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Abstract

The concept of “ideal semantics” has been pro-
moted as an alternative basis for skeptical reasoning
within abstract argumentation settings. Informally,
ideal acceptance not only requires an argument to
be skeptically accepted in the traditional sense but
further insists that the argument is in an admissible
set all of whose arguments are also skeptically ac-
cepted. The original proposal was couched in terms
of the so-called preferred semantics for abstract ar-
gumentation. We argue, in this paper, that the no-
tion of “ideal acceptability” is applicable to arbi-
trary semantics and justify this claim by showing
that standard properties of classical ideal seman-
tics, e.g. unique status, continue to hold in any
“reasonable” extension-based semantics. We cate-
gorise the relationship between the divers concepts
of “ideal extension wrt semantics o that arise and
we present a comprehensive analysis of algorithmic
and complexity-theoretic issues.

1

Argumentation has evolved as an important field in Al with
abstract argumentation frameworks (AFs, for short) as in-
troduced by Dung [1995] being its most studied formalism.
Meanwhile, a wide range of semantics for AFs has been pro-
posed; for an overview see [Baroni and Giacomin, 2009].
One of the most interesting recent approaches is the ideal
semantics which have been introduced as an alternative ba-
sis for skeptical argumentation by Dung, Mancarella and
Toni [2007]. These define the concept of ideal sets as ad-
missible sets, S, with the property that S is contained in all
preferred extensions (i.e. subset-maximal admissible sets) of
an AF (X, A), with the (unique) ideal extension of (X, .A)
being its maximal (again, wrt C) ideal set.

Although Dung et al. [2007] present ideal semantics us-
ing preferred extensions as the basis, we argue that the ap-
proach is appropriately handled as a parametric model of ac-
ceptance, applicable to multiple status semantics in general,
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with the specific example of preferred semantics being one
instance. In fact, another instance of this schema has been
proposed by Caminada [2007], who used semi-stable [Cam-
inada, 2006] instead of preferred extension for the base se-
mantics, and called this approach eager semantics.

A natural question of interest thus concerns to what extent
general properties of ideal semantics can be established, par-
ticularly in the light of known results for the preferred and ea-
ger case. Our aim in this paper is to focus on complexity the-
oretic properties. In particular, we are interested in the ques-
tion whether the complexity of ideal reasoning can be derived
from known complexity results for the respective base seman-
tics in terms of credulous or skeptical acceptance. As a basis
we shall use the characterisations proven by Dunne [2009],
who showed that the main reasoning problems here are lo-
cated between NP resp. coNP and ©4".! As we will see these
results are due to the fact that the problems of credulous and
skeptical acceptance for the base semantics are located on
different levels of the polynomial hierarchy. For many other
base semantics the complexity of ideal and skeptical reason-
ing is the same, as we show in this paper.

What we call ideal semantics, is also known as prudent rea-
soning in the world of non-monotonic reasoning (this should
not to be confused with prudent semantics for AFs as pro-
posed in [Coste-Marquis et al., 2005]). Typically, prudent
reasoning is considered as an additional reasoning mode be-
sides credulous and skeptical reasoning, and in case of default
logic can be defined as follows, see e.g. [Besnard and Schaub,
1998]: a formula ¢ follows from a default theory (W, D) by
prudent reasoning if ¢ follows from W plus those defaults
from D which are generating defaults for all extensions of
(W, D). Another similar concept is the one of free conse-
quences [Benferhat ef al., 1993] which are defined as formu-
las being entailed by the intersection of all maximal consis-
tent subsets of a (possibly inconsistent) knowledge base.

This motivates our view of understanding ideal acceptance
as a third reasoning mode for abstract argumentation, differ-
ent from credulous and skeptical acceptance and, in principle,
applicable to any semantics. We recall that here the differ-
ence to skeptical acceptance is due to the fact that the inter-
section of the extensions given by the chosen base semantics

"Exact bounds seem to be very hard to establish; Dunne [2009]
gives ©% —hardness proofs with respect to randomised reductions.



