
Heuristics for Planning with Penalties and Rewards
using Compiled Knowledge

Blai Bonet
Departamento de Computación

Universidad Siḿon Boĺıvar
Caracas, Venezuela

bonet@ldc.usb.ve

Héctor Geffner
Departamento de Tecnologı́a

ICREA & Universitat Pompeu Fabra
08003 Barcelona, SPAIN

hector.geffner@upf.edu

Abstract

The automatic derivation of heuristic functions for guiding
the search for plans in large spaces is a fundamental technique
in planning. The type of heuristics that have been considered
so far, however, deal only with simple planning models where
costs are associated with actions but not with states. In this
work we address this limitation by formulating a more ex-
pressive planning model and a corresponding heuristic where
preferences in the form of penalties and rewards are associ-
ated with fluents as well. The heuristic, that is a generaliza-
tion of the well-known delete-relaxation heuristic proposed in
classical planning, is admissible, informative, but intractable.
Exploiting however a correspondence between heuristics and
preferred models, and a property of formulas compiled in d-
DNNF, we show that if a suitable relaxation of the theory is
compiled into d-DNNF, the heuristic can be computed forany
search state in time that is linear in the size of the compiled
representation. While this representation may have exponen-
tial size, as for OBDDs, this is not necessarily so. We report
preliminary empirical results, discuss the application of the
framework in settings where there are no goals but just pref-
erences, and assess further variations and challenges.

Introduction
The automatic derivation of heuristic functions from prob-
lem descriptions in Strips and other action languages has
been one of the key developments in recent planning re-
search (McDermott 1996; Bonet, Loerincs, & Geffner
1997). Provided with these heuristics, the search for plans
becomes more focused, and if the heuristics are admissible
(do not overestimate), the optimality of plans can be en-
sured (Pearl 1983). The type of heuristics that have been
considered so far, however, have serious limitations. Basi-
cally they are either non-admissible (Bonet & Geffner 2001;
Hoffmann & Nebel 2001) or not sufficiently informative
(Haslum & Geffner 2000), and in either case they are re-
stricted to cost functions where plan costs depend on actions
but not on states. As a result, the tradeoffs that can be ex-
pressed are limited; in particular, it is not possible to state a
preference for achieving or avoiding an atomp in the way to
the goal, or take this preference into account when searching
for plans.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

In this work, we address these limitations by formulating
the derivation of heuristic functions in logical framework.
Elsewhere we have shown that the heuristic represented by
the planning graph (Blum & Furst 1995) can be understood
as a precise form of deductive inference over the stratified
theory that encodes the problem (Geffner 2004). Here our
goal is not to reconstruct an existing heuristic but to use a
logical formulation for producing a new one. The advan-
tages of a logic framework are two: the derivation of heuris-
tic information is an inference problem that can be made
transparent with the tools of logic, and powerful algorithms
have been developed that make certain types of logical infer-
ences particularly effective. The latter includes algorithms
for checking satisfiability (Moskewiczet al. 2001), comput-
ing answer sets (Simons, Niemela, & Soininen 2002), and
compiling CNF formulas into tractable representations (Dar-
wiche & Marquis 2002).

Here we consider preferences over actionsa and fluents
p that are expressed in terms of real costsc(a) and c(p).
Action costs are assumed to be positive, while fluent or atom
costs can be positive or negative. Negative costs express
rewards. The cost of a plan is assumed to be given by the
sum of the action costs plus the sum of atom costs for the
atoms made true by the plan. We are interested in computing
a plan with minimum cost. This is a well defined task, which
as we will see, remains well-defined even whenthere are no
goals but just preferences. In such a case, the best plans
simply try to collect rewards while avoiding penalties, and if
there are no rewards, since action costs are positive, the best
plan is empty.

The preference model is not fully general but is consider-
ably more expressive than the one underlying classical plan-
ning. As we will see, the model generalizes a recent formu-
lation that deal with over-subscription or soft goals (Smith
2004; van den Brielet al. 2004), which in our setting can
be modeled asterminal rewards, rewards that are collected
when the propositions hold at the end of the plan. On the
other hand, the costs and rewards are combined additively,
so unlike other recent frameworks (Brafman & Chernyavsky
2005), partially-ordered preferences are not handled.

The definition of the planning model is motivated by the
desire to have additional expressive power and a principled
and feasible computational approach for dealing with it. For
this, we want a useful heuristic with a clear semantics and a



feasible algorithm able to capture interesting tradeoffs. We
will be able to express in the model, for example, navigation
problems where coins of different values are to be collected
by avoiding, as much as possible, certain cells, or blocks
problems where a tallest tower is to be constructed, or where
the number of blocks that touch the table is to be minimized.
In order to test the effectiveness of the approach we will also
consider classical planning tasks where we will assess the
approach empirically in relation to existing heuristics and
planners.

The heuristich+
c that we develop is simple and corre-

sponds to the optimal cost of the relaxed problem where
the delete-lists of all actions are ignored (Bonet & Geffner
2001). Since searching with this heuristic, even in the clas-
sical setting, involvesan intractable computation in every
states visited (Bylander 1994), planners such as HSP and
FF resort to polynomial but non-admissible approximations
(Bonet & Geffner 2001; Hoffmann & Nebel 2001). In this
work, while considering the more general cost structure, we
take a different approach: we compute the heuristich+

c for
each search state, but pay the price ofan intractable com-
putation only once, as preprocessing. This preprocessing
yields what can be deemed as anevaluation networkor cir-
cuit where we can pluganysearch state and obtain its heuris-
tic value in linear-time. Of course, the time to construct this
evaluation network and the size of the network may both
be exponential, yet this is not necessarily so. The evalua-
tion network, indeed, is nothing else but the directed acyclic
graph that results from compiling a relaxation of the plan-
ning theory into d-DNNF, a form akin to OBDDs introduced
in (Darwiche 2001; 2002) that renders efficient a number of
otherwise intractable queries and transformations (Darwiche
& Marquis 2002). The heuristic values are then obtained as
the cost of the ‘best’ models, which can be computed in lin-
ear time once the relaxed theory is compiled into d-DNNF
(Darwiche & Marquis 2004).

The plan for the paper is the following: we present in
order the planning model, the heuristich+

c , and the corre-
spondence betweenh+

c and the rank of a suitable proposi-
tional theory. We then deal with the search algorithm, which
must handle negative costs, present experimental results,
and summarize the contributions and discuss open problems.

Planning Model
We consider planning problemsP = 〈F, I, O, G〉 whereF
is the set of relevant atoms or fluents,I ⊆ F andG ⊆ F are
the initial and goal situations, andO is a set of (grounded)
actionsa with preconditionsPre(a) and effectsa : C →
L wherePre(a) and C are sets (conjunctions) of atoms,
andL is a fluent literal (positive or negative). An effecta :
C → L is conditional ifC is not empty, and otherwise is
unconditional. When the actiona is clear, we write such
effects asC → L or simply asL whenC is empty.

