
INFSYS RESEARCH REPORT

INFSYS RESEARCH REPORT 1843-06-08, MARCH 2010

A NOVEL COMBINATION OF ANSWER SET PROGRAMMING WITH

DESCRIPTION LOGICS FOR THE SEMANTIC WEB

MARCH 20, 2010

Thomas Lukasiewicz 1

Abstract. We present a novel combination of disjunctive programs under the answer set seman-
tics with description logics for the Semantic Web. The combination is based on a well-balanced
interface between disjunctive programs and description logics, which guarantees the decidability of
the resulting formalism without assuming syntactic restrictions. We show that the new formalism
has very nice semantic properties. In particular, it faithfully extends both disjunctive programs and
description logics. Furthermore, we describe algorithms for reasoning in the new formalism, and we
give a precise picture of its computational complexity. We also define the well-founded semantics
for the normal case, where normal programs are combined with tractable description logics, and
we explore its semantic and computational properties. In particular, we show that the well-founded
semantics approximates the answer set semantics. We also describe algorithms for the problems of
consistency checking and literal entailment under the well-founded semantics, and we give a precise
picture of their computational complexity. As a crucial property, in the normal case, consistency
checking and literal entailment under the well-founded semantics are both tractable in the data com-
plexity, and even first-order rewritable (and thus can be done in LOGSPACE in the data complexity)
in a special case that is especially useful for representing mappings between ontologies.

1Computing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, UK; e-mail:
thomas.lukasiewicz@comlab.ox.ac.uk. Institut für Informationssysteme, Technische Universität Wien, Favoriten-
straße 9-11, 1040 Wien, Austria; e-mail: thomas.lukasiewicz@kr.tuwien.ac.at.

Acknowledgements: This work has been supported by the German Research Foundation (DFG) under the
Heisenberg Programme.

Copyright c© 2010 by the authors

INFSYS RR 1843-06-08 I

Contents

1 Introduction 1

2 Motivating Example and Key Ideas 2

3 Disjunctive Programs 4
3.1 Syntax . 4
3.2 Answer Set Semantics . 5
3.3 Well-Founded Semantics . 6

4 Description Logics 7
4.1 DLs Behind OWL Lite and OWL DL . 8
4.2 A Tractable DL . 9

5 Disjunctive DL-Programs 10
5.1 Syntax . 11
5.2 Answer Set Semantics . 11
5.3 Well-Founded Semantics . 12

6 Semantic Properties 15
6.1 Answer Set Semantics . 15
6.2 Well-Founded Semantics . 17

7 Algorithms 18
7.1 Answer Set Semantics . 19
7.2 Well-Founded Semantics . 19

8 Complexity 20
8.1 Complexity Classes . 20
8.2 Answer Set Semantics . 20
8.3 Well-Founded Semantics . 21

9 Data Tractability 21
9.1 Polynomial Case . 21
9.2 First-Order Rewritable Case . 21

10 Related Work 22

11 Conclusion 24

INFSYS RR 1843-06-08 1

1 Introduction

The Semantic Web [7, 28] aims at an extension of the current World Wide Web by standards and technologies
that help machines to understand the information on the Web so that they can support richer discovery, data
integration, navigation, and automation of tasks. The main ideas behind it are to add a machine-readable
meaning to Web pages, to use ontologies for a precise definition of shared terms in Web resources, to use
knowledge representation technology for automated reasoning from Web resources, and to apply cooperative
agent technology for processing the information of the Web.

The Semantic Web consists of several hierarchical layers, where the Ontology layer, in form of the OWL
Web Ontology Language [63, 35, 5], is currently the highest layer of sufficient maturity. OWL consists of
three increasingly expressive sublanguages, namely OWL Lite, OWL DL, and OWL Full. OWL Lite and
OWL DL are essentially very expressive description logics with an RDF syntax [35]. As shown in [33],
ontology entailment in OWL Lite (resp., OWL DL) reduces to knowledge base (un)satisfiability in the
description logic SHIF(D) (resp., SHOIN (D)). As a next important step in the development of the
Semantic Web, one aims at sophisticated representation and reasoning capabilities for the Rules, Logic,
and Proof layers of the Semantic Web.

In particular, there is a large body of work on integrating rules and ontologies, which is a key re-
quirement of the layered architecture of the Semantic Web. Significant research efforts focus on hybrid
integrations of rules and ontologies, called description logic programs (or dl-programs), which are of the
form KB = (L,P), where L is a description logic knowledge base and P is a finite set of rules involving
either queries to L in a loose integration, or concepts and roles from L as unary and binary predicates,
respectively, in a tight integration (see especially [4, 22, 21, 19, 57] for recent surveys).

However, especially the tight integration of rules and ontologies presents many semantic and compu-
tational difficulties [58]. As many expressive description logics are very close to the decidability / unde-
cidability frontier (such as SHOIN (D), which is only decidable when number restrictions are limited to
simple abstract roles [36]), developing decidable extensions of them by rules turns out to be a naturally hard
task, and often comes along with strong syntactic restrictions on the resulting language (such as syntactic
safety conditions and/or syntactic partitionings of the vocabulary).

Nonetheless, in rule-based systems in the Semantic Web, we would like to use vocabulary from formal
ontologies, and we would like to do it without syntactic restrictions. In this paper, we show that the main
difficulties with the above tight integrations of rules and ontologies lies actually in the perspective of the
integration. That is, they all look from the perspective of description logics at the integration of rules and
ontologies. However, for extending certain kinds of rule-based systems by vocabulary from ontologies, we
actually do not need the full power of a rule-based extension of description logics. This is the main idea
behind this paper. More precisely, we look at the integration of rules and ontologies from the perspective of
rule-based systems. The main contributions of this paper can be summarized as follows:

• We present a novel combination of disjunctive logic programs under the answer set semantics with
description logics. In detail, we present a novel form of tightly integrated disjunctive dl-programs
KB = (L,P) under the answer set semantics, which allows for decidable reasoning, without assuming
any syntactic restrictions (see Sections 2 and 10 for a detailed comparison to previous approaches to
dl-programs). Intuitively, the main idea behind the semantics of the new dl-programs KB = (L,P) is
to interpret P relative to Herbrand interpretations that also satisfy L, while L is interpreted relative
to general interpretations over a first-order domain. That is, we modularly combine the standard
semantics of disjunctive logic programs P and of description logics L, via a well-balanced interface
between P and L.

2 INFSYS RR 1843-06-08

• We show that the new approach to disjunctive dl-programs under the answer set semantics has very
nice semantic features. In particular, the answer set semantics faithfully extends both disjunctive
logic programs under the answer set semantics and description logics under the standard first-order
semantics, and its closed-world property is limited to explicit default-negated atoms in rule bodies.
Furthermore, the new approach does not need the unique name assumption. We also analyze the
computational aspects of the new formalism. We describe algorithms for deciding answer set exis-
tence, brave consequences, and cautious consequences. This shows in particular that these decision
problems are all decidable. We also draw a precise picture of their complexity.

• We also define the well-founded semantics for the special case of normal dl-programs, and explore its
semantic and computational properties. In particular, we show that the well-founded semantics faith-
fully extends its classical counterpart for ordinary normal logic programs, and that it approximates the
answer set semantics. We also describe algorithms for consistency checking and literal entailment un-
der the well-founded semantics, and we analyze the data and general complexity of these two central
computational problems. As a crucial property, normal dl-programs under the well-founded seman-
tics allow for tractable consistency checking and for tractable literal entailment in the data complexity,
and they have even a first-order rewritable (and thus LOGSPACE data complexity) special case, which
is especially interesting for representing (deterministic) ontology mappings.

The rest of this paper is organized as follows. In Section 2, we describe the key ideas behind the new
formalism of this paper. Section 3 recalls disjunctive and normal programs under the answer set semantics
and under the well-founded semantics, respectively, while Section 4 recalls the expressive description logics
SHIF(D) and SHOIN (D) as well as the tractable description logic DL-LiteA. In Section 5, we introduce
our novel approach to disjunctive and normal dl-programs under the answer set semantics and under the
well-founded semantics, respectively, and in Section 6, we analyze its semantic properties. Sections 7 to 9
focus on the computational properties, including a first-order rewritable special case. In Section 10, we
discuss related work. Section 11 summarizes our main results and gives an outlook on future research.
Detailed proofs of all results are given in Appendices A to D.

2 Motivating Example and Key Ideas

In this section, we illustrate the key ideas behind the tight combination of disjunctive logic programs with
description logics that we elaborate and explore in this paper. We first provide an example of this combina-
tion as follows.

Example 2.1 Suppose that we use a disjunctive logic program to describe the paper assignment in a review-
ing process. The following collection of rules may encode that (1) candidate reviewers for a paper are all
those referees who are experts in an area of the paper and who are not in a conflict situation on this paper,
(2) an expert in an area is someone who has written at least three papers in that area, (3) someone is in a
conflict situation on a paper if she is a co-author of an author of the paper, (4) any two authors of the same
paper are co-authors, (5) a referee is either a senior or junior scientist, (6) the paper p0 is in the Semantic
Web (SW) area, and John is a referee, who has written the three papers p1, p2, and p3, which are all in the

INFSYS RR 1843-06-08 3

Semantic Web area, and (7) the paper p4 lies either in the Semantic Web or in the database (DB) area:

(1) cand(X,Q) ← paperArea(Q,A), referee(X),
expert(X,A), not conflict(X,Q);

(2) expert(X,A) ← isAuthorOf(X,Q1),
isAuthorOf(X,Q2), isAuthorOf(X,Q3),
inArea(Q1, A), inArea(Q2, A), inArea(Q3, A),
Q1 6=Q2, Q2 6=Q3, Q1 6=Q3;

(3) conflict(X,Q) ← co-author(X,Y),
isAuthorOf(Y,Q);

(4) co-author(X,Y) ← isAuthorOf(X,Q),
isAuthorOf(Y,Q);

(5) senior(X) ∨ junior(X) ← referee(X);

(6) referee(john); isAuthorOf(john, p1);
isAuthorOf(john, p2); isAuthorOf(john, p3);
paperArea(p0,“SW ”); inArea(p1,“SW ”);
inArea(p2,“SW ”); inArea(p3,“SW ”);

(7) inArea(p4,“SW ”) ∨ inArea(p4,“DB”) .

The predicates in the above rules, however, are naturally related via additional ontological knowledge
about scientists and their publications. For example, the following description logic axioms may encode that
(8) conference and journal papers are articles, (9) conference papers are not journal papers, (10) isAuthorOf
relates scientists and articles, (11) isAuthorOf is the inverse of hasAuthor, i.e., (scientist, article) belongs to
isAuthorOf iff (article, scientist) belongs to hasAuthor, (12) hasFirstAuthor is a functional binary relation-
ship, and (13) the individual i1 is a scientist whose name is mary and who is the author of article i2, which
is entitled “Ontology Languages” and has been published in the year 2008:

(8) ConferencePapervArticle; JournalPapervArticle;

(9) ConferencePaperv¬JournalPaper;
(10) ∃isAuthorOfv Scientist; ∃isAuthorOf−vArticle;

(11) isAuthorOf−v hasAuthor; hasAuthor−v isAuthorOf;
(12) (funct hasFirstAuthor);
(13) Scientist(i1); name(i1,mary); isAuthorOf(i1, i2);

Article(i2); title(i2, “Ontology Languages”);
yearOfPublication(i2, 2008) .

In this paper, we elaborate two different semantics for such (tight) combinations of disjunctive logic
programs with description logics, namely, an answer set semantics for the general case, and a well-founded
semantics for the combination of normal logic programs with certain description logics. Intuitively, descrip-
tion logic knowledge bases are used to further constrain the models of the disjunctive (resp., normal) logic
program under the answer set (resp., well-founded) semantics. This combination will have no syntactic
restrictions (such as syntactic safety conditions and/or syntactic partitionings of the vocabulary) on the dis-
junctive (resp., normal) logic programs, but in the same time very nice computational properties (including
decidability and special-case tractability).

The above tight combination of disjunctive logic programs P with description logic knowledge bases L
is much different from the loose integration introduced in [25, 21], where rule bodies in P may contain

4 INFSYS RR 1843-06-08

queries to L as interfaces between P and L (allowing for a flow of information from L to P , and from P
to L via query arguments), and where it is not possible to use concepts and roles from L as predicates
in P , like here. The following example illustrates this (syntactic) difference and shows the advantages and
flexibility of the tight integration (compared to the loose on in [25, 21]).

Example 2.2 Consider again the disjunctive program P and the description logic knowledge base L of
Example 2.1. Observe that the predicate symbol isAuthorOf in P is also a role in L, and it freely occurs in
both rule bodies and rule heads in P (which is both not possible in [25, 21]). Furthermore, we can easily
use L to express additional constraints on the predicate symbols in P . For example, we may use the two
concept inclusion axioms ∃conflictv Scientist and ∃conflict−1vArticle in L to express that the relationship
for conflict situations in P relates only scientists and articles.

In addition, using queries to L in rule bodies in P in [25, 21] has also a different semantics than us-
ing concepts and roles from L as predicates in rule bodies and heads in P . This (semantic) difference is
illustrated by the following example.

Example 2.3 The combination of

L = {person(a), personvmale t female} and
P = {referee(X)←male(X), referee(X)← female(X)}

here implies the ground atom referee(a), while the one of

L′ = {person(a), personvmale t female} and
P ′ = {referee(X)←DL[male](X), referee(X)←DL[female](X)}

as in [25, 21] does not, since the two queries DL[male](X) and DL[female](X) are evaluated independently
from each other, and neither male(a) nor female(a) follows from L′. To obtain the conclusion referee(a)
in [25, 21], one has to directly use the rule referee(X)←DL[male t female](X).

