
Artificial Intelligence 172 (2008) 1605–1612
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Properties of tree convex constraints ✩,✩✩

Yuanlin Zhang a,∗, Eugene C. Freuder b

a Department of Computer Science, Texas Tech University, Lubbock, USA
b Cork Constraint Computation Centre, University College Cork, Ireland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 August 2007
Received in revised form 7 May 2008
Accepted 15 May 2008
Available online 23 May 2008

Keywords:
Constraint networks
Locally chain convex and strictly union
closed constraints
Local consistency
Global consistency
Tree convex constraints
(Connected) row convex constraints
Scene labeling problem

It is known that a tree convex network is globally consistent if it is path consistent.
However, if a tree convex network is not path consistent, enforcing path consistency on
it may not make it globally consistent. In this paper, we investigate the properties of some
tree convex constraints under intersection and composition. As a result, we identify a sub-
class of tree convex networks that are locally chain convex and strictly union closed. This
class of problems can be made globally consistent by arc and path consistency and thus is
tractable. Interestingly, we also find that some scene labeling problems can be modeled by
tree convex constraints in a natural and meaningful way.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A binary constraint network is tree convex [20] if we can construct a tree for the domain of each variable so that for
any constraint, no matter what value one variable takes, all the values allowed for the other variable form a subtree of the
constructed tree. As an example, the constraint cxy of Fig. 1(a) is tree convex while c′

xy of Fig. 1(c) is not.
Tree convex constraints further the study of the convexity and monotonicity of constraints [13,14]. It has been shown

that a tree convex network is globally consistent if it is path consistent. However, if a tree convex network is not path
consistent, enforcing path consistency on it may not make it globally consistent because some constraints may be modified
during the enforcing procedure and thus may no longer be tree convex.

In this paper, we examine the tree convex constraints and characterize conditions under which the desirable tree convex
property of a network is preserved when arc and path consistency are enforced. We then identify a tractable class of
restricted tree convex constraints. This result generalizes the earlier work on monotone [13] and connected row convex
constraints [5]. The latter is built on the work of [14]. Finally, we show that tree convex constraints help to model some
scene labeling problems in a natural and meaningful way. The related work by Jeavons et al. [7,8] and Kumar [10] will be
discussed in the last section.

✩ A preliminary version of this paper appeared in [Y. Zhang, E.C. Freuder, Tractable tree convex constraints, in: Proceedings of National Conference on
Artificial Intelligence 2004, San Jose, CA, USA, AAAI Press, 2004, pp. 197–202].
✩✩ This material is based in part upon works supported by the Science Foundation Ireland under Grants No. 00/PI.1/C075 and No. 05/IN/1886.

* Corresponding author.
E-mail addresses: yzhang@cs.ttu.edu (Y. Zhang), e.freuder@4c.ucc.ie (E.C. Freuder).
0004-3702/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2008.05.001

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:yzhang@cs.ttu.edu
mailto:e.freuder@4c.ucc.ie
http://dx.doi.org/10.1016/j.artint.2008.05.001


1606 Y. Zhang, E.C. Freuder / Artificial Intelligence 172 (2008) 1605–1612
Fig. 1. (a) Constraint cxy is represented by a matrix. The column {a,b, c} beside the matrix is the domain of x, and the row {a,b, c,d} above the matrix
is the domain of y. (b) A tree constructed for the values of the domain of y. cxy is tree convex with respect to this tree. (c) c′

xy is obtained from cxy by
deleting the value a from the domain of y. c′

xy is not tree convex with respect to any tree.

2. Preliminaries

In this section, we review the basic concepts and notations used in this paper.
Constraint networks. A binary constraint network consists of a set of variables V = {x1, x2, . . . , xn} with a finite domain

Di for each variable xi ∈ V , and a set of binary constraints C over the variables of V . cxy denotes a constraint on variables
x and y which is defined as a relation over Dx and D y . Operations on relations, e.g., intersection (∩), composition (◦), and
inverse, are applicable to constraints.

We assume that, between any ordered variables (x, y), there is only one constraint. cxy and c yx are regarded as two different
constraints. However, we assume the inverse of cxy is equal to c yx .