For each actiona ∈ O, there is also a costc(a), and for
each fluent or atomp ∈ F , a costc(p). Action costs are
assumed to be positive, while atoms costs can be positive,
negative, or zero. We call positive atom costspenalties, neg-
ative atom costsrewards,and refer to the resulting planning
model asPR.

A plan π is an applicable sequence of actionsa0, . . . , an

that maps the initial situation into the goal. IfF (π) denotes
the set of atoms made trueat some pointduring the execu-
tion of the planπ from the initial stateI, then the costc(π)
of π is given by

c(π) def=
∑
a∈π

c(a) +
∑

p∈F (π)

c(p) . (1)

We are interested in the plansπ that minimizec(π); these
are the optimal or best plans. If there is a plan at all, this
optimization problem is well defined, although the best plan
is not necessarily unique. We denote byc∗(P ) the cost of a
best plan forP with respect to the cost functionc:

c∗(P ) def= min{c(π) : π is a plan forP} (2)
and setc∗(P ) =∞ whenP has no solutions. Clearly, when
c(a) = 1 andc(p) = 0 for all actions and atoms, the cost
criterion of classical planning is obtained wherec∗(P ) mea-
sures the minimum number of actions needed to solveP .
The resulting framework, however, is more general, as both
penalties and rewards can be expressed. Indeed, it is pos-
sible to model problems with no goals but just preferences.
This can be done by setting the goal to a trivial atomtrue
that holds inI and that no action deletes. In such a case,
the empty plan is optimal if there are no rewards (action
costs are assumed to be positive), but other plans may have
a smaller cost when rewards are present. In general, the best
plans must achieve the goal by trading off action and atom
costs.

The cost model captured in (1) is similar to the one used in
over-subscription or partial-goal planning where due to con-
straints or preferences, it may not be possible or convenient
to achieve all the goals (Smith 2004; van den Brielet al.
2004). One important difference is that the atomsp ∈ F (π)
that are rewarded in (1) do not have to be true by theendof
the plan butsometimeduring its execution. The second dif-
ference is that such atoms may express penalties or rewards.
If they express penalties (positive costs), they are not atoms
to be achieved but to be avoided.

In order to capture preferences onend statesas opposed
to preferences on executions, we add an special actionEnd
with zero cost whose preconditions are the goalsG of the
problem. We then demand that all plans end with this action.
With this convention, as we will see below, the representa-
tion of preferences on goals is also possible.

Modeling
The cost model is simple but flexible. Some preference pat-
terns that can be easily expressed are the following:
• Terminal Costs: an atomp can be rewarded or penalized

if true at the endof the plan by introducing a new atomp′,
initialized to false, and a conditional effectp→ p′ for the
actionEnd. A reward or penaltyc(p′) onp′ then captures
a reward or penalty onp at the end of the plan. We call
c(p′) a terminal costonp.

• Goals: once costs on terminal states can be expressed,
goals are not strictly required. A hard goal can be mod-
eled as a sufficiently high terminal reward, even if this is
not a good idea from a computational point of view.



• Soft Goals: soft goals can be modeled as terminal re-
wards, and the best plans will achieve them depending on
the costs involved.

• Preferences on Literals: while the model assumes that
costs are associated with positive literalsp but not neg-
ative ones, standard planning transformation techniques
can be used to add a new atomp′ that is true exactly when
p is false (Nebel 2000). Preferences on the negation ofp
can then be expressed as preferences onp′.

• Conditional Preferences:conditional preferences can be
captured as a result of the ability to handle conditional
effects. For example, if being out is good, but being out
when raining is not, then a reward can be defined onout
and a higher penalty onwet, which is a conditional effect
of going out when raining.

• Rewards on Conjunctions:it is possible to reward states
in which a set of atomsp1, . . . , pn is true by means of
an actionCollect(p1, . . . , pn) with preconditionsp1, . . . ,
pn, and effectpn which is rewarded. The same trick does
not work for expressingpenaltieson conjunctions. The
reason is that optimal plans will choose to collect a free
reward if possible, but will never choose to collect a free
cost (as would be required ifpn is a penalty and not a
reward).

For example, a Blocks problem where the number of
blocks that touch the table is to be kept to a minimum (even
if at the price of obtaining a longer plan) can be obtained by
penalizing the atomson(x, table) for the blocksx. More
interestingly, the problem of building the tallest possible
tower results from assigningterminal rewards to the atoms
on(x, y) for all the blocksx andy (with non-terminal re-
wards the best plans would instead place every block on top
of every other block). Since actions are assumed to have
positive costs, the best plans will be the ones that achieve
a highest tower in a minimum number of steps (i.e., choos-
ing one of the existing tallest towers as basis). Likewise,
problems where an agent is supposed to pick up some coins
while avoiding a dangerous ‘wumpus’, can be modeled by
rewarding the atomshave(coini) and penalizing the atoms
at(x, y) wherex, y is the position of the wumpus.1

Among preference patterns that cannot be captured in
a natural way in this setting, are costs on sets of atoms
(mentioned above) and partial preferences where certain
costs are not comparable (Brafman & Chernyavsky 2005;
Boutilier et al. 2004). Still, the first could be accom-
modated by extending the planning language with ramifi-
cations or axioms (Giunchiglia, Kartha, & Lifschitz 1997;
Thiébaux, Hoffmann, & Nebel 2005), while the second
could be dealt with, in a limited way, by considering a set
of cost functions rather than a single one.

The PR model can be extended to deal with repeated
penalties or rewards, as when a cost is paid each time an
atom is made true. We do not consider such an extension
in this work, however, for two reasons: semantically, with
repeated rewards, some problems do not have a well-defined

1The ‘Wumpus’ problem in (Russell & Norvig 1994) is more
interesting though as it involves uncertainty and partial observabil-
ity, issues that are not addressed in thePR model.

cost (cyclic plans for example could accumulate infinite re-
ward);2 and computationally, the proposed heuristics do not
capture the specific features of that model.

Heuristic h+

Heuristics are fundamental for searching in large spaces. In
the classical setting, several effective heuristics have been
proposed, most of which are defined in terms of the delete-
relaxation: a simplification of the problem where the delete-
lists of the operators are dropped. Delete-free planning is
simpler than planning, in the sense that plans can be com-
puted in polynomial time; stilloptimal delete-free plan-
ning is intractable too (Bylander 1994). Thus, on top of
this relaxation, the heuristics used in many classical plan-
ners rely on other simplifications; the formulation in (Hoff-
mann & Nebel 2001) drops the optimality requirement in
the relaxed problem, while the one in (McDermott 1996;
Bonet, Loerincs, & Geffner 1997), assumes that subgoals
are independent. In both cases, the resulting heuristics are
not admissible.