is not necessarily an admissible set. A well-known exam-
ple is the AF ({a,b, ¢, d}, {(a,b), (b,a), (a,c), (b,c), (c,d)})
where the preferred extensions are {a d} and {b,d}, thus d
is skeptically accepted, but the only ideal set is @) (since {d}
is not admissible). For prudent reasoning in default logic, the
difference to skeptical reasoning is a bit more subtle As an
example, consider, A = ({a V 8 — v}, {5*, 5 281, Here,
we also have two extensions, one containing « the other con-
taining 5. Hence, « follows skeptically from A but not via
prudent reasoning, since none of the defaults is generating in
all extensions. Let us finally mention that such a situation
is also possible in the argumentation setting as soon as argu-
ments are not fully abstract anymore. As an example, con-
sider the AF from above with additional attack (d, ¢). Then
{d} is the ideal extension coinciding with the intersection of
skeptically accepted arguments. If one considers now that,
for instance, a’s claim is a« A =3, b’s claim is 5 A =, and d’s
claimis a vV 5 — ~, then ~y follows skeptically from the AF,
but ~ is not derivable from the ideal extension.
Our main contributions can be summarised as follows:

e We show general results about properties ideal semantics
for abstract argumentation satisfy. Most notably, we show
that whenever the base semantics is based on conflict-free sets
(which is true for any reasonable semantics) there exists a
unique ideal extension. Moreover, it holds that for each base
semantics satisfying the reinstatement property [Baroni and
Giacomin, 2007], the ideal extension is also complete.

e We provide two alternative algorithms how to compute
an ideal extension. One is a generalisation of concepts intro-
duced in [Dunne, 2009] and relies on credulous acceptance
for the base semantics. A novel characterisation uses the
skeptically accepted arguments instead.

e We provide a thorough complexity analysis. We are able
to provide general results for ideal reasoning which can be de-
rived from complexity results for the base semantics. More-
over, we give novel exact bounds for the following realisa-
tions of ideal semantics: semi-stable (we note that complex-
ity has not been analysed in [Caminada, 2007]), resolution-
based grounded [Baroni et al., 2011al, stage [Verheij, 1996],
and naive semantics. For naive semantics, reasoning in the
ideal extension remains tractable.

2 Preliminaries

Throughout (X, A) is a (finite) AF with argument set
X {z1,...,2,} and attack relation A C X x X. For
S C X, let S” be {x |y € Ss.t. (z,y) € A} and, simi-
larly, ST be {x | Jy € Ss.t. (y,z) € A}.

A semantics for AFs is any predicate o : 2% — (T, 1)
prescribing criteria under which a set of arguments is consid-
ered collectively “justified”. A semantics is extension—based
if it satisfies for all S C X if ¢(S) then —o(T) for all
T D 5. We denote by &,((X, .A)) the set of subsets within
the AF (X, A), i.e. &, ((X, A) = {S C X : o(5)}. An
(extension-based) semantics, o, is said to be unique status if
for every AF (X, A), |E,((X, A))| = 1 holds; otherwise the
semantics is multiple status. For o a unique status semantics,
E,((X,.A)) denotes the unique set comprising £, ((X, A)).

852

An argument, x € X is acceptable wrt S C X if for any
y € X for which (y,z) € A there is some z € S such that
(z,y) € A. The characteristic function, F : 2% — 2%,
reports the set of arguments that are acceptable to a given set.
It is shown by Dung [1995] that the function F has a least
fixed point which is called the grounded extension.

We require the following concepts for an AF F' = (X, A):
gcf( ) {SCX|V{E,y€S, <l’,y>€A}
Eadm {Seng( )ng]:(S)}
comp {Segadm( )|]:(S)QS}
k(0), for k such that F* () = Fk+1(()

{S€&ef(F) | SCT =T ¢E4(F)}
{8€€uam(F)|SCT =T Euam(F)}
{S€Euam(F)|SUSTCTUT T =T EEam(F)}
Ssmge( )={S€&s(F)| Sust c TUT+:>T§Z€Cf(F)}

Ecf(F) are called the conflict-free sets of F', Eqgpm (F') and
Ecomp(F ) are the admissible, and respectively, complete sets.
The remaining cases define extension-based semantics, and
with the exception of the grounded semantics gr, these are
all multiple status. In fact, we have defined here naive exten-
sions (Enaive (F')), preferred extensions (€, (F')), semi-stable
extensions (Es5¢(F')), and stage extensions (Estage (F)).

Definition 1 Let o and 0 be semantics. If for all AFs F,
E,(F) C &E(F), we call o a O-preserving semantics.