3 Disjunctive Programs

In this section, we recall disjunctive and normal programs (with default negation) under the answer set
semantics and under the well-founded semantics, respectively; see especially [41] and [62], respectively, for
further details and background.

3.1 Syntax

Let Φ be a first-order vocabulary with nonempty finite sets of constant and predicate symbols, but no function
symbols. Let X be a set of variables. A term is either a variable from X or a constant symbol from Φ. An
atom is of the form p(t1, . . . , tn), where p is a predicate symbol of arity n> 0 from Φ, and t1, . . . , tn are
terms. A literal l is an atom p or a negated atom not p. A disjunctive rule (or simply rule) r is of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βn+m , (1)

where α1, . . . , αk, β1, . . . , βn+m are atoms and k,m, n > 0. We call α1 ∨ · · · ∨ αk the head of r, while
the conjunction β1, . . . , βn,not βn+1, . . . ,not βn+m is its body. We define H(r) = {α1, . . . , αk} and

INFSYS RR 1843-06-08 5

B(r) = B+(r) ∪ B−(r), where B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βn+m}. A rule of the
form (1) with m = n = 0 is also called a fact. A disjunctive program P is a finite set of disjunctive rules of
the form (1). We say P is positive iff m= 0 for all disjunctive rules (1) in P . We say P is a normal program
iff k6 1 for all disjunctive rules (1) in P .

Example 3.1 An online store (such as amazon.com) may use the subsequent normal program P to express
that (1) pc1 and pc2 are personal computers, (2) pc1 and obj3 are brand new, (3) dell is the vendor of pc1

and pc2, (4) a customer avoids all cameras not on offer, (5) all electronic products that are not brand new are
on offer, (6) each vendor of a product is a provider, (7) each entity providing a product is a provider, (8) all
related products are similar, and (9) the binary similarity relation on products is transitively closed:

(1) pc(pc1); pc(pc2);
(2) brand new(pc1); brand new(obj3);
(3) vendor(dell, pc1); vendor(dell, pc2);
(4) avoid(X)← camera(X),not offer(X);
(5) offer(X)← electronics(X),not brand new(X);
(6) provider(V)← vendor(V,X), product(X);
(7) provider(V)← provides(V,X), product(X);
(8) similar(X,Y)← related(X,Y);
(9) similar(X,Z)← similar(X,Y), similar(Y,Z).

In a disjunctive program P ′, we may additionally express that (10) obj3 is either a personal computer or
a laptop, and that (11) every screen is either a TFT, a CRT, or a touchscreen:

(10) pc(obj3) ∨ laptop(obj3);
(11) tft(X) ∨ crt(X) ∨ touchscreen(X)← screen(X).

3.2 Answer Set Semantics

The answer set semantics of disjunctive programs is defined in terms of finite sets of ground atoms, which
represent Herbrand interpretations. Positive disjunctive programs are associated with all their minimal sat-
isfying sets of ground atoms, while the semantics of general disjunctive programs is defined by reduction to
the minimal model semantics of positive disjunctive programs via the Gelfond-Lifschitz reduct [29].

The Herbrand universe of a disjunctive program P , denoted HU P , is the set of all constant symbols
appearing in P . If there is no such constant symbol, then HU P = {c}, where c is an arbitrary constant
symbol from Φ. As usual, terms, atoms, literals, rules, programs, etc. are ground iff they do not contain any
variables. The Herbrand base of a disjunctive program P , denoted HBP , is the set of all ground atoms that
can be constructed from the predicate symbols appearing in P and the constant symbols in HU P . Hence, in
the standard answer set semantics, the Herbrand base is constructed from all constant and predicate symbols
in a given disjunctive program, and thus the Herbrand base is finite. A ground instance of a rule r∈P is
obtained from r by replacing every variable that occurs in r by a constant symbol from HU P . We denote
by ground(P) the set of all ground instances of rules in P .

An interpretation I relative to a disjunctive program P is a subset of HBP . Informally, every such I
represents the Herbrand interpretation in which all a∈ I (resp., a∈HBP − I) are true (resp., false). An
interpretation I is a model of a ground atom a∈HBP , or I satisfies a, denoted I |= a, iff a∈ I . We say

6 INFSYS RR 1843-06-08

I is a model of a ground rule r, denoted I |= r, iff I |=α for some α∈H(r) whenever I |=B(r), that is,
I |=β for all β ∈B+(r) and I 6|=β for all β ∈B−(r). We say I is a model of a disjunctive program P ,
denoted I |=P , iff I |= r for every r∈ ground(P).

An answer set of a positive disjunctive program P is a minimal model of P relative to set inclusion. The
Gelfond-Lifschitz reduct of a disjunctive program P relative to I ⊆HBP , denoted P I , is the ground positive
disjunctive program obtained from ground(P) by

(i) deleting every rule r such that B−(r)∩ I 6= ∅, and

(ii) deleting the negative body from each remaining rule.

An answer set of a disjunctive program P is an interpretation I ⊆HBP such that I is an answer set of P I .
A disjunctive program P is consistent iff P has an answer set. Hence, under the answer set semantics,
every disjunctive program P is interpreted as its grounding ground(P). Note that the answer sets of any
disjunctive program P are also minimal models of P . An equivalent definition of the answer set semantics
is based on the so-called FLP-reduct [27]: The FLP-reduct of a disjunctive program P relative to I ⊆HBP ,
denoted P I , is the set of all r∈ ground(P) such that I |=B(r). An interpretation I ⊆HBP is an answer
set of P iff I is a minimal model of P I .

We finally recall the notions of cautious (resp., brave) reasoning from disjunctive programs under the
answer set semantics. A ground atom a∈HBP is a cautious (resp., brave) consequence of a disjunctive
program P under the answer set semantics iff every (resp., some) answer set of P satisfies a.

Example 3.2 Let the disjunctive program P ′′ be given by the disjunctive program P ′ of Example 3.1 and
the facts camera(cam), electronics(cam), and brand new(cam). Then, P ′′ has two different answer sets.
They contain the facts in lines (1) to (3) of Example 3.1, the above ones, avoid(cam), and either pc(obj3) or
laptop(obj3). Hence, all the former but the last two facts are cautious consequences of P ′′, while pc(obj3)
and laptop(obj3) are brave consequences of P ′′.

Observe that for positive disjunctive programs P , since the set of all answer sets of P is given by the
set of all minimal models of P , it holds that a∈HBP is a cautious consequence of P under the answer set
semantics iff a is a logical consequence of the propositional positive disjunctive program ground(P). Note
that, more generally, this result holds also when a is a ground formula constructed from HBΦ using the
Boolean operators ∧ and ∨. That is, the closed-world property (that is, the derivation of negative facts from
the absence of derivations of positive facts) of the above notion of cautious reasoning under the answer set
semantics is actually limited to the occurrences of default negations in rule bodies.

3.3 Well-Founded Semantics

Besides the answer set semantics, the well-founded semantics [62] is the most widely used semantics for
nonmonotonic logic programs, and it is especially under a data-oriented perspective of great importance
for the Web. As nice features, the well-founded semantics is defined for all normal programs (unlike the
answer set semantics), has a polynomial data tractability (while the answer set semantics is intractable),
approximates the answer set semantics (in the sense that the well-founded semantics is a subset of every
answer set), and coincides with the canonical model of stratified programs. The well-founded semantics
of normal programs P has many different equivalent definitions [62, 6]. We recall here the one based on
unfounded sets, via the operators UP , TP , and WP .

We first give some preliminary definitions. For literals l= a (resp., l=¬a), we use ¬.l to denote ¬a
(resp., a), and for sets of literals S, we define ¬.S = {¬.l | l∈S} and S+ = {a∈S | a is an atom}. We

INFSYS RR 1843-06-08 7

denote by LitP =HBP ∪¬.HBP the set of all ground literals with predicate and constant symbols from P .
A set of ground literals S⊆LitP is consistent iff S ∩¬.S= ∅. A (three-valued) interpretation relative to P
is any consistent set of ground literals I ⊆LitP .

We next define the notion of an unfounded set. A set U ⊆ HBP is an unfounded set of P relative
to I ⊆LitP iff for every a∈U and every r∈ ground(P) with H(r) = a, either

(i) ¬b∈ I ∪¬.U for some atom b∈B+(r), or

(ii) b∈ I for some atom b∈B−(r).

There exists the greatest unfounded set of P relative to I , denoted UP (I). Intuitively, if I is compatible with
P , then all atoms in UP (I) can be safely switched to false and the resulting interpretation is still compatible
with P . The greatest unfounded set of a partial interpretation I intuitively collects all those atoms that
cannot become true when extending I with further information. An atom b is unfounded iff there is no rule
with b in its head and with a body that can be made true. For example, an atom not appearing in any head is
clearly unfounded. Observe that the falsity of rule bodies can be testified by unfounded atoms belonging to
the same unfounded set, giving a notion of “self-supportedness”.

We are now ready to define the two operators TP and WP on consistent I ⊆LitP as follows:

• TP (I) = {H(r) | r∈ ground(P), B+(r)∪¬.B−(r)⊆ I};
• WP (I) =TP (I)∪¬.UP (I).

The operator WP is monotonic, and thus has a least fixpoint, denoted lfp(WP), which is the well-founded
semantics of P , denoted WFS (P). A ground atom a∈HBP is well-founded (resp., unfounded) relative
to P , if a (resp., ¬a) is in lfp(WP). Intuitively, starting with I = ∅, rules are applied to obtain new positive
and negated facts (via TP (I) and ¬.UP (I), respectively). This process is repeated until no longer possible.
A literal `∈HBP ∪¬.HBP is a consequence of a normal program P under the well-founded semantics
iff `∈WFS (P).

Example 3.3 Let the normal program P ′′′ be given by the normal program P of Example 3.1 and the facts
camera(cam), electronics(cam), and brand new(cam). Then, WFS (P ′′′) contains all the facts in lines (1)
to (3) of Example 3.1, the above ones, avoid(cam), and the negations¬a of all other atoms a∈HBP . Hence,
all the above literals are consequences of P ′′′ under the well-founded semantics.

4 Description Logics

In this section, we recall the expressive description logics SHIF(D) and SHOIN (D), which stand behind
the web ontology languages OWL Lite and OWL DL [33], respectively. Furthermore, we recall the tractable
description logic DL-LiteA [55], which adds datatypes to a restricted combination of the tractable description
logics DL-LiteF and DL-LiteR. All these description logics belong to the DL-Lite family [14], which are
a class of restricted description logics for which the main reasoning tasks are possible in polynomial time
in general and some of them even in LOGSPACE in the data complexity. The DL-Lite description logics
are fragments of OWL and the most common tractable ontology languages in the Semantic Web context.
They are especially directed towards data-intensive applications.

Intuitively, description logics model a domain of interest in terms of concepts and roles, which represent
classes of individuals and binary relations between classes of individuals, respectively. A description logic
knowledge base encodes especially subset relationships between concepts, subset relationships between
roles, the membership of individuals to concepts, and the membership of pairs of individuals to roles.

8 INFSYS RR 1843-06-08

4.1 DLs Behind OWL Lite and OWL DL

We first recall the expressive description logics SHIF(D) and SHOIN (D) underlying the web ontology
languages OWL Lite and OWL DL [33], respectively.

Syntax. We first describe the syntax of SHOIN (D). We assume a set of elementary datatypes and a
set of data values V . A datatype is either an elementary datatype or a set of data values (called datatype
oneOf). A datatype theory D = (∆D, ·D) consists of a datatype domain ∆D and a mapping ·D that assigns
to each elementary datatype a subset of ∆D and to each data value an element of ∆D. The mapping ·D is
extended to all datatypes by {v1, . . .}D = {vD1 , . . .}. Let A, RA, RD, and I be pairwise disjoint (nonempty)
denumerable sets of atomic concepts, abstract roles, datatype roles, and individuals, respectively. We denote
by R−A the set of inverses R− of all R∈RA.

A role is an element of RA ∪R−A ∪RD. Concepts are inductively defined as follows. Every φ∈A is a
concept, and if o1, . . . , on ∈ I, then {o1, . . . , on} is a concept (called oneOf). If φ, φ1, and φ2 are concepts
and if R∈RA ∪R−A, then also (φ1 u φ2), (φ1 t φ2), and ¬φ are concepts (called conjunction, disjunction,
and negation, respectively), as well as ∃R.φ, ∀R.φ, >nR, and 6nR (called exists, value, atleast, and
atmost restriction, respectively) for an integer n> 0. If D is a datatype and U ∈RD, then ∃U.D, ∀U.D,
>nU , and 6nU are concepts (called datatype exists, value, atleast, and atmost restriction, respectively) for
an integer n> 0. We write > and ⊥ to abbreviate the concepts φ t ¬φ and φ u ¬φ, respectively, and we
eliminate parentheses as usual.

An axiom has one of the following forms:

(1) φvψ (called concept inclusion axiom), where φ and ψ are concepts;

(2) RvS (called role inclusion axiom), where either R,S ∈ RA or R,S ∈RD;

(3) Trans(R) (called transitivity axiom), where R∈RA;

(4) φ(a) (called concept membership axiom), where φ is a concept and a∈ I;

(5) R(a, b) (resp., U(a, v)) (called role membership axiom), where R∈RA (resp., U ∈RD) and a, b∈ I
(resp., a∈ I and v is a data value); and

(6) a= b (resp., a 6= b) (equality (resp., inequality) axiom), where a, b∈ I.