The heuristic that we formulate for thePR model builds
on and extends the optimal delete-relaxation heuristic pro-
posed in classical planning. IfP+ is the delete-relaxation3

of problemP andc is the cost function, the heuristich+
c (P ),

that provides an estimate of the cost of solvingP givenc, is
defined as:

h+
c (P ) def= c∗(P+) . (3)

For the0/1 cost function that characterizes classical plan-
ning, where the cost of all atoms is0 and the cost of
all actions is1, this definition yields the (optimal) delete-
relaxation heuristic which provides an estimate of the num-
ber of steps to the goal. The heuristic is admissible and tends
to be quite informative too (see the empirical analysis in
(Hoffmann 2003)). Expression (3) generalizes this heuristic
to the larger class of cost functions where actions may have
non-uniform costs and atoms can be rewarded or penalized.

In the generalPR setting, however, the heuristich+
c is not

always admissible. For example, consider a planning prob-
lem P with initial situationI = {p}, goalG = {r}, and
actionsa1, a2, anda3 with effects

a1 : p→ q

a2 : q → r

a2 : p, q → s

a3 : p→ ¬p

and let the cost function be such thatc(ai) = 1 for i = 1, 2, 3
andc(s) = 10 for atoms. The best plan for this problem is
the action sequenceπ∗ = 〈a1, a3, a2〉 with costc(π∗) = 3.
The planπ′ = 〈a1, a2〉 is shorter but makes the atoms true
for a total costc(π′) = 12. The actiona3, skipped inπ′, is
used inπ∗ for deletingp beforea2 is done, thus preventing
the conditional effecta2 : p, q → s from triggering and
adding the penaltyc(s) = 10. In the delete-relaxation, this

2This same problem arises in Markov Decision Processes where
the usual work around is to discount future costs (Bertsekas 1995).

3The delete relaxationP+ is obtained fromP by dropping all
the ‘negative’ effectsa : C → ¬L from the actions inP .



delete is gone, and the best plan isπ′ whose cost,12, is not
a lower bound on the optimal cost ofP , c∗(P ) = 3.

The delete-relaxation does not yield admissible heuris-
tic in the PR model whenconditional effectscombine with
penaltiesin a certain way. Indeed, when there are no con-
ditional effects (as in Strips) or there are no positive costs
associated with fluents, the heuristich+

c is admissible.
Let us say that the headp of a conditional effecta : C →

p is aconditional atomif the bodyC contains an atomq that
is in turn the head of another conditional effectb : C ′ → q
with C ′ 6= ∅. Then we say that a costc(p) is aconditional
penaltywhenp is a conditional atom andc(p) > 0. In the
absence of conditional penalties, the heuristich+

c (P ) is ad-
missible, and if not, an alternative, weaker but admissible
relaxation can be defined:

Proposition 1 (Admissibility) In the absence ofcondi-
tional penalties, the heuristich+

c (P ) isadmissibleand hence
h+

c (P ) ≤ c∗(P ). The heuristich+
c′(P ), for the cost function

c′ that is like c except thatc′(p) = 0 for all conditional
penaltiesc(p), is always admissible.

Thus, if admissibility is required in the presence of condi-
tional penalties, either the weaker heuristich+

c′ needs to be
used, or the culprit atoms must be rendered unconditional by
mapping some operators into Strips (Nebel 2000).

If we let P [I = s] andP [G = g] refer to the planning
problems that are likeP but with initial and goal situations
I = s and G = g respectively, then (optimal) forward
heuristic-search planners aimed at solvingP need to com-
puteh+

c (P [I = s]) for all statess encountered, while re-
gression planners need to computeh+

c (P [G = g]) for all
encountered subgoalsg. Since each such computation is in-
tractable, even for the0/1 cost function, classical planners
like HSP and FF settle on polynomial but non-admissible
approximations. In this work we take a different path: we
use theh+ heuristic in the more general cost setting, but
rather than performing an intractable computation forevery
search stateencountered, we perform an intractable compu-
tationonly once. This is done by compiling a propositional
theory whose preferred models, for any states and goalg,
can be computed in polynomial time and have rank equal
to the heuristic valuesh+

c (P [I = s]) andh+
c (P [G = g])

respectively.

Heuristics and Preferred Models
Following (Kautz & Selman 1992; 1996), a propositional
encoding for a sequential planning problemP with horizon
n can be obtained by introducing fluent and action variables
pi andai for each fluentp, actiona, and time stepi in a
theoryTn(P ) comprised of the following formulas:4

1. Init: p0 for p ∈ I, ¬q0 for q ∈ F − I
2. Goal: pn for p ∈ G
3. Actions: For i = 0, 1, . . . , n− 1 and alla

ai ⊃ pi for p ∈ Pre(a)
Ci ∧ ai ⊃ Li+1 for each effecta : C → L

4Ci stands for the conjunctionp1
i ∧ · · · ∧ pm

i when C is
p1, . . . , pm.

4. Frame: For i = 0, . . . , n− 1 and allp
pi ∧ (

∧
a:C→¬p(¬ai ∨ ¬Ci)) ⊃ pi+1

¬pi ∧ (
∧

a:C→p(¬ai ∨ ¬Ci)) ⊃ ¬pi+1

5. Seriality: For i = 0, 1, . . . , n−1 anda 6= a′, ¬(ai∧a′i).

For a sufficiently large horizonn, the models ofTn(P ) are
in correspondence with the plans forP : each model encodes
a plan, and each plan determines a model.

For any cost functionc(·), if we define therank of a model
M as r(M) = c(π(M)) whereπ(M) stands for the se-
quence of actions made true inM , and therank of a theory
T as

r∗(T ) def= min
M |=T

r(M) (4)

with r∗(T ) = ∞ whenT has no models, it follows that the
costof P and therank of its propositional encodingTn(P )
can be related as follows:

Proposition 2 (Costs and Ranks)For a sufficiently large
time horizonn (exponential in the worst case),c∗(P ) =
r∗(Tn(P )), where the model rankr(M) is given by the cost
c(π(M)) of the plan defined byM .

This correspondence, which follows directly from the def-
initions, does not give us much unless we have a way to
derive theory rankseffectively. A result in this direction
comes from (Darwiche & Marquis 2004) that shows how to
compute theory ranksr∗(T ) efficiently whenr is a literal-
ranking function and the theoryT is in d-DNNF (Darwiche
2002). A literal ranking function ranks models in terms of
the rank of theliterals l that are true:5

r(M) =
∑

l:M |=l

r(l) (5)

For literal-ranking functionsr and propositional theoriesT
compiled into d-DNNF, Darwiche and Marquis show that

Proposition 3 (Darwiche and Marquis) If a propositional
theoryT is in d-DNNF andr is a literal-ranking function,
then the rankr∗(T ) can be computed in time linear in the
size ofT .