Image. Given a constraint cxy and a value u ∈ Dx , v ∈ D y is a support of u if u and v satisfy cxy , that is (u, v) ∈ cxy . The
image of u under cxy , denoted by I y(u), is the set of all its supports in D y . The image of a subset of Dx is the union of the
images of its values.

k-consistency. A constraint network is k-consistent if any consistent instantiation of any distinct k − 1 variables can be
consistently extended to any new variable. A network is strongly k-consistent if it is j-consistent for all j � k. A strongly
n-consistent network is called globally consistent. 2- and 3-consistency are usually called arc consistency and path consistency
respectively. Note that, under this definition, we need to add a universal constraint between variables that are not explicitly
constrained by the network.

More materials on these concepts can be found in [6,11,13].
Forests, trees, chains, and sets. In the following we review trees that play a fundamental role in the analysis of tree

convex constraints and introduce some new notations used in this paper. A forest is a graph without any cycles. A tree is a
connected graph without any cycles. A forest can be regarded as a set of trees. In the rest of the paper, we always assume
there is a root for a tree in a forest. The path between any two nodes (or vertices) of a tree is unique and the distance of a node
to the root is defined as the number of edges in the path between them. Given a tree, a subtree is defined as a connected
subgraph of the tree, and its root is the node closest to the root of the tree.

A forest on a set S is a forest whose vertex set is exactly S . We also call a set I a subtree of a forest T if there exists a
subtree of some tree of T such that its vertex set is exactly I . An empty set is a subtree of any forest. A tree (and subtree
respectively) becomes a chain (and subchain respectively) if each of its nodes has at most one child. The last value (or node)
of a subchain is the farthest one away from its root. For example, the graph in Fig. 1(b) is a tree on {a,b, c,d}. {a,b, c} is a
subtree of it, and {a,b} is a subchain whose last value is b.

The intersection of two trees is defined as the graph whose vertices and edges are in both trees. It has the following
property:

Proposition 1. (See [20].) Let T1, T2 be two subtrees of some tree. The intersection of T1 and T2 is also a subtree of the tree. Further-
more, if the intersection is not empty, the root of the intersection is either the root of T1 or that of T2 .

Next, we relax the tree structures, used in some concepts in [20], to the forest structures.

Definition 1. Sets E1, . . . , Ek are tree convex with respect to a forest T on
⋃

i∈1..l Ei if every Ei is a subtree of T .

For example, given the tree in Fig. 1(b), sets {a,b, c}, {a,b,d}, and {a, c,d} are tree convex.

Definition 2. A constraint cxy is tree convex with respect to a forest T on D y if the images of all values of Dx are tree convex
with respect to T .

Example. Consider cxy in Fig. 1(a). The images of a,b, c are {a,b, c}, {a, c,d}, and {a,b,d} respectively. They are tree convex
with respect to the tree in Fig. 1(b) and thus cxy is tree convex with respect to that tree. The readers are invited to verify
that there is no tree to make c′

xy (in Fig. 1(c)) tree convex.



Y. Zhang, E.C. Freuder / Artificial Intelligence 172 (2008) 1605–1612 1607
Fig. 2. The composition of two constraints. In the diagrams of this paper, a value is drawn as a dot or letter, and a variable is drawn as an ellipse. The
values inside an ellipse form the domain of the corresponding variable. The edges between two ellipses specify the constraints between the corresponding
variables.

In [20], a tree convex constraint network is defined as a network where all constraints are tree convex with respect to
a common tree on the union of all domains in the network. In the following definition, only the forests on the individual
domains matter.

Definition 3. A constraint network is tree convex if there exists a forest on the domain of each variable such that every
constraint cxy of the network is tree convex with respect to the forest on D y .

The new definition of tree convexity of constraint networks is equivalent to the old ones [20] if the domains of the
variables are disjoint.1 Given any problem, we can make the domains of its variables disjoint by renaming the values of the
domains of the variables so that they are different from those of the domains of the other variables. The renaming preserves
the solutions of a constraint network.