A (description logic) knowledge base L is a finite set of axioms. For decidability, number restrictions in L
are restricted to simple abstract roles [36].

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the oneOf constructor
and with the atleast and atmost constructors limited to 0 and 1.

Example 4.1 The subsequent description logic knowledge base L expresses that (1) textbooks are books,
(2) personal computers and laptops are mutually exclusive electronic products, (3) books and electronic
products are mutually exclusive products, (4) objects on offer are products, (5) every product has at least
one related product, (6) only products are related to each other, (7) the relatedness between products is
symmetric, (8) tb ai and tb lp are textbooks, (9) which are related to each other, (10) pc ibm and pc hp are
personal computers, (11) which are related to each other, and (12) ibm and hp are providers for pc ibm and
pc hp, respectively.

INFSYS RR 1843-06-08 9

(1) textbook v book;
(2) pc t laptop v electronics; pc v ¬laptop;
(3) book t electronics v product; bookv¬electronics;
(4) offer v product;
(5) product v > 1 related;
(6) > 1 related t > 1 related− v product;
(7) related v related−; related− v related;
(8) textbook(tb ai); textbook(tb lp);
(9) related(tb ai, tb lp);
(10) pc(pc ibm); pc(pc hp);
(11) related(pc ibm, pc hp);
(12) provides(ibm, pc ibm); provides(hp, pc hp).

Semantics. The semantics of the description logics SHIF(D) and SHOIN (D) is defined in terms
of standard first-order interpretations as usual. An interpretation I = (∆I , ·I) relative to a datatype the-
ory D= (∆D, ·D) consists of a nonempty (abstract) domain ∆I disjoint from ∆D, and a mapping ·I that
assigns to each atomic concept φ∈A a subset of ∆I , to each individual o∈ I an element of ∆I , to each ab-
stract roleR∈RA a subset of ∆I ×∆I , and to each datatype roleU ∈RD a subset of ∆I ×∆D. We extend
·I to all concepts and roles, and we define the satisfaction of an axiom F in an interpretation I = (∆I , ·I),
denoted I |=F , as usual [33]. We say I satisfies the axiom F , or I is a model of F , iff I |=F . We say I
satisfies a knowledge base L, or I is a model of L, denoted I |=L, iff I |=F for all F ∈L. We say L is
satisfiable (resp., unsatisfiable) iff L has a (resp., no) model. An axiom F is a logical consequence of L,
denoted L |= F , iff each model of L satisfies F .

Example 4.2 It is not difficult to verify that the description logic knowledge base L in Example 4.1 is
satisfiable. Furthermore, it is not difficult to see that the concept inclusion axiom textbook v product and
the concept membership axiom electronics(pc ibm) are two logical consequences of L.

4.2 A Tractable DL

We next recall the tractable description logic DL-LiteA.

Syntax. As for the elementary ingredients of DL-LiteA, let D be a finite set of atomic datatypes d, which
are associated with pairwise disjoint sets of data values Vd. Let A, RA, RD, and I be pairwise disjoint
sets of atomic concepts, atomic roles, atomic attributes, and individuals, respectively, and let V denote the
union of all Vd with d∈D.

Roles, concepts, attributes, and datatypes are as follows:

• A basic role Q is either an atomic role P ∈RA or its inverse P−. A (general) role R is either a basic
role Q or the negation of a basic role ¬Q.

• A basic concept B is either an atomic concept A∈A, or an existential restriction on a basic role Q,
denoted ∃Q, or the domain of an atomic attributeU , denoted δ(U). A (general) conceptC is either the
universal concept >C , or a basic concept B, or the negation of a basic concept ¬B, or an existential
restriction on a basic role Q of the form ∃Q.C, where C is a concept.

10 INFSYS RR 1843-06-08

• A (general) attribute V is either an atomic attribute U or the negation of an atomic attribute ¬U .

• A basic datatype E is the range of an atomic attribute U , denoted ρ(U). A (general) datatype F is
either the universal datatype >D or an atomic datatype.

An axiom is of one of the following forms:

(1) BvC (concept inclusion axiom), where B is a basic concept, and C is a concept;

(2) QvR (role inclusion axiom), where Q is a basic role, and R is a role;

(3) U vV (attribute inclusion axiom), where U is an atomic attribute, and V is an attribute;

(4) EvF (datatype inclusion axiom), where E is a basic datatype, and F is a datatype;

(5) (funct Q) (role functionality axiom), where Q is a basic role;

(6) (funct U) (attribute functionality axiom), where U is an atomic attribute;

(7) A(a) (concept membership axiom), where A is an atomic concept and a∈ I,
(8) P (a, b) (role membership axiom), where P is an atomic role and a, b∈ I; and

(9) U(a, v) (attribute membership axiom), where U is an atomic attribute, a∈ I, and v ∈V.

A TBox is a finite set T of inclusion and functionality axioms such that every identifying property in T
is primitive (see [55] for a definition of primitive identifying properties). An ABox A is a finite set of
membership axioms. A (description logic) knowledge base KB = T ∪ A is the union of a TBox T and an
ABox A.

Example 4.3 The description logic knowledge baseL in Example 4.1 actually turns out to be equivalent to a
description logic knowledge base L′ in DL-LiteA, obtained from L by (i) breaking up all concept inclusion
axioms with disjunctions into two concept inclusion axioms and (ii) replacing all number restrictions by
existential restrictions.

Semantics. The semantics of DL-LiteA is defined in a similar way as the semantics of SHIF(D) and
SHOIN (D), except that different values and different individuals also have different interpretations (uni-
que name assumption).

As shown in [55], in particular, deciding the satisfiability of knowledge bases in DL-LiteA and decid-
ing logical consequences of membership axioms from knowledge bases in DL-LiteA can both be done in
polynomial time in general and in LOGSPACE in the size of the ABox in the data complexity.

5 Disjunctive DL-Programs

In this section, we present a novel integration of disjunctive and normal programs under the answer set
semantics and under the well-founded semantics, respectively, with description logics. The basic idea behind
this integration is briefly described as follows. Suppose that we have a disjunctive program P . Under the
answer set semantics, P is equivalent to its grounding ground(P). Suppose now that some of the ground
atoms in ground(P) are additionally related to each other by a description logic knowledge base L. That
is, some of the ground atoms in ground(P) actually represent concept and role memberships relative to L.
Thus, when processing ground(P), we also have to consider L. However, we only want to do it to the extent

INFSYS RR 1843-06-08 11

that we actually need it for processing ground(P). Hence, when taking a Herbrand interpretation I ⊆HBΦ,
we have to ensure that the ground atoms of I represent a valid constellation relative to L.

In other words, the main idea behind the semantics is to interpret P relative to Herbrand interpretations
that also satisfy L, while L is interpreted relative to general interpretations over a first-order domain. Thus,
we modularly combine the standard semantics of logic programs and of description logics as in [25, 21],
which allows for building on the standard techniques and the results of both areas. But our new approach
here allows for a much tighter integration of L and P .

5.1 Syntax

We assume a function-free first-order vocabulary Φ with nonempty finite sets of constant and predicate
symbols, as in Section 3. We use Φc to denote the set of all constant symbols in Φ. We also assume pairwise
disjoint (nonempty) denumerable sets A, RA, RD, I, and V of atomic concepts, abstract roles, datatype
roles, individuals, and values, respectively, as in Section 4. We assume that Φc is a subset of I ∪V. This
assumption guarantees that every ground atom constructed from atomic concepts, abstract roles, datatype
roles, and constants in Φc can be interpreted in the description logic component. We do not assume any other
restriction on the vocabularies, that is, Φ and A (resp., RA ∪RD) may have unary (resp., binary) predicate
symbols in common.

A disjunctive description logic program (or disjunctive dl-program) KB = (L,P) consists of a descrip-
tion logic knowledge base L and a disjunctive program P . It is positive iff P is positive. It is a normal
dl-program iff P is a normal program.

Example 5.1 A disjunctive (resp., normal) dl-program KB1 = (L1, P1) (resp., KB2 = (L2, P2)) is given
by the description logic knowledge base L of Example 4.1 and the disjunctive (resp., normal) program P ′

(resp., P) of Example 3.1.
Another disjunctive dl-program KB3 = (L3, P3) is obtained from KB1 = (L1, P1) by adding to L1 the

concept inclusion axiom > 1 similar t > 1 similar− v product, which expresses that only products are
similar. That is, we can easily use the description logic knowledge base L to express additional constraints
on the predicate symbols in P .

The above dl-programs also show the advantages and flexibility of the tight integration between rules
and ontologies (compared to the loose integration in [25, 21]): Observe that the predicate symbol similar
in P3 is also a role in L3, and it freely occurs in both rule bodies and rule heads in P3 (which is not possible
in [25, 21]).

5.2 Answer Set Semantics

We now define the answer set semantics of disjunctive dl-programs via a generalization of the FLP-reduct
of disjunctive programs (see Section 3).

In the sequel, let KB = (L,P) be a disjunctive dl-program. A ground instance of a rule r∈P is obtained
from r by replacing every variable that occurs in r by a constant symbol from Φc. We denote by ground(P)
the set of all ground instances of rules in P . The Herbrand base relative to Φ, denoted HBΦ, is the set of
all ground atoms constructed with constant and predicate symbols from Φ. Observe that we now define the
Herbrand base relative to Φ and not relative to P . This allows for reasoning about ground atoms from the
description logic component that do not necessarily occur in P . Observe, however, that the extension from
P to Φ is only a notational simplification, since we can always make constant and predicate symbols from
Φ occur in P by “dummy” rules such as constant(c)← and p(c)← p(c), respectively. We denote by DLΦ

12 INFSYS RR 1843-06-08

the set of all ground atoms in HBΦ that are constructed from atomic concepts in A, abstract roles in RA,
concrete roles in RD, and constant symbols in Φc.

An interpretation I is any subset of HBΦ. We say I is a model of a description logic knowledge
base L, denoted I |=L, iff L∪ I ∪{¬a | a∈HBΦ− I} is satisfiable. Note that the former defines the truth
of description logic knowledge bases L in Herbrand interpretations I ⊆HBΦ rather than first-order interpre-
tations I. The following lemma shows that negative concept (resp., role) membership axioms ¬C(a) (resp.,
¬R(b, c)) can be reduced to positive concept membership axioms and concept inclusion axioms.

Lemma 5.1 Let L be a description logic knowledge base, let C(a) be a concept membership axiom, and let
R(b, c) be a role membership axiom. Then, (a) L∪{¬C(a)} is satisfiable iff L∪{B(a), Bv¬C} is satisfi-
able, where B is a fresh atomic concept, and (b) L ∪ {¬R(b, c)} is satisfiable iff L ∪ {B(b), C(c),∃R.C v
¬B} is satisfiable, where B and C are two fresh atomic concepts.

An interpretation I ⊆HBΦ is a model of a disjunctive dl-program KB = (L,P), denoted I |=KB , iff
I |=L and I |=P . We say KB is satisfiable iff it has a model.

Given a disjunctive dl-program KB = (L,P), the FLP-reduct of KB relative to an interpretation I ⊆
HBΦ, denoted KB I , is the disjunctive dl-program (L,P I), where P I is the set of all r∈ ground(P) with
I |=B(r). We define the answer set semantics of disjunctive dl-programs as follows.

Definition 5.1 (answer set semantics) An interpretation I ⊆HBΦ is an answer set of a disjunctive dl-
program KB iff I is a minimal model of KB I . We say KB is consistent (resp., inconsistent) iff it has
an (resp., no) answer set.

Example 5.2 Consider again KB1 = (L1, P1) of Example 5.1. Then, there are two answer sets, which both
contain in particular all facts in P1 and all membership axioms in L1, the concept membership axioms
electronics(pc ibm) and product(pc ibm), the fact electronics(obj3), and one contains pc(obj3), while the
other one contains laptop(obj3).

Cautious (resp., brave) reasoning from disjunctive dl-programs under the answer set semantics is defined
as follows.

Definition 5.2 (cautious / brave consequence) A ground atom a∈HBΦ is a cautious (resp., brave) conse-
quence of a disjunctive dl-program KB under the answer set semantics iff every (resp., some) answer set of
KB satisfies a.

Example 5.3 Consider again KB1 = (L1, P1) of Example 5.1. Then, all facts in P1 and all membership
axioms in L1 are cautious consequences of KB1. The concept membership axioms electronics(pc ibm)
and product(pc ibm) as well as the fact electronics(obj3) are other cautious consequences of KB1, while
pc(obj3) is a brave consequence of KB1.

5.3 Well-Founded Semantics

We next define the well-founded semantics of normal dl-programs, which generalizes the well-founded
semantics of ordinary normal programs via unfounded sets (see Section 3.3). Intuitively, the main ideas
are as follows. Compared to ordinary normal programs, normal dl-programs additionally have a description
logic knowledge base, which may contain disjunctive knowledge and also result into inconsistencies. We
disallow such disjunctive knowledge by restricting the underlying description logic, and we handle such

INFSYS RR 1843-06-08 13

inconsistencies by considering the inconsistency-generating axioms only in a final step of the definition of
the well-founded semantics.

