Bounded Approximate Decentralised
Coordination via the Max-Sum Algorithm

A. Rogers, A. Farinellif, R. Strandersand N. R. Jennings

*School of Electronics and Computer Science, University of Southamputhampton, UK.

1

TDepartment of Computer Science, University of Verona, Veronb, Ita

{acr, af 2, rs06r, nrj }@cs. soton. ac. uk

October 28, 2010

Abstract

In this paper we propose a novel approach to decentralised coordinttai is
able to efficiently compute solutions with a guaranteed approximation ratio. Ou
approach is based on a factor graph representation of the conseairdrk. It
builds a tree structure by eliminating dependencies between the functidrardn
ables within the factor graph that have the least impact on solution qualiberit
uses the max-sum algorithm to optimally solve the resulting tree structured con
straint network, and provides a bounded approximation specific to thieyar
problem instance. In addition, we present two generic pruning techsiguee-
duce the amount of computation that agents must perform when usingttieum
algorithm. When this is combined with the above mentioned approximation algo-
rithm, the agents are able to solve decentralised coordination problentsatieat
very large action spaces with a low computation and communication owkrhea
We empirically evaluate our approach in a mobile sensor domain, wheb#gemo
agents are used to monitor and predict the state of spatial phenomgnae(@-
perature or gas concentration). Such sensors need to coordinatetiveiments
with their direct neighbours to maximise the collective information gain, while
predicting measurements at unobserved locations. When applied in thardo
our approach is able to provide solutions which are guaranteed to be withaf 2
the optimal solution. Moreover, the two pruning techniques are extrenffely-e
tive in decreasing the computational effort of each agent by redubmgize of
the search space by up to 92%.

Introduction

Recently, significant research effort has sought to appdydination techniques to con-
trol physical devices that are able to acquire informatromfthe environment. In these
settings decentralised coordination (i.e. no central system exists that contitodsdo-
ordination process, but the devices coordinate amongstsblees) has proved to be a
natural, robust and effective approach to organise theiteesi of theembedded agents
that control the devices. For example, decentralised @oatidn techniques have been
used to control the orientation of multiple fixed sensordalgs to localise and track a
target [1] and to coordinate sensing and communication ena@ network deployed

to collect environmental data [2, 3]. In both of these dorsaand many others be-
sides, decentralised coordination is particularly ctmgieg because of the constrained
computational resources of the devices (due to the reqeinef minimising power
consumption) and because communication is limited to loeéghbours (due to the
use of low power wireless communication).

Given this background, the problem of decentralised coatdin in these domains
is often cast as a multi-agent distributed constraint ojgtition problem (DCOP). In
the constraint optimisation framework the aim is to find tlssignment of a set of
variables that optimises the aggregation of payoffs (owvewsely costs) of a set of
soft constraints defined over the values of the variableslf4é distributed constraint
optimisation problem a set of agents control the value ofviréables in the system;
jointly aiming to optimise the global reward. DCOP techrggqican be directly used
to address the decentralised coordination problem destebove by representing the
possible actions that an embedded agent can take with iesiabd by encoding pay-
offs (or costs) for taking joint actions with constrainthése DCOP techniques can be
broadly divided into two classes: complete algorithms,(afgyorithms that always find
a solution that optimises the global objective functiomnjgtsas ADOPT [5], OptAPO
[6], DPOP [7], NCBB [8] and AFB [9]; and approximate algorits such as the Dis-
tributed Stochastic Algorithm (DSA) [1], Maximum Gain Mesg (MGM) [10], and
ALS_DisCOP [11] that do not.

While complete algorithms guarantee that they will retura ¢iptimum solution,
they also exhibit an exponentially increasing coordimateerhead (either in the size
and/or number of messages exchanged or in the computatioired by each device
[12]) as the number of devices in the system increases. Theas,use in practical
applications such as those mentioned above is severeletmirhis important issue
is partially addressed by extensions of the above mentiapptbaches. For example,
MB-DPOP provides a memory bounded algorithm that tradé#heflinear message
number of DPOP with polynomial message size [13]. In addjt®nB-ADOPT is
an extension of ADOPT, using a different search strategpt(dérst with branch and
bound instead of best first) that consistently reduces ctatipa time [14]. However,
while these approaches provide important improvementgjaoantee optimality of the
solution, the overall time and/or message complexity Isrstcessarily exponential.

In contrast, approximate algorithms require very littledbcomputation and com-
munication, and are, as such, well suited for large scaletiped distributed applica-
tions in which the optimality of the solution can be sacrifieefavour of computational
and communication efficiency (see [4] for a review of sucloatgms). Furthermore,
such approximate techniques, have been shown to providésd which are very
close to optimality in several problem instances [1, 10]wdeer, such approaches fail
to provide guarantees on the solution quality in generdinget. This is particularly
troublesome because the quality of solution to which mgst@pmate algorithms con-
verge is highly dependent on many factors which cannot avix@yproperly assessed
before deploying the system. Therefore there is no guazaageinst particularly neg-
ative behaviours of such techniques on specific patholbgfisances.

To rectify these shortcomings, we believe the answer is t@ldp approximate
algorithms with quality guarantees. Such approaches cdmessithe trade off between
solution quality and computation effort while providing aaganteed lower bound on
the quality of the solution obtained with respect to the mptn. Addressing such
trade-offs is particularly important in dynamic settingglavhen the agents have low
computational power, which is usually the case for appbeet involving embedded
devices (such as mobile robots or sensor networks). Morgbaeing a bound on the

quality of the provided solutions is particularly importéor safety critical applications
(such as disaster response, surveillance, etc.) becawbaquical behaviour of the
system is, in this case, simply unacceptable.

Now, there has been some work on providing guarantees onettiermance of
approximate algorithms in the DCOP framework. In particuRearce and Tambe use
the concept of k-optimal solutions, where a solution is kiropl if the corresponding
value of the objective function cannot be improved by chagghe assignment of any
k or less variables [15, 16]. Specifically, Pearce and Tambeigle an approximation
ratio (i.e., the ratio between the unknown optimal solutiad the approximate solution
[17]) for k-optimal algorithms which is valid for any DCOP thinon-negative reward
structure [15]. However, the accuracy of the approximatiatio, in any particular
setting, depends on the number of agents, on the arity ofdhsti@int functions and
on the value of k. Specifically, the approximation bound isenaccurate when Kk is
higher but less accurate when the number of agents in themsygtows. Thus, their
approach provides a poor approximation bound when the nuwibagents grows.
Moreover, finding a k-optimal solution of higher k requiresgeneral, exponentially
more computation and communication. Better approximétimmds can be provided
assuming soma priori knowledge on the reward structure. For example, Bowring et
al. show that the approximation bounds can be improved hynaisg the knowledge
of the ratio between the least minimum reward to the maximeward [16]. In this
approach, the bound is significantly improved, and the balewteases consistently
when the number of agents grows. However, we will show iniSect.3 that the
resulting bound is still significantly larger than that puedd by our approach.

Data dependent approximation approaches with guaranéeesaiso been investi-
gated. For example, Petcu and Faltings propose an apprieximesion of DPOP [18],
and Yeoh et al. provide a mechanism to trade-off solutiodityfar computation time
for the ADOPT and BnB-ADOPT algorithms [19]. Such mechargsmork by fixing
an approximation ratio and reducing computation or comeation overhead as much
as possible to meet that ratio. While empirical results sh@at $uch approaches sig-
nificantly improve the efficiency of their complete countans (i.e., DPOP and BnB-
ADOPT), there is no guarantee or bound on the computatioa inrcommunication
overhead required to achieve the predetermined bound.

Against this background, here we propose a novel decesgchtioordination ap-
proach that is able to make efficient use of constrained ctatipnal and communica-
tion resources, while providing accurdteunded approximate solutions. Our point of
departure is recent work demonstrating that the max-suoritgn is a very promising
technique for decentralised coordination (and, more @gdlyeconstraint reasoning),
providing solutions close to optimality while requiringryelimited communication
overhead and computation [12, 20]. The max-sum algorithlonigs to the Gener-
alised Distributive Law (GDL) framework [21], a family of¢bBniques frequently used
in information theory for decoding error correcting cotlf22] and to solve graphical
models (e.g., to find the maximum a posteriori assignment amnkigly random fields
[23] or compute the posterior probabilities [24]). When éggblto constraint networks
that are trees, the max-sum algorithm is able to provide pignal solution to the
optimisation problem. However, when applied to generalst@int networks which
typically contain loops, only limited theoretical resulisld for the solution quality.
While empirical evidence shows that the algorithm is ablerid Solutions which are

1The turbo codes are probably the most important represemtapiplication for which GDL techniques
are used. See [22], chapter 48.4.

very close to the optimal in general problems, there is noayuae that the algorithms
will converge to a solution, and only very limited guarastea the quality of the so-
lution to which it might converge.

Thus, in this work, we build on the existing max-sum algaritand propose a hew
algorithm that provides bounded approximate solutionsesregal constraint networks
with bounded reward functions. We do so by removing cycleth@original con-
straint network, specifically by ignoring dependenciesveen functions and variables
which have the least impact on the solution quality. We themax-sum to optimally
solve the resulting tree structured constraint networkijstveimultaneously comput-
ing the approximation ratio for the original problem instan We note that the same
guarantees can be obtained by using any distributed ogtiioizalgorithm that runs
in linear time on tree-structured network. Thus, the rasultthis paper pertaining to
bounded approximate solutions are not limited to the maw-algorithm. However,
our specific choice of the max-sum algorithm here is drivelitdefficiency in terms
of low communication overhead (specifically in the numbemassages), low com-
putational requirement and ease of decentralisation. rQibssible choice yielding
the same results in term of efficiency would similar messagsipg algorithms such
as DPOP or the cluster tree elimination algorithm [25]. Hesvgas shown in [26],
the GDL framework (of which max-sum is an instance) gensealimany optimisa-
tion algorithms based on dynamic programming, includindhl@POP and cluster tree
elimination.

Building on this result, we then go on to show that we can frtimprove the
computational efficiency of our algorithm by reducing thars space that each agent
needs to consider. This is important, since many practioathlpms exhibit search
spaces which quickly become intractable even for approeéchgechniques. In order
to achieve this, we develop two generic action pruning dllgos. The first attempts
to discard dominated actions of individual agents (i.e séhthat can never be part of
an optimal solution) before the max-sum algorithm is rurd(dmus, this approach also
generalises to other distributed optimization algorithni$e second uses branch and
bound to reduce the space of joint actions that needs to @dsred whilst running
the max-sum algorithm.

To evaluate the effectiveness of the two algorithms in aisgalapplication, we
consider a disaster response scenario where a set of mebders are tasked to gather
information on spatial phenomena, such as temperatureeaahcentration of poten-
tially toxic chemicals. To predict environmental conditgoin parts of the environment
that can not be sensed directly, these sensors need tofydenti model the spatial
and temporal dynamics of the monitored phenomena. Morgtversensors need to
coordinate their movements to collect the most informateasurements needed to
predict these environmental conditions as accurately asilple [27]. This problem
is particularly challenging from a coordination standpdiacause the sensors need a
sophisticated model to represent the complex spatial angdeal correlations of the
monitored phenomena (and here we use the Gaussian protegszform this role),
which results in a high computational overhead when evalgahe possible joint ac-
tions of the sensors. Moreover, to achieve effective smhsti mobile sensors have to
coordinate on paths, rather than single actions, thusrdgaidith a large search spate.
Thus, to effectively apply max-sum in a computationallyl#vaging domain, such as
the mobile sensors one, we can use these two new pruningthigerto drastically

2A path is a sequence of single actions, thus the number oftpegsaths grows exponentially with the
length of the sequence. However, by coordinating on seeseoicactions, robots are able to better predict
which are the most informative measurements, and thus cooedimate effectively.

reduce the required number of function evaluations, thiesiating a major bottleneck
of this algorithm for practical applications.
In more detail, this work makes the following contributidnghe state of the art:

1. We propose a novel approach for decentralised coordim#tat provides bounded
approximate solutions. This is the first approach to progdarantees on con-
vergence and solution quality for the max-sum algorithm deaentralised co-
ordination setting (and as noted, earlier, it is also applie to other distributed
optimization algorithms that run in linear time on treedstured network). In
particular, our approach exploits the fact that we can d¢alewa weight for each
edge of the original loopy constraint graph that charastsrthe maximum ef-
fect that the removal of that edge can have on the optimakvaiuhe function
to which it was connected. We formally prove that, if we remedges to create
a tree structured constraint network, our algorithm can tteenpute the approx-
imation ratio for the original problem instance. Moreowse present a fully
decentralised algorithm (building on Gallager, Humbled &pira’s algorithm
for finding minimum spanning trees [28]) that forms a treedred constraint
network by removing those edges with the minimum total weigh(hence min-
imising the approximation ratio calculated above). Theoatgm then initiates
max-sum on the resulting tree structured constraint nétaod distributes the
elements required to compute the approximation ratio toadles.

2. We empirically evaluate our bounded approximate appraae synthetic sce-
nario analysing the solution and approximation ratio ai®diin a generalisation
of the distributed graph colouring algorithm, which is a @aical problem fre-
quently used to evaluate DCOP techniques (e.g., [5] and 8§ show that the
approximate solutions that our algorithm provides aredsity within 95% of
the optimum and the approximation ratio that our algorithrovjzes is typically
1.23, and we show that this is much more accurate than théopeetheoretical
bound for k-optimal algorithms.

3. We develop two novel, generic pruning techniques to redne computational
overhead of max-sum when applied to problems with a largeraspace. The
first method attempts to reduce the number of actions thdt agent needs to
considetbefore running the max-sum algorithm. This algorithm prunes thado
inated actions of each agent, which will never be selectethbydecentralised
coordination procedure, regardless of the actions of atlgents. The second
technique is based on a branch and bound search, which isrped when
computing the joint actions that maximise the utility of thbole system.

4. Finally, we apply the developed decentralised coor@indgechniques to the mo-
bile sensor domain. We show that our approach is able to gecsn effective
on-line coordination approach for the mobile sensors. Iriqdar, we em-
pirically show that a coordination algorithm based on mamoutperforms a
greedy non-coordinated algorithm by up to 50% in this dom&loreover, the
use of the bounded approximate algorithm results in salatibat are within 2%
of the optimal. At the same time, by applying the two pruniaghiniques the
action space is reduced by 92%, thus significantly redudiegcomputational
overhead.

