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Abstract

Existing models for cluster analysis typically consist of a number of attributes
that describe the objects to be partitioned and one single latent variable that
represents the clusters to be identified. When one analyzes data using such a
model, one is looking for one way to cluster data that is jointly defined by all
the attributes. In other words, one performs unidimensional clustering. This
is not always appropriate. For complex data with many attributes, it is more
reasonable to consider multidimensional clustering, i.e., to partition data along
multiple dimensions. In this paper, we present a method for performing multi-
dimensional clustering on categorical data and show its superiority over unidi-
mensional clustering.

Keywords: Model-based clustering, categorical data, multidimensional
clustering, latent tree models

1. Introduction

Cluster analysis is about the grouping of similar objects into meaningful
clusters. There are two different approaches. In the distance-based approach,
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one defines a distance/similarity measure between objects and assigns similar
objects to the same cluster. In the model-based approach, one assumes that data
are generated by a finite mixture model (FMM), estimates parameters of the
model from data, and assigns objects to clusters based on posterior probability.
In both approaches, one can perform either partitional clustering or hierarchical
clustering. In this paper, we focus on partitional clustering.

In an FMM, there are a number of observed variables that represent at-
tributes of objects, and there is one single latent variable that represents the
clusters to be identified. The latent variable has a finite number of states, each
corresponding to a cluster. Assumptions are imposed on the conditional distri-
butions of the attributes given the latent variable. Different assumptions lead
to different models. In Gaussian mixture models (GMMs) (McLachlan and Bas-
ford, 1988), the attributes are continuous and are assumed to jointly follow a
Gaussian distribution. In latent class models (LCMs) (Lazarsfeld and Henry,
1968), the attributes are discrete. They are assumed to be mutually independent
given the latent variable and each follows a multinomial distribution.

GMMs and LCMs are two basic types of models for cluster analysis. A vari-
ety of restrictions, extensions, combinations, and variations have been proposed.
For example, Banfield and Raftery (1993) place constraints on the covariance
matrices in GMMs to reduce model parameters. This technique is used in the
MCLUST program (Fraley and Raftery, 1999). In their well-known AutoClass
program, Cheeseman and Stutz (1996) use a version of LCM where the at-
tributes can be either continuous or discrete. The MULTIMIX program by
Hunt and Jorgensen (1999) also allows both discrete and continuous attributes.
Unlike AutoClass, it does not assume conditional independence for continuous
attributes. Peña et al. (2001) start from LCMs with continuous attributes and
relax the independence assumption by adding edges between the attributes.
Law et al. (2004) add saliency variables to the AutoClass model to facilitate
feature selection. This work is recently extended by Li et al. (2009). McLachlan
and Peel (2000) consider mixtures of factor models for the purpose of dimen-
sion reduction. Hoff (2006) introduces a variant of GMMs that allows different
clusters to be characterized by different subsets of attributes. Zhong and Ghosh
(2003) propose a bipartite graph framework that bridges various model-based
and distance-based clustering methods.

1.1. Unidimensional Clustering
In all variants of FMM, there is a single latent variable. This implies that,

when one uses an FMM to analyze data, one is looking for one single way to
partition the data. In other words, one performs unidimensional clustering.
One assumption is made here, that is, all the attributes in data jointly define
one single meaningful way to partition the objects. This assumption is hardly
true except maybe when there are only a few attributes. When the number of
attributes is large, there might be multiple meaningful ways to partition data.
In such cases, if one insists on looking for one single way to cluster data, one
might not find any meaningful partitions at all.
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How can one perform cluster analysis when all the attributes in a data set
jointly do not define a coherent partition of the objects? One might suggest
to rely on experts to identify subsets of attributes that do define coherent par-
titions and perform cluster analysis based on each subset. This approach has
two drawbacks. First, it is not purely unsupervised and cannot be applied to
situations when one does not know not only how to partition the objects, but
also based on what attributes to partition the objects. Second, performing clus-
ter analysis based on a given subset of attributes is to partition the objects
along a certain dimension. When the analysis on different subsets is carried out
independently, relationships between the different dimensions are not revealed.

Another suggestion might be to reduce the number of attributes through
feature selection, so that the remaining attributes can better reveal the ‘true’
clusters. Feature selection is well studied for classification. However, there has
been little work on feature selection for clustering, especially for model-based
clustering (Raftery and Dean, 2006; Law et al., 2004). It is known to be a very
difficult problem. We argue that the root of the difficulty lies in the assumption
that there is a single ‘true’ way to cluster data. The assumption is almost
never true except perhaps when there are only a few attributes. When there are
more than one meaningful way to partition data, the attempt to find a single
‘true’ partition is misguided. So are any efforts on selecting a ‘good’ subset of
attributes for the endeavor.

1.2. Multidimensional Clustering
We advocate multidimensional clustering. The idea is to use statistical prin-

ciples to find multiple potentially overlapping subsets of attributes, each of
which defining a coherent partition, and carry out cluster analysis based on
those subsets simultaneously within a single model.

As mentioned earlier, we focus on partitional clustering in this paper. A
partition of a collection of objects corresponds to a variable (or a concept) about
the objects. For example, the division of human beings into males and females
corresponds to the variable ‘gender’, and the partition of the world population
into countries corresponds to the variable ‘nationality’. Therefore, to partition a
collection of objects is to identify a variable about those objects. Such a variable
is not observed and is hence called a latent variable. In contrast, the attributes
of objects are observed and are called manifest variables.

Conceptually, model-based cluster analysis takes place in three steps. First,
one assumes a probabilistic model about the relationships between latent vari-
ables and manifest variables. Then, one determines the details of the model
from data using statistical principles. Finally, one reads off partitions from the
model. Each latent variable in the model represents a partition, and each of
its states represents a cluster in the partition. The states of latent variables
are hence called latent classes. When there is one single latent variable in the
model, one is talking about unidimensional clustering. When there are multiple
latent variables in the model, one is talking about multidimensional clustering.

Multidimensional clustering should be distinguished from multiple unidi-
mensional clusterings. In the latter case, one obtains multiple models, each
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with a single latent variable. In multidimensional clustering, on the other hand,
one obtains a single model with multiple latent variables. Relationships among
latent variables are determined in multidimensional clustering, but not multiple
unidimensional clusterings.

1.3. Cluster Analysis of Categorical Data
While much of recent machine learning research focuses on text, image,

and biology data, this paper is targeted at traditional survey-like categorical
data, with dozens to over one hundred attributes and hundreds to thousands
of records. Analysis of such data is interesting to psychology, social sciences,
education, and marketing research.

LCMs and their variants are commonly used to analyze categorical data.
Technically, an LCM is a Bayesian network (Pearl, 1988) with one discrete latent
variable and a number of discrete manifest variables. The manifest variables are
assumed to be mutually independent given the latent variable. It is the same as
the Näıve Bayes model, except that the class variable is hidden. The analysis
of data using LCMs is known as latent class analysis. Performing latent class
analysis on a data set means to:

• Determine the cardinality (i.e., the number of states) of the unique latent
variable, or the number of clusters;

• Estimate model parameters, or determine the statistical properties of the
clusters.

The first item is the model selection problem. In the latent class analysis lit-
erature, it is determined using goodness-of-fit tests (Uebersax, 2008) or model
selection criteria such as the BIC score (Schwarz, 1978). Model parameters are
usually estimated using the EM algorithm (Dempster et al., 1997).

In this paper, we study the use of a generalization of LCMs, called latent
tree models (LTMs), in cluster analysis of categorical data. An LTM is a tree
structured Bayesian networks where leaf nodes represent manifest variables and
internal nodes represent latent variables. All variables are discrete. The analysis
of data using LTMs will be referred to as latent tree analysis. While latent class
analysis results in unidimensional clusterings, latent tree analysis can produce
multidimensional clusterings. Performing latent tree analysis on a data set
means to:

1. Determine the number of latent variables, or the number of ways to par-
tition data;

2. Determine the cardinality of each latent variable, or the number of clusters
in each partition;

3. Determine the connections between the latent variables and the manifest
variables and among the latent variables themselves; and

4. Estimate model parameters.
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The first three items make up the model selection problem. In this paper, we
use the BIC score for model selection. The reasons will be explained in Section
2.1. For parameter estimation, we use the EM algorithm.

In the LTM resulted from latent tree analysis, there are usually multiple
latent variables. Each latent variable might be mainly related to only a subset
of attributes and different latent variables might be related to different subsets.
So, the results are multiple partitions of data based on potentially overlapping
subsets of attributes. The relationships among the different partitions (latent
variables) are also determined.

1.4. Contributions and Organization
The idea of using LTM for multidimensional clustering was first proposed

by Zhang (2004), where LTMs were called hierarchical latent class models. An
algorithm for learning LTMs from data was also proposed there. The algorithm
hill-climbs in the space of LTMs guided by a scoring function. It starts with an
LCM. At each step of search, it first generates a number of candidate structures
by modifying the structure of the current model. It then optimizes cardinali-
ties of latent variables, resulting in candidate models. Finally, it evaluates the
candidate models and picks the best one to seed the next step of search. Search
terminates when the best candidate model is no better than the current model.
To optimize the cardinalities of the latent variables in a model structure, the
algorithm employs another hill-climbing routine. Hence we call it the double
hill-climbing (DHC) algorithm.

Empirical evaluation has shown that the DHC algorithm performs well in
terms of model quality when coupled with the BIC score (Zhang, 2004). How-
ever, it has a serious drawback, namely its high complexity. Let n and l be the
numbers of observed and latent variables, r be the maximum number of neigh-
bors a node can have, and k be the maximum cardinality for a latent variable.
At each step of search, DHC needs to evaluate O((lr2 + ln)lk2) candidate mod-
els. Due to the presence of latent variables, parameter optimization requires
the EM algorithm, which is known to be computationally expensive. DHC is so
inefficient that it is unable to deal with data sets with more than half a dozen
attributes.

We make two contributions in this paper. First, we propose a new search-
based algorithm, called EAST, for learning LTMs (Section 3). EAST adopts
a heuristic search strategy known as grow-restructure-thin, which originated
from the literature on learning Bayesian networks without latent variables (e.g.,
Chickering, 2002). At each step, it examines O(max{lr2, ln)}) candidate mod-
els and runs what we call local EM (instead of full EM) when evaluating the
candidate models. Consequently, EAST is much more efficient than DHC. To
be specific, it is able to deal with data sets with more than 100 attributes. This
enables one to perform multidimensional cluster analysis on real-world survey-
like categorical data from psychology, social sciences, education, and marketing
research.

