
Bounded Approximate Decentralised
Coordination via the Max-Sum Algorithm

A. Rogers∗, A. Farinelli∗†, R. Stranders∗ and N. R. Jennings∗

∗School of Electronics and Computer Science, University of Southampton, Southampton, UK.

†Department of Computer Science, University of Verona, Verona, Italy.

{acr,af2,rs06r,nrj}@ecs.soton.ac.uk

October 28, 2010

Abstract

In this paper we propose a novel approach to decentralised coordination, that is
able to efficiently compute solutions with a guaranteed approximation ratio. Our
approach is based on a factor graph representation of the constraint network. It
builds a tree structure by eliminating dependencies between the functions and vari-
ables within the factor graph that have the least impact on solution quality. Itthen
uses the max-sum algorithm to optimally solve the resulting tree structured con-
straint network, and provides a bounded approximation specific to the particular
problem instance. In addition, we present two generic pruning techniques to re-
duce the amount of computation that agents must perform when using themax-sum
algorithm. When this is combined with the above mentioned approximation algo-
rithm, the agents are able to solve decentralised coordination problems thathave
very large action spaces with a low computation and communication overhead.
We empirically evaluate our approach in a mobile sensor domain, where mobile
agents are used to monitor and predict the state of spatial phenomena (e.g., tem-
perature or gas concentration). Such sensors need to coordinate theirmovements
with their direct neighbours to maximise the collective information gain, while
predicting measurements at unobserved locations. When applied in this domain,
our approach is able to provide solutions which are guaranteed to be within 2% of
the optimal solution. Moreover, the two pruning techniques are extremely effec-
tive in decreasing the computational effort of each agent by reducingthe size of
the search space by up to 92%.

1 Introduction

Recently, significant research effort has sought to apply coordination techniques to con-
trol physical devices that are able to acquire information from the environment. In these
settings,decentralised coordination (i.e. no central system exists that controls the co-
ordination process, but the devices coordinate amongst themselves) has proved to be a
natural, robust and effective approach to organise the activities of theembedded agents
that control the devices. For example, decentralised coordination techniques have been
used to control the orientation of multiple fixed sensors deployed to localise and track a
target [1] and to coordinate sensing and communication in a sensor network deployed

1



to collect environmental data [2, 3]. In both of these domains, and many others be-
sides, decentralised coordination is particularly challenging because of the constrained
computational resources of the devices (due to the requirement of minimising power
consumption) and because communication is limited to localneighbours (due to the
use of low power wireless communication).

Given this background, the problem of decentralised coordination in these domains
is often cast as a multi-agent distributed constraint optimisation problem (DCOP). In
the constraint optimisation framework the aim is to find the assignment of a set of
variables that optimises the aggregation of payoffs (or conversely costs) of a set of
soft constraints defined over the values of the variables [4]. In a distributed constraint
optimisation problem a set of agents control the value of thevariables in the system;
jointly aiming to optimise the global reward. DCOP techniques can be directly used
to address the decentralised coordination problem described above by representing the
possible actions that an embedded agent can take with variables and by encoding pay-
offs (or costs) for taking joint actions with constraints. These DCOP techniques can be
broadly divided into two classes: complete algorithms (i.e., algorithms that always find
a solution that optimises the global objective function), such as ADOPT [5], OptAPO
[6], DPOP [7], NCBB [8] and AFB [9]; and approximate algorithms such as the Dis-
tributed Stochastic Algorithm (DSA) [1], Maximum Gain Message (MGM) [10], and
ALS DisCOP [11] that do not.

While complete algorithms guarantee that they will return the optimum solution,
they also exhibit an exponentially increasing coordination overhead (either in the size
and/or number of messages exchanged or in the computation required by each device
[12]) as the number of devices in the system increases. Thus,their use in practical
applications such as those mentioned above is severely limited. This important issue
is partially addressed by extensions of the above mentionedapproaches. For example,
MB-DPOP provides a memory bounded algorithm that trades-off the linear message
number of DPOP with polynomial message size [13]. In addition, BnB-ADOPT is
an extension of ADOPT, using a different search strategy (depth first with branch and
bound instead of best first) that consistently reduces computation time [14]. However,
while these approaches provide important improvements, toguarantee optimality of the
solution, the overall time and/or message complexity is still necessarily exponential.

In contrast, approximate algorithms require very little local computation and com-
munication, and are, as such, well suited for large scale practical distributed applica-
tions in which the optimality of the solution can be sacrificed in favour of computational
and communication efficiency (see [4] for a review of such algorithms). Furthermore,
such approximate techniques, have been shown to provide solutions which are very
close to optimality in several problem instances [1, 10]. However, such approaches fail
to provide guarantees on the solution quality in general settings. This is particularly
troublesome because the quality of solution to which most approximate algorithms con-
verge is highly dependent on many factors which cannot always be properly assessed
before deploying the system. Therefore there is no guarantee against particularly neg-
ative behaviours of such techniques on specific pathological instances.

To rectify these shortcomings, we believe the answer is to develop approximate
algorithms with quality guarantees. Such approaches can address the trade off between
solution quality and computation effort while providing a guaranteed lower bound on
the quality of the solution obtained with respect to the optimum. Addressing such
trade-offs is particularly important in dynamic settings and when the agents have low
computational power, which is usually the case for applications involving embedded
devices (such as mobile robots or sensor networks). Moreover, having a bound on the

2



quality of the provided solutions is particularly important for safety critical applications
(such as disaster response, surveillance, etc.) because a pathological behaviour of the
system is, in this case, simply unacceptable.

Now, there has been some work on providing guarantees on the performance of
approximate algorithms in the DCOP framework. In particular, Pearce and Tambe use
the concept of k-optimal solutions, where a solution is k-optimal if the corresponding
value of the objective function cannot be improved by changing the assignment of any
k or less variables [15, 16]. Specifically, Pearce and Tambe provide an approximation
ratio (i.e., the ratio between the unknown optimal solutionand the approximate solution
[17]) for k-optimal algorithms which is valid for any DCOP with non-negative reward
structure [15]. However, the accuracy of the approximationratio, in any particular
setting, depends on the number of agents, on the arity of the constraint functions and
on the value of k. Specifically, the approximation bound is more accurate when k is
higher but less accurate when the number of agents in the system grows. Thus, their
approach provides a poor approximation bound when the number of agents grows.
Moreover, finding a k-optimal solution of higher k requires,in general, exponentially
more computation and communication. Better approximationbounds can be provided
assuming somea priori knowledge on the reward structure. For example, Bowring et
al. show that the approximation bounds can be improved by assuming the knowledge
of the ratio between the least minimum reward to the maximum reward [16]. In this
approach, the bound is significantly improved, and the bounddecreases consistently
when the number of agents grows. However, we will show in Section 4.3 that the
resulting bound is still significantly larger than that produced by our approach.

Data dependent approximation approaches with guarantees have also been investi-
gated. For example, Petcu and Faltings propose an approximate version of DPOP [18],
and Yeoh et al. provide a mechanism to trade-off solution quality for computation time
for the ADOPT and BnB-ADOPT algorithms [19]. Such mechanisms work by fixing
an approximation ratio and reducing computation or communication overhead as much
as possible to meet that ratio. While empirical results show that such approaches sig-
nificantly improve the efficiency of their complete counterparts (i.e., DPOP and BnB-
ADOPT), there is no guarantee or bound on the computation time or communication
overhead required to achieve the predetermined bound.

Against this background, here we propose a novel decentralised coordination ap-
proach that is able to make efficient use of constrained computational and communica-
tion resources, while providing accuratebounded approximate solutions. Our point of
departure is recent work demonstrating that the max-sum algorithm is a very promising
technique for decentralised coordination (and, more generally, constraint reasoning),
providing solutions close to optimality while requiring very limited communication
overhead and computation [12, 20]. The max-sum algorithm belongs to the Gener-
alised Distributive Law (GDL) framework [21], a family of techniques frequently used
in information theory for decoding error correcting codes1 [22] and to solve graphical
models (e.g., to find the maximum a posteriori assignment in Markov random fields
[23] or compute the posterior probabilities [24]). When applied to constraint networks
that are trees, the max-sum algorithm is able to provide the optimal solution to the
optimisation problem. However, when applied to general constraint networks which
typically contain loops, only limited theoretical resultshold for the solution quality.
While empirical evidence shows that the algorithm is able to find solutions which are

1The turbo codes are probably the most important representative application for which GDL techniques
are used. See [22], chapter 48.4.

3



very close to the optimal in general problems, there is no guarantee that the algorithms
will converge to a solution, and only very limited guarantees on the quality of the so-
lution to which it might converge.

Thus, in this work, we build on the existing max-sum algorithm and propose a new
algorithm that provides bounded approximate solutions on general constraint networks
with bounded reward functions. We do so by removing cycles inthe original con-
straint network, specifically by ignoring dependencies between functions and variables
which have the least impact on the solution quality. We then use max-sum to optimally
solve the resulting tree structured constraint network, whilst simultaneously comput-
ing the approximation ratio for the original problem instance. We note that the same
guarantees can be obtained by using any distributed optimization algorithm that runs
in linear time on tree-structured network. Thus, the results in this paper pertaining to
bounded approximate solutions are not limited to the max-sum algorithm. However,
our specific choice of the max-sum algorithm here is driven byits efficiency in terms
of low communication overhead (specifically in the number ofmessages), low com-
putational requirement and ease of decentralisation. Other possible choice yielding
the same results in term of efficiency would similar message passing algorithms such
as DPOP or the cluster tree elimination algorithm [25]. However, as shown in [26],
the GDL framework (of which max-sum is an instance) generalises many optimisa-
tion algorithms based on dynamic programming, including both DPOP and cluster tree
elimination.

Building on this result, we then go on to show that we can further improve the
computational efficiency of our algorithm by reducing the search space that each agent
needs to consider. This is important, since many practical problems exhibit search
spaces which quickly become intractable even for approximated techniques. In order
to achieve this, we develop two generic action pruning algorithms. The first attempts
to discard dominated actions of individual agents (i.e. those that can never be part of
an optimal solution) before the max-sum algorithm is run (and thus, this approach also
generalises to other distributed optimization algorithms). The second uses branch and
bound to reduce the space of joint actions that needs to be considered whilst running
the max-sum algorithm.

To evaluate the effectiveness of the two algorithms in a realistic application, we
consider a disaster response scenario where a set of mobile sensors are tasked to gather
information on spatial phenomena, such as temperature or the concentration of poten-
tially toxic chemicals. To predict environmental conditions in parts of the environment
that can not be sensed directly, these sensors need to identify and model the spatial
and temporal dynamics of the monitored phenomena. Moreover, the sensors need to
coordinate their movements to collect the most informativemeasurements needed to
predict these environmental conditions as accurately as possible [27]. This problem
is particularly challenging from a coordination standpoint because the sensors need a
sophisticated model to represent the complex spatial and temporal correlations of the
monitored phenomena (and here we use the Gaussian processesto perform this role),
which results in a high computational overhead when evaluating the possible joint ac-
tions of the sensors. Moreover, to achieve effective solutions, mobile sensors have to
coordinate on paths, rather than single actions, thus dealing with a large search space.2

Thus, to effectively apply max-sum in a computationally challenging domain, such as
the mobile sensors one, we can use these two new pruning algorithms to drastically

2A path is a sequence of single actions, thus the number of possible paths grows exponentially with the
length of the sequence. However, by coordinating on sequences of actions, robots are able to better predict
which are the most informative measurements, and thus coordinate more effectively.

4



reduce the required number of function evaluations, thus alleviating a major bottleneck
of this algorithm for practical applications.

In more detail, this work makes the following contributionsto the state of the art:

1. We propose a novel approach for decentralised coordination that provides bounded
approximate solutions. This is the first approach to provideguarantees on con-
vergence and solution quality for the max-sum algorithm in adecentralised co-
ordination setting (and as noted, earlier, it is also applicable to other distributed
optimization algorithms that run in linear time on tree-structured network). In
particular, our approach exploits the fact that we can calculate a weight for each
edge of the original loopy constraint graph that characterises the maximum ef-
fect that the removal of that edge can have on the optimal value of the function
to which it was connected. We formally prove that, if we remove edges to create
a tree structured constraint network, our algorithm can then compute the approx-
imation ratio for the original problem instance. Moreover,we present a fully
decentralised algorithm (building on Gallager, Humblet and Spira’s algorithm
for finding minimum spanning trees [28]) that forms a tree structured constraint
network by removing those edges with the minimum total weighting (hence min-
imising the approximation ratio calculated above). The algorithm then initiates
max-sum on the resulting tree structured constraint network and distributes the
elements required to compute the approximation ratio to allnodes.

2. We empirically evaluate our bounded approximate approach in a synthetic sce-
nario analysing the solution and approximation ratio obtained in a generalisation
of the distributed graph colouring algorithm, which is a canonical problem fre-
quently used to evaluate DCOP techniques (e.g., [5] and [6]). We show that the
approximate solutions that our algorithm provides are typically within 95% of
the optimum and the approximation ratio that our algorithm provides is typically
1.23, and we show that this is much more accurate than the previous theoretical
bound for k-optimal algorithms.

3. We develop two novel, generic pruning techniques to reduce the computational
overhead of max-sum when applied to problems with a large action space. The
first method attempts to reduce the number of actions that each agent needs to
considerbefore running the max-sum algorithm. This algorithm prunes the dom-
inated actions of each agent, which will never be selected bythe decentralised
coordination procedure, regardless of the actions of otheragents. The second
technique is based on a branch and bound search, which is performed when
computing the joint actions that maximise the utility of thewhole system.

4. Finally, we apply the developed decentralised coordination techniques to the mo-
bile sensor domain. We show that our approach is able to provide an effective
on-line coordination approach for the mobile sensors. In particular, we em-
pirically show that a coordination algorithm based on max-sum outperforms a
greedy non-coordinated algorithm by up to 50% in this domain. Moreover, the
use of the bounded approximate algorithm results in solutions that are within 2%
of the optimal. At the same time, by applying the two pruning techniques the
action space is reduced by 92%, thus significantly reducing the computational
overhead.

The rest of this paper is structured as follows: Section 2 formally defines the de-
centralised coordination problem we address and Section 3 provides a brief outline of

5



the max-sum algorithm. Section 4 presents our approach to provide bounded approxi-
mate solutions and Section 5 then details our techniques to speed-up the computation
performed by the max-sum approach. Section 6 empirically evaluates our approach
in the mobile sensor domain. Section 7 puts our work in perspective with previous
approaches and, finally, Section 8 concludes and discusses future work.