The rest of this paper is structured as follows: Section gh&dly defines the de-
centralised coordination problem we address and Sectigovddes a brief outline of

the max-sum algorithm. Section 4 presents our approachoioeds bounded approxi-
mate solutions and Section 5 then details our techniquesaedsup the computation
performed by the max-sum approach. Section 6 empiricalijyuates our approach
in the mobile sensor domain. Section 7 puts our work in petsmewith previous
approaches and, finally, Section 8 concludes and discusses fvork.

2 The Decentralised Coordination Problem

We formulate the decentralised coordination problem weesttas a DCOP. Following
the standard DCOP formulation, we have a set of discretabi@sx = {z1,..., 2, },
which are controlled by a set of agems = {A,..., A}, and a set of functions
F = {Fy,..., F,}. Eachvariable; represents the possible actions that the controlling
agents can execute and can take values over a finite dethaifach function?;(x;) is
dependent on a subset of variabtes_ x defining the relationship among the variables
in x;. Thus, functionF;(x;) denotes the value for each possible assignment of the
variables inx; and represents the joint payoff that the correspondingtageshieve.
Note that this setting is not limited to pairwise (binarynstraints and the functions
may depend on any number of variables.

Within this setting, we wish to find the value of each variakfe such that the sum
of all functions in the system is maximised (i.e., socialfaed maximisation):

x* = arg max Z Fi(x;) Q)

i=1

Furthermore, in order to enforce a truly decentralisedtgBwiy we assume that each
agent can control only its local variable(s) and has knogdedf, and can directly

communicate with, a few neighbouring agents. Two agentseighbours if there is a

relationship connecting variables and functions that tfengs control.

3 Basics of the Max-Sum Algorithm

Notation used in this section
e ¢;,;(z;) is the message sent from variabigto functionF.

e «;; is the normalising constant for the message; («;).

M, is set of function indexes, indicating which function nodes connected
to variable node;;.

r;—i(x;) is the message sent from functidh to variablezx;.

N is the set of variable indexes, indicating which variablde®are connected
to function nodeF; x;\z; = {zy : k € Nj \ i}.

In order to apply max-sum to the optimisation problem désaiin Equation 1, we
represent it as a bipartite factor grapFor example, Figure 1 shows three interacting

3From this point onwards, we shall use the terms ‘factor grapll'‘constraint network’ interchangeably,
and note that agents are responsible for computing and mglayéssages of the function and variable nodes
that they control.

N () ()

Fl ? F3
_/ N
Al -'43

=/

A

Figure 1: An example factor graph for agents, A> and.As.

agents,A;, A, andAs. Variables represent actions that agents can executes fuhit-
tions assign utility values for all possible configuratimighe variables they depend
on, thus describing agent interactions. In general, eaehtagan be responsible for
assigning values to a set of variables, and for performimgprdations associated to a
set of functions. In the figure, for ease of presentation,améyshow a situation where
each agent is responsible for assigning a single varialdéaaperforming the compu-
tation for a single function. However, this is not a requiesrinfor the application of the
max-sum algorithm and in general agents can be responsibedet of variables for
the computation of an arbitrary number of functions. In tkemeple,x; = {x1,x2},
xo = {1, z2, 23} andxs = {9, x3}. Notice thatF’,(x5) is not a pairwise interaction
and in general, there is no requirement that the utility fioms should decompose into
additive constraints between variables. The max-sum itfgoithen operates directly
on the factor graph representation described above, arsdstdey specifying the mes-
sages that should be passed from variable to function nadesfrom function nodes
to variable nodes. These messages are defined as:

e From variable to function:

Gi—j(2i) = auj + Z Tk—i(Ti) 2
keM;\j

whereM; is a set of function indexes, indicating which function nedee con-
nected to variable nodg anda;; is a normalisation factor (the details of which
will be dicussed shortly).

e From function to variable:

rjoi(@) = max |F(5)+ D aroy(n) ®)
xg\mz ke./\G\r,

where\; is a set of variable indexes, indicating which variable rsodees con-
nected to function nodgandx;\i = {zj : k € N \ i}.

When the factor graph is cycle free, the algorithm is guaexhte converge to the
global optimal solution such that it finds the variable assignt that maximises the

sum of the functions, thereby optimally solving the optiatisn problem shown in
Equation 1. Furthermore, this convergence can be achievéithe equal to twice
the depth of the tree by propagating messages from the |efsnaf the tree to the
root and back again. In this case, the optimal variable aggégt is found by locally
calculating the functionz; (x;), once the variable node has received a message from

each of its connected function nodes.

i) = Y risile) 4)

JEM;

and hence findingrg max,, z;(x;).

When applied to cyclic graphs, the messages within the graphaonverge after
multiple iterations, but there is no guarantee of this. Iclicygraphs, messages are usu-
ally normalised to prevent them from increasing endlesHEiys is achieved by setting
the normalising constant;; in Equation 2 such that ¢ ;(z;) = 0.* Extensive
empirical evidence demonstrates that, despite the lackmfezrgence guarantees, the
GDL algorithms (e.g., sum-product, max-product, max-seato,) do in fact generate
good approximate solutions when applied to cyclic graphkigway [29]. Interesting
results have been obtained for characterising the qudligploitions at convergence.
Specifically, for the max-product algoritRnit can be shown that when the algorithm
converges, it does not converge to a simple local maximurnydiher, to a neigh-
bourhood maximum that is guaranteed to be greater thantadr ahaxima within a
particular large region of the search space [23]. Chariaatgrthe properties of these
algorithms in terms of convergence and solution qualityrgniees is still an ongo-
ing area of research, and to date significant results havedigeained only for graphs
with specific topologies (e.g., several researchers haugstx on the analysis of the
convergence and solution quality in graphs containinggusingle loop [30, 31]).

To better explain the operations performed by the max-sgorighm we now de-
tail an execution example. To make the example easier wad=ma simple factor
graph composed of two variables and two functions, eaclabkrihas a domain com-
posed of three values indicated a%$, g. Figure 2(a) shows the factor graph in this
case, and the max-sum messages for a single iteration. eF&fby shows the table
form of the functions and the operations required to comphgeexemplar message
r3_5(z2), Where the superscript indicates the iteration for the agssomputation.
At the first iterations all the; messages are initialised to zero, and thereforerthe
messages are a maximisation of the sending function ovevatable which is not
receiving the message (€.99, .,(72) = max,, [Fa(z1,72)]). At each iteration each
variable computes its individualfunction and chooses the value that maximise it. For
this particular example the messages reach a fixed poimtastesix iterations and the
z functions converge tey (1) = {< 1 =, 9>, < 21 =b,14 >, < 1 = g,4 >}
2o(w2) = {< 29 = 1,18 >, < 29 = b,21 >, < x5 = g, 18 >15. The algorithm would
then find the optimal assignment = b andxz, = b obtaining a total utility of 12.

4Note that this normalisation will fail in the case of a negatinfinity utility that represents a hard
constraint on the solution. However, it is still possibleuse the max-sum algorithm in this context by
simply replacing the negative infinity reward with one whobsdaute value is greater than the sum of the
maximum values of each function. This ensures both that thexalation works correctly, and that the
reward is still sufficiently negative to effectively act akard constraint (i.e. there can be no solution that
violates this constraint that has a higher utility than dreg toes not).

5The same results hold for the max-sum algorithm as it can beidemesl as a derivative of the max-
product algorithm when we consider the log domain [12].

5For a complete trace of the max-sum algorithm on an exemplatglsee [12].

(@)

Fi | z1 2o Fy |21 2
10| r r 0 ror
5 r b 1 r b
5|r g oO|r g T
2|1 b r 7| b r +
(b) 2| b b 10/b b
2| b g 7| b g
0|g r 21 g +
0 g b 2 g b
0|lg ¢ 2149 ¢ n
Q§—>2 T e
4 r
-1 b
-3 g

Figure 2: Execution example for the max-sum algorithm shgwa) the factor graph
and messages exchanged in each iteration of the algorithain(bd the table form of
the functions and computation of an exemplar function téalde message.

The max-sum algorithm is extremely attractive for the déedised coordination of
computationally and communication constrained devicesesine messages are small
(they scale with the domain of the variables), the number efsages exchanged typ-
ically varies linearly with the number of agents within thestem, and the computa-
tional complexity of the algorithm scales exponential witst the number of variables
on which each function depends (and this is typically musk than the total number
of variables in the system) [12]. However, as with the appnate algorithms men-
tioned in the introduction, the lack of guaranteed convecgeand guaranteed solution
quality, limits the use of the standard max-sum algorithmmamy application domains.

A possible solution to address this problem is to removeasy/from the constraint
graph by arranging it into tree-like structures such astjondrees [32] or pseudo-trees
[7]. However, such arrangements result in an exponengahent in the computation
of the solution or in the communication overhead. For exampPOP is functionally
equivalent to performing max-sum over a pseudo-tree foriyedepth-first search of
the constraint graph, and the resulting maximum messagéassexponential with re-

spect to the width of the pseudo tree. This exponential ei¢meainavoidable in order
to guarantee optimality of the solution and is tied to the boratorial nature of the
optimisation problem. However, as discussed in the intttida, such exponential be-
haviour is undesirable in systems composed of devices witbtcained computational
resources. Thus, in the next section we present our alieeregdproach that ensures
the convergence of the algorithm to a bounded approximaixi @o.

4 The Bounded Max-Sum Algorithm

Notation used in this section
e I'G(x,F; FE)is afactor graph.
e Fisthe set of links connecting function and variable nodekérfactor graph
e x* is the optimal variable assignment for the constraint ndtwo
e x is the optimal variable assignment for the tree structuoedtraint network.
o V =Y, Fi(x;) is the approximate solution obtained with the assignnent
o V¥ =3 F;(x;) is the optimal solution.
e prg is the approximation ratio.
e ¢;; € I/ are the dependencies links between variables and functions
e w;; is the weight associated with dependency knk

e x! is the set of dependent variables for functiBpwhich will be part of the
tree-structured constraint network.

e x{ is the set of dependent variables for functiBnwhich will not be part of
the tree-structured constraint network.

e B;(x¢) is the maximum impact on the solution for a set of removed depe-
cies of functionF;.

e B =), B;(x{) is the maximum impact on the solution for a set of remoyed
dependencies.

o VM — > minye F;(%;) is the optimal solution to the tree structured con-
straint network.

e (' is the set of couples of indices i,j > that identify the edges removed
from the factor graph.

o W =73"_, . ccwiis the sum of the weights of removed edges.

The basic idea of our approach is to remove cycles from therfagaph, by ignor-
ing some of the dependencies between functions and vasiabldependency directly
corresponds to a link between a function node and a variagle m the factor graph,
and by removing appropriate dependencies, we can operatsunaon a cycle free
factor graph, hence guaranteeing that the algorithm willvecge to the optimal so-

10

w12 w32
£ (7)) £

w22 w33

w21 w23

Figure 3: Example of a factor graph containing cycles andaamsing tree formed by
removing the edges between the variables nadendz; and the function nodés.

lution of this new problem. Moreover, by removing cycles lmstway, we do not
incur the exponential communication cost that is typicatomplete approaches (as
discussed above and in the introduction). With our approt@hsize of exchanged
messages will be proportional only to the size of the dométhevariables involved,
as opposed to the exponentially sized messages that ataltgpcomplete algorithms.
Also, the amount of computation required to perform the mésation step when cal-
culating function to variable messages, is exponentia} onthe number of variables
directly involved in the functiori.If the arity of the functions is bounded (e.g. we have
only pairwise interactions) this computation is polynomia

However, since we ignore some of the dependencies in therfacph, we cannot
guarantee that the solution we obtain in the cycle free fagtaph is the optimal solu-
tion to our original problem. Nonetheless, as we will showrdlls, we can bound the
distance of the solution we find on the cycle free factor gitaghe optimal solution on
the original problem. A key step in this approach is to gdgritie maximum impact
that each dependency has on solution quality.

Specifically, consider a factor graghG(x, F; E') whereFE is the set of links con-
necting function and variable nodes. To provide an appration algorithm, our goal
is to compute a variable assignmeantver a spanning tree for the grapldz, such that
the V* < prgV, where our approximate solutioni = °, F;(%,) and the optimal
solutionV* = %" Fi(x}). Note that the approximation ratjg-¢; is dependent on the
particular instance of the problem. Thus, instead of baupdie performance of our
algorithm on a large class of problems, we compute a datertEmt bound for any
specific problem instance. As a result, this bound is tigthizn a theoretical bound for
a wider class of problems.

The key property of our algorithm is that it puts weights oa tfependency links
between variables and functions. These weights quantdyntaximum impact that
removing a dependency may have. In more detail, we indicdpandency link with
ei; € E wherei is an index over functions anglis an index over variables. Figure
3 shows the same factor graph in Figure 1 with the weights,aapadssible spanning
tree, (solid lines represent links present in the spanme® &ind dashed lines represent
links that were present in the original cyclic factor grapbt have been removed to

"More specifically, when a functiofi; which depends on a set of variables| = n sends a message to
one of its variables:; the amount of computation required will b€, whered is the size of the variables’
domain.

11

form the spanning treé).
Given these concepts, our approach proceeds as follows:

1. We define the weight of each dependency lipkas:

w;; = max [maxFi(xi) — min Fl(xl)] (5)

X\ T T T

For examplew-s reported in Figure 3 is computed as

W3 = mMAax |:maXF2(J]1,$2,£IJ3) — min F2($1,$2,x3):|
T1,T2 T3 xs3

Notice that the weightv;; represents the maximum impact that variabjecan

have over the values of functidf. In particular, if we ignore variable; when

maximisingF; then the distance between our solution and the optimal wilit

mostw;;. Thus, the smaller the weight, the less important is the miégecy in

the optimisation process.

2. We remove dependency links from the original cyclic fagoaph to form a
tree structured graph. For each function within the factaph, we now have
x; = x! Ux¢ wherex! represents the set of dependent variables which have not
been removed ans$ represents those that have. For example, in Figure 3 we
havex} = {z;} andx§ = {z2, z3}. Notice thatx¢ might be empty because no
dependency was removed for functigras is the case in our running example
for x{ andx§ because no dependency was removed for functidnand F5.
However,x! will always contain at least one element. This follows frame t
fact that we build a spanning tree of the original factor grapd thus we do not
disconnect any element. Consequently, we have.that = x.

