Encoding Deductive Argumentation in Quantified Boolean
Formulae

Philippe Besnard
IRIT-CNRS, Universite Paul Sabatier,
118 rte de Narbonne, 31062 Toulouse, France

Anthony Hunter
Department of Computer Science, University College London
Gower Street, London, WC1E 6BT, UK

Stefan Woltran
Institute for Information Systems 184/2, Technische Ursitat Wien,
Favoritenstrasse 9-11, 1040 Vienna, Austria

May 7, 2009

Abstract

There are a number of frameworks for modelling argumentatidogic. They incorporate
a formal representation of individual arguments and tegnes for comparing conflicting argu-
ments. A common assumption for logic-based argumentatitrat an argument is a pdip, «)
where® is minimal subset of the knowledgebase such dhat consistent ané entails the claim
«. Different logics provide different definitions for congacy and entailment and hence give
us different options for argumentation. Classical propmsal logic is an appealing option for
argumentation but the computational viability of genergtin argumentis an issue. To better ex-
plore this issue, we use quantified Boolean formulae to ciariae an approach to argumentation
based on classical logic.

1 Introduction

Argumentation is a vital aspect of intelligent behaviourtoymans. Consider diverse profes-
sionals such as politicians, journalists, cliniciansestists, and administrators, who all need to
collate and analyse information looking for pros and comsémsequences of importance when
attempting to understand problems and make decisions.

There is a range of proposals for logic-based formalisatimnargumentation (for reviews
see [13, 31, 8]). These proposals allow for the represemtati arguments for and against some
claim, and for counterargument relationships betweenraegs.

In a number of key proposals for argumentation, an argunsespiair where the first item in
the pair is a consistent set (or a minimal consistent setpiwh@ilae that proves the second item
which is a formula (see for example [5, 24, 30, 7, 1, 26, 15pn¢tk, different underlying logics
provide different definitions for consistency and entaitinend hence give us different options
for defining the notion of an argument.

Since classical logic has many advantages for represeatidgeasoning with knowledge
including syntax, proof theory and semantics for the iintaitanguage incorporating negation,

conjunction, disjunction and implication, it is an inteiirg and promising choice for the under-
lying logic for argumentation. However, it is computatiipghallenging to generate arguments
from a knowledgebase using classical logic. If we consideiproblem as an abduction problem,
where we seek the existence of a minimal subset of a set otdamthat implies the consequent,
then the problem is in the second level of the polynomialdrighy [23]. Furthermore, given a
knowledgebasé\ and a formulay, it has been shown that ascertaining whether there is atsubse
® of A such thatf®, «) is an argument (i.ed is consistent® entails«, and there is no subset of

@ that entailsy) is aX5-complete decision problem [29].

Beyond these observations, there remains a range of furtfpartant computational com-
plexity questions. So to better understand the use of claskigic in argumentation, and in
particular to understand its computational properties,isgequantified Boolean formulae (QBFs)
to characterize an approach to argumentation that is baseldssical logic. This characterisation
can then be used to obtain computational complexity resuteyms of upper bounds.

A further reason to characterize logic-based argumemtatithe form of QBFs is that we can
then harness implementations of QBF solvers to developyme implementations for logic-
based argumentation. There are numerous QBF solverslaeditze, e.g, [28] and the references
therein), and the encodations we present in this paper catrdightforwardly handled in them.

2 Preliminaries

2.1 Logical argumentation

In this section we review an existing proposal for logicdzhsrgumentation [7]. We consider
a classical propositional language. We usé3, v, ... to denote formulae andy, ®, ¥, ... to
denote sets of formulae. Deduction in classical propasitidogic is denoted by the symbbol
and deductive closure biyh so thatTh(®) = {« | ® F a}.

For the following definitions, we first assume a knowledgehaga finite set of formulae)
and use thisA throughout. We further assume that every subseh @ given an enumeration
{aq,...,ay) of its elements, which we call its canonical enumerationis Thally is not a de-
manding constraint: In particular, the constraint is $igiiswhenever we impose an arbitrary total
ordering overA. Importantly, the order has no meaning and is not meant t@esept any respec-
tive importance of formulae idh. It is only a convenient way to indicate the order in which we
assume the formulae in any subsetdfre conjoined to make a formula logically equivalent to
that subset.

The paradigm for the approach is a large repository of infdiom, represented kix, from
which arguments can be constructed for and against anpittaims. Apart from information
being understood as declarative statements, there is norarpstriction on the contents, and the
pieces of information in the repository can be as complexasiple. Therefore) is not expected
to be consistent. It need not even be the case that evergdimnghula inA is consistent.

The framework adopts a very common intuitive notion of aruargnt. Essentially, an argu-
ment is a set of relevant formulae that can be used to cldlysicave some claim, together with
that claim. Each claim is represented by a formula.

Definition 1 Anargumentis a pair (®,) such that: (1)® C A; (2) @t/ L; (3) ® F «; and
(4) there is nod’ C @ such thatd’ - . We say that®, «) is an argument forv. We calla the
claim (or consequent) of the argument aftdhe support of the argument (we also say thatis
a support fora).

Example 1 LetA = {a, a0 — 8,7 — —0,7,9,d — B, ~a, —y}. Some arguments are:

({a,a = },8)
{({-a},—a)
{a— B}, —a Vv B)
{10 =)

2

By monotonicity of classical logic the following equivaktesharacterization easily follows.

Proposition 1 A pair (®, «) is an argument iff it satisfies (1)—(3) from Definition 1 tdustwith
(4") foreachg € @, (P \ {¢}) I/ a.

Arguments are not independent. In a sense, some encompass @@ossibly up to some form
of equivalence). To clarify this requires a few definitioissallows.

Definition 2 An argument{®, «) is more conservativethan an argument?, 3) iff ® C ¥ and
G+ a.

Example 2 ({a}, a Vv 3) is more conservative thad o, « — (5},).

Definition 3 An argument®, «) is strictly more conservativethan an argument¥, 3) iff & C
U, 6 F «, and eitherd € & or a t/ 5.

Some arguments directly oppose the support of others, wdnobunts to the notion of an
undercut.

Definition 4 Anundercut for an argumen{®, o) is an argument¥, —(¢; A ... A ¢,,)) where

{¢laa¢n}gq>

Example 3 LetA = {a,a — B3,7,7 — —a}. Then,({r,7 — —-a},~(a A (« — (3))) is an
undercut for{{a,« — G}, 3). A less conservative undercut f6fo, a0 — 5}, 8) is ({r,7 —
—al, —a).

Definition 5 (W, 8) is amaximally conservative undercutfor (®, o) iff (¥, 8) is an undercut
for (@, «) such that no undercuts o®, «) are strictly more conservative tha@, 3).

The value of the following definition of canonical undercsithat we only need to take the
canonical undercuts into account. This means we can jugyifignore the potentially very large
number of non-canonical undercuts.

Definition 6 An argument{¥, —(¢1 A ... A ¢,,)) is acanonical undercutfor (@, «) iff itis a
maximally conservative undercut f6b, o) and (¢, . .., ¢,,) is the canonical enumeration @f.

The next result is central.

Proposition 2 (Theorem 5.4 [7]) A pair (¥, =(¢1 A. .. A¢y,)) is a canonical undercut fof®, o)
iff it is an undercut for(®,) and{¢1, . .., ¢,,) is the canonical enumeration &f.

In other words, the canonical undercuts fdr, o) are given by all arguments of the form
(U, =(p1 A ... A ¢p)) where(epq,...,¢,) is the canonical enumeration &. Later we need
to refer to all possible supports of canonical undercutsafoergument. We thus introduce the
following concept.

Definition 7 For (®, «), we definendercutSupports((®,) as the set of its supports:
{¥ | (¥, 5) is a canonical undercut fof®, o) }.

We shall make use of the notatidfdercutSupports({(®, «)) later when defining suitable rep-
resentations of argument trees. Using Proposition 2, weattennatively characterize the set
UndercutSupports((®, a)) as follows.

Proposition 3 For (®, o), with (¢4, ..., ¢,) the canonical enumeration df,

UndercutSupports((®, o)) = {¥ | (U, (1 A -+ A ¢y,)) is an argumerit.

Next we recall the notion of an argumenttree following [fiddhen introduce a more succinct
notion to represent argument trees which is also more deitabour later purposes.

An argument tree describes the various ways an argumentcahaienged, as well as how
the counter-arguments to the initial argument can therasdde challenged, and so on recursively.