2 The Decentralised Coordination Problem

We formulate the decentralised coordination problem we address as a DCOP. Following
the standard DCOP formulation, we have a set of discrete variablesx = {x1, . . . , xm},
which are controlled by a set of agentsA = {A1, . . . ,Ak}, and a set of functions
F = {F1, . . . , Fn}. Each variablexi represents the possible actions that the controlling
agents can execute and can take values over a finite domaindi. Each functionFi(xi) is
dependent on a subset of variablesxi ⊆ x defining the relationship among the variables
in xi. Thus, functionFi(xi) denotes the value for each possible assignment of the
variables inxi and represents the joint payoff that the corresponding agents achieve.
Note that this setting is not limited to pairwise (binary) constraints and the functions
may depend on any number of variables.

Within this setting, we wish to find the value of each variable, x∗, such that the sum
of all functions in the system is maximised (i.e., social welfare maximisation):

x∗ = argmax
x

n
∑

i=1

Fi(xi) (1)

Furthermore, in order to enforce a truly decentralised solution, we assume that each
agent can control only its local variable(s) and has knowledge of, and can directly
communicate with, a few neighbouring agents. Two agents areneighbours if there is a
relationship connecting variables and functions that the agents control.

3 Basics of the Max-Sum Algorithm

Notation used in this section

∙ qi→j(xi) is the message sent from variablexi to functionFj .

∙ �ij is the normalising constant for the messageqi→j(xi).

∙ ℳi is set of function indexes, indicating which function nodesare connected
to variable nodexi.

∙ rj→i(xi) is the message sent from functionFj to variablexi.

∙ Nj is the set of variable indexes, indicating which variable nodes are connected
to function nodeFj xj∖xi ≡ {xk : k ∈ Nj ∖ i}.

In order to apply max-sum to the optimisation problem described in Equation 1, we
represent it as a bipartite factor graph.3 For example, Figure 1 shows three interacting

3From this point onwards, we shall use the terms ‘factor graph’and ‘constraint network’ interchangeably,
and note that agents are responsible for computing and relaying messages of the function and variable nodes
that they control.

6



F1

F2

F3

x1

x2

x3

A1 A2 A3

Figure 1: An example factor graph for agentsA1, A2 andA3.

agents,A1,A2 andA3. Variables represent actions that agents can execute, while func-
tions assign utility values for all possible configurationsof the variables they depend
on, thus describing agent interactions. In general, each agent can be responsible for
assigning values to a set of variables, and for performing computations associated to a
set of functions. In the figure, for ease of presentation only, we show a situation where
each agent is responsible for assigning a single variable and for performing the compu-
tation for a single function. However, this is not a requirement for the application of the
max-sum algorithm and in general agents can be responsible for a set of variables for
the computation of an arbitrary number of functions. In the example,x1 = {x1, x2},
x2 = {x1, x2, x3} andx3 = {x2, x3}. Notice thatF2(x2) is not a pairwise interaction
and in general, there is no requirement that the utility functions should decompose into
additive constraints between variables. The max-sum algorithm then operates directly
on the factor graph representation described above, and does so by specifying the mes-
sages that should be passed from variable to function nodes,and from function nodes
to variable nodes. These messages are defined as:

∙ From variable to function:

qi→j(xi) = �ij +
∑

k∈ℳi∖j

rk→i(xi) (2)

whereℳi is a set of function indexes, indicating which function nodes are con-
nected to variable nodei, and�ij is a normalisation factor (the details of which
will be dicussed shortly).

∙ From function to variable:

rj→i(xi) = max
xj∖xi

⎡

⎣Fj(xj) +
∑

k∈Nj∖xi

qk→j(xk)

⎤

⎦ (3)

whereNj is a set of variable indexes, indicating which variable nodes are con-
nected to function nodej andxj∖i ≡ {xk : k ∈ Nj ∖ i}.

When the factor graph is cycle free, the algorithm is guaranteed to converge to the
global optimal solution such that it finds the variable assignment that maximises the

7



sum of the functions, thereby optimally solving the optimisation problem shown in
Equation 1. Furthermore, this convergence can be achieved in time equal to twice
the depth of the tree by propagating messages from the leaf nodes of the tree to the
root and back again. In this case, the optimal variable assignment is found by locally
calculating the function,zi(xi), once the variable node has received a message from
each of its connected function nodes.

zi(xi) =
∑

j∈ℳi

rj→i(xi) (4)

and hence findingargmaxxi
zi(xi).

When applied to cyclic graphs, the messages within the graph may converge after
multiple iterations, but there is no guarantee of this. In cyclic graphs, messages are usu-
ally normalised to prevent them from increasing endlessly.This is achieved by setting
the normalising constant�ij in Equation 2 such that

∑

xi
qi→j(xi) = 0.4 Extensive

empirical evidence demonstrates that, despite the lack of convergence guarantees, the
GDL algorithms (e.g., sum-product, max-product, max-sum,etc.) do in fact generate
good approximate solutions when applied to cyclic graphs inthis way [29]. Interesting
results have been obtained for characterising the quality of solutions at convergence.
Specifically, for the max-product algorithm5 it can be shown that when the algorithm
converges, it does not converge to a simple local maximum, but rather, to a neigh-
bourhood maximum that is guaranteed to be greater than all other maxima within a
particular large region of the search space [23]. Characterising the properties of these
algorithms in terms of convergence and solution quality guarantees is still an ongo-
ing area of research, and to date significant results have been obtained only for graphs
with specific topologies (e.g., several researchers have focused on the analysis of the
convergence and solution quality in graphs containing justa single loop [30, 31]).

To better explain the operations performed by the max-sum algorithm we now de-
tail an execution example. To make the example easier we consider a simple factor
graph composed of two variables and two functions, each variable has a domain com-
posed of three values indicated asr, b, g. Figure 2(a) shows the factor graph in this
case, and the max-sum messages for a single iteration. Figure 2(b) shows the table
form of the functions and the operations required to computethe exemplar message
r32→2(x2), where the superscript indicates the iteration for the message computation.
At the first iterations all theq messages are initialised to zero, and therefore ther
messages are a maximisation of the sending function over thevariable which is not
receiving the message (e.g.,r02→2(x2) = maxx1

[F2(x1, x2)]). At each iteration each
variable computes its individualz function and chooses the value that maximise it. For
this particular example the messages reach a fixed point after just six iterations and the
z functions converge toz1(x1) = {< x1 = r, 9 >,< x1 = b, 14 >,< x1 = g, 4 >}
z2(x2) = {< x2 = r, 18 >,< x2 = b, 21 >,< x2 = g, 18 >}6. The algorithm would
then find the optimal assignmentx1 = b andx2 = b obtaining a total utility of 12.

4Note that this normalisation will fail in the case of a negative infinity utility that represents a hard
constraint on the solution. However, it is still possible touse the max-sum algorithm in this context by
simply replacing the negative infinity reward with one whose absolute value is greater than the sum of the
maximum values of each function. This ensures both that the normalisation works correctly, and that the
reward is still sufficiently negative to effectively act as ahard constraint (i.e. there can be no solution that
violates this constraint that has a higher utility than one that does not).

5The same results hold for the max-sum algorithm as it can be considered as a derivative of the max-
product algorithm when we consider the log domain [12].

6For a complete trace of the max-sum algorithm on an exemplar problem, see [12].

8



(a)

F1

F2x1

x2

?

6

-

�

r1→1 r2→2

r1→2

r2→1

6

?

�

-

q1→1 q2→2

q2→1

q1→2

(b)

F1

10
5
5
2
2
2
0
0
0

x1 x2

r r
r b
r g
b r
b b
b g
g r
g b
g g

F2

0
1
0
7

10
7
2
2
2

x1 x2

r r
r b
r g
b r
b b
b g
g r
g b
g g

q31→2

4
-1
-3

x1

r
b
g

r32→2

6
9
6

x2

r
b
g

+

+

+

-
Max

Figure 2: Execution example for the max-sum algorithm showing (a) the factor graph
and messages exchanged in each iteration of the algorithm, and (b) the table form of
the functions and computation of an exemplar function to variable message.

The max-sum algorithm is extremely attractive for the decentralised coordination of
computationally and communication constrained devices since the messages are small
(they scale with the domain of the variables), the number of messages exchanged typ-
ically varies linearly with the number of agents within the system, and the computa-
tional complexity of the algorithm scales exponential withjust the number of variables
on which each function depends (and this is typically much less than the total number
of variables in the system) [12]. However, as with the approximate algorithms men-
tioned in the introduction, the lack of guaranteed convergence and guaranteed solution
quality, limits the use of the standard max-sum algorithm inmany application domains.

A possible solution to address this problem is to remove cycles from the constraint
graph by arranging it into tree-like structures such as junction trees [32] or pseudo-trees
[7]. However, such arrangements result in an exponential element in the computation
of the solution or in the communication overhead. For example, DPOP is functionally
equivalent to performing max-sum over a pseudo-tree formedby depth-first search of
the constraint graph, and the resulting maximum message size is exponential with re-

9



spect to the width of the pseudo tree. This exponential element is unavoidable in order
to guarantee optimality of the solution and is tied to the combinatorial nature of the
optimisation problem. However, as discussed in the introduction, such exponential be-
haviour is undesirable in systems composed of devices with constrained computational
resources. Thus, in the next section we present our alternative approach that ensures
the convergence of the algorithm to a bounded approximate solution.

4 The Bounded Max-Sum Algorithm

Notation used in this section

∙ FG(x,F;E) is a factor graph.

∙ E is the set of links connecting function and variable nodes inthe factor graph.

∙ x∗ is the optimal variable assignment for the constraint network.

∙ x̃ is the optimal variable assignment for the tree structured constraint network.

∙ Ṽ =
∑

i Fi(x̃i) is the approximate solution obtained with the assignmentx̃.

∙ V ∗ =
∑

i Fi(x
∗
i ) is the optimal solution.

∙ �FG is the approximation ratio.

∙ eij ∈ E are the dependencies links between variables and functions.

∙ wij is the weight associated with dependency linkeij .

∙ xt
i is the set of dependent variables for functionFi which will be part of the

tree-structured constraint network.

∙ xc
i is the set of dependent variables for functionFi which will not be part of

the tree-structured constraint network.

∙ Bi(x
c
i ) is the maximum impact on the solution for a set of removed dependen-

cies of functionFi.

∙ B =
∑

i Bi(x
c
i ) is the maximum impact on the solution for a set of removed

dependencies.

∙ Ṽ m =
∑

i minxc
i
Fi(x̃i) is the optimal solution to the tree structured con-

straint network.

∙ C is the set of couples of indices< i, j > that identify the edges removed
from the factor graph.

∙ W =
∑

<i,j>∈C wij is the sum of the weights of removed edges.

The basic idea of our approach is to remove cycles from the factor graph, by ignor-
ing some of the dependencies between functions and variables. A dependency directly
corresponds to a link between a function node and a variable node in the factor graph,
and by removing appropriate dependencies, we can operate max-sum on a cycle free
factor graph, hence guaranteeing that the algorithm will converge to the optimal so-

10



F1

F2

F3

x1

x2

x3

w11 w22 w33

w12

w21

w32

w23

Figure 3: Example of a factor graph containing cycles and a spanning tree formed by
removing the edges between the variables nodesx2 andx3 and the function nodeF2.

lution of this new problem. Moreover, by removing cycles in this way, we do not
incur the exponential communication cost that is typical ofcomplete approaches (as
discussed above and in the introduction). With our approach, the size of exchanged
messages will be proportional only to the size of the domain of the variables involved,
as opposed to the exponentially sized messages that are typical of complete algorithms.
Also, the amount of computation required to perform the maximisation step when cal-
culating function to variable messages, is exponential only in the number of variables
directly involved in the function.7 If the arity of the functions is bounded (e.g. we have
only pairwise interactions) this computation is polynomial.

However, since we ignore some of the dependencies in the factor graph, we cannot
guarantee that the solution we obtain in the cycle free factor graph is the optimal solu-
tion to our original problem. Nonetheless, as we will show shortly, we can bound the
distance of the solution we find on the cycle free factor graphto the optimal solution on
the original problem. A key step in this approach is to quantify the maximum impact
that each dependency has on solution quality.

Specifically, consider a factor graphFG(x,F;E) whereE is the set of links con-
necting function and variable nodes. To provide an approximation algorithm, our goal
is to compute a variable assignmentx̃ over a spanning tree for the graphFG, such that
theV ∗ ≤ �FGṼ , where our approximate solutioñV =

∑

i Fi(x̃i) and the optimal
solutionV ∗ =

∑

i Fi(x
∗
i ). Note that the approximation ratio�FG is dependent on the

particular instance of the problem. Thus, instead of bounding the performance of our
algorithm on a large class of problems, we compute a data-dependent bound for any
specific problem instance. As a result, this bound is tighterthan a theoretical bound for
a wider class of problems.

The key property of our algorithm is that it puts weights on the dependency links
between variables and functions. These weights quantify the maximum impact that
removing a dependency may have. In more detail, we indicate adependency link with
eij ∈ E wherei is an index over functions andj is an index over variables. Figure
3 shows the same factor graph in Figure 1 with the weights, anda possible spanning
tree, (solid lines represent links present in the spanning tree, and dashed lines represent
links that were present in the original cyclic factor graph,but have been removed to

7More specifically, when a functionFi which depends on a set of variables∣xi∣ = n sends a message to
one of its variablesxj the amount of computation required will bedn, whered is the size of the variables’
domain.

11



form the spanning tree).8

Given these concepts, our approach proceeds as follows:

1. We define the weight of each dependency linkeij as:

wij = max
xi∖xj

[

max
xj

Fi(xi)−min
xj

Fi(xi)

]

(5)

For example,w23 reported in Figure 3 is computed as

w23 = max
x1,x2

[

max
x3

F2(x1, x2, x3)−min
x3

F2(x1, x2, x3)

]

Notice that the weightwij represents the maximum impact that variablexj can
have over the values of functionFi. In particular, if we ignore variablexj when
maximisingFi then the distance between our solution and the optimal will be at
mostwij . Thus, the smaller the weight, the less important is the dependency in
the optimisation process.

2. We remove dependency links from the original cyclic factor graph to form a
tree structured graph. For each function within the factor graph, we now have
xi = xt

i ∪ xc
i wherext

i represents the set of dependent variables which have not
been removed andxc

i represents those that have. For example, in Figure 3 we
havext

2 = {x1} andxc
2 = {x2, x3}. Notice thatxc

i might be empty because no
dependency was removed for functioni, as is the case in our running example
for xc

1 andxc
3 because no dependency was removed for functionsF1 andF3.

However,xt
i will always contain at least one element. This follows from the

fact that we build a spanning tree of the original factor graph and thus we do not
disconnect any element. Consequently, we have that∪ix

t
i = x.