Now, given a functionF; we define the maximum impact of a set of removed
dependencies as:

ey maxy e [maxye Fi(x;) — minge Fy(x;)] if x§ # 0
Bi(xi) = { 0 otherwise ()

wherex¢ is the set of variables removed from the function dependerRy
computingB; (x¢), we are evaluating the maximum impact of all the removed
dependencies from a function to form a spanning tree. Fanpla considering
our running example reported in Figure 3 we have:

Bs(x9,x3) = max [max Fi(xz1, 9, x3) — min F;(z1, 2, x3)
T T2,T3 T2,T3

This represents the maximum impact on the solution qualitgmboth variables
xo andzg are removed. Finally, we define the sum of the maximum impfct o
removed dependencies from the factor graph as:

B= ZBi(xf)

8This figure will be used as a running example to clarify the keps of the approach.

12

3. We now run the max-sum algorithm on the remaining treecsirad factor
graph. For functions which have had dependency links rechowe evaluate
them by minimising over all values &f¢, and thus, the max-sum algorithm op-
timally solves:

X = arg max Z F!(x!) = arg max Z min F;(x;) @)
i ;o

For example, in our case the assignment we obtain aftermgrthie max-sum
on the spanning tree maximises the functz,, x2) + Fi(x1) + F3(x2, z3)
whereFy(x1) = ming, ., Fo(z1, 2, x3).

4. The resulting variable assignmext,represents our approximate solution to the
original optimisation problem, and we shall shortly prokiattthis approximate
solution is within a calculated bound from the optimum siolut More precisely:

V* < praV (8)

where the approximation ratiorg = 1 + (V" + B — V)/V, andV™ =
>_; minye F;(X;) represents the optimal solution to the tree structuredtcaing
network. Recall that’* is the unknown optimal solution to the original cyclic
constraint network and’ is our approximate solution evaluated on the cyclic
constraint network.

This result follows directly from the following theorem v bounds the difference
between the computed soluti@mand the optimal solutior™:

4.1 Analysis of Bound

A bounded approximate solution described above is dep¢dehe properties of the
following theorem:

Theorem 1. Bounded Approximation
> minFi(%)+ B> Fi(xi") 9)

This theorem states that the unknown optimal solutiGris never greater than the
sum of the optimal solution computed on the tree structuoedicaint network ands.
This allows us to have an upper bound on the unknown optimatisn and thus to
provide a bounded approximation of the original probleme Thmplete proof of this
theorem can be found in Appendix A.

The result stated in Theorem 1 is valid for any spanning tfeébeooriginal problem.
However, the approximation ratier¢ is influenced by which dependencies are re-
moved and is thus dependent on the specific problem insta¥oretheless, we can
provide a general approximation rappwhich is independent of the specific problem
instance by performing a worst case analysi gf;. Specifically, assuming that we
know the maximum fraction of reware% across all functions, then a worst case ap-
proximation ratio for the optimal solution is = 2. We note that this result is in

m

accordance with the analysis performed in [16]. See AppeBdor the full derivation

13

F s
\ F} | o
|
wyy| 10 3 | Way g ;
|
| 2 b
9 Il
Fy
Wa1

Figure 4: Tree structured factor graph obtained with thenbed max-sum algorithm
for the original factor graph of Figure 2(a).

of this result. Note that the smaller the ratio between thgimam and minimum pay-
off, the better will be the bound. However, if we have funoidhat are not bounded
(e.g., they can have arbitrarily high payoff) the approxioraratio we provide will not
be significant in the worst case.

In practice we use the fact that¢ is dependent on the specific problem instance,
and therefore we can exploit the structure of the problenrdwige a better approxi-
mation ratio. Specificallyprc depends on the number of dependencies that we need
to cut to build the spanning tree. Clearly this value is higlaad thus the approxi-
mation ratio will be worse) for graphs with many cycles. Mwrer, whilep depends
on the ratio between the maximum and the minimum payoff acatisunctionsprc
depends on the sum of the impacts of the removed dependemtyed herefore, if we
carefully remove dependencies which have a low impact osdghgion quality we can
provide very good approximation ratios.

To better explain the operations performed by the boundexisum algorithm
consider again the factor graph reported in Figure 2(a).fifsiestep of our algorithm
is to compute the weights for each link in the factor graph] ame show these in
Figure 4 using the functions reported in Figure 2(b). We tleem a new factor graph
which is a spanning tree of the original factor graph. Morecsiically, we remove link
ea2, Which is the one with the smallest weight (this is shown agsshdd line in the
figure), and thusB = wss = 3. Moreover, we replace the functidr, (z1, z2) with
Fj(z1) = ming, [Fa(x1,z2)]. Now, we run the max-sum algorithm on the new factor
graph. Since this new factor is a tree, the max-sum algoristgnaranteed to converge
to the optimal solution, which in this caseiis = r andzs = r. This achieves a utility
on the new factor grapiy;™, of 10 and a utility on the original factor graphi, of 11.
Furthermore, in this case we have that; = 14 (10+3—11)/11 = 13/11, and thus,
we know that the unknown optimal solution must be greaten thabut no more than
preV, which in this case is 13. Now, recall that the optimal soltior the original
factor graph was shown in Section 3 to:be= b andz, = b yielding a total utility of
12 (V*). Thus, as required we have tHat < ppgV.

4.2 Decentralised Bounded Max-Sum

Having described our approach, and discussed the approematio that we can
provide, we now detail a decentralised implementation aflmunded max-sum al-

14

gorithm. This implementation has two key steps: (i) formihg spanning tree factor
graph which minimises the approximation ratio, and (iifiating the max-sum algo-
rithm and propagating the information required to comph&approximation ratio to
the agents. In this section, we describe the approach farfgcaphs containing n-ary
constraint functions; we specify the computation of theragipnation ratio when only

pairwise constraint functions are present in Section 4.2.2

4.2.1 Spanning Tree Formation

As described earlier, we aim to remove cycles from the fagtaph to guarantee con-
vergence of the max-sum algorithm. Moreover, we want to rendependencies which
have minimal impact on the solution quality. We can do thidibgling a spanning tree
that minimises the sum of the weights of the removed edgeshi$end, we use the
weights of each edge to compute a maximum weight spanniegtte Notice that,
by finding a maximum weight spanning tree we effectively mmisie the sum of the
weights of the removed edges. Moreover, if we indicate With= >__, .. .- wi,
where(is the set of couples of indices i, j > that identify the edges removed from
the factor graph, we can then show thiat> B, i.e., the sum of the weight of removed
edges is an upper bound Bf(the proof of this is provided in Appendix A, Lemma 2).
Therefore, by minimising the sum of the weights of removeglesdve are minimising
the approximation ratip p¢ .

The computation of the maximum spanning tree can be perfbima distributed
fashion using various message passing algorithms. Incpatj here we use the
minimum spanning tree algorithm by Gallager, Humblet an@&S(GHS), modified
to find the maximum spanning tree [28]. This is a distributeslynchronous algo-
rithm, for general, undirected graph$HS is optimal in terms of communication cost
O(nlogn + E) and has a running time @¥(n log n), wheren is the number of nodes
in the factor graph.

We briefly describe the GHS algorithm here and refer to [28faore complete
description. Initially, each node (which may be either aafale or a function node) is a
fragment with level L = 0, then each node chooses its maximum weight outgoing edge
and attempts to join with the node at the other end. This faifinagment of level. =
1. Nodes in fragments whert > 0 co-operate to determine the fragment’s maximum
weight outgoing edge that will not form a cycle and attempgbtn with the fragment
on the other end. This occurs by each node finding its maximaigiwoutgoing edge,
and passing this information to a core node, which can tharméne the best edge for
the whole fragment. Fragments continue to join togethenigirmhanner. The twaore
nodes (those at either end of the edge on which the final joining affinents occurs)
are aware when the algorithm terminates, as they will recesports from each node
that they cannot locate any further outgoing edges thamnetllead to a cycle.

4.2.2 Max-Sum Initiation and Information Propagation

On termination of the GHS algorithm described above, ong/tthio core nodes are
aware that the algorithm has completed. Therefore we addsaage-passing phase
to propagate this information throughout the tree. Thisxpdure also establishes a

9Notice that our approach is completely generic with respethé algorithm used to compute the max-
imum spanning tree. Here the choice of the GHS algorithm ist#id by the low communication overhead
and by the ease of implementation. However, other distribaigatithms do exist which have a lower bound
for running time e.g. [33].

15

parent-child hierarchy in the tree, and serves to initiat max-sum algorithm and
information propagation stages. This message-passingephanitiated by the root
node; a role adopted by whichever of the two core nodes is eifimnode® This
root node sends out @OVMPLETE message to each of its children. When a node re-
ceives 8aCOVPLETE message, it marks the sender as its parent, and then prepdgat
COVPLETE message down the tree.

When a leaf node receives tBOVPLETE message the max-sum phase starts. Each
node propagateddAXSUMmessages up the tree, waiting for messages from each child
node before sending an updated message to the parent noeleoient of the mes-
sages are calculated as described in Equations 2 and 3, avergence of the mes-
sages to the optimum is guaranteed when the messages hpagated to the root
node, and back to the leaf nodésAt this stage, each variable node is aware of both
the variable assignmerk;, that represents the approximate solution to the origipal o
timisation problem, and the value b = > Minye F;(x;); this is provided directly
from the max-sum algorithm and used to calculate;.

When the leaf nodes receive this fildAXSUMmessage, th& and solution prop-
agation phase starts. During this phase, nodes propagaés ttomposed 0BSUM
(which will accumulate the value @8 specified in Equation 6) an8COLUTI ON mes-
sages? Ifthe leafis a variable node it creates an em@8Mand an emptBOLUTI ON
message. If it is a function nodg, it creates aBBSUM message of value equal to
B, (x¢) wherex is the set of local deleted variables, an8@_UTI ON message equal
to F;(x;). Both messages are then propagated up the tree, with eaahahtode wait-
ing to receive messages from all its children before profiaga single nevBSUMand
SOLUTI ON message to its parent. If the internal node is a variable ,nbée these
new messages are simply the sum of the messages from itgsechildl it is a function
node, then they are given by the sum of the messages fronilidsaezhplus the local3;
component, and the value &f(x;), respectively. When the root has received all the
BSUMand SCLUTI ON messages, both are propagated back down the tree, informing
each node of the totd$, and the final solutiony = 3", F;(x;).

At this final stage, each agent knows the assignment of thebles that it controls,
it knows that this assignment leads to a total solution ¢efiV, and that this solution
has an approximation ratjg-c = 1+ (V™ + B — V)/V. The number of messages
for each information propagation phase is equal to the nuoifiexiges in the spanning
tree (i.e.,|F| + |x| — 1), and thus, while the size of each message depends on the
message type, it is always constant with respect to the nuofbedes in the factor
graph (e.g., ¥AXSUMmessage involving variable contains|d;| values whileBSUM
andSOLUTI ON messages contain one value each).

4.3 Approximation Ratio for Pairwise Interactions

Note that when the interactions are pairwisand thus at most one dependency is re-
moved from each function node, there is a direct link betwBerand the removed

10Note that, in our case, one of the two core nodes will always famction node because the factor graph
is a bipartite graph, and the core nodes are connected.

Hn settings where the choice of variable assignment may notnigue (most commonly, when the
functions return integer payoffs) an additional value aiggtion phase may be used at this point. See [34]
for details.

12Note that these could be propagated in two separate phageseie we combine them together for
efficiency.

13The focus on pairwise interactions is a very common approatteidCOP literature, which is why we
pay specific attention to this type of interactions in thistism.

16

weight. Specifically, since each functidn) has exactly two edges3; will be either
zero (when no dependencies are removed for that functiotheoweight of the re-
moved dependency. Consequently, by minimising the sumeofamoved weights, we
directly minimise the approximation ratio. Therefore, tsjng the approach presented
in the previous section we find the optimal set of dependertoibe removed, i.e. the
set of dependencies that provide the minimum approximatoa.

However, in general, when multiple dependencies may bevedfmom any func-
tion node, this is no longer the case. For example, consideiré 3, and suppose the
spanning tree is a maximum spanning tree. This impliesdahaande,, are the de-
pendencies, with the minimum total weights, that need teebgoved in order to form
a spanning tree. However, in this case the possible impatieafemoved dependen-
cies on the solution quality will bé;(z2, x3) = max,, [max,, ., Fa(x1, 2, 23) —
ming, ., Fo(z1, 22, 23)] which in general is different fromiV = was + wa3. There-
fore, when interactions are not pairwise, there might benalination of dependencies
to remove, that has a smaller impact than theve compute. While it is possible to
calculate the impact that removing multiple dependendiss tinding the set that must
be removed in order to minimise this impact is a combinat@riablem. Nonetheless,
our approach of summing the individual weights overestasadiis impact, such that
B < W, and thus, our bounded approximate solution is still valithiese cases. The
proof that this inequality holds is presented in Appendix A.

4.4 Empirical Evaluation

We now present an empirical evaluation of our bounded apmate algorithm, in par-
ticular we wish to evaluate the significance of the approxiomeratio that our approach
can provide. Recall that the lower the approximation raie better. This empirical
evaluation is required because our approximation ratiedeép on the specific problem
instance, and in particular on the topology of the constraétwork (i.e., mainly on the
number of loops) and on the ratio between the maximum andmim payoff of the
constraint functions (as discussed above). Thus, here mgd=r a set of decentralised
coordination problems where a set of agents is arrangedriapdngEach agent controls
one variable, with domaifd;| = 3, and each edge of the graph represents a pairwise
constraint between two agents. Since there are pairwiseaictions we hav® = W
and we are able to compute the minimum approximation yatio.

We consider two different graph topologies: random grapttsgraphs from the
ADOPT repository which represents a large class of grapbuclg problems that
have previously been used to benchmark DCOP approachésfgedromht t p: / /

t eantore. usc. edu/ dcop/). In both cases, graphs were selected with different
link densities (i.e. the average connection per agentsjidfetent numbers of nodes.