One advantage of the new definition is that even if the domains of two variables share some values, it explicitly allows
us to construct different forests for them in deciding the tree convexity of the network. More importantly, in this paper, we
need to introduce further restrictions (e.g., consecutiveness) on tree convex constraints. The forest-based definition helps to
simplify the presentation, the proofs, and the understanding of the results.

The tree convex set intersection lemma in [20] still holds for the new definition of tree convex sets, which can be lifted
to the following consistency result.

Proposition 2. A tree convex constraint network is globally consistent if it is path consistent.

The proof follows directly from that of [20] because the new definition does not affect the essential part of that proof.

3. Properties of intersection and composition of tree convex constraints

A network can be made path consistent by removing from the constraints the tuples which can not be consistently
extended to a new variable. It is equivalent to the matrix computation cxy = cxy ∩ (czy ◦ cxz), where ◦ denotes composition.
To make use of Proposition 2, we need to study the impact of the intersection and composition operations on the tree
convexity of constraints.

Intersection preserves tree convexity.

Proposition 3. Assume constraints c1
xy and c2

xy are tree convex with respect to a forest T on the domain D y. Their intersection is also
tree convex.

Proof. Let cxy = c1
xy ∩ c2

xy . For any v ∈ Dx , its images under c1
xy and c2

xy are both subtrees of T . The intersection of the two
images is a subtree of T by Proposition 1. That is, the image of every v ∈ Dx is a subtree of T . Hence, cxy is tree convex. �

However, the composition of tree convex constraints might not preserve the tree convexity. Let us use a more intuitive
way than matrix multiplication to understand the composition. Consider the constraints in Fig. 2. After composing cxy and
c yz , the image of a under the composition cxz is {a,b, c,d} that is exactly the union of the images of b and d in D y under
c yz . To assure that the image of a under cxz is a tree, we can simply require that Iz(b) ∪ Iz(d) is a (sub)tree, that is Iz(b)

and Iz(d) touch each other.

Definition 4. A tree convex constraint cxy with respect to a forest Ty on D y is consecutive with respect to a forest Tx on
Dx if and only if for every two neighboring values a,b on Tx , I y(a) ∪ I y(b) is a subtree of Ty . A constraint network is tree
convex and consecutive iff there exists a forest on each domain such that every constraint cxy is tree convex and consecutive
with respect to the forests on D y and Dx .

1 This observation was pointed out to us by one of the referees.



1608 Y. Zhang, E.C. Freuder / Artificial Intelligence 172 (2008) 1605–1612
Proposition 4. The class of consecutive tree convex constraints is closed under composition.

Proof. Let cxy and c yz be two consecutive tree convex constraints with respect to forests Tx , Ty and Tz on Dx , D y and Dz

respectively, and cxz their composition. Firstly, we show that cxz is tree convex. Consider any v ∈ Dx . Let its image in D y

be I y(v). The image of v under cxz would be
⋃

b∈I y(v) Iz(b) where Iz(b) is the image of b under c yz . Since the union of
the images of any neighboring values in I y(v) is a subtree of Tz , the union of all the images of values of I y(v) is a subtree
of Tz .

Secondly, we show that cxz is consecutive. Let u, v ∈ Dx be neighbors under Tx . Let Iz(u) and Iz(v) be their images
under cxz . Since cxy is consecutive, I y(u) ∪ I y(v) is a subtree of Ty . Hence, the union of the images (with respect to c yz)
of the values of I y(u) ∪ I y(v) is a subtree of Tz because of the consecutiveness of c yz . Therefore, Iz(u) ∪ Iz(v) is a subtree
of Tz . �
4. Tractable tree convex constraint networks

The intersection of two subtrees may be an empty set, which means that, after the intersection of two tree convex
constraints, the image of a value could be empty. Deleting such a value could make a constraint no longer tree convex,
which is shown by the example in Fig. 1(c). It is also interesting to note that a constraint cxy may become tree convex after
a sufficient number of values are removed from D y .

The following special class of tree convex constraints is closed under the operation of deleting values.