Second, we show empirically that: (1) complex data often can be clustered
meaningfully in multiple ways, and (2) latent tree analysis with the EAST al-
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Figure 1: Rooted latent tree model, root walking, and unrooted latent tree model. The X’s
are manifest variables and the Y ’s are latent variables.

gorithm can obtain rich and interesting clustering results from complex data
(Section 4). This second point is the most important contribution of this paper.
We also compare latent tree analysis with other methods that produce multiple
partitions, as well as latent class analysis, first on real-world unlabeled data
(Section 5) and then on synthetic and real-world labeled data (Section 6).

We begin in Section 2 with a brief review of basic concepts and facts about
LTMs. Related works are discussed in Section 7 and conclusions are given
Section 8.

2. Basics of LTMs

Figure 1 (a) shows the structure of an LTM. The leaf nodes X1–X7 represent
manifest variables, while the internal nodes Y1–Y3 represent latent variables. In
this paper, we use the terms ‘node’ and ‘variable’ interchangeably. All the
variables are categorical, each taking a finite number of values.

In an LTM, each node Z is associated with a conditional distribution
P (Z|pa(Z)) that characterizes how Z depends on its parent pa(Z). If Z is
the root, then it has no parent and is associated with a marginal distribution
P (Z). All the probabilistic distributions make up the parameters of the LTM.
We denote the collection of all parameters by θ. The rest of the LTM is denoted
by m. It consists of the variables, the cardinalities of the variables, and the
model structure. We sometimes write an LTM as a pair M = (m, θ) and refer
to the first component m also as an LTM.

2.1. Learning LTMs
Suppose D is a collection of data over a set X of variables. There are

infinitely many possible LTMs with X as manifest nodes. For this paper, to
learn an LTM from data D means to find the LTM that is optimal according to
some scoring function. We choose to use the BIC score (Schwarz, 1978). The
BIC score of a model m is:

BIC(m|D) = max
θ

log P (D|m, θ)−d(m)
2

log N

= log P (D|m, θ∗)−d(m)
2

log N (1)
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where d(m) is dimension, i.e., the number of independent parameters of the
model, N is the sample size, and θ∗ is the maximum likelihood estimation (MLE)
of the parameters. The first term is known as the maximized log likelihood of
m. It measures how well model m fits the data D. The second term is a penalty
term for model complexity.

There are a number of other scoring functions. As a matter of fact, BIC
is one large sample approximation of the marginal likelihood (Schwarz, 1978).
There are other approximations. The Cheeseman-Stutz (CS) score (Cheeseman
and Stutz, 1996) tries to compensate for the error in the BIC approximation
using completed data. The BICe score (Geiger et al., 1996) tries to do the same
by replacing d(m) with the effective dimension of m. Other scoring functions
include holdout likelihood (Cowell et al., 1999), AIC (Akaike, 1974), MDL (Ris-
sanen, 1987), and normalized maximum likelihood (Rissanen, 1996). We choose
to work with BIC because it is frequently used by other researchers and it has
worked well in our previous research. It should be noted, however, that our
method can be coupled with other scoring functions as well.

2.2. Model Inclusion and Equivalence
Consider two LTMs m and m′ that share the same manifest variables X1,

X2, . . . , Xn. We say that m includes m′ if for any parameter value θ′ of m′,
there exists parameter value θ of m such that

P (X1, . . . , Xn|m, θ) = P (X1, . . . , Xn|m′, θ′).

When this is the case, m can represent any distributions over the manifest
variables that m′ can. As such, the maximized log likelihood of m is larger than
or equal to that of m′:

max
θ

log P (D|m, θ) ≥ max
θ′

log P (D|m′, θ′).

If m includes m′ and vice versa, we say that m and m′ are marginally equiva-
lent. Marginally equivalent models are equivalent if they have the same number
of independent parameters. It is impossible to distinguish between equivalent
models based on data if the BIC score, or any other penalized likelihood score
(Green, 1999), is used for model selection.

2.3. Root Walking and Unrooted LTMs
Let Y1 be the root of an LTM m. Suppose Y2 is a child of Y1 and it is also a

latent node. Define another LTM m′ by reversing the arrow Y1 → Y2. Variable
Y2 becomes the root in the new model. The operation is called root walking;
the root has walked from Y1 to Y2. The model m′ in Figure 1 (b) is the model
obtained by walking the root from Y1 to Y2 in model m.

It has been shown that root walking leads to equivalent models (Zhang,
2004). Therefore, the root and edge orientations of an LTM cannot be deter-
mined from data. We can only learn unrooted LTMs, that is, LTMs with all
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directions on the edges dropped. An example of an unrooted LTM is given in
Figure 1 (c).

An unrooted LTM represents an equivalent class of LTMs. Members of the
class are obtained by rooting the model at various latent nodes. Semantically
it is a Markov random field over an undirected tree. The external nodes are
observed while the interior nodes are latent. Model inclusion and equivalence
can be defined for unrooted LTMs in the same way as for rooted models. In
the rest of this paper, LTMs always mean unrooted LTMs unless it is explicitly
stated otherwise.

2.4. Regular LTMs
For a latent variable Y in an LTM, enumerate its neighbors as W1, W2, . . . ,

Wr. An LTM is regular if for any latent variable Y ,

|Y | ≤
∏r

i=1 |Wi|
maxr

i=1 |Wi| , (2)

and when Y has only two neighbors, strict inequality holds and one of the
neighbors must be a latent node.

For any irregular model m, there always exists a regular model m′ that
is marginally equivalent to m and has fewer independent parameters (Zhang,
2004). The model m′ can be obtained from m through the following regulariza-
tion process:

1. For each latent variable Y in m,

(a) If it violates inequality (2), reduce the cardinality of Y to
∏r

i=1
|Wi|

maxr
i=1 |Wi| .

(b) If it has only two neighbors with one being a latent node and it
violates the strict version of inequality (2), remove Y from m and
connect the two neighbors of Y .

2. Repeat Step 1 until no further changes.

The regular model m′ has a higher BIC score than m itself. Therefore, we
can restrict our attention to the space of regular models when searching for the
LTM with the highest BIC score. For a given set of manifest variables, there
are only finitely many regular LTMs (Zhang, 2004).

3. An Algorithm for Learning LTMs

In this section, we present a new algorithm for learning LTMs called EAST
(Chen et al., 2008). We start with the operators and the search procedure
(Section 3.1). Then, we discuss two issues that are critical to the performance of
EAST, namely efficient model evaluation (Section 3.2) and operation granularity
(Section 3.3).
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3.1. Search Operators and Search Procedure
EAST hill-climbs in the space of regular LTMs under the guidance of the

BIC score. It uses five search operators and it adopts a search strategy known as
grow-restructure-thin, which originated from the literature on learning Bayesian
networks without latent variables (e.g., Chickering, 2002).

3.1.1. Search Operators
The search operators are: state introduction (SI), node introduction (NI),

node relocation (NR), state deletion (SD), and node deletion (ND). We describe
them one by one in the following.

Given an LTM and a latent variable in the model, the state introduction (SI)
operator creates a new model by adding a state to the domain of the variable.
The state deletion (SD) operator does the opposite. Applying SI on a model
m results another model that includes m. Applying SD on a model m results
another model that is included by m.

Node introduction (NI) involves one latent node Y and two of its neighbors.
It creates a new model by introducing a new latent node Z to mediate between
Y and the two neighbors. The cardinality of Z is set to be the same as that of
Y . In the model m1 of Figure 2, introducing a new latent node Y3 to mediate Y1

and its neighbors X1 and X2 results in m2. Applying NI on a model m results
another model that includes m. For the sake of computational efficiency, we do
not consider introducing a new node to mediate Y and more than two of its
neighbors. This restriction will be compensated in search control.

Node deletion (ND) is the opposite of NI. It involves two neighboring latent
nodes Y and Z. It creates a new model by deleting Z and making all neighbors
of Z other than Y neighbors of Y . We refer to Y as the anchor variable of the
deletion and say that Z is deleted with respect to Y . In the model m2 of Figure
2, deleting Y3 with respect to Y1 leads us back to the model m1. Applying ND
on a model m results another model that is included by m if the node deleted
has more or the same number of states as the anchor node.

Node relocation (NR) involves a node W , one of its latent node neighbors Y
and another latent node Z. This creates a new model by relocating W to Z,
i.e., removing the link between W and Y and adding a link between W and Z.
In m2 of Figure 2, relocating X3 from Y1 to Y3 results in m3.

There are some boundary conditions on the search operators. The SD op-
erator cannot be applied to latent variables with only two possible states. The
NI and NR operators cannot be applied if they make some latent nodes leaves.
To ensure regularity, a regularization step is applied to every candidate model
right after its creation.

3.1.2. Brute-Force Search
Let m be an LTM. In the following we use NI(m), SI(m), NR(m), ND(m),

and SD(m) to respectively denote the sets of candidate models that one can
obtain by applying the five search operators on m. The models are sometimes
referred to as NI, SI, NR, ND, SD candidate models respectively. The union of
the five sets is denoted by ALL(m).
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Figure 2: The NI and NR operators. The model m2 is obtained from m1 by introducing a new
latent node Y3 to mediate between Y1 and two of its neighbors X1 and X2. The cardinality
of Y3 is set to be the same as that of Y1. The model m3 is obtained from m2 by relocating
X3 from Y1 to Y3.

Suppose we are given a data set D and an initial model m. Here is a brute-
force search algorithm for learning an LTM:

BF(m,D) :
Repeat forever

m1 ← arg maxm′∈ALL(m) BIC(m′|D).
If BIC(m1|D) ≤ BIC(m|D),

return m;
Else m ← m1.

Brute-force search is inefficient for two reasons. First, it evaluates a large
number of candidate models at each step. Let n, l, and r be the number
of manifest nodes, the number of latent nodes, and the maximum number of
neighbors that any latent node has in the current model respectively. The
numbers of candidate models that the five operators SI, SD, NI, ND and NR
generate are O(l), O(l), O(lr(r − 1)/2), O(lr) and O(l(l + n)) respectively. So
the brute-force algorithm evaluates a total number of O(l(2+r/2+r2/2+ l+n)
candidate models at each step. Most of the candidate models are generated by
the NI and NR operators.

Second, one needs to compute the maximized log likelihood of a candidate
model m′ in order to calculate its BIC score. This requires the EM algorithm
due to the presence of latent variables. EM is known to be time-consuming.

We will next describe a search procedure that generates fewer candidate
models than brute-force search. In Section 3.2, we will present an efficient way
to evaluate candidate models.