We adopt the notions of tuple-generating dependencies, non-conflicting keys, and negative constraints
from the ontology language Datalog± [8, 9]. We assume an underlying description logic where each knowl-
edge base L is decomposable into two disjoint subsets L+ and L− such that

(i) L = L+ ∪L−,

(ii) L+ can be encoded as a set of tuple-generating dependencies, and

(iii) L− can be encoded as a set of non-conflicting keys and negative constraints.

Note that all description logics of the DL-Lite family [14] have this property [8, 9], which also implies that
the underlying description logic is CWA-satisfiable (that is, for every knowledge base L, the union of L
and all negations of concept and role membership axioms not entailed by L is satisfiable). For example,
in DL-LiteA, concept, role, and attribute inclusion axioms of the form Bv¬B′, Qv¬Q′, and U v¬U ′,
respectively, can be encoded as negative constraints, while role and attribute functionality axioms (functQ)
and (funct U), respectively, can be encoded as non-conflicting keys, and all the other axioms as tuple-gen-
erating dependencies.

We use LitΦ =HBΦ∪¬.HBΦ to denote the set of all ground literals with predicate and constant symbols
from Φ. A set of ground literals S⊆LitΦ is consistent iff S ∩ ¬.S= ∅. A (three-valued) interpretation
relative to Φ is any consistent set of ground literals I ⊆LitΦ. We next define the notion of an unfounded set
for normal dl-programs as follows.

Definition 5.3 (unfounded set) Let KB = (L,P) be a normal dl-program, and let I ⊆LitΦ be consistent.
A set U ⊆ HBΦ is an unfounded set of KB relative to I iff

(∗) for every a∈U ,

(a) for every r∈ ground(P) with H(r) = a, either

(i) ¬b∈ I ∪¬.U for some b∈B+(r), or
(ii) b∈ I for some b ∈ B−(r); and

(b) L+ ∪ S+ 6|= a for every consistent S ⊆ LitΦ with I ∪¬.U ⊆S.

Intuitively, all the atoms of the unfounded set U of KB relative to I can be safely set to false under I .
Here, compared to unfounded sets of ordinary normal programs, the condition (b) is new, which intuitively
says that a will never become true via the description logic knowledge base L+, if we expand I (to S) in
a way such that all unfounded atoms are kept false. In L+ ∪ S+, we only have to consider S+, since the
negated atoms in S (as long as consistent with L+ ∪ S+) do not enlarge the set of positive atoms logically
entailed by L+ ∪ S+.

Example 5.4 Let the normal dl-program KB = (L,P) be given by L = {qv c} and the following rules
in P :

p(a)← c(a); q(a)← p(a); r(a)← not q(a), not s(a) .

Then, S1 = {p(a), q(a), c(a)} is an unfounded set of KB relative to I = ∅, since p(a) and q(a) are unfounded
due to (a.i) and their lack in L+ ∪ S+ in (b), while c(a) is unfounded, since no rule as in (a) defines c(a),
and since the sets L+ ∪ S+ in (b) also do not entail c(a). The set S2 = {s(a)} is trivially an unfounded set
of KB relative to I , since neither P nor L defines s(a). However, S3 = {c(a)} is not an unfounded set of
KB relative to I , since the condition (b) fails for c(a).

14 INFSYS RR 1843-06-08

In the ordinary case, the set of unfounded sets of a normal program relative to I is closed under union.
The following lemma shows that the same holds for normal dl-programs. That is, the set of unfounded sets
of a normal dl-program relative to I is closed under union, which implies that every normal dl-program has
a greatest unfounded set relative to I .

Lemma 5.2 Let KB = (L,P) be a normal dl-program, and let I ⊆LitΦ be consistent. Then, the set of
unfounded sets of KB relative to I is closed under union.

Based on this result, we are now ready to generalize the operators TP , UP , and WP from ordinary
normal programs P to normal dl-programs KB as follows.

Definition 5.4 (TKB , UKB , and WKB) Let KB = (L,P) be a normal dl-program. We define the opera-
tors TKB , UKB , and WKB on all consistent I ⊆ LitΦ as follows:

• a ∈ TKB (I) iff either

(a) a ∈ HBΦ and some r ∈ ground(P) exists such that

(i) H(r) = a,
(ii) b ∈ I for all atoms b ∈ B+(r), and

(iii) ¬b ∈ I for all atoms b ∈ B−(r), or
(b) L+ ∪ I+ |= a;

• UKB (I) is the greatest unfounded set of KB relative to I;

• WKB (I) =TKB (I)∪¬.UKB (I).

Here, compared to the well-founded semantics of ordinary normal programs, the condition (b) L+ ∪
I+ |= a in the definition of TKB (I) is new. Intuitively, in addition to being implied by P under I , positive
ground atoms may also be implied by L+ under I . Note that in (b), as above, we only have to consider I+,
since the negated atoms in I (if consistent with L+ ∪ I+) do not enlarge the set of positive atoms that are
logically entailed by L+ ∪ I+. In the ordinary case, the three operators are all monotonic. The following
lemma shows that this result carries over to normal dl-programs.

Lemma 5.3 Let KB be a normal dl-program. Then, TKB , UKB , and WKB are all monotonic.

Thus, in particular,WKB has a least fixpoint, denoted lfp(WKB). The well-founded semantics of normal
dl-programs can thus be defined as follows.

Definition 5.5 Let KB = (L,P) be a normal dl-program. The well-founded semantics of KB , denoted
WFS (KB), is defined as lfp(WKB), if L∪ lfp(WKB) is satisfiable, and it is undefined, otherwise. We
then say that KB is consistent and inconsistent under the well-founded semantics (or w-consistent and w-
inconsistent), respectively. An atom a∈HBΦ is well-founded (resp., unfounded) relative to KB iff a (resp.,
¬a) belongs to WFS (KB). A literal `∈HBΦ ∪¬.HBΦ is a consequence of a normal dl-program KB
under the well-founded semantics iff `∈WFS (KB).

Example 5.5 Consider KB of Example 5.4. For I0 = ∅, we have TKB (I0) = ∅ and UKB (I0) = {p(a), q(a),
c(a), s(a)}. Hence, WKB (I0) = {¬p(a), ¬q(a), ¬c(a), ¬s(a)} (= I1). In the next iteration, TKB (I1) =
{r(a)} and UKB (I1) = {p(a), q(a), c(a), s(a)}. Thus, WKB (I1) = {¬p(a), ¬q(a), ¬c(a), r(a), ¬s(a)}
(= I2). As I2 is total, and WKB is monotonic, it follows WKB (I2) = I2 and thus lfp(WKB) = I2. Since

INFSYS RR 1843-06-08 15

L∪ I2 is satisfiable, KB is w-consistent, and WFS (KB) = {¬p(a), ¬q(a), ¬c(a), r(a), ¬s(a)}. That is,
r(a) is well-founded and all other atoms are unfounded relative to KB . Note that KB has the unique answer
set I = {r(a)}.

Example 5.6 Consider again KB2 = (L2, P2) of Example 5.1. Then, it is not difficult to verify that L ∪
lfp(WKB2) is satisfiable, and thus KB2 is w-consistent. Furthermore, WFS (KB2) = lfp(WKB2) contains
in particular all facts in P2 and all membership axioms in L2, the concept membership axioms electro-
nics(pc ibm) and product(pc ibm), and the literals provider(ibm), similar(pc ibm, pc hp), and ¬offer(pc1).
Hence, all these membership axioms and literals are consequences of KB2 under the well-founded seman-
tics.

6 Semantic Properties

In this section, we investigate the semantic properties (especially those relevant for the Semantic Web) of
the above disjunctive dl-programs under the answer set semantics and normal dl-programs under the well-
founded semantics.

6.1 Answer Set Semantics

In the ordinary case (see Section 3), every answer set of a disjunctive program P is also a minimal model
of P , and the converse holds when P is positive. Intuitively, the answer set semantics of a disjunctive
program P selects a set of preferred models among all minimal models of P , where the selection depends
on the default negations in P . The following theorem shows that these results carry over to disjunctive
dl-programs.

Theorem 6.1 Let KB = (L,P) be a disjunctive dl-program. Then, (a) every answer set of KB is a minimal
model of KB , and (b) if KB is positive, then the set of all answer sets of KB is given by the set of all minimal
models of KB .

The next theorem shows that positive normal dl-programs over DL-LiteA are either unsatisfiable or
have a least model. Note that this is different from the ordinary case (where positive normal programs
always have a least model), since the description logic knowledge base may make a positive normal dl-
program unsatisfiable. The theorem also shows that positive normal dl-programs over DL-LiteA have either
no answer set or a unique one, which coincides with their least model. Intuitively, the answer set semantics
of such dl-programs coincides with their least model semantics.

Theorem 6.2 Let KB = (L,P) be a positive normal dl-program with L in DL-LiteA. Then, (a) KB is
either unsatisfiable or has a least model, and (b) KB has either no answer set or a unique one, which
coincides with the least model of KB .

An important property of integrations of rules and ontologies is that they are a faithful [50, 51] extension
of both rules and ontologies. The following theorem shows that the answer set semantics of disjunctive
dl-programs faithfully extends the ordinary counterpart for disjunctive programs. That is, the answer set
semantics of a disjunctive dl-program with empty description logic knowledge base coincides with the
ordinary answer set semantics of its disjunctive program.

16 INFSYS RR 1843-06-08

Theorem 6.3 Let KB = (L,P) be a disjunctive dl-program such that L= ∅. Then, the set of all answer sets
of KB coincides with the set of all ordinary answer sets of P .

Towards faithfulness concerning the extension of description logic knowledge bases, the next theo-
rem shows that a ground atom a∈HBΦ is true in all answer sets of a positive disjunctive dl-program
KB = (L,P) iff a is true in all first-order models of L ∪ ground(P). The theorem and the following
corollary hold also when a is a ground formula constructed from HBΦ using ∧ and ∨. Observe that the
theorem and the following corollary do not hold for all first-order formulas a, but we actually also do not
need this, looking from the perspective of answer set programming, since we actually cannot refer to all
general first-order formulas in P .

Theorem 6.4 Let KB = (L,P) be a positive disjunctive dl-program, and let a be a ground atom from HBΦ.
Then, a is true in all answer sets of KB iff a is true in all first-order models of L∪ ground(P).

As an immediate corollary, we thus obtain that the answer set semantics of disjunctive dl-programs
also faithfully extends the first-order semantics of description logic knowledge bases. That is, the answer
set semantics of a disjunctive dl-program with empty disjunctive program coincides with the first-order
semantics of its description logic knowledge base.

Corollary 6.1 Let KB = (L,P) be a disjunctive dl-program with P = ∅, and let a∈HBΦ. Then, a is true
in all answer sets of KB iff a is true in all first-order models of L.

It is often argued that the closed-world assumption is not very desirable in the open environment of the
Semantic Web [54]. The notion of cautious reasoning from disjunctive dl-programs under the answer set
semantics also has some closed-world property. However, as also shown by Theorem 6.4, this closed-world
property is actually limited to the explicit use of default negations in rule bodies, and thus we can actually
control very easily its use in disjunctive dl-programs.

Another aspect that may not be very desirable in the Semantic Web [54] is the unique name assumption
(which says that any two distinct constant symbols in Φc represent two distinct domain objects). It turns
out that we actually do not have to make this assumption, since the description logic knowledge base of a
disjunctive dl-program may very well contain or imply equalities between individuals.

This result is included in the following theorem, which shows an alternative characterization of the
satisfaction of L in I ⊆HBΦ: Rather than being enlarged by a set of axioms of exponential size, L is
enlarged by a set of axioms of polynomial size. This characterization essentially shows that the satisfaction
of L in I corresponds to checking that

(i) the ground atoms in I ∩DLΦ satisfy L, and

(ii) the ground atoms in I ∩ (HBΦ−DLΦ) do not violate any equality axiom that follows from L.

In the theorem, an equivalence relation ∼ on Φc is admissible with an interpretation I ⊆HBΦ iff p(c1, . . . ,
cn)∈ I⇔ p(c′1, . . . , c

′
n)∈ I for all n-ary predicate symbols p, where n> 0, and constant symbols c1, . . . , cn,

c′1, . . . , c
′
n ∈Φc such that ci∼ c′i for all i∈{1, . . . , n}.

Theorem 6.5 LetL be a description logic knowledge base, and I ⊆HBΦ. Then,L∪I ∪{¬b | b∈HBΦ− I}
is satisfiable iff L ∪ (I ∩DLΦ) ∪ {¬b | b∈DLΦ− I} ∪ {c 6= c′ | c 6∼ c′} is satisfiable for an equivalence
relation ∼ on Φc admissible with I .

INFSYS RR 1843-06-08 17

The processing of conjunctive queries is important for the Semantic Web [58]. Observe that (Boolean
unions of) conjunctive queries in our approach can be reduced to atomic queries. A Boolean union of
conjunctive queries Q is of the form ∃x(γ1(x) ∨ · · · ∨ γn(x)), where x is a tuple of variables, n> 1, and
each γi(x) is a conjunction of atoms constructed from predicate and constant symbols in Φ and variables in
x. We call Q a conjunctive query when n= 1. If we assume that x ranges over all constant symbols in Φc

(which is sufficient for our needs, looking from the perspective of answer set programming, since in P we
can refer only through Φc to elements of a first-order domain), then Q can be expressed by adding the rules
q(x)← γi(x) with i∈{1, . . . , n} to P and thereafter computing the set of all entailed ground instances of
q(x) relative to Φc (see also Section 7).