Definition 5. A constraint cxy is locally chain convex with respect to a forest on D y if and only if the image of every value in
Dx is a subchain of the forest. A constraint network is locally chain convex iff there exists a forest on each domain such that
every constraint cxy is locally chain convex with respect to the forest on D y .

For example, with respect to the tree for D y in Fig. 1(b), the constraint in Fig. 1(a) is not locally chain convex because
the image of a ∈ Dx is {a,b, c} that is not a subchain of the tree. In fact, there does not exist any tree to make it chain
convex.

Proposition 5. A locally chain convex constraint network (V , D, C) is still locally chain convex after the removal of any value from
any domain.

Proof. Consider any variable y. Assume the forest on D y is Ty and a value v is removed from D y . The removal of v does
not affect the property of any constraint c yx ∈ C . We need to show that every cxy ∈ C is locally chain convex. The deletion
of v could make the images of some values of Dx not connected. By constructing a new forest T ′′

y on D y , those broken
subchains would be connected under T ′′

y . Let the children of v be v1, . . . , vl and the parent of v be pv . Construct a new
forest T ′

y from Ty by removing v and all edges incident on v . If v is the root of some tree of Ty , let T ′′
y be T ′

y . The image
of any value a of Dx either contains v or not. In the latter case, the image is still a chain. In the former case, v is the
shallowest node of the image, a chain, and thus the image is still a chain after the removal of v . If v is not the root of any
tree of Ty , construct T ′′

y from T ′
y by adding an edge between pv and vi for all i (1 � i � l). The image of any value a of Dx

is a subchain of T ′′
y . �

To identify a tractable class of tree convex constraints, a first attempt is to combine the local chain convexity (for deleting
a value) with consecutiveness (for composition). However, the composition may destroy the chain convexity, as shown by
the example in Fig. 3(a).

The image of a value under the composition is the union of several subchains. This union cannot be guaranteed to be a
subchain by the consecutiveness of the constraints. We need a stronger restriction.

Fig. 3. In this diagram, we draw the tree on a domain inside an ellipse. (a) Both cxy and c yz are locally chain convex, but their composition is not because
the image of b ∈ Dx under this composition is {b, c,d} (the darkened shape) that is not a subchain. (b) t y contains the solid lines in D y . tx contains
(pr , r, l, cl). tr contains (r, l).



Y. Zhang, E.C. Freuder / Artificial Intelligence 172 (2008) 1605–1612 1609
Definition 6. A constraint cxy is locally chain convex and strictly union closed with respect to forest Tx on Dx and Ty on D y iff
the image of any subchain of Tx is a subchain of Ty .

Remark. Local chain convexity and strict union closedness imply consecutiveness of a constraint network; but consecutive-
ness of a locally chain convex network might not imply strict union closedness as shown by the example in Fig. 3.

Now we introduce the class of constraint networks that is closed under the removal of a value, and the intersection and
composition of constraints.

Definition 7. A constraint network is locally chain convex and strictly union closed iff there exists a forest on each domain such
that every constraint cxy of the network is locally chain convex and strictly union closed with respect to the forests on Dx

and D y .

Theorem 1. A locally chain convex and strictly union closed constraint network (V , D, C) can be transformed to an equivalent globally
consistent network in polynomial time.

Proof. We show that the given network is locally chain convex after arc and path consistency are enforced on it. In accor-
dance with Proposition 2, the new network is globally consistent. It is known that arc and path consistency enforcing [19]
are of polynomial complexity.

Since arc consistency enforcing only removes values from domains, we show that after the removal of any value v ∈ D y

the network is still locally chain convex and strictly union closed. That is, we show that all constraints cxy, c yx ∈ C are
locally chain convex and strictly union closed.

Case 1. Consider any cxy ∈ C and the forest Tx on Dx and Ty on D y . Similar to the proof of Proposition 5, we can construct
a new forest T ′′

y for y such that for every subchain of Tx , its image is still a subchain under T ′′
y .