Now, given a functionFi we define the maximum impact of a set of removed
dependencies as:

Bi(x
c
i ) =

{

maxxi∖xc
i

[

maxxc
i
Fi(xi)−minxc

i
Fi(xi)

]

if xc
i ∕= ∅

0 otherwise
(6)

wherexc
i is the set of variables removed from the function dependency. By

computingBi(x
c
i ), we are evaluating the maximum impact of all the removed

dependencies from a function to form a spanning tree. For example, considering
our running example reported in Figure 3 we have:

B2(x2, x3) = max
x1

[

max
x2,x3

Fi(x1, x2, x3)− min
x2,x3

Fi(x1, x2, x3)

]

This represents the maximum impact on the solution quality when both variables
x2 andx3 are removed. Finally, we define the sum of the maximum impact of
removed dependencies from the factor graph as:

B =
∑

i

Bi(x
c
i )

8This figure will be used as a running example to clarify the key steps of the approach.

12



3. We now run the max-sum algorithm on the remaining tree structured factor
graph. For functions which have had dependency links removed, we evaluate
them by minimising over all values ofxc

i , and thus, the max-sum algorithm op-
timally solves:

x̃ = argmax
x

∑

i

F ′
i (x

t
i) = argmax

x

∑

i

min
xc
i

Fi(xi) (7)

For example, in our case the assignment we obtain after running the max-sum
on the spanning tree maximises the functionF1(x1, x2) + F ′

2(x1) + F3(x2, x3)
whereF ′

2(x1) = minx2,x3
F2(x1, x2, x3).

4. The resulting variable assignment,x̃, represents our approximate solution to the
original optimisation problem, and we shall shortly prove that this approximate
solution is within a calculated bound from the optimum solution. More precisely:

V ∗ ≤ �FGṼ (8)

where the approximation ratio�FG = 1 + (Ṽ m + B − Ṽ )/Ṽ , and Ṽ m =
∑

i minxc
i
Fi(x̃i) represents the optimal solution to the tree structured constraint

network. Recall thatV ∗ is the unknown optimal solution to the original cyclic
constraint network and̃V is our approximate solution evaluated on the cyclic
constraint network.

This result follows directly from the following theorem which bounds the difference
between the computed solutionx̃ and the optimal solutionx∗:

4.1 Analysis of Bound

A bounded approximate solution described above is dependent on the properties of the
following theorem:

Theorem 1. Bounded Approximation

∑

i

min
xc
i

Fi(x̃i) +B ≥
∑

i

Fi(xi
∗) (9)

This theorem states that the unknown optimal solutionV ∗ is never greater than the
sum of the optimal solution computed on the tree structured constraint network andB.
This allows us to have an upper bound on the unknown optimal solution and thus to
provide a bounded approximation of the original problem. The complete proof of this
theorem can be found in Appendix A.

The result stated in Theorem 1 is valid for any spanning tree of the original problem.
However, the approximation ratio�FG is influenced by which dependencies are re-
moved and is thus dependent on the specific problem instance.Nonetheless, we can
provide a general approximation ratio�, which is independent of the specific problem
instance by performing a worst case analysis of�FG. Specifically, assuming that we
know the maximum fraction of rewardsM

m
across all functions, then a worst case ap-

proximation ratio for the optimal solution is� = M
m

. We note that this result is in
accordance with the analysis performed in [16]. See Appendix B for the full derivation

13



F1

F2x1

x2

w11 w22

w12

w21

10 3

5

9

F ′
2 x1

r
g
b

0
7
2

Figure 4: Tree structured factor graph obtained with the bounded max-sum algorithm
for the original factor graph of Figure 2(a).

of this result. Note that the smaller the ratio between the maximum and minimum pay-
off, the better will be the bound. However, if we have functions that are not bounded
(e.g., they can have arbitrarily high payoff) the approximation ratio we provide will not
be significant in the worst case.

In practice we use the fact that�FG is dependent on the specific problem instance,
and therefore we can exploit the structure of the problem to provide a better approxi-
mation ratio. Specifically,�FG depends on the number of dependencies that we need
to cut to build the spanning tree. Clearly this value is higher (and thus the approxi-
mation ratio will be worse) for graphs with many cycles. Moreover, while� depends
on the ratio between the maximum and the minimum payoff across all functions,�FG

depends on the sum of the impacts of the removed dependenciesonly. Therefore, if we
carefully remove dependencies which have a low impact on thesolution quality we can
provide very good approximation ratios.

To better explain the operations performed by the bounded max-sum algorithm
consider again the factor graph reported in Figure 2(a). Thefirst step of our algorithm
is to compute the weights for each link in the factor graph, and we show these in
Figure 4 using the functions reported in Figure 2(b). We thenform a new factor graph
which is a spanning tree of the original factor graph. More specifically, we remove link
e22, which is the one with the smallest weight (this is shown as a dashed line in the
figure), and thus,B = w22 = 3. Moreover, we replace the functionF2(x1, x2) with
F ′
2(x1) = minx2

[F2(x1, x2)]. Now, we run the max-sum algorithm on the new factor
graph. Since this new factor is a tree, the max-sum algorithmis guaranteed to converge
to the optimal solution, which in this case isx1 = r andx2 = r. This achieves a utility
on the new factor graph,̃V m, of 10 and a utility on the original factor graph,Ṽ , of 11.
Furthermore, in this case we have that�FG = 1+(10+3−11)/11 = 13/11, and thus,
we know that the unknown optimal solution must be greater than Ṽ , but no more than
�FGṼ , which in this case is 13. Now, recall that the optimal solution for the original
factor graph was shown in Section 3 to bex1 = b andx2 = b yielding a total utility of
12 (V ∗). Thus, as required we have thatV ∗ ≤ �FGṼ .

4.2 Decentralised Bounded Max-Sum

Having described our approach, and discussed the approximation ratio that we can
provide, we now detail a decentralised implementation of our bounded max-sum al-

14



gorithm. This implementation has two key steps: (i) formingthe spanning tree factor
graph which minimises the approximation ratio, and (ii) initiating the max-sum algo-
rithm and propagating the information required to compute the approximation ratio to
the agents. In this section, we describe the approach for factor graphs containing n-ary
constraint functions; we specify the computation of the approximation ratio when only
pairwise constraint functions are present in Section 4.2.2

4.2.1 Spanning Tree Formation

As described earlier, we aim to remove cycles from the factorgraph to guarantee con-
vergence of the max-sum algorithm. Moreover, we want to remove dependencies which
have minimal impact on the solution quality. We can do this byfinding a spanning tree
that minimises the sum of the weights of the removed edges. Tothis end, we use the
weights of each edge to compute a maximum weight spanning tree, T . Notice that,
by finding a maximum weight spanning tree we effectively minimise the sum of the
weights of the removed edges. Moreover, if we indicate withW =

∑

<i,j>∈C wij ,
whereC is the set of couples of indices< i, j > that identify the edges removed from
the factor graph, we can then show thatW ≥ B, i.e., the sum of the weight of removed
edges is an upper bound ofB (the proof of this is provided in Appendix A, Lemma 2).
Therefore, by minimising the sum of the weights of removed edges we are minimising
the approximation ratio�FG.

The computation of the maximum spanning tree can be performed in a distributed
fashion using various message passing algorithms. In particular, here we use the
minimum spanning tree algorithm by Gallager, Humblet and Spira (GHS), modified
to find the maximum spanning tree [28]. This is a distributed,asynchronous algo-
rithm, for general, undirected graphs.9 GHS is optimal in terms of communication cost
O(n log n+E) and has a running time ofO(n log n), wheren is the number of nodes
in the factor graph.

We briefly describe the GHS algorithm here and refer to [28] for a more complete
description. Initially, each node (which may be either a variable or a function node) is a
fragment with levelL = 0, then each node chooses its maximum weight outgoing edge
and attempts to join with the node at the other end. This formsa fragment of levelL =
1. Nodes in fragments whereL > 0 co-operate to determine the fragment’s maximum
weight outgoing edge that will not form a cycle and attempt tojoin with the fragment
on the other end. This occurs by each node finding its maximum weight outgoing edge,
and passing this information to a core node, which can then determine the best edge for
the whole fragment. Fragments continue to join together in this manner. The twocore
nodes (those at either end of the edge on which the final joining of fragments occurs)
are aware when the algorithm terminates, as they will receive reports from each node
that they cannot locate any further outgoing edges that willnot lead to a cycle.

4.2.2 Max-Sum Initiation and Information Propagation

On termination of the GHS algorithm described above, only the two core nodes are
aware that the algorithm has completed. Therefore we add a message-passing phase
to propagate this information throughout the tree. This procedure also establishes a

9Notice that our approach is completely generic with respect to the algorithm used to compute the max-
imum spanning tree. Here the choice of the GHS algorithm is dictated by the low communication overhead
and by the ease of implementation. However, other distributedalgorithms do exist which have a lower bound
for running time e.g. [33].

15



parent-child hierarchy in the tree, and serves to initiate the max-sum algorithm and
information propagation stages. This message-passing phase is initiated by the root
node; a role adopted by whichever of the two core nodes is a function node.10 This
root node sends out aCOMPLETE message to each of its children. When a node re-
ceives aCOMPLETE message, it marks the sender as its parent, and then propagates the
COMPLETE message down the tree.

When a leaf node receives theCOMPLETEmessage the max-sum phase starts. Each
node propagatesMAXSUM messages up the tree, waiting for messages from each child
node before sending an updated message to the parent node. The content of the mes-
sages are calculated as described in Equations 2 and 3, and convergence of the mes-
sages to the optimum is guaranteed when the messages have propagated to the root
node, and back to the leaf nodes.11 At this stage, each variable node is aware of both
the variable assignment,x̃i, that represents the approximate solution to the original op-
timisation problem, and the value ofṼ m =

∑

i minxc
i
Fi(x̃i); this is provided directly

from the max-sum algorithm and used to calculate�FG.
When the leaf nodes receive this finalMAXSUM message, theB and solution prop-

agation phase starts. During this phase, nodes propagate tuples composed ofBSUM
(which will accumulate the value ofB specified in Equation 6) andSOLUTION mes-
sages.12 If the leaf is a variable node it creates an emptyBSUM and an emptySOLUTION
message. If it is a function nodeFi, it creates aBSUM message of value equal to
Bi(x

c
i ) wherexc

i is the set of local deleted variables, and aSOLUTION message equal
toFi(x̃i). Both messages are then propagated up the tree, with each internal node wait-
ing to receive messages from all its children before propagating a single newBSUM and
SOLUTION message to its parent. If the internal node is a variable node, then these
new messages are simply the sum of the messages from its children. If it is a function
node, then they are given by the sum of the messages from its children plus the localBi

component, and the value ofFi(x̃i), respectively. When the root has received all the
BSUM andSOLUTION messages, both are propagated back down the tree, informing
each node of the totalB, and the final solution,̃V =

∑

i Fi(x̃i).
At this final stage, each agent knows the assignment of the variables that it controls,

it knows that this assignment leads to a total solution quality of Ṽ , and that this solution
has an approximation ratio�FG = 1 + (Ṽ m + B − Ṽ )/Ṽ . The number of messages
for each information propagation phase is equal to the number of edges in the spanning
tree (i.e.,∣F∣ + ∣x∣ − 1), and thus, while the size of each message depends on the
message type, it is always constant with respect to the number of nodes in the factor
graph (e.g., aMAXSUM message involving variablexi contains∣di∣ values whileBSUM
andSOLUTION messages contain one value each).

4.3 Approximation Ratio for Pairwise Interactions

Note that when the interactions are pairwise13 and thus at most one dependency is re-
moved from each function node, there is a direct link betweenBi and the removed

10Note that, in our case, one of the two core nodes will always bea function node because the factor graph
is a bipartite graph, and the core nodes are connected.

11In settings where the choice of variable assignment may not be unique (most commonly, when the
functions return integer payoffs) an additional value propagation phase may be used at this point. See [34]
for details.

12Note that these could be propagated in two separate phases, but here we combine them together for
efficiency.

13The focus on pairwise interactions is a very common approach inthe DCOP literature, which is why we
pay specific attention to this type of interactions in this section.

16



weight. Specifically, since each functionFi has exactly two edges,Bi will be either
zero (when no dependencies are removed for that function) orthe weight of the re-
moved dependency. Consequently, by minimising the sum of the removed weights, we
directly minimise the approximation ratio. Therefore, by using the approach presented
in the previous section we find the optimal set of dependencies to be removed, i.e. the
set of dependencies that provide the minimum approximationratio.

However, in general, when multiple dependencies may be removed from any func-
tion node, this is no longer the case. For example, consider Figure 3, and suppose the
spanning tree is a maximum spanning tree. This implies thate23 ande22 are the de-
pendencies, with the minimum total weights, that need to be removed in order to form
a spanning tree. However, in this case the possible impact ofthe removed dependen-
cies on the solution quality will beBi(x2, x3) = maxx1

[maxx2,x3
F2(x1, x2, x3) −

minx2,x3
F2(x1, x2, x3)] which in general is different fromW = w22 + w23. There-

fore, when interactions are not pairwise, there might be a combination of dependencies
to remove, that has a smaller impact than theB we compute. While it is possible to
calculate the impact that removing multiple dependencies has, finding the set that must
be removed in order to minimise this impact is a combinatorial problem. Nonetheless,
our approach of summing the individual weights overestimates this impact, such that
B ≤ W , and thus, our bounded approximate solution is still valid in these cases. The
proof that this inequality holds is presented in Appendix A.

4.4 Empirical Evaluation

We now present an empirical evaluation of our bounded approximate algorithm, in par-
ticular we wish to evaluate the significance of the approximation ratio that our approach
can provide. Recall that the lower the approximation ratio the better. This empirical
evaluation is required because our approximation ratio depends on the specific problem
instance, and in particular on the topology of the constraint network (i.e., mainly on the
number of loops) and on the ratio between the maximum and minimum payoff of the
constraint functions (as discussed above). Thus, here we consider a set of decentralised
coordination problems where a set of agents is arranged in a graph. Each agent controls
one variable, with domain∣di∣ = 3, and each edge of the graph represents a pairwise
constraint between two agents. Since there are pairwise interactions we haveB = W
and we are able to compute the minimum approximation ratio�FG.

We consider two different graph topologies: random graphs and graphs from the
ADOPT repository which represents a large class of graph colouring problems that
have previously been used to benchmark DCOP approaches (available fromhttp://
teamcore.usc.edu/dcop/). In both cases, graphs were selected with different
link densities (i.e. the average connection per agents) anddifferent numbers of nodes.

A random payoff matrix is associated with each edge of the graph, specifying the
payoff that both agents will obtain for every possible combination of their variables’
assignments. Each entry of the payoff matrix is a real numbersampled from a distri-
bution, and we consider two different distributions: a gamma distribution with� = 9
and� = 2, and a uniform distribution with range(0, 1). Both produce strictly positive
payoffs, but only the uniform distribution has finite support.