6.2 Well-Founded Semantics

We next explore the semantic properties of the well-founded semantics for normal dl-programs, and their
relationship to the answer set semantics. As a first such property, the well-founded semantics of normal
dl-programs faithfully extends the well-founded semantics of ordinary normal programs. That is, the well-
founded semantics of any normal dl-program with empty description logic knowledge base coincides with
the ordinary well-founded semantics of its normal program.

Theorem 6.6 Let KB = (L,P) be a normal dl-program such that L= ∅. Then, the well-founded semantics
of KB coincides with the well-founded semantics of P .

Furthermore, the well-founded semantics for normal dl-programs KB = (L,P) where L is defined in
DL-LiteA can also be characterized in terms of the least and the greatest fixpoint of a monotonic operator
γ2
KB similar as the well-founded semantics for ordinary normal programs [6]. This characterization can then

be used to derive further properties of the well-founded semantics for normal dl-programs. We first define
the operator γKB as follows.

Definition 6.1 For a normal dl-program KB = (L,P) with L in DL-LiteA, the application of the operator
γKB on I ⊆HBΦ, denoted γKB (I), is the least model of (L+, P I), where L+ is defined in the same way as
in Section 5.3.

The next result shows that the operator γKB is anti-monotonic, like its counterpart for ordinary normal
programs [6].

Lemma 6.1 Let KB = (L,P) be a normal dl-program with L in DL-LiteA. Then, γKB is anti-monotonic.

Hence, the operator γ2
KB (I) = γKB (γKB (I)), for all I ⊆ HBΦ, is monotonic, and thus has a least

and a greatest fixpoint, denoted lfp(γ2
KB) and gfp(γ2

KB), respectively, which characterize the well-founded
semantics of KB as follows.

Theorem 6.7 Let KB = (L,P) be a normal dl-program with L in DL-LiteA. Then, (a) KB is w-consistent
iff L∪(lfp(γ2

KB)∩DLΦ)∪¬.(DLΦ\gfp(γ2
KB)) is satisfiable, and (b) in that case, a∈HBΦ is well-founded

(resp., unfounded) relative to KB iff a∈ lfp(γ2
KB) (resp., a 6∈ gfp(γ2

KB)).

The following theorem shows that for normal dl-programs, consistency under the answer set semantics
implies consistency under the well-founded semantics. The converse, however, does not hold in general,
unless the well-founded semantics is defined and total (that is, two-valued, which means that it contains

18 INFSYS RR 1843-06-08

either a or ¬a for every a∈HBΦ) as, for example, in the positive normal case. This is due to the fact that it
may not always be possible to complete the partial model of the well-founded semantics to a total model.

Theorem 6.8 Let KB = (L,P) be a normal dl-program. If KB is consistent, then KB is w-consistent.

The next theorem shows that the well-founded semantics for normal dl-programs approximates their an-
swer set semantics. That is, every well-founded ground atom is true in all answer sets, and every unfounded
one is false in all answer sets.

Theorem 6.9 Let KB = (L,P) be a consistent normal dl-program with L in DL-LiteA. Then, every answer
set of KB includes all atoms a∈HBΦ that are well-founded relative to KB and no atom a∈HBΦ that is
unfounded relative to KB .

Recall that a ground atom a is a cautious (resp., brave) consequence under the answer set semantics
of a normal dl-program KB iff a is true in every (resp., some) answer set of KB . Hence, as a corollary
of Theorem 6.9, under the answer set semantics, every well-founded and no unfounded ground atom is a
cautious (resp., brave) consequence.

Corollary 6.2 Let KB = (L,P) be a consistent normal dl-program with L in DL-LiteA. Then, under the
answer set semantics, every well-founded atom a∈HBΦ relative to KB is a cautious consequence of KB ,
and no unfounded atom a∈HBΦ relative to KB is a brave consequence of KB .

The following theorem shows that if the well-founded semantics of a normal dl-program is total, then it
specifies the only answer set of such a dl-program.

Theorem 6.10 Let KB = (L,P) be a consistent normal dl-program with L in DL-LiteA. If every a∈HBΦ

is either well-founded or unfounded w.r.t. KB , then the set of all well-founded a∈HBΦ w.r.t. KB is the only
answer set of KB .

Like in the case of ordinary normal programs, the well-founded semantics for satisfiable positive normal
dl-programs is total and coincides with their least model semantics. This result can be elegantly proved
using the characterization of the well-founded semantics given in terms of γ2

KB .

Theorem 6.11 Let KB = (L,P) be a consistent positive normal dl-program with L in DL-LiteA. Then, (a)
WFS (KB) is total, that is, WFS (KB)+ ∪ (¬.WFS (KB))+ = HBΦ, and (b) WFS (KB) ∩ HBΦ is the
least model of KB , which coincides with the unique answer set of KB .

7 Algorithms

In this section, we describe algorithms for deciding whether a disjunctive dl-program has an answer set,
and for deciding brave and cautious consequences of ground atoms from disjunctive dl-programs under the
answer set semantics. Furthermore, we provide algorithms for deciding whether a normal dl-program has a
well-founded semantics, and for deciding entailment of ground literals from normal dl-programs under the
well-founded semantics.

INFSYS RR 1843-06-08 19

Algorithm consistency

Input: vocabulary Φ, disjunctive dl-program KB = (L,P).
Output: Yes, if KB has an answer set; No, otherwise.

1. if there exists I ⊆HBΦ such that I is a minimal
2. model of KB I = (L,P I) then return Yes
3. else return No.

Figure 1: Algorithm consistency.

7.1 Answer Set Semantics

The problem of deciding whether a disjunctive dl-program KB = (L,P) has an answer set can be solved by
a simple guess-and-check algorithm, which guesses a subset I of the finite Herbrand base HBΦ, computes
the FLP-reduct KB I = (L,P I), and then checks that I is in fact a minimal model of KB I (see Fig. 1).

The problem of deciding brave and cautious consequences of ground atoms from disjunctive dl-programs
under the answer set semantics can be reduced to deciding answer set existence (like in the ordinary
case), since a ground atom a∈HBΦ is true in some (resp., every) answer set of a disjunctive dl-program
KB = (L,P) iff (L,P ∪ {← not a}) (resp., (L,P ∪{← a})) has an (resp., no) answer set.

7.2 Well-Founded Semantics

By Theorem 6.7, deciding whether the well-founded semantics exists for a normal dl-program KB over
DL-LiteA and eventually computing it can be done by two finite fixpoint iterations, via γKB , using in turn
finite fixpoint iterations for computing the least models of positive normal dl-programs, via their immediate
consequence operator. Then, entailment of ground literals ` from KB under the well-founded semantics can
be decided by checking whether `∈WFS (KB). By Theorem 6.9, WFS (KB) can also be used to speed up
the guess-and-check algorithm for deciding whether KB has an answer set.

More specifically, for any positive normal dl-program KB = (L,P) with L in DL-LiteA, the least model
of KB , if it exists, coincides with the least fixpoint of the immediate consequence operator TKB , denoted
lfp(TKB), which is defined as follows for every I ⊆HBΦ:

TKB (I) = {H(r) | r∈ ground(P), I |= b for all b∈B(r)} ∪ {a∈DLΦ |L∪ (I ∩DLΦ) |= a} .

In order to compute the well-founded semantics of a normal dl-program KB = (L,P) with L in DL-
LiteA, that is, by Theorem 6.7, WFS (KB) = lfp(γ2

KB)∪¬.(HBΦ \ gfp(γ2
KB)), if it exists, we compute the

least and the greatest fixpoint of γ2
KB as the limits of the two fixpoint iterations

lfp(γ2
KB) = U∞ =

⋃
i≥0 Ui, where U0 = ∅, and Ui+1 = γ2

KB (Ui), for i ≥ 0, and

gfp(γ2
KB) = O∞ =

⋂
i≥0Oi,where O0 = HBΦ, and Oi+1 = γ2

KB (Oi), for i ≥ 0,

respectively, which are both reached within |HBΦ| many steps. Recall that the application of the operator
γKB on I ⊆HBΦ, denoted γKB (I), is the least model of KB I,+ = (L+, P I), where L+ is defined as in
Section 5.3. As argued above, γKB (I) coincides with lfp(TKBI,+), for all I ⊆HBΦ. To compute γKB (I),
for all I ⊆HBΦ, we thus compute the least fixpoint of TKBI,+ as the limit of the fixpoint iteration

lfp(TKBI,+) = S∞ =
⋃

i≥0 Si, where S0 = ∅, and Si+1 = TKBI,+(Si), for i ≥ 0,

20 INFSYS RR 1843-06-08

which is also reached within |HBΦ| many steps.
By Theorem 6.7, it then holds that (a) WFS (KB) exists iff L∪(lfp(γ2

KB)∩DLΦ)∪¬.(DLΦ\gfp(γ2
KB))

is satisfiable, and (b) `∈WFS (KB) iff `∈ lfp(γ2
KB) ∪ ¬.(HBΦ \ gfp(γ2

KB)).

8 Complexity

In this section, we give a precise picture of the complexity of deciding whether a disjunctive dl-program
has an answer set, and of deciding brave and cautious consequences of ground atoms from disjunctive dl-
programs under the answer set semantics. We also give a precise picture of the complexity of deciding
whether a normal dl-program has a well-founded semantics, and of deciding entailment of ground literals
from normal dl-programs under the well-founded semantics.

8.1 Complexity Classes

We assume that the reader has some elementary background in complexity theory (see, e.g., [38, 53]). We
now briefly recall the complexity classes that we encounter in the complexity results below. The class NP
contains all decision problems that can be solved in polynomial time on a nondeterministic Turing machine,
while EXP (resp., NEXP) contains all decision problems solvable in exponential time on a deterministic
(resp., nondeterministic) Turing machine. The class NEXPNP contains all problems that are decidable in
exponential time on a nondeterministic Turing machine with the help of an NP oracle, while co-NEXPNP

is the complementary class of NEXPNP, which has yes- and no-instances interchanged.

8.2 Answer Set Semantics

We now show that the problems of deciding consistency and brave / cautious consequences have the same
complexity in disjunctive dl-programs under the answer set semantics as in ordinary disjunctive programs
under the answer set semantics.

The following theorem shows that deciding the consistency of disjunctive dl-programs is complete for
NEXPNP. The lower bound follows from the NEXPNP-hardness of deciding the consistency of ordinary
disjunctive programs [15]. The upper bound follows from the result that deciding knowledge base satisfia-
bility in SHIF(D) (resp., SHOIN (D)) is complete for EXP (resp., NEXP) [61, 33].

Theorem 8.1 Given Φ and a disjunctive dl-program KB = (L,P) with L in SHIF(D) or SHOIN (D),
deciding whether KB has an answer set is complete for NEXPNP.

The next theorem shows that deciding cautious (resp., brave) consequences of ground atoms from dis-
junctive dl-programs is complete for co-NEXPNP (resp., NEXPNP). This follows from Theorem 8.1, since
consistency checking and cautious (resp., brave) reasoning can be reduced to each other.

Theorem 8.2 Given Φ, a disjunctive dl-program KB = (L,P) with L in SHIF(D) or SHOIN (D), and
a ∈ HBΦ, deciding whether a holds in every (resp., some) answer set of KB is complete for co-NEXPNP

(resp., NEXPNP).

INFSYS RR 1843-06-08 21

8.3 Well-Founded Semantics

We next show that the main computational problems for normal dl-programs under the well-founded seman-
tics have the same complexity as the ones for ordinary normal programs under the well-founded semantics.

The following theorem shows that deciding consistency and entailment of ground literals for normal
dl-programs over DL-LiteA under the well-founded semantics are complete for EXP. Hardness for EXP
follows from the hardness for EXP of deciding, given an ordinary positive program P and a ground atom a,
whether P logically entails a [15]. Membership in EXP follows from the fact that (a) computing the well-
founded semantics of ordinary normal programs can be done in exponential time, and (b) instance checking
and knowledge base satisfiability in DL-LiteA can be done in polynomial time.

Theorem 8.3 (a) Given a vocabulary Φ and a normal dl-program KB = (L,P) with L in DL-LiteA, de-
ciding whether KB is w-consistent is EXP-complete. (b) Given additionally a ground literal `, deciding
whether ` is a consequence of KB under the well-founded semantics is EXP-complete.

9 Data Tractability

We now show that deciding consistency and entailment of ground literals for normal dl-programs under the
well-founded semantics can be done in polynomial time in the data complexity. Furthermore, we delineate
a special case where this can even be done in LOGSPACE in the data complexity.

9.1 Polynomial Case

The following theorem shows that deciding consistency resp. entailment of ground literals for normal dl-
programs over DL-LiteA under the well-founded semantics are complete for P in the data complexity. Recall
that the complexity class P contains all decision problems that can be solved in polynomial time on a de-
terministic Turing machine, and that the data complexity describes the case where all but the facts and the
concept and role membership axioms in dl-programs are fixed. The bounds in the theorem follow from
a similar argumentation as in the general case, except that now, deciding, given an ordinary positive pro-
gram P and a ground atom a, whether P logically entails a is hard for P in the data complexity [15], and
computing the well-founded semantics of ordinary normal programs is in P in the data complexity. This
data tractability result for deciding consistency and entailment of ground literals nicely generalizes the data
tractability result presented in the ESWC-2007 abstract of this paper.

Theorem 9.1 (a) Given a vocabulary Φ and a normal dl-program KB = (L,P) with L in DL-LiteA, de-
ciding whether KB is w-consistent is P-complete in the data complexity. (b) Given additionally a ground
literal `, deciding whether ` is a consequence of KB under the well-founded semantics is P-complete in the
data complexity.