3.1.3. EAST Search
The five operators can be classified into three groups. The NI and SI opera-

tors produce candidate models that include the current model. They are hence
expansion operators. The ND and SD operators produce candidate models that
are included by the current model. They are hence simplification operators.
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EAST(m,D):
θ∗ ← EM(m,D).
Repeat forever

(m1, θ∗1 ) ← expand(m, θ∗,D).
(m2, θ∗2 ) ← adjust(m1, θ∗1 ,D).
(m3, θ∗3 ) ← simplify(m2, θ∗2 ,D).
If BIC(m3, θ∗3 |D) ≤ BIC(m, θ∗|D),

return (m, θ∗);
Else (m, θ∗) ← (m3, θ∗3 ).

expand(m, θ∗,D):
Repeat forever

(m1, θ∗1 ) ← pickModel-IR(NI(m) ∪ SI(m), m, θ∗).
If BIC(m1, θ∗1 |D) ≤ BIC(m, θ∗|D),

return (m, θ∗).
If m1 ∈ NI(m),

(m, θ∗) ← enhanceNI(m1, θ∗1 , m,D);
Else (m, θ∗) ← (m1, θ∗1 ).

adjust(m, θ∗,D) :
Repeat forever
(m1, θ∗1 ) ← pickModel(NR(m), m, θ∗).
If BIC(m1, θ∗1 |D) ≤ BIC(m, θ∗|D),
return (m, θ∗);

Else (m, θ∗) ← (m1, θ∗1 ).

simplify(m, θ∗,D) :
Repeat forever
(m1, θ∗1 ) ← pickModel(ND(m), m, θ∗).
If BIC(m1, θ∗1 |D) ≤ BIC(m, θ∗|D),
break;

Else (m, θ∗) ← (m1, θ∗1 ).
Repeat forever
(m1, θ∗1 ) ← pickModel(SD(m), m, θ∗).
If BIC(m1, θ∗1 |D) ≤ BIC(m, θ∗|D),
return (m, θ∗);

Else (m, θ∗) ← (m1, θ∗1 ).

Figure 3: The EAST algorithm. The subroutines pickModel and pickModel-IR will be given
in the next two subsections, while enhanceNI is described in the main text. A Java implemen-
tation of the algorithm is available at: http://www.cse.ust.hk/faculty/lzhang/ltm/index.htm.

NR does not alter nodes in the current model. It only changes the connections
between the nodes. Hence we call it an adjustment operator.

The EAST algorithm is given in Figure 3. In the algorithm, candidate
models are sometimes evaluated using sub-optimal parameter values. So, for
any parameter value θ of an LTM m, we define

BIC(m, θ|D) = log P (D|m, θ)−d(m)
2

log N.

Sometimes, parameters values must be optimized. This is done using the sub-
routine EM(m,D) that computes the MLE of the parameters of m from data
D.

EAST starts by optimizing the parameters of the initial model. Then, it
searches in three stages: expansion, adjustment and simplification. At each
stage, it uses only the operators from the corresponding group, instead of all
the operators. For example, it searches only with the expansion operators at
the expansion stage. If the model score is improved in any of the three stages,
the algorithm continues search by repeating the loop. This is why it is called
‘EAST’ — Expansion, Adjustment, Simplification until Termination.

At the expansion stage, EAST searches with the expansion operators until
the BIC score ceases to increase. To understand the intuition, recall that the
BIC score consists of a term that measures model fit and another term that
penalizes for model complexity. If we start with a model that fit data poorly,
which is usually the case, then improving model fit is the first priority. Model
fit can be improved by searching with the expansion operators (see Section 2.2).
This is exactly what EAST does at the expansion stage.

The pseudo code for the expansion stage contains two subroutines. The
subroutine pickModel-IR selects one model from all the candidate models gen-
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erated from m by the NI and SI operators. It is discussed in details in the next
two subsections.

The second subroutine enhanceNI is called after each application of the NI
operator. This is to compensate for the constraint imposed on NI. Consider the
model m1 in Figure 2. We can introduce a new latent node Y3 to mediate Y1

and two of its neighbors, say X1 and X2, and thereby obtain the model m2.
However, we are not allowed to introduce a latent node to mediate Y1 and more
than two of its neighbors, say X1, X2 and X3, and thereby obtain m3. As a
remedy we consider, after each application of the NI operator, enhancements to
the operation. As an example suppose we have just applied NI to m1 and have
obtained m2. What we do next is to consider relocating the other neighbors of
Y1 in m1, i.e. X3, X4, X5 and Y2, to the new latent variable Y3. If it turns out
to be beneficial to relocate X3 but not the other three nodes, then we obtain
the model m3.

In general, suppose we have just introduced a new node Z into the current
model m to mediate a latent node Y and two of its neighbors, and obtained a
candidate model m1. Let L be the list of all the other neighbors of Y in m. For
any W ∈ L, use m1:W→Z to denote the model obtained from m1 by relocating
W to Z. What we do next is to enhance the NI operation using this subroutine:

enhanceNI(m1, θ
∗
1 , m,D)

while L 6= ∅:
(m1:W1→Z , θ∗2) ← pickModel({m1:W→Z |W ∈ L}, m1, θ

∗
1).

If BIC(m1:W1→Z , θ∗2 |D) ≤ BIC(m1, θ
∗
1 |D), return (m1, θ

∗
1);

Else (m1, θ
∗
1) ← (m1:W1→Z , θ∗2), L ← L \ {W1}.

The subroutine pickModel selects and returns one model from a list of candidate
models. It will be given in the next subsection.

After model expansion ceases to increase the BIC score, EAST enters the
adjustment stage. At this stage, EAST repeatedly relocates nodes in the current
model using the NR operator until it is no longer beneficial to do so, and there
is no restriction on how far away a node can be relocated. Node relocation is
necessary because multiple latent nodes are usually introduced during model
expansion and two nodes that should be together might end up at different
parts of the model at the end of the expansion process.

The adjustment stage is followed by the simplification stage. At this stage
EAST first repeatedly applies ND to the current model until the BIC score ceases
to increase and then it does the same with SD. We choose not to consider ND
and SD simultaneously because that would be computationally more expensive
and it is not clear whether that would be helpful in avoiding the local maxima.

At each step in the expansion stage, EAST generates O(l + lr(r − 1)/2)
candidate models. At each step in the adjustment stage, EAST generates O(l(l+
n)) candidate models. The simplification stage consists of two substages. At
the first substage, EAST searches with the ND operator and generates O(lr)
candidate models at each step. At the second substage, EAST searches with
the SD operator and generates O(l) candidate models at each step. So EAST
generates fewer candidate models than the brute-force algorithm at each step
of search.
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Figure 4: A candidate model obtained by modifying the model in Figure 1. The two models
share the parameters for describing the distributions P (Y1), P (Y2|Y1), P (X1|Y2), P (X2|Y2),
P (X3|Y2), P (X4|Y1), P (Y3|Y1) and P (X5|Y3). On the other hand, the parameters for de-
scribing P (Y4|Y3), P (X6|Y4) and P (X7|Y4) are peculiar to the candidate model.

3.2. Efficient Model Evaluation
The pickModel subroutine is supposed to find, from a list of candidate

models, the model with the highest BIC score. A straightforward way to do
so is to calculate the BIC score of each candidate model and then pick the
best one. Calculating the BIC scores of a large number of models exactly is
computationally prohibitive. So, we propose to use approximations of the BIC
score for model selection. In this subsection, we present one approximation of
the BIC score that is easy to compute. The idea is to replace the likelihood
term with what we call restricted likelihood. We begin by discussing parameter
sharing between a candidate model and the current model.

3.2.1. Parameter Sharing among Models
Conceptually we work with unrooted LTMs. In implementation, however,

we represent unrooted models as rooted models. Rooted LTMs are Bayesian
networks and their parameters are defined without ambiguity. This makes it
easy to see how the parameter composition of a candidate model is related to
that of the current model.

Consider the model m in Figure 1. Let m′ be the model obtained from m by
introducing a new latent node Y4 to mediate Y3 and two of its neighbors X6 and
X7, as shown in Figure 4. If both m and m′ are represented as rooted models,
their parameters’ compositions are clear. The two models share parameters for
describing the distributions P (Y1), P (Y2|Y1), P (X1|Y2), P (X2|Y2), P (X3|Y2),
P (X4|Y1), P (Y3|Y1) and P (X5|Y3). On the other hand, the parameters for
describing P (Y4|Y3), P (X6|Y4) and P (X7|Y4) are peculiar to m′ while those for
describing P (X6|Y3) and P (X7|Y3) are peculiar to m.

We write the parameters of a candidate model m′ as a pair (θ′1, θ
′
2), where

θ′1 is the collection of parameters that m′ shares with the current model m. The
other parameters θ′2 are peculiar to m′ and are called new parameters of m′.
Similarly we write the parameters of the current model m as a pair (θ1, θ2),
where θ1 is the collection of parameters that m shares with m′. The parameters
in θ1 and θ′1 are the common parameters.
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One unrooted LTM can be represented by multiple rooted LTMs. In the
aforementioned example, if the representation of m′ is rooted at Y3 instead of
Y1, then we would have P (Y3) and P (Y1|Y3) instead of P (Y1) and P (Y3|Y1). The
parameters describing P (Y3) and P (Y1|Y3) would be peculiar to m′. However,
this is due to the choice of representation rather than search operation. Hence
those parameters are not genuinely new parameters. In implementation, one
needs to coordinate the representations of the current model and the candidate
models so as to avoid such fake new parameters.

3.2.2. Restricted Likelihood
Suppose we have the MLE θ∗ of the parameters of the current model m.

We write θ∗ as (θ∗1 , θ∗2) where θ∗1 and θ∗2 are the MLE of common parameters
and new parameters respectively. For a given value of θ′2, (m′, θ∗1 , θ′2) is a fully
specified Bayesian network. In this network, we can compute

P (D|m′, θ∗1 , θ′2) =
∏

d∈D
P (d|m′, θ∗1 , θ′2).

As a function of θ′2, this is referred to as the restricted likelihood function of
m′. The maximum restricted log likelihood, or simply the maximum RL, of the
candidate model m′ is defined to be

max
θ′2

log P (D|m′, θ∗1 , θ′2).

Replacing the likelihood term in the BIC score of m′ with its maximum RL, we
get the following approximate score:

BICRL(m′|D) = max
θ′2

log P (D|m′, θ∗1 , θ′2)−
d(m′)

2
log N. (3)

We propose that pickModel uses the BICRL score for model selection in-
stead of the BIC score. It should be noted that the idea of optimizing only
some parameters of a model while freezing others is used in, among others,
phylogenetic tree reconstruction (Guindon and Gascuel, 2003) and learning of
continuous Bayesian networks (Nachmana et al., 2004).

Next we describe an efficient method for approximately calculating the
BICRL score. The method is called local EM.