This result suggests that we could compute the optimal cost
c∗(P ) of P by compiling first the theoryTn(P ) into d-
DNNF and then computing its rankr∗(Tn(P )) in time lin-
ear in the size of the compilation. There are two obstacles
for this however. The first is that the model ranking func-
tion r(M) = c(π(M)) in Prop. 2 is defined in terms of the
cost of the atoms made true during the execution of the plan,
not in terms of the literals true in the model, and hence it is
not exactly aliteral-ranking function. The second, and more
critical, is that the horizonn needed for ensuring Prop. 2 is
normally too large forTn(P ) to compile. We show below
though that these problems can be handled better when the
computation of the heuristich+

c (P ), that approximates the
real costc∗(P ), is considered instead.

5Darwiche and Marquis use the name ‘normal weighted bases’
rather than literal-ranking functions.



Stratified Encodings
Since the heuristich+

c (P ) is defined in terms of the optimal
cost of the relaxed, delete-free problemP+, it is natural to
consider the computation of the heuristic in terms of the the-
ory Tn(P+) of the relaxed problem. We will do this but first
simplify the theoryTn(P+) by dropping the seriality con-
straints that are no longer needed in the delete-free setting
where any parallel plan can be easily serialized retaining its
cost. In addition, we will drop fromTn(P+) the init and
goal clausesas we want to be able to compute the heuristic
valuesh+

c (P [I = s]) andh+
c (P [G = g]) for any possible

initial states and subgoalsg that might arise in a progression
or regression search respectively. We call the set of clauses
that are left inTn(P+), thestratified (relaxed) encodingand
denote it byTn

1 (P ). Later on we will consider another en-
coding that does not involve time at all.

The first crucial difference between the problemP and its
delete-free relaxationP+ is the horizonn needed for having
a correspondence between models and plans. ForP , the op-
timal plans may have exponential length due to the number
of different states that a plan may visit. On the other hand,
the optimal plans forP+ have at mostlinear length, as with-
out deletes, actions can only add atoms, and thus the number
of different states that can be visited is bounded by the num-
ber of fluents. Longer plans are possible but they will not be
optimal as they will contain useless actions.

The second difference is that the optimal cost of the
delete-free problem can be put in correspondence with the
rank of its propositional encoding using a simpleliteral-
ranking function compatible with Prop. 3, as any atom
achieved in a delete-free plan remains true until the end of
the plan, and no action needs to be repeated.

If we let s0 andgn stand for the init and goal clauses in
Tn(P ) encoding the initial and goal situations of problem
P [I = s,G = g], the following correspondence between
heuristic values and theory ranks can be established:

Proposition 4 (Heuristics and Ranks) For a sufficiently
large horizonn (linear in the worst case) and any initial
and goal situationss andg,

h+
c (P [I = s,G = g]) = r∗(Tn

1 (P ) ∧ s0 ∧ gn),

wherer is the literal ranking function such thatr(pn) =
c(p) for every fluentp, r(ai) = c(a) for every actiona and
i ∈ [0, n− 1], otherwiser(l) = 0.

Exploiting then Proposition 3 and the ability of d-DNNF for-
mulas to be conjoined withliterals in linear-time (Darwiche
2001), we get:

Theorem 5 (Compilation and Heuristics) Let Π1(P, n)
refer to the compilation of theoryTn

1 (P ) into d-DNNF
wheren is a sufficiently large horizon (linear in the worst
case). Then the heuristic valuesh+

c (P [I = s,G = g]) for
any initial and goal situationss andg, and anycost function
c, can be computed fromΠ1(P, n) in linear time.

This theorem tells us that a single compilation suffices for
computing a huge set of heuristic values in time that is
linear in the size of the compilation. The heuristic val-
uesh+

c (P [I = s,G = g]) provide estimates of the cost

of achieving any goalg from any initial states. During
a forward search, however, only the valuesh+

c (P [I = s])
are needed, while in a regression search, only the values
h+

c (P [G = g]) are needed. The formulation, however,
yields a larger number of heuristic values that can be used,
for example, in a bidirectional search. The computation of
such values is linear in the size of the compilationΠ1(P, n)
which may be exponential in the size of the original encod-
ing T1(P, n). This however, as for OBDDs, is not necessar-
ily so.

LP Encodings
The encodingTn(P ) for computing the optimal cost ofP
requires an horizonn that is exponential in the worst case,
while the encodingTn

1 (P ) for computing the heuristich+
c

requires an horizon that is linear. However, a much more
compact encoding for computingh+

c , which requiresno time
or horizon at all, can be obtained. We call it the LP (for
Logic Program) encoding as it is obtained from a set of pos-
itive Horn clauses (Lloyd 1987)

The LP encoding of a planning problemP for computing
the heuristich+

c is obtained from the propositional LP rules
of the form

p← C,Pre(a), a (6)

for each (positive) effecta : C → p associated with an
action a with preconditionsPre(a) in P , wherePre(a),
C(a, p), or both may be empty. For convenience, as we
explain below, for each atomp in P , we introduce also
a ‘dummy’ actionset(p) which has no precondition and
unique effectp encoded as:

p← set(p) . (7)

These actions will be formal devices for ‘setting’ the ini-
tial situation to s when computing the heuristic values
h+

c (P [I = s]) for any states. No such encoding trick is
needed for the goalsg.

The LP encoding, that will enable us to compute theh+
c

heuristic in a more effective way, has two features that dis-
tinguish it from the previous stratified encodings. The first
is that there is no time. Time, however, is not necessary
as we will focus on a class ofminimalmodels that have an
implicit stratificationthat is in correspondence with thetem-
poral stratification. Such minimal models will be grounded
on the actions as all fluents will have a well-founded support
based on them. The second distinctive feature is that actions
do not imply their preconditions. This will not be a problem
either as actions have all positive costs and, in this encoding,
all require their preconditions in order to have some effect.
So while models that make actions true without their pre-
conditions are possible, such models will not be preferred.

For a planning problemP , let T2(P ) refer to the collec-
tion of rules (6) and (7) encoding the effects of the actions
in P , including theset(p) actions, and letwffc(T2(P )) stand
for thewell-founded fluent completionof T2(P ): a comple-
tion formula defined below that forces each fluentp to have
a well-founded support. Then if we letset(s) refer to the
collection of unit clausesset(p) that represent a situations,
namelyset(p) ∈ set(s) iff p ∈ s, and¬set(p) ∈ set(s) iff



p 6∈ s, we obtain that the correspondence between heuristic
values and LP encodings becomes:

Proposition 6 (Heuristics and Ranks) For any initial situ-
ations, goalg, and cost functionsc,

h+
c (P [I = s,G = g]) = r∗(wffc(T2(P )) ∧ set(s) ∧ g)

wherer is the literal ranking function such thatr(l) = c(l)
for positive literalsl andr(l) = 0 otherwise.

From this result and the properties of d-DNNF formulae, we
obtain:

Theorem 7 (Main) Let Π2(P ) refer to the compilation of
theory wffc(T2(P )) into d-DNNF. Thenfor any initial and
goal situationss andg, and anycost functionc, the heuristic
valueh+

c (P [I = s,G = g]) can be computed fromΠ2(P )
in linear time.