Case 2. Consider any constraint c yx ∈ C and the forest Tx on Dx and Ty on D y . If it is still locally chain convex and strictly
union closed, we are done. Otherwise, there exists a subchain t y of Ty such that it contains v and its image is no longer
a connected graph due to the removal of v . See Fig. 3(b). Let tx be the image of t y before v is removed. After the removal
of v , tx is broken into two chains. Let the gap (the removed subchain) in tx be tr . Note tr might not be equal to the image
of v due to the possible overlapping of the image of v and that of its parent and/or child. Let r be the root and l the last
node of tr . Let pv and pr be the parents of v and r respectively, and cv and cl the children of v and l respectively. Consider
any node u ∈ tr . We know that u is supported by v , but not by pv or by cv in t y . Further, since cxy is locally chain convex
and strictly union closed, the image of tx must be a subchain containing (pv , v, cv). It implies that the image of u must be
on or contain the subchain (pv , v, cv). Hence, v is the only support of u. After v is gone, u should also be removed. After
the removal of tr , the image of t y is now connected and thus a subchain.

Next, we show that path consistency enforcing preserves the local chain convexity and strict union closedness. For
any constraint cxz , path consistency is usually done by first composing cxy and c yz , and then setting the new constraint
between x and z to be the intersection of cxz and c yz ◦ cxy .

Firstly, we show that the composition of cxy and c yz is locally chain convex and strictly union closed. Assume cxy and c yz

are locally chain convex and strictly union closed with respect to the forests Tx , Ty and Tz on Dx , D y and Dz respectively.
For any subchain tx ∈ Dx , its image t′

y under cxy is a subchain. Since the image of t′
y with respect to c yz is a subchain of Dz ,

the image of tx under the composition is a subchain of Dz .
Secondly, we show that the intersection, c′′

xz , of cxz and c′
xz (= c yz ◦ cxy) is locally chain convex and strictly union closed.

Fig. 4. (a) cxz ∩ c′
xz . In the intersection, assume b and c are not shared by the images of v under cxz and under c′

xz . The constraints cxz and c′
xz should have

the forms as shown in (b) and (c).



1610 Y. Zhang, E.C. Freuder / Artificial Intelligence 172 (2008) 1605–1612
Consider a subchain, with only one value, of Dx . Its images under cxz and c′
xz are subchains of the forest on Dz . Their

intersection is still a chain and thus v ’s image under c′′
xz is a subchain.

Consider a subchain tx , with more than one values, of Dx . In this paragraph, when we refer to an image, it is under c′′
xz .

If the image of tx is a subchain of Dz , we are done. Otherwise, let t′′
z be the image of tx . t′′

z is not a subchain. Since the
intersection does not form a cycle, t′′

z must not be connected. Starting from the root of tx , we find the first value v ∈ tx

whose image is disjoint from the image of its parent pv . Assume the image of v is below that of pv (the opposite can be
proved similarly). Let a be the last value of pv ’s image. Let d be the root of v ’s image. See Fig. 4(a). Let u be any value
between (but not including) a and d in Dz . We next prove that there is no support for u. Hence, values between a and d
should be removed and the image of tx is a chain after the deletion.

Let pv ’s images under cxz and c′
xz be I(pv) and I ′(pv) respectively. The intersection of I(pv ) and I ′(pv ) is a subchain

of Dz . Since both I(pv ) and I ′(pv ) are chains, a must be the last value of either I(pv ) or I ′(pv ). Assume the former holds.
See Fig. 4(b). It implies pv is not in u’s image I(u) under czx , since u is between a and d. I(u) has to be below pv (not
including it) because I(u) is a chain. Let I(v) and I ′(v) be the images of v under cxz and c′

xz respectively. I(v) should
include at least d and all values between a and d in the forest on Dz because cxz is locally chain convex and strictly union
closed. Since d is the root of I(v) ∩ I ′(v), I ′(v) includes d but does not include values above d (see Fig. 4(c)). Hence, v is
not a support of u (under c′

xz), implying that I ′(u) has to be above v (not including it). Therefore, the image of u under c′′
xz

is empty because it is the intersection of I(u) and I ′(u). In other words, u has no support in the intersection of cxz and c′
xz .