3.2.3. Local EM
Local EM works in the same way as EM except with the value of θ′1 fixed at

θ∗1 . It starts with an initial value δ
(0)
2 for θ′2 and iterates. After t− 1 iterations,

it obtains δ
(t−1)
2 . At iteration t, it completes the data D using the Bayesian

network (m′, θ∗1 , δ
(t−1)
2 ), calculates some sufficient statistics, and therefrom ob-

tains δ
(t)
2 . Suppose the parameters θ′2 of m′ describe distributions P (Zj |Wj)

14



(j = 1, . . . , ρ).1 The distributions P (Zj |Wj , δ
(t)
2 ) that make up δ

(t)
2 can be

obtained in two steps:

• E-Step: For each data case d ∈ D, make inference in the Bayesian network
(m′, θ∗1 , δ

(t−1)
2 ) to compute

P (Zj ,Wj |d,m′, θ∗1 , δ
(t−1)
2 ) (j = 1, . . . , ρ).

• M-Step: Obtain

P (Zj |Wj , δ
(t)
2 ) = f(Zj ,Wj)/

∑

Zj

f(Zj ,Wj) (j = 1, . . . , ρ)

where the sufficient statistic

f(Zj ,Wj) =
∑

d∈D
P (Zj ,Wj |d,m′, θ∗1 , δ

(t−1)
2 ).

Local EM converges. That is, the series of log likelihood {log P (D|m′, θ∗1 , δ
(t)
2 )|

t = 0, 1, . . .} increases monotonically with t and it is upper-bounded by 0.
Unlike local EM, standard EM optimizes all parameters. To avoid potential

confusions, we call it full EM. The M-step of a local EM is computationally
much cheaper than that of a full EM because a local EM updates fewer pa-
rameters. For the candidate model shown in Figure 4, we need to update only
the parameters that describe P (Y4|Y3), P (X6|Y4) and P (X7|Y4). Besides reduc-
tion in computation, this fact also implies that a local EM takes fewer steps to
converge than a full EM.

3.2.4. Avoiding Local Maxima
Like full EM, local EM might get stuck at local maxima. To avoid the local

maxima, we adopt the scheme proposed by Chickering and Heckerman (1997)
and call it the pyramid scheme. The idea is to randomly generate a number µ of
initial values for the new parameters θ′2, resulting in µ initial models. One local
EM iteration is run on all the models and afterwards the bottom µ/2 models
with the lowest log likelihood are discarded. Then two local EM iterations
are run on the remaining models and afterwards the bottom µ/4 models are
discarded. Then four local EM iterations are run on the remaining models,
and so on. The process continues until there is only one model. After that,
some more local EM iterations are run on the remaining model, until the total
number of iterations reaches a predetermined number ν. Therefore there are
two algorithmic parameters µ and ν.

Suppose m is the current model and θ∗ is the MLE of model parameters. m′

is a candidate model obtained from m. Use localEM(m, θ∗, m′, µ, ν) to denote

1When Zj is the root, Wj is to be regarded as a ‘vacuous’ variable and P (Zj |Wj) is simply
P (Zj).
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the procedure described in the previous paragraph. The output is an estimate
of the new parameters θ′2. Denote it by θ̄2. The pickModel subroutine evaluates
m′ using the following quantity:

BIC(m′, θ∗1 , θ̄2|D) = log P (D|m′, θ∗1 , θ̄2)−d(m′)
2

log N. (4)

Note that the BIC score given here is for a model m′ and a set of parameter
values θ∗1 and θ̄2 for the model. In contrast, the BIC score given by Equation
(1) is for a model only.

3.2.5. Two Stage Model Evaluation
Local EM is faster than full EM. To achieve further speedup, we propose

to divide model evaluation into two stages, a screening stage and an evaluation
stage. In the screening stage, we screen out most of the candidate models by
running local EM at a low setting, while in the evaluation stage we evaluate the
remaining models by running local EM at a high setting.

In local EM, the parameter µ controls the number of initial points and the
parameter ν controls the number of iterations. For the screening stage, we fix
the first parameter at 1 and we allow only the second parameter to vary. To
distinguish it from the corresponding parameter at the evaluation stage, we
denote it by νs.

Because local EM starting from only one initial point at the screening stage,
there is no effort to avoid local maxima at all. We argue that this does not
cause serious problems because there is an implicit local-maximum-avoidance
mechanism built in. A particular application of a search operator is called
a search operation. It corresponds to one candidate model. So, evaluation of
candidate models can also be viewed as evaluation of search operations. Suppose
local EM picks a poor initial point at one step when evaluating an operation
and consequently the operation is screened out. Chances are that the same
operation is also applicable at the next few steps. In that case local EM would
be called to evaluate the operation again and again, each time from a different
starting point. So in the end local EM is run from multiple starting points to
evaluate the operation. If the operation is a good one, there is high probability
for it to be picked at one of those steps.

3.2.6. The pickModel Subroutine
Finally, the pseudo code for pickModel is given in Figure 5. The inputs

consist of the current model m, the MLE of its parameters θ∗, and a list of
candidate models L. It first runs local EM at a low setting to screen out all
but k of the candidate models. Then, it runs local EM at a higher setting to
evaluate the remaining k models and picks the best one. Full EM is run on the
model selected model, and the model together with the MLE of its parameters
are returned. The optimal parameter values are needed when comparing the
picked candidate model with m and in subsequent calls to pickModel. EAST
calls pickModel (or pickModel-IR) once at each step of search and hence runs
full EM only once at each step of search.
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pickModel(L, m, θ∗):
For each m′ ∈ L,

run localEM(m, θ∗, m′, 1, νs) to estimate the new parameters of m′.
Prune from L all models except the k models

with highest BIC scores as given by (4).
For each m′ ∈ L,

run localEM(m, θ∗, m′, µ, ν) to estimate parameters of m′.
Let m1 be the model in L with the highest BIC score as given by (4).
θ∗1 ← EM(m1,D).
Return (m1, θ

∗
1).

Figure 5: The pickModel subroutine. There are four algorithmic parameters. The parameters
νs and k control the screening stage, while µ and ν control the evaluation stage.

3.3. Operation Granularity
At the expansion stage, EAST does not select models using the subroutine

pickModel. Rather it uses another subroutine called pickModel-IR. This is to
deal with the issue of operation granularity.

Operation granularity refers to the phenomenon where some operations might
increase the complexity of the current model much more than other operations.
As an example, consider the situation where there are 100 binary manifest vari-
ables. Suppose the search starts with the LCM with one binary latent node Y .
Applying the SI operator to the model would introduce 101 additional model
parameters, while applying the NI operator to the model would increase the
number of model parameters by only 2. The latter operation is clearly of much
finer-grain than the former.

Operation granularity might lead to local maxima. The reason is that, at
the early stage of search, SI operations are usually of larger grain than NI
operations and often have higher BIC scores. So, SI operations tend to be
applied early, which sometimes leads to fat latent variables, i.e., latent variables
with excessive numbers of states. Fat latent variables tend to attract excessive
numbers of neighbors. This makes it difficult for EAST to thin fat variables
despite of the SD operator. Local maxima are consequently produced. Please
refer to (Chen, 2009) for the details.

One might suggest that we deal with fat latent variables by introducing an
additional search operator that simultaneously reduces the number of states and
the number of neighbors of a latent variable. However, this would complicate
algorithm design and would increase the complexity of the search process. We
adopt a simple and effective strategy called the cost-effectiveness principle.

Let m be the current model and m′ be a candidate model. Define the
improvement ratio of m′ over m given data D to be

IR(m′, m|D) =
BIC(m′|D)−BIC(m|D)

d(m′)− d(m)
. (5)

It is the increase in model score per unit increase in model complexity. The
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cost-effectiveness principle stipulates that one chooses, among a list of candidate
models, the one with the highest improvement ratio.

The principle is applied only on candidate models generated by the SI and
NI operators. The other operators do not or do not necessarily increase model
complexity. Hence the term d(m′)− d(m) is or might be negative.

There is an interesting link between the cost-effectiveness principle and like-
lihood ratio test (LRT). Let θ∗ and θ′∗ be the MLE estimates of the parameters
of m and m′ respectively. Then we have,

IR(m′, m|D) =
log P (D|m′, θ′∗)− log P (D|m, θ∗)

d(m′)− d(m)
+

log N

2
.

The second term is constant with respect to m′. In the first term, the nominator
is the difference in log-likelihoods used in the LRT with m as the null model and
m′ as the alternative model. The denominator is the degrees of freedom for the
test. So, loosely speaking, the cost-effectiveness principle picks the candidate
model that gives the strongest evidence to reject the null model in LRT. 2

Like pickModel, pickModel-IR does not run full EM to optimize the pa-
rameters of the candidate models. Instead, it inherits the values of the old
parameters from the current model and runs local EM to optimize only the new
parameters. Let m be the current model and m′ be a candidate model obtained
from m. Suppose the MLE (θ∗1 , θ∗2) of the parameters m have been computed.
Let θ̄2 be the estimate of the new parameters of m′ obtained by local EM. The
subroutine pickModel-IR evaluates the candidate model m′ using the following
IR score:

IR(m′,m, θ∗1 , θ∗2 , θ̄2|D) =
BIC(m′, θ∗1 , θ̄2|D)−BIC(m, θ∗1 , θ∗2 |D)

d(m′)− d(m)
. (6)

The pseudo code of pickModel-IR is given in Figure 6. It is the same as
pickModel except IR scores, rather than BIC scores, are used to evaluate can-
didate models.

4. Multidimensional Clustering with LTMs

In this paper, we are interested in LTMs from the perspective of cluster
analysis. The idea is to analyze data using LTMs to obtain potentially multiple
latent variables. Each latent variable represents one way to partition the data.
Hence we get multiple partitions. In the previous section, we have developed an
algorithm for performing latent tree analysis (LTA). What remains is to answer
these important questions:

1. Can LTA find meaningful partitions?
2. Can LTA find more and better partitions than alternative methods?

2This link was pointed out by an anonymous reviewer.
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pickModel-IR(L, m):
For each m′ ∈ L,

run localEM(m, θ∗, m′, 1, νs) to estimate the new parameters of m′.
Prune from L all models except the k models

with highest IR scores as given by (6).
For each m′ ∈ L,

run localEM(m, θ∗, m′, µ, ν) to estimate parameters of m′.
Let m1 be the model in L with the highest IR score as given by (6).
θ∗1 ← EM(m1,D).
Return (m1, θ

∗
1).

Figure 6: The pickModel-IR subroutine.

Figure 7: The structure of the LTM obtained for the Coleman data. In the names of the
manifest variables, LG is a shorthand for ‘in leading group’ and AP is a shorthand for ‘against
principles’. The numbers of states for the latent variables are shown in parentheses. Edge
widths represent mutual information.

In this section, we answer the first question by showing the results that LTA
obtained on two real-world data sets. In the next two sections, we will compare
LTA with alternative methods. For convenience, we do not distinguish between
LTA and EAST, the algorithm used to perform LTA.