A random payoff matrix is associated with each edge of thetlgrapecifying the
payoff that both agents will obtain for every possible comalbion of their variables’
assignments. Each entry of the payoff matrix is a real nurebepled from a distri-
bution, and we consider two different distributions: a gaargistribution witha: = 9
andg = 2, and a uniform distribution with rang®, 1). Both produce strictly positive
payoffs, but only the uniform distribution has finite suppor

This setting generalises the distributed graph colournedplem, which is a canon-
ical problem frequently used to evaluate DCOP techniques, (5] and [6]). In the
standard graph colouring domain the valuelBfthat our approach provides would
simply be the number of edges removed to remove cycles frergrédph. The random
payoff matrix that we use here enriches the domain by diffigaing the values of

17

Utility (link density 3)

Utility (link density 2)

100 ; 160
— A v
800 | ------ Vv I L 1% .
,,,,, g K o 1209 .y /I,
600 | --- V"+B | L T - - V"+B i’ s
P I/",]E’ x g R
P 800+ R
z - PR e g
o9 JE Lt Y ozl
2 I AT
2000 A | /‘
0 : : : : : o : : : :
0 10 20 30 40 50 0 10 20 30 40 50
Number of Agents Number of Agents

Figure 5: Empirical results for the utility when varying thamber of agents and the
link density (using random graphs with payoffs drawn fromaangna distribution).

constraint functions; moreover, the use of a gamma digtabuntroduces significant
variance such that some dependencies have a higher impacbthers. By having
different values for different constraint functions angeéedencies, we consider sit-
uations where constraints among the actions of some agentaae important than
others for the global solution. This makes the evaluatiaiyeis more significant, and
it better represents realistic applications, such as gatige exploration with mobile
sensors, which are the main application focus of this work efpirical evaluation of
our approach in the mobile sensor domain will be present&ation 6.4.
For each configuration, we consider the following four perfance metrics:

e V™: The solution obtained by the max-sum algorithm on the ttegcsired
constraint network.

e V: Our bounded approximate solution, obtained by evaluatiegassignment
computed by max-sum on the spanning tree, on the origingyl@mnstraint
network.

e V™ + B: The upper bound on the value of the unknown optimal solutimm-
puted by our approach.

e VV*: The optimal solution computed using a previously publishdified ver-
sion of ADOPT [35]+

We first consider the case of random graphs with payoffs drizem a gamma
distribution, and in Figure 5 we show the results obtainedifik densities of 2 and
3.1 For each configuration, we report the average value and the@®fidence in-

14For the results reported here we used the code availatiletap: / / t eancor e. usc. edu/ dcop
published by the authors of the paper. Specifically, we usegteprocessing policy named DP2 in their pa-
per, which out-performs alternatives in their empirical @agibn. Furthermore, note that ADOPT normally
minimizes the constraint costs in a DCOP while here we wish tamiag the sum of the rewards. However,
since there are no infinitely high rewards in any problemainse considered here, we are able to determine
an arbitrary fixed maximum threshold, M, for each specific insta and then translate the reward function,
r(x), to a cost function, c(x), such that c(x) = M - r(x). ADOREN then be used to solve the resulting
minimisation problem.

15These values are in the range often used for benchmarking RE€xBRiques on random graph colouring
instances [5].

18

Utility (gamma, link density 2)

Utility (gamma, link density 3)

—V —V -
500 |---- V/ P B [E 1% R
oy R 600 | ._._. vm -
400 | — V™ 4+ B = /’ ,:_'/./I -- V"1 B o s ,'/ e
s = s -7
300 P 400t A
{i".:”x' 1/1,1’/’,/ =~
200 tE= e
2= 2000 A aET
100 # =
0 : ‘ ‘ ‘ 0 : ‘ ‘ ‘
10 20 30 40 10 20 30 40
Number of Agents Number of Agents
Utility (uniform, link density 2) Utility (uniform, link density 3)
80—— : : : 12 ‘ ‘ ‘ :
—V v -
77777 \% 7 100 |-----V -
60| ._._. Vm, R I) PR ‘7771 7
777‘7m+B /x/) -z 80’,,,V7YL+B = .
400 PR st 60; LT e s
e a0 T T
20f L= L
=z 200 g
0 : ‘ ‘ ‘ 0 : ‘ ‘ ‘
10 20 30 40 10 20 30 40

Number of Agents

Number of Agents

Figure 6: Empirical results for the utility when varying thember of agents, the link
density and the distribution for payoffs (using graphs fithiw ADOPT repository).

terval computed over twenty repetitioHs.Since the optimal utility is computed by
a complete algorithm, we were able to compute this metrig &1 smaller numbers
of agents (e.g., up to 15). Our results show that the actiléty uhat our approach
computes is extremely close to the optimal solution (in tkgeeiments the minimum
ratio was 95%). Thus showing that, from an empirical pointiefv, our approach pro-
vides very good approximations. More importantly, howetlee approximation ratio
we guarantee is significant. In the experiments; was never above 1.27, and was
typically 1.23.

To illustrate the insensitivity of these results to the joaitar graph topology and
payoff distribution, in Figure 6 we show the results for grafrom the ADOPT repos-
itory with payoffs drawn from both gamma and uniform disitibns. The same mea-
sures described abov&(*, V, V'™ + B, V*) averaged over all the different graph
instances available in the ADOPT repository (25 instanees) the 95% confidence
interval. Results show that the behaviour of our approasimdar across the different
payoff distributions we considered. In more detail, theragjmation ratio is slightly
better (i.e., lower) for the gamma distribution than unifdout it is very significant for

16The small confidence interval shows that twenty repetitioosige, for our experimental setting, a good
sample size to assess the statistical significance of thisesu

19

Approx. Ratio (gamma, link density : Approx. Ratio (gamma, link density 3)

6 6
5¢ 5r
4r 4r
3 k=3 || 3
--k=6
2t 7 ---BMS | 2
1 - S --TT-To-ooTToT-oo T P — L 1 n n n n
10 20 30 40 10 20 30 40
Number of Agents Number of Agents

Approx. Ratio (uniform, link density 2 Approx. Ratio (uniform, link density 3)

80, ‘ 80 ‘
—k=2 —k=2
k=3 k=3
60|~k =6 60|~k = 6
- - BMS - - BMS
40¢ 40¢
20 20t
0 71677772677773577774;0 0 16777722)77773‘7077774;0
Number of Agents Agent Number

Figure 7: Empirical results for the approximation ratioaibed with our bounded max-
sum (BMS) and the approximation ratio computed using thetksal analysis (using
graphs from the ADOPT repository).

both the payoff distributions. In particular, the worst egppmation ratio was approxi-
mately 1.24 and 1.43 with an average of 1.2 and 1.33 respécti&s before, the actual
utility computed by our approach is extremely close to thiénogl solutiont’

To analyse the significance of the approximation ratio thatapproach provides,
we compute for the same data set the approximation rationsutavith the k-optimality
framework, using the formulas provides in [16] for genemaigtraint networks. For our
data set the constraint arity is 2,(= 2) and we compute the average ratio of the least
minimum reward to the maximum reward (indicated withn [16]) for the different
distributions and agent numbers. Our results, in Figuréh@wsthat the approxima-
tion ratio obtained using the bounded max-sum approactel{&gbas BMS) is much
more significant than that obtained using the k-optimaligyrfework (labelled by their
k value). Clearly, by increasing it is possible to achieve better approximation ratios,
however this would result in an exponential increase in tmputation required to
obtain ak-optimal solution and, in fact, the most widely used appmade algorithms
in the field uses: = 1 or k£ = 2 [1, 10]. Recall however that the approximation ratio

17As in the previous results, the value for the optimal utiléycomputed by a complete algorithm, and
thus, we were able to report values only up to 12 agents.

20

Execution Time (gamma, link density Execution Time (gamma, link density 3

50 i - 80 .
[total [Jtotal N
400 |[_Jmax-sum] [Imax-sum
Il preproc. 600" | o preproc.
300 1
400
200
100 m m 200r
L amnflll . MMMW
10 20 30 40 10 20 30 40
Number of Agents Number of Agents

Execution Time (uniform, link density ~ Execution Time (uniform, link density 3)

100 i 150 i

[Jtotal " [Jtotal
800 |[_Jmax-sum 1 [Imax-sum -

Il preproc. 1000 Il preproc.
600
400

500
") nll] | |
10 20 30 40 10 20 30 40
Number of Agents Number of Agents

Figure 8: Empirical results for the execution time in miéit®nds for pre-processing
the factor graph and running the max-sum algorithm, varttieghumber of agents, the
link density and the distribution for payoffs (using grajifosn the ADOPT repository).

computed with the bounded max-sum is specific to the probtetance while the one
provided by the k-optimality framework is not, and as such lba computed without
running any solution algorithm.

We now consider the execution time of our approach on the siataeset described
above. Specifically, we measure the computational time (ilisetonds) required to
form the spanning tree and compute the weights (this ojerailabeledorepoc. in
the figures) and the time required to run the max-sum alguardter the spanning tree.
Out results, in Figure 8, show that our approach scales veiywith the number of
agents, having a total running time of approximately 1 sdomm the most complex
problem instance in the ADOPT graph repository (specifjcallgraph with 40 agents
and a link density of 3). Moreover, the running time of the ragh is dominated by
the execution of max-sum on the spanning tree and the pregsiog time is negligible.

Finally, we present a comparison of the utility obtainechgsihe bounded max-
sum approach proposed here, the loopy version of max-sem If.ax-sum running
directly on the input constraint network) and the optimdlitytcomputed using a pre-
viously published modified version of ADOPT [35]. Our aim &és to compare the
utility obtained using the max-sum and its bounded versiith respect to the optimal
utility for larger problem instances. To this end we focugdlumgraphs of the ADOPT

21

Agents Loopy max-Sum Bounded max-Suvf)(ADOPT (V*)

8 142.80+ 0.00 142.80 142.80
10 162.36+ 2.25 167.20 169.03
12 203.67+ 0.00 197.83 203.67
14 221.86+2.84 211.65 221.86
16 261.42+3.53 247.47 264.72
18 293.82+ 0.00 287.56 -
20 329.10+ 0.00 310.79 -
25 399.14+ 1.66 390.45 -
30 500.63+ 0.00 486.04 -
40 614.12+9.37 615.50 -

Table 1: Utility comparison for max-sum, bounded max-sumh ADOPT [35] on one
problem instance from ADOPT graph repository whilst vagythe number of agents
(using payoffs drawn from a gamma distribution).

repository with link density 3, we use the gamma payoff distion mentioned above,
and we run the various algorithm on a single problem instémceach agent number.
Using this approach we were able to compute the optimatyutilp to 16 agents, but
for higher number of agents the version of ADOPT we used cootderminate the
computation within the imposed time limits of five hours. Bl reports the results
obtained. Since both the bounded max-sum and ADOPT appesachk deterministic,
the reported values are the utilities obtained on a singéewtion of each algorithm.
However, for the loopy max-sum we report the average utdltyained over twenty
repetitions together with the 95% confidence interval.

Our results show that the utility values obtained by the yoomax-sum are very
close to the ones provided by the bounded max-sum approatththe loopy max-
sum being marginally superior for most of the problem instamn Moreover, both
loopy and bounded max-sum achieve results which are vesg ¢tothe optimal. This
results confirm that loopy max-sum is able to provide verydjempirical results, and
show that the bounded version proposed here achieves ispeittormance providing
guarantees on the solution quality.

5 Speeding Up Message Computation

As mentioned in the introduction, many practical appliwas inherently have large
action spaces for individual agents. For example, in theilmsknsor domain that will
be discussed in Section 6, each sensor (agent) can repatset to many different lo-
cations, and follow different paths on its way to those laoe. Moreover, to evaluate
the utility gained by the entire team of sensors, a compartatly expensive function
needs to be evaluated. Therefore, in general, the straigldfd application of max-
sum to compute the optimal joint action (see Equation 1) tspnactical, because the
computation of the messages that are sent from fundfjao variablex; (Equation 3)
is a major bottleneck. The ha way of computing these messages for a given variable
x; is to enumerate the entire domainof (i.e. the domain of’;), and evaluaté”; for
each element. Since the size of this joint action space gesysenentially with both
the number of agents, and the number of possible actionaébr ¥t, the amount of

22

Fy

1L T |z

[EnY
N
(e]
o -

@)

Figure 9: First iteration of the action pruning algorithm Y@ariablex; showing (a) the
messages sent by function nodgsand F», and (b) the resulting removal of ‘g’ from
the domain of variable.

computation can quickly become prohibitive in many setinghis is especially true
when evaluating”; is costly. Therefore, in this section, we present two novehmng
algorithms that drastically reduce the size of the joinicacspace that needs to be
searched without sacrificing solution quality. In the remdair of this section, we will
describe each algorithm in turn.

5.1 The Action Pruning Algorithm

The first algorithm attempts to reduce the number of acti@eh @gent needs to con-
sider before running the max-sum algorithm. This algorithm prunes theidated
actions that can never maximise the social welfare (Equdt)pregardless of the ac-
tions of other agents. More formally, a valdes d; of variablez; is dominated if there
exists a valuel!’ € d; such that:

vd_i S ¥ dy : i —i < (d —q
e 2 Fildd) <) Fy(ddy) (10)
JjEM; JEM;

where, as in Section 3M; is a set of function indexes, indicating which function
nodes are connected to variable neddow, by removing these dominated actions, the
optimal solution remains unchanged. However, since a numbdominated actions
are pruned, the size of the joint action space is reduced.

Just as with the max-sum algorithm itself, this algorithnmglemented by mes-
sage passing, and operates directly on the variable andidontodes of the factor
graph, making it fully decentralised:

e From function to variable: The message from functiof; to z; contains the
minimum F; (z;) and the maximun¥); (x;) value of F; with respect taz; = d,
for all actionsd € d;, the domain ofi; (see Algorithm 1).

23

e From variable to function: Variablez; sums the minimum and maximum val-
ues from each of its adjacent functions, and prunes dondretgons. It then
informs neighbouring functions of its updated domain (ségAthm 2).

Figure 9 reports the messages that variahlevould received at the first iteration
of the action pruning algorithm using the example factopgrand functions presented
in Figure 2. In this case, given the received messages blaria will be able to prune
g from its domain.

Using this distributed algorithm, functions continuallgfine the bounds on the
utility for a given value of a variable, which potentially uses more actions to be
pruned. Therefore, it is possible that action pruning stytpruning a single action,
which results in further actions being pruned throughoetdhtire factor graph.