9.2 First-Order Rewritable Case

We now show that deciding consistency and entailment of ground literals for normal dl-programs KB =
(L,P) with L in DL-LiteA under the well-founded semantics are even first-order rewritable, and thus can
be done in LOGSPACE in the data complexity, when P is acyclic. Hence, deciding consistency and en-
tailment of ground literals for such KB under the well-founded semantics can be done very efficiently by
commercial, SQL-expressive relational database systems.

22 INFSYS RR 1843-06-08

We first formalize the notion of first-order rewritability for the consistency and literal entailment prob-
lems in normal dl-programs under the well-founded semantics. The w-consistency problem in (resp., en-
tailment problem of a ground literal ` from w-consistent) normal dl-programs KB = (L,P) is first-order
rewritable iff it can be expressed in terms of a first-order formula φ over the set F of all concept, role, and
attribute membership axioms in L and all facts in P , that is, KB is w-consistent (resp., `∈WFS (KB)) iff
IF |=φ, where IF is the total Herbrand interpretation satisfying exactly F .

We next define the notion of acyclicity for ordinary normal programs and normal dl-programs as follows.
Given a normal program P , we denote by PP the set of all predicate symbols in P . We say P is acyclic
iff a mapping κ : PP → {0, 1, . . . , n} exists such that for every r∈P , the predicate symbol p of H(r), and
every predicate symbol q of some b∈B(r), it holds that κ(p)>κ(q). A normal dl-program KB = (L,P) is
acyclic iff

(i) P is acyclic, and

(ii) L can be partitioned into description logic knowledge bases LI
1, . . . , L

I
m, L

O in DL-LiteA over pair-
wise disjoint sets of atomic concepts, atomic roles, and attributes such that the atomic concepts, atomic
roles, and attributes of LI

1, . . . , L
I
m only occur in bodies of rules in P and the ones of LO only occur

in heads of rules in P .

Intuitively, acyclic normal dl-programs KB = (L,P) allow for reading out instances of concepts, roles, and
attributes from several input ontologies LI

1, . . . , L
I
m, elaborating them in an acyclic normal program P , and

then merging the result into an output ontology LO.
The following theorem shows that the two problems of deciding consistency and of deciding entailment

of ground literals for acyclic normal dl-programs under the well-founded semantics are both first-order
rewritable (and thus can be done in LOGSPACE in the data complexity).

Theorem 9.2 (a) Given an alphabet Φ and an acyclic normal dl-program KB = (L,P) with L in DL-
LiteA, deciding whether KB is w-consistent is first-order rewritable. (b) Given additionally a ground literal
`, deciding whether KB entails ` under the well-founded semantics is first-order rewritable.

10 Related Work

There is a large body of related works on combining rules and ontologies, which can essentially be divided
into the following three lines of research: (a) loose integration of rules and ontologies, (b) tight integration of
rules and ontologies, and (c) reductions from description logics to logic programming formalisms. Further
related works deal with such combinations under the well-founded semantics and with the more general use
of the well-founded semantics in the context of the Web. In this section, we discuss only the works that are
most closely related to the framework of this paper.

Representatives of the loose integration of rules and ontologies are in particular the dl-programs in
[25, 21], their extension to HEX-programs [23, 24], to probabilistic dl-programs [45, 46, 47], and to fuzzy
dl-programs [43, 44]. The combination of defeasible reasoning with description logics in [3], the calls to
description logic reasoners in TRIPLE [59], and the hybrid MKNF knowledge bases in [50, 51] are also
close in spirit. More concretely, compared to the present paper, the dl-programs KB = (L,P) in [25, 21]
also consist of a description logic knowledge base L and a normal program P . However, P may also contain
classical negations, and rather than using concepts and roles from L as predicates in P , rule bodies in P
may only contain queries to L, which may also contain facts as additional input to L. Like in this paper, P is

INFSYS RR 1843-06-08 23

interpreted relative to Herbrand interpretations under the answer set semantics, whileL is interpreted relative
to first-order interpretations under the classical model-theoretic semantics. However, differently from the
concepts and roles in P here, the queries in P in [25, 21] are evaluated independently from each other. HEX-
programs [23, 24] extend the approach to dl-programs in [25, 21] by multiple sources of external knowledge,
with possibly different semantics, while probabilistic dl-programs [45, 46, 47] and fuzzy dl-programs [43,
44] are extensions by probabilistic uncertainty and fuzzy vagueness, respectively. Closely related to the
dl-programs in [25, 21] are also the hybrid MKNF knowledge bases in [50, 51]. They essentially allow for
querying a description logic knowledge baseL via the operators K and not, which can be used more flexibly
than the queries in [25, 21] (the operators can also occur in rule heads, while the queries are restricted to
rule bodies), but which do not allow for passing facts to L in the form of query arguments. Note that
closely related to the hybrid MKNF knowledge bases in [50, 51] is also the embedding of non-ground logic
programs into autoepistemic logic in [16]. Recall that Example 2.3 shows that our novel dl-programs here
generally do not have the same meaning as the dl-programs in [25, 21] (note that a similar example can be
constructed for the approach in [50, 51]).

Some representatives of tight integrations of rules and ontologies are in particular the works due to
Donini et al. [18], Levy and Rousset [42], Grosof et al. [30], Motik et al. [52], Heymans et al. [31], and
Rosati [56, 58]. SWRL [34] and WRL [2] also belong to this category. Closest in spirit to this paper among
the above works is perhaps Rosati’s approach [56, 58]. Like here, Rosati’s hybrid knowledge bases also
consist of a description logic knowledge base L and a disjunctive program (with default negations) P , where
concepts and roles in L may act as predicate symbols in P . However, differently from this paper, Rosati
partitions the predicates ofL and P into description logic predicates and logic program predicates, where the
former are interpreted under the classical model-theoretic semantics, while the latter are interpreted under
the answer set semantics (and thus in particular default negations of concepts and roles are not allowed
in P). Furthermore, differently from this paper, he also assumes a syntactic restriction on rules (called weak
safety) to gain decidability, and he assumes the standard names assumption, which includes the unique name
assumption.

The works reducing description logics to logic programming are less closely related to the present pa-
per. Some representatives are in particular the ones by Alsaç and Baral [1], Swift [60], Heymans and
Vermeir [32], and Motik et al. [37].

For several of the above combinations of rules and ontologies, a well-founded semantics has been de-
fined; more specifically, the works [26], [40], and [20] define a well-founded semantics for the loosely
integrated dl-programs in [25, 21], for the hybrid MKNF knowledge bases in [50, 51], and for an integration
of rules and ontologies that is close in spirit to Rosati’s approach [56, 58], respectively. As for the more
general use of the well-founded semantics in the context of the Web, several reasoners adopt it for handling
nonmonotonic negation, including F lora-21 (which builds on XSB2) and OntoBroker3 that are based on
F-Logic [39], and IRIS and MINS,4 towards the WSML-Rule language [17]. Here, F-Logic is a formal
model for a deductive object-oriented database system, which combines the structural aspects of object-
oriented and frame-based languages (and which uses in particular rules to define ontological knowledge),
while WSML (Web Service Modeling Language) is a formal language for the specification of different as-
pects of Semantic Web Services, with WSML-Rule being a logic programming extension of Grosof et al.’s
DLP fragment [30]. Hence, both F-Logic and WSML-Rule are less closely related to the tight disjunctive

1http://flora.sourceforge.net/
2http://xsb.sourceforge.net/
3http://www.ontoprise.de/en/home/products/ontobroker/
4http://iris-reasoner.org/, http://tools.sti-innsbruck.at/mins/

24 INFSYS RR 1843-06-08

dl-programs introduced and explored in this paper.

11 Conclusion

We have presented a novel combination of disjunctive logic programs under the answer set semantics with
description logics for the Semantic Web. The combination is based on a well-balanced interface between dis-
junctive logic programs and description logics, which guarantees the decidability of the resulting formalism
without assuming any syntactic restrictions on the resulting language (such as syntactic safety conditions
and/or syntactic partitionings of the vocabulary). We have shown that the new formalism has very nice
semantic properties. In particular, it faithfully extends both disjunctive logic programs under the answer set
semantics and description logics under the standard first-order semantics. We have also provided algorithms
and precise complexity results for the new formalism. Furthermore, we have defined the well-founded se-
mantics for the special case of normal dl-programs, and explored its semantic and computational properties.
In particular, we have shown that the well-founded semantics faithfully extends its classical counterpart, and
that it approximates the answer set semantics. We have also described algorithms for consistency checking
and literal entailment under the well-founded semantics, and we have analyzed the data and general com-
plexity of these two central computational problems. As a crucial property, normal dl-programs under the
well-founded semantics allow for tractable consistency checking and for tractable literal entailment in the
data complexity, and they have even a first-order rewritable (and thus LOGSPACE data complexity) special
case, which is especially interesting for representing (deterministic) ontology mappings.

Note that the results of this paper are not restricted to the expressive description logics SHIF(D)
and SHOIN (D) and to the tractable description logic DL-LiteA as underlying ontology languages. In
particular, the results for the well-founded semantics also hold when any other tractable description logic
from the DL-Lite family [14] is used instead.

Conceptually, the introduced tightly integrated disjunctive dl-programs are a quite natural combination
of ordinary disjunctive programs and description logic knowledge bases under their standard semantics,
without imposing syntactic restrictions, and with a clear interface via common predicates. Other approaches
to such combinations often have syntactic restrictions and/or semantic drawbacks. For these conceptual rea-
sons, we can expect the new disjunctive dl-programs to be quite usable for target end users. Furthermore, we
can expect them to have nice features concerning composition, integration of knowledge, and discovery and
verification issues. Like the standard toolsets, algorithms, and complexity results of disjunctive programs,
we can expect these features to similarly carry over to disjunctive dl-programs from their ordinary counter-
parts. For example, in a companion paper [13], it has been shown that the new disjunctive dl-programs and
a probabilistic generalization thereof can nicely be used to represent and reason with exact and uncertain
ontology mappings.

The presented mechanism of integrating rules and ontologies is of general importance, since it can ac-
tually also be used for the decidable integration of other reasoning techniques (such as reasoning about
defaults, probabilistic uncertainty, and fuzzy vagueness) with description logics, since it applies to all rea-
soning techniques that are based on interpretations over finite Herbrand bases (or also finite sets of proposi-
tional symbols). It thus paves the way for decidable reasoning formalisms on top of description logics for
the Semantic Web. The collections of companion papers [48, 49] and [10, 13, 12] explore the use of this
novel integration in fuzzy and in probabilistic description logic programs, respectively.

We leave for future work the implementation of tightly integrated disjunctive and normal dl-programs.
It would also be interesting to explore whether the first-order rewritability result can be extended to an even

INFSYS RR 1843-06-08 25

larger class of tightly integrated normal dl-programs. Another interesting issue is to extend the presented
approaches to disjunctive and normal dl-programs by classical negation and by functions, if possible.

Appendix A: Proofs for Section 5

Proof of Lemma 5.1. (a) (⇒) Suppose L ∪ {¬C(a)} is satisfiable. Let I be any first-order model of
L ∪ {¬C(a)}. Let I be extended to I ′ by BI

′
= {aI}. Then, I ′ is a model of L′ = L ∪ {B(a), Bv¬C}.

That is, L′ is satisfiable.

(⇐) Suppose L ∪ {B(a), Bv¬C} is satisfiable. Let I be any first-order model of L ∪ {B(a), Bv¬C}.
Hence, the restriction of I to the original vocabulary without B is a model of L ∪ {¬C(a)}. That is,
L ∪ {¬C(a)} is satisfiable.

(b) (⇒) Suppose L ∪ {¬R(b, c)} is satisfiable. Let I be any first-order model of L ∪ {¬R(b, c)}. Let I be
extended to I ′ by BI

′
= {bI} and CI

′
= {cI}. Then, I ′ is a model of L∪{B(b), C(c)}. Since I satisfies

¬R(b, c), also I ′ satisfies ¬R(b, c). Thus, I ′ is a model of L′ = L ∪ {B(b), C(c), ∃R.C v ¬B}. That is,
L′ is satisfiable.

(⇐) Suppose L ∪ {B(b), C(c), ∃R.C v¬B} is satisfiable. Let I be any first-order model of L ∪ {B(b),
C(c),∃R.C v¬B}. Observe that I is a model of¬R(b, c), since otherwise it would not satisfy ∃R.C v¬B.
Hence, the restriction of I to the original vocabulary without B and C is a model of L ∪ {¬R(b, c)}. That
is, L ∪ {¬R(b, c)} is satisfiable. 2

Proof of Lemma 5.2. Suppose U1, U2⊆HBΦ are both unfounded sets of KB relative to I . We now show
that (∗) holds for U =U1 ∪U2. Consider any a∈U1. Then, (a) and (b) hold for U =U1, and thus (a) and
(b) hold for U =U1 ∪U2. Similarly, for any a∈U2, (a) and (b) hold for U =U1 ∪U2. In summary, for any
a∈U1 ∪U2, (a) and (b) hold for U =U1 ∪U2. That is, (∗) holds for U =U1 ∪U2. 2

Proof of Lemma 5.3. It is sufficient to show that TKB and UKB are monotonic. Let J1 ⊆ J2 ⊆ LitΦ be
consistent. We first show that TKB is monotonic. If (a) or (b) in the definition of TKB hold for I = J1, then
they also hold for I = J2. That is, TKB (J1) ⊆ TKB (J2). We next prove that UKB is monotonic. If (∗) holds
for I = J1, then (∗) holds for I = J2. Hence, every unfounded set of KB relative to J1 is also an unfounded
set of KB relative to J2. Thus, UKB (J1) ⊆ UKB (J2). 2

Appendix B: Proofs for Section 6

Proof of Theorem 6.1. (a) Let I ⊆HBΦ be any answer set of KB . That is, I is a minimal model of
KB I = (L,P I). In particular, (i) I |=L and (ii) I |= r for every r∈P I . That is, (i) I |=L and (ii) I |= r for
every r∈ ground(P) with I |=B(r). This is equivalent to (i) I |=L and (ii) I |= r for every r∈ ground(P).
That is, I is a model of KB . We now show that I is also a minimal model of KB . Towards a contradiction,
suppose that there exists a model J ⊂ I of KB . That is, (i) J |=L and (ii) J |= r for every r∈ ground(P).
In particular, (i) J |=L and (ii) J |= r for every r∈ ground(P) with I |=B(r). That is, J is also a model
of KB I . But this contradicts I being a minimal model of KB I . In summary, this shows that I is a minimal
model of KB .