Now we are able to discuss a case ignored in the previous discussion. In the original constraint network, there might
not be any constraint between some variables, say x and y. Without loss of generality, we assume the graph of the original
network is connected. Therefore, there must be a path from x to y. All constraints on the path are locally chain convex and
strictly union closed. By the result in the previous paragraphs, the intersection and composition of locally convex and strictly
union closed constraints are closed. Let c′

xy be the composition of the constraints over the path in order. The constraint c′
xy

is locally chain convex and strictly union closed. Now, before enforcing path consistency (and possibly one more round
of arc consistency), set the constraint between x and y to be c′

xy and repeat this for any two variables without a direct
constraint on them. After this modification, for any two variables there is a constraint on them that is locally chain convex
and strictly union closed. Hence, the constraint network is locally chain convex after enforcing path consistency and thus is
globally consistent. �
5. An application of tree convex networks

In this section, we examine the application of tree convex constraints to a scene labeling problem.
Given a two dimensional line drawing of a physical world of plane-faced objects, the scene labeling problem is to identify

from the drawing the physical objects and their spatial relations with the requirement that the identification agrees with
a human being. Waltz and others reduce this problem into a problem of associating a line with a label such that a set
of concrete constraints on the junctions are satisfied. Given a line drawing, a junction is defined as the maximum set of
lines that intersect at the same point. Note that lines of a drawing correspond to edges of physical objects, and junctions
correspond to vertexes of physical objects. There are only three types of edges that a line can represent: convex, concave,
and boundary edges that are denoted by the labels +, - and > respectively. An edge is the intersection of two surfaces of
an object. It is convex if it can be touched by a ball from the front. For example, when there is a cube in front of a viewer,
its top edge is convex for the viewer. An edge is concave if it can never be touched by a ball. For example, when a viewer
faces a wall and a floor, their intersection edge is concave because there is no way to make a ball touch the edge from the
front. A boundary edge is the intersection of the background and a surface of an object of concern. An excellent exposition
of scene labeling problems can be found in the book [16], and a detailed treatment of this topic can be found in [15].

Scene labeling problems are NP-hard [9]. In the following, we show that some scene labeling instance can be modeled
naturally by tree convex constraints and solved efficiently.

Consider the line drawing in Fig. 5 taken from [14]. This drawing involves three types of junctions: Fork, Arrow, and Ell.
The shape of junction 1 is a Fork, that of the junctions 3 and 5 is an Arrow, and that of junctions 4, 6 and 7 is an Ell. To label
this drawing is to find a solution of a constraint network defined as follows. We introduce a variable xi for each junction i.
A value for a variable is a way to label the lines in the corresponding junction. Under appropriate assumptions, there are
only 5 physically realizable ways to label a Fork, 3 an Arrow, and 6 an Ell, which are listed in Fig. 5. The constraints on the
variables are straightforward, i.e., any two variables should take the same label on their shared line. All the constraints are
listed as matrices in Fig. 6.

A distinctive feature of this model is that the values of a variable have complex structures and there is some natural
relationship among them. Consider the values for a Fork junction in Fig. 5. Values c, d, and e have an edge labeled as -,
and all three edges of b are labeled as -. We can let b be the parent of c,d and e, resulting in the subtree {b, c,d, e} in
Fig. 6(a). Since value a has nothing to do with the rest, it forms a tree itself. Similarly, we have the forests for Arrow values
in Fig. 6(b) and Ell values in Fig. 6(c). Under these forests, the constraints are locally chain convex and strongly union closed.
For example, consider the constraint c21 on variables x2 and x1 in Fig. 6. The domain of x1 is shown in Fig. 6(a), and that of
x2 in Fig. 6(b). It can be verified that the image of every subchain of the forest of x2 is a subchain of the forest of x1. Note
that an empty set is taken as a (trivial) subchain of any tree.



Y. Zhang, E.C. Freuder / Artificial Intelligence 172 (2008) 1605–1612 1611
Fig. 5. The left is a line drawing, and the right is a table of the physically realizable labelings for the junctions. The letter above each labeling of a junction
is its name by which the labeling is referred to in the rest of this section.

Fig. 6. The constraints for labeling the drawing in Fig. 5.