This setting generalises the distributed graph colouring problem, which is a canon-
ical problem frequently used to evaluate DCOP techniques (e.g., [5] and [6]). In the
standard graph colouring domain the value ofW that our approach provides would
simply be the number of edges removed to remove cycles from the graph. The random
payoff matrix that we use here enriches the domain by differentiating the values of

17



0 10 20 30 40 50
0

200

400

600

800

1000

Number of Agents

Utility (link density 2)

 

 

V ∗

Ṽ

Ṽ m

Ṽ m +B

0 10 20 30 40 50
0

400

800

1200

1600

Number of Agents

Utility (link density 3)

 

 

V ∗

Ṽ

Ṽ m

Ṽ m +B

Figure 5: Empirical results for the utility when varying thenumber of agents and the
link density (using random graphs with payoffs drawn from a gamma distribution).

constraint functions; moreover, the use of a gamma distribution introduces significant
variance such that some dependencies have a higher impact than others. By having
different values for different constraint functions and dependencies, we consider sit-
uations where constraints among the actions of some agents are more important than
others for the global solution. This makes the evaluation analysis more significant, and
it better represents realistic applications, such as cooperative exploration with mobile
sensors, which are the main application focus of this work. An empirical evaluation of
our approach in the mobile sensor domain will be presented inSection 6.4.

For each configuration, we consider the following four performance metrics:

∙ Ṽ m: The solution obtained by the max-sum algorithm on the tree structured
constraint network.

∙ Ṽ : Our bounded approximate solution, obtained by evaluatingthe assignment
computed by max-sum on the spanning tree, on the original loopy constraint
network.

∙ Ṽ m + B: The upper bound on the value of the unknown optimal solutioncom-
puted by our approach.

∙ V ∗: The optimal solution computed using a previously published modified ver-
sion of ADOPT [35].14

We first consider the case of random graphs with payoffs drawnfrom a gamma
distribution, and in Figure 5 we show the results obtained for link densities of 2 and
3.15 For each configuration, we report the average value and the 95% confidence in-

14For the results reported here we used the code available athttp://teamcore.usc.edu/dcop
published by the authors of the paper. Specifically, we used the preprocessing policy named DP2 in their pa-
per, which out-performs alternatives in their empirical evaluation. Furthermore, note that ADOPT normally
minimizes the constraint costs in a DCOP while here we wish to maximise the sum of the rewards. However,
since there are no infinitely high rewards in any problem instance considered here, we are able to determine
an arbitrary fixed maximum threshold, M, for each specific instance, and then translate the reward function,
r(x), to a cost function, c(x), such that c(x) = M - r(x). ADOPTcan then be used to solve the resulting
minimisation problem.

15These values are in the range often used for benchmarking DCOPtechniques on random graph colouring
instances [5].

18



10 20 30 40
0

100

200

300

400

500

600

Number of Agents

Utility (gamma, link density 2)

 

 

V ∗

Ṽ
Ṽ m

Ṽ m +B

10 20 30 40
0

200

400

600

800

Number of Agents

Utility (gamma, link density 3)

 

 

V ∗

Ṽ
Ṽ m

Ṽ m +B

10 20 30 40
0

20

40

60

80

Number of Agents

Utility (uniform, link density 2)

 

 

V ∗

Ṽ
Ṽ m

Ṽ m +B

10 20 30 40
0

20

40

60

80

100

120

Number of Agents

Utility (uniform, link density 3)

 

 

V ∗

Ṽ
Ṽ m

Ṽ m +B

Figure 6: Empirical results for the utility when varying thenumber of agents, the link
density and the distribution for payoffs (using graphs fromthe ADOPT repository).

terval computed over twenty repetitions.16 Since the optimal utility is computed by
a complete algorithm, we were able to compute this metric only for smaller numbers
of agents (e.g., up to 15). Our results show that the actual utility that our approach
computes is extremely close to the optimal solution (in the experiments the minimum
ratio was 95%). Thus showing that, from an empirical point ofview, our approach pro-
vides very good approximations. More importantly, however, the approximation ratio
we guarantee is significant. In the experiments�FG was never above 1.27, and was
typically 1.23.

To illustrate the insensitivity of these results to the particular graph topology and
payoff distribution, in Figure 6 we show the results for graphs from the ADOPT repos-
itory with payoffs drawn from both gamma and uniform distributions. The same mea-
sures described above (Ṽ m, Ṽ , Ṽ m + B, V ∗) averaged over all the different graph
instances available in the ADOPT repository (25 instances)and the 95% confidence
interval. Results show that the behaviour of our approach issimilar across the different
payoff distributions we considered. In more detail, the approximation ratio is slightly
better (i.e., lower) for the gamma distribution than uniform but it is very significant for

16The small confidence interval shows that twenty repetitions provide, for our experimental setting, a good
sample size to assess the statistical significance of the results.

19



10 20 30 40
1

2

3

4

5

6

Number of Agents

 

 

Approx. Ratio (gamma, link density 2)

k = 2
k = 3
k = 6
BMS

10 20 30 40
1

2

3

4

5

6

Number of Agents

Approx. Ratio (gamma, link density 3)

 

 

k = 2
k = 3
k = 6
BMS

10 20 30 40
0

20

40

60

80

Number of Agents

Approx. Ratio (uniform, link density 2)

 

 

k = 2
k = 3
k = 6
BMS

10 20 30 40
0

20

40

60

80

Agent Number

Approx. Ratio (uniform, link density 3)

 

 

k = 2
k = 3
k = 6
BMS

Figure 7: Empirical results for the approximation ratio obtained with our bounded max-
sum (BMS) and the approximation ratio computed using the k-optimal analysis (using
graphs from the ADOPT repository).

both the payoff distributions. In particular, the worst approximation ratio was approxi-
mately 1.24 and 1.43 with an average of 1.2 and 1.33 respectively. As before, the actual
utility computed by our approach is extremely close to the optimal solution.17

To analyse the significance of the approximation ratio that our approach provides,
we compute for the same data set the approximation ratio obtained with the k-optimality
framework, using the formulas provides in [16] for general constraint networks. For our
data set the constraint arity is 2 (m = 2) and we compute the average ratio of the least
minimum reward to the maximum reward (indicated with� in [16]) for the different
distributions and agent numbers. Our results, in Figure 7, show that the approxima-
tion ratio obtained using the bounded max-sum approach (labelled as BMS) is much
more significant than that obtained using the k-optimality framework (labelled by their
k value). Clearly, by increasingk it is possible to achieve better approximation ratios,
however this would result in an exponential increase in the computation required to
obtain ak-optimal solution and, in fact, the most widely used approximate algorithms
in the field usesk = 1 or k = 2 [1, 10]. Recall however that the approximation ratio

17As in the previous results, the value for the optimal utility is computed by a complete algorithm, and
thus, we were able to report values only up to 12 agents.

20



10 20 30 40
0

100

200

300

400

500

Number of Agents

Execution Time (gamma, link density 2)

 

 

preproc.

total
max-sum

10 20 30 40
0

200

400

600

800

Number of Agents

Execution Time (gamma, link density 3)

 

 

preproc.

total
max-sum

10 20 30 40
0

200

400

600

800

1000

Number of Agents

Execution Time (uniform, link density 2)

 

 

preproc.

total
max-sum

10 20 30 40
0

500

1000

1500

Number of Agents

Execution Time (uniform, link density 3)

 

 

preproc.

total
max-sum

Figure 8: Empirical results for the execution time in milliseconds for pre-processing
the factor graph and running the max-sum algorithm, varyingthe number of agents, the
link density and the distribution for payoffs (using graphsfrom the ADOPT repository).

computed with the bounded max-sum is specific to the problem instance while the one
provided by the k-optimality framework is not, and as such can be computed without
running any solution algorithm.

We now consider the execution time of our approach on the samedata set described
above. Specifically, we measure the computational time (in milliseconds) required to
form the spanning tree and compute the weights (this operation is labeledprepoc. in
the figures) and the time required to run the max-sum algorithm over the spanning tree.
Out results, in Figure 8, show that our approach scales very well with the number of
agents, having a total running time of approximately 1 second on the most complex
problem instance in the ADOPT graph repository (specifically, a graph with 40 agents
and a link density of 3). Moreover, the running time of the approach is dominated by
the execution of max-sum on the spanning tree and the preprocessing time is negligible.

Finally, we present a comparison of the utility obtained using the bounded max-
sum approach proposed here, the loopy version of max-sum (i.e., max-sum running
directly on the input constraint network) and the optimal utility computed using a pre-
viously published modified version of ADOPT [35]. Our aim here is to compare the
utility obtained using the max-sum and its bounded version with respect to the optimal
utility for larger problem instances. To this end we focus onthe graphs of the ADOPT

21



Agents Loopy max-Sum Bounded max-Sum (Ṽ ) ADOPT (V ∗)

8 142.80± 0.00 142.80 142.80
10 162.36± 2.25 167.20 169.03
12 203.67± 0.00 197.83 203.67
14 221.86± 2.84 211.65 221.86
16 261.42± 3.53 247.47 264.72
18 293.82± 0.00 287.56 -
20 329.10± 0.00 310.79 -
25 399.14± 1.66 390.45 -
30 500.63± 0.00 486.04 -
40 614.12± 9.37 615.50 -

Table 1: Utility comparison for max-sum, bounded max-sum and ADOPT [35] on one
problem instance from ADOPT graph repository whilst varying the number of agents
(using payoffs drawn from a gamma distribution).

repository with link density 3, we use the gamma payoff distribution mentioned above,
and we run the various algorithm on a single problem instancefor each agent number.
Using this approach we were able to compute the optimal utility up to 16 agents, but
for higher number of agents the version of ADOPT we used couldnot terminate the
computation within the imposed time limits of five hours. Table 1 reports the results
obtained. Since both the bounded max-sum and ADOPT approaches are deterministic,
the reported values are the utilities obtained on a single execution of each algorithm.
However, for the loopy max-sum we report the average utilityobtained over twenty
repetitions together with the 95% confidence interval.

Our results show that the utility values obtained by the loopy max-sum are very
close to the ones provided by the bounded max-sum approach, with the loopy max-
sum being marginally superior for most of the problem instances. Moreover, both
loopy and bounded max-sum achieve results which are very close to the optimal. This
results confirm that loopy max-sum is able to provide very good empirical results, and
show that the bounded version proposed here achieves similar performance providing
guarantees on the solution quality.

5 Speeding Up Message Computation

As mentioned in the introduction, many practical applications inherently have large
action spaces for individual agents. For example, in the mobile sensor domain that will
be discussed in Section 6, each sensor (agent) can reposition itself to many different lo-
cations, and follow different paths on its way to those locations. Moreover, to evaluate
the utility gained by the entire team of sensors, a computationally expensive function
needs to be evaluated. Therefore, in general, the straightforward application of max-
sum to compute the optimal joint action (see Equation 1) is not practical, because the
computation of the messages that are sent from functionFj to variablexi (Equation 3)
is a major bottleneck. The naı̈ve way of computing these messages for a given variable
xi is to enumerate the entire domain ofxj (i.e. the domain ofFj), and evaluateFj for
each element. Since the size of this joint action space growsexponentially with both
the number of agents, and the number of possible actions for each agent, the amount of

22



F1

F2x1

x2

?

�

F1 F1

10 5
2 2
0 0

x1

r
b
g

F2 F2

1 0
10 7
2 2

x1

r
b
g

⊥ ⊤

11 5
12 9
2 2

x1

r
b
g

(b)

(a)

Figure 9: First iteration of the action pruning algorithm for variablex1 showing (a) the
messages sent by function nodesF1 andF2, and (b) the resulting removal of ‘g’ from
the domain of variablex1.

computation can quickly become prohibitive in many settings. This is especially true
when evaluatingFj is costly. Therefore, in this section, we present two novel pruning
algorithms that drastically reduce the size of the joint action space that needs to be
searched without sacrificing solution quality. In the remainder of this section, we will
describe each algorithm in turn.

5.1 The Action Pruning Algorithm

The first algorithm attempts to reduce the number of actions each agent needs to con-
sider before running the max-sum algorithm. This algorithm prunes the dominated
actions that can never maximise the social welfare (Equation 1), regardless of the ac-
tions of other agents. More formally, a valued ∈ di of variablexi is dominated if there
exists a valued′ ∈ di such that:

∀d−i ∈
n
×

k=1,k ∕=i
dk :

∑

j∈ℳi

Fj(d, d−i) ≤
∑

j∈ℳi

Fj(d
′, d−i) (10)

where, as in Section 3,ℳi is a set of function indexes, indicating which function
nodes are connected to variable nodei. Now, by removing these dominated actions, the
optimal solution remains unchanged. However, since a number of dominated actions
are pruned, the size of the joint action space is reduced.

Just as with the max-sum algorithm itself, this algorithm isimplemented by mes-
sage passing, and operates directly on the variable and function nodes of the factor
graph, making it fully decentralised:

∙ From function to variable : The message from functionFj to xi contains the
minimumFj(xi) and the maximumFj(xi) value ofFj with respect toxi = d,
for all actionsd ∈ di, the domain ofxi (see Algorithm 1).

23



∙ From variable to function : Variablexi sums the minimum and maximum val-
ues from each of its adjacent functions, and prunes dominated actions. It then
informs neighbouring functions of its updated domain (see Algorithm 2).

Figure 9 reports the messages that variablex1 would received at the first iteration
of the action pruning algorithm using the example factor graph and functions presented
in Figure 2. In this case, given the received messages, variablex1 will be able to prune
g from its domain.

Using this distributed algorithm, functions continually refine the bounds on the
utility for a given value of a variable, which potentially causes more actions to be
pruned. Therefore, it is possible that action pruning starts by pruning a single action,
which results in further actions being pruned throughout the entire factor graph.

Algorithm 1 Algorithm for computing pruning message from functionFj to variable
xi : i ∈ Nj

1: computeFj(xi) ≤ min
xj∖xi

Fj(xi,xj ∖ xi)

2: computeFj(xj) ≥ max
xj∖xi

Fj(xi,xj ∖ xi)

3: send⟨Fj(xi), Fj(xi)⟩ to xi

Algorithm 2 Algorithm for computing pruning messages from variablexi to all func-
tionsFj : j ∈ ℳi

1: if a new message has been received from allFj : j ∈ℳi then
2: compute⊥(xi) =

∑
j∈ℳi

Fj(xi)

3: compute⊤(xi) =
∑

j∈ℳi
Fj(xi)

4: while ∃d ∈ di : ⊤(d) < max⊥(xi) do
5: di ← di ∖ {d} Remove dominated value d

6: end while
7: send updated domaindi to all Fj : j ∈ℳi

8: end if

This algorithm terminates once the messages exchanged between the functions and
variables converge. That is, when all messages along all edges in the factor graph
are equal to the previously received messages. Thus, a node in the factor graph can
initiate the max-sum algorithm once it has received the samemessage twice from each
neighbour. Also note that termination is guaranteed because of the fact that every
variable has a finite number of actions; during each iteration either at least one variable
value is pruned or the algorithm has converged. To see why this is true, note that for
the bounds onFi for a certain valued to change, at least one variable value needs to
get pruned. Otherwise, the messages sent from variables to functions will be identical,
and all variables receive the same message twice, which results in the termination of
the algorithm.