(b) Let I ⊆HBΦ be any minimal model of the positive disjunctive dl-program KB = (L,P). Hence, (i)
I |=L and (ii) I |= r for every r∈ ground(P). In particular, (i) I |=L and (ii) I |= r for every r∈ ground(P)

26 INFSYS RR 1843-06-08

with I |=B(r). That is, I is a model of KB I = (L,P I). We now show that I is also a minimal model of
KB I . Towards a contradiction, suppose that there exists a model J ⊂ I of KB I . That is, (i) J |=L and
(ii) J |= r for every r∈ ground(P) with I |=B(r). Since P is positive and J ⊂ I , it follows that I 6|=B(r)
implies J 6|=B(r). So, (i) J |=L and (ii) J |= r for every r∈ ground(P). That is, J is a model of KB . But
this contradicts I being a minimal model of KB . In summary, I is a minimal model of KB I . That is, I is
an answer set of KB . 2

Proof of Theorem 6.2. (a) Suppose that KB is satisfiable. Let the interpretation I ⊆HBΦ be the set of all
a∈HBΦ logically entailed by L∪ ground(P). Then, I is a least model of KB = (L,P).

(b) Suppose that KB has some answer set. By Theorem 6.1, the set of all answer sets is given by the set of
all minimal models of KB . As L is defined in DL-LiteA, there exists a least model of KB , which is thus the
only answer set of KB . 2

Proof of Theorem 6.3. Observe first that I ⊆HBΦ is a model of KB I = (L,P I) iff (i) I |=L and (ii) I |= r
for every r∈P I . Since L= ∅, this is equivalent to I |= r for every r∈P I . Thus, I ⊆HBΦ is a minimal
model of KB I iff I is a minimal model of P I . That is, I ⊆HBΦ is an answer set of KB iff I is an ordinary
answer set of P . 2

Proof of Theorem 6.4. Observe first that, by Theorem 6.1, since P is positive, the set of all answer sets of
KB is given by the set of all minimal models I ⊆HBΦ of KB . Observe then that a∈HBΦ is true in all
minimal models I ⊆HBΦ of KB iff a is true in all models I ⊆HBΦ of KB . It thus remains to show that a
is true in all models I ⊆HBΦ of KB iff a is true in all first-order models of L∪ ground(P):

(⇒) Suppose that a is true in all models I ⊆HBΦ of KB . Let I be any first-order model of L∪ ground(P).
Let I ⊆HBΦ be defined by b∈ I iff I |= b. Then, I is a model of L? =L∪ I ∪{¬b | b∈HBΦ− I}, and
thus L? is satisfiable. Hence, I is a model of L. Since I is a model of ground(P), also I is a model of
ground(P). In summary, this shows that I is a model of KB . Hence, a is true in I , and thus a is true in I.
Overall, this shows that a is true in all first-order models of L∪ ground(P).

(⇐) Suppose that a is true in all first-order models of L∪ ground(P). Let I ⊆HBΦ be any model of KB .
Then, L? =L ∪ I ∪ {¬b | b∈HBΦ− I} is satisfiable. Let I be a first-order model of L?. Then, I is in
particular a model of L. Furthermore, since I is a model of ground(P), also I is a model of ground(P).
In summary, I is a model of L∪ ground(P). It thus follows that a is true in I, and thus a is also true in I .
Overall, this shows that a is true in all models I ⊆HBΦ of KB . 2

Proof of Theorem 6.5. (⇒) Let I be a first-order model of L? = L ∪ I ∪ {¬b | b ∈ HBΦ− I}. Let the
equivalence relation ∼ on Φc be defined by c∼ d iff cI = dI . Since I is a model of L?, it follows that ∼
is admissible with I . Furthermore, it follows that I is a model of L ∪ (I ∩DLΦ) ∪ {¬b | b∈DLΦ− I} ∪
{c 6= c′ | c 6∼ c′}.

(⇐) Let I be a model of L ∪ (I ∩DLΦ) ∪ {¬b | b∈DLΦ− I} ∪ {c 6= c′ | c 6∼ c′} for some ∼ admissible
with I . Thus, I can be extended to a model I ′ of L ∪ I ∪{¬b | b∈HBΦ− I} by I ′ |= b iff b∈ I , for all
b∈HBΦ−DLΦ. 2

Proof of Theorem 6.6. Immediate by the observation that (i) the notion of unfounded set and the operator
UKB for normal dl-programs KB = (∅, P) coincide with the notion of unfounded set and the operatorUP for
the ordinary normal program P , respectively, and (ii) the operators TKB and WKB for normal dl-programs

INFSYS RR 1843-06-08 27

KB = (∅, P) have the same fixpoints as the operators TP and WP for the ordinary normal program P ,
respectively. In particular, for such normal dl-programs, L∪ lfp(WKB) = lfp(WP) is always satisfiable. 2

Proof of Lemma 6.1. Let I ⊆ J ⊆HBΦ. Then, P J ⊆P I . Hence, every model of (L+, P I) is also a
model of (L+, P J). Thus, the least model of (L+, P J) is a subset of every model of (L+, P I), and thus in
particular also of the least model of (L+, P I). That is, γKB is anti-monotonic. 2

Proof of Theorem 6.7. Let W = lfp(WKB) and W− = HBΦ \ ¬.W . Observe then that W+ ⊆ W−.
We first show that (i) W+ and W− are fixpoints of γ2

KB , which implies that lfp(γ2
KB) ⊆ W+ ⊆ W− ⊆

gfp(γ2
KB). We then show that (ii) I = lfp(γ2

KB)∪¬.(HBΦ \gfp(γ2
KB)) is a fixpoint of WKB , which implies

that W ⊆ I , and thus W+ ⊆ lfp(γ2
KB) and gfp(γ2

KB) ⊆ W−. This then shows that W+ = lfp(γ2
KB) and

W− = gfp(γ2
KB), and consequently (a) KB is w-consistent iff L∪(lfp(γ2

KB)∩DLΦ)∪¬.(DLΦ\gfp(γ2
KB))

is satisfiable, and (b) in that case, a∈HBΦ is well-founded (resp., unfounded) relative KB iff a∈ lfp(γ2
KB)

(resp., a 6∈ gfp(γ2
KB)).

As for (i), it is not difficult to verify that γKB (W+) = W− and γKB (W−) = W+, which then immedi-
ately implies that W+ and W− are fixpoints of γ2

KB .
As for (ii), it is not difficult to verify that γKB (lfp(γ2

KB)) = gfp(γ2
KB) and γKB (gfp(γ2

KB)) = lfp(γ2
KB),

which implies that ¬.UKB (I) = I \ I+ and TKB (I) = I+. That is, WKB (I) = I . 2

Proof of Theorem 6.8. Suppose KB = (L,P) has an answer set. That is, there exists an interpretation
I ⊆HBΦ that is a minimal model of KB I = (L,P I). Here, I is a model of KB I iff L ∪ I ∪ ¬.(HBΦ \ I)
is satisfiable and I is a model of P I . Observe then that I ∪ ¬.(HBΦ \ I) is a fixpoint of WKB , and thus
lfp(WKB) ⊆ I ∪ ¬.(HBΦ \ I). Since L ∪ I ∪ ¬.(HBΦ \ I) is satisfiable, also L ∪ lfp(WKB) is satisfiable.
This shows that the well-founded semantics of KB exists. 2

Proof of Theorem 6.9. For any I ⊆HBΦ, if I is an answer set of KB , then I is a fixpoint of γKB

and thus of γ2
KB . Since lfp(γ2

KB)⊆ I ⊆ gfp(γ2
KB) for every fixpoint I ⊆HBΦ of γ2

KB , it thus follows
that lfp(γ2

KB)⊆ I ⊆ gfp(γ2
KB) for every answer set I of KB . Thus, every such I includes every well-

founded and no unfounded atom a∈HBΦ relative to KB . 2

Proof of Theorem 6.10. If every a∈HBΦ is either well-founded or unfounded w.r.t. KB , then lfp(γ2
KB) =

gfp(γ2
KB). Thus, lfp(γ2

KB) = I = gfp(γ2
KB), for every fixpoint I ⊆ HBΦ of γKB and so of γ2

KB . That is,
lfp(γ2

KB) = I = gfp(γ2
KB) for every answer set I of KB . That is, the set of all well-founded a ∈ HBΦ

w.r.t. KB is the only answer set of KB . 2

Proof of Theorem 6.11. We use the characterization of WFS (KB) in Theorem 6.7. If KB is positive, then
for every I ⊆HBΦ, it holds that P I =P , and thus γKB (I) is the least model of KB . Thus, the only fixpoint
of γ2

KB (and thus also the least and the greatest fixpoint of γ2
KB) is the least model of KB , which in turn is

the unique answer set of KB . 2

Appendix C: Proofs for Section 8

Proof of Theorem 8.1. We first prove membership in NEXPNP. Guessing an interpretation I ⊆HBΦ,
computing the FLP-reduct P I of P relative to I , and verifying that I is a model of P I can be done in nonde-
terministic exponential time. To verify that I is also a model of L, we then guess an equivalence relation ∼
on Φc, which can be done in nondeterministic polynomial time, and we verify that (i)∼ is admissible with I ,

28 INFSYS RR 1843-06-08

which can be done in exponential time, and (ii) L? =L∪ (I ∩DLΦ)∪{¬b | b∈DLΦ− I}∪{c 6= c′ | c 6∼ c′}
is satisfiable, which can be done in deterministic (resp., nondeterministic) exponential time, since deciding
whether a description logic knowledge base in SHIF(D) (resp., SHOIN (D)) is satisfiable is in EXP
(resp., NEXP), and since L? has a polynomial size. In summary, guessing some I ⊆HBΦ and verifying
that it is a model of KB I = (L,P I) is in NEXP. It then remains to verify that I is also a minimal model of
KB I . This can be done with an exponential-size input to an oracle in NP. Overall, this shows that deciding
whether KB has an answer set is in NEXPNP.

Hardness for NEXPNP follows from Theorem 6.3 and the NEXPNP-hardness of deciding whether an
ordinary disjunctive logic program has an answer set [15]. 2

Proof of Theorem 8.2. Membership in co-NEXPNP (resp., NEXPNP) follows from the membership in
NEXPNP of deciding whether a disjunctive dl-program has an answer set (by Theorem 8.1), since a is true
in some (resp., every) answer set of KB iff (L,P ∪{← not a}) (resp., (L,P ∪{← a})) has an (resp., no)
answer set.

Hardness for co-NEXPNP (resp., NEXPNP) follows from the NEXPNP-hardness of deciding whether
a disjunctive dl-program has an answer set (by Theorem 8.1), since KB has an (resp., no) answer set iff p
is true in some (resp., every) answer set of (L,P ∪ {p ←}) (resp., (L,P ∪ {← p})), where p is a fresh
propositional symbol. 2

Proof of Theorem 8.3. Hardness for EXP in both (a) and (b) follows from the EXP-hardness of deciding,
given an ordinary positive program P and a ground atom a, whether P logically entails a [15]. Membership
in EXP in both (a) and (b) follows from the fact that the fixpoint iterations for computing WFS (L,P) can
be done in exponential time, since instance checking and knowledge base satisfiability in DL-LiteA can be
done in polynomial time. 2

Appendix D: Proofs for Section 9

Proof of Theorem 9.1. Hardness for P in both (a) and (b) follows from the P-hardness of deciding, given
an ordinary positive program P and a ground atom a, whether P logically entails a in the data complexity
[15]. Membership in P in both (a) and (b) follows from the fact that the fixpoint iterations for computing
WFS (L,P) can be done in polynomial time in the data complexity, since instance checking and knowledge
base satisfiability in DL-LiteA can be done in polynomial time. 2

Proof of Theorem 9.2. (a) We first show that deciding whether a given ground literal ` belongs to WFS (KB)
is first-order rewritable. Since KB is acyclic, there exists a mapping κ : PP → {0, 1, . . . , n} such that for
every rule r∈P , the predicate symbol p of H(r), and every predicate symbol q of some b∈B(r), it holds
that κ(p)>κ(q). We call κ(p) the rank of p. Since every Lj

i is defined in DL-LiteA, as shown in [55], every
concept, role, and attribute membership a from Lj

i can be expressed in terms of a first-order formula over the
concept, role, and attribute membership axioms in Lj

i . We first show by induction on κ(p)∈{0, 1, . . . , n}
that every predicate p∈PP (relative to (L∪P)\LO) can also be expressed in terms of a first-order formula
over the concept, role, and attribute membership axioms in L \LO and the database facts in P , constructed
from predicate symbols of rank 0.