4.1. Two Data Sets
The first data set is known as the Coleman data. It is taken from the latent

class analysis (LCA) literature (Goodman, 1974; Hagenaars, 1988). The data set
summarizes responses of 3, 398 schoolboys, each of whom was asked to respond
to the following question and statement at two different points in time: (1) Are
you a member of the leading crowd? (2) If a fellow wants to be a part of the
leading crowd around here, he sometimes has to go against his principles. The
survey was carried out first in October 1957 and for a second time in May 1958.
So there are 4 binary manifest variables. We name them as LG57, AP57, LG58,
and AP58 respectively, where LG is a shorthand for ‘in leading group’ and AP
is a shorthand for ‘against principles’.

The second data set is known as the ICAC data. ICAC stands for the Inde-
pendent Commission Against Corruption, the anti-corruption agency of Hong
Kong. It conducts annual telephone survey to (a) obtain an updated reading of
public perception of and attitude towards the ICAC and the problem of corrup-
tion; and (b) identify any changes in public perception and attitude over time.
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Figure 8: The structure of the LTM obtained for the ICAC data. Abbreviations: C – Corrup-
tion, I – ICAC, Y – Year, Gov – Government, Bus – Business Sector. Meanings of manifest
variables: Tolerance-C-Gov means ‘tolerance towards corruption in the government’; C-City
means ‘level of corruption in the city’; C-NextY means ‘change in the level of corruption next
year’; I-Effectiveness means ‘effectiveness of ICAC’s work’; I-Powers means ‘ICAC powers’;
Confid-I means ‘confidence in ICAC’; etc.

The data set used in this paper is from the 2004 survey. After preprocessing,
the data set consists of 31 manifest variables and 1, 200 records.

We analyzed the two data sets using the EAST algorithm. The best LTM
obtained for the Coleman data is referred to as the Coleman LTM. The structure
of the model is shown in Figure 7. Its BIC score is −8539. The best model
obtained for the ICAC data is referred to as the ICAC LTM. Its BIC score is
−26097. The structure is shown in Figure 8. In both figures, the variables at
the bottom are the manifest variables. They are from the data. The variables
at the internal nodes, i.e., the Z and Y variables, are latent variables introduced
during data analysis.

4.2. Model Interpretation
EAST has obtained 2 latent variables Z1 and Z2 for the Coleman data, and

9 latent variables Y0-Y8 for the ICAC data. Each latent variable represents
one way to partition data. The next step is to determine the meanings of the
latent variables and the partitions that they represent. In other words, we need
to carry out model interpretation. Model interpretation is a task for domain
experts. As tool developers, we need to determine what information to show to
the experts so that they can appreciate model contents accurately.

4.2.1. Basics of Model Interpretation
A partition consists of a number of latent classes. To understand what the

partition is about, one naturally would want to examine how the latent classes
differ from each other. A latent class can be characterized by its class condi-
tional probability distributions (CCPDs), i.e., the distributions of the manifest
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AP57
AP58
LG57
LG58

P (Z0=s0)=.4

y n

.63 .37

.66 .36

.75 .25

.91 .09

P (Z0=s1)=.6

y n

.47 .53

.51 .49

.11 .89

.08 .92

P (Z1=s0)=.51

y n

.80 .20

.83 .17

.53 .47

.46 .54

P (Z1=s1)=.49

y n

.26 .74

.30 .70

.28 .72

.29 .71

Table 1: The CCPDs for the states of the latent variables in the Coleman LTM and the
probabilities of those states.

variables in the class. So, one can determine the meaning of a partition by
comparing the CCPDs of different classes.

Consider the latent variable Z0 in the Coleman LTM. It has two states,
which we denote as s0 and s1. The CCPDs of the two latent classes Z0 = s0 and
Z0 = s1 are given in Table 1 (first half). They differ mainly on the distributions
of LG57 and LG58. A boy in the class Z0 = s0 has high probability of regarding
himself as being in the leading group, while a boy in the class Z0 = s1 has low
probability of thinking the same. The differences on AP57 and AP58 are less
pronounced. To delineate those characteristics, we interpret Z0 = s0 as a class
of schoolboys who incline to believe themselves to be the leading crowd, while
Z0 = s1 as a class of schoolboys who incline to believe the opposite.

4.2.2. Interpretation of Complex Models
The number of CCPDs can be very large in complex models. Consider the

latent variable Y2 in the ICAC LTM. It has 4 states and there are 33 manifest
variables. So there are totally 132 CCPDs to examine in order to make sense of
the partition. This would be overwhelming for any domain expert.

Inspecting Information Curves: The key for solving the problem lies in the
following observation. To grasp the meaning of a partition, it is not necessary
to examine all the differences among the classes in the partition. It suffices to
first ask on which manifest variables the classes differ significantly, and then
examine how the classes differ on those manifest variables.

Let Y be a latent variable and X be a manifest variable. The mutual infor-
mation I(Y ; X) (Cover and Thomas, 1991) between the two variables can be
used to measure how much the classes in the Y partition differ on X. It is given
by:

I(Y ; X) =
∑

X,Y

P (X,Y ) log
P (X,Y )

P (X)P (Y )
,

where the summation is taken over all possible states of X and Y . The larger
the mutual information, the more the classes in the Y partition differ on X.

Suppose that we have computed the mutual information between Y and each
of the manifest variables, and we have sorted the manifest variables in decreasing
order of the mutual information. Let X1, X2, . . . , Xn be the manifest variables
in the sorted order. We depict the MI values I(Y ; X1), I(Y ; X2), . . . , I(Y ; Xn)
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Figure 9: The information curves of the latent variables Y2 and Y3 from the ICAC LTM.

in a coordinate system and connect them using lines. This results in the pairwise
information curve of Y .

The pairwise information curve of Y2 is shown in Figure 9. It shows that the
classes in the Y2 partition differ the most on the manifest variables ‘Income’,
‘Age’, ‘Education’ and ‘Sex’. The meaning of the Y2 partition is now clear. It
is a partition based primarily on those attributes.

The cumulative information curve of a latent variable Y depicts I(Y ;X1−Xi)
(i = 2, 3, . . . , n), the mutual information between Y and the first i manifest vari-
ables 3. The term I(Y ; X1−Xi) increases monotonically with i. It reaches the
maximum when i = n. The ratio I(Y ;X1−Xi)/I(Y ;X1−Xn) is the cumulative
information coverage of the first i manifest variables.

If the information coverage I(Y ;X1−Xi)/I(Y ;X1−Xn) = 1, then Y is con-
ditionally independent of Xi+1, . . . , Xn given the first i manifest variables. In
such a case, we can interpret Y based only on the first i manifest variables,
while ignoring all the others. In practice, it is still reasonable to do so when the
information coverage is close to 1.

The cumulative information curve of Y2 is also shown in in Figure 9. We
see that the information coverage of the first four attributes has reached 98%.
Those four attributes give demographic information. Hence we can interpret Y2

as a partition based on demographic information.

Comparing CCPDs: After inspecting the information curves of a latent vari-
able Y , one gets an idea about what the Y partition is about. The next step
is to examine the CCPDs of the latent classes in the partition and determine
what they mean. We illustrate this step with an example.

Y2 has 4 states s0, s1, s2, and s3. Their CCPDs are shown in Table 2. In
comparison with the other classes, the class Y2 = s0 has two characteristics:
First, it consists of only youngsters aged between 15 and 24. Second, the av-
erage income is significantly lower than those of the other classes. So Y2 = s0

3This is difficult to compute exactly when i is large. In such cases, we resort to the Monte
Carlo method (Rubinstein, 1981) and compute the MI values based on 10, 000 simulated
samples.
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Income
Age
Education
Sex

P (Y2 = s0) = .18
s0 s1 s2 s3 s4 s5 s6

.03 .76 .08 .09 .04 0 0
1 0 0 0 0
0 0 .08 .47 .19 .10 .16
.48 .52

P (Y2 = s1) = .24
s0 s1 s2 s3 s4 s5 s6

.41 .29 .24 .04 .02 0 0

.01 .08 .42 .36 .13

.05 .29 .35 .25 .05 0 .01
0 1

Income
Age
Education
Sex

P (Y2 = s2) = .33
s0 s1 s2 s3 s4 s5 s6

.03 0 .04 .10 .39 .29 .15

.04 .37 .38 .17 .04
0 0 0 .40 .10 .10 .40
.57 .43

P (Y2 = s3) = .25
s0 s1 s2 s3 s4 s5 s6

.08 .10 .15 .25 .34 .08 0

.01 .09 .26 .38 .26

.02 .25 .44 .23 .05 .01 0

.80 .20

States of the manifest variables
s0 s1 s2 s3 s4 s5 s6

Income none –4k 4–7k 7–10k 10–20k 20–40k 40k–
Age 15–24 25–34 35–44 45–54 55–
Education4 none primary f1-3 f4-5 f6-7 diploma degree
Sex m f

Table 2: The CCPDs for the states of Y2 and the probabilities of those states.

represents a class of low income youngsters. The class Y2 = s1 is special in that
it consists of only women. 41% of them do not have income. Those are probably
housewives. The average income for the rest is low. Hence Y2 = s1 represents
a class of women with no/low income. Between the remaining two classes, the
class Y2 = s2 has, on average, higher education and higher income level than
Y2 = s3. Hence Y2 = s2 represents a class of people with good education and
good income, while Y2 = s3 represents a class of people with poor education and
average income.

We now know how to do model interpretation. Next we set out to examine
the results LTA obtained on the Coleman and ICAC data.

4.3. Clustering Results Obtained by LTA on the Coleman Data
There are two latent variables Z0 and Z1 in the Coleman LTM model. So

LTA has partitioned the data along two different dimensions. In this subsection
we examine those partitions and show that they are meaningful.

4.3.1. Z0 and Its States
The information curves of Z0 are shown in Figure 10. We see that the

mutual information values between Z0 and AP57 and AP58 are almost 0, while
those between Z0 and LG57 and LG58 are relatively much larger. Moreover the
cumulative information coverage of LG57 and LG58 has reached 98%. Those

4Hong Kong adopts the British education system. High school consists of 7 years, from
Form 1 to Form 7. ‘f1-3’ means Form 1-3, which corresponds to junior high school in the
North American system. ‘f4-5’ means Form 4-5 and ‘f6-7’ means Form 6-7.
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Figure 10: The information curves of the latent variables from the Coleman LTM.

mean that the two latent classes Z0 = s0 and Z0 = s1 differ almost totally on
LG57 and LG58. Hence we can interpret Z0 as a partition of the schoolboy
population based on their views on their membership in the leading group.

We have already examined the CCPDs of the two classes Z0 = s0 and
Z0 = s1 in Section 4.2. The class Z0 = s0 was interpreted as a class of schoolboys
who incline to believe themselves to be the leading crowd, while Z0 = s1 as a class
of schoolboys who incline to believe the opposite.