Algorithm 1 Algorithm for computing pruning message from functibnto variable
€x; 1€ ./\/]
1: computer (z

i) < min Fj(x, x5 \ ;)
Xj\Ti

2: Compute?j(x]-) > Hl%X Fj(.’L’i,X]' \11’1)

x;\T;

3: SGﬂd(fj(xi), Fj (1’1)> to x;

Algorithm 2 Algorithm for computing pruning messages from variabjeo all func-
tionsF; : j € M;

1. if a new message has been received fronk'all j € M; then

2. computel(xi) =3, n, Fi(wi)

3. computeT (z;) = >, g, Fi(w:)

4: while3d € d; : T(d) < max L(z;) do

5: d; + d; \ {d} Removedominated value d
6: end while

7. send updated domadd; to all F; : j € M;

8: end if

This algorithm terminates once the messages exchangeddrthve functions and
variables converge. That is, when all messages along a#isenigthe factor graph
are equal to the previously received messages. Thus, a ndtie factor graph can
initiate the max-sum algorithm once it has received the sae&sage twice from each
neighbour. Also note that termination is guaranteed becafighe fact that every
variable has a finite number of actions; during each itemaither at least one variable
value is pruned or the algorithm has converged. To see whyighiue, note that for
the bounds orF; for a certain valuel to change, at least one variable value needs to
get pruned. Otherwise, the messages sent from variables¢tidns will be identical,
and all variables receive the same message twice, whicktgésuhe termination of
the algorithm.

5.2 The Joint Action Pruning Algorithm

Now, whereas the first algorithm runs as a preprocessingghasax-sum, the second
algorithm is geared towards speeding up the computatioheofrtessages from func-
tion to variable (see Equation 3juring the execution of the max-sum algorithm. In
contrast to reducing the action space of individual agemtsch was the goal of the

24

(@,9,d})

[2,4] [5,9] [5,6]
(di, 2, d;) (dt, 2, d;) (di, 2, d;)
7,7) [9,9]
(d, dy, ds) (d, d3, d;)

Figure 10: Search tree for computing,3(d3) (a single element of the message from
F; to z3). The numbers between the brackets indicate lower and Ugaperds on the
maximum value in the subtree.

first algorithm, this algorithm attempts to reduce the sizéhe joint action space that
has to be searched by applying branch and bound.

A naive way of computing this message to a single variables to determine the
maximum utility for each of agenis actions by exhaustively enumerating the joint
domain of the variables ig; \ {z;}, and evaluating the expression between brackets
in Equation 3, which we denote by:

Fini() = Fi(5) + Y Ghs (11)
keEN;\z;

Instead of just considering joint actions, we now allow sa#ons to be unde-
termined, and thus, considgartial joint actions. By doing so, we can create a search
tree on which we can employ branch and bound to significartlyce the size of the
domain that needs to be searched. In more detail, to computéd?) for d* € d; (a
single element of the message frdmto variablez;), we create a search trégd¥)
as follows:

e The rootr of T(d*) is a partial joint actiond, = (@,...,,d" @, .. D),

which indicates that,; has been assigned the valife and the remaining vari-
ables are unassigned (denoteddyy

e The setof children of a nogerepresented by partial actiél; = <d§1)7 R dl(l),
2,...9,d5 o, ..., @} is obtained by assigning to the first unassigned variable

(z741) each of its possible actioné?fhildren(&p) = {<d§1)7 . ,dl(l),dlﬂ,
2,...,2,d,@,...,0)|d € dig1}. Thus, the nodd, has|dy.| children.

e The leafs of the tree represent a (fully determined) joitibac Vi € N; : x; #
@. In the search tree, leafs are assigned a value that resoifts évaluating
Equation 11 for the corresponding action.

The leaf with the maximum value found #(d%) represents the action that maximises
Equation 3 for valuel¥, and thus has the desired value for,;(z;). Now, to find

this value efficiently using branch and bound, we need to Ibe tabfind bounds on
the maximum value found in a subtreedfd¥). These bounds depend &k and the
received messages_.;. Now, in many cases we can put bounds on the maximum of
the former, that is obtained by further completing a pajtiait action in a subtree of

T (di). We will show an example case in Section 6, where we applyetteshniques

on the mobile sensor domain.

25

To illustrate this method with a simple example, howeveguFé 10 shows a par-
tially expanded search tree for computing a single elemens(d}) of a message from
function F; to variablezs. Given the lower and upper bounds on the maximum (de-
noted between brackets), subtxe&, @, d3) can be pruned immediately after expand-
ing the root. Similarly, subtre&l?, @, d3) is pruned after expanding le&fs, d3, d3),
which has the desired maximum value.

Now, since the utility functiong’; are domain dependent, there is no general way
of computing the aforementioned bounds. However, in mostalos, such as the
mobile sensor domain which will be introduced in Section fadial joint action has
a meaningful interpretation that can lead to an intuitivey whcomputing the bounds
on the maximum of’; in any subtree of. We will come back to this in Section 6.

6 The Mobile Sensor Domain

Notation used in this section

e S={S;li=1... M} is the set of\/ mobile sensors.

G = (V, E) is the layout of the physical environment.

e Fisthe possible movements between locatiBnsvith eachw € V embedded
in a 2D plane.

e P is the spatial phenomena that is monitored by the sensors.

e T = {t1,ts,...} is asequence of discrete timesteps of unknown length.

o L, = (l},...,1}) are the sensors’ locations at time T wherel; € V.
e Oy = (of,...,0}") are the measurements taken by the sensors at timestep
teT.

e 0 = (x,y) is a single measurement of the scalar field.

o P
x = (v, t) a locationv and timestep tuple.

e y a measured value.

e K(X,X’)is the covariance matrix.

e oy is the hyperparameter that models the signal variance gdtteeomenon.
e [is the hyperparameter that models the length-scale of taeqgrhenon.

e H(A|B) is the conditional entropy of sample séiven the sample sd.

e p4(B) is the incremental value of adding sample 4¢b sample seB.

In this section we present the mobile sensor coordinatioblpm that illustrates our
approach, in which mobile sensors collect measurements splatial phenomenon
(such as temperature, radiation, pressure and gas coatb@mtrat discrete points in
time and space. Using a statistical model, the sensors naodkpredict values of
this phenomenon at locations and times for which samplesa@travailable. Appli-

26

cations for this approach include environmental monigrmilitary surveillance, and
disaster response, in which mobile sensors can play a troééain improving situa-
tional awareness. This is a particularly challenging prabbecause of the sophisti-
cated statistical models needed to represent the envimapghenomena, and the fact
that sensors have to coordinate to collect informative nressents as a team. These
properties make it an interesting benchmark problem foitelbniques developed in
previous sections.

This section is organised as follows. First, we formalisertiobile sensor coordi-
nation problem in Section 6.1. In Section 6.2, we show howialyahenomena can be
modelled using a Gaussian process. Next, we show how to dpplgnax-sum algo-
rithm by defining the coordination problem in terms of demisvariables and utility
functions in Sections 6.3.1 and 6.3.2. Finally, we empilycavaluate the max-sum
algorithm in this domain.

6.1 Problem Formulation

In this section we present a formalisation of the environt@enonitoring problem for
multiple mobile sensors. This formalisation is inspired®§], and has been extended
for multiple sensors with limited local knowledge.

Intuitively, an environment is defined by its physical lay,and by the phenomenon
that exist within it. More formally, we can denote an enviment and the mobile sen-
sors by a tupl€ = (S,G,P,T), where:

e S={S;li=1... M} isthe set ofM mobile sensors;

e G = (V, E) encodes the layout of the physical environment, wheéréenotes
the possible movements between locatidhswith eachv € V embedded in a
2D plane;

e P is a spatial phenomena that is monitored by the sensafs iHere, we ex-
plicitly model phenomenof® as a scalar field defined on one temporal and two
spatial dimensionsP : V x T' — R.

o T = {t1,ta,...} models time as a sequence of discrete timesteps of unknown

length!8
Furthermore, we denote the sensors’ locations at timmél” by the M -tuple £; =
(I1,....1}), wherel] € V. At every timestep € T, the sensors take measurements
O, = (of,...,0}") atlocationsL, by sampling frontP: o} = P(l;,t), and move to a

new location adjacent to the current locationiin I, € adjg(l}). To illustrate this
formal model with an example, Figure 11 shows the positioa tfam of four sensors
in an example environment during the first four timesteps.

Given this model, the sensors’ challenge is to morf@t all locations/ at timet.
Since the number of sensat$ is generally much smaller thair |, the sensors need to
not only take measurements at locatighsbut alsopredict the value ofP at timet for
every location/, based on observations made earlier. In order to do this se@céate
to the measurement at locatiore V' at timet a continuous random variabfg, ;, and
use a statistical model to predict values at locatiBn#\s we shall discuss in the next
section, we will model the phenomenghwith a Gaussian process, that encodes both
its spatial and temporal correlations.

18|n uncertain and dynamic scenarios, the mission time is oftekmawn beforehand.

27

- ‘ SN

i{51752}

/ N\

N\

(c) t3 (d) ta

Figure 11: Four timesteps of a team of sens®rs- {5, 52, S3,.54} moving in an
environment whose layout is defined by a graph= (V, E), pictured in grey. E
contains a pair of location®;, v;) when they are less thamb meters apart. The initial
deployment of the sensors &5, = (v, v1,v1,v1), wherev; = (0.5,17) € V (if
sensors occupy the same location, only one of them is shddm®nomenofP is not
shown.

28

Now, in order to move in such a way to collect those samplesithprove the
accuracy with which measurements at unobserved locatemmbe predicted, the sen-
sors need to be able to determine the informativeness ofleartiyat may be collected
along their path. Here, the informativeness of a set of sasnglquantified by a func-
tion f(X) of a set of random variable¥ = { X1, x(2) .} that correspond to these
samples. Depending on the contextX') can take on different forms [36]. In this
paper,f(X) equals the entropy () of x'.1°

To measure the performance of the sensors, we use the root sgeared error
(RMSE) of the sensors’ predictioR$In order to so, we denote the predictions that the
sensors make at timeby P, = {p}|v € V'} and the actual values of the environmental
parameter at those locations Hy = {a}|v € V'}. The RMSE for timestep is then
defined as:

vV __ V)2
RS, - VW 12

In the upcoming sections we will show how the max-sum alparican be em-
ployed to minimise the RMSE. First, however, we will expldiow the spatial phe-
nomena are modelled, and how we obtain a measure of undgrédiaut the state of
the spatial phenomenon that is strongly correlated withRINSE.

6.2 Modelling the Spatial Phenomena

In order to predict measurements at unobserved locatioasneadel the spatial phe-
nomenorP with a Gaussian process (GP) [39]. A GP is a principled Bayesiethod
of performing inference over functions, and have been showre very suitable for
modelling spatial phenomena [40, 37, 36, 41]. By using a’&Pan be estimated at
any location and at any point in time using the set of sampdeated by the sensors
so far?!

In more detail, a single sample of the scalar fieldP is a tuple(x,y), where
x = (v,t) denotes the location and time at which the sample was takehy ghe
measured value. Now, if we collect the location vectersn a matrix X, and the
measurementgin a vectory, the predictive distribution of the measurement at spatio-
temporal coordinates,., conditioned on previously collected sampies= (X,y) is
Gaussian with meapn and variance? given by:

p=K(x., X)K(X,X) 'y (13)

0? = K(x.,x%.) — K(x,,X)K(X,X) 'K(X,x,) (14)

where K (X, X') denotes the matrix of covariances for all pairs of rowXimndX’.
Each element of this covariance matrix is obtained by evalga functionk(x, x’),
called a covariance function, which encodes the spatiateangoral correlations of the
pair (x,x’). Generally, covariance is a non-increasing function ofdilstance in space

19Here we exploit one of the attractive properties of the Gansgrocess, whereby the uncertainty of a
sample at any point in time or space can be predicted withouh@dw explicitly reason about the actual
value of P. For more details about the reasons for choosing this megc[27].

2OThis measure was chosen because it has been often used éu netatk to ascertain the accuracy of
sensor predictions [37, 38].

2Iwe chose to use a GP because of its versatile and flexibleenatiowever, the techniques discussed in
the remainder of this section are not specific to the use of eoGRotel the environment; any other model
can be used, as long as it provides some measure of uncertathgy @nvironment.

29

and time, and a prototypical choice of a covariance fundsdhe squared exponential
function where the covariance decreases exponentiallytis distance:

k(x,x') = U; exp (—3/x — x’|2/l2) (15)

whereo; and! are calledhyperparameters that model the signal variance and the
length-scale of the phenomenon respectively. The formetetsache amplitude of the
signal, while the latter determines how quickly the phenoomevaries over time and
space?

One of the key features of the GP is that the posterior vagiand=quation 14
is independent of actual measurementsThis allows the sensors to determine the
entropy reduction that results from collecting samples@la certain path without
the need of actually collecting them. Moreover, since thedjative distribution is
Gaussian, the entropy (X) of random variableg’ corresponding to a set of potential
samples idn v27o2e, whereo? is directly obtained from Equation 14.

6.3 Applying the Max-Sum Algorithm

In order to apply the max-sum algorithm to the coordinatiosbpem defined in Sec-
tion 6.1, we need to define a mapping between the concepts afidx-sum algorithm
and the concepts in the mobile sensor domain. The three kegepts in max-sum
are agent, variable and utility function, which we map tossendecision variable and
information value respectively. In this mapping, each seiss is modelled as an au-
tonomous agent; that has a single decision variahlg(p for ‘path’). This variable
represents the path that it will travel along in the netimesteps. This variable and
its domain will be defined in Section 6.3.1. The informati@hue functionl;, or util-
ity function, encodes the value of the samples that areaeltealong a sensor’s path,
given the paths along which the other sensors decide to mbves, U; depends on
p; and (a subset of) the other sensor’s variables. These funsctiill be defined in
Section 6.3.2. By applying max-sum in this fashion, we ainfirid a collection of
paths (a joint path) of finite length along which sensorsemiVely gather the sam-
ples of maximum value. Clearly, if these paths are of lerigthe sensors will need
to use max-sum to coordinate their moves every< [timesteps. After following (a
portion of) their paths, the sensors’ action space will hetvenged, and so will their
utility functions. Therefore, the factor graph encoding turrent coordination prob-
lem changes over time, and consequently, the sensorsianertoordinating using the
max-sum algorithm with movement through their environment

In the remainder of this section, we show how the variablgb@factor graph are
defined, as well as the functions. Furthermore, we show tteastm of individual
sensors’ utilities equals the utility of the team, and, assult of which, we can use
max-sum to find the paths that maximise team utility (as diesdrin Equation 1).
Finally, we show how to apply the pruning algorithms from 8et5 by computing
the various required bounds.