The well-founded fluent completionwffc(T2(P )) picks up
the models ofT2(P ) that areminimal in the set of fluents,
given the actions in the model. In such models, fluents have
a non-circular support that is based on the true actions. In
particular, if T2(P ) is an acyclic program,wffc(T2(P ) is
nothing else but Clark’s completion applied to the fluents
(Clark 1978; Apt & Bezem 1990). The programT2(P ) is
acyclic if the directed graph formed by connecting every
atom that appears in the body of a rule to the atom that ap-
pears in the head, is acyclic; and Clark’s completion applied
to the fluent literals adds the formulas

p ⊃ B1 ∨ . . . ∨Bn

to each fluentp with rules

p ← Bi

for i = 1, . . . , n in T2(P ), and the formula¬p if there are
no rules forp at all.

In the presence of cycles inT2(P ), the well-founded flu-
ent completionwffc(T2(P )) does not reduce to Clark’s com-
pletion, which does not exclude circular supports. In order
to rule out circular supports and ensure that the fluents in
the model can be stratified as in temporal encodings, an
stronger completion is needed. Fortunately, this problem
has been addressed in the literature on Answer Set Pro-
gramming (Gelfond & Lifschitz 1988; Baral 2003; Anger
et al. 2005) where techniques have been developed for
translating cyclic and acyclic logic programs into proposi-
tional theories whose models are in correspondence with the
logic program Answer Sets (Ben-Eliyahu & Dechter 1994;
Lin & Zhao 2002). The logic programT2(P ) is a posi-
tive logic program whose unique minimal model, for any
set of actions, coincides with its unique Answer Set. The
strong completionwffc(T2(P )) can thus be obtained from
any such translation scheme, with the provision that only flu-
ent atoms are completed (not actions). In our current imple-
mentation, we follow the scheme presented in (Lin & Zhao
2003) that introduces new atoms and new rules that pro-
vide a consistent, partial ordering on the fluents inT2(P ) so
that the resulting models become those in which the fluents
have well-founded, non-circular justifications. From now
on,wffc(T2(P )) will refer to the result of such a translation.

Example
As an illustration, consider a simple problemP that involves
three locationsA, B, andC, such that an agent can move
from A to B, from B to C, from C to B, and fromB to
A. This problem can be modeled with actions of the form
move(x, y) with preconditionat(x) and effectsat(y) and
¬at(x) for suitablex’s andy’s from A, B, andC. For each
such action inP , T2(P ) will contain rules

at(y) ← at(x),move(x, y) (8)

along with
at(y) ← set(at(y)) . (9)

Consider now an initial states = {at(A)}, goalg = at(C),
and a cost functionc(a) = 1 for all actions except for
move(A,B) with costc(move(A,B)) = 10.

The best plan for this state-goal pair in the delete-
relaxation isπ = {move(A,B),move(B,C)} which is
also the best plan without the relaxation, so

h+
c (P [I = s,G = g]) = c∗(P [I = s,G = g]) = 11.

Theorem 7 says that this heuristic value must correspond to
the rank of the well-founded fluent completion ofT2(P ),
wffc(T2(P )), extended with the set of literals given by

set(s) = {set(at(A)),¬set(at(B)),¬set(at(C))},

and g = {at(C)}. While we will not spell out the the-
ory wffc(T2(P )) in detail, let us illustrate why it must be
stronger than Clark’s completion. For this problem, Clark’s
completion for the fluent atoms gives us the theory:

at(C) ≡ (at(B) ∧move(B,C)) ∨ set(at(C)) ,

at(B) ≡ (at(A) ∧move(A,B)) ∨ set(at(B))∨
(at(C) ∧move(C,B)) ,

at(A) ≡ (at(B) ∧move(B,A)) ∨ set(at(A)) .

For the literal ranking functionr that corresponds toc,6

the best ranked model of Clark’s completion extended with
the literals inset(s) and g, has rank2 which is different
thanh+

c (P [I = s,G = g]) = 11. In such a model, the
costly move(A,B) action is avoided, andat(C) is made
true through a circular justification that involves the cheaper
actionsmove(B,C) andmove(C,B). This arises because
the programT2(P ) contains a cycle involving the atoms
at(B), at(C), move(C,B), andmove(B,C). In the well-
founded completion defined in (Lin & Zhao 2003), Clark’s
completion is applied to a program which is different than
T2(P ) and where the circularities are broken with the addi-
tion of an extra predicate that encodes the possible prece-
dences in the models that are well-founded.

It is worth pointing out that while the heuristich+
c and

the optimal costc∗ coincide for this state, goal, and cost
function, they do not coincide in general for other combi-
nations. For example, if the goalg is set to the initial state
s = {at(A)} and the atomat(C) is given cost−20, then
c∗(P [I = s,G = g]) = −7 while h+

c (P [I = s,G = g]) =

6From Theorem 7,r(l) = c(l) if l is a positive literal and
r(l) = 0 otherwise.



−9. The reason is that in the delete-relaxation the two ac-
tionsmove(C,B) andmove(B,A) that get the agent back
to at(A) are not needed as the atomat(A) is never deleted.

This last variation illustrates that in thePR model, heuris-
tics and costs can both be negative, and even if the initial
situation is also the goal situation, the optimal plan is not
necessarily empty. This all means that we cannot just plug
the heuristic into an algorithm like A* and expect to get back
optimal solutions. Indeed, in the above variation the root
node of the search is a goal node, and yet the empty plan
is not optimal. In order to use the heuristich+

c to guide the
search for plans in thePRmodel, these and other issues need
to be considered in the search.

From Heuristics to Search
We will focus first on the use of the heuristic in a progres-
sion search from the initial state, and then briefly mention
what needs to be changed for a regression search. First of
all, in the PR model, a search node needs to keep track not
only of the state of the systems but also of the set of fluents
t with non-zero costs that have been achieved in the way to
s. This is because in the model penalties and rewards as-
sociated with such atoms are paid only once. Thus, search
nodesn must be pairs〈s, t〉, and the heuristic for those nodes
h+

c (n) must be set toh+
c′(s) wherec′(x) = c(x) for all ac-

tions and fluentsx, except thatc′(x) = 0 if x ∈ t. As
usual, the evaluation functionf(n) for a noden is given by
the sumg(n) + h(n) whereh(n) = h+

c (n) andg(n) is the
accumulated cost along the pathn0, a0, . . . , ai, ni+1 from
the rootn0 to n = ni+1. This accumulated cost is the sum
c(n0)+c(a0, n0)+c(a1, n1)+· · ·+c(ai, ni) wherec(ai, ni)
is c(ai) plus the costc(p) of the atomsp 6∈ ti that the action
ai makes true insi+1, while c(n0) is the sum of all costs
c(p) for p ∈ s0. For the root noden0 = 〈s0, t0〉, s0 is the
initial state andt0 is the set of atomsp ∈ s0 with non-zero
costs.