By Theorem 1, this network is globally consistent after arc and path consistency are enforced on it. In this example, we
have identified the forest structures for the domains in an intuitive and meaningful way. A more general lesson is that by
studying the semantics of domain values, we could discover more efficient constraint solving techniques.

6. Related work and conclusion

Jeavons and colleagues have done a series of work to characterize the complexity of constraint languages [3]. A constraint
language is parameterized by a set. Given a set D , a constraint language over D is a set of relations with finite arity. Given
a language L over D , the constraint satisfaction problems associated with L, denoted by CSP(L), are a triple (V , D, C)

where V is an arbitrary set of variables, D (over which L is defined) the domain of each variable of V , and C the set of
constraints over the variables such that each c ∈ C belongs to L. A constraint language L over D is tractable if CSP(L′) can be
solved in polynomial time, for each finite subset L′ ⊆ L. Several types of polymorphism have been identified to characterize
the tractable languages. In this paper, instead of a constraint language, we consider the tractability of a set of problems
(V ,D, C) where V = {1,2, . . . ,n}, D = {D1, D2, . . . , Dn} and Di (an arbitrary finite set) is the domain of variable i (i ∈ 1..n),
and C a set of constraints. Our result shows that this set of problems can be solved in polynomial time when certain
convexity properties are satisfied.

Although the tractability of a constraint language seems to be the same as the tractability of a set of problems, they
are indeed different. The key difference lies in that a constraint language involves a fixed domain D and a fixed set of
relations L. All variables in different instances of CSP(L) have to have the same domain D . A recent work [2] has generalized
constraint languages to multi-sorted constraint languages that are over more than one set. For a multi-sorted constraint
language L over {D1, D2, . . . , Dk}, the variables in CSP(L) are allowed to take any Di (i ∈ 1..k) as their domains. It is shown
that even this simple extension has serious consequences for the characterization of constraint languages: “. . . [the original
constraint languages] can in fact mask the difference between tractability and NP-completeness for some languages, . . .” [2].
Not all results for constraint languages hold for multi-sorted languages. There is still a gap between a multi-sorted language
and a set of problems. In the CSPs associated with a multi-sorted language, the domains of variables are restricted to a fixed
collection of sets while in a set of problems, arbitrary set is allowed to be the domain of a variable. The knowledge is still
absent on how algebraic operations can be used to directly characterize the tractability of a set of problems.

To have a better understanding of the relationship between our result and the results on constraint languages, we focus
on constraint languages. Consider a constraint language L over D . Particularly, every relation R ∈ L satisfies the convexity



1612 Y. Zhang, E.C. Freuder / Artificial Intelligence 172 (2008) 1605–1612
property mentioned in Theorem 1. Since enforcing arc and path consistency guarantees global consistency of CSP(L) (by
Theorem 1), L must have a near-unanimity polymorphism by the result in [8]. In this situation, the result in [8] gives a
general characterization (“indirectly” through algebraic operations) of all constraint languages on which enforcing local (k-)
consistency ensures global consistency while our result helps to identify a specific subclass of these languages (“directly”
through the convexity properties of the constraints).

Based on the work reported here, Kumar [10] has proposed a more general property on tree convexity—arc consistent
consecutive tree convexity (ACCTC)—such that the problems with that property are tractable. Radically different from our and
Jeavons and colleagues’ approaches, Kumar uses randomized algorithms as a tool to show the tractability of the problems
of concern. For the class of problems discussed in this paper, enforcing arc and path consistency on them ensures global
consistency, and thus there are efficient polynomial deterministic algorithms to achieve the global consistency [1,12]. For
the ACCTC problems, it is not known whether there are efficient deterministic algorithms, neither is it known whether
arc and path consistency ensures global consistency on those problems. The tree convexity of a constraint network can be
recognized efficiently [17]. Kumar also observes that an algorithm in [4] can be used to recognize the tree convexity of a
network although no algorithm is presented in [10] to recognize the ACCTC of a network. Recently, Zhang and Bao proposed
a linear algorithm for tree convexity test [18]. Similar to connected row convexity and ACCTC, how to recognize efficiently
whether a constraint network is locally chain convex and strictly union closed is an open problem.