6.3.1 Decision Variables

In Section 6.1 we defined the graghthat defines the layout of the sensors’ environ-
ment. Observations can only be collected at the verticés ahd moves between two

22 slightly modified version of Equation 15 allows for diffetdangth-scales for the spatial and temporal
dimensions of the process.

30

[>
Sensor 1
ensor 3
]

Sensor 2

I]

»,
> L

»

Figure 12: A joint move of length 5 for sensors on a latticepra

vertices are only allowed if this graph contains an edge betvthem. As a result, the
set of observationgl; that sensof can collect is restricted by its current location and
the layout of the environment.

Now, given a sensor’s current locatiopy and path length, the set of all possible
paths that the sensor can currently consider is denotet].b¥he joint action space
d of the team of sensors is then the Cartesian product of allithehl action spaces:
d = xM,d;. Each element € d is thus a collection of\/ paths of length; one
for each sensor. An example of such a joint move for threecsensonsisting of a
path of length 5 for each of them, is shown in Figure 12. Speadlfi, a joint move
is an ordered list of vertices @, at each of which the sensor makes an observation
of the spatial phenomenon. Thus, there exists a correspoadeetween a path and
a collection of random variables that are observed alongghth. Therefore, with
some slight abuse of notation, we can treat every elemahtis both a path and a set
of (potential) samples. Thus, we can now assign to each semsdecision variable
pi, Which takes values in the sdt, representing all moves that sengas currently
considering.

6.3.2 Utility Functions

Given the definition of the functioyfi that assigns a value to a set of samples, the team
utility of collecting a set of sampled, given that sampleB were collected previously

is equal to the conditional entropy of given B and is denoted by (A|B). By
exploiting the chain rule of entropy, which states thetX,Y) = H(X|Y) + H(Y),

we can decompose the team utility of collectidgnto a sum of the utility obtained by
single sensors that each collect a subsedf A, such thatu}, A; = A, as follows:

H(A|B) = H(A1|B)+ H(A3|A1,B)+ ...+ H(A,|AL, ..., A1, B)
= [H(A1UB)—H(B)|+|H(A1UAyUB) - H(A UB)|+...+
[H(AyU...UA,UB)—H(A1U...UA,,_1 UB)]
= pa,(B)+pa,(AiUB)+...4+pa,(A1U...UA, 1 UB)

n i—1
= D ra (UAuB (16)
i=1 j=1

Wherep4(B) is defined as thincremental value of addingA to B: pa(B) = H(A U
B) — H(B).

Informally, Equation 16 ensures that the team ultility is ensef the incremental
values by adding sample$; to the samples collected by sensgrs: i. We will call
the individual factors of this sum theensor utility.

31

Sensor 1 Sensor 3 Sensor 4

Figure 13: A factor graph encoding the mobile sensor coatitin problem for four
sensors.

Definition 1 (Sensor Utility) Sensor ¢'s contribution to the team utility is:

i—1
Ui(Ala-~-7Ai):pA73 UAJUB
Jj=1

So, in order to calculate its utility, a sensor need only barawof the samples
collected by sensors with a lower ID. Moreover, by summing tlontributions by
individual sensors, we obtaiff (4|B) = H(A; U...U Ay/|B), which is the team
utility. Note, that it is possible to further factorise th#lity functions if the samples
collected by one agent are independent of those of anotleet.dg this case, the edge
connecting the function node of each of these agents to tligbla node of the other
agent can be removed. The correlation length of the Gaupstaess provides a clear
metric to perform this edge removal. However, in this eviidug we do not do so,
since this edge removal is effectively performed by the toton of the maximum
spanning tree within the bounded max-sum algorithm.

Combining this observation with the definition of the ses5decision variables
and the correspondence between observation sets and fhegttgmal of the team is
now to find joint movep* such that:

M
P =1[pi,.... Pl = argmax > Ui(pi,....p:) (17)
P1E€AL,.pMEAM [

In other words, the sensors attempt to find joint mp¥ehat maximises the team
utility by maximising the sum of their contributions as defihin Definition 1. Since
the team utility is the sum of the sensors’ utility functipmsax-sum can be readily
applied to solve this coordination problem.

Finally, to give an example of a factor graph resulting frasmbining the variables
from the previous section with the utility functions definadhis section, Figure 13
shows the factor graph for solving the coordination probveith four sensors.

6.3.3 Applying the Pruning Algorithms

As mentioned in Section 5, the straightforward applicattbrmax-sum in domains
where the utility functions are expensive to evaluate ldads prohibitive computa-
tional cost. Clearly, this the case in the mobile sensorsaiiomvhere determining the

32

value of a sample involves the inversion of a potentiallyyJarge matrixK (X, X)
(see Equation 14). Thus, the use of the pruning algorithrasgmted in Sections 5.1
and 5.2 could be particularly advantageous in this setting.

Now, in order to compute the necessary bounds for these twargy algorithms,
we need to use domain specific knowledge, since these boundsmtext dependent.
In particular, we will exploit various properties of the GRarder to efficiently compute
(approximations to) these bounds.

Firstly, we derive the bounds on the utility functions foe firuning algorithm from
Section 5.1. Note that, given the highly non-linear relasiexpressed in Equation 14
on which the agents’ utility functions; are based, it is very difficult to compute tight
bounds orl/; andU, in Algorithm 1 without exhaustively searching the domairpef
for utility function U;. Needless to say, this would defeat the purpose of this pguni
technique. Nonetheless, experimentation shows that byeting these bounds in a
greedy fashion, a very good approximation is obtained. ¢ieioto do this, the lower
boundU;(p,,) on a movep,, is obtained by selecting the neighbouring agents one at
a time, and finding the move that reduces the utility of ag&nimove themost. In
a similar vein, the upper bourd;(p,,) is obtained by selecting those moves of other
sensors that reduce the utility theast.

Next, we derive bounds on the maximum utility found in sub&® —the search
tree for the joint action pruning algorithm defined in Sect®2. To compute these
bounds onU,;(El), for a partial joint actiond, first note that this partial joint action
represents a situation in which only a subset of the senseesdetermined their move.
Using this interpretation, we can obtain bounds as folloWse upper bound on this
value is obtained by disregarding the sensors that haveatatetermined their move
(i.e. sensors for which p; = @). To see why this results in an upper bound, note that
the act of collecting a sample always reduces the value ef gdimples (an example of
the information never hurts principle), disregarding thenples of these ‘undecided’
sensors will give an upper bound on the maximum. Thus, tHisevia computed by
evaluating a modified version of the utility function as &ls: U; ({p; € p; : p; #
a}).

To obtain a lower bound on the maximum, we exploit a propefty® covariance
function in Equation 15. This property causes the interddpacy between the value
of samples to weaken as the distance between them incr&ses.order to calculate a
lower bound on the maximum, we compute the value of the sampie event that the
undecided sensors move away from sengsrdestination. This results in minimum
correlation between the sample and the samples collectedebyndecided sensors,
thus increasing the value of this sample. In many casesyéhigts in a very tight
lower bound on the maximum of the sample.

6.4 Empirical Evaluation

In this section, we evaluate the algorithms developed gghper on the mobile sensor
domain to ascertain their effectiveness in a setting iesbby a real-life application.
Specifically, we first evaluate the speed up resulting fropiyapg the pruning algo-
rithms described in Section 5. The mobile sensor settingyéasuitable candidate to
do this, since the computational overhead incurred by etialg the utility functions is
significant in this setting. Second, we evaluate the boumadaxtsum algorithm from
Section 4 in combination with these pruning algorithms, dettrmine the difference
between the difference between the optimal and obtainediso! This evaluation is

33

similar to Section 4.4, however, instead of consideringloamnly generated coordina-
tion problems, we use the more realistic mobile sensor domai

6.4.1 Effectiveness of the Pruning Algorithms

To empirically evaluate the two pruning algorithms in thehit® sensor domain, we
simulated five sensors on a lattice graph measuring 26 by 2@e® The data was
generated by a GP with a squared exponential covariancéidansee Equation 15)
with a spatial length-scale of 10 and a temporal lengtheso&ll50. This means that
the spatial phenomenon has a strong correlation along thpaml dimension, and
therefore changes slowly over tinté.

Now, at everym time steps, the sensors plan their motion for the h¢ixhe steps
(I = m). In what follows, this strategy is referred to as MS. Now, instead of
considering all possible paths of lendtltom an agent’s current position, which would
result in a very high computational overhead, the actioespalimited to the locations
in G that can be reached Irtime steps in 8 different directions, corresponding to the
major directions on the compass rose. In the first experimembenchmarked MS1-1
and MS1-5 against four strategies often found in the liteeat

e Random: Randomly moving sensors.

e Greedy: Sensors that greedily maximise the value of the sampleatetiein
the next move without coordination. This strategy was idefiito determine the
effect of coordination between sensors.

e J(umping) Greedy: The same as Greedy, except that these sensors can instan-
taneously jump to any location. This strategy will act as ppar bound on the
achievable performance of a greedy strategy, since it icooestrained by the
movement graply.

e Fixed: Fixed sensors that are placed using the algorithm propog@d]. This
is an algorithm that positions fixed (i.e. non-mobile) seass to minimise the
entropy at all monitored locations.

The average root mean squared error (RMSE) over 100 tims st@otted in Fig-
ure 14(a). From this figure, it is clear that both MS strategietperform the Greedy
and Random strategies, since both have no more than on@stephead, and the MS
strategies compute coordinated paths of length 1 and 5hé&munbre, the prediction
accuracy of MS1-5 is comparable to that of JGreedy, whoseement is not restricted
by graphG. Moreover, it shows that increasing the look ahead imprdivessolution
quality: the length of the considered paths from 1 to 5 redilce RMSE by approxi-
mately 30%.

In the second set of experiments, we analysed the speedaigved by applying
the two pruning techniques described in Section 5. Figule)lghows the percent-
age of joint actions pruned plotted against the number ajhimiuring agents. With
5 neighbours, the two pruning techniques combined prunenar®2% of the joint
moves. With such a number of neighbouring agents, the ageatstrongly clustered,
which occurs rarely in a large environment. However, shalisl happen, the utility

23These parameters were chosen to generate challenging maiiwdiinstances. For example, by using a
high value for the spatial length-scale, sensors are alolevier the entire area without needing to move. Sim-
ilarly, with a very high value for the temporal length-scdles sensors need to traverse the environment only
once, since the phenomenon changes very little over time., Whike not necessarily being the worst-case
scenario, the problems generated by setting the parametites® values represent the most challenging
instances we managed to create.

34

Average RMSE Percentage of Joint Actions Pruned

1 10
I —F
0.8 1 80
0.6 T 60
1
04T 40r
T T
N
0.2 1 20}
0 0 : :
MS1-1 Greedj/ Random 2 3 4 5 6
MS1-5 Greedy Fixed Number of Neighbouring Agents
(@) (b)
Average RMSE
0.45 ‘ ‘ ‘
oMs1-1
AMS8-8
0.4
1 MS2-2
MS5-5
0.35 Msa-4
(MS478
MS1-5
0.3 — :

0 2 4 6 8 10 .5
Utility Function Evaluations

(©

x 10

Figure 14: Empirical results for the pruning algorithmswsing (a) the average root
mean squared error (RMSE), (b) the percentage of joint eetpyuned, and (c) the
number of utility function evaluations plotted against theerage root mean squared
error achieved. Error bars indicate the standard errorefrtban.

function needs to be evaluated for only 8% of rougflyjoint actions, thus greatly
improving the algorithm'’s efficiency.

In the third experiment, we performed a cost/benefit anglgivarious M%n-I
strategies. More specifically, we examined the effect ofivayrm andi on both the
number of utility function evaluations, and the resulting 8. Figure 14(c) shows the
results. The results of MS1-1, MS2-2, MS4-4, MS5-5, and MSBow an interesting
pattern. Up to and including: = [= 4, both the number of function evaluations
and the average RMSE decrease. This is due to the fact thmatipéplonger paths is
more expensive, but results in lower RMSE. However,foii > 4, the action space
becomes too coarse (since only 8 directions are consid&rengintain a low RMSE.
At the same time, the number of times the agents coordinaleces significantly,
resulting in a lower number of function evaluations. FipadilS1-5 and MS4-8 provide
a compromise; they compute longer paths, but coordinate mequently. This leads
to more computation compared to MS5-5 and MS8-8, but resutiignificantly lower
RMSE, because agents are able to ‘reconsider’ their patthsanyi

35

6.4.2 Empirical Evaluation of the Bounded Max-Sum Algorithm

In the previous set of experiments, we focused exclusivelthe effectiveness of the
pruning algorithms in a setting where the evaluation ofitytilunction is computa-
tionally demanding. In the second set, we combined the pguaigorithms with the
bounded max-sum algorithm presented in Section 4 to determhether (i) the op-
timal solution is preserved by using the pruning algoritharsd (ii) to determine the
solution quality provided by the bounded max-sum algorittumpared to the optimal
solution computed by enumerating the entire joint actipaeg. The latter presents an
empirical estimation of the approximation computed by #hrithm in a realistic and
demanding setting.

In more detail, these experiments used the same envirorimeanit and GP set-
tings as before. During each simulation, which lasted fd) 8esteps, the sensors
computed paths of length 8 at 4 timestep intervals (i.e 4Mp5 We performed simu-
lations with 3, 4, 5, and 6 sensors, bettth andwithout the action pruning algorithm
from Section 5.1, starting the sensors from random locatioreach run. In what fol-
lows, the simulation with\/ sensors, and pruning turned on is denoted by, Rnd
with pruning turned off, by NBZ. In both case, the joint action pruning algorithm
from Section 5.2 was always used.

Figure 15(a) shows the average utility obtained during 2®@steps of the sim-
ulation over twenty repetitions. In particular, it repotte four metrics described in
Section 4.4. The results show that the solution computetubkie bounded max-sum
algorithm is very close to the optimal solution. More speailly, the minimum ratio
between the computed solution and the optimal solution d@6rruns was 98%, thus
showing that the use of this algorithm leads to very good@pprations to the optimal
solution. Moreover, the graph shows that the use of the pgutdchniques results in
a slight tightening of the bound on the optimal solution. Blanportantly, it corrob-
orates the theoretical claim that the optimal solution issprved when applying the
pruning algorithms (see Section 5.1).

Figure 15(b) shows the benefits of applying the two pruniggrdthms more clearly.
This figure includes four key metrics:

1. Cache misses: the number of times the utility functiortsally needed to be
evaluated for different joint actions.

2. The total number of function calls.

3. The number of nodes that needed to be expanded in the sesg¢described in
Section 5.2) to find the optimal value.

4. The total number of nodes that the full search tree cositain

From this figure, we note that the action pruning approaclerdesd in Section 5.1
results in reductions in all four of these metrics of appmeadely one order of magni-
tude. By removing dominated action choices, the coordingproblem is simplified
and agents need perform less evaluations of the costlyyuiilnction. Furthermore,
we note that the joint action pruning algorithm describedettion 5.2 results in a
reduction in the number of nodes of the search tree that neuskpanded, compared
to the total number of nodes in the tree, of up to two ordersagmitude?*

24Note that in settings where the computational cost of perfiogrtiie utility function evaluation domi-
nants other processing, this will translate into a significantime improvement. However, in general, the
runtime of the algorithm will also depend on many other domaétsje factors (such as the computational
resources of the agents, and even the communication deldysyasxchange messages).

36

Utility Number
50, 106

[N Il Cache Misses
— 4 I Function Calls
40 |\ v* 1»|| (T Expanded Nodes ifi”
v W 10 T otal Nodes inT
30
108
20
4
10 10
0 0
NP3 NP4 NP5 NP6 P3 P4 P5 P6 NP3 NP4 NP5 NP6 P3 P4 P5 P6
Number of Sensors Number of Sensors
(@) (b)
Total Message Size Average RMSE
800 0.4
6000 0.3 L —
4000 0.2
2000 H 0.1
o il .
NP3 NP4 NP5 NP6 P3 P4 P5 P6 NP3 NP4 NP5 NP6 P3 P4 P5 P6
Number of Sensors Number of Sensors
(c) (d)

Figure 15: Empirical results for the bounded max-sum atgorishowing (a) the av-
erage utility, (b) the number of cache misses, the total rarrobutility function calls,

the number of expanded partial joint actions (expandedsindgearch tre@), and the
maximum number of partial joint actions that could have bexluated (total number

of nodes in search treg), (c) the average root mean squared error (RMSE), (d) the
total message size in terms of the number of values excharged means that\/
sensors are deployed, and that the action pruning algofithmm Section 5.1 is used,
and NPV meansM sensors without action pruning. Error bars indicate thedsed
error of the mean.

Figure 15(c) shows the required amount of communicatior®eedor coordina-
tion. The most notable conclusion that can be drawn fromfigige is the strong
reduction in message size when the action pruning algorigtused. Since the action
space of individual sensors is reduced by pruning domiredgdns, the number of val-
ues contained in the messages exchanged between funatidva@ables (Equations
2 and 3) is significantly reduced, resulting in a lower comioaition overhead.

Finally, Figure 15(d) shows the obtained solution qualitytérms of the average
RMSE. Unlike the utility reported in Figure 15(a), this figlshows a slight decrease in
solution quality when using the pruning algorithms. Thisasised by the fact that the
sensors minimise entropy in their environment, which, dedpeing strongly linked,

37

does not directly translate into a decrease of RMSE. Puereifitly, directed by the
utility function that incentivises entropy reduction, theuning technique in Section
5.1 that operates on the action space of individual agentsieg actions that would
have led to lower RMSE. Fortunately, this effect is limited,the maximum increase
of RMSE found over 160 runs was only 3.5%.

In summary, in this section, we demonstrated the effecigsiof the bounded max-
sum algorithm and the two pruning algorithms in a setting nettbe utility functions
are computationally expensive to evaluate. We showed ltlgaising the two pruning
algorithms, the number of function evaluations is reducgddughly two orders of
magnitude for a joint action space of sigé Moreover, the results showed that by
using the bounded max-sum results, we obtain solutionsatieajuaranteed to be no
further away than 2% from the optimal solution. Generafjsiom these specific re-
sults, these experiments clearly show the effectivenetseadeveloped techniques for
real-life applications with complex interactions betwegents.

7 Related Work

As described in the introduction, approximation ratiosehpreviously been provided
for k-optimal algorithms in the area of DCOPs [15, 16]. In thisezabek-optimal
solution for a DCOP is a solution that cannot be improved nging the assignment
of any k or less variables. Many well known local algorithms for D&CdPe guaran-
teed to provide:-optimal solutions. In particular, any locally hill clinmg algorithm
is k-optimal fork = 1, such as for example DSA [1] and MGM [10]. Whileka= 2
variant of MGM, termed MGM-2, has been presented [10]. Sjuadly, Pearce and
Tambe provide approximation ratios which are valid for ary@P with non-negative
reward structure, and which are dependent on the arity ofdhstraint functions, the
number of agents participating in the DCOP and the valuk. d¥loreover, they pro-
vide both general bounds which are not dependent on thereamsgraph structure,
and tighter bounds for specific structures (e.g. ring andgtph structures). More
recently, Bowring et al. have improved on this bound by assgmpriori information
concerning the DCOP reward structure [16]. With respechi®work, our approach
is somewhat complementary, as here we provide an apprdgimattio which is more
accurate but is dependent on the specific problem instartttg their approach pro-
vides a less accurate bound which, in turn, is more generaholre detail, the approx-
imation ratio provided within the k-optimality framework dependent on the number
of agents and thus scales poorly when the number of agenke isylstem grow$>
Conversely, our approximation ratio is dependent on theréwstructures (because it
requires functions to be bounded), and on the constraiphgsaructure (because it is
more accurate when less cycles are present in the constitimbrk). However, it is
not dependent on the number of agents present in the sysemsiaoe it exploits the
specific constraint graph structure, it is able to providey/\aeccurate approximation
ratios.

An alternative approximation approach, proposed by Yeaddl.efs based on the
ADOPT algorithm, and its extension BnB-ADOPT [19]. This@idighm fixes a prede-
termined error bound for the optimal solution, and stopsmdnsolution that meets this
error bound is found. Their approach is similar to our worlthat it is dependent on
the problem instance. Specifically, in their case, the dyonnd is fixed and the algo-
rithm will stop only when such a bound is obtained. The nundfeycles required by

25See the discussion in Section 4.4 for a more detailed compeasfsaour approach with [16].

38

the algorithm to converge is dependent on the particuldslpro instance, and, in the
worst case, remains exponential. Our approach in contsagtiaranteed to converge
after a polynomial number of cycles (i.e., twice the deptltheftree structured factor
graph), but the approximation ratio is dependent on thdquéat problem instance.

Therefore, our approach tries to minimise computation amdrounication, by trading

off solution quality. This requirement is driven by our f@con decentralised coordi-
nation for embedded agents, where constraints on comntigriGnd computation are
crucial for the practical applicability of the coordinatiapproach.

Similar considerations hold with respect to A-DPOP [18], extension of the
DPOP algorithm that computes approximate solutions. A-BR@empts to reduce
message size (which is exponential in the original DPOPrilgo in the width of the
pseudo tree) by optimally computing only a part of the messamnd approximating
the rest (with upper and lower bounds). Given a fixed appration ratio, A-DPOP
can then reduce message size to meet this ratio, or alterlyatijiven a fixed maxi-
mum message size, it propagates only those messages thattelaaed that size. As
a result of this, the computed solution is not optimal, byiragimate. Moreover, as
discussed above, since the algorithm fixes a desired appatioin ratio, the message
size remains exponential. In contrast, if we would fix the immaxm message size in
our approach, the approximation ratio is dependent on theifsp problem instance.
Furthermore, note that in the A-DPOP case, there is no mérhao minimise the
approximation ratio, which in our approach is provided bysidering the maximum
spanning tree of the constraint netwafk.

Our use of tree structures to obtain an approximation of tiggnal problem shares
similarities with previous work in information theory wleea dependence tree is used
to approximate a generic joint probability distribution @ihdom discrete variables.
In particular, it has been shown that a maximum weight depecel tree provides the
best tree approximation of the joint probability distrilout [42]. In contrast, our con-
tribution addresses a decentralised decision problem pgsep to a centralised tree
parametrisation of an unknown joint probability. Consetlye we provide the ap-
proximation ratio for our optimisation problem and we calesigenericn-ary rela-
tionships among variables as opposed to the binary depeadsmsidered in [42].
Techniques based on tree-decomposition have also bedonysiwused in the area of
constraint optimisation. In particular, in [43] the authéocus on providing bounds on
the best-cost extension of a set of variables (i.e., the \@se that the target func-
tion can achieve for all the possible joint values of the alale set), given a tree-
decompositiort/ In contrast, here we focus on removing cycles from the oailgin
problem instance to optimise the approximation ratio, @éiing a low communica-
tion and computation overhead, because we focus on delieadraoordination for
resource constrained embedded agents.

Finally, our action pruning approach shares some simigarivith the directed soft
arc consistency approach proposed by Matsui et al. [44]s Work proposes a dis-
tributed algorithm to perform directed soft arc consisteoc pseudo-trees, and shows
that this approach can be efficiently combined with commarcaealgorithms (e.g.,
ADOPT). Our action pruning approach has a similar spirit é&sa distributed prepro-

281 we force A-DPOP to have polynomial message size, as it is #se avith our approach, the algo-
rithm would compute a DFS tree and remove all other edges, utittensidering the impact of removed
dependencies on the approximation ratio.

2"Notice that a tree-decomposition for a Constraint Optimisa®roblem is not a spanning tree of the
original graph, but a tree that has clusters of variables#ices, and that satisfies thanning intersection
property. See [43] for further details.

39

cessing scheme that results in a faster algorithm. Morebi®isomewnhat similar to
standard arc consistency for constraint satisfactionlprob as it tries to delete use-
less values from variable domains. However, our actionipgiapproach, in contrast
to the method presented in [44], does not try to reduce thgeraii the values of the
functions. This is motivated by the fact that max-sum is ne¢arch algorithm and so
it would not benefit from such reduction as it is the case wétdrsh algorithms such as
ADOPT. Here, we are more concerned to reduce the numberiohadhat each func-
tions must consider when computing the messages of the mrexafgorithm as this is
the main source of algorithm’s computational complexitypnitheless, applying soft
arc consistency could potentially result in a better apijpnaxion ratio for the bounded
max-sum, as reducing the range of the cost functions cosldtren smaller weights.
However further investigations would be required to seethdrethe pre-processing
overhead to apply directed soft arc consistency would behatbe possible reduction
in the approximation ratio, and this falls outside the scofpthe current paper.

8 Conclusions and Future Work

In this paper we proposed a novel approach to decentralisedlioation which is
particularly suited for embedded computationally consed agents. Our approach
is based on a factor graph representation of the constratatonk (i.e. the interac-
tions between agents) and builds on the max-sum algoritluma@proach guarantees
accurate bounded approximate solutions, while maintgiairvery low computation
and communication overhead. Given any particular instarice general constraint
network, our approach is able to compute a solution and teigeecan approximation
ratio for the unknown optimal solution. This is achievedhaitit incurring the typical
exponential cost of optimal approaches, thus resultingvers effective and efficient
technique. Moreover, by applying two novel generic pruneahniques, we are able to
reduce the computation that each agent must perform whepwtorg the approximate
solution, thus further improving the computational effiaig of our approach.

We apply our approach in a mobile sensor domain to assessaitigal benefits.
In this domain mobile sensors must coordinate their actiorgather the most infor-
mative measurements from the environment. In this settieglevelop a factor graph
representation for this specific coordination problem, simalv how our approach can
be used as a solution technique. Moreover, we show how thedéweloped prun-
ing techniques can be used in this specific domain to furtpeed up the max-sum
message computation. Empirical results showed that owelteghnique is extremely
effective, providing accurate solutions which are guaradtto be no further away than
2% from the optimal. Moreover, the use of the pruning techegjproved to be very
successful in speeding-up the computation of the max-sussage: for 5 sensors,
these techniques prune 92% of joint moves, thus signifigzaatucing the number of
utility function evaluations, which are particularly expgéve in our domain.

Many possible future directions stem from this work. A finsteresting research
direction is to investigate techniques to further redueeagbproximation ratio. A possi-
ble approach is to iteratively apply our algorithm whilestkering variable and function
nodes (as proposed in [32]) to remove cycles without rengpdiependencies. In this
way, we can iteratively decrease the approximation ratyar€imoving less dependen-
cies) while paying an increase in communication and contiputédue to clustering of
nodes), thus allowing a flexible trade-off between solutjoality and communication
and computation overhead. In this respect, it would alsatsresting to consider the

40

use of state of the art techniques for constraint satisfacths mentioned in the previ-
ous section, soft arc consistency could be applied, as penbio [44], to preprocess the
constraint network before applying our approach. Anothiresting possibility would
be to investigate the use of cutset schemes to obtain tneeisted network [25]. For
example, the cycle cutset decomposition could be used tplebety remove cycles, or
alternatively, more general cutset schemes (b-cutset)l timuexploited to obtain con-
straint networks with a bounded induced width. A similar @aeh has already been
succesfully used in [13], and in this context, our idea of ifigda maximum-weight
spanning tree could be used as an heuristic to choose thet vat&@ables.

A second interesting direction is to investigate the useegfan based message
passing techniques, such as the family of generalisedfl@lipagation approaches
[45], as solution techniques for our constraint network.FdBa generalisation of the
standard GDL techniques (such as max-sum) and operatesegipa graph, which
is obtained by dividing the factor graph into specific regitwased on the factor graph
topology?® Messages are then computed for regions and sent from orenreman-
other. Recent empirical results show that region basedhigebs such as GBP are able
to outperform standard GDL techniques, with a minimal egbst in terms of compu-
tation. Moreover, GBP has similar guarantees on solutidimaity as the standard
GDL techniques, namely it is optimal when the region baseg@lgydoes not contain cy-
cles [45]. Therefore, investigating possible extensidnsuo bounded max-sum algo-
rithm to GBP techniques appears to be a promising direckiture generally speaking,
the application of GDL-based techniques to decentraligeddination appears to be
a very promising direction, resulting in effective and eéfit solutions. Furthermore,
many important aspects which are specific to the coordinatiembedded agents still
need to be investigated. For example, agents usually hageolgeneous computation
and communication capabilities, and this could potentiadl taken into account when
assigning the responsibility for variables and factor noodieputation to the different
agents in order to better exploit the limited resources efsystem.