Definition 8 Anannotated treeis a tree where each node is a pdib, 3). Anargument tree
for « is an annotated tree, such that

1. each node is an argument with the root being an argument;for
2. fornonod€®, 3) with ancestor node&bq, 51), ..., {(®,, 5,) is® asubset ob,U- - -UD,,;
3. the children nodes of a nodé consist of some canonical undercuts férthat obey 2.

A complete argument treeis as just defined with “some” replaced by “all” in item 3 abave

The definition of an argument tree ensures that each argumneatoranch has to introduce
at least one formula in its support that has not already beed by ancestor arguments. This
is meant to avoid making explicit undercuts that simply edpmer and over the same reasoning
pattern except for switching the role of some formulae (astitated in Example 5 below).

As a notational convenience, in examples of argument ttee$ tsymbol is used to denote
the consequent of an argument when that argument is a cahonidercut (no ambiguity arises
as provenin [7]).

Example 4 GivenA = {a,a — f,7,v7 — —a, —yV —a}, we have the following argument tree.

{ova—p5}.0)
/ N
{r:7 = —a}, ~(@ A (a = B)) {v; vV =al, ~(aA(a = B))

Note the two undercuts are equivalent. They do count as tgunaents because they are based on
two different items of the database (even though these itam@ut to be logically equivalent).

Example 5 LetA = {a,a — B,7 — —a, v}

({a,a ? B}, B)
<{75’Y _)T_‘O‘}7<>>
({a,y = —a}, ©)

This is not an argument tree because the undercut to the oatlisractually making exactly the
same point (thatv and~ are incompatible) as the undercut itself does, just by usingus tollens
instead of modus ponens.

Example 6 GivenA = {«, 8, — v, 8 — §, ~a V =3}, consider the following tree.

({e, B0 — 7,8 — 6},7 A)
/! AN
<{Oé, _‘o‘\/_'ﬁ}v_‘ﬂ> <{67 _‘Oé\/_\ﬁ}7_‘0é>

This is not an argument tree because the two children nodeshat maximally conservative
undercuts. The first undercut is essentially the same argtiagthe second undercut in a re-
arranged form (relying orx and 8 being incompatible, assume one and then conclude that the
other doesn’t hold). If we replace these by the maximallyseorative undercut{ ~a vV =5}, <),

we obtain an argument tree.

Notably, there is a finite number of argument trees with thet being an argument with the
claim « that can be formed from\, and each of these trees has finite branching and a finite depth
(the finite tree property).

For our purposes in this paper, we require a more formal sgmtation of argument trees. It
makes use of the fact that all consequences in the nodegpfakeeoot) of an argument tree are
determined by their direct ancestor (as already mentiobesieawhen introducing>). To this
end, a node is now a set of formulas rather than an argumeha @arent function determines
the structure of the tree.

Definition 9 A parent function p (overk > 1) is a partial function from{1..k} to {1..k}, such
thatp(7) is undefined foj = 1 butp(;) is defined ang(5) < j, for anyl < j < k.

p is a parent functiorfor a sequenced = (®q,...,®;) of subsets ofA if p is a parent
function overk and is such thap(i) = p(j) implies®; # ®;, foranyl < j < i < k.

Atuple form is a triple («, A, p), wherea is a formula,A is a sequence of subsets/df and
p is a parent function forA.

Given a tuple forma, (94, ..., ®g), p), we define, for each < i < k, anassociated pair
A(7), as followsA(1) = (®1,a) and, fori > 1, A(i) = (P;,~(d1 A -+ A ¢n)), Where
(¢1,...,¢n) is the canonical enumeration @f,;.

Tuple forms are an alternative way to denote annotated.ttegstively, .4 collects all sup-
ports of the tree’s nodesg, s the claim of the root node, and the parent funcfidimks each node
to its parent node, and thus determines the structure ofé¢beThis is feasible, singeis defined
for each node except the root and links to a previous eleme#t the condition thap(i) = p(j)
implies®; # ®;, for i # j just avoids duplicate children nodes.

The concept of tuple forms is best illustrated by examples.

Example 7 First, consider the tree from Example 4. That annotated trae be represented
in tuple form (g3, (®1, ®o, ®3),p) where®; = {a,a — f}, &2 = {v,v — -a}, P35 =
{v,—y V —a}, andp is defined a®(2) = p(3) = 1. An alternative way to represent the same
annotated tree would be to exchange the set®foand ®3.

Conversely, given the tuple forgft, (94, @5, ®3), p), we can derive from it an annotated tree
as follows: The nodes are given Hy1), A(2), A(3), and we get by definition gfthat A(2) and
A(3) are the children of the root nodé(1).

Example 8 As a second example, consider Example 5. The only way tovachitiple form for
that tree is(3, (91, @2, 3), p) whered, = {a,a — (8}, Do = {v,v — —a}, &5 ={a,yv —
—a}, andp is defined ap(2) = 1, p(3) = 2.

We now formally describe these relations.

Definition 10 We define a mappin@reeForm from tuple forms to graphs as follows: For each
t = {a,(®1,..., D), p), the nodes offreeForm(t) are given by the setA(i) | 1 <4 < k};and
a pair (A(i), A(j)) is an edge oflree Form(t) iff p(j) =4, for1 < j < k.

Lemma 1 For any tuple formt, TreeForm(t) is an annotated tree.

Proof TreeForm(t) is a tree because it is a graph which is connected (ignoriregiiton of
edges) and has exactly one edge less than it has vertices:

By Definition 10,(A(7), A(j)) is an edge iffp(j) = i (for 1 < j < k). L.e.,(A(p(4)), A(j))
for j = 1..k exhausts all edges. Sinpés a parent functionTreeForm(t) hask — 1 edges. There
remains to show thafreeForm(t) is connected (when directions of edges are ignored). This
easily follows from the fact that any node #ree Form(t) is connected tol(1) (the latter is true
because it < j < k, then there exista such thap™(j) = 1 asp is a parent function). In short,
TreeForm(t) is a tree. It is an annotated tree because Definition 10 lishgshows that all nodes
in TreeForm(t) are pairsA(i) fori = 1..k. [

In view of the above lemma, we call, for a given tuple fasiree Form(t) thetree associated
to t. As well, we say that represents treeTreeForm(t).

We now characterize argument trees and complete arguneestiia tuple forms. This result
is valuable later when characterizing argument trees vi&€QBWe need one more technical
notation.

Definition 11 Given a tuple forma, (®4, ..., ®x), p), we define, for each < i < k, p*(i) as
the set of indices ab;’s ancestors, i.e.,

p*(i) = {p" (i) | there existsn > n > 1 such thap™ (i) = 1}.

Lemma 2 A tuple form{c, (®4,...,®.), p) represents
e an argument tree iff
(1) (®1,) is an argument,
(2) foreachl <i <k, o, Ujep*(i) ®;, and
(3) foreachl < i <k, ®; € UndercutSupports(A(p(7))) hold.
e a complete argument tree iff, (1-3) holds together with

(4) foreachl < i < k and for each¥ € UndercutSupports(A(i)), there exists an index
j € {1..k}, such thatb; = ¥ andp(j) = i.

Proof The first statement in Lemma 2 means tlate Form(t) is an argument tree iff (1)—(3)
hold together. Let us first assume thtkeForm(¢) is an argument tree. Then, (1) and (2) are
easily verified. By item 3 in Definition 8, the children of a o are canonical undercuts for
N. So, if Nis (®, 8), any child of NV is a canonical undercut(:) = (®;,~(¢1 A -+ A ¢,,)) of

N = A(p(i)). Then, Definition 7 directly yield®; € UndercutSupports(A(p(i))). Thatis, (3)
holds as well.

As to the other direction, let us assume that (1)-(3) hold.(8yand item 4 in Definition 9,
Definition 7 means thatl(i) is an argument fot < i < k. Due to (1), it follows that item 1 in
Definition 8 is verified. It is easy to verify that (2) implieggein 2 in Definition 8. Lastly, (3) and
item 4 in Definition 9 entail (cf Definition 7) that far < ¢ < k, eachA(i) is a canonical undercut
of A(p(i)). l.e., item 3 in Definition 8 holds.

