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Abstract

A max-2-connected Bayes network is one where there are at most 2 distinct di-
rected paths between any two nodes. We show that even for this restricted topology,
null-evidence belief updating is hard to approximate.
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1 Introduction

Bayes networks are a compact representation of the joint probability distribu-
tion over a set of random variables. Reasoning about them is of major interest
in both theoretical and applied AI [5]. A Bayes network B = (N, P) repre-
sents a probability distribution as a directed acyclic graph N where its set of
nodes V' stands for random variables (in this paper, each random variables
X €V takes values from a finite domain Dom(X)), and P, a set of tables of
conditional probabilities (CPTs) — one table for each node X € V. For each
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possible value x € Dom(X), the respective table lists the probability of the
event X = z given each possible value assignment to (all of) its parents. The
joint probability of a complete state (assignment of values to all variables) is
given by the product of |V| terms taken from the respective tables [5] (where
|V| is the cardinality of V| i.e., the number of nodes). That is, with Parents(X)
denoting the parents of X in G, we have:

Pr(V) = [] Pr(X|Parents(X)).

XeV

Probabilistic reasoning (inference) has several forms [5,7], but only belief up-
dating (defined below) is discussed here. Additionally, a distinction is made
between a problem with ewvidence, which is a partial assignment £ to some
of the variables (presumably observed values for some of the variables), and
a reasoning problem with no evidence. The belief updating problem is: com-
pute marginal distributions for all other (non-evidence) variables given the
evidence, i.e., compute Pr(X = z|€) for all X € V and for each possible value
x of X.If &= 0, then the problem is called null-evidence belief updating.

As inference over Bayes networks is hard in the general case [1,2,6], com-
plexity analysis of sub-classes of Bayes networks is of extreme importance:
knowledge of the exact frontier of tractability impacts heavily on the type of
Bayes networks one may wish to acquire from experts or learn from data [3].

A max-k-connected Bayes network is one with at most k distinct directed
paths between any two nodes. In [7] it was shown that belief updating in
max-k-connected Bayes networks was NP-hard to approximate for k£ > 3,
even with no evidence, and can be done efficiently where & = 1 (note that
this latter class is a strict superclass of poly-trees [5,7]). It was also shown
that belief updating is hard for k& = 2. However, the question whether this
restricted version of the problem is easy to approximate was left open. In this
paper we show that null-evidence belief updating for £ = 2 is also hard to
approximate.

2 Main Result

Definition A (relative) approximation problem [2] in max-2-connected Bayes
networks consists of:

Input: A max-2-connected Bayes network B, a node X in B, a value = €
Dom(X), and an approximation error threshold e.

Output: an approximation of Pr(X = x), p, such that Pr(X = z)(1 +¢€) >
p>Pr(X =x)/(1+¢€).



Theorem 1 Approximate belief updating in max-2-connected Bayes networks
1s NP-Hard.

The proof of Theorem 1 is by reduction from the bounded degree directed
Hamilton cycle problem (see [4]). The Hamilton cycle decision problem is:
Given an undirected graph G = (V| E), is there a cycle that passes through
every vertex of G exactly once. This problem is NP-Complete even if the
degree of each vertex in the graph is at most 4 (see [4]). The problem remains
hard for directed graphs where the in-degree and out-degree of each vertex is
at most 4 (because every undirected edge can be viewed as an incoming edge
and an outgoing edge), and so it is NP-Complete for directed graphs with a
total degree (incoming+outgoing) of 8.

Proof of Theorem 1. Given a directed graph G with a maximum total de-
gree of 8, we show how to construct a max-2-connected Bayes network, where
by approximating the distribution of some node s, we can decide if there is a
Hamilton cycle in G.

Let G = (V, E), where |V| = n and |E| = m, be a directed graph with total
degree at most 8. We construct a max-2-Connected Bayes network as follows:

(1) For each directed edge e; € E create a multi-valued node ¢; in the Bayes
network. The possible values for e; are { L,0,1,2,...,n—1} with uniform
priors (that is, the probability of each assignment a to the edge nodes
is Pr(a) = 1/(n 4+ 1)™). We can interpret the values of these nodes as
encoding a Hamiltonian cycle in the following way:

e Assigning | to e; means that e; is not in the Hamilton cycle.
e Assigning e; = k € {0,1,...,n — 1} means that e; is the k + 1?* edge
in the cycle.

(2) For each v; € V create a binary-valued node v; in the Bayes network.
The parents of v; are all e, such that v; is an end-point of e, (that is,
er = (v, vy) or e = (vy,v;) for some v;r). Because the maximum degree
of the graph is 8, the size of each of these CPTs is (n + 1)8.