Finally, an important research direction is to go beyond limited look-ahead
used here for coordinating the paths of the mobile sensotsjreestigate the use of
sequential decision making approaches. The sequentiatiaigpinherent to a wide
variety of applications involving embedded agents, howevéey issue is to keep
the computational costs under control. To this end, theofesztion of the objective
function seems to be a promising idea, and again, GDL-bggawaches appear to be
very well suited solution techniques.

Acknowledgements

This paper is a significantly extended version of paper [ZIfhe work reported in
this paper was jointly funded by the Systems EngineeringAisionomous Systems
(SEAS) Defence Technology Centre established by the UK $¥tiniof Defence and
the ALADDIN (Autonomous Learning Agents for Decentralidedta and Information
Systems) project; a BAE Systems and EPSRC (Engineering hysidadl Research
Council) strategic partnership (EP/C548051/1).

28/ region is formed by a sub-set of factor nodes and all variablges that are connected to them. A
region usually includes short loops in the factor graph teetgood approximations.

41

A Proof of Bounded Approximation

To prove theorem 1 we first introduce and prove the followgmgma:

Lemma 1.
Vi, x min Fy(x};x5) + B;(x$) > max Fy(xt;x6) (18)

i 1

Proof of Lemma 1. ExpandingB;(x¢) as defined in Equation 6 we have:

min Fj(x!; x§) + max {max Fy(xt; x$) — min Fj(x}; Xf):| > max Fj(x!; x5)
X x! x¢ x§ x¢

wherex! = x; \ x$ as in Section 4. By contradiction, let us consider an assggm

x"t such that:

min Fy(x"h:x6) + max |:H)1(E}X Fi(xt;x$) — min Fi(xt; ch):| < max Fy(x":x6)

(]
7 Xi 7
We can rewrite the previous expression as:

max Fy(x'5;x5) — min Fy(x5;x5) < max Fy(x"%;x¢) — min Fj(x
;

i i i

nt, Xc)

79N

where
x'! = arg max {max Fy(xt;x§) — min F(x!; xf)}
x; x7 x¢
However, this is a contradiction with respect to the definitofx';. Therefore Lemma
1 must hold. o

Lemma 2.
B<W (19)

Proof of Lemma 2. We can rewrite the above inequality as:

ZBi(Xf)S > wi

<i,j>eC

whereC' is the set of couples of indices i, > that identify the edges removed
from the factor graph. We can prove this inequality by shgwiimatvi B;(x§) <
Zjel(xf) w;; wherel (x5) is the set of variable indexes which have been removed. We
proceed by expanding; (x{) as defined in Equation 6 and; as defined in Equation

5 to give:

max [max Fy(x!; x$) — min Fi(xt; xf)} < max {max F;(x;) — min F; (xz)]
xf [%] x§ xi\j [% z;

For functions that have no dependencies removed we Xave (), thereforeB; () =

0. Consequently/(x$) =), and thus, since the sum of the weight will be zero, the
above inequality holds. For functions that have at leastdapendency removed, we
can substitute the left term of the above inequality with:

x} Joxi\g L oz T

max [maX [max [max Fi(x;) — min F; (Xi)} }]

42

However, this term is less than or equal to:
max max {max F;(x;) — min Fi(xi)]

x! —~ x{\j | % z;
J

which, in turn, is less than or equal to the right hand sideuofomiginal expression. [J

Theorem. Bounded Approximation
> minFi(x;)+ B> Fi(]) (20)

Proof of Theorem Bounded Approximation. By considering the definition of given in
Equation 7, we can write the following inequality:

Z Ir}gp Fi(x;) > Z H)l(ign Fi(x
7 . 4

This inequality holds becauseis defined as the assignment that maximises the prob-
lem on the tree structured network, and thus, the value diyethat assignment on
the tree structured problem will be higher or equal than ahgrpossible assignment.
Specifically, it will be greater or equal than the optimaligsment of the original
problemx*, and thus, we can write:

S minFi(%) + B> Y min Fi(x}) + B

adding the same quantity to both terms of the equation. Then using Lemma 1 we

know that:
ZmlnF +B>ZmaXF(!
Now, since:
Z max Fi(x}) > Z Fi(x
our bounded approximation holds. O

B Derivation of worst case approximation ratio

We derive here the worst case approximation ratie M /m starting from thep p¢.

Derivation of worst case approximation ratio. The worst case, fg5x¢, happens when
the optimal solution on the spanning tree equals the optiolation evaluated on the
original graph. This is the worst case because the appréximeatio is directly de-
pendent o/ and inversely dependent &f, but we know that/™ < V. Intuitively,

this is the worst case since in this case we overestimatentpadt of the removed
dependency the most (i.e., the actual impact is zero fordhgated solution). When
V™ =V we havep = 1+ B/V™. Moreover, let us denote the maximum ratio between
the minimum reward and maximum reward across all functioitls W/ /m wherem
and M are the minimum and maximum reward for the function that méses the

43

reward ratio andn; and/; are the minimum and maximum reward for functioiwe
can then write:

B SIF; = my)
Zl_F\ m; Z_F\ m;
This is because we assume, being a worst case analysis,lltfiicions need to
have at least one dependency cut, therefdte = ZLF‘ m; and that for all functions
the dependencies we cut have the highest possible impabesotution quality (i.e.

; SIF
Vi Bi(x{) = M; —m;). Then we have = e 2 < M/m.

p=1+

O

References

[1] Fitzpatrick, S., Meetrens, L.: Distributed coordirmatithrough anarchic opti-
mization. In: Distributed Sensor Networks: A multiagentqmective. Kluwer
Academic (2003) 257-293

[2] Padhy, P., Dash, R., Martinez, K., Jennings, N.R.: Atytibased adaptive sens-
ing and multi-hop communication protocol for wireless sensetworks. ACM
Transactions on Sensor Netwoi(&) (2010) Article 27

[3] Rogers, A., Corkill, D.D., Jennings, N.R.: Agent teclogies for sensor net-
works. |IEEE Intelligent Systen4(2) (2009) 13-17

[4] Chapman, A., Rogers, A., Jennings, N.R., Leslie, D.: Afying framework for
iterative approximate best response algorithms for thisteid constraint optimi-
sation problems. The Knowledge Engineering Review (204 Brkess

[5] Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: ADOPT: Asynchous dis-
tributed constraint optimization with quality guaranteeartificial Intelligence
(161) (2005) 149-180

[6] Mailler, R., Lesser, V.: Solving distributed constragptimization problems us-
ing cooperative mediation. In: Proceedings of Third Inggiomal Joint Confer-
ence on Autonomous Agents and MultiAgent Systems. (2008)4485

[7] Petcu, A., Faltings, B.: DPOP: A scalable method for fiaglent constraint op-
timization. In: Proceedings of the Nineteenth Internaiajoint Conference on
Artificial Intelligence. (2005) 266-271

[8] Chechetka, A., Sycara, K.: No-commitment branch andnidosearch for dis-
tributed constraint optimization. In: Proceedings offrifiternational Joint Con-
ference on Autonomous Agents and Multi-Agent Systems.§2Q@27 — 1429

[9] Gershman, A., Meisels, A., Zivan, R.: Asynchronous fard/bounding for dis-
tributed cops. Journal of Artificial Intelligence ReseaB2h(2009) 61-88

[10] Maheswaran, R.T., Pearce, J.P., Tambe, M.: Distribatgorithms for DCOP: A
graphical game-based approach. In: Proceedings of theteeveh International
Conference on Parallel and Distributed Computing Syst€p@94) 432—-439

44

[11] Zivan, R.: Anytime local search for distributed comstt optimization. In: Pro-
ceedings of the Twenty-Third Conference on Atrtificial Itiggnce. (2008) 393—
398

[12] Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.ed@ntralised coordination
of low-power embedded devices using the max-sum algoritthmProceedings
of the Seventh International Conference on Autonomous fsgemd Multiagent
Systems. (2008) 639646

[13] Petcu, A., Faltings, B.: MB-DPOP: A new memory-boundsglorithm for dis-
tributed optimization. In: Proceedings of the Twentiettenational Joint Con-
ference on Artificial Intelligence. (2007) 1452-1457

[14] Yeoh, W., Felner, A., Koenig, S.: BnB-ADOPT: An asynchous branch-and-
bound DCOP algorithm. In: Proceedings of the Seventh late@nal Joint Con-
ference on Autonomous Agents and Multiagent Systems. (Z8@B-598

[15] Pearce, J.P., Tambe, M.: Quality guarantees on k-@bswiutions for distributed
constraint optimization problems. In: Proceedings of tiveeliéenth International
Joint Conference on Atrtificial Intelligence. (2007) 144851

[16] Bowring, E., Pearce, J., Portway, C., Jain, M., Tambe, MDn k-optimal dis-
tributed constraint optimization algorithms: New boundd algorithms. In: Pro-
ceedings of the Seventh International Joint Conference wierfomous Agents
and Multiagent Systems. (2008) 607—614

[17] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein,I@troduction to algorithms.
The MIT press (2001)

[18] Petcu, A., Faltings, B.: A-DPOP: Approximations in tilsuted optimization.
In: Principles and Practice of Constraint Programming 8)@D2-806

[19] Yeoh, W., Sun, X., Koenig, S.: Trading off solution giyafor faster computation
in DCOP search algorithms. In: Proceedings of the TwentgtFnternational
Joint Conference on Artificial Intelligence. (2009) 354836

[20] Kok, J.R., Vlassis, N.: Collaborative multiagent rfigircement learning by payoff
propagation. Journal Machine Learning Resedr(?006) 1789-1828

[21] Aji, S., McEliece, R.: The generalized distributivaMa IEEE Transactions on
Information Theory46(2) (2000) 325-343

[22] MacKay, D.J.C.: Information Theory, Inference, andtming Algorithms. Cam-
bridge University Press (2003)

[23] Weiss, Y., Freeman, W.T.: On the optimality of solusasf the max-product be-
lief propagation algorithm in arbitrary graphs. IEEE Tracisons on Information
Theory47(2) (2001) 723-735

[24] Weiss, Y., Freeman, W.: Correctness of belief propagah gaussian graphical
models of arbitrary topology. Neural Computatib®(10) (2001) 2173-2200

[25] Dechter, R.: Constraint Processing. Morgan Kaufm&008)

45

[26] Vinyals, M., Rodiguez-Aguilar, J.A., Cerquides, J.: Constructing a unidyihe-
ory of dynamic programming DCOP algorithms via the geneealidistributive
law. Journal of Autonomous Agents and Multi Agent Systenfd (B 1-26

[27] Stranders, R., Farinelli, A., Rogers, A., JenningsRN. Decentralised coor-
dination of mobile sensors using the max-sum algorithm. Bnoceedings of
the Twenty-First International Joint Conference on Ari#fi¢ntelligence. (2009)
299-304

[28] Gallager, R.G., Humblet, P.A., Spira, P.M.: A distried algorithm for minimum-
weight spanning trees. ACM Transactions on Programmingylages and Sys-
tems5(1) (1983) 66—77

[29] Frey, B.J., Dueck, D.: Clustering by passing messagésden data points. Sci-
ence3155814) (2007) 972-976

[30] Aji, S.M., Horn, G.B., Mceliece, R.J.: On the convergerof iterative decoding
on graphs with a single cycle. In: Proceedings of the Intwnal Symposium
on Information Theory. (1998) 276

[31] Weiss, Y.: Correctness of local probability propagatin graphical models with
loops. Neural Computatioh?(1) (2000) 1-41

[32] Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Fadaaphs and the sum-product
algorithm. IEEE Transactions on Information Thedi(2) (2001) 498-519

[33] Awerbuch, B.: Optimal distributed algorithms for mimiim weight spanning tree,
counting, leader election, and related problems. In: Radicgys of the Nineteenth
Annual ACM Symposium on Theory of Computing (1987) 230-240

[34] Wainwright, M., Jaakkola, T., Willsky, A.: Tree contgsicy and bounds on the
performance of the max-product algorithm and its geneatibms. Statistics and
Computingl4(2) (2004) 143-166

[35] Ali, S.M., Koenig, S., Tambe, M.: Preprocessing tecjugs for accelerating
the DCOP algorithm adopt. In: Fourth International Joinhféoence on Au-
tonomous Agents and Multiagent Systems (2005) 1041-1048

[36] Meliou, A., Krause, A., Guestrin, C., Hellerstein, J:MNonmyopic informative
path planning in spatio-temporal models. In: ProceedirigseoTwenty-Second
Conference on Artificial Intelligence. (2007) 602—-607

[37] Guestrin, C., Krause, A., Singh, A.P.: Near-optimaisa placements in gaus-
sian processes. In: Proceedings of the Twenty-Seconchhitenal Conference
on Machine Learning. (2005) 265-272

[38] Krause, A., Guestrin, C.: Near-optimal observatioteston using submodu-
lar functions. In: Proceedings of the Twenty-Second Carfee on Artificial
Intelligence. (2007) 1650-1655

[39] Rasmussen, C.E., Williams, C.K.l.: Gaussian proce$se machine learning.
The MIT Press (2006)

46

[40]

[41]

[42]

[43]

[44]

[45]

Osborne, M.A., Rogers, A., Ramchurn, S.D., Robert3,, Sennings, N.R.: To-
wards real-time information processing of sensor netwata dising computa-

tionally efficient multi-output gaussian processes. Irndeedings of the Seventh
International Conference on Information Processing insBehletworks. (2008)

109-120

Low, K.H., Dolan, J.M., Khosla, P.: Adaptive multi-robwide-area exploration
and mapping. In: Proceedings of the Seventh Internationafé€€ence on Au-
tonomous Agents and MultiAgent Systems. (2008) 23-30

Chow, C.K., Liu, C.N.: Approximating discrete probhtyi distributions with
dependence trees. |EEE Transactions on Information Thet{B) (1968) 462—
467

Dechter, R., Kask, K., Larrosa, J.: A general schemenfaltiple lower bound
computation in constraint optimization. Principles an@d®ice of Constraint
Programmin@239(2001) 346—-360

Matsui, T., Silaghi, M.C., Hirayama, K., Yokoo, M., Mato, H.: Directed soft
arc consistency in pseudo trees. In: Proceedings of Thetltigiernational
Conference on Autonomous Agents and Multiagent Systerf99(21065-1072

Yedidia, J., Freeman, W., Weiss, Y.: Constructing feeergy approximations
and generalized belief propagation algorithms. IEEE Taatisns on Information
Theory51(7) (2004) 2282—2312

47