Let us assume (1)-(4). Let us further assume thatForm(t) is not a complete argument
tree. In view of Definition 8, this can only happen due to a ndtle= A(p(i)) lacking at least
one canonical undercut as a chitéhte Form(t) is an argument tree, as proved above). By Defi-
nition 7, there then exist¥ in UndercutSupports(A(j)), for somej, satisfying? = &, for no
i such thatp(i) = j. This contradicts (4). So, the if direction is proved. Probthe only if
direction is easy and is omitted. []

Example 9 Consider again the tuple form for the tree in Example 5, asigin Example 8. We
havep*(3) = {1,2} andthud J,. . 5) ®; = P1UP2 = {er,7,7 — —a}. Sinceds = {a,7 —
—a} is a subset of that set, Condition (2) in Lemma 2 is violatelaus] we have that the tuple
form does not represent an argument tree.

Lemma 3 Each argument tree is represented by a tuple form.

Proof Consider an argument trdewith nodesNy, ..., N, where nodes are of the forid;, =
(®;, o), foreachl < i < k, andN; is the root of’. Considetr = {(aq, (®1, ..., Pk), p) where
pis a partial functio{1..k} to {1..k} satisfying, for each < j < k, p(j) = ¢iff N, isa children
node of N; in T'. SinceT is an argument tree, is in fact a parent function ovér. Thustr is a
tuple form and one can show th@teeForm(tr) = T, which holds by the observation that the
pairs associated ta- satisfy A(i) = N;, foreachl <i < k. []

2.2 Quantified Boolean Formulas

Quantified Boolean formulas (QBFs) generalize ordinaryppsitional formulas by the admission
of quantifications over propositional variables. In parée, the language of QBFs contains, for
any atomp, unary operators of the forivip and3p, calleduniversalandexistential quantifiers
respectively. However, the quantifiers do not range overesarbitrary domain, but over truth
assignments. Thus, a QBF of foivip 3¢ F is satisfiable iff, for all truth assignments pfthere
is a truth assignment @fsuch thatF’ is satisfiable; see also Example 10 below.

An occurrence of a propositional variakldn a QBF F' is freeiff it does not appear in the
scope of a quantifieRp (Q € {V, 3}), otherwise the occurrence pfis bound If F' contains no
free variable occurrences, théhis closed otherwiseF is open Furthermore, we writd”[p/¢]
to denote the result of uniformly substituting each freeunmnce of the variablg in F' by a
¢. ForasetP = {p1,...,p,} Of propositional variables, we |&tP F' stand for the formula
Vp1Vps - - - Vpn, and3aP F for the formuladp,3ps - - - Ap,,.

By aninterpretation I, we mean a set of atoms. Informally, an atpns true underl iff
p € I. In general, the truth value; (F'), of a QBF F' under an interpretatiofi is recursively
defined as follows:

1. if F =T, theny;(F) =1,

if F = pisanatom, thew;(F) = 1if p € I, andv;(F) = 0 otherwise;
if F =-G, thenv;(F) =1—v;(G);

if F'= (F1 A Fy), thenv(F) = min({v;(F1), vi(F2)});

if F =VpG, thenv;(F) = vi(Glp/T] AGlp/1));

6. if F =3pG, thenv;(F) = v (Glp/T]V Glp/L)).

Sl A

The truth conditions forl, v, —, and« follow from the above in the usual way. We say tliat
is true underl iff v;(F) = 1, otherwiseF is false unded. If v;(F) = 1, thenI is amodelof F.

If F' has some model, thefi is said to besatisfiable If F' is true under any interpretation, then
Fis valid. Observe that a closed QBF is either valid or unsatisfialdeabse closed QBFs are
either true under each interpretation or false under eaehgretation. Hence, for closed QBFs,
there is no need to refer to particular interpretations. réfoee, closed QBFs are simply either
true or false. Two QBFs allegically equivalentff they possess the same models.

Example 10 Consider the QBR} = Vg(p < ¢). In this QBF, the propositional variablg if
free, whileq is bound. To evaluate the QBF, we thus consider two intesimets: I; = () setting
p to false; andl, = {p} settingp to true.

In general, given an interpretatioh, we can evaluate a QBF with respectiton two ways:

(i) first evaluate the free variables accordingk@nd then apply the semantics for the now closed
QBF; (ii) first apply the semantics for quantifiers and themleate the now quantifier-free for-
mula using!.

So, in our example (i) is as follows: Fdi, we getvg(L < q), i.e.,¥q(—q); and for I, we
getVq(T < q), i.e.,Vq(q). Both closed QBFs are false, thus neitdemor I is a model off .
Following attempt (ii), we first treat the universal quartiftion for ¢ according to the semantics
and get(p < T) A (p « L) whichis equivalenttp A —p. Clearly, neither/; nor I is a model
of this propositional formula. Hence, neithér nor I is a model ofF;. Observe that we thus
can also state that the closed QBF

IpVa(p < q)
is false.

Now consider the QBF> = Jq(p < ¢). As before, interpretationg and I, are of interest.
According to (i), F» reduces tdp < T) V (p < L) which is equivalenttp v —p. Now both,

I, and I are models of that formula and thus Bf. This leads us to the further observation that
the closed QBF
Vp3q(p < q)

7

is true.

QBFs allow us to talk about semantical concepts in propmsafilogic. For instance, a propo-
sitional formulaF’ over propositional variablée is satisfiable iff the closed QBBV (F) is true.
Likewise, F' is valid iff the closed QBF/V (F) is true. Consequently, given a knowledge-baAse
and a formula, both ovér, A - o holds iff the QBFYV (Ascp 0 — «) is true.

Example 11 ConsiderA = {p,p — ¢} and leta = ¢q. We have/ = {p, ¢} and thus consider
the closed QBF

vpVa((p A (p — q)) — q).

Observe that the inner part of that QBF, i.e., the proposisibformula(p A (p — ¢)) — qis
valid, and thus true under all assignments. Hence, the a3 is true.

In the same way as the satisfiability problem of classicappsitional logic is the “prototyp-
ical” problem of NP, i.e., being arNP-complete problem, the satisfiability problem of QBFs in
prenex formare the “prototypical” problems of theth level of the polynomial hierarchy.

Proposition 4 ([35]) Given a propositional formula with its atoms partitioned inté > 1 sets
Py,..., P, deciding whetheQ; P1Q2Px ... Q; P;¢ is true is (i) X¥-complete, ifQ; = 3; (ii)
I1?-complete, ilQ; = V.

In fact, the hardness results in above proposition hold torlyhose QBFs where the quanti-
fiers in theprefixQ, P1 Q2P . .. Q; P; arealternating i.e.,Q; # Q41 holds, for each < j < i.
We call such QBFs als(; , i)-QBFs.

The complexity landscape can be extended to arbitrary dl@Fs if the maximal number
of quantifier alternations along a path in the QBF’s formudgtis taken into account. In turn, an
arbitrary QBF can be transformed into an equivalent QBF énpk form. This transformation is
not deterministic and it is crucial for the performance off@lvers requiring the input formula
in this normal form (for details, see [20, 21]).

Finally, we highlight the used reduction approach. Givereaigion problemD, we aim at
finding a translation schenig; into closed QBFs, such that

1. Tp(-) is faithful, i.e., 7p (K) is true iff K is a yes-instance adb;

2. for each instanc&’, 7p (K) is computable in polynomial time with respect to the size of
K;and

3. determining the truth of the QBFs resulting frafp (-) is not computationally harder (by
means of Proposition 4) than the computational complexity o

In addition, if we are interested in a search problgnve aim at establishing a certain one-to-
one correspondence between the models of the QBF encodidgkasolutions t¢. Indeed the
7Tp(+) then has to yield open QBFs instead of closed QBFs. Given tiets of the QBH (K),
the computation of the solutions &f has to be feasible in polynomial time.

2.3 Basic Concept of Encodings

We now sketch our basic ideas for capturing logic-basednaegiiation in QBFs. In the following,
we assume a knowledgeba&eo be given over a set of atoms,. Moreover,a, (3 always refer
to formulas, which are, without loss of generalizationuased to be given over atoms frovi .
In general, for a seb of formulas, the se¥g contains all atoms occurring ib.

Given a finite knowledgebas®, we assign to each element 4&f several new atoms via a
generator function. The aim of this function to provide ndanas, such that interpretations over
those atoms are used to represent subsets dhe formal definition is as follows:

Definition 12 A generator function g maps eacl € A to a new propositional atom(d) ¢ Va,
such thatg(d;) = ¢(d2) impliesd, = do, for all 61,02 € A. With some abuse of notation we
write, for any subse® C A, g(®) to denote the seftg(d) | 6 € ®}. Moreover, for two different
generator functiong;, g2, we ensurey; (A) N g2(A) = 0, i.e., each generator function provides
its own fresh atoms.