In this search space, the search algorithm must handle
both negative heuristics and costs, while ensuring optimality.
This rules out algorithms such as Dijkstra or A* that do not
handle negative costs (Pearl 1983), yet a simple Best-First
Search (BFS) algorithm can be defined that reduces to A*
when there are no negative heuristics or costs. In this BFS
algorithm, nodesn with minimum evaluation functionf(n)
are selected from the OPEN list until a certain termination
condition is reached. It is precisely in the termination where
the algorithm departs from A*: the algorithm maintains the
(accumulated) costg(n) of the best solutionn found so far,
and terminates when its cost is no greater than the evalua-
tion functionf(n′) of the best node in OPEN. It then returns
n as the solution node (if follows from this that the algo-
rithm does not necessarily terminate when the best noden′

in OPEN is a solution, but it terminates then withn′ as the
solution node ifh(n′) is non-negative).

It is simple to show that the algorithm is correct when
the heuristic is monotone (likeh+

c ). In such a case, even if
h is negative, the evaluation functionf(n) cannot decrease
along any path from the root, and hence if a solution has
been found with costg(n) which is no greater thanf(n′)

for every node in OPEN, theng(n) will be no greater than
the solutions that go through those nodes.

Unlike A*, the algorithm may terminate by reporting a
noden in the CLOSED list as a solution. This happens
for example when there are no goals but the heuristich(n0)
deems a certain reward worth the cost of obtaining it, when it
is not. For example, if the reward is−10, and the estimated
and real cost for achieving it are9 and11 respectively, then
the best plan is to do nothing with cost0. However, initially
g(n0) = 0 andh(n0) = −1 < 0, so the algorithm expands
n0 and keeps going until the best noden′ in OPEN satis-
fiesf(n′) ≥ g(n0) = 0, returningn0 as the solution node.
In (van den Brielet al. 2004), the termination condition of
A* is also modified for dealing with (terminal) rewards (soft
goals) but the proposed termination condition does not en-
sure optimality, as in particular, it will never report a solution
node from the CLOSED list.

Most of this discussion carries directly to regression
search where classical regression needs to be modified
slightly: while in the classical setting, an actiona can be
used to regress a subgoalg whena ‘adds’ an atomp in g,
in the penalties and reward setting,a can also be used when
it adds an atomp, that while not ing, has a negative cost
c(p) < 0.

Empirical Results
We report some empirical results that illustrate the range
of problems that can be handled using the proposed tech-
niques. We derive the heuristic using the LP encodings and
Theorem 7. The compilation into d-DNNF is done using
Darwiche’s publicly available c2d compiler.7 We actually
consider a ‘forward’ theory used for guiding a progression
search, and a ‘backward’ theory used for guiding a regres-
sion search. The first is obtained from the compilation of
the formulawffc(T2(P )) ∧ G whereG is the goal, while
the second is obtained from the compilation of the formula
wffc(T2(P )) ∧ set(I) whereI is the initial situation. The
heuristich+

c for the regression search is complemented with
structural ‘mutex’ information, meaning that the heuristic
values associated with subgoalsg are set to∞ wheng con-
tains a pair of structurally mutex fluents. This is because, the
regression search tends to generate such impossible states
(Bonet & Geffner 2001).

All the experiments are carried on a Linux machine run-
ning at 2.80GHz with 2Gb of RAM, and terminated after
taking more than 2 hours or more than 1Gb of memory. Four
domains are considered: two classical domains, Logistics
and Blocks, where theh+

c heuristic can be compared with
classical heuristics, and two navigation domains, Wumpus
and Elevator.

Logistics. Table 2 shows the time taken by the compilation
of some ‘forward’ and ‘backward’ logistic theories, along
with the size of the resulting d-DNNF formula. These are
all serialized instances from the 2nd Int. Planning Compe-
tition (Bacchus 2001), with several packages, cities, trucks,
and airplanes, some having plans with more than40 actions.

7At http://reasoning.cs.ucla.edu/c2d .



backward theory forward theory
Problem Time Nodes Time Nodes

4-0 0.34 1,163 1.66 64,623
4-1 0.20 1,163 1.58 61,004
4-2 0.21 1,155 1.65 64,946
5-0 0.20 1,155 1.56 61,168
5-1 0.20 1,155 1.55 60,488
5-2 0.33 1,163 1.62 60,828
6-0 0.20 1,155 1.52 59,191
6-1 0.20 1,155 1.62 63,133
6-2 0.21 1,163 1.64 63,507
6-3 0.32 1,163 1.65 64,951
7-0 1.26 3,833 145.83 3,272,308
7-1 1.38 3,837 142.82 3,211,456
8-0 1.30 3,833 263.20 3,268,023
8-1 1.37 3,837 263.19 3,270,570
9-0 1.98 3,854 147.82 3,199,190
9-1 1.27 3,833 138.81 3,130,689
10-0 6.86 13,153 — —
10-1 6.87 13,090 — —

Table 2: Compilation data for the first 18 logistic problems
from 2nd IPC (serialized), some having plans with more
than40 actions. Time refers to compilation time in seconds,
while Nodes to the number of nodes in the DAG represent-
ing the d-DNNF formula.

Almost all of these instances compile, although backward
theories, where the initial state is fixed, take much less time
and yield much smaller representations. Table 1 provides in-
formation about the quality and effectiveness of the heuristic
h+

c for the classical0/1 cost function, in relation with the
classical, admissible heuristich2 (Haslum & Geffner 2000),
a generalization of the heuristic used in Graphplan (Blum &
Furst 1995). The table shows the heuristic and real-cost val-
ues associated with the root nodes of the search, along with
the time taken by the search and the number of nodes ex-
panded. It can be seen that theh+

c heuristic is more informed
thanh2 in this case, and when used for guiding a regression
search, scales up to problems thath2 cannot solve.

It is important to emphasize thatonce the theories are
compiled they can be used for any cost function.So these
logistics theories can be used for settings where, for exam-
ple, packages have different priorities, loading them in var-
ious tracks involves different costs, etc. This applies to all
domains.

Blocks World. Blocks instances do not compile as well
as logistic instances. We do not report actual figures as
we managed to compile only the first8 instances from the
2nd IPC. These are rather small instances having at most 6
blocks, where use of the heuristich+

c does not pay off.

Wumpus. In this world, simplified from (Russell & Norvig
1994), an agent moves in a gridn×n collecting coins, each
with cost−8, while avoiding ‘wumpuses’ at cost20 each.
For this problem, we managed to compile instances with a
few coins and wumpus, and sizes no greater thann = 4. We
then considered a further relaxation with all wumpuses re-
moved from the problem, resulting in a less informed heuris-
tic but which enabled the compilation of larger instances.

relaxedh+
c fwd h0 fwd

Problem Len/c∗ Time Nodes Time Nodes
10-10-4 34/−30 10.53 812 15.78 46,256
10-10-8 26/−30 3.83 394 11.19 35,489
10-10-12 31/−25 23.03 1,948 11.53 36,826
10-10-16 27/−13 20.84 1,732 10.77 30,916
10-10-20 31/−13 25.32 1,523 9.41 26,864

Table 3: Results for forward search in Wumpus with a ‘re-
laxed’ h+

c heuristic andh0. In the former, the ‘wumpuses’
are removed from the problem; the latter is defined as the
sum of uncollected rewards. Instancen-m-k refers to a grid
of sizen ×m with 8 coins andk wumpuses. Length refers
to number of actions in the plan,c∗ to the optimal cost, and
time and nodes refer to the search time and number of ex-
panded nodes.