4.3.2. Z1 and Its States
We next turn to the latent variable Z1. It has two states s0 and s1. The

information curves of Z1 are shown in Figure 10. We see that the mutual
information values between Z1 and AP57 and AP58 are much higher than those
between Z1 and LG57 and LG58. Moreover the cumulative information coverage
of AP57 and AP58 has reached 93%. Those mean that LG57 and LG58 exhibit
little additional differences between Z1 = s0 and Z1 = s1 beyond what are
already exhibited by AP57 and AP58. Hence we can interpret Z1 as a partition
of the schoolboy population primarily based on their views on the implications of
membership in the leading group.

The distributions of AP57 and AP58 in the two classes Z1 = s0 and Z1 = s1

are shown in the second half of Table 1 (Section 4.2.1). We see that a boy in
the class Z1 = s0 has high probability of thinking that being in the leading
crowd implies compromising one’s principles, while a boy in the class Z1 = s1

has low probability of thinking the same. To delineate those characteristics, we
interpret Z1 = s0 as a class of schoolboys who incline to believe that membership
in the leading crowd implies compromising one’s principles, while Z1 = s1 as a class
of schoolboys who incline to believe the opposite.

4.3.3. Relationship between Z0 and Z1

An interesting relationship between the two latent variables Z0 and Z1 has
also been revealed. Consider the conditional probability distribution P (Z1|Z0):

Z1 = s0 Z1 = s1

Z0 = s0 .68 .32

Z0 = s1 .39 .61
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Tolerance-C-Bus
Tolerance-C-Gov

P (Y3 = s0) = .57
s0 s1 s2 s3

1 0 0 0
.97 .03 0 0

P (Y3 = s1) = .27
s0 s1 s2 s3

.02 .89 .09 0

.54 .46 0 0

P (Y3 = s2) = .15
s0 s1 s2 s3

0 .05 .85 .10
.29 .19 .48 .04

Table 3: The CCPDs for the states of Y3 and the probabilities of those states. The states
of two manifest variables are: s0 (totally intolerable), s1 (intolerable), s2 (tolerable), and s3

(totally tolerable).

We see that a boy’s view on his membership in the leading crowd (Z0) greatly
influences his view on the implications of membership in the leading crowd (Z1).
The probability of believing that membership in the leading crowd implies com-
promising principles (Z1 = s0) is 68% for a boy believing himself to be in the
leading crowd (Z0 = s0), while it is only 39% for a school boy believing the
opposite (Z0 = s1). This is intuitively appealing.

4.4. Clustering Results Obtained by LTA on the ICAC Data
There are 9 latent variables in the ICAC LTM. In the following we look

at Y2, Y3, Y4, Y5, Y6 and Y7. We show that those latent variables represent
meaningful partitions of the data and that interesting relationships among them
have be revealed. Although several latent variables are skipped to save space,
the discussion is still quite long. The reader can jump to the next section at
any time.

4.4.1. Y3 and its states
We have examined Y2 and its states in Section 4.2.2. We now turn to Y3.

The information curves of Y3 are shown on the right of Figure 9 (Section 4.2.1).
The first two variables on the curves are about two aspects of people’s tolerance
towards corruption. Their culmulative information coverage has reached 99%. So
we interpret Y3 as representing a partition of the interviewee population based
on their tolerance towards corruption.

Y3 has three states s0, s1, and s2. Their CCPDs are given in Table 3. We see
that almost all the people in the class Y3 = s0 find corruption in the government
and in the business sector totally intolerable. All the people in the class Y3 = s1

find corruption in the government totally intolerable or intolerable, while 9% of
them find corruption in the business sector tolerable. Most people (85%+10%)
in the class Y3 = s2 find corruption in the business sector tolerable, while they
split roughly in the middle when it comes to corruption in the government. So
the three latent classes Y3 = s0, Y3 = s1, and Y3 = s2 can be respectively
interpreted as classes of people who find corruption totally intolerable, intolerable,
and tolerable. The classes consist of 57%, 27%, and 15% of the population
respectively.

The clusters of Y3 present an interesting picture about people’s tolerance
towards corruption. We see that among all the people who find corruption in-
tolerable (Y3 = s1), 54% find corruption in the government totally intolerable
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while that number drops to merely 2% when it comes to corruption in the busi-
ness sector. Among all the people who find corruption tolerable (Y3 = s2), 48%
(29%+19%) find corruption in the government totally intolerable or intolerable
while that number drops to merely 5% when it comes to corruption in the busi-
ness sector. However, people who find corruption totally intolerable (Y3 = s0) have
more or less the same attitude towards both corruption in the government and
corruption in the business sector. Those suggest that people who are tough on
corruption are equally tough towards corruption in the government and corrup-
tion in the business sector, and that people who are lenient towards corruption
are more lenient towards corruption in the business sector than corruption in
the government.

4.4.2. Relationship between Y2 and Y3

LTA has obtained some interesting findings about how demographics influ-
ence people’s attitude towards corruption. Consider the conditional probability
distribution P (Y3|Y2):

Y3 = s0 Y3 = s1 Y3 = s2

Y2 = s0 .43 .44 .13

Y2 = s1 .69 .15 .16

Y2 = s2 .60 .36 .04

Y2 = s3 .52 .16 .32

We see that Y2 = s2 (people with good education and good income) is the class
with the least tolerance towards corruption: 96% (60% + 36%) of the people in
the class find corruption totally intolerable or intolerable (Y3 = s0 or s1). On the
other hand, Y2 = s3 (people with poor education and average income) is the class
with the most tolerance towards corruption: 32% of the people in the class find
corruption tolerable (Y3 = s2). The other two classes, Y2 = s0 (youngsters with
low income) and Y2 = s1 (women with no/low income) are in the middle, with
the latter being slightly more tolerant.

So, the results indicate the people with good education and good income are
intolerant towards corruption, while people with poor education and average
income sometimes find corruption acceptable. This is intuitively appealing and
can be a hypothesis for social scientist to verify further.

4.4.3. Y4 and Its States
The information curves of Y4 are shown in Figure 11. We see that the man-

ifest variables that are most informative of Y4 are I-Effectiveness, I-Deterrence,
and I-EncourageReport in that order. These three variables reflect different
aspects of people’s view on ICAC’s performance. Their cumulative information
coverage is around 81%. So Y4 can be viewed as a partition primarily based on
people’s view on ICAC’s performance.

Y4 has three states s0, s1, and s2. Their CCPDs are shown in Table 4. We
see that, first, 100% (37% + 63%) of the people in Y4 = s0 think that ICAC’s
anti-corruption work is very effective or effective; 21% of the people in Y4 = s1

disagree; and that number increases to 75% (68% + 6% + 1%) for Y4 = s2,
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Figure 11: The information curves of the latent variables Y4 and Y5.

I-Effectiveness
I-Deterrence

I-EncourageReport

P (Y4 = s0) = .21
s0 s1 s2 s3 s4

.37 .63 0 0 0

.17 .61 .15 .07 0

.23 .70 .02 .05 0

P (Y4 = s1) = .53
s0 s1 s2 s3 s4

.03 .76 .21 0 0

.01 .60 .37 .02 0
0 .49 .43 .08 0

P (Y4 = s2) = .27
s0 s1 s2 s3 s4

0 .25 .68 .06 .01
0 .07 .58 .31 .04

.03 .16 .48 .29 .04

Table 4: The CCPDs for the latent states of Y4 and the probabilities of those classes. The
states of I-Effectiveness are: s0 (very effective), s1 (effective), s2 (average), s3 (ineffective),
and s4 (very ineffective). The states of I-Deterrence and I-EncourageReport are: s0 (very
sufficient), s1 (sufficient), s2 (average), s3 (insufficient), and s4 (very insufficient).

where 7% of the people think that ICAC’s anti-corruption is ineffective or very
ineffectively. Second, 78% (17% + 61%) of the people in Y4 = s0 think that the
deterrence that ICAC has against corruption is very sufficient or sufficient; that
number drops to 61% (1%+60%) in Y4 = s1, and further drops to 7% in Y4 = s2,
where 35% (31% + 4%) of the people think that the deterrence is insufficient or
very insufficient. Third, 93% (23% + 70%) of the people in Y4 = s0 think that
ICAC’s encouragement for reporting corruption is very sufficient or sufficient;
that number drops to 49% in Y4 = s1, and further drops to 19% (3% + 16%)
in Y4 = s2, where 33% (29% + 4%) of the people think that the encouragement
is insufficient or very insufficient. So the three latent classes Y4 = s0, Y4 = s1

and Y4 = s2 can be respectively interpreted as classes of people who find ICAC’s
performance very good, good or average.

4.4.4. Y5 and Its States
The information curves of Y5 are shown on the right of Figure 11. The first

two variables on the curves, C-NextY and C-PastY, are about different aspects
of people’s view on the change in corruption scene. We choose to interpret Y5

and its states based on those two manifest variables. The information coverage
is 93%.
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C-NextY
C-PastY

P (Y5 = s0) = .19

s0 s1 s2

.89 0 .11

.83 0 .17

P (Y5 = s1) = .24

s0 s1 s2

.05 .81 .14

.06 .48 .46

P (Y5 = s2) = .57

s0 s1 s2

.09 .01 .90

.10 .07 .83

Table 5: The CCPDs for the states of Y5 and the probabilities of those states. The states
of C-NextY are: s0 (increase), s1 (decrease), and s2 (same). The states C-PastY are: s0

(increased), s1 (decreased), and s2 (same).

Y5 has three states s0, s1, and s2. Their CCPDs are given in Table 5. The
differences among the three latent classes are clear. All the people in the class
Y5 = s0 think that the level of corruption has increased (83%) or remained the
same (17%) in the past year, and the level will increase (89%) or remain the
same (11%) next year. On the other hand, most people in the class Y5 = s1 think
that the level of corruption has decreased (48%) or remained the same (46%) in
the past year, and the level will decrease (81%) or remain the same (14%) next
year. The majority of people in Y5 = s2 think that the level of corruption has
remained the same in the past year (83%) and will remain the same in the next
year (90%). So we interpret Y5 as a partition of the population based on their
views on the change in corruption scene. The three states Y5 = s0, Y5 = s1, and
Y5 = s2 are respectively interpreted as classes of people who believe the change
in corruption scene is negative, positive, and flat. The classes consist of 19%,
24%, and 57% of the population, respectively.

4.4.5. Relationship between Y4 and Y5

It is interesting to examine the conditional probability distribution P (Y5|Y4):

Y5 = s0 Y5 = s1 Y5 = s2

Y4 = s0 .09 .42 .49

Y4 = s1 .09 .24 .67

Y4 = s2 .47 .09 .44

It shows how people’s view on ICAC’s performance influences their view on the
change in corruption scene. We see that people who think ICAC’s performance
is very good (Y4 = s0) have 91% (42% + 49%) chance of believing that the
change in corruption is positive (Y5 = s1) or flat (Y5 = s2). The same is true
for people who think ICAC’s performance is good (Y4 = s1), except that people
in this class have lower probability (24%) of believing in a positive change. On
the other hand, people who think ICAC’s performance is average (Y4 = s2) have
47% chance of believing that the change in corruption is negative (Y5 = s0).