5.2 The Joint Action Pruning Algorithm

Now, whereas the first algorithm runs as a preprocessing phase to max-sum, the second
algorithm is geared towards speeding up the computation of the messages from func-
tion to variable (see Equation 3),during the execution of the max-sum algorithm. In
contrast to reducing the action space of individual agents,which was the goal of the

24



[2, 4]

⟨∅,∅, d1
3
⟩

⟨d3
1
,∅, d1

3
⟩⟨d1

1
,∅, d1

3
⟩ ⟨d2

1
,∅, d1

3
⟩

[5, 6][5, 9]

⟨d2
1
, d2

2
, d1

3
⟩⟨d2

1
, d1

2
, d1

3
⟩

[7, 7] [9, 9]

Figure 10: Search tree for computingrj→3(d
1
3) (a single element of the message from

Fj to x3). The numbers between the brackets indicate lower and upperbounds on the
maximum value in the subtree.

first algorithm, this algorithm attempts to reduce the size of the joint action space that
has to be searched by applying branch and bound.

A näıve way of computing this message to a single variablexi is to determine the
maximum utility for each of agenti’s actions by exhaustively enumerating the joint
domain of the variables inxj ∖ {xi}, and evaluating the expression between brackets
in Equation 3, which we denote by:

r̃j→i(xj) = Fj(xj) +
∑

k∈Nj∖xi

qk→j (11)

Instead of just considering joint actions, we now allow someactions to be unde-
termined, and thus, considerpartial joint actions. By doing so, we can create a search
tree on which we can employ branch and bound to significantly reduce the size of the
domain that needs to be searched. In more detail, to computer̃j→i(d

k
i ) for dki ∈ di (a

single element of the message fromFj to variablexi), we create a search treeT (dki )
as follows:

∙ The rootr of T (dki ) is a partial joint action̂dr =
〈

∅, . . . ,∅, dki ,∅, . . . ,∅
〉

,
which indicates thatxi has been assigned the valuedki , and the remaining vari-
ables are unassigned (denoted by∅).

∙ The set of children of a nodep represented by partial action̂dp =
〈

d
(1)
1 , . . . , d

(l)
l ,

∅, . . .∅, dki ,∅, . . . ,∅
〉

is obtained by assigning to the first unassigned variable

(xl+1) each of its possible actions:Cℎildren(d̂p) = {
〈

d
(1)
1 , . . . , d

(l)
l , dl+1,

∅, . . . ,∅, dii,∅, . . . ,∅
〉

∣dl+1 ∈ dl+1}. Thus, the nodêdp has∣dk+1∣ children.

∙ The leafs of the tree represent a (fully determined) joint action: ∀i ∈ Nj : xi ∕=
∅. In the search tree, leafs are assigned a value that results from evaluating
Equation 11 for the corresponding action.

The leaf with the maximum value found inT (dki ) represents the action that maximises
Equation 3 for valuedki , and thus has the desired value forrj→i(xi). Now, to find
this value efficiently using branch and bound, we need to be able to find bounds on
the maximum value found in a subtree ofT (dki ). These bounds depend onFj and the
received messagesqk→j . Now, in many cases we can put bounds on the maximum of
the former, that is obtained by further completing a partialjoint action in a subtree of
T (dik). We will show an example case in Section 6, where we apply these techniques
on the mobile sensor domain.

25



To illustrate this method with a simple example, however, Figure 10 shows a par-
tially expanded search tree for computing a single elementrj→3(d

1
3) of a message from

functionFj to variablex3. Given the lower and upper bounds on the maximum (de-
noted between brackets), subtree

〈

d11,∅, d13
〉

can be pruned immediately after expand-
ing the root. Similarly, subtree

〈

d31,∅, d13
〉

is pruned after expanding leaf
〈

d21, d
2
2, d

1
3

〉

,
which has the desired maximum value.

Now, since the utility functionsFj are domain dependent, there is no general way
of computing the aforementioned bounds. However, in most domains, such as the
mobile sensor domain which will be introduced in Section 6, apartial joint action has
a meaningful interpretation that can lead to an intuitive way of computing the bounds
on the maximum ofFj in any subtree ofT . We will come back to this in Section 6.

6 The Mobile Sensor Domain

Notation used in this section

∙ S = {Si∣i = 1 . . .M} is the set ofM mobile sensors.

∙ G = (V,E) is the layout of the physical environment.

∙ E is the possible movements between locationsV , with eachv ∈ V embedded
in a 2D plane.

∙ P is the spatial phenomena that is monitored by the sensors.

∙ T = {t1, t2, . . . } is a sequence of discrete timesteps of unknown length.

∙ ℒt =
(

l1t , . . . , l
M
t

)

are the sensors’ locations at timet ∈ T wherelit ∈ V .

∙ Ot =
(

o1t , . . . , o
M
t

)

are the measurements taken by the sensors at timestep
t ∈ T .

∙ o = ⟨x, y⟩ is a single measurement of the scalar field.

∙ P
x = (v, t) a locationv and timestept tuple.

∙ y a measured value.

∙ K(X,X′) is the covariance matrix.

∙ �f is the hyperparameter that models the signal variance of thephenomenon.

∙ l is the hyperparameter that models the length-scale of the phenomenon.

∙ H(A∣B) is the conditional entropy of sample setA given the sample setB.

∙ �A(B) is the incremental value of adding sample setA to sample setB.

In this section we present the mobile sensor coordination problem that illustrates our
approach, in which mobile sensors collect measurements of aspatial phenomenon
(such as temperature, radiation, pressure and gas concentration) at discrete points in
time and space. Using a statistical model, the sensors modeland predict values of
this phenomenon at locations and times for which samples arenot available. Appli-

26



cations for this approach include environmental monitoring, military surveillance, and
disaster response, in which mobile sensors can play a crucial role in improving situa-
tional awareness. This is a particularly challenging problem because of the sophisti-
cated statistical models needed to represent the environmental phenomena, and the fact
that sensors have to coordinate to collect informative measurements as a team. These
properties make it an interesting benchmark problem for thetechniques developed in
previous sections.

This section is organised as follows. First, we formalise the mobile sensor coordi-
nation problem in Section 6.1. In Section 6.2, we show how spatial phenomena can be
modelled using a Gaussian process. Next, we show how to applythe max-sum algo-
rithm by defining the coordination problem in terms of decision variables and utility
functions in Sections 6.3.1 and 6.3.2. Finally, we empirically evaluate the max-sum
algorithm in this domain.

6.1 Problem Formulation

In this section we present a formalisation of the environmental monitoring problem for
multiple mobile sensors. This formalisation is inspired by[36], and has been extended
for multiple sensors with limited local knowledge.

Intuitively, an environment is defined by its physical layout, and by the phenomenon
that exist within it. More formally, we can denote an environment and the mobile sen-
sors by a tupleℰ = (S,G,P, T ), where:

∙ S = {Si∣i = 1 . . .M} is the set ofM mobile sensors;

∙ G = (V,E) encodes the layout of the physical environment, whereE denotes
the possible movements between locationsV , with eachv ∈ V embedded in a
2D plane;

∙ P is a spatial phenomena that is monitored by the sensors inS. Here, we ex-
plicitly model phenomenonP as a scalar field defined on one temporal and two
spatial dimensions:P : V × T → ℝ.

∙ T = {t1, t2, . . . } models time as a sequence of discrete timesteps of unknown
length.18

Furthermore, we denote the sensors’ locations at timet ∈ T by theM -tupleℒt =
(

l1t , . . . , l
M
t

)

, wherelit ∈ V . At every timestept ∈ T , the sensors take measurements
Ot =

(

o1t , . . . , o
M
t

)

at locationsLt by sampling fromP: oit = P(lit, t), and move to a
new location adjacent to the current location inV : lit+1 ∈ adjG(l

i
t). To illustrate this

formal model with an example, Figure 11 shows the position ofa team of four sensors
in an example environment during the first four timesteps.

Given this model, the sensors’ challenge is to monitorP at all locationsV at timet.
Since the number of sensorsM is generally much smaller than∣V ∣, the sensors need to
not only take measurements at locationsℒt, but alsopredict the value ofP at timet for
every locationV , based on observations made earlier. In order to do this, we associate
to the measurement at locationv ∈ V at timet a continuous random variableXv,t, and
use a statistical model to predict values at locationsV . As we shall discuss in the next
section, we will model the phenomenonP with a Gaussian process, that encodes both
its spatial and temporal correlations.

18In uncertain and dynamic scenarios, the mission time is often not known beforehand.

27



0 5 10 15 20 25
0

5

10

15

20

25

30

X

Y {S1, S2, S3, S4}

(a) t1

0 5 10 15 20 25
0

5

10

15

20

25

30

X

Y

{S1, S2}

S3

S4

(b) t2

0 5 10 15 20 25
0

5

10

15

20

25

30

X

Y

S1

S2

S3

S4

(c) t3

0 5 10 15 20 25
0

5

10

15

20

25

30

X

Y

S1

S2

S3

S4

(d) t4

Figure 11: Four timesteps of a team of sensorsS = {S1, S2, S3, S4} moving in an
environment whose layout is defined by a graphG = (V,E), pictured in grey. E
contains a pair of locations(vi, vj) when they are less than7.5 meters apart. The initial
deployment of the sensors isℒ1 = (v1, v1, v1, v1), wherev1 = (0.5, 17) ∈ V (if
sensors occupy the same location, only one of them is shown).PhenomenonP is not
shown.

28



Now, in order to move in such a way to collect those samples that improve the
accuracy with which measurements at unobserved locations can be predicted, the sen-
sors need to be able to determine the informativeness of samples that may be collected
along their path. Here, the informativeness of a set of samples is quantified by a func-
tion f(X ) of a set of random variablesX = {X (1),X (2), . . . } that correspond to these
samples. Depending on the context,f(X ) can take on different forms [36]. In this
paper,f(X ) equals the entropyH(X ) of X .19

To measure the performance of the sensors, we use the root mean squared error
(RMSE) of the sensors’ predictions.20 In order to so, we denote the predictions that the
sensors make at timet byPt = {pvt ∣v ∈ V } and the actual values of the environmental
parameter at those locations byAt = {avt ∣v ∈ V }. The RMSE for timestept is then
defined as:

RMSEt =

√

∑

v∈V (a
v
t − pvt )

2

∣V ∣ (12)

In the upcoming sections we will show how the max-sum algorithm can be em-
ployed to minimise the RMSE. First, however, we will explainhow the spatial phe-
nomena are modelled, and how we obtain a measure of uncertainty about the state of
the spatial phenomenon that is strongly correlated with theRMSE.

6.2 Modelling the Spatial Phenomena

In order to predict measurements at unobserved locations, we model the spatial phe-
nomenonP with a Gaussian process (GP) [39]. A GP is a principled Bayesian method
of performing inference over functions, and have been shownto be very suitable for
modelling spatial phenomena [40, 37, 36, 41]. By using a GP,P can be estimated at
any location and at any point in time using the set of samples collected by the sensors
so far.21

In more detail, a single sampleo of the scalar fieldP is a tuple⟨x, y⟩, where
x = (v, t) denotes the location and time at which the sample was taken, and y the
measured value. Now, if we collect the location vectorsx in a matrixX, and the
measurementsy in a vectory, the predictive distribution of the measurement at spatio-
temporal coordinatesx∗, conditioned on previously collected samplesOt = ⟨X,y⟩ is
Gaussian with mean� and variance�2 given by:

� = K(x∗,X)K(X,X)−1y (13)

�2 = K(x∗,x∗)−K(x∗,X)K(X,X)−1K(X,x∗) (14)

whereK(X,X′) denotes the matrix of covariances for all pairs of rows inX andX′.
Each element of this covariance matrix is obtained by evaluating a functionk(x,x′),
called a covariance function, which encodes the spatial andtemporal correlations of the
pair (x,x′). Generally, covariance is a non-increasing function of thedistance in space

19Here we exploit one of the attractive properties of the Gaussian process, whereby the uncertainty of a
sample at any point in time or space can be predicted without having to explicitly reason about the actual
value ofP . For more details about the reasons for choosing this metric, see [27].

20This measure was chosen because it has been often used in related work to ascertain the accuracy of
sensor predictions [37, 38].

21We chose to use a GP because of its versatile and flexible nature. However, the techniques discussed in
the remainder of this section are not specific to the use of a GP to model the environment; any other model
can be used, as long as it provides some measure of uncertainty in the environment.

29



and time, and a prototypical choice of a covariance functionis the squared exponential
function where the covariance decreases exponentially with this distance:

k(x,x′) = �2
f exp

(

− 1
2 ∣x− x′∣2/l2

)

(15)

where�f and l are calledhyperparameters that model the signal variance and the
length-scale of the phenomenon respectively. The former models the amplitude of the
signal, while the latter determines how quickly the phenomenon varies over time and
space.22

One of the key features of the GP is that the posterior variance in Equation 14
is independent of actual measurementsy. This allows the sensors to determine the
entropy reduction that results from collecting samples along a certain path without
the need of actually collecting them. Moreover, since the predictive distribution is
Gaussian, the entropyH(X ) of random variablesX corresponding to a set of potential
samples isln

√
2��2e, where�2 is directly obtained from Equation 14.

6.3 Applying the Max-Sum Algorithm

In order to apply the max-sum algorithm to the coordination problem defined in Sec-
tion 6.1, we need to define a mapping between the concepts of the max-sum algorithm
and the concepts in the mobile sensor domain. The three key concepts in max-sum
are agent, variable and utility function, which we map to sensor, decision variable and
information value respectively. In this mapping, each sensor Si is modelled as an au-
tonomous agentAi that has a single decision variablepi (p for ‘path’). This variable
represents the path that it will travel along in the nextl timesteps. This variable and
its domain will be defined in Section 6.3.1. The information value functionUi, or util-
ity function, encodes the value of the samples that are collected along a sensor’s path,
given the paths along which the other sensors decide to move.Thus,Ui depends on
pi and (a subset of) the other sensor’s variables. These functions will be defined in
Section 6.3.2. By applying max-sum in this fashion, we aim tofind a collection of
paths (a joint path) of finite length along which sensors collectively gather the sam-
ples of maximum value. Clearly, if these paths are of lengthl, the sensors will need
to use max-sum to coordinate their moves everym ≤ l timesteps. After following (a
portion of) their paths, the sensors’ action space will havechanged, and so will their
utility functions. Therefore, the factor graph encoding the current coordination prob-
lem changes over time, and consequently, the sensors interleave coordinating using the
max-sum algorithm with movement through their environment.