For example, problems involving grids10× 10 with 8 coins
are compiled in a few seconds. Table 3 shows the results of
the forward search over a family of10×10 problems with8
coins and a variable number of wumpuses. These are prob-
lems with soft goals as not all the coins are collected, and
in all cases, an optimal path among the collected coins that
avoids the wumpuses, if that is convenient, must be found.
The result for the forward search guided by the ‘relaxed’h+

c
heuristic is compared with a ‘blind’ search guided by theh0

heuristic. This is not theh = 0 heuristic which is not ad-
missible in this setting (optimal costs are negative), but the
heuristic that results from adding all potential (uncollected)
rewards. Since this heuristic is very fast, even if the search
guided byh+

c expands an order-of-magnitude less nodes, the
search withh0 is usually faster.

Elevator: The last domain consists of a building withn
floors,m positions in each floor ordered linearly, andk el-
evators. There are no hard goals but various rewards and
penalties associated with certain positions as in Wumpus,
and all actions have cost1. Figure 1 shows the instance
10-5-1 with 10 floors, 5 positions per floor, and 1 elevator
aligned at position 1 on the left. We consider also an in-
stance 10-5-2 where there is an additional elevator on the
right at position 5. The problem is modeled with actions for
moving the elevators up and down one floor, for getting in
and out the elevator, and for moving one unit, left or right, in
each floor. These actions affect the fluents(at f p) , (in
e f ) and (inside e) , wheref , p ande denote a floor, a
position, and an elevator respectively. The optimal plan for
the instance 10-5-1 shown in Fig. 1 performs 11 steps to
collect the rewards at floors 4th and 5th for a total cost of
11− 14 = −3. On the other hand, the instance 10-5-2 with
another elevator on the right, performs32 steps but obtains
a better cost of−5. The LP encoding for computing the
h+

c (P ) heuristic doesn’t compile for this domain except for
very small instances. However, a good and admissible ap-
proximationh+

c (P ′) can be obtained by relaxing the prob-
lem P slightly by simply dropping the fluent(inside e)
from all the operators (this a so-called pattern-database re-
laxation (Culberson & Schaeffer 1998), where certain atoms
are dropped from the problem (Edelkamp 2001; Haslum,



h2 backward h+
c with mutex backward h+

c forward
Problem c∗(P ) h2(P ) Time Nodes h+

c (P ) Time Nodes h+
c (P ) Time Nodes

4-0 20 12 0.23 4,295 19 0.02 40 19 8.24 76
4-1 19 10 0.40 7,079 17 0.14 109 17 26.95 259
4-2 15 10 0.02 537 13 0.01 25 13 6.94 72
5-0 27 12 8.00 118,389 25 0.75 490 25 113.26 1,075
5-1 17 9 0.52 7,904 15 0.08 103 15 21.50 212
5-2 8 4 0.00 143 8 0.00 8 8 0.79 8
6-0 25 10 28.52 316,175 23 1.00 668 23 94.98 932
6-1 14 9 0.10 1,489 13 0.01 19 13 3.39 33
6-2 25 10 25.49 301,054 23 0.89 517 23 53.52 516
6-3 24 12 7.87 99,827 21 0.84 727 21 52.53 537
7-0 36 12 — — 33 97.41 4,973 33 — —
7-1 44 12 — — 39 4,157.70 175,886 39 — —
8-0 31 12 — — 29 11.64 591 29 — —
8-1 44 12 — — 41 283.32 12,913 41 — —
9-0 36 12 — — 33 65.81 3,083 33 — —
9-1 30 12 — — 29 1.54 81 29 — —
10-0 ? 12 — — 41 — — 41 — —
10-1 42 12 — — 39 5,699.2 20,220 39 — —

Table 1: Search results for serialized logistics problemsP using the heuristicsh2 andh+
c , the second used to search in both

directions. Both heuristics complemented with structural mutexes. Time and Nodes stand for search time and number of
expanded nodes. A dash means time or memory exceeded. The cost function is the classical cost function andc∗ stands for the
optimal cost.

−7

−7

+5

+5

+5

+5

−7

−7

−7

−7

1

2

3

4

5

6

7

8

9

10

Figure 1: Elevator instance 10-5-1 with 10 floors, 5 positions
per floor, and 1 elevator at position 1. Penalties and rewards
associated with the various positions shown. Instance 10-5-
2 has a second elevator at position 5 (right most). The best
plan for the first instance has length11 and cost−3, while
for the second instance, it has length32 and cost−5.

Bonet, & Geffner 2005)). Using this technique, we were
able to compile theories with up to 10 floors and 10 positions
in less than a second. The problem in Fig. 1 is then solved
optimally in 0.39 seconds, expanding238 nodes. As a ref-
erence, a ‘blind’ search based on the non-informative ad-
missible heuristich0 above takes161 seconds and expands
445, 956 nodes. More results appear in Table 4 where it is
shown that the heuristic is cost-effective in this case, and
enables the optimal solution of problems that are not trivial.

Summary and Discussion
In this work we have combined ideas from a number of ar-
eas, such as search, planning, knowledge compilation, and
answer set programming to develop

1. a simple planning modelPR that accommodates fluent
penalties and rewards,

2. an admissible heuristich+
c for informing the search in

this model,
3. an account ofh+

c in terms of the rank of the preferred
models of a suitable theory,

4. a correspondence between this theory and the strong
completion of a non-temporal logic program,

5. an approach that exploits these correspondences and the
properties of d-DNNF for computing all heuristic values
h+

c in time linear in the size of the compilation, and
6. a best-first algorithm able to use this heuristic and handle

negative costs, while ensuring optimality.

All these ideas are combined in an actualPRplanner that we
tested on a number of problems.

The computational bottleneck in this approach is the com-
pilation. We have seen that a number of non-trivial domains
such as Logistics compile well, while others such as Blocks



relaxedh+
c with mutex backward h0 with mutex backward

Problem Len/c∗ Relaxedh+
c (P ) Time Nodes h0(P ) Time Nodes

4-4-2 12/−9 −18 0.35 1,382 −28 4.19 29,247
6-6-2 23/−14 −26 21.44 24,386 −49 2,965.90 6,229,815
6-6-3 23/−14 −29 133.48 76,128 −49 — —
10-5-1 11/−3 −7 0.39 238 −42 161.85 445,956
10-5-2 32/−5 −23 330.72 189,131 −42 — —

Table 4: Results for the regression search over elevator instancesn-m-k with n floors,m positions, andk elevators. A dash
means time or memory exceeded. The ‘relaxed’ heuristich+

c is defined over problem with the atom(inside e) relaxed. The
‘blind’ heuristich0 just adds up the uncollected rewards. Both heuristics complemented with structural mutexes.

do not. In other domains, such as Elevators, we have seen
that the theories do not compile for the original problemP
but do compile for an slight relaxationP ′ where one of the
atoms is removed from the problem, rendering an informa-
tive and admissible approximation of theh+

c heuristic that
combines the delete and pattern relaxations. Here we have
done this last relaxation by hand, yet it would be interesting
to see how this can be done automatically in terms of the
structural properties of the theory. We also need to under-
stand better how these structural properties affect the com-
pilation.