Interpretations (usually given over arbitrary atoms) amkdd to subsets o\ via generator
functions as follows.

Definition 13 Let I be an interpretationg be a generator function, anél C A. We say thaf
represents® via g iff I N g(A) = g(®). Moreover, for a sequencéd = (94, ..., &;) of subsets
of A and a corresponding sequenge= (g1, . . ., gx) of different generator functions, we say that
an interpretation/ representsA via G iff I N g;(A) = g;(®;), holds foralll < i < k.

A word of caution is in order here: Whenrepresent® via someg, I may, but need not, be
a model of®d. The forthcoming Definition 14 and Lemma 4 provide the migdink.

Definition 14 ForI' C A, a formulac, and a generator functiop, define

F'=,a = VVFU{Q}((/\(9(5) —9)) — a).

oer

Lemma 4 Let A be a knowledge base, adde an interpretation. Fof* C A, and® C T, such
that I representsP via generator functiory, then, for alle, we have thatl” =, « is true under
Tiff®F .

Proof We have tha® - « iff each model over atomgy) of ® is also a model ofv. By the
semantics of QBFs, it is easily verified that the latter hdfidbe closed QBF

Waugay (A 0) = @) 1)

s

is true. (Recall that a closed QBF is either true under angrjmetation/ or false under any
interpretation/). We next increase the set of quantified variables in (1) fi@;q} t0 Vrugay,
which yields
YWty ((/\ 6) =). (2)
sed

This QBF is also closed singe C I" and it holds that (2) is true iff (1) is true, since the added
guantified variables do not have any influence here.

Next, we replace eachby the equivalentformulda — ¢, and add trivially true conjuncts of
the formL — ~, yielding*

VVFU{Q}[((/\(T — 5)) A (/\ (L — 7))) — a}. (3)

sed NET\ O

So far, this shows thab I « iff the closed QBF (3) is true. Now, let be a generator function,
and consider any interpretatidrwhich represent® via g. Hence, for each € @, g(0) € I, and
for eachy € T'\ @, g(v) ¢ I holds. Recall thag(A) N VA =), and thus by our assumptions
g(A) N Viyugay = 0. We therefore can rewrite (3) to

Weoge [((A 6 = 0) A (A (96) = 7)) = af. (4)
sed yer\ @

Observe that the atomg-) are free in (4) and thus are subject to interpretations. dh fay the
definition of a representation (cf Definition 13), it is eagysee that (4) is true under ahyvhich
represent® via g iff (3) is true. To conclude the proof, observe (4) is equavalol’ =, «. W

1This can be done since the replacement theorem holds for QBFs

Example 12 LetA = {p,p — ¢}, @ = ¢, and let us conside§(A) = {g,, 9p— ¢} Hence, the
generator function provides for eadhe A a new variable of the form(é) = gs. ThenA =, «
is given by

vaq[((gp = PN (Gp—g = (P — Q))) - q] (5)
Note that, for eacl® C A, we thus have interpretations representibgia g. Sinceg(A) are the

only free variables i\ =, « it is thus sufficient to investigate the following four ingestations
for being models oA = a:

L =10

L = {gp}

Iy = {gpﬂq}

I = {9p: gp—q}

Let us now evaluate (5) under these four interpretation. Wil glo so by first evaluating the
free variables in (5) and then inspect the remaining QBFE, ia@lowing method (ii) as sketched in
Example 10. We start with . Then (5) reduces to closed QBF

vaq[(u)AL= Q))) - q}-
which is equivalent to
VpVq [q]

This QBF is obviously false, and hende,s not a model of (5).
For I, one of conjuncts in the antecedent survives. We get

vaq[((T —=p) AL = Q))) - q]

which is equivalent to
VpVq [p - q]

Still, this QBF is false, and hence, alggis not a model of (5).
For I3, we get

vaq[((l = p) AT = (p— q))) - q]-
which is equivalent to
vaq[(p — q) - q]

Again, this QBF is false, and hence, algois not a model of (5).
Finally, evaluating (5) undel, yields

vaq[((T = p)A(T = (p— q))) — q]-

which is equivalent to
Vqu[(p A — Q)) - q}-

This QBF is true since the inner pa(tp A (p — ¢q)) — qisindeed a valid formula of

propositional logic. Thereforel, is a model of (5).
So havingl, as the only model, we conclude that the set it representg,\iamely{p, p —
q}, is the only subseb of A, for which® F « holds.

QBFs abbreviated by =, o will be used as subformulae in various more complex QBF
formulae. In a sense, they are useful building blocks thateaused repeatedly. We will refer to
a schema likd’ =, o as a module.

10

3 Characterizations

In what follows, we will employ the basic encodiig=-, « to characterize various problems
for logic-based argumentation. We start by characterianggments and undercuts via models of
certain QBFs. Then, we suitably combine the latter in suckativat the resulting formulas will
allow us to reason about argument trees. We will first comsidgument trees of a fixed structure
(i.e., where the parent function is given when constructirigencodings) and then also provide
encodings, where the parent function is characterizedd@BF itself.

3.1 Arguments and Undercuts
Definition 15 For a knowledge basA, a formulaa, and a generator function, define
arg(g,8,0) = ~(A=y L) A (A=g0) A A (906) = ~((A\{5]) = a)).
seA

Note that the three main parts of the encoding check pra@sef2), (3), and respectively (4")
from Proposition 1.

Theorem 1 For a knowledge bas4, a formulac, an interpretation/, and® C A, such that!
representsb via generator functiory, we have thatrg(g, A, «) is true under! iff (@, «) is an
argument.

Proof Using Lemma 4, we immediately conclude that the first two anafs ofarg(g, A, «) are
true in [iff conditions (2) and (3) from Proposition 1 hold. So, therdy remains to take care of
the third conjunctirurg(g, A,), i.e.:

A (96) = = ((A\ {5} =4).

dEA

However, all of the following five statements are equivalent

@) TE N (96) = - ((A\{5) =y a))
SEA

() T A\-(A\{0}) =, a)
6ed

(i) TE-((A\{0}) =, a)forall§ c

() TE-Waeue((A @0 =) —a)foralsee
oe(a\(8))

() TE-~YWaysphuer (A\@\{}) — a)forallse e

where the first and last steps are correct becéuspresent® via g.

Since(® \ {§}) C (A \ {d}), all propositional symbols i\ (® \ {§}) — « are quantified
upon through?Via\ (s})u{a}- Hence,(v) holds iff A(® \ {d}) — «isinvalid in propositional
logic, or, equivalently, iff® \ {§} I/ «. In other words, condition (4’) from Proposition 1 is
satisfied iff(v) holds, i.e., iff(¢) holds. [|

We now consider the following example in order to compareftirectioning of the third
condition of Definition 15 with a simpler alternative thathigt plausible, does not behave as
required. In fact, consider one replaces

A (96) = = ((A\{5) =,) inaglg.A,a) by ~((A\{5}) =,).

dEA

We observe the following problem.

11

Example 13 Let A = {p, ¢}, leta bep, and letg(A) = {g,, g,}. So the original version of the
third condition in Definition 15 gives the following

(9p — ~pV¥a((94 — @) — p)) A (94 — ~pV¥a((gp — P) — D))

We evaluate this with the following interpretations gegtthe answers we expect for the QBF in
each case.

L =0 therefore the QBF is true
I ={gp} therefore the QBF is true
Is = {gq} therefore the QBF is true

I, ={gp,94} therefore the QBF is false
Now consider the alternative (incorrect) version of themi&tin which gives the following.
(=vp¥a((9q — q) — p)) A (=VpYa((gp —) — P))

We evaluate this with the following interpretations whit¢tows that we fail to get answer we
expect for the QBF witt,.

L =0 therefore the QBF is true
I ={gp} therefore the QBF is false
Is = {gq} therefore the QBF is true

I, ={gp,94} therefore the QBF is false

With the encoding from Definition 15 at hand, we can decide mlmer of typical decision
problems, e.g., question whether giv@n «), is (®, o) an argument? A more general variant of
this question is as follows: GiveAA and disjoint subsetA™ andA~ of A, does there exist an
argumen{®,), such tha\™ C ® and® N A~ = (?

Definition 16 Let g be a generator function and™, A~ C A. Then, we define as an abbrevia-
tion
fix(g, AY, A7) = N\ g@) A N\ —9(5).