In the remainder of this section, we show how the variables ofthe factor graph are
defined, as well as the functions. Furthermore, we show that the sum of individual
sensors’ utilities equals the utility of the team, and, as a result of which, we can use
max-sum to find the paths that maximise team utility (as described in Equation 1).
Finally, we show how to apply the pruning algorithms from Section 5 by computing
the various required bounds.

6.3.1 Decision Variables

In Section 6.1 we defined the graphG that defines the layout of the sensors’ environ-
ment. Observations can only be collected at the vertices ofG, and moves between two

22A slightly modified version of Equation 15 allows for different length-scales for the spatial and temporal
dimensions of the process.

30



Sensor 1

Sensor 2

Sensor 3

Figure 12: A joint move of length 5 for sensors on a lattice graph.

vertices are only allowed if this graph contains an edge between them. As a result, the
set of observationsAi that sensori can collect is restricted by its current location and
the layout of the environment.

Now, given a sensor’s current locationvi, and path lengthl, the set of all possible
paths that the sensor can currently consider is denoted bydi. The joint action space
d of the team of sensors is then the Cartesian product of all individual action spaces:
d = ×M

i=1di. Each elementd ∈ d is thus a collection ofM paths of lengthl; one
for each sensor. An example of such a joint move for three sensors, consisting of a
path of length 5 for each of them, is shown in Figure 12. Specifically, a joint move
is an ordered list of vertices ofG, at each of which the sensor makes an observation
of the spatial phenomenon. Thus, there exists a correspondence between a path and
a collection of random variables that are observed along that path. Therefore, with
some slight abuse of notation, we can treat every element ind as both a path and a set
of (potential) samples. Thus, we can now assign to each sensor i a decision variable
pi, which takes values in the setdi, representing all moves that sensori is currently
considering.

6.3.2 Utility Functions

Given the definition of the functionf that assigns a value to a set of samples, the team
utility of collecting a set of samplesA, given that samplesB were collected previously
is equal to the conditional entropy ofA given B and is denoted byH(A∣B). By
exploiting the chain rule of entropy, which states thatH(X,Y ) = H(X∣Y ) +H(Y ),
we can decompose the team utility of collectingA into a sum of the utility obtained by
single sensors that each collect a subsetAi of A, such that∪M

i=1Ai = A, as follows:

H(A∣B) = H(A1∣B) +H(A2∣A1, B) + . . .+H(An∣A1, . . . , An−1, B)

= [H(A1 ∪B)−H(B)] + [H(A1 ∪A2 ∪B)−H(A1 ∪B)] + . . .+

[H(A1 ∪ . . . ∪An ∪B)−H(A1 ∪ . . . ∪An−1 ∪B)]

= �A1
(B) + �A2

(A1 ∪B) + . . .+ �An
(A1 ∪ . . . ∪An−1 ∪B)

=

n
∑

i=1

�Ai

⎛

⎝

i−1
∪

j=1

Aj ∪B

⎞

⎠ (16)

Where�A(B) is defined as theincremental value of addingA toB: �A(B) = H(A ∪
B)−H(B).

Informally, Equation 16 ensures that the team utility is a sum of the incremental
values by adding samplesAi to the samples collected by sensorsj < i. We will call
the individual factors of this sum thesensor utility.

31



U1

p1

Sensor 1

U2

Sensor 2 Sensor 3

U3

p2 p3

U4

p4

Sensor 4

Figure 13: A factor graph encoding the mobile sensor coordination problem for four
sensors.

Definition 1 (Sensor Utility). Sensor i’s contribution to the team utility is:

Ui(A1, . . . , Ai) = �Ai

⎛

⎝

i−1
∪

j=1

Aj ∪B

⎞

⎠

So, in order to calculate its utility, a sensor need only be aware of the samples
collected by sensors with a lower ID. Moreover, by summing the contributions by
individual sensors, we obtainH(A∣B) = H(A1 ∪ . . . ∪ AM ∣B), which is the team
utility. Note, that it is possible to further factorise the utility functions if the samples
collected by one agent are independent of those of another agent. In this case, the edge
connecting the function node of each of these agents to the variable node of the other
agent can be removed. The correlation length of the Gaussianprocess provides a clear
metric to perform this edge removal. However, in this evaluation, we do not do so,
since this edge removal is effectively performed by the construction of the maximum
spanning tree within the bounded max-sum algorithm.

Combining this observation with the definition of the sensors’ decision variables
and the correspondence between observation sets and paths,the goal of the team is
now to find joint movep∗ such that:

p∗ = [p∗1, . . . , p
∗
M ] = argmax

p1∈Ai,...,pM∈AM

M
∑

i=1

Ui(p1, . . . , pi) (17)

In other words, the sensors attempt to find joint movep∗ that maximises the team
utility by maximising the sum of their contributions as defined in Definition 1. Since
the team utility is the sum of the sensors’ utility functions, max-sum can be readily
applied to solve this coordination problem.

Finally, to give an example of a factor graph resulting from combining the variables
from the previous section with the utility functions definedin this section, Figure 13
shows the factor graph for solving the coordination problemwith four sensors.

6.3.3 Applying the Pruning Algorithms

As mentioned in Section 5, the straightforward applicationof max-sum in domains
where the utility functions are expensive to evaluate leadsto a prohibitive computa-
tional cost. Clearly, this the case in the mobile sensors domain, where determining the

32



value of a sample involves the inversion of a potentially very large matrixK(X,X)
(see Equation 14). Thus, the use of the pruning algorithms presented in Sections 5.1
and 5.2 could be particularly advantageous in this setting.

Now, in order to compute the necessary bounds for these two pruning algorithms,
we need to use domain specific knowledge, since these bounds are context dependent.
In particular, we will exploit various properties of the GP in order to efficiently compute
(approximations to) these bounds.

Firstly, we derive the bounds on the utility functions for the pruning algorithm from
Section 5.1. Note that, given the highly non-linear relations expressed in Equation 14
on which the agents’ utility functionsUi are based, it is very difficult to compute tight
bounds onU i andU i in Algorithm 1 without exhaustively searching the domain ofpi

for utility function Ui. Needless to say, this would defeat the purpose of this pruning
technique. Nonetheless, experimentation shows that by computing these bounds in a
greedy fashion, a very good approximation is obtained. In order to do this, the lower
boundUi(pn) on a movepn is obtained by selecting the neighbouring agents one at
a time, and finding the move that reduces the utility of agenti’s move themost. In
a similar vein, the upper boundUi(pn) is obtained by selecting those moves of other
sensors that reduce the utility theleast.

Next, we derive bounds on the maximum utility found in subtreesT —the search
tree for the joint action pruning algorithm defined in Section 5.2. To compute these
bounds onUi(d̂), for a partial joint action̂d, first note that this partial joint action
represents a situation in which only a subset of the sensors have determined their move.
Using this interpretation, we can obtain bounds as follows.The upper bound on this
value is obtained by disregarding the sensors that have not yet determined their move
(i.e. sensorsi for which pi = ∅). To see why this results in an upper bound, note that
the act of collecting a sample always reduces the value of other samples (an example of
the information never hurts principle), disregarding the samples of these ‘undecided’
sensors will give an upper bound on the maximum. Thus, this value is computed by
evaluating a modified version of the utility function as follows: Ui({pj ∈ pi : pj ∕=
∅}).

To obtain a lower bound on the maximum, we exploit a property of the covariance
function in Equation 15. This property causes the interdependency between the value
of samples to weaken as the distance between them increases.So, in order to calculate a
lower bound on the maximum, we compute the value of the samplein the event that the
undecided sensors move away from sensorsi’s destination. This results in minimum
correlation between the sample and the samples collected bythe undecided sensors,
thus increasing the value of this sample. In many cases, thisresults in a very tight
lower bound on the maximum of the sample.

6.4 Empirical Evaluation

In this section, we evaluate the algorithms developed in this paper on the mobile sensor
domain to ascertain their effectiveness in a setting inspired by a real-life application.
Specifically, we first evaluate the speed up resulting from applying the pruning algo-
rithms described in Section 5. The mobile sensor setting is avery suitable candidate to
do this, since the computational overhead incurred by evaluating the utility functions is
significant in this setting. Second, we evaluate the boundedmax-sum algorithm from
Section 4 in combination with these pruning algorithms, anddetermine the difference
between the difference between the optimal and obtained solution. This evaluation is

33



similar to Section 4.4, however, instead of considering randomly generated coordina-
tion problems, we use the more realistic mobile sensor domain.

6.4.1 Effectiveness of the Pruning Algorithms

To empirically evaluate the two pruning algorithms in the mobile sensor domain, we
simulated five sensors on a lattice graph measuring 26 by 26 vertices. The data was
generated by a GP with a squared exponential covariance function (see Equation 15)
with a spatial length-scale of 10 and a temporal length-scale of 150. This means that
the spatial phenomenon has a strong correlation along the temporal dimension, and
therefore changes slowly over time.23

Now, at everym time steps, the sensors plan their motion for the nextl time steps
(l ≥ m). In what follows, this strategy is referred to as MSm-l. Now, instead of
considering all possible paths of lengthl from an agent’s current position, which would
result in a very high computational overhead, the action space is limited to the locations
in G that can be reached inl time steps in 8 different directions, corresponding to the
major directions on the compass rose. In the first experiment, we benchmarked MS1-1
and MS1-5 against four strategies often found in the literature:

∙ Random: Randomly moving sensors.

∙ Greedy: Sensors that greedily maximise the value of the sample collected in
the next move without coordination. This strategy was included to determine the
effect of coordination between sensors.

∙ J(umping) Greedy: The same as Greedy, except that these sensors can instan-
taneously jump to any location. This strategy will act as an upper bound on the
achievable performance of a greedy strategy, since it is notconstrained by the
movement graphG.

∙ Fixed: Fixed sensors that are placed using the algorithm proposed in [37]. This
is an algorithm that positions fixed (i.e. non-mobile) sensors as to minimise the
entropy at all monitored locations.

The average root mean squared error (RMSE) over 100 time steps is plotted in Fig-
ure 14(a). From this figure, it is clear that both MS strategies outperform the Greedy
and Random strategies, since both have no more than one step look ahead, and the MS
strategies compute coordinated paths of length 1 and 5. Furthermore, the prediction
accuracy of MS1-5 is comparable to that of JGreedy, whose movement is not restricted
by graphG. Moreover, it shows that increasing the look ahead improvesthe solution
quality: the length of the considered paths from 1 to 5 reduces the RMSE by approxi-
mately 30%.

In the second set of experiments, we analysed the speed-up achieved by applying
the two pruning techniques described in Section 5. Figure 14(b) shows the percent-
age of joint actions pruned plotted against the number of neighbouring agents. With
5 neighbours, the two pruning techniques combined prune around 92% of the joint
moves. With such a number of neighbouring agents, the agentsare strongly clustered,
which occurs rarely in a large environment. However, shouldthis happen, the utility

23These parameters were chosen to generate challenging coordination instances. For example, by using a
high value for the spatial length-scale, sensors are able tocover the entire area without needing to move. Sim-
ilarly, with a very high value for the temporal length-scale,the sensors need to traverse the environment only
once, since the phenomenon changes very little over time. Thus, while not necessarily being the worst-case
scenario, the problems generated by setting the parameters tothese values represent the most challenging
instances we managed to create.

34



0

0.2

0.4

0.6

0.8

1

.

Average RMSE

MS1−1 Greedy
JGreedy

Random
FixedMS1−5

2 3 4 5 6
0

20

40

60

80

100

Number of Neighbouring Agents

Percentage of Joint Actions Pruned

(a) (b)

0 2 4 6 8 10 x 10
5

0.3

0.35

0.4

0.45
MS1−1

MS2−2

MS4−4

MS1−5

MS5−5

MS4−8

MS8−8

Utility Function Evaluations

Average RMSE

(c)

Figure 14: Empirical results for the pruning algorithms showing (a) the average root
mean squared error (RMSE), (b) the percentage of joint actions pruned, and (c) the
number of utility function evaluations plotted against theaverage root mean squared
error achieved. Error bars indicate the standard error of the mean.

function needs to be evaluated for only 8% of roughly85 joint actions, thus greatly
improving the algorithm’s efficiency.

In the third experiment, we performed a cost/benefit analysis of various MSm-l
strategies. More specifically, we examined the effect of varying m andl on both the
number of utility function evaluations, and the resulting RMSE. Figure 14(c) shows the
results. The results of MS1-1, MS2-2, MS4-4, MS5-5, and MS8-8 show an interesting
pattern. Up to and includingm = l = 4, both the number of function evaluations
and the average RMSE decrease. This is due to the fact that planning longer paths is
more expensive, but results in lower RMSE. However, form, l > 4, the action space
becomes too coarse (since only 8 directions are considered)to maintain a low RMSE.
At the same time, the number of times the agents coordinate reduces significantly,
resulting in a lower number of function evaluations. Finally, MS1-5 and MS4-8 provide
a compromise; they compute longer paths, but coordinate more frequently. This leads
to more computation compared to MS5-5 and MS8-8, but resultsin significantly lower
RMSE, because agents are able to ‘reconsider’ their paths midway.

35



6.4.2 Empirical Evaluation of the Bounded Max-Sum Algorithm

In the previous set of experiments, we focused exclusively on the effectiveness of the
pruning algorithms in a setting where the evaluation of utility function is computa-
tionally demanding. In the second set, we combined the pruning algorithms with the
bounded max-sum algorithm presented in Section 4 to determine whether (i) the op-
timal solution is preserved by using the pruning algorithms, and (ii) to determine the
solution quality provided by the bounded max-sum algorithmcompared to the optimal
solution computed by enumerating the entire joint action-space. The latter presents an
empirical estimation of the approximation computed by thisalgorithm in a realistic and
demanding setting.

In more detail, these experiments used the same environmentlayout and GP set-
tings as before. During each simulation, which lasted for 200 timesteps, the sensors
computed paths of length 8 at 4 timestep intervals (i.e. MS4-8). We performed simu-
lations with 3, 4, 5, and 6 sensors, bothwith andwithout the action pruning algorithm
from Section 5.1, starting the sensors from random locations in each run. In what fol-
lows, the simulation withM sensors, and pruning turned on is denoted by PM , and
with pruning turned off, by NPM . In both case, the joint action pruning algorithm
from Section 5.2 was always used.