(F)=
(F)=
Egr(F)=F

we(F)
Epr(F)=
Esst(F)=

All of the above semantics are cf-preserving, but naive and
stage semantics are, for instance, not adm-preserving. More-
over, sst is pr-preserving, and stage is naive-preserving.

The resolution-based semantics [Baroni et al., 2011al are
a parametric approach defined in the following way: given
an AF F (X, A), let u(F) be the set of (unordered)
pairs {{z,y} | {(z,y),(y,x)} C A}. A (full) resolution,
B, of F contains exactly one of each of the attacks (x,y),
(y,x) for each {z,y} € wp(F). We denote the set of all
full resolutions as y(F). If o is an extension-based seman-
tics the resolution based o semantics, o*, is given through
Eor((X, A)) min - Uge,x ay {E(X AN B))}
where min is with respect to C. We note that gr* — the
resolution-based grounded semantics — is multiple status. As
is known, grx satisfies many desirable properties, thus we
will focus on this instantiation here. In fact, the semantics for
which we will consider ideal extensions in this paper, are pr,
sst, stage, gr*, and naive.

We assume the reader has knowledge about standard com-
plexity concepts, as P, NP, & TI¥’, LOGSPACE (L), and ora-
cles. Beyond these we need the following complexity classes:
of = PNP where Pf is the class of decision problems that
can be solved by a deterministic polynomial time algorithm
which is allowed to make O(n) non-adaptive calls to the C-
oracle; FPﬁ which is the corresponding class of function prob-

lems; D¥ , the class of decision problems L that can be char-

acterised as L; N Ly for decision problems L; € NP and

Lo € coNP; D;D , the class of decision problems L that can

be characterised as Ly N Ly for L1 € ¥4 and Lo € I1L.
Typical computational problems of interest are:

a. Credulous acceptance — CA,((X, A),z) (x € X). Is
there any S € &,((X, A)) for which x € S?



o CA, SAg VER, NE,
comp | NP-c P-c inL NP-c
pr NP-c II¥-c coNP-c NP-c
sst P T-c  coNP-c NP
stage | ©¥-c  TI¥-c  coNP-c inL
grx NP-c coNP-c inP inP
naive | inL inL inL inL

Table 1: Complexity landscape; C-c stands for C-complete.

b. Skeptical acceptance — SA, ((X, A),x) (z € X). Isx €
S for every S € £,((X, A))?

c. Verification — VER, ({X, A), S) (S C X). Is it the case
that S € £,((X, A))?

d. Non-emptiness — NE,({X,.A)).
E,({X, A)) for which S # ()?
The complexity of these problems is well explored [Baroni et

al., 2011a; Dimopoulos and Torres, 1996; Dunne and Bench-
Capon, 2002; Dvoidk and Woltran, 2010] (see Table 1).

Is there any S €

3 Parameterised Ideal Semantics

We give a general definition of ideal semantics, abstracting
from the approaches in [Caminada, 2007; Dung e al., 2007].

Definition 2 Let (X, A) be an AF and o a semantics that
promises at least one extension®. The ideal sets wrt base se-
mantics o of (X, .A) are those that satisfy the constraints:
(11) S € Eaam((X, A)) and (12)S € Ny c e, (ay T-

We say that S is an ideal extension of (X, A) wrt o, if S is
a C-maximal ideal set (of (X, A)) wrt o. EIPL denotes the
collection of ideal sets wrt o and ECI,E denotes the set of ideal
extensions wrt 0. o\E denotes the corresponding semantics.

IE

Proposition 1 If a semantics o is cf-preserving, then o' * is

a unique status semantics.

Proof: It suffices to show that if S € EIPL((x, A)) and
T € EIPL((x, A)) then SUT € EPL((x, A)). First note
that SUT € E.;((X,.A)) since, by the definition of IPL,
S5 € Nvee,(a,ay Vand T C Nyee a4y Vs hence
SUT C Vforevery V € £,({(X,A)). As by assumption
o promises at least one extension V' € &,((X,.A)) we then
have that S U T is a subset of a conflict-free set and thus is
itself conflict-free. It must, however, further hold that SUT &
Eaam ((X, A)): both S and T are in 41, ((X, A)) (since they
are ideal sets wrt o), hence any y € (S UT)~ either belongs
to S~ (and so is counterattacked by some z € S) orisin T~
(and, in the same way, counterattacked by some argument in
T). It follows that SU T € Eqgm ((X, A)) forming a subset

of every setin &, ((X, A)),ie. SUT € EIPL((x, A)). ©

Let us now discuss a few further aspects of Definition 2.
Indeed, one might ask why the notion of base semantics is pa-
rameterised, but the required properties of ideal sets and ideal
extensions are to some extent fixed in the following sense:
(a) each ideal set is admissible; (b) the ideal extensions are
defined wrt subset maximality.

2Hence we exclude stable semantics as a base semantics here.
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Proposition 1 gives an answer to the second issue already.
In fact, using this result one can observe that considering ad-
missible sets S C [, &, ((x,4)) I which are maximal

with respect to the cardinality | S|, the range S U S™ or the
cardinality of the range |SU S| would always yield the ideal
extension (defined via C-maximality), as well.

Let us thus turn to issue (a). Two directions are possi-
ble: (1) weakening the restriction for being an ideal set; (2)
strengthening the properties ideal sets have to satisfy. For (1),
the only natural such relaxation would be to consider conflict-
free (instead of admissible) sets as ideal ones. However, as
long as we assume that any reasonable base semantics is cf-
preserving, we get that the set of skeptical accepted argu-
ments is already conflict-free. Hence we would end up with
the problem of skeptical acceptance. Against (2), one can ar-
gue that a restriction to complete sets is the closest reasonable
such sharpening. We can give the following result.

Proposition 2 If o satisfies the reinstatement property® then

olE s comp-preserving.

Proof: Let E € EIF((X, A)). By definition E is admissi-
ble and it remains to show that every a € & defended by E
belongs to E. Thus consider such an a. As F is part of ev-
ery o-extension, each o-extension S defends a and therefore
(as o satisfies the reinstatement property) a € S. Hence a is
skeptically accepted and defended by E; thus E'U {a} is an
ideal set. But as F is already a maximal ideal set,a € E. 0O

Thus, if the base-semantics satisfies the reinstatement
property then the ideal extension is already a complete set
and thus considering complete sets (instead of admissible sets
in Condition I1 of Definition 2) would not change anything.
On the other hand, if the base-semantics ¢ does not satisfy
the reinstatement property, the existence of a complete set S
which is contained in all o-extensions is not guaranteed. For
example, consider 0 = naive and AF F' = ({a, b}, {(a,b)}).
Then, Engive(F) = {{a}, {b}}, but @ is not complete here.

4 Algorithms

We discuss two types of algorithms for computing the ideal
extension wrt to a given base semantics o. The first is a
generalisation of an algorithm from [Dunne, 2009] and re-
lies on credulous acceptance for o. We will show that such
an algorithm can be used for any base semantics ¢ which is
pr- or natve-preserving. Thus, this algorithm applies also to
o = sst. Our second algorithm is closer to the original defi-
nition of ideal sets and thus makes use of skeptical acceptance
in o. It is applicable to any cf-preserving base semantics o.
Having these two algorithms at hand clearly is also of prac-
tical value. In fact, whenever both algorithms are applicable,
then one can now select in view of the computational com-
plexity of credulous acceptance and skeptical acceptance for
the base semantics. We first need a few technical results.

Proposition 3 If o is pr-preserving, then for each AF F' =
(X, A) the following relations hold:

3The concept of reinstatement [Baroni and Giacomin, 2007] sep-
arates complete from admissible sets. A semantics o satisfies rein-
statement iff for every AF (X, A) and E € &,(X, A), we have Vx €
X:(VyeX((y,x) e A—>3Fz€ E:(2,y) € A) >z €E.



Figure 1: Resolution-based semantics vs. preferred semantics
S € Epam(F) &
Yy € ST =CA(F,y)
_ [ Cca,(Fyy) &
C2)z e EE(F) e Vye{z ( BN

In the case of ideal sets wrt preferred extensions the char-
acterisation of Proposition 3 has previously been shown in
[Dung et al., 2007; Dunne, 2009]. In addition, we now see
that it holds also for the case when semi-stable semantics are
employed as base semantics for ideal reasoning.

However, the above characterisation does not apply to se-
mantics which are not based on admissibility, e.g. stage se-
mantics. Thus our next step is to give a similar characterisa-
tion for naive-preserving semantics. The only subtle differ-
ence is due to the fact that naive semantics do not take the
orientation of attacks into account. Thus, we have to add ST
(resp. {x}T) to the conditions from Proposition 3.

(cl)S € EPL(F) &

Proposition 4 If o is naive-preserving, then for each AF

F = (X, A) the following relations hold:

S € Euam(F) &

’ IDL adm

(CI)S €& F) & g §7 U §+ —cay (F,y)

—CA,(F) &

C2’)xe EE(F)aVyefa U $+< i >
The characterisations (C2) and (C2’) from above results

suggest how to compute the ideal extension w.r.t. a semantics

o, in case we have given a function that decides credulous

acceptance for 0. Algorithm 1 describes this idea.

Algorithm 1 Input: AF (X, A), function CA, deciding cred-

ulous acceptance.

1. Determine the sets Xouyr = {z | =CA,((X, A),z)} and

Xpsa = {ac eX \ XouT ‘ {x}* U {x}* - XOUT}.

2. Form the AF (Xpga U Xour, B) in which B contains only

attacks (x,y) € Awithx € Xpga andy € Xouyr or x €

Xour andy € Xpga, i.e. the AF is bipartite.
3. Return max{SCXpsa : S€Ewum({Xpsa, Xour,B))}.

The correctness of this algorithm (for appropriate base se-
mantics as outlined above) is an immediate consequence of
Proposition 3 and Proposition 4. As well there exist simple
algorithms for handling bipartite AFs [Dunne, 2007].

Theorem 1 For any semantics o which is pr-preserving or
naive-preserving, Algorithm I constructs EEI,E

Although Algorithm 1 is already applicable to a wide range
of base semantics, it does not work for resolution-based
grounded semantics. Consider the example in Figure 1. We
have &,,.. = {{P,F}, {Q, B}}, thus B, = 0. However,
{B, F} is admissible and none of its attackers credulously
accepted wrt gr+. In fact, { B, F'} is the standard ideal exten-
sion (wrt preferred semantics), since the preferred extensions
of the framework are { B, F, P} and {B, F, Q}.
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This motivates Algorithm 2 which follows the definition of
ideal semantics more closely: it first computes the set of all
skeptically accepted arguments and then iteratively computes
the maximal admissible subset.

Algorithm 2 Inpur: AF (X, A), function SA, deciding skep-
tical acceptance. 1. Compute Xsp = {z | SA,({(X, A), x)}.
2. Return E = FI*sAl(Xs ), with F(E) = F(E) N E.

We next show that this algorithm is correct for every rea-
sonable base semantics, i.e. for base semantics that are cf-
preserving. The following lemma captures the correctness of
the fixed-point iteration in the algorithm.

Lemma 1 Let (X, A) be an AF and S € E.;({(X, A)). The
C-maximal admissible set A C S is FIS! (S).

Theorem 2 For any semantics o which is cf-preserving, Al-
gorithm 2 constructs EE.

Proof: Since o is cf-preserving, the set X5 4 is also conflict-
free. Thus by Lemma 1, EIF = FI¥sal(xg,). O

5 Instantiations

Next, we study ideal reasoning wrt concrete base semantics.
In particular, we are interested how the ideal extension wrt
to different base semantics relate to each other. In the case
of complete sets as base semantics, our schema yields that
the ideal extension wrt complete sets matches the grounded
extension, i.e. for any AF F, EéoEmp(F) = Eg,(F).

The other base semantics, we are interested here are grx,
pr, sst, naive, and stage. Since all these semantics o are cf-
preserving, we know that ¢'F is a unique status semantics by
Proposition 1. Moreover, for o € {pr, sst, gr«}, o has the re-
instatement property, and thus by Proposition 2, EIF ((X'| A))
is a complete set for any AF (X, A). In general, this does not
hold for o € {naive, stage}. However, the ideal extension
wrt naive semantics is easily characterised.

Proposition 5 For any AF F (X, A), EE. (F)
max{A | A € Euam(F), A C Xsa} with Xsp = {z
X | (z,2) ¢ A{x}” Uz}t C{y | (y.y) € A}

We investigate now how ideal extensions of different base
semantics are related to each other. Caminada [2007] has al-
ready shown that EZI)]TE(F ) € EE(F) holds and that there
exist AFs F, such that EXF(F) C EIE (F). With the follow-
ing results we give a full analysis of the C relations between
the ideal extensions wrt the base semantics considered here.

m |l

Theorem 3 For any AF F' the following C-relations hold:

Elgmp(F) C g7 (F) € EJF(F) € BLG(F)
Ul
Eégive(F) g EsIt%ge(F)

Furthermore, all these C-relations are proper ones.

6 Computational Complexity

In this section we provide two kind of complexity results for
ideal reasoning. First we present generic complexity bounds
for ideal reasoning problems, i.e. complexity bounds which



depend on the complexity of reasoning problems for the base
semantics. Then we use these results to draw the complexity
landscape for the concrete base-semantics mentioned in Sec-
tion 5. The computational problems we are interested here,
are the following:

a. Credulous acceptance — CAIPL (X A), ) (z € X). Is

there any S € EIPL((X, A)) for which z € §?
Verification for ideal sets — VERIPL((X| A), S) (S
X). Is it the case that S € EIPL((x, A))?
Non-emptiness — NELPL (X', A)). Is there any S
EPL (x| A)) for which S # (2

Verification for ideal extension — VERLE((X, A),S)
(S C X). Is it the case that S = EIE((x, A))?
Construction — CONS'E((X'| A)). Reports the ideal ex-
tension FIE((X, A).

We first consider the construction problem using the algo-
rithms given in Section 4.

-

€

Theorem 4 For any cf-preserving semantics o, ECI,E can be
constructed in FPﬁ, if either SA, € C or o is pr-preserving
(resp. natve-preserving) and CA, € C.

We next give a strong connection between the problem
cAPL and the function problem cONS!E, such that we can
extend a hardness result for CAIPT to cons!F.

Theorem 5 Let o be a semantics where unconnected (via at-
tack paths) arguments do not affect each others acceptance
status. If CAIPY is C-hard then cONSIE((X, A)) is FP -hard
(under metric reductions).

Note that upper bounds for the problem CONS'F immedi-
ately lead to upper bounds for decision problems. The fol-
lowing theorem may provide strictly better upper bounds.

Theorem 6 Let o be a cf-preserving semantics and let V
be the complexity of the problem VER,. Then, (i) CA},DL €
coNPY, (ii) VERIPL ¢ coNPY, (iii) NEIPL € coNPY and
(iv) VERIE € NPV A coNPY,

Proof: Given an AF F' = (X, A), a base semantics o, an
argument x € X and a set S C X. Fact (i) follows from the
following NPV algorithm for disproving x to be in ECI,E:

1. Guess extensions F1, ..., E, (forn = |X|)

2. Verify extensions using the V-oracle

3. Compute Ssa := (-, Ei

4. Compute the C-maximal admissible set A C Sga.

5. Acceptiff z ¢ A

We get (ii) by a simple adaptation of the above algorithm:

instead of testing « ¢ A one tests whether S Z A. For (iii)
we use another adaptation of the above algorithm, now one
tests for A = (), which proves that EIF = {). (iv): To verify
E'E — S, one tests whether S € £IPL(F) using the coNPY-
algorithm and disproves the ideal acceptance forall a € X'\ S
via the above NPV-algorithm. o

In the following we give generic lower bounds, i.e. generic
hardness results, for the problems VER'PL and cA!F depend-
ing on the complexity of the problem CA,, .
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To this end, we introduce the following property:
Definition 3 A pair ((X, A),z) of an AF (X, A) and x €
X satisfies the mutual attack property wrt a semantics o iff
CA,((X,A),z) = cA (XY U{y}, AU {(z,9),(y,7)}), 7)
(wherey & X). A semantics o has the mutual attack property
iff each ((X,A), z) has the mutual attack property wrt o.

Semantics adm, comp, pr, grk, and naive all have the
mutual attack property. But one can construct AFs which do
not satisfy the mutual attack property for sst and stage.

Proposition 6 If o is pr-preserving or naive-preserving,
CA, € C for some complexity class C which is closed under
U, and there exist C—hard instances of the CA, problem that
satisfy the mutual attack property then (a) VEIQLDL is coC—
complete and (b) CA(ITDL is coC—hard.

We finally provide novel exact bounds for computational
problems of ideal reasoning wrt to base semantics stage, sst,
grx, and naive, partly exploiting the generic results.

Theorem 7 Complexity results as depicted in Table 2 hold
(the first two lines contain known results).

Proof: For o € {sst, stage, gr*}, membership for the de-
cision problems follows by Theorem 6 and the complexity of
VER,. Membership for CONS!E is a consequence of Theo-
rem 4. Hardness for the construction problems will follow by
Theorem 5 after having shown hardness for caIPL,

By Theorem 4, we can construct EE. in P: thus all the

naive
decision problems for naive semantics are in P. VER}LDMI-;,S €

L follows by Proposition 6. The P-hardness of calPL

NEIPL “and VERIE, ~can be shown via a reduction from the
P-hard problem of deciding whether some atom follows from
a propositional definite Horn theory.

The hardness results for o € {sst, stage} use the fol-
lowing reduction from [Dvordk and Woltran, 2010], which
maps the I15~hard problem QBFy to SA, and co-CA,:
Given a QBF formula & = VY3Z A _.c, construct
Ko = (X, A), where ¥ = {&,¥,0} UCUY UY U
YUY UZUZ and A {{c,®) | ¢ € C} U
{{D,T), (T, D), (D,b), (b,b)} U {{x,Z),(T,z) | z € Y U
2y Ul 3.9, sy, (7 7) |y € YYU{(Le) |
literal [ occurs in ¢ € C'}. In [Dvorfék and Woltran, 2010], it
is shown that U is credulously accepted iff ® is not valid.
Since the pairs (K4, ¥) are ¥4’ ~hard instance for CA,, satis-
fying the mutual attack property, we obtain by Proposition 6
that both VERIPL and cAIPL are TT5 —hard.

To show that NE{,DL is Hg -hard, we use a variant of
this construction by adding an argument y and attacks
(y, V), (¥,y) to Kg. Using a restricted class of I14'-hard
QBFsYY3Z A\ . c(inwhich A\ . chas amodel M, with
M N Z = () and a model M’, with Z C M"), one can show
that the only argument that can be ideal accepted is y. Hence
NEIPL is true iff y is ideal accepted iff @ is valid. Thus NELPL
is 114’ -hard.

The results for gr* can be established by similar techniques
(using a different reduction from UNSAT). Since grx pre-
serves neither pr nor naive, a direct use of Proposition 6, is
not possible, however. ]



o vERIPL  calPL NgIPL o yERrlE  cons!E
comp P-c P-c inL P-c in FP
pr coNP-c  in®f in©f in6f FPﬁ\IP—c
EP
sst < Tyc T{c DFc FP>-c
EP
stage | Myc IH<c 1F<c Dfc Fp%—
grx coNP-c coNP-c coNP-c Df-c FP}l\IP-c
natve inL P-c P-c P-c in FP

Table 2: Complexity of ideal reasoning

7 Discussion

While in their original paper, Dung et al. [2007] have pro-
posed their approach of ideal sets and extensions as a dedi-
cated semantics for abstract AFs (being in the line with the
logic programming semantics [Alferes er al., 1993] which
motivated their work), we believe that the idea behind ideal
semantics is more in the spirit of an alternative, third, notion
of acceptance besides credulous and skeptical acceptance. A
view which is backed up by the introduction of eager seman-
tics [Caminada, 2007] which is defined as ideal semantics but
replacing preferred by semi-stable extensions as a basis.

In this paper we analysed common properties for dif-
ferent formings of ideal semantics and we investigated the
instantiation wrt semi-stable, stage, naive, and resolution-
based grounded semantics in detail. Our complexity analysis
showed that ideal reasoning in these instantiations is of the
same complexity as skeptical reasoning, which is in contrast
to the standard ideal semantics, where reasoning is known to
be in ©F [Dunne, 2009] and thus easier than the I -hard
problem of skeptical reasoning (for preferred semantics); see
also Table 2. We identified as a main reason for this result
the fact that credulous reasoning in preferred semantics is
only in NP, while for the semantics we have considered here,
credulous acceptance is on the same level of complexity as
skeptical reasoning. We therefore also provided two differ-
ent generic algorithms for computing the ideal extension, one
based on the credulous acceptance problem, the other based
on the skeptical acceptance problem of the base semantics.

As a final remark, we thus note that the view promoted
in our treatment of ideal reasoning is by no means limited to
semantics in Dung’s AFs but can also be considered, in princi-
ple, with respect to such developments as value-based frame-
works [Bench-Capon, 2003], extended AFs [Modgil, 20091,
or frameworks with recursive attacks [Baroni ef al., 2011b].
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