The results above do not have to be taken as a single pack-
age; in particular, it is possible to build on 1–4 above but
avoid the compilation step, replacing it by an explicit com-
putation of preferred models for each of the states that arise
in the search, using a Weighted SAT or ASP solver. Also
the logic-based account of theh+

c heuristic suggests possi-
ble improvements of the heuristic. Many other variations
seem possible.

In any case, the appeal of the compilation-based approach
is that it yields what can be deemed as acircuit or eval-
uation networkwhose input is a situation and whose out-
put, produced in linear-time, is an appraisal of the situ-
ation. Some authors associate such evaluations with the
role played by emotions in real agents (Damasio 1995;
Evans & Cruse 2004).

Acknowledgements: We thank Adnan Darwiche for use-
ful discussions about d-DNNF and for making his com-
piler available. We also thank A. Frangi and A. Sanz for
the use of the Hermes Computing Resource at the Aragon
Inst. of Engr. Research (I3A), U. of Zaragoza. H.
Geffner is partially supported by grant TIN2005-09312-
C03-03 from MEC/Spain and B. Bonet by a grant from
DID/USB/Venezuela.

References
Anger, C.; Konczak, K.; Linke, T.; and Schaub, T. 2005. A
glimpse of answer set programming.Künstliche Intelligenz
19(1):12–17.

Apt, K. R., and Bezem, M. 1990. Acyclic programs. In
Proc. 7th Int. Conf. on Logic programming, 617–633.

Bacchus, F. 2001. The 2000 AI Planning Systems Compe-
tition. Artificial Intelligence Magazine22(3).

Baral, C. 2003.Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.

Ben-Eliyahu, R., and Dechter, R. 1994. Propositional se-
mantics for disjunctive logic programs.Ann. Math. Artif.
Intell. 12(1-2):53–87.

Bertsekas, D. 1995.Dynamic Programming and Optimal
Control, Vols 1 and 2.Athena Scientific.

Blum, A., and Furst, M. 1995. Fast planning through plan-
ning graph analysis. InProceedings of IJCAI-95, 1636–
1642. Morgan Kaufmann.

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.Artificial Intelligence129(1–2):5–33.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism for planning. InPro-
ceedings of AAAI-97, 714–719. MIT Press.

Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004. Cp-nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments.J. Artif. Intell. Res. (JAIR)21:135–191.

Brafman, R. I., and Chernyavsky, Y. 2005. Planning with
goal preferences and constraints. InProc. ICAPS-05, 182–
191.

Bylander, T. 1994. The computational complexity of
STRIPS planning.Artificial Intelligence69:165–204.

Clark, K. 1978. Negation as failure. In Gallaire, H., and
Minker, J., eds.,Logic and Data Bases. Plenum. 293–322.

Culberson, J., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence14(3):319–333.

Damasio, A. 1995.Descartes’ Error: Emotion, Reason,
and the Human Brain. Quill.

Darwiche, A., and Marquis, P. 2002. A knowledge compi-
lation map.J. of AI Research17:229–264.

Darwiche, A., and Marquis, P. 2004. Compiling proposi-
tional weighted bases.Artif. Intell. 157(1-2):81–113.

Darwiche, A. 2001. Decomposable negation normal form.
J. ACM48(4):608–647.

Darwiche, A. 2002. On the tractable counting of the-
ory models and its applications to belief revision and truth
maintenance.J. of Applied Non-Classical Logics.

Edelkamp, S. 2001. Planning with pattern databases. In
Proc. ECP 2001.

Evans, D., and Cruse, P., eds. 2004.Emotion, Evolution
and Rationality. Oxford.



Geffner, H. 2004. Planning graphs and knowledge compi-
lation. InProc. of the Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR-04), 662–672.

Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Kowalski, R. A., and
Bowen, K., eds.,Proc. of the Fifth International Confer-
ence on Logic Programming, 1070–1080. The MIT Press.

Giunchiglia, E.; Kartha, N.; and Lifschitz, V. 1997. Repre-
senting action: indeterminacy and ramifications.Artificial
Intelligence95:409–443.

Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. InProc. of the Fifth International
Conference on AI Planning Systems (AIPS-2000), 70–82.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for optimal planning. InProc. AAAI-05.

Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:253–302.

Hoffmann, J. 2003.Utilizing Problem Structure in Plan-
ning: A Local Search Approach (LNAI 2854). Springer-
Verlag.

Kautz, H. A., and Selman, B. 1992. Planning as satisfiabil-
ity. In Proceedings of the Tenth European Conference on
Artificial Intelligence (ECAI’92), 359–363.

Kautz, H., and Selman, B. 1996. Pushing the envelope:
Planning, propositional logic, and stochastic search. In
Proceedings of AAAI-96, 1194–1201. AAAI Press / MIT
Press.

Lin, F., and Zhao, Y. 2002. ASSAT: computing answer
sets of a logic program by sat solvers. InProc. AAAI-2002,
112–117.

Lin, F., and Zhao, J. 2003. On tight logic programs and yet
another translation from normal logic programs to propo-
sitional logic. InProc. IJCAI-03, 853–858.

Lloyd, J. 1987. Foundations of Logic Programming.
Springer-Verlag.

McDermott, D. 1996. A heuristic estimator for means-
ends analysis in planning. InProc. Third Int. Conf. on AI
Planning Systems (AIPS-96).

Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an Efficient SAT
Solver. InProc. of the 38th Design Automation Conference
(DAC’01).

Nebel, B. 2000. On the compilability and expressive power
of propositional planning.Journal of Artificial Intelligence
Research12:271–315.

Pearl, J. 1983.Heuristics. Addison Wesley.

Russell, S., and Norvig, P. 1994.Artificial Intelligence: A
Modern Approach. Prentice Hall.

Simons, P.; Niemela, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics.Artificial
Intelligence138(1-2):181–234.

Smith, D. E. 2004. Choosing objectives in over-
subscription planning. InProc. ICAPS-04, 393–401.

Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2005. In defense
of pddl axioms.Artif. Intell. 168(1-2):38–69.
van den Briel, M.; Nigenda, R. S.; Do, M. B.; and Kamb-
hampati, S. 2004. Effective approaches for partial satis-
fation (over-subscription) planning. InProc. AAAI 2004,
562–569.