Figure 15(a) shows the average utility obtained during 200 timesteps of the sim-
ulation over twenty repetitions. In particular, it reportsthe four metrics described in
Section 4.4. The results show that the solution computed using the bounded max-sum
algorithm is very close to the optimal solution. More specifically, the minimum ratio
between the computed solution and the optimal solution over160 runs was 98%, thus
showing that the use of this algorithm leads to very good approximations to the optimal
solution. Moreover, the graph shows that the use of the pruning techniques results in
a slight tightening of the bound on the optimal solution. More importantly, it corrob-
orates the theoretical claim that the optimal solution is preserved when applying the
pruning algorithms (see Section 5.1).

Figure 15(b) shows the benefits of applying the two pruning algorithms more clearly.
This figure includes four key metrics:

1. Cache misses: the number of times the utility functions actually needed to be
evaluated for different joint actions.

2. The total number of function calls.

3. The number of nodes that needed to be expanded in the searchtree (described in
Section 5.2) to find the optimal value.

4. The total number of nodes that the full search tree contains.

From this figure, we note that the action pruning approach described in Section 5.1
results in reductions in all four of these metrics of approximately one order of magni-
tude. By removing dominated action choices, the coordination problem is simplified
and agents need perform less evaluations of the costly utility function. Furthermore,
we note that the joint action pruning algorithm described inSection 5.2 results in a
reduction in the number of nodes of the search tree that must be expanded, compared
to the total number of nodes in the tree, of up to two orders of magnitude.24

24Note that in settings where the computational cost of performing the utility function evaluation domi-
nants other processing, this will translate into a significant runtime improvement. However, in general, the
runtime of the algorithm will also depend on many other domain specific factors (such as the computational
resources of the agents, and even the communication delays as they exchange messages).

36



NP3 NP4 NP5 NP6 P3 P4 P5 P6
0

10

20

30

40

50

Number of Sensors

Utility

 

 

V ∗
Ṽ
Ṽ m

Ṽ m + W

NP3 NP4 NP5 NP6 P3 P4 P5 P6
0

Number of Sensors

Number

 

 

Cache Misses
Function Calls
Expanded Nodes inT
Total Nodes inT

104

108

1012

1016

(a) (b)

NP3 NP4 NP5 NP6 P3 P4 P5 P6
0

2000

4000

6000

8000

Number of Sensors

Total Message Size

NP3 NP4 NP5 NP6 P3 P4 P5 P6
0

0.1

0.2

0.3

0.4

Number of Sensors

Average RMSE

(c) (d)

Figure 15: Empirical results for the bounded max-sum algorithm showing (a) the av-
erage utility, (b) the number of cache misses, the total number of utility function calls,
the number of expanded partial joint actions (expanded nodes in search treeT ), and the
maximum number of partial joint actions that could have beenevaluated (total number
of nodes in search treeT ), (c) the average root mean squared error (RMSE), (d) the
total message size in terms of the number of values exchanged. PM means thatM
sensors are deployed, and that the action pruning algorithmfrom Section 5.1 is used,
and NPM meansM sensors without action pruning. Error bars indicate the standard
error of the mean.

Figure 15(c) shows the required amount of communication needed for coordina-
tion. The most notable conclusion that can be drawn from thisfigure is the strong
reduction in message size when the action pruning algorithmis used. Since the action
space of individual sensors is reduced by pruning dominatedactions, the number of val-
ues contained in the messages exchanged between functions and variables (Equations
2 and 3) is significantly reduced, resulting in a lower communication overhead.

Finally, Figure 15(d) shows the obtained solution quality in terms of the average
RMSE. Unlike the utility reported in Figure 15(a), this figure shows a slight decrease in
solution quality when using the pruning algorithms. This iscaused by the fact that the
sensors minimise entropy in their environment, which, despite being strongly linked,

37



does not directly translate into a decrease of RMSE. Put differently, directed by the
utility function that incentivises entropy reduction, thepruning technique in Section
5.1 that operates on the action space of individual agents, prunes actions that would
have led to lower RMSE. Fortunately, this effect is limited,as the maximum increase
of RMSE found over 160 runs was only 3.5%.

In summary, in this section, we demonstrated the effectiveness of the bounded max-
sum algorithm and the two pruning algorithms in a setting where the utility functions
are computationally expensive to evaluate. We showed that,by using the two pruning
algorithms, the number of function evaluations is reduced by roughly two orders of
magnitude for a joint action space of size86. Moreover, the results showed that by
using the bounded max-sum results, we obtain solutions thatare guaranteed to be no
further away than 2% from the optimal solution. Generalising from these specific re-
sults, these experiments clearly show the effectiveness ofthe developed techniques for
real-life applications with complex interactions betweenagents.

7 Related Work

As described in the introduction, approximation ratios have previously been provided
for k-optimal algorithms in the area of DCOPs [15, 16]. In this case, thek-optimal
solution for a DCOP is a solution that cannot be improved by changing the assignment
of anyk or less variables. Many well known local algorithms for DCOPs are guaran-
teed to providek-optimal solutions. In particular, any locally hill climbing algorithm
is k-optimal fork = 1, such as for example DSA [1] and MGM [10]. While, ak = 2
variant of MGM, termed MGM-2, has been presented [10]. Specifically, Pearce and
Tambe provide approximation ratios which are valid for any DCOP with non-negative
reward structure, and which are dependent on the arity of theconstraint functions, the
number of agents participating in the DCOP and the value ofk. Moreover, they pro-
vide both general bounds which are not dependent on the constraint graph structure,
and tighter bounds for specific structures (e.g. ring and star graph structures). More
recently, Bowring et al. have improved on this bound by assuming a priori information
concerning the DCOP reward structure [16]. With respect to this work, our approach
is somewhat complementary, as here we provide an approximation ratio which is more
accurate but is dependent on the specific problem instance, while their approach pro-
vides a less accurate bound which, in turn, is more general. In more detail, the approx-
imation ratio provided within the k-optimality framework is dependent on the number
of agents and thus scales poorly when the number of agents in the system grows.25

Conversely, our approximation ratio is dependent on the reward structures (because it
requires functions to be bounded), and on the constraint graph structure (because it is
more accurate when less cycles are present in the constraintnetwork). However, it is
not dependent on the number of agents present in the system and, since it exploits the
specific constraint graph structure, it is able to provide very accurate approximation
ratios.

An alternative approximation approach, proposed by Yeoh etal., is based on the
ADOPT algorithm, and its extension BnB-ADOPT [19]. This algorithm fixes a prede-
termined error bound for the optimal solution, and stops when a solution that meets this
error bound is found. Their approach is similar to our work inthat it is dependent on
the problem instance. Specifically, in their case, the errorbound is fixed and the algo-
rithm will stop only when such a bound is obtained. The numberof cycles required by

25See the discussion in Section 4.4 for a more detailed comparison of our approach with [16].

38



the algorithm to converge is dependent on the particular problem instance, and, in the
worst case, remains exponential. Our approach in contrast,is guaranteed to converge
after a polynomial number of cycles (i.e., twice the depth ofthe tree structured factor
graph), but the approximation ratio is dependent on the particular problem instance.
Therefore, our approach tries to minimise computation and communication, by trading
off solution quality. This requirement is driven by our focus on decentralised coordi-
nation for embedded agents, where constraints on communication and computation are
crucial for the practical applicability of the coordination approach.

Similar considerations hold with respect to A-DPOP [18], anextension of the
DPOP algorithm that computes approximate solutions. A-DPOP attempts to reduce
message size (which is exponential in the original DPOP algorithm in the width of the
pseudo tree) by optimally computing only a part of the messages and approximating
the rest (with upper and lower bounds). Given a fixed approximation ratio, A-DPOP
can then reduce message size to meet this ratio, or alternatively, given a fixed maxi-
mum message size, it propagates only those messages that do not exceed that size. As
a result of this, the computed solution is not optimal, but approximate. Moreover, as
discussed above, since the algorithm fixes a desired approximation ratio, the message
size remains exponential. In contrast, if we would fix the maximum message size in
our approach, the approximation ratio is dependent on the specific problem instance.
Furthermore, note that in the A-DPOP case, there is no mechanism to minimise the
approximation ratio, which in our approach is provided by considering the maximum
spanning tree of the constraint network.26

Our use of tree structures to obtain an approximation of the original problem shares
similarities with previous work in information theory where a dependence tree is used
to approximate a generic joint probability distribution ofrandom discrete variables.
In particular, it has been shown that a maximum weight dependence tree provides the
best tree approximation of the joint probability distribution [42]. In contrast, our con-
tribution addresses a decentralised decision problem as opposed to a centralised tree
parametrisation of an unknown joint probability. Consequently, we provide the ap-
proximation ratio for our optimisation problem and we consider genericn-ary rela-
tionships among variables as opposed to the binary dependence considered in [42].
Techniques based on tree-decomposition have also been previously used in the area of
constraint optimisation. In particular, in [43] the authors focus on providing bounds on
the best-cost extension of a set of variables (i.e., the bestvalue that the target func-
tion can achieve for all the possible joint values of the variable set), given a tree-
decomposition.27 In contrast, here we focus on removing cycles from the original
problem instance to optimise the approximation ratio, maintaining a low communica-
tion and computation overhead, because we focus on decentralised coordination for
resource constrained embedded agents.

Finally, our action pruning approach shares some similarities with the directed soft
arc consistency approach proposed by Matsui et al. [44]. This work proposes a dis-
tributed algorithm to perform directed soft arc consistency on pseudo-trees, and shows
that this approach can be efficiently combined with common search algorithms (e.g.,
ADOPT). Our action pruning approach has a similar spirit as it is a distributed prepro-

26If we force A-DPOP to have polynomial message size, as it is the case with our approach, the algo-
rithm would compute a DFS tree and remove all other edges, without considering the impact of removed
dependencies on the approximation ratio.

27Notice that a tree-decomposition for a Constraint Optimisation Problem is not a spanning tree of the
original graph, but a tree that has clusters of variables as vertices, and that satisfies therunning intersection
property. See [43] for further details.

39



cessing scheme that results in a faster algorithm. Moreoverit is somewhat similar to
standard arc consistency for constraint satisfaction problems as it tries to delete use-
less values from variable domains. However, our action pruning approach, in contrast
to the method presented in [44], does not try to reduce the range of the values of the
functions. This is motivated by the fact that max-sum is not asearch algorithm and so
it would not benefit from such reduction as it is the case with search algorithms such as
ADOPT. Here, we are more concerned to reduce the number of actions that each func-
tions must consider when computing the messages of the max-sum algorithm as this is
the main source of algorithm’s computational complexity. Nonetheless, applying soft
arc consistency could potentially result in a better approximation ratio for the bounded
max-sum, as reducing the range of the cost functions could result in smaller weights.
However further investigations would be required to see whether the pre-processing
overhead to apply directed soft arc consistency would be worth the possible reduction
in the approximation ratio, and this falls outside the scopeof the current paper.

8 Conclusions and Future Work

In this paper we proposed a novel approach to decentralised coordination which is
particularly suited for embedded computationally constrained agents. Our approach
is based on a factor graph representation of the constraint network (i.e. the interac-
tions between agents) and builds on the max-sum algorithm. Our approach guarantees
accurate bounded approximate solutions, while maintaining a very low computation
and communication overhead. Given any particular instanceof a general constraint
network, our approach is able to compute a solution and to provide an approximation
ratio for the unknown optimal solution. This is achieved without incurring the typical
exponential cost of optimal approaches, thus resulting in avery effective and efficient
technique. Moreover, by applying two novel generic pruningtechniques, we are able to
reduce the computation that each agent must perform when computing the approximate
solution, thus further improving the computational efficiency of our approach.

We apply our approach in a mobile sensor domain to assess its practical benefits.
In this domain mobile sensors must coordinate their actionsto gather the most infor-
mative measurements from the environment. In this setting,we develop a factor graph
representation for this specific coordination problem, andshow how our approach can
be used as a solution technique. Moreover, we show how the twodeveloped prun-
ing techniques can be used in this specific domain to further speed up the max-sum
message computation. Empirical results showed that our novel technique is extremely
effective, providing accurate solutions which are guaranteed to be no further away than
2% from the optimal. Moreover, the use of the pruning techniques proved to be very
successful in speeding-up the computation of the max-sum message: for 5 sensors,
these techniques prune 92% of joint moves, thus significantly reducing the number of
utility function evaluations, which are particularly expensive in our domain.

Many possible future directions stem from this work. A first interesting research
direction is to investigate techniques to further reduce the approximation ratio. A possi-
ble approach is to iteratively apply our algorithm while clustering variable and function
nodes (as proposed in [32]) to remove cycles without removing dependencies. In this
way, we can iteratively decrease the approximation ratio (by removing less dependen-
cies) while paying an increase in communication and computation (due to clustering of
nodes), thus allowing a flexible trade-off between solutionquality and communication
and computation overhead. In this respect, it would also be interesting to consider the

40



use of state of the art techniques for constraint satisfaction. As mentioned in the previ-
ous section, soft arc consistency could be applied, as proposed in [44], to preprocess the
constraint network before applying our approach. Another interesting possibility would
be to investigate the use of cutset schemes to obtain tree-structured network [25]. For
example, the cycle cutset decomposition could be used to completely remove cycles, or
alternatively, more general cutset schemes (b-cutset) could be exploited to obtain con-
straint networks with a bounded induced width. A similar approach has already been
succesfully used in [13], and in this context, our idea of finding a maximum-weight
spanning tree could be used as an heuristic to choose the cutset variables.

A second interesting direction is to investigate the use of region based message
passing techniques, such as the family of generalised belief propagation approaches
[45], as solution techniques for our constraint network. GBP is a generalisation of the
standard GDL techniques (such as max-sum) and operates on aregion graph, which
is obtained by dividing the factor graph into specific regions based on the factor graph
topology.28 Messages are then computed for regions and sent from one region to an-
other. Recent empirical results show that region based techniques such as GBP are able
to outperform standard GDL techniques, with a minimal extracost in terms of compu-
tation. Moreover, GBP has similar guarantees on solution optimality as the standard
GDL techniques, namely it is optimal when the region based graph does not contain cy-
cles [45]. Therefore, investigating possible extensions of our bounded max-sum algo-
rithm to GBP techniques appears to be a promising direction.More generally speaking,
the application of GDL-based techniques to decentralised coordination appears to be
a very promising direction, resulting in effective and efficient solutions. Furthermore,
many important aspects which are specific to the coordination of embedded agents still
need to be investigated. For example, agents usually have heterogeneous computation
and communication capabilities, and this could potentially be taken into account when
assigning the responsibility for variables and factor nodecomputation to the different
agents in order to better exploit the limited resources of the system.