The CPTs are such that Pr(v; = T'| Parents(v;)) = 1 iff v; has exactly
one incoming edge with value other than 1, exactly one outgoing edge
with value other than L, the value of the incoming edge is 7, and the value
of the outgoing edge is (7 + 1) mod n, for some 0 < j < n — 1. This can
be done easily for any assignment to Parents(v;). If there are not exactly
two parents with a value other than L, Pr(v; = T|Parents(v;)) = 0.
Otherwise, there are exactly two parents (edges) with value other than
L. If one of these edges is incoming with value j and the other is outgoing
with value (j + 1) mod n, then Pr(v; = T'| Parents(v;)) = 1. Otherwise
Pr(v; = T'| Parents(v;)) = 0.

(3) Create a binary-valued “and” node s, with all v; nodes as parents. That
is, define the CPT of s so that Pr(s = T'| Parents(s)) = 1 iff all v; have



value T'. We avoid an exponential-size CPT by using the standard trick
of actually implementing s by using a tree of 2-input “and” nodes to
increase the fan-in (see [1]).

As an example of the reduction, the graph in Fig. 1, results in the Bayes net-
work of Fig. 2. For example, u is the end-point of four edges (w, u), (z, ), (y, u),
and (u,v) in G, thus, these edge nodes are the parents of the vertex node w.
The CPT for node u can be seen in Table 1.

Fig. 2. 2-connected Bayes network representing G.
We now have to prove the following:

(1) The resulting Bayes network is max-2-connected.
(2) Pr(s =T) > 0 iff G has a Hamilton cycle.

To see that the resulting Bayes network is max-2-connected, note that the path
from any e; node to any v; node is of length 1, and therefore there cannot be
two distinct paths from any e; node to any v; node (as there are no parallel
edges in the Bayes network we constructed). The number of distinct paths
from any e; node to s is exactly 2. If e; = (v;,, v;,), then the two paths from
e; to s are e;, — v;; — s and e; — v;, — s. Clearly, there are no other paths
in this Bayes network, and therefore it is max-2-connected.

Next we prove that Pr(s = 7') > 0 iff G has a Hamilton cycle. If there is a
Hamilton cycle in G, then we can choose any edge in the cycle, and assign
value 0 to the corresponding node in the Bayes network. We can continue
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Table 1
The CPT for node u (only the lines where Pr(u = T'|(u,v), (w,u), (z,u), (y,u)) >
0 are shown. Pr(u = T|(u,v), (w,u), (z,u),(y,u)) = 0 for all other values of

(u,v), (w, ), (z,w), (y, ).

along the Hamilton cycle and assign values 1,...,n — 1 to the nodes in the
Bayes network corresponding to the following edges in the cycle. Assign L
to all other edge nodes. Mark this assignment as a. Then Pr(s = T'a) = 1,
because the value of each vertex node is T" with probability 1, and therefore

the value of s is T with probability 1. Pr(s = T'|a) = 1 and Pr(a) = (n+11)m

(because priors are uniform) and, therefore, Pr(s =17) > 0.

Conversely, if Pr(s = T') > 0, then there exists some complete assignment
a, such that Pr(s = T|a) > 0. According to the CPT of node s, for every
assignment y, Pr(s = T'|x) is either 0 or 1. Because Pr(s = T) > 0, Pr(s =
T'|a) cannot be 0, and therefore Pr(s = T|a) = 1 and Pr(a) > 0. An assignment
to the edge nodes gives us a complete assignment to all nodes with probability

1, so Pr(a) = (n+11)m'

Denote by a(e;) the value that a assigns to node e;. There must exist some
e; = (vy,v;,) such that a(e;) # L, because otherwise, all edge nodes are
assigned L, and therefore all vertex nodes will have value F' with probability
1, and the value of s is F' with probability 1. Let a(e;) = k € {0,1,...,n —



1}. Because a(s) = T, we know that all vertex nodes are assigned 7', and
specifically, a(v;,) = T. This can only happen if v;, has exactly one incoming
edge with value other than L (a(e;) = k), and exactly one outgoing edge with
value other than L, because otherwise we would have a(v;,) = F. Assume,
without loss of generality, that the outgoing edge is e;. It must have value
(k + 1) mod n, because otherwise the value of v;, would have been F with
probability 1. Assume e; = (vj,,v;,). By the same reasoning as above we
know that a(v;,) = T, so there exists some outgoing edge from v;, with value
(k 4 2) mod n. By repeating this process, we follow a cycle C' in the graph.

Observe that C'is simple: it could not reach a previously visited vertex, because
that vertex would have 2 different incoming edges, and would be assigned value
F. Additionally, the cycle must visit all vertices, because a vertex that is not
visited would have 0 incoming edges, and would be assigned value F'. Thus
C' is Hamiltonian. Therefore, it is NP-hard to decide whether Pr(s = T') >
0, and thus belief updating in max-2-connected Bayes networks is hard to
approximate within any bounded factor. O
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