4.4.6. Y6 and Its States
The information curves of Y6 are shown on the left of Figure 12. The three

manifest variables that appear on the curves are about different aspects of cor-
ruption scene. We choose to interpret Y6 and its states based on those manifest
variables. The information coverage is 100%.
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Figure 12: The information curves of the latent variables Y6 and Y7.

C-City
C-Gov
C-Bus

P (Y6 = s0) = .31

s0 s1 s2 s3

.08 .91 .01 0

.06 .49 .44 .01

.10 .80 .10 .01

P (Y6 = s1) = .65

s0 s1 s2 s3

0 0 .99 .01
0 .03 .93 .04

.01 .28 .70 .01

P (Y6 = s2) = .04

s0 s1 s2 s3

0 0 .23 .77
0 0 0 1
0 .12 .56 .32

Table 6: The CCPDs for the states of Y6 and the probabilities of those states. The states
of C-City, C-Gov, and C-Bus are: s0 (very common), s1 (common), s2 (uncommon), and s3

(very uncommon).

Y6 has three states s0, s1, and s2. Their CCPDs are shown in Table 6.
We see that 99% (8% + 91%) of the people in the class Y6 = s0 think that
corruption in the city is very common or common, and 90% (10%+80%) of the
people feel the same way about corruption in the business sector; the percentage
drops to 55% (6% + 49%) when it comes to corruption in the government, with
the other 45% think the opposite. More than 90% of the people in the class
Y6 = s1 think that corruption in the city and the government is uncommon; that
percentage drops to 70% when it comes to corruption in the business sector, and
29% (1% + 28%) of the people in the class actually think that corruption in the
business sector is very common or common. All the people in the class Y6 = s2

think that corruption in the government is very uncommon; 77% of the people
in the class feel the same way about corruption in the city, while the other 23%
is less extreme and think that corruption in the city is uncommon; the class
spreads wide when it comes to corruption in the business sector: 32% of the
people think that it is very uncommon, 56% think that it is uncommon, while
12% think that it is common. So we interpret Y6 as a partition of the population
based on their view on corruption scene. The three states Y6 = s0, Y6 = s1, and
Y6 = s2 are respectively interpreted as classes of people who think corruption
is common, uncommon, and very uncommon. The classes consist of 31%, 65%,
and 4% of the population, respectively.

It is clear from the above discussions that people are the most positive about
the level of corruption in the government and are the most negative about the
level of corruption in the business sector.
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I-Impartiality
I-PowerAbused

I-Powers
I-Confidentiality

I-Supervised

P (Y7 = s0) = .77

s0 s1 s2

.97 .03

.11 .89

.02 .06 .92

.99 .01

.73 .27

P (Y7 = s1) = .23

s0 s1 s2

.45 .55

.62 .38

.21 .21 .58

.89 .11

.48 .52

Table 7: The CCPDs for the states of Y7 and the probabilities of those states. The states of
I-Impartiality, I-PowerAbused, I-Confidentiality, and I-Supervised are: s0 (yes) and s1 (no).
The states of I-Powers are: s0 (too large), s1 (too small), and s2 (appropriate).

4.4.7. Relationship between Y4 and Y6

It is also interesting to examine the conditional probability distribution
P (Y4|Y6):

Y4 = s0 Y4 = s1 Y4=s2

Y6 = s0 .17 .36 .47

Y6 = s1 .21 .61 .18

Y6 = s2 .39 .61 0

The distribution shows how the view on ICAC’s performance (Y4) is related to the
view on corruption scene (Y6). We see that 47% of the people who think corruption
is common (Y6 = s0) do not think highly of ICAC’s performance (Y4 = s2). One
the other hand, all the people who think corruption is very uncommon (Y6 = s2)
think that ICAC’s performance is good or very good (Y4 = s1 or s0).

4.4.8. Y7 and Its States
The information curves of Y7 are shown on the right of Figure 12. The leading

variables on the curve I-Impartiality, I-PowerAbused, I-Powers, I-Confidentiality,
and I-Supervised are about different aspects of ICAC’s accountability. We choose
to interpret Y7 and its states based on those manifest variables. The information
coverage is 82%.

Y7 has two states s0 and s1. Their CCPDs are given in Table 7. We see
that almost all the people in the class Y7 = s0 think that ICAC is impartial in
its investigations (97%) and keeps reports received confidential (99%); 73% of
the people in the class believe that ICAC is externally supervised; 89% of them
think that ICAC has not abused its powers and 92% of them think that ICAC’s
powers are appropriate. As for Y7 = s1, 89% of the people in the class also think
that ICAC keeps reports confidential. However, the class splits more or less in
the middle on the other four questions. So we interpret Y7 as a partition of the
population based on the view on the accountability of ICAC. The states Y7 = s0

and Y7 = s1 are interpreted respectively as classes of people who think ICAC is
accountable and who think ICAC is more or less accountable. The classes consist
of 77% and 23% of the population, respectively.
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5. Comparisons with Related Methods on Unlabeled Data

The problem to cluster data in multiple ways was first raised by Zhang
(2004). Latent tree analysis (LTA) is one approach to solve the problem. Other
methods have recently been proposed. In this section we compare LTA with
those other methods on the Coleman and ICAC data. In the next section
we will compare them on a collection of labeled data. Latent class analysis
(LCA) does not produce multiple clusterings. We include it in the comparisons
nonetheless because LTA is a generalization of LCA.

5.1. The Other Methods
Among the other methods that produce multiple clusterings, we choose the

following three to compare with LTA: orthogonal projection (OP) (Cui et al.,
2007), de-correlated K-means (DK) (Jain et al., 2008) and singular alternative
clustering (SAC) (Qi and Davidson, 2009). Those are the methods that we were
able to obtain implementations for or implement ourselves. Unlike LTA, they are
all distance-based. OP and SAC start by obtaining a first partition of data using,
e.g., the K-means algorithm. They then try to discover a new partition that is
different from the first partition. The key issue is how to ensure the novelty of
the new partition. One can repeatedly apply the methods to obtain multiple
partitions. DK produces multiple partitions simultaneously (Jain et al., 2008).
It requires as inputs the number of partitions and the number of clusters in
each partition. It tries to optimize the quality of each individual partition while
keeping different partitions as dissimilar as possible. The published version of
the algorithm can obtain only two different partitions, although generalization
to multiple partitions is possible. In our experiments, it was used to produce
only two partitions.

5.2. Comparisons on the Coleman Data
In view of the results presented in Section 4.3, we have run OP, SAC and

DK on the Coleman data to obtain two partitions, each with two clusters. The
algorithms have some parameters to set. We used the settings suggested by the
authors. The first step of OP and SAC is to run K-means. It is well-known
that K-means might yield different results in different runs. So, we ran it for
10 times and picked the one with the smallest sum-squared error as the first
partition. Then we applied OP and SAC to obtain the second partition. DK
was also ran 10 times. The solution that optimizes the objective function of DK
was picked as the final solution.

The information curves of the resulting partitions are shown in Figure 13. We
see that the partitions DK1, OP1 and SAC1 are based on the two LG variables.
Their information curves are similar to those of the partition Z0 found by LTA
(Section 4.3). The CCPDs are also similar. However, the partitions DK2, OP2
and SAC2 are quite different from the partition Z1 found by LTA. While Z1

is based on the two AP variables, DK2 is based on the two LG variables, and
OP2 and SAC2 rely almost solely on AP57. According to the discussions in
Section 4.3, the partition Z0 is natural and meaningful. Hence so are DK1,
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Figure 13: The information curves of the partitions obtained by DK, OP, SAC and LCA on
the Coleman data.

OP1 and SAC1. On the other hand, the partitions DK2, OP2 and SAC2 are
not so meaningful.

We also performed LCA on the Coleman data. As a result, we obtained
a latent variable Zlc with 4 states, or one partition with 4 clusters. From
its information curves shown in Figure 13, we see that Zlc is closely related
to both the two LG variables and the two AP variables. An examination of
their CCPDs reveals that the partition Zlc closely resembles the joint partition
one can obtain by combining Z0 and Z1. So, the partition Zlc is meaningful.
However, we would say that LTA has been more revealing than LCA. This is
because LTA has explicitly identified two aspects of the data and explicated the
relationship between those two aspects. Further effort would be required if one
is to uncover such information from Zlc.

5.3. Comparisons on the ICAC Data
As shown in Section 4.4, LTA has produced rich and meaningful clustering

results on the ICAC data. We have not been able to obtain similar results
with DK, OP and SAC. As a matter of fact, those three methods have a severe
drawback in comparison with LTA: They require the user to specify the number
of partitions and the number of clusters in each partition. This is very difficult
to do for complex data sets such as the ICAC data.

We used the three alternative methods to find two partitions from the ICAC
data, and we tried a few options for the number of clusters. The information
curves of some of the partitions are given in Figure 14. None of them seem
meaningful. Take DK1 as an example. The first two variables on the curves are
demographic information. But their information coverage is very low (around
30%). As such, DK1 is not a partition based on demographic information.
The other variables on the curves are about other things. So, we do not find
DK1 meaningful. The situation is similar for the other partitions shown in the
figure and those not shown in the figure. For OP and SAC, we obtained several
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Figure 14: The information curves of the partitions obtained by DK, OP, SAC and LCA on
the ICAC data.

more partitions starting from the second one. None of them turned out to be
meaningful either.

LCA was also run on the ICAC data. The information curves of the only
partition Ylc obtained are shown at the lower-right corner of Figure 14. The
first three variables on the curves are demographic information. However their
information coverage is only 57%. So we cannot interpret Ylc as representing
a partition based on demographic information. The subsequent variables are
about different things. So we do not find the partition particularly meaningful.

6. Comparisons with Related Methods on Labeled Data

In this section, we compare LTA with related methods on synthetic and
real-world labeled data.