Basis: Every predicate symbol p of rank 0 that does not occur in L, can trivially be expressed in terms of
a first-order formula over the database facts in P . As stated above, by [55], every predicate symbol p of
rank 0 that occurs in some Lj

i can be expressed in terms of a first-order formula over the concept, role, and

INFSYS RR 1843-06-08 29

attribute membership axioms in Lj
i . In summary, every predicate symbol p of rank 0 can be expressed in

terms of a first-order formula over the concept, role, and attribute membership axioms in L \ LO and the
database facts in P .

Induction: Consider any predicate symbol p∈PP along with the set of all its defining rules in P , that is,
all rules in P with p in their head. W.l.o.g., the heads p(x) of all these rules coincide. Let α(x) denote
the disjunction of the existentially quantified bodies of these rules. By the induction hypothesis, every body
predicate symbol in α(x) can be expressed in terms of a first-order formula over the concept, role, and
attribute membership axioms in L and the database facts in P . Let the first-order formula α′(x) be obtained
from α(x) by replacing all atoms by their first-order formulas. Then, α′(x) expresses p in terms of the
concept, role, and attribute membership axioms in L \ LO and the database facts in P .

We next add the description logic knowledge base LO. As stated above, by [55], every predicate symbol p
that occurs in LO can be expressed in terms of a first-order formula α(x) over the concept, role, and attribute
membership axioms in LO. As shown above, every predicate symbol q ∈PP (relative to (L∪P) \ LO) can
be expressed in terms of a first-order formula φ over the concept, role, and attribute membership axioms in
L \ LO and the database facts in P . Let the first-order formula α′(x) be obtained from α(x) by replacing
every atom q(y) by the formula q(y) ∨ φ(y). Then, α′(x) is a first-order formula for p over the concept,
role, and attribute membership axioms in L and the database facts in P .

(b) As for the w-consistency problem, by [55], the satisfiability of LO and every LI
j can be expressed in

terms of a first-order formula over the concept, role, and attribute membership axioms in LO and every LI
j ,

respectively. The acyclicity of KB implies that we only have to check these satisfiabilities, where all derived
facts are added to LO. The first-order formula for this satisfiability check is constructed as above, and then
disjunctively combined with the disjunction of the first-order formulas for all LI

j . 2

References

[1] G. Alsaç and C. Baral. Reasoning in description logics using declarative logic programming. Technical
report, Department of Computer Science and Engineering, Arizona State University, 2001.

[2] J. Angele, H. Boley, J. de Bruijn, D. Fensel, P. Hitzler, M. Kifer, R. Krummenacher, H. Lausen,
A. Polleres, and R. Studer. Web Rule Language (WRL), Sept. 2005. W3C Member Submission.
Available at http://www.w3.org/Submission/WRL/.

[3] G. Antoniou. Nonmonotonic rule systems on top of ontology layers. In Proc. ISWC-2002, LNCS 2342,
pp. 394–398. Springer, 2002.

[4] G. Antoniou, C. V. Damásio, B. Grosof, I. Horrocks, M. Kifer, J. Maluszynski, and P. F. Patel-
Schneider. Combining rules and ontologies: A survey. Technical Report IST506779/Linköping/I3-
D3/D/PU/a1, Linköping University, February 2005.

[5] J. Bao, E. F. Kendall, D. L. McGuinness, and E. K. Wallace. OWL 2 Web ontology language: Quick
reference guide, 2008. Available at http://www.w3.org/TR/owl2-quick-reference/.

[6] C. Baral and V. S. Subrahmanian. Dualities between alternative semantics for logic programming and
nonmonotonic reasoning. J. Autom. Reasoning, 10(3):399–420, 1993.

[7] T. Berners-Lee. Weaving the Web. Harper, San Francisco, CA, 1999.

[8] A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general Datalog-based framework for tractable query
answering over ontologies. In Proc. PODS-2009, pp. 77–86. ACM Press, 2009.

30 INFSYS RR 1843-06-08

[9] A. Calı̀, G. Gottlob, and T. Lukasiewicz. Datalog±: A unified approach to ontologies and integrity
constraints. In Proc. ICDT-2009, pp. 14–30. ACM Press, 2009.

[10] A. Calı̀ and T. Lukasiewicz. Tightly integrated probabilistic description logic programs for the Seman-
tic Web. In Proc. ICLP-2007, LNCS 4670, pp. 428–429. Springer, 2007.

[11] A. Calı̀ and T. Lukasiewicz. An approach to probabilistic data integration for the Semantic Web. In
Uncertainty Reasoning for the Semantic Web I, LNCS 5327, pp. 52–65. Springer, 2008.

[12] A. Calı̀, T. Lukasiewicz, L. Predoiu, and H. Stuckenschmidt. Tightly integrated probabilistic de-
scription logic programs for representing ontology mappings. In Proc. FoIKS-2008, LNCS 4932, pp.
178–198. Springer, 2008.

[13] A. Calı̀, T. Lukasiewicz, L. Predoiu, and H. Stuckenschmidt. Tightly coupled probabilistic description
logic programs for the Semantic Web. Journal on Data Semantics, 12:95–130, 2009.

[14] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning and
efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning, 39(3):385–
429, 2007.

[15] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic program-
ming. ACM Comput. Surv., 33(3):374–425, 2001.

[16] J. de Bruijn, T. Eiter, A. Polleres, and H. Tompits. Embedding non-ground logic programs into
autoepistemic logic for knowledge base combination. In Proc. IJCAI-2007, pp. 304–309. AAAI
Press/IJCAI, 2007.

[17] J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel. The Web service modeling language WSML: An
overview. In Proc. ESWC-2006, LNCS 4011, pp. 590–604. Springer, 2006.

[18] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog and description
logics. J. Intell. Inf. Syst., 10(3):227–252, 1998.

[19] W. Drabent, T. Eiter, G. Ianni, T. Krennwallner, T. Lukasiewicz, and J. Małuszyński. Hybrid reasoning
with rules and ontologies. In F. Bry and J. Małuszyński, editors, Semantic Techniques for the Web:
The REWERSE Perspective, LNCS 5500, pp. 1–49. Springer, 2009.

[20] W. Drabent and J. Małuszyński. Well-founded semantics for hybrid rules. In Proc. RR-2007, LNCS
4524, pp. 1–15. Springer, 2007.

[21] T. Eiter, G. Ianni, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set program-
ming with description logics for the Semantic Web. Artif. Intell., 172(12/13):1495–1539, 2008.

[22] T. Eiter, G. Ianni, A. Polleres, R. Schindlauer, and H. Tompits. Reasoning with rules and ontolo-
gies. In P. Barahona, F. Bry, E. Franconi, N. Henze, and U. Sattler, editors, Reasoning Web, Second
International Summer School 2006, Tutorial Lectures, LNCS 4126, pp. 93–127. Springer, 2006.

[23] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A uniform integration of higher-order reasoning
and external evaluations in answer-set programming. In Proc. IJCAI-2005, pp. 90–96. Professional
Book Center, 2005.

[24] T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Effective integration of declarative rules with
external evaluations for Semantic Web reasoning. In Proc. ESWC-2006, LNCS 4011, pp. 273–287.
Springer, 2006.

[25] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set programming with
description logics for the Semantic Web. In Proc. KR-2004, pp. 141–151. AAAI Press, 2004.

INFSYS RR 1843-06-08 31

[26] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Well-founded semantics for description logic
programs in the Semantic Web. In Proc. RuleML-2004, LNCS 3323, pp. 81–97. Springer, 2004.

[27] W. Faber, N. Leone, and G. Pfeifer. Recursive aggregates in disjunctive logic programs: Semantics
and complexity. In Proc. JELIA-2004, LNCS 3229, pp. 200–212. Springer, 2004.

[28] D. Fensel, W. Wahlster, H. Lieberman, and J. Hendler, editors. Spinning the Semantic Web: Bringing
the World Wide Web to Its Full Potential. MIT Press, 2002.

[29] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases. New
Generation Comput., 9(3/4):365–386, 1991.

[30] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining logic
programs with description logics. In Proc. WWW-2003, pp. 48–57. ACM Press, 2003.

[31] S. Heymans, D. V. Nieuwenborgh, and D. Vermeir. Nonmonotonic ontological and rule-based rea-
soning with extended conceptual logic programs. In Proc. ESWC-2005, LNCS 3532, pp. 392–407.
Springer, 2005.

[32] S. Heymans and D. Vermeir. Integrating Semantic Web reasoning and answer set programming. In
Proc. ASP-2003, CEUR Workshop Proceedings 78, pp. 194–208. CEUR-WS.org, 2003.

[33] I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description logic satisfiability. In
Proc. ISWC-2003, LNCS 2870, pp. 17–29. Springer, 2003.

[34] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A Semantic
Web rule language combining OWL and RuleML, May 2004. W3C Member Submission. Available at
http://www.w3.org/Submission/SWRL/.

[35] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to OWL: The making
of a web ontology language. J. Web Sem., 1(1):7–26, 2003.

[36] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description logics. In Proc.
LPAR-1999, LNCS 1705, pp. 161–180. Springer, 1999.

[37] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ-description logic to disjunctive Datalog pro-
grams. In Proc. KR-2004, pp. 152–162. AAAI Press, 2004.

[38] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume A, chapter 2, pp. 67–161. MIT Press, Cambridge, MA, 1990.

[39] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based languages. J.
ACM, 42(4):741–843, 1995.

[40] M. Knorr, J. J. Alferes, and P. Hitzler. A coherent well-founded model for hybrid MKNF knowledge
bases. In Proc. ECAI-2008, Frontiers in Artificial Intelligence and Applications 178, pp. 99–103. IOS
Press, 2008.

[41] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello. The DLV system for
knowledge representation and reasoning. ACM Trans. Comput. Log., 7(3):499–562, 2006.

[42] A. Y. Levy and M.-C. Rousset. Combining Horn rules and description logics in CARIN. Artif. Intell.,
104(1–2):165–209, 1998.

[43] T. Lukasiewicz. Fuzzy description logic programs under the answer set semantics for the Semantic
Web. In Proc. RuleML-2006, pp. 89–96. IEEE Computer Society, 2006.

32 INFSYS RR 1843-06-08

[44] T. Lukasiewicz. Fuzzy description logic programs under the answer set semantics for the Semantic
Web. Fundam. Inform., 82(3):289–310, 2008.

[45] T. Lukasiewicz. Probabilistic description logic programs. In Proc. ECSQARU-2005, LNCS 3571, pp.
737–749. Springer, 2005.

[46] T. Lukasiewicz. Probabilistic description logic programs. Int. J. Approx. Reasoning, 45(2):288–307,
2007.

[47] T. Lukasiewicz. Tractable probabilistic description logic programs. In Proc. SUM-2007, LNCS 4772,
pp. 143–156. Springer, 2007.

[48] T. Lukasiewicz and U. Straccia. Tightly integrated fuzzy description logic programs under the answer
set semantics for the Semantic Web. In Proc. RR-2007, LNCS 4524, pp. 289–298. Springer, 2007.

[49] T. Lukasiewicz and U. Straccia. Tightly coupled fuzzy description logic programs under the answer
set semantics for the Semantic Web. Int. J. Semantic Web Inf. Syst., 4(3):68–89, 2008.

[50] B. Motik, I. Horrocks, R. Rosati, and U. Sattler. Can OWL and logic programming live together
happily ever after? In Proc. ISWC-2006, LNCS 4273, pp. 501–514. Springer, 2006.

[51] B. Motik and R. Rosati. A faithful integration of description logics with logic programming. In Proc.
IJCAI-2007, pp. 477–482. AAAI Press/IJCAI, 2007.

[52] B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules. J. Web Sem., 3(1):41–60,
2005.

[53] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[54] P. F. Patel-Schneider and I. Horrocks. Position paper: A comparison of two modelling paradigms in
the Semantic Web. In Proc. WWW-2006, pp. 3–12. ACM Press, 2006.

[55] A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking data to
ontologies. J. Data Semantics, 10:133–173, 2008.

[56] R. Rosati. On the decidability and complexity of integrating ontologies and rules. J. Web Sem.,
3(1):61–73, 2005.

[57] R. Rosati. Integrating ontologies and rules: Semantic and computational issues. In P. Barahona, F. Bry,
E. Franconi, N. Henze, and U. Sattler, editors, Reasoning Web, LNCS 4126, pp. 128–151. Springer,
2006.

[58] R. Rosati. DL+log : Tight integration of description logics and disjunctive Datalog. In Proc. KR-2006,
pp. 68–78. AAAI Press, 2006.

[59] M. Sintek and S. Decker. TRIPLE - A query, inference, and transformation language for the Semantic
Web. In Proc. ISWC-2002, LNCS 2342, pp. 364–378. Springer, 2002.

[60] T. Swift. Deduction in ontologies via ASP. In Proc. LPNMR-2004, LNCS 2923, pp. 275–288. Springer,
2004.

[61] S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD
thesis, RWTH Aachen, Germany, 2001.

[62] A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic programs.
J. ACM, 38(3):620–650, 1991.

[63] W3C. OWL web ontology language overview, 2004. W3C Recommendation (10 Feb. 2004). Available
at http://www.w3.org/TR/2004/REC-owl-features-20040210/.

