoNP,

Essentially there are two sources of complexity in the general, ¥¥-complete ab-
duction problem: finding the right candidate explanation £ (non-determinism,
represented by the “basis” of the “exponential” NPNPUNP) “and checking that
it is indeed a witness, i.e., that KB A A E is satisfiable and KB AAE = M
(represented by the “exponent”).

That various restrictions on the hypotheses, manifestations, and knowledge
bases in the abduction problem yield NP-complete problems is not very sur-
prising. These NP-complete cases occur when both checking a candidate ex-
planation is a polynomial problem, which is the case for Schaefer languages
(Proposition 35), and the satisfiability problem for a set of clauses can be re-
duced to finding “the right candidate explanation”, as illustrated by Lemma 61.
The perhaps more surprising coNP-complete cases all occur when checking a
candidate explanation is coNP-complete and only one candidate explanation
needs to be considered, removing nondeterminism as a source of complexity
and thus, in some sense, the “basis of the exponential”. Observe that in this
paper, when only one candidate explanation needs to be considered, this is
always a result of KB A A\ H being trivially satisfiable as is, for example, the
case for P-ABD(C;,,M).

16 Conclusion and future work

We have presented a thorough study of the complexity of deciding whether
there is an explanation for a propositional abduction problem, under various
restrictions over hypotheses and manifestations. We have derived the complex-
ity for every possible local restriction on the knowledge bases for the problem,
that is, for every Boolean constraint language and for every clausal or equa-
tional language, under the assumptions that the constraints in the knowledge
base are given in extension or implicitly as CNFs or systems of equations,
respectively. In particular this covers all the classical classes of CNF formulas
defined by local properties and commonly considered for knowledge repre-
sentation purposes. Moreover, we have shown that the problem, when not
tractable, is complete for one of NP, coNP, or ¥,

In order to obtain these results, we have used now well-known techniques for
obtaining tractability (e.g., prime implicate generation and projection). We
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have nevertheless uncovered new tractable cases. But we have also exhibited
new conditions for intractability, some of which turn out to be very weak, as
already observed in [40)].

Importantly, this study allows us to precisely explain what makes proposi-
tional abduction hard when the knowledge base is over a Schaefer language.
Several points are very interesting, such as the need for variables which are
neither hypothesized nor observed for making the task of explaining a literal
hard, contrary to the case of a term. It also turns out that the conditions
for intractability of abduction are so weak that almost no interesting class of
problems can be tractable. In fact, only classes where there can be no expla-
nation or there can be no conflicting hypotheses are tractable. This confirms
the need for designing algorithms which are efficient in practice. Not surpris-
ingly, our conditions for intractability confirm the results and observations by
Bylander et al. in a different framework [7].

We have also argued that our explanation of the hardness of abduction gives
hints for the complexity of problems which do not fit our framework. We
demonstrated that argument for nonlocal (structural) propositional restric-
tions, but conjecture that it could also apply to completely different frame-
works, such as abduction with nonclassical consequence relations or abduction
in logic programming.

Propositional abduction turns out to be a very rich problem from a compu-
tational complexity perspective. By imposing various syntactic restrictions on
the problem, no less than four complexity classes are covered. Thus our re-
sults can serve as a source of results allowing to derive the complexity of other
problems. As a matter of fact, it is well-known that under various restric-
tions, several nonmonotonic reasoning problems reduce to each other. As an
example, our classification for abduction with negative hypotheses and posi-
tive terms as manifestations gives the complexity of circumscriptive inference
of negative clauses, as far as clausal languages restrict the knowledge base.
Indeed, it is known (see [40, Proposition 11]) that a negative clause follows
from a knowledge base by circumscription if and only if its negation cannot
be explained with all negative variables as hypotheses (except those in the
clause). Thus, the complement of circumscriptive inference of negative clauses
is at most as hard as abduction of positive terms with negative hypotheses.
Now, as we discuss in Section 15.1, our classification for Schaefer clausal lan-
guages is preserved by the assumption that all variables except those in the
manifestation are abducible. Thus, provided that KB is in CNF and subject
to a restriction over each of its clauses, we get that deciding whether a neg-
ative clause follows from a knowledge base KB under circumscription of all
variables is

e polynomial-time solvable if KB is restricted to be Horn or 0-valid,
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e otherwise, coNP-complete if KB is restricted to be in 2CNF or dual Horn,
e otherwise, II}-complete.

We believe that our results may be used to derive other results in a similar
fashion.

We now wish to note that in the paper, we have only studied the decision
problem associated to abduction, leaving the search problem out. That is, we
have not considered the complexity of computing an explanation instead of
only deciding whether there is at least one. However, obviously the search
problem is hard as soon as the decision one is, and as is easily seen from our
results, all of which are constructive, the converse is also true. Importantly, this
is still true when searching for C-minimal explanations, because tractability
of abduction entails tractability of satisfiability (considering an unsatisfiable
manifestation) and deduction (considering an empty set of hypotheses), and
this in turn is enough for minimizing an explanation with a greedy algorithm.

To conclude, it would be very interesting to extend this work into several
directions. First of all, other problems related to abduction are of importance:
for instance, deciding whether a hypothesis is relevant (part of at least one
preferred explanation) or necessary (part of all of them) [20]; enumerating all
explanations [23]; counting the number of (preferred) explanations [27]. Our
work provides results which can serve as a basis for studying the complexity
of these problems, in particular for deriving hard cases. Moreover, as we have
done, it would be interesting to understand what exactly makes these problems
easy or hard.

Another important direction is to go further than the propositional setting
and Schaefer’s framework. As mentioned above, we believe that our obser-
vations about the reasons for (in)tractability can explain results beyond our
framework. In particular, it would be interesting to study the complexity of ab-
duction with nonlocal restrictions over knowledge bases (like, e.g., Eshghi [24]
and del Val [15] do) and with higher-cardinality domains.
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