We have presented some properties of tree convex constraints that are closed under intersection and/or composition. As
a result, we identified a new tractable class of networks—locally chain convex and strictly union closed networks—on which
enforcing arc and path consistency on them ensures global consistency. This result generalizes the existing work on convex-
ity of constraints, e.g., [5], and reveals a more fundamental property—local chain convexity and strict union closedness—that
determines the tractability of a class of convex constraints. Our result also shows a direct interaction between the semantics
of constraints and the semantics of domain values in deciding a tractable class of problems. This interaction is reflected
in the properties of intersection and composition of tree convex constraints. An application of the new tractable class of
networks is also presented, demonstrating that tree convexity is a useful and natural way to characterize the semantics of
domain values, in addition to the traditional ones like total ordering.

References

[1] C. Bessiere, J.C. Regin, R.H.C. Yap, Y. Zhang, An optimal coarse-grained arc consistency algorithm, Artificial Intelligence 165 (2) (2005) 165–185.
[2] A.A. Bulatov, P. Jeavons, An algebraic approach to multi-sorted constraints, in: CP, 2003, pp. 183–198.
[3] D. Cohen, P. Jeavons, The complexity of constraint languages, in: F. Rossi, P. van Beek, T. Walsh (Eds.), Handbook of Constraint Programming, Elsevier,

2006, pp. 245–280.
[4] V. Conitzer, J. Derryberry, T. Sandholm, Combinatorial auctions with structured item graphs, in: AAAI, 2004, pp. 212–218.
[5] Y. Deville, O. Barette, P. Van Hentenryck, Constraint satisfaction over connected row convex constraints, in: Proceedings of International Joint Conference

on Artificial Intelligence 1997, vol. 1, Nagoya, Japan, IJCAI Inc., 1997, pp. 405–411. See also Artificial Intelligence 109 (1999) 243–271.
[6] E.C. Freuder, Synthesizing constraint expressions, Communications of ACM 21 (11) (1978) 958–966.
[7] P.G. Jeavons, D.A. Cohen, M. Gyssens, Closure properties of constraints, Journal of the ACM 44 (4) (1997) 527–548.
[8] P. Jeavons, D.A. Cohen, M.C. Cooper, Constraints, consistency and closure, Artificial Intelligence 101 (1–2) (1998) 251–265.
[9] L.M. Kirousis, C.H. Papadimitriou, The complexity of recognizing polyhedral scenes, Journal of Computer and System Sciences 37 (1988) 14–38.

[10] T.K. Satish Kumar, Simple randomized algorithms for tractable row and tree convex constraints, in: AAAI, 2006.
[11] A.K. Mackworth, Consistency in networks of relations, Artificial Intelligence 8 (1) (1977) 118–126.
[12] R. Mohr, T.C. Henderson, Arc and path consistency revisited, Artificial Intelligence 28 (1986) 225–233.
[13] U. Montanari, Networks of constraints: fundamental properties and applications, Information Science 7 (2) (1974) 95–132.
[14] P. van Beek, R. Dechter, On the minimality and global consistency of row-convex constraint networks, Journal of the ACM 42 (3) (1995) 543–561.
[15] D.L. Waltz, Generating semantic descriptions from drawings of scenes with shadows, Technical Report MAC-AI-TR-271, MIT, Cambridge, MA, 1972.
[16] P.H. Winston, Artificial Intelligence, third ed., Addison-Wesley, Reading, MA, 1992.
[17] G. Yosiphon, Efficient algorithm for identifying tree convex constraints, Manuscript, 2003.
[18] Y. Zhang, F. Sheng Bao, On recognition of tree convex sets, Manuscript, 2008.
[19] Y. Zhang, R.H.C. Yap, Making AC-3 an optimal algorithm, in: Proceedings of International Joint Conference on Artificial Intelligence 2001, Seattle, IJCAI

Inc., 2001, pp. 316–321.
[20] Y. Zhang, R.H.C. Yap, Consistency and set intersection, in: Proceedings of International Joint Conference on Artificial Intelligence 2003, Acapulco, Mexico,

IJCAI Inc., 2003, pp. 263–268.