6.1. The Evaluation Criterion
In the past, researchers have mostly been concerned with clustering algo-

rithms that produce a single partition. A common way to evaluate such an
algorithm is to start with labeled data, remove the class labels, perform clus-
ter analysis, and compare the partition obtained with the partition induced by
the class labels. We refer to those two partitions as the cluster partition and
the class partition respectively, and denote them by Y and C. The quality of
the cluster partition is often measured using the normalized mutual information
NMI(Y ;C) between the two partitions (Zhong and Ghosh, 2003). It is given
by

NMI(C;Y ) =
I(C;Y )√
H(C)H(Y )

,
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Figure 15: The generative model for synthetic data.

where I(C; Y ) is the mutual information between C and Y and H(.) stands for
entropy (Cover and Thomas, 1991). These quantities can be computed from the
empirical joint distribution P (C, Y ) of Y and C. For distance-based methods,
Y is a hard partition and P (Y,C) can be obtained in a straightforward fashion.
For model-based methods, Y is a latent variable or a soft partition. P (Y, C)
is calculated using P (C, Y ) = 1

N

∑N
k=1 P (C|dk)P (Y |dk), where d1,d2, . . . ,dN

are the data cases. NMI ranges from 0 to 1, with a higher value meaning a
closer match between Y and C.

This paper is concerned with clustering algorithms that produce multiple
partitions. In this context, we generally have multiple class partitions and
multiple cluster partitions. How should the evaluation be carried out? Following
the literature (Jain et al., 2008), we match each class partition up with the
cluster partition with which it has the highest NMI and report the NMI values
of the matched pairs. This means that if one of the cluster partitions closely
resembles a class partition, then we claim that the class partition has been
recovered from unlabeled data.

6.2. Results on Synthetic Data
The synthetic data in our experiments were generated from the model shown

in Figure 15, where X1-X15 are manifest variables and Y1 − Y3 are latent vari-
ables. All variables are binary. A total number of 1,000 data cases were sampled.
The values of the three latent variables were used as the class labels. So there
are 3 class partitions. In the experiments, the class labels were first removed
and the resulting unlabeled data were analyzed using various methods.

Different methods produced different numbers of cluster partitions. For LTA,
the number of cluster partitions was not specified. The method automatically
produced 3 cluster partitions. For OP and SAC, we first ran K-means to obtain
a first cluster partition and then applied them twice to obtain two other cluster
partitions. So, 3 cluster partitions were obtained in each case. For DK only
2 cluster partitions were obtained, and for LCA only 1 cluster partition was
obtained.

To see how well the different methods have recovered the class partitions,
we match each class partition with the cluster partition with which it has the
highest NMI. The NMI values of the matched pairs are given in the following
table. The results were obtained over 10 runs.

DK SAC OP LCA LTA
Y1 .78±.00 .73±.04 .73±.02 .65±.00 .91±.00
Y2 .48±.00 .57±.04 .55±.04 .61±.00 .86±.00
Y3 .97±.00 .59±.49 .91±.20 .48±.00 .98±.00
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The NMI values are the highest for LTA, indicating that the method has recov-
ered the three true class partitions well. On the other hand, the NMI values for
the other methods are relatively lower, indicating that they have not been able
to recover the true class partitions as well as LTA.

6.3. Results on Real-World Data
To get real-world labeled data for our experiments, we started with all the

data sets used by Friedman et al. (1997) and recommended by Weka (Witten
and Frank, 2005). A few other data sets were added. Continuous data were
discretized using the method by Fayyad and Irani (1993). The methods DK,
OP and SAC cannot handle missing values. So, all data cases with missing
values were removed from the data sets. A number of data sets became very
small after this step and were consequently discarded. At the end, we got 36 data
sets. The data are from various domains such as medical diagnosis, handwriting
recognition, Biology, Chemistry, etc. The number of attributes ranges from 4 to
69; the number of classes ranges from 2 to 26; and the sample size ranges from
57 to 20,000.

The 36 data sets are all singly labeled. Each data set has only one class par-
tition. The class labels were first removed, and then different methods were used
to recover the class partition from the resulting unlabeled data. Here, DK, OP
and SAC were instructed to find two partitions, and the number of clusters was
set to be the number of classes in the class partition. For LTA, the numbers of
partitions and clusters were determined automatically. As always, LCA yielded
only one partition. The number of clusters was determined automatically.

The NMI between the class partitions and the cluster partitions obtained
by various methods are given in Table 8. The values were computed from the
results of 10 runs. For each data set, the best results is highlighted in bold face.
It is clear that LTA beats SAC, OP and LCA on most of the data sets. LTA
beats DK on 4/7 of the data sets, but loses on the other 3/7 data sets.

6.4. A Caveat with the Use of Labeled Data
When it come to the evaluation of multidimensional clustering, case studies

on unlabeled data (such as those given in the previous two sections) are more
important than indices calculated against labeled data. There are two reasons.
First, when we evaluate a clustering method using labeled data, we are asking
whether it can recover some known class partitions. If it can, then we can
conclude that the method is indeed capable of finding meaningful partitions.
If it cannot, however, we cannot conclude the opposite. In fact, the premise
of multidimensional clustering is that data can be meaningfully clustered in
multiple ways. The known class partitions might be only some of the ways.
There might be others, especially when only one class partition is given. To
properly determine whether a method can produce meaningful clusterings, all
its results should be examined by domain experts.

Second, although the evaluation criterion used in this section is natural and
the only criterion used in the literature, it has one drawback. It can give good
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DK SAC OP LTA LCA
australian .35±.00 .30±.01 .30±.00 .39±.00 .16±.00

breast-cancer .08±.00 .04±.04 .08±.00 .09±.00 .09±.00
credit-a .23±.01 .24±.01 .24±.01 .42±.01 .12±.02
diabetes .09±.02 .08±.00 .09±.02 .16±.00 .12±.00

heart-statlog .35±.01 .33±.01 .33±.01 .39±.00 .30±.00
flare .06±.02 .06±.02 .05±.01 .07±.00 .07±.00
glass .47±.00 .43±.02 .45±.03 .48±.00 .47±.02

ionosphere .12±.00 .23±.07 .20±.10 .46±.01 .38±.01
kr-vs-kp .01±.01 .02±.02 .02±.01 .10±.04 .06±.01

letter .34±.19 .44±.00 .44±.00 .48±.01 .44±.03
mushroom .22±.14 .23±.14 .29±.10 .55±.03 .51±.03

pima .08±.00 .07±.02 .07±.01 .16±.04 .12±.00
shuttle-small .36±.12 .29±.04 .38±.04 .57±.04 .48±.02

vehicle .17±.03 .17±.05 .14±.02 .32±.01 .31±.01
vote .54±.01 .54±.00 .54±.00 .62±.00 .43±.00

waveform-21 .38±.00 .37±.00 .37±.00 .48±.00 .47±.00
sick .30±.22 .03±.01 .03±.01 .35±.10 .12±.00

glass2 .21±.02 .15±.00 .15±.00 .31±.00 .31±.00
iris .71±.05 .77±.08 .68±.11 .83±.00 .83±.00

segment .62±.04 .59±.05 .55±.05 .65±.04 .68±.02
waveform-5000 .39±.04 .37±.00 .37±.00 .47±.00 .47±.00

autos .34±.01 .37±.01 .31±.05 .23±.00 .23±.02
mofn-3-7-10 .04±.04 .07±.01 .03±.03 .03±.03 .03±.03

balance-scale .13±.02 .13±.04 .15±.03 .09±.00 .09±.00
vowel .24±.01 .24±.02 .21±.02 .20±.00 .18±.01

satimage .62±.00 .62±.00 .62±.00 .52±.03 .59±.01
breast-w .83±.00 .83±.00 .83±.00 .71±.00 .68±.00

corral .24±.05 .15±.03 .17±.06 .19±.00 .19±.00
credit-g .11±.02 .03±.01 .06±.04 .03±.01 .01±.00
heart-c .32±.01 .26±.00 .25±.03 .29±.02 .30±.00
lymph .28±.04 .21±.05 .19±.03 .20±.03 .22±.01
sonar .34±.00 .32±.00 .32±.00 .24±.00 .25±.00

soybean .71±.02 .66±.02 .66±.02 .58±.03 .70±.05
splice .69±.01 .55±.00 .53±.00 .60±.08 .09±.01

zoo .86±.04 .82±.05 .79±.03 .78±.00 .64±.00
hypothyroid .25±.02 .20±.02 .18±.04 .22±.02 .18±.01

Table 8: The performances of LTA and related methods on 36 real-world data sets. The
numbers shown are the NMI values between the original class partitions and the cluster
partitions obtained by the various methods.

evaluation to a näıve method that generates a huge number of random partitions
5. So, it is important to test multidimensional clustering methods on real-world
data and see whether they can help find meaningful clusters. On the ICAC
data, we found 9 partitions. By inspecting their information curves, we were
able to quickly identify a few meaningful partitions. With the random method,
however, one would have to examine a huge number of partitions before finding
a meaningful one. Hence it is not useful.

7. Other Related Work

The work presented in this paper is related to subspace clustering (including
pattern-based clustering, bi-clustering, and correlation clustering) (Parson et al.,

5One such method is proposed by Caruana et al. (2006).
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2004; Kriegel et al., 2009). Both multidimensional clustering and subspace clus-
tering produce clusters that are characterized by subsets of attributes. However,
there are important differences. First, multidimensional clustering produces one
partition for each subset of attributes. On the other hand, subspace clustering
might produce one single cluster for a given subset of attributes. Even when
multiple clusters are produced for a given subset, they usually do not form a
partition. Second, the work we propose is a model-based approach, while most
subspace clustering methods are distance-based. In a model-based approach,
clusters are defined by the choice of a model class and a model selection cri-
terion. In contrast, the existing subspace clustering methods usually lack a
clear task definition (Kriegel et al., 2009). Hoff (2006) proposes a model-based
method for subspace clustering. It produces unidimensional partitions rather
than multidimensional clusterings.

8. Conclusions and Future Directions

This paper is concerned with cluster analysis of categorical data. Complex
data sets such as the ICAC data can usually be meaningfully partitioned in
multiple ways, each being based on a subset of the attributes. Unidimensional
clustering is unable to uncover such partitions because it seeks one partition that
is jointly defined by all the attributes. Feature selection does not help either
because there does not exist one ‘true’ partition. Instead there are multiple ‘true’
partitions. To discover those partitions, one needs to consider multidimensional
clustering.

We propose one method for multidimensional clustering, namely latent tree
analysis. An algorithm for latent tree analysis named EAST is described. Em-
pirical results are presented to show that latent tree analysis can indeed obtain
rich and meaningful clustering results on complex data. On the ICAC data,
for instance, latent tree analysis produced several meaningful partitions and re-
vealed interesting relationships among them. In contrast, none of the alternative
methods considered were able to yield any meaningful partitions at all.

On the other hand, the EAST algorithm is rather slow. To analyze the
ICAC data, it took around 5 hours on a top end personal computer, while
the alternative methods took only dozens of seconds. On another dichotomous
data set with 100 attributes and 600 records, it took 23.4 hours. In some
applications, it is acceptable for data analysis to take days or weeks, while it is
not in other cases. One future direction is to develop faster algorithms for latent
tree analysis. A second direction is to extend the work presented in this paper to
cover continuous and mixed data. A third direction is to apply multidimensional
clustering to various domains.
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