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Abstract

We consider a simple model of cooperation among agents called Coali-
tional Skill Games (CSGs). This is a restricted form of coalitional games,
where each agent has a set of skills that are required to complete various
tasks. Each task requires a set of skills in order to be completed, and a
coalition can accomplish the task only if the coalition’s agents cover the set
of required skills for the task. The gain for a coalition depends only on the
subset of tasks it can complete.

We consider the computational complexity of several problems in CSGs,
such as testing if an agent is a dummy or veto agent, computing the core
and core-related solution concepts, and computing power indices such as the
Shapley value and Banzhaf power index.1

Keywords: Coalitional game theory, Core, Power Indices

1. Introduction

Game theory has uses in many real-world domains, including those in-
volving automated agents. These domains encompass electronic commerce,
auctions, and general resource allocation scenarios. One way to analyze these
domains is to model them as multi-agent systems, consisting of self-interested
agents, with possibly conflicting preferences. Because of the desire to embed
game-theoretic principles into artificial multi-agent systems, computational

1A preliminary version of this paper [11] was presented at the 7th International Joint
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008).
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aspects of game theory and social choice have been extensively studied in
recent years.

A specific domain on the border between game theory and computation is
that of cooperative domains. Cooperation is a key issue in many automated
agent scenarios. When agents are self-interested, a stable coalition can only
be formed if the gains won as a result of the cooperation are distributed
in an appropriate way. Cooperative game theory considers the question of
how these gains should be distributed, and provides several solution concepts.
Several such solutions have been offered, such as the core [40], the ε-core and
least-core [62], the Shapley value [60], and the nucleolus [58]. The simplest of
these concepts is the core, where no coalition of agents can find an outcome
that they all prefer (at least one strictly) by breaking away from the game
and working amongst themselves.

One way in which these solution concepts have been employed has been
to measure the power that agents have in real-life domains, such as parties
forming a coalition in legislative bodies. This has led to the definition of
several power indices, such as the Banzhaf [14] and Shapley-Shubik [61] power
indices.

Constructing real-world applications requires taking computational con-
siderations into account, and considering the challenges of engineering effi-
cient and robust multi-agent systems. Solutions offered by game theory have
been adopted by computer scientists, who have explored their attendant com-
putational considerations [56, 69, 63, 22, 23, 28, 24]. Specifically, much work
has been done on computational aspects of agent collaboration through co-
operative game theory [19]. For example, agents should be able to concisely
express their preferences and capabilities when interacting, and the proce-
dures used by these agents to decide how to operate must be computationally
tractable.

1.1. Motivation

This paper defines a class of games called Coalitional Skill Games, that
model collaboration and are based on the abstract notions of tasks and the
skills required to complete them. We begin with a few examples of domains
that can be modeled using our class of games.

Our first example is that of several companies that are attempting to drill
and refine oil at four different locations. The first oil patch is worth $200
million, and is located under ice. The second oil patch is located under the
sea and worth $500 million, and the third is located in a remote desert and
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worth $400 million. To obtain these values, the oil first needs to be extracted.
The three oil patches mentioned above contain crude oil, and that oil requires
refining to be worth any money. One additional oil patch is also located in
the desert, and is a pure oil patch that requires no refining, and worth $10
million. There are four companies that may attempt to engage in activities
related to the oil—Alice’s Refineries Inc., Bob’s Oil Industries Ltd., Charlie’s
Petroleum Ltd., and Dana’s Gasoline Inc., or A, B, C, D for short. Only A
and C can refine oil, while B and C have ice drilling facilities. Only B and
D can drill in the desert, and the only company with sea drilling capability
is D. Obviously, together all the companies can exploit all the patches, with
a total worth of 200 + 500 + 400 + 10 = $1110 million.

How should this total reward be split among the companies? What is the
fair share each company should get, assuming they work together to bring
the oil to market? What would be a stable allocation of the gains? In this
example, A cannot achieve any value on its own, as it cannot drill any oil,
and D cannot achieve any value on its own as it cannot refine the oil or drill
the pure oil in the desert. A and D together can drill and refine all the oil in
the desert and sea patches, worth 500+400+10 = $910 million. On the other
hand, without D it is impossible to drill the most lucrative sea patch, worth
$500 million of the total $1110 million, and so D certainly helps in achieving
the total gain. B might suggest allocating $400 million to A, $150 million
to B and C, and $410 million to D. But companies A and D are unlikely to
find this satisfying, as they can achieve $910 million on their own. Are there
stable payoff allocations in this domain?

Another example is voting. Consider a vote in which different entities
control how different subsets of the voters choose to vote, and where a coali-
tion of entities can control the votes of all the voters that can be controlled
by any member of the coalition. A coalition may have to control more than
a certain number of voters to win an election, and thus its utility can de-
pend on the number of voters it controls. A similar example is cooperative
knowledge sharing [31, 38]. In such domains, each party may have access to
information regarding various propositional variables, and a coalition wins if
it can determine the value of a particular subset of the variables that are of
interest.

Yet another example is the domain of robots and human rescuers in a
disaster zone with victims trapped in multiple locations, where each location
requires various skills in order to gain access [46, 57]. For example, in the case
of a fire, rescuing a trapped victim may require a robot for an initial visual
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inspection, a firefighter to reach the victim, a stretcher carrier to evacuate
the victim outside of the building, and a medic to give initial treatment.
Disaster budgets may be allocated to several agencies in charge of handling
such situations (for example, different provinces or states may be allocated
such budgets). In case of a disaster, an agency may request the assistance of
fellow agencies. For example, one agency may request additional firefighters,
medics or robots from a fellow agency. How should the budget or costs be
allocated to the agencies in such cases?

Our final example focuses on the domain of multi-sensor networks [64, 27].
Consider multiple sensor-array facilities, each with several sensors of different
types, where each sensor covers a certain geographical area. The goal of the
sensor array is to track multiple objects, each traveling through a different
path over time. Each sensor can cover a part of the area at different times,
and although no single sensor can fully track the objects, some coalitions of
sensor arrays can track an object all the time, or even all the objects. When
faced with different rewards or budgets for tracking the various objects, which
coalition is likely to form? How would this reward be shared?

1.2. Contribution

We consider a specific model of cooperation among agents, that of Coali-
tional Skill Games (CSGs). In this form of coalitional games, agents must
cooperate to complete certain tasks. Performing each task involves using a
set of required skills, and a coalition can accomplish the task only if it covers
the task’s required skills. Central to solution concepts for coalitional games
is the idea of a characteristic function, which defines a coalitional value for
every subset of agents. CSGs impose a particular structure on the character-
istic function of coalitional games, where this structure depends in a precise
way on a problem of task allocation. In general CSGs, the characteristic
function of the game maps the achieved set of tasks to a real value.

CSGs are highly expressive. For example, CSGs are able to easily express
the domains presented in Section 1.1. A task in these domains can include
producing oil, rescuing a victim, tracking an object, transmitting data to
a certain client, controlling a certain voter, and so forth. In each of these
domains, completing a task depends on having the necessary skills. Questions
of interest in these domains include how to divide the total gains of a coalition
among its members, and finding which members of the coalition are powerful.
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1.2.1. Restricted Classes of CSGs and Threshold Versions of CSGs

The expressive power of general CSGs comes at the cost of having a
representation that is exponential in the number of tasks, which results in
high computational complexity in solving various questions related to such
games. To achieve a good compromise between expressiveness and concise-
ness we can impose additional, natural restrictions on the structure of the
underlying task allocation problems, and therefore on the characteristic func-
tion of the coalitional games. For example, it is possible to define the value
a coalition can achieve as the number of tasks it accomplishes, resulting in
TCSG—Task Count Skill Games. Another possibility is giving each task its
own weight, and defining the value of a coalition as the sum of weights of
the accomplished tasks, resulting in WTSG—Weighted Task Skill Games.
TCSGs easily allow one to express the fact that the utility of a coalition of
agents depends on the number of tasks that they can jointly perform, while
WTSG allows for weighting such tasks according to their importance.

Any STSG can be expressed as a TCSG (with a single task), and any
TCSG can be expressed as a WTSG (with equal weights for the tasks). We
can denote this as STSG ⊆ TCSG ⊆ WTSG. We explore the issue of the
expressivity of these representation language in Section 3.

We also consider threshold versions of skill games, that capture the notion
of “acceptable performance,” where there is a discontinuity in utility beyond
a certain performance level. Such discontinuities are very common in many
real-world scenarios. For example, agents may be under a contract to per-
form at least a certain number of tasks or to achieve a certain target in sales
or profits, as is the case with many service level agreements and employment
contracts with sales quotas [21, 49, 26]. Another example is voting and lobby-
ing effort. In many voting situations a decision is made based on the opinion
of the majority of voters, so in such cases passing a decision requires con-
vincing at least half of the decision makers. In this case, no utility is gained
by convincing less than the required quota of the decision makers. Similarly,
once half of the decision makers are convinced, no additional utility is gained
by convincing additional decision makers. This has typically been modeled
as weighted threshold games (sometimes called weighted voting games) or as
lobbying games [33, 14, 15, 53].