SeAt dEA

Corollary 1 GivenA, two disjoint setsA™ and A~, a generator functiory, and a formulac,
there exists an argume®, o) such thatA*t C ® and® N A~ = (iff

39(A) (fia(g, A%, A7) A arg(g. A,) (6)
is true.

Obviously, by settingA™ = ® and A~ = A\ ® in (6), we can answer the question
given (®, o), is (P,) an argument? In this setting, we shall also wifite(g, ®) instead of
fiz(g, AT, A™). Another question is whether a certain elemérg A is part of a support for
a. For this, we can seAt = {§} andA~ = @ in (6). Finally, if we drop thefiz(g, A*, A7)
conjunct, i.e., we seA™ = A~ = (0 in (6), then our encoding is true iff there is a sub®etf A
such that®, o) is an argument.

Next, we show how to use two different generator functignandg, to characterize subsets
of A simultaneously; in fact, this module allows us to deriveghpports of undercuts.

Definition 17 For a knowledge basA and generator functiong,, g2, define
sucgr, g2,8) = arg(91,8,7 N\ (92(6) — 9)).
s€A

Theorem 2 For a knowledge basg, an interpretation/, and ®,, ®> C A, such thatl repre-
sents(®,, ®,) via generator functionsg:, g2), we have thatuc(gi, g2, A) is true underl iff
(®1,-(d1 A --- A ¢y,) is an argument, wherép,, ..., ¢,,) is the canonical enumeration &,.

12

Proof Sincel represent®, via g, it follows that, inl, g2(6) — 4 is equivalent withi whenever
d € @, andis equivalent witi- whenevep € A\ ®,. So, the next two statements are equivalent:

(Z) I): arg(glvAvﬁ /\ (92(6) - 5))

sEA
(i) I'=arg(g1,A, - /\ Dy)

Sincel represent®, via g1, Theorem 1 yields thati) holds iff (®;, - A ®5) is an argument.
Therefore(i), which means thatuc(gi, g2, A) istrue inf, holds iff (&1, = A ®2) is an argument.
]

Corollary 2 For a knowledge basd, a formulac, an interpretation/, and®;, ®, C A, such
that I represents®,, ®3) via (g1, g2), we have that

arg(ga, A,) A suc(gy, g2, A)

is true under iff (P2, o) is an argument an®; € UndercutSupports({(Pz, o).

3.2 Argument Trees with Fixed Structure

We now show how to characterize trees via their tuple formg&BFs. We start with encodings
where the tree structure is fixed via a given parent functimn,the nodes of the tuple form
can be arbitrarily characterized by assignments to the afommn generator functions. In other
words, given a parent functiom over £ and a formulax, we characterize all sequencds=
(®1,...,Px), such that{w, A, p) is a tuple form. We then refine these encodings to obtain all
such sequence4, such that the tuple forrfw, A, p) represents a (complete) argument tree. Note
that in the forthcoming encodings, we also assumegthabmes together with as an input. The
aim of the forthcoming module is to ensure thatorrectly applies to the sequendg in such a
way thatp does not lead to duplicate children notes (as required imidiefi 9).

Definition 18 For a knowledge basé, a sequence of generator functighis= (g1, . .., gx), and
a parent functiorp overk, we define
distinct(G, A, p) = A (N = 5)

1,5:p(1)=p(j);i#] dEA

Lemma 5 For a knowledge basé, a parent functiorp over k, and an interpretation/ repre-
sentingA = (®q,...,P) viag = (g1, ..., gr), Wwe have thatlistinct(G, A, p) is true underl
iff p is a parent function forA.

Proof (only if direction) If distinct(G, A, p) is true inI then for all two distinct andj (each in
the rangel..k) wherep(i) = p(j), there must exist’ € A such thaiy;(§’) < g¢,(¢") is false in
I.S0,I =gi(8') A —gi(¢") or I |=—gi(8') A g;(8"). The cases are symmetric, so it is enough
to consider the formetl = g;(6’) A —g;(d’). Sinceg;(¢6’) andg;(¢’) are atoms, it then follows
thatg;(6’) € I andg;(¢") & I. Thereforeg;(¢6') ¢ I N g;(A) whereag;(8') € I N g;(A) (as
g:(8") € g;(A) duetod’ € A). However,I representsd = (®q,...,P,) viag = (g1,..., k)
meaning thaf Ng;(A) is ¢;(®;) andINg,(A) is g;(P;) (Definition 13). Whence;(¢') € g:(®;)
andg; (8') & g;(@;). 1.€.,9:(8") € {g:(9) | 3 € D;} andg, (&) ¢ {g;(5) | & € @} (cf Definition
12). As an immediate consequendé,¢ ®;. On the other handy;(¢') € {g:() | 6 € @;}
implies¢’ € ®; becausgy; is injective according to Definition 12. Now, ¢ &, together with
6 e P, ylelds<1>l #* @7

(if direction) We must show thatistinct(G, A, p) is true inI. In fact, we show that, for any two
distinct: andj (each in the rangé..k) such thaip(i) = p(j), theng;(§’) < g¢,(d") is false inI
for somed’ € A. To start with,®; # &, because is a parent function ford = (@4, ..., Dy).

13

Trivially, there then exist8’ € A such that eithes’ € ®; andd’ ¢ ®; or§’ ¢ ®; andd’ € @,.
The cases are symmetric, so it is enough to consider the forftemd’ ¢ &;, we easily get
g;(8") & {g;(9) | 6 € ®;}, which, by Definition 12, meang;(¢’) ¢ g;(®;). Thatis,g;(¢') &
INg;j(A) becausd representsd = (®4,...,P;) viaG = (g1,...,gx) (cf Definition 13). In
view of g;(¢') € g;(A) (due tod” € A), it then follows thatg,(6’) ¢ I. On the other hand,
§ € ;. S0,g;(0") € {gi(0) | 6 € D;} = ¢:(P;). Then,g;(¢') € I N g;(A) becausd represents
A= (®y,.... Py viaG = (g1,-..,9x) (cf Definition 13). So,g;(§’) € I. Combined with
g; (") ¢ I as proven above, this yieldst~ g;(¢') < g;(¢"). [|

Given a parent functiop, we now know how to characterize sequenges- (4, ..., Py)
via QBFs, such thaty is a parent function ford. Thus, we can already obtain all tuple forms
{(a, A, p), for a givenp. Next, we add further conditions to get only thadesuch that«, A, p)
represents also an argument tree.

Definition 19 For a knowledge basé\, a formulaca, a sequence of generator functiofis=

{(g1,---,9k), and a parent functiop overk, we define
argtree(G,a, A,p) = arg(g1, A, a) A

k

/\ (Suc(giagp(i)aA)) A

=2

k

AV (a0 n N ~g0):
i=26€A jep* ()

Theorem 3 For a knowledge basA, an interpretation/, and a tuple forma, A, p), such that’
represents4 via generator function§ we have that the QBF

distinct(G, A,p) A argtree(G, o, A, p)
is true under! iff (a, A, p) represents an argument tree.

Proof By Lemma 5 and the fact thdty, A, p) is a tuple form (see item 3 in Definition 9),
distinct(G, A, p) is true unded. So, we need only focus arrgtree(G, a, A, p).

Lemma 2 states thai, A, p) represent an argument tree iff (%1, «) is an argument, and
(i) ®; € UndercutSupports(A(p(i))) for 1 < i < k, and (iii) ®; € @,y U Py U --- U
®pn (=1 for 1 < i < k. We show that each of (i)-(iii) holds iff the correspondirgngunct in
argtree(G, a, A, p) is true unded . By Theorem 1, (i) holds ifirg (g1, A, «), namely the first con-
junctinargtree(G, , A, p), is true under . Letus turnto (ii). Infact®; € UndercutSupports(A(p(i)))
means that®;, - A ®,;)) is an undercut of®,;, .. .). By Theorem 2({®;, -~ A ®,,;)) is an ar-
gument iff suc(gi, gp(:), A), namely the second conjunct imgtree(G, o, A, p), is true unded.
Let us turn to (iii). Trivially,®; Z ®,;) U ®p2(;) U- - - U Ppn (=1 means that there exisis € ;
suchthat’ & @,y U2y U---UP,n()—1. Sincel representst via g, for all j = 1..k, Defini-
tion 13 tells us thay; (¢') is true under iff 6’ € ®;. Then,®; € @, Ud 2y U- - -UP ()1 iff
for somed’, g;(¢') is true unded while g,y ("), gp2(iy(0'), - . ., gpn(s)=1(d") are all false under
1.S0,9; & (I)p(i) @] (I)pz(i) J---u (I)pn(i)zl iff

V(@ nr A 00)
sea jep* (i)
is true under. []

Our next definition captures the condition that for a seqaesfagenerator functiong, and
for each argument that can be represented via a generattdidiup; in G, if there is an undercut
for it that can be represented by a generator fungfidheng is also ingG.

14

Definition 20 For a knowledge basé\, a parent functiorp over k, a sequence of generator
functionsG = (¢1, ..., gx), and a further generator function we define

complete(G,A,p) =

~.

vg(8) (suclg. 9 8) =\ A\ (9(0) < g;(6))).

1 j:p(j)=i S€EA

K2

Theorem 4 For a knowledge basaA, an interpretation/, and a tuple form{«, A, p), such thatl
represents4 via generator function§ we have that the QBF

distinct(G, A, p) A argtree(G,a, A, p) A complete(G, A, p)
is true under iff («, A, p) represents a complete argument tree.

Proof By Theorem 2suc(g, g;, A) is true unded iff (¥, — A ®;) is an argument¥ is taken
to denote the set thgtrepresents unddh), or, equivalently{¥, ...) is an undercut of®,, . . .).
Sincel representsd via G, Definition 13 means that; (0) is true unded iff § € ®;. Therefore,
g(8) < g;(6) is true underl iff ¥ = ®;. So, complete(G, A, p) is true under iff for each
1 <4 < kandforeachl € UndercutSupports(A(i)), there exists an indeke {1..k} such that
&, = ¥ andp(j) = . Then, apply Lemma 2 and Theorem 3. [|

As already shown for single arguments, we can use noyiitfig, ®) module to encode further
decision problems. In our first example (given in Corollajy\8e can ensure that the argument
tree has a particular argument as the root of the tree.

Corollary 3 For a knowledge basé, ¥ C A, an interpretation/, and a tuple form«, A, p),
such that/ represents4 via generator function§ we have that the QBF

fix(g1, V) A distinct(G, A, p) A argtree(G,a, A, p)
is true under iff (o, A, p) represents an argument tree with radt, «).

As a further example, we can check whether a given tuple far, p) with A = (@4, ..., Dy)

via QBFs, represents an argument tree. To this end{et) = Ule gi(A).

Corollary 4 A tuple form(c, (®4, ..., ®), p) represent an argument tree iff the closed QBF

k
EQ(A)(/\ﬁx(gi,q)i) A distinct(G, A, p) A argtree(g,a,A,p)).

=1
is true.

Likewise, we can apply these two corollaries to completeiargnt trees by adding the con-
junct complete(G, A, p) accordingly.

3.3 Argument Trees with Arbitrary Structure

Compared to the previous characterization, we now shalbnlgtcompute the sequengefor a
tuple form(«, A, p) with givenp, but also possible parent functiopsia the encodings. Hence,
we first have to represent functiopss well as its closurg*. Given a parent functiop overk,
we use further new atomB, = {p; ; | 1 < j < i <k} andP} = {p;‘_’j |1 <j<i<k}
Intuitively, if an atomp; ; is true undet, then! is used to characterize a parent functjowith
p(#) = j. To show how this can be done, we first need a weaker notioretipanent function. We
sometimes also regard a parent function dves a binary relation ovell, .. ., k} satisfying the
restrictions in the following definition.

15

Definition 21 Fork = 1, letp = (§, and fork > 1, letp C {2..k} x {1..k} be a relation where
(i,4) € pimpliesj < i.

We say that an interpretatioh representsp via P iff, forall 1 < j < i < k, p;; € I iff
(i,7) € p.

The forthcoming propositional encoding has those integpiens as its models which repre-
sent relations (according to Definition 21) satisfying tequirement for being a parent functions
(according to Definition 9).

Definition 22 For anyk > 1, define

k i—1 k i—1
preparent(P) = A\ pis A AN (pes — /\).
=2 j=1 =3 j=2

Example 14 Considerk = 4. There are six possible trees (i.e., realizations of a parefation

p according to Definition 9) that can be formed freimodes. These can be represented by the

following six options:
Option1 p(4)
Option 2 p(4)
Option 3 p(4)
Option4 p(4) =
Option5 p(4)
Option 6 p(4)

By Definition 22, formulareparent(Py) is as follows

2,1 A (P3,2V D3,1) A(Pa3VpaaVpai)
A(p32 — —p3,1) A (Pa2 — “Da1) A (Pa3 — —Pa1 A "Pa2)

Note that(p4,3 — Pg,1 A ﬁp4,2) |mplles (p4,3 — ﬁp471) and (p473 — ﬁp4,2). Hence, by
contraposition, we gefps 1 — —pa3) and (ps2 — —pa3), and thereby get the constraints we
require on the relatiorp to form a parent function.

Lemma 6 Letp C {2..k} x {1..k} be a relation wherdi, j) € p impliesj < i, andI be an
interpretation, such thaf represent® via atomsP;. Then, the formulareparent(Py) is true
under! iff p is a parent function ovet.

Proof Sincep is suchthati, j) € pimplies; < i, the lemma holds ifpreparent (P) expresses
thatp is a function. In view of Definition 21, that eveiyn {2..k} has an image by is expressed

by
k i—1

1= AV pij

i=2 j=1

Thati in {2..k} only has one image by can be expressed as follows:(if j) € p then for all

1 #34,(i,1) & p. Since(i, 1) € pimplies] < i, this test is only necessary fom {3..k} (observe
that (2, 1) always is inp for £ > 1 and there is no other possibility). Moreover, since theitest
checked for allj such thati, j) € p holds, itis enough to focus dm,) & pforalll < j. Finally,

it is sufficient thatj ranges fron2 to ¢ — 1. In view of Definition 21, this amounts to

k i—1

I':/\/\(pzj - /_‘pzl)

1=3 j=2
|

Next, we show how to suitably characterize the closufiecf Definition 11) of a parent
functionp.

16

Definition 23 For anyk > 1, define

k i—1 i—1

closure(Py, Pf) = /\ /\ (p;j < (pij V \/ (pig A PTJ)))

i=2 j=1 1=j+1

Lemma 7 Letp be a parent function ovet andq C {2..k} x {1..k} a relation wherg(i, j) € ¢
impliesj < i. Moreover, let/ be an interpretation representingvia P, andq via P;. Then, the
formula closure(Py, Py) is true under! iff p*(i) = {j | ¢(4,)} for i = 2..k.

Proof By Definition 21, closure(Py, P) is, underl, equivalent, for = 2.k andj = 1..i — 1,
to

- p(i, j)
q(i,j) < {p(“) andq(l, j) for somel € {j +1,...,i — 1}

which, by virtue ofp being a parent function angbeing such thati, j) € ¢ impliesj < i,
amounts to

- (4,7)
q(i, j) & {ﬁ(i,?) andq(l, 7) for somel € {1,...,k}

which is known to characterize the transitive closurg @fken as a relation) provided thahas
a finite domain and is acyclic but both points are obvious.here []

Example 15 Considerk = 4 as in Example 14. One possible parent function wes = 3,
p(?)) =2, p(2) = 1. We use atom®&, = {pg,l,p3,1,p471,p372,p4,2,p473} and |IkeW|SePiF Any
interpretation which assigns true tps 1, p3 2, pa 3, and false tas 1, p4,1, andpy o represents
the above parent functiomvia P,. Let us now evaluatelosure(Py, P;) under suchl. In fact,
we then expect that only thogere models otlosure(Py, Py) which assign true to all atoms in
Pf. By definition/] then represents* (according to Definition 11) vid@;. Observe that we have

closure(Py, P§) = (p3, < p2a) A (7)
(p§ 1 (P31 V (32 A pS,l))) A (8)
(p 3,2 < D3, 2))
(p i1 < (pa1 V (pa2 A ps1) V (pags A p§,1))) A (10)
(p 2 (Pa2 V (pa3 A P 2))) A (11)
(p4,3 « p4,3)- (12)

Recall that we considdrassigning true tgs 1, ps 2, p4,3; conjuncts (7), (9), and (12) thus require
thatp3 ;, p3 o, pi 3 are also assigned to true by a modebf closure(Py, Py). Now we haves
andps 2 in I. Thus by line (8) alsgs , is true inI. Similarly for line (10), we already know that
p3, andpy 3 are true in/, and we can conclude that algg , is true in . Finally, (11) forces
aISOp4 » to be true in as well, since we already have seen that for a mdd#kop, 3 andp; ,
are true in/.

We are now ready to relate interpretations to parent funstio combination with sequences
A = (®q,..., D). For this, we have to guarantee that models represent fareriions (this is
done with the already introduced conjunetparent (P)) and that the represented parent func-
tion correctly relates to a represented sequetaoiding duplicate children (in a way that is
similar to what we did in Definition 18 for the modudBstinct(G, A, p). The latter task is real-
ized via the second conjunct in the forthcoming definition.

17

Definition 24 For a knowledge bas4, and a sequence of generator functiehs: (g1, ..., gk),
define

k i—1j5—-1
parent(G, A, P,) = preparent(Pg) A /\ /\ /\ <p” Apji) — = /\ (9:(9) <—>gj(5))> .

=3 j=21=1 dEA

Lemma 8 For a knowledge basA, and an interpretatiorf representingd = (®4, ..., P) via
G, and a relatiorp via Py, we have thaparent(G, A, Py) is true underl iff p is a parent function
for A.

Proof We already know from Lemma 6 thateparent (P) is true undefr iff p (represented by)

is a parent function (ovér). We thus need to show that the remaining pamo&nt (G, A, Py) is

true under iff p is a parent function fod = (4, ..., ®x), thatis,p(i) = p(j) implies®; # @,
foranyl < j < ¢ < k (in fact, it is sufficient to us@ < j < i < k, since the root has obviously
no parent node). Sinckalso representsl (viaG = (g1,...,9x)), we haved; # @; iff there
exists some € A such thaly;(§) < g;(9) is false inI. This holds iff= A ;. A (9i(0) < g;(0))

is true unded. Since we perform this test for each pair of childeéfi), A(j) of each noded(l)

in the annotated tree (represented/hythe claim follows by the same arguments as used to show
Lemma 5.]

Definition 25 For a knowledge basé\, a formulac, and a sequence of generator functions
G ={q,...,9x), we define

argtree(G,a, A, Py, Py) =

e
. g
Q
>
2
>

,‘_.»—-

~.
|\>

Pij — SUC(Qiagij)) A

N
||
o

(gz /:\ (pi; — 9 5)))-

Theorem 5 For a knowledge basé\, a formulac, and an interpretatiory, representing a se-
quenced = (¥4, ..., ;) via g, and a relationp via P, we have that the QBF

H>a—
1<

T(G, A, Py) = parent(G, A, P;) A 3P} (closure(Pk,P,:) A argtree(g,oz,A,Pk,P,:))
is true under iff («, A, p) represents an argument tree.

Proof We only give a sketch here, since we already know the follgvpiroperties:

e By Lemma 8,I represent a parent function feriff parent(G, A, Py) is true under;

e By Lemma 7, given an interpretatidnrepresenting a parent functign(overk) via P,
represents the transitive closurepofia P;; iff closure(Py, Py) is true undet;

e Formulaargtree(G, o, A, Py, P) follows the same structure from Definition 19 but instead
of using the functiong, p* explicitly, we represent them (see Definition 25) by the eesp
tive setsP, and P} of variables. Using this observation and by suitably corimigjrthe
techniques for, and P} (as done in the proofs above) with the structure of the préof o
Theorem 3, one can show the following relation: Givenw, and an interpretatiohrepre-
sentingA via G, a parent functiop for A via Py, and the transitive closure ¢f i.e.p*, via
Py, we have thata, A, p) represents an argument treedffgtree(G, a, A, Py, Py is true
under!.

From the latter observation and the semantics of the exiateuantifier, the claim holds. Note
that we usedd P} just to “hide” the variables representing the transitivesare of the parent
function from the user, since it is not an explicit part of fteguested problem, but rather an
internal detail which is fully determined ky]

18

Definition 26 For a knowledge basé, a sequence of generator functighis= (g1, . .., gx), and
a further generator functiog, we define

k _
complete(G, A, Py) /\ (suc (9,9i, A \/ Pij N /\) < g4()))

dEA

Theorem 6 For a knowledge basé\, a formulac, and an interpretatiory, representing a se-
quenced = (94, ..., P;) via G, and a relationp over P, we have that the QBF

CAT(G,A,P;) = parent(G,A, P;) A
3Py (closure(Pk,P,:) A argtree(G, a, A, Py, P) A complete(g,A,Pk))

is true under iff («, A, p) represents a complete argument tree.

The proof of Theorem 6 is similar to the proof for Theorem 4aptcdhat at the end, Theorem 5
instead of Theorem 3 is required.

Again, we now can decide different decision problems by gisibove concepts plus fixing
some of the concepts. An interesting question is as follo@isen o and A, does there exist
an argument tree (a complete argument tree) using4eti other words, can we find a parent
functionp, such that«, A, p) represents an argument tree (a complete argument tree)?

Corollary 5 GivenA = ®4,...,d; and a formulan, there exists a parent functign such that
(a, A, p) represents

1. an argument tree iff the closed QBF

3P,3G(A (/\ﬁx (gi,®;) A AT(G, A Pk))

is true.
2. acomplete argument tree iff the closed QBF

3P.3G(A (/\ﬁ:p i, ®) A CAT(G, A Pk))
is true.

3.4 Remarks

We give a few remarks concerning the actual size of the engsdprovided in the previous
sections compared to the size of the encoded problem.

First, we address the number of additional atoms (mosttyistelg from the generator func-
tionsg) required in the encodings. For the encodings given in 8e@&il, note that we require a
new atom for each formula in. Hence, if the cardinality of\ is n, we needr new atoms for
most of the encodings in that section, with the exceptiohefncodings where:c(-) is involved
where we used two generator functians g resulting in2n new atoms. For the encodings in
Section 3.2, where we used tuple forms of lengtio represent trees with nodes, also the size
of the tree comes into play. One can check that the numberdifiaiil atoms required for the
encodings in that section is bound#k + 1). Finally, encodings of argument trees with arbitrary
structure (Section 3.3) require a much higher number ofteatdil atoms due to the task of repre-
senting the tree structure via further séjs P of atoms. Note that these sets are of cardinality
k(k — 1)/2. Together with the atoms stemming from the generator fonstiwe get here a need
for n(k + 1) + k? new atoms.

19

Concerning the size of the encodings, we just mention theasite is linear in the size af
for the encodings in Section 3.1. For the more involved emgsin Section 3.2 and 3.3, the size
of the encodings is at most quadratic in the sizAdnd the size of tree.

However, both the theoretical point of view as well as pdtexperience tell us that the nest-
ing depth of alternating quantifiers is the most crucial paager for evaluating QBFs, although
the parameters of formula size and number of atoms cannghioead. We recall that for all our
encodings this nesting depth is fixed and independent ofiteeo$ A or the size of the consid-
ered argument tree. In fact, one can check that there aresattwmquantifier alternations at each
branch of a formula tree associated with our encodings.

As a final remark, we mention that the number of new atoms hbe tocreased if one wants
to employ QBF solvers which rely on inputs in certain norntahis. Here, the transformation
to such a normal form further introduces new atoms. Most efcilrrent QBF solvers (see [28])
require such a normal form, but there are also solvers (24.Which can be applied to the
encodings directly (modulo some transformation steps lwi@not introduce new atoms).

4 Discussion

There is increasing interest in formalizations for argutagan, and in particular computational
models of argument (see for example [4, 13, 31, 17, 6, 8])hikpgaper, we have addressed this
issue in the context of argumentation with classical logidte underlying logic by providing
encodation in terms of quantified Boolean formulas. Thisraagh is beneficial with respect to
several aspects.

First, it offers the possibility of implementing decisioropedures for argumentation based on
classical logic using existing QBF solvers.

Second, it allows to obtain novel complexity results foenesting decision problems asso-
ciated with logic-based argumentation. Indeed, while fasteact argumentation, there has been
a comprehensive analysis of computational complexity ofesof the key decision problems (in
particular [16]), there are only a few published resultsaayning computational complexity of
logic-based argumentation. In [29], for instance, it iswhdhat given a knowledgebage and
a formulac, ascertaining whether there istaC A such that{®, «) is an argument (i.e® is a
minimal consistent set of premises entailinpis a >5-complete decision problem. Our results
can be employed to obtain similar results for more involvedision problems. In fact, since all
encodings are constructible in polynomial time with res¢gedhe size of the problem descrip-
tion, inspecting the quantifier structure of the encodingsapplying Proposition 4 immediately
yields upper complexity bounds for the encoded problems.if&tance, this shows that several
decision problems formulated for argumentation trees netoaated in>%. Since the evaluation
of a single argument is already hard for this cla%;completeness for those decision problems
over argumentation trees is expected. However, if complegamentation trees are taken into
account, our encodings indicate that this leads to an isargacomplexity, having such prob-
lems located in%. Establishing exact complexity results for numerous desiproblems in
logic-based argumentation is indeed part of our ongoincgwor

In another approach to deductive argumentation, Wooldritcal [34] show that by taking a
“maximal” set of arguments (i.e. a set of arguments that doésclude “equivalent” arguments),
they can treat the set of arguments as an abstract argunstéerswith the attack relation holding
between a pair of argumentsand A’ when A is a defeater ofA’. This means that the abstract
argument system can be evaluated using the notions of adgiptdefined by Dung [14]. This
offers a different way of assembling and evaluating argustmthat considered in this paper.
Furthermore, they provide complexity results concerniritientification of the “maximal” sets
of arguments.

Finally, our results are useful for comparing different eggzhes to argumentation. In fact,
there is increasing interest in algorithms and impleméntatfor argumentation systems includ-
ing for abstract argumentation systems [11, 2, 12, 32], $sumption-based argumentation sys-

20

tems [27, 15, 25], for logic-based argumentation systeraedban defeasible logic [26, 10, 33, 9],
and for logic-based argumentation systems based on dassigc [18]. Undertaking empirical
evaluations that compare these algorithms is difficult beeaf the diverse approaches taken in
implementing them. So undertaking evaluations via endodatas QBFs offers the opportunity
for a level playing field for comparisons that draw out th@sgths and weaknesses of each of
the algorithms and their underlying reasoning mechanismgarticular, comparisons with QBF
encodings for other argumentation formulations [22] ogaghings in terms of classical logic for
nonmonotonic formalisms in general [3, 19] are now enabled.

Acknowledgments

This work was supported by the Vienna Science and Techndiamd (WWTF) under grant
ICT08-028.

References

[1] L Amgoud and C Cayrol. A model of reasoning based on thedpction of acceptable
argumentsAnnals of Mathematics and Artificial Intelligenc®4:197-216, 2002.

[2] P Baroni and M Giacomin. Argumentation through a disttéd self-stabilizing approach.
Journal of Experimental and Theoretical Artificial Intglénce 14(4):273-301, 2002.

[3] RBen-Eliyahuand R Dechter. Default reasoning usingsitzal logic Artificial Intelligence
84(1-2):113-150, 1996.

[4] T Bench-Capon and P Dunne. Argumentation in artificiaéliigence. Artificial Intelli-
gence 171(10-15):619-641, 2007.

[5] S Benferhat, D Dubois, and H Prade. Argumentative infeesin uncertain and inconsistent
knowledge bases. IRroceedings of the 9th Annual Conference on Uncertaintyriifiéial
Intelligence (UAI 1993)pages 1449-1445. Morgan Kaufmann, 1993.

[6] Ph Besnard, S Doutre, and A Hunter, editoSomputational Models of Argument: Pro-
ceedings of COMMA 20080S Press, 2008.

[7]1 Ph Besnard and A Hunter. A logic-based theory of dedectirgumentsArtificial Intelli-
gence 128:203-235, 2001.

[8] Ph Besnard and A HunteElements of ArgumentatioMIT Press, 2008.
[9] D Bryantand P Krause. A review of current defeasible oa@sg implementationsKnowl-
edge Engineering Revie®3(3):227-260, 2008.

[10] D Bryant, P Krause, and G Vreeswijk. Argue tuprolog: ghtweight argumentation engine
for agent applications. In P Dunne and T Bench-Capon, exji@mputational Models of
Argumentation (COMMA 2006pages 27-31. IOS Press, 2006.

[11] C Cayrol, S Doutre, and J Mengin. Dialectical proof thes for the credulous preferred
semantics of argumentation frameworks. Quantitative and Qualitative Approaches to
Reasoning with Uncertainty (ECSQARU 200&)lume 2143 ofLNCS pages 668-679.
Springer, 2001.

[12] C Cayrol, S Doutre, and J Mengin. On decision problenteted to the preferred semantics
for argumentation frameworksournal of Logic and Computatiod3(3):377—403, 2003.

[13] C Chesiievar, A Maguitman, and R Loui. Logical modelaafument. ACM Computing
Surveys32:337-383, 2000.

[14] P Dung. On the acceptability of arguments and its funeiatal role in nonmonotonic reason-
ing, logic programming and n-person gamastificial Intelligence 77(2):321-358, 1995.

21

[15] P Dung, R Kowalski, and F Toni. Dialectical proof procees for assumption-based admis-
sible argumentatiorArtificial Intelligence 170:114-159, 2006.

[16] P Dunne and T Bench-Capon. Coherence in finite argurtientsystemsaAirtificial Intelli-
gence 141:187-203, 2002.

[17] P Dunne and T Bench-Capon, edito@mputational Models of Argument; Proceedings of
COMMA 2006 10S Press, 2006.

[18] V Efstathiou and A Hunter. Algorithms for effective angentation in classical propositional
logic. In Proceedings of the International Symosium on Foundatidrisformation and
Knowledge Systems (FOIKS 200BNCS. Springer, 2008.

[19] U Egly, T Eiter, H Tompits, and S Woltran. Solving advadaeasoning tasks using quanti-
fied boolean formulas. IRroceedings of the 17th National Conference on Artificiaélii
gence (AAAI'OQ)pages 417-422. AAAI Press / MIT Press, 2000.

[20] U Egly, M Seidl, H Tompits, S Woltran, and M Zolda. Comimay different prenexing strate-
gies for quantified boolean formulas. Rroceedings of the 6th International Conference on
the Theory and Applications of Satisfiability Testing (9&7J-Selected Revised Papersl-
ume 2919 oL NCS pages 214-228, 2004.

[21] U Egly, M Seidl, and S Woltran. A solver for QBFs in honpex form. Constraints
14(1):38-79, 2009.

[22] U Egly and S Woltran. Reasoning in argumentation fraomw using quantified boolean
formulas. InProceedings COMMA'Ofages 133-144. 10S Press, 2006.

[23] T Eiter and G Gottlob. The complexity of logic-based abtion. Journal of the ACM
42:3-42, 1995.

[24] M Elvang-Ggransson, P Krause, and J Fox. Dialecticneiag with classically inconsistent
information. InProceedings of the 9th Conference on Uncertainty in Aréfilritelligence
(UAI 1993) pages 114-121. Morgan Kaufmann, 1993.

[25] D Gaertner and F Toni. Computing arguments and attackssumption-based argumenta-
tion. IEEE Intelligent System®2(6):24-33, 2007. Special Issue on Argumentation Tech-
nology.

[26] A Garcia and G Simari. Defeasible logic programmingasgumentative approachheory
and Practice of Logic Programming(1):95-138, 2004.

[27] A Kakas and F Toni. Computing argumentation in logicgmaomming. Journal of Logic
and Computation9:515-562, 1999.

[28] M Narizzano, L Pulina, and A Tacchella. Report of thed®BF solvers evaluatiodournal
of Satisfiability, Boolean Modeling and Computati@m45-164, 2006.

[29] S Parsons, M Wooldridge, and L Amgoud. Properties amdpiexity of some formal inter-
agent dialogueslournal of Logic and Computatioi3(3):347-376, 2003.

[30] H Prakken and G Sartor. Argument-based extended logigramming with defeasible
priorities. Journal of Applied Non-Classical Logic8:25-75, 1997.

[31] H Prakken and G Vreeswijk. Logical systems for defelasisgumentation. In D. Gabbay,
editor,Handbook of Philosophical Logi&luwer, 2002.

[32] M South, G Vreeswijk, and J Fox. Dungine: A java dung mes. InComputational
Models of Argumentation (COMMA 2008pS Press, 2008.

[33] G Vreeswijk. An algorithm to compute minimally grourdidefence sets in argument sys-
tems. In P Dunne and T Bench-Capon, edit@emputational Models of Argumentation
(COMMA 2006) pages 109-120. IOS Press, 2006.

[34] M Wooldridge, P Dunne, and S Parsons. On the complexityking deductive and abstract
argument systems. IRroceedings of the Twenty First National Conference onfi8idil
Intelligence (AAAI-0G)MIT Press, 2006.

22

[35] C Wrathall. Complete sets and the polynomial-time &iehy. Theoretical Computer Sci-
ence 3(1):23-33, 1976.

23