Finally, an important research direction is to go beyond thelimited look-ahead
used here for coordinating the paths of the mobile sensors, and investigate the use of
sequential decision making approaches. The sequential aspect is inherent to a wide
variety of applications involving embedded agents, however a key issue is to keep
the computational costs under control. To this end, the factorisation of the objective
function seems to be a promising idea, and again, GDL-based approaches appear to be
very well suited solution techniques.

Acknowledgements

This paper is a significantly extended version of paper [27].The work reported in
this paper was jointly funded by the Systems Engineering forAutonomous Systems
(SEAS) Defence Technology Centre established by the UK Ministry of Defence and
the ALADDIN (Autonomous Learning Agents for DecentralisedData and Information
Systems) project; a BAE Systems and EPSRC (Engineering and Physical Research
Council) strategic partnership (EP/C548051/1).

28A region is formed by a sub-set of factor nodes and all variablenodes that are connected to them. A
region usually includes short loops in the factor graph to have good approximations.

41



A Proof of Bounded Approximation

To prove theorem 1 we first introduce and prove the following lemma:

Lemma 1.
∀i,x min

xc
i

Fi(x
t
i;x

c
i ) +Bi(x

c
i ) ≥ max

xc
i

Fi(x
t
i;x

c
i ) (18)

Proof of Lemma 1. ExpandingBi(x
c
i ) as defined in Equation 6 we have:

min
xc
i

Fi(x
t
i;x

c
i ) + max

xt
i

[

max
xc
i

Fi(x
t
i;x

c
i )−min

xc
i

Fi(x
t
i;x

c
i )

]

≥ max
xc
i

Fi(x
t
i;x

c
i )

wherext
i = xi ∖ xc

i as in Section 4. By contradiction, let us consider an assignment
x′′t

i such that:

min
xc
i

Fi(x
′′t
i;x

c
i ) + max

xt
i

[

max
xc
i

Fi(x
t
i;x

c
i )−min

xc
i

Fi(x
t
i;x

c
i )

]

< max
xc
i

Fi(x
′′t
i;x

c
i )

We can rewrite the previous expression as:

max
xc
i

Fi(x
′t
i;x

c
i )−min

xc
i

Fi(x
′t
i;x

c
i ) < max

xc
i

Fi(x
′′t
i;x

c
i )−min

xc
i

Fi(x
′′t
i;x

c
i )

where

x′t
i = argmax

xt
i

[

max
xc
i

Fi(x
t
i;x

c
i )−min

xc
i

Fi(x
t
i;x

c
i )

]

However, this is a contradiction with respect to the definition ofx′t
i. Therefore Lemma

1 must hold.

Lemma 2.
B ≤ W (19)

Proof of Lemma 2. We can rewrite the above inequality as:
∑

i

Bi(x
c
i ) ≤

∑

<i,j>∈C

wij

whereC is the set of couples of indices< i, j > that identify the edges removed
from the factor graph. We can prove this inequality by showing that∀i Bi(x

c
i ) ≤

∑

j∈I(xc
i
) wij whereI(xc

i ) is the set of variable indexes which have been removed. We
proceed by expandingBi(x

c
i ) as defined in Equation 6 andwij as defined in Equation

5 to give:

max
xt
i

[

max
xc
i

Fi(x
t
i;x

c
i )−min

xc
i

Fi(x
t
i;x

c
i )

]

≤
∑

j

max
xi∖j

[

max
xj

Fi(xi)−min
xj

Fi(xi)

]

For functions that have no dependencies removed we havexc
i = ∅, thereforeBi(∅) =

0. Consequently,I(xc
i ) = ∅, and thus, since the sum of the weight will be zero, the

above inequality holds. For functions that have at least onedependency removed, we
can substitute the left term of the above inequality with:

max
xt
i

[

max
j

[

max
xc
i
∖j

[

max
xj

Fi(xi)−min
xj

Fi(xi)
]

]

]

42



However, this term is less than or equal to:

max
xt
i

⎡

⎣

∑

j

max
xc
i
∖j

[

max
xj

Fi(xi)−min
xj

Fi(xi)

]

⎤

⎦

which, in turn, is less than or equal to the right hand side of our original expression.

Theorem. Bounded Approximation

∑

i

min
xc
i

Fi(x̃i) +B ≥
∑

i

Fi(x
∗
i ) (20)

Proof of Theorem Bounded Approximation. By considering the definition of̃x given in
Equation 7, we can write the following inequality:

∑

i

min
xc
i

Fi(x̃i) ≥
∑

i

min
xc
i

Fi(x
∗
i )

This inequality holds becausẽx is defined as the assignment that maximises the prob-
lem on the tree structured network, and thus, the value givenby that assignment on
the tree structured problem will be higher or equal than any other possible assignment.
Specifically, it will be greater or equal than the optimal assignment of the original
problemx∗, and thus, we can write:

∑

i

min
xc
i

Fi(x̃i) +B ≥
∑

i

min
xc
i

Fi(x
∗
i ) +B

adding the same quantityB to both terms of the equation. Then using Lemma 1 we
know that:

∑

i

min
xc
i

Fi(x
∗
i ) +B ≥

∑

i

max
xc
i

Fi(x
∗
i )

Now, since:
∑

i

max
xc
i

Fi(x
∗
i ) ≥

∑

i

Fi(x
∗
i )

our bounded approximation holds.

B Derivation of worst case approximation ratio

We derive here the worst case approximation ratio� = M/m starting from the�FG.

Derivation of worst case approximation ratio. The worst case, for�FG, happens when
the optimal solution on the spanning tree equals the optimalsolution evaluated on the
original graph. This is the worst case because the approximation ratio is directly de-
pendent oñV m and inversely dependent oñV , but we know that̃V m ≤ Ṽ . Intuitively,
this is the worst case since in this case we overestimate the impact of the removed
dependency the most (i.e., the actual impact is zero for the computed solution). When
Ṽ m = Ṽ we have� = 1+B/Ṽ m. Moreover, let us denote the maximum ratio between
the minimum reward and maximum reward across all functions with M/m wherem
andM are the minimum and maximum reward for the function that maximises the

43



reward ratio andmi andMi are the minimum and maximum reward for functioni. We
can then write:

� = 1 +
B

∑∣F∣
i mi

= 1 +

∑∣F∣
i (Mi −mi)
∑∣F∣

i mi

This is because we assume, being a worst case analysis, that all functions need to
have at least one dependency cut, thereforeṼ m =

∑∣F∣
i mi and that for all functions

the dependencies we cut have the highest possible impact on the solution quality (i.e.

∀i Bi(x
c
i ) = Mi −mi). Then we have� =

∑∣F∣
i

Mi
∑∣F∣

i
mi

≤ M/m.

References

[1] Fitzpatrick, S., Meetrens, L.: Distributed coordination through anarchic opti-
mization. In: Distributed Sensor Networks: A multiagent perspective. Kluwer
Academic (2003) 257–293

[2] Padhy, P., Dash, R., Martinez, K., Jennings, N.R.: A utility-based adaptive sens-
ing and multi-hop communication protocol for wireless sensor networks. ACM
Transactions on Sensor Networks6(3) (2010) Article 27

[3] Rogers, A., Corkill, D.D., Jennings, N.R.: Agent technologies for sensor net-
works. IEEE Intelligent Systems24(2) (2009) 13–17

[4] Chapman, A., Rogers, A., Jennings, N.R., Leslie, D.: A unifying framework for
iterative approximate best response algorithms for distributed constraint optimi-
sation problems. The Knowledge Engineering Review (2011) In Press

[5] Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: ADOPT: Asynchronous dis-
tributed constraint optimization with quality guarantees. Artificial Intelligence
(161) (2005) 149–180

[6] Mailler, R., Lesser, V.: Solving distributed constraint optimization problems us-
ing cooperative mediation. In: Proceedings of Third International Joint Confer-
ence on Autonomous Agents and MultiAgent Systems. (2004) 438–445

[7] Petcu, A., Faltings, B.: DPOP: A scalable method for multiagent constraint op-
timization. In: Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence. (2005) 266–271

[8] Chechetka, A., Sycara, K.: No-commitment branch and bound search for dis-
tributed constraint optimization. In: Proceedings of Fifth International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems. (2006) 1427 – 1429

[9] Gershman, A., Meisels, A., Zivan, R.: Asynchronous forward bounding for dis-
tributed cops. Journal of Artificial Intelligence Research34 (2009) 61–88

[10] Maheswaran, R.T., Pearce, J.P., Tambe, M.: Distributed algorithms for DCOP: A
graphical game-based approach. In: Proceedings of the Seventeenth International
Conference on Parallel and Distributed Computing Systems.(2004) 432–439

44



[11] Zivan, R.: Anytime local search for distributed constraint optimization. In: Pro-
ceedings of the Twenty-Third Conference on Artificial Intelligence. (2008) 393–
398

[12] Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralised coordination
of low-power embedded devices using the max-sum algorithm.In: Proceedings
of the Seventh International Conference on Autonomous Agents and Multiagent
Systems. (2008) 639–646

[13] Petcu, A., Faltings, B.: MB-DPOP: A new memory-boundedalgorithm for dis-
tributed optimization. In: Proceedings of the Twentieth International Joint Con-
ference on Artificial Intelligence. (2007) 1452–1457

[14] Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: An asynchronous branch-and-
bound DCOP algorithm. In: Proceedings of the Seventh International Joint Con-
ference on Autonomous Agents and Multiagent Systems. (2008) 591–598

[15] Pearce, J.P., Tambe, M.: Quality guarantees on k-optimal solutions for distributed
constraint optimization problems. In: Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence. (2007) 1446–1451

[16] Bowring, E., Pearce, J., Portway, C., Jain, M., Tambe, M.: On k-optimal dis-
tributed constraint optimization algorithms: New bounds and algorithms. In: Pro-
ceedings of the Seventh International Joint Conference on Autonomous Agents
and Multiagent Systems. (2008) 607–614

[17] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
The MIT press (2001)

[18] Petcu, A., Faltings, B.: A-DPOP: Approximations in distributed optimization.
In: Principles and Practice of Constraint Programming (2005) 802–806

[19] Yeoh, W., Sun, X., Koenig, S.: Trading off solution quality for faster computation
in DCOP search algorithms. In: Proceedings of the Twenty-First International
Joint Conference on Artificial Intelligence. (2009) 354–360

[20] Kok, J.R., Vlassis, N.: Collaborative multiagent reinforcement learning by payoff
propagation. Journal Machine Learning Research7 (2006) 1789–1828

[21] Aji, S., McEliece, R.: The generalized distributive law. IEEE Transactions on
Information Theory46(2) (2000) 325–343

[22] MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cam-
bridge University Press (2003)

[23] Weiss, Y., Freeman, W.T.: On the optimality of solutions of the max-product be-
lief propagation algorithm in arbitrary graphs. IEEE Transactions on Information
Theory47(2) (2001) 723–735

[24] Weiss, Y., Freeman, W.: Correctness of belief propagation in gaussian graphical
models of arbitrary topology. Neural Computation13(10) (2001) 2173–2200

[25] Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)

45



[26] Vinyals, M., Rodŕıguez-Aguilar, J.A., Cerquides, J.: Constructing a unifying the-
ory of dynamic programming DCOP algorithms via the generalized distributive
law. Journal of Autonomous Agents and Multi Agent Systems (2010) 1–26

[27] Stranders, R., Farinelli, A., Rogers, A., Jennings, N.R.: Decentralised coor-
dination of mobile sensors using the max-sum algorithm. In:Proceedings of
the Twenty-First International Joint Conference on Artificial Intelligence. (2009)
299–304

[28] Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-
weight spanning trees. ACM Transactions on Programming Languages and Sys-
tems5(1) (1983) 66–77

[29] Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Sci-
ence315(5814) (2007) 972–976

[30] Aji, S.M., Horn, G.B., Mceliece, R.J.: On the convergence of iterative decoding
on graphs with a single cycle. In: Proceedings of the International Symposium
on Information Theory. (1998) 276

[31] Weiss, Y.: Correctness of local probability propagation in graphical models with
loops. Neural Computation12(1) (2000) 1–41

[32] Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factorgraphs and the sum-product
algorithm. IEEE Transactions on Information Theory42(2) (2001) 498–519

[33] Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree,
counting, leader election, and related problems. In: Proceedings of the Nineteenth
Annual ACM Symposium on Theory of Computing (1987) 230–240

[34] Wainwright, M., Jaakkola, T., Willsky, A.: Tree consistency and bounds on the
performance of the max-product algorithm and its generalizations. Statistics and
Computing14(2) (2004) 143–166

[35] Ali, S.M., Koenig, S., Tambe, M.: Preprocessing techniques for accelerating
the DCOP algorithm adopt. In: Fourth International Joint Conference on Au-
tonomous Agents and Multiagent Systems (2005) 1041-1048

[36] Meliou, A., Krause, A., Guestrin, C., Hellerstein, J.M.: Nonmyopic informative
path planning in spatio-temporal models. In: Proceedings of the Twenty-Second
Conference on Artificial Intelligence. (2007) 602–607

[37] Guestrin, C., Krause, A., Singh, A.P.: Near-optimal sensor placements in gaus-
sian processes. In: Proceedings of the Twenty-Second International Conference
on Machine Learning. (2005) 265–272

[38] Krause, A., Guestrin, C.: Near-optimal observation selection using submodu-
lar functions. In: Proceedings of the Twenty-Second Conference on Artificial
Intelligence. (2007) 1650–1655

[39] Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning.
The MIT Press (2006)

46



[40] Osborne, M.A., Rogers, A., Ramchurn, S.D., Roberts, S.J., Jennings, N.R.: To-
wards real-time information processing of sensor network data using computa-
tionally efficient multi-output gaussian processes. In: Proceedings of the Seventh
International Conference on Information Processing in Sensor Networks. (2008)
109–120

[41] Low, K.H., Dolan, J.M., Khosla, P.: Adaptive multi-robot wide-area exploration
and mapping. In: Proceedings of the Seventh International Conference on Au-
tonomous Agents and MultiAgent Systems. (2008) 23–30

[42] Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory14(3) (1968) 462–
467

[43] Dechter, R., Kask, K., Larrosa, J.: A general scheme formultiple lower bound
computation in constraint optimization. Principles and Practice of Constraint
Programming2239(2001) 346–360

[44] Matsui, T., Silaghi, M.C., Hirayama, K., Yokoo, M., Matsuo, H.: Directed soft
arc consistency in pseudo trees. In: Proceedings of The Eighth International
Conference on Autonomous Agents and Multiagent Systems. (2009) 1065–1072

[45] Yedidia, J., Freeman, W., Weiss, Y.: Constructing free-energy approximations
and generalized belief propagation algorithms. IEEE Transactions on Information
Theory51(7) (2004) 2282–2312

47