Both TCSGs and WTSGs also have simple threshold versions, where a
coalition of agents either “wins” or “loses.” These CSGs are simple skill
games, where the characteristic function’s range is either 0 or 1. In TCSG-
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T, task count skill games with a threshold, a coalition wins if it manages to
accomplish at least k tasks, and in WTSG-T a coalition wins if the sum of
weights of the tasks it accomplishes is more than k. The simplest form of
skill games is that of single task skill games (STSGs), where a single task has
to be performed, and requires a coalition to cover all the required skills for
that task. These threshold versions can easily express lobbying efforts where
agents must complete various tasks to persuade decision makers, or where
they must complete different tasks in order to sell products to meet a sales
quota.

Our threshold versions of CSGs are somewhat similar in spirit to threshold
versions of other cooperative games [33, 12, 2, 5], which are discussed in
Section 1.3 and Section 5.

1.2.2. Main Results

We first show that even very restricted forms of CSGs are still very ex-
pressive. One of the most general classes of cooperative games is that of
increasing games, where the value generated is monotonically increasing in
the set of agents in the coalition. Even the most restrictive class of STSGs
can represent any increasing game where a coalition either wins or loses, and
WTSGs can represent any increasing game. We then explore the complexity
of computing important properties of CSGs such as power indices and payoff
distributions. For power indices, we examine the complexity of calculating
the Shapley value and the Banzhaf power index. The Shapley value defines a
distribution of the gains of the coalition that meets certain desired fairness
criteria. It can also be used to measure the power of agents. The Banzhaf
index is a related power index, which focuses on slightly different fairness
axioms.

For payoff distributions, we first examine the complexity of testing whether
a certain agent is a dummy, which means that his addition to any coalition
never increases the value that coalition can achieve, and whether an agent
is a veto agent, which means that no coalition can win without that agent.
The problem of computing the core of a CSG, and testing whether the core is
non-empty, is central to determining the basic stability properties of a CSG.
If the core exists, then it is possible to distribute the gains in a stable way, so
that no subset of the agents will prefer to break away. If the core is empty,
then any division of the payoffs is unstable and it is typical to consider re-
laxed solutions such as the least core, which seeks to find an allocation of
gains to agents in order to minimize the maximum possible gain that any
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coalition could achieve by breaking away.
Our results show that computing the value of a coalition and finding veto

agents is tractable in all the above domains. Indeed, in many of them it
is possible to test for dummy agents and also compute payoff distributions
(also called imputations) in the core. Problems related to the least core are
generally hard, but we present positive results for restricted domains. With
regard to power indices, we show that they are typically hard to compute
precisely. However, these can be approximated by sampling player permu-
tations or coalitions and averaging the marginal contributions of the target
agent [8]. Thus, this work shows that the CSG representation is expressive,
and computationally tractable in restricted forms.

1.3. Related Work

The concept of the core originated with Gillies [40], the ε-core and least-
core were introduced by Shapley and Shubik [62], and the Shapley value was
introduced by Shapley [60]. The problems of finding the optimal coalition
structure and determining whether a coalition structure is stable have been
studied in a number of domains [63, 27], including the CSG domain [9]. Val-
ues similar to the Shapley value have been used to measure power, e.g., via
the Shapley-Shubik [61] and Banzhaf [14] power indices. Deng and Papadim-
itriou [30] showed that computing the Shapley value in weighted voting games
is #P-complete, and that calculating both Banzhaf and Shapley-Shubik in-
dices in weighted voting games is NP-complete [50]. Several papers deal with
computing, comparing, and approximating power indices, in general and in
restricted domains [51, 30, 24, 36, 8].

Conitzer and Sandholm [24] use a decomposition of a coalitional game
to several domains to ease the calculation of the Shapley value. While this
decomposition technique makes the computation of the Shapley value easier,
the same technique cannot be directly used for the Banzhaf index, which we
consider in this paper. Also, while our representation employs a decomposi-
tion technique via tasks, the success of such tasks depends on a set of skills,
rather than on a complete coalitional subgame. Thus our representation is
less expressive, but allows for the tractable solution of problems that cannot
be easily solved in the more complex decomposition model.

There has been significant research on the trade-offs between expressive-
ness and computation for cooperative games. We examine the relation be-
tween the CSG model and other representation languages for cooperative
games in Section 5, after discussing our technical results. We compare with
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linear production games [52], where agents pool together resources in order
to manufacture finished goods that can be sold at a given market price. The
utility of a coalition in this model is its maximal revenue, achieved when
manufacturing the optimal achievable bundle of finished goods, as given by
the solution to a certain linear program. Also closely related is the Coali-
tional Resource Games model [67], in which agents wish to achieve various
goals, and are endowed with certain amounts of resources required to achieve
these goals. Wooldridge and Dunne [67] examined the reasonable outcomes
of agent interaction in such settings. Also similar is a representation adopted
by Yokoo et al. [68] for anonymous environments where an agent may use
false names and distribute its ability among these identities.2

Additional work on representation includes Bilbao [16], who studies co-
operative games on several combinatorial structures. The marginal contribu-
tion network language [44] represents the value of a coalition using a set of
rules regarding the participating agents. Another model, cooperative graph
games, considers games where agents are represented as nodes of a weighted
graph, and a coalition’s value is determined by the total weight of the edges
that it contains [30]. The sparse synergy representation [23] relies on super-
additivity, and is concise when the number of synergies between coalitions
is low. The sparse synergy representation allows for efficient checking of
whether a given outcome is in the core, but determining whether the core
is nonempty remains NP-complete. The Multi-Attribute Coalitional Games
(MACG) [45] provides a representation of coalitional games where the value
of a coalition is described by a set of agent attributes, along with functions
that aggregate the attributes of agents to a single number. Other work
has considered coalitional games played over networks, such as network flow
games, connectivity games and spanning connectivity games [12, 3, 13]. Sev-
eral papers have examined the Cost-of-Stability and other solution concepts
in network domains [10, 7, 54, 2].

1.4. Outline

In Section 2 we give some background concerning coalitional games, and
define the CSG model. Section 3 examines the expressiveness of the CSG
representation of cooperative games. In Section 4 we present the main al-

2False-name attacks and similar perturbations that change the agent power distribution
have also been studied in [6, 70, 4].

8



gorithms and complexity results of the paper. Section 5 examines closely-
related models in more detail, and we conclude in Section 6.

2. Preliminaries

In this section, we define the CSG model and the game-theoretic concepts
that are examined in the context of CSGs.

2.1. Cooperative Game Theory Solution Concepts

Transferable Utility (TU) coalitional games provide a model for collabo-
ration between agents. Such games are defined in terms of a specification for
the value that each subset of agents (called a coalition) can achieve, while
abstracting away details regarding how this value is achieved by the coali-
tion. In the TU-coalitional game model, agents may also share the utility
generated by the coalition in any way they choose through side payments
among agents.

Definition 1. A transferable utility coalitional game Γ is composed
of a set I = {a1, . . . , an} of |I| = n agents, and a characteristic function
mapping any subset (coalition) of the agents to a real value vΓ : 2I → R,
indicating the total utility that these agents achieve together. When the game
Γ is clear from the context, we sometimes omit the Γ subscript, and simply
denote the characteristic function v.

Two common assumptions about coalitional games are that they are in-
creasing and super-additive. A coalitional game Γ is increasing if for all
coalitions C ′ ⊂ C ⊆ I we have vΓ(C ′) ≤ vΓ(C), and is super-additive when
for all disjoint coalitions A,B ⊂ I we have vΓ(A) + vΓ(B) ≤ vΓ(A ∪ B). In
some cases increasing games are referred to as monotone games. In super-
additive games, it is always worthwhile for two sub-coalitions to merge, so
that the grand coalition has the largest total utility.

In a simple coalitional game Γ, vΓ only gets values of 0 or 1 (vΓ : 2I →
{0, 1}). We say a coalition C ⊆ I wins if vΓ(C) = 1, and say it loses if
vΓ(C) = 0. An agent i is critical in a winning coalition C if the agent’s
removal from that coalition would make it a losing coalition: vΓ(C) = 1,
vΓ(C \ {i}) = 0.

The characteristic function only defines the gains a coalition can achieve,
but does not define how these gains are distributed among the agents.
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Definition 2. An imputation (also known as a “payoff vector”) (p1, . . . , pn)
is a division of the gains of the grand coalition among the agents, where
pi ∈ R, such that

∑n
i=1 pi = v(I).3

We call pi the payoff of agent ai, and denote the payoff of a coalition C as
p(C) =

∑
i∈{i|ai∈C} pi. An important question is of course how to determine

which imputations are likely to be chosen by agents sharing their joint gains,
or to characterize imputations with desirable properties such as fairness.
Game theory offers several answers to this issue.

2.1.1. Individual Rationality, the Core, ε-Core, and Least-Core

A minimal requirement for an imputation is that of individual rationality,
which states that for any agent ai ∈ C, we have that pi ≥ v({ai})—otherwise,
some agent is incentivized to work alone. Similarly, we say a coalition C
blocks the imputation (p1, . . . , pn) if p(C) < v(C), since the members of C
can split from the original coalition, derive the gains of v(C) in the game, give
each member ai ∈ C its previous gains pi—and still some utility remains, so
each member can get more utility. Similarly, it is possible to define the degree
by which a subcoalition is incentivized to deviate from the grand coalition.

Definition 3. Given an imputation p = (p1, . . . , pn), the excess of a coali-
tion is e(C) = v(C)− p(C), which quantifies the amount the subcoalition C
can gain by deviating and working on its own.

Definition 4. A coalition C blocks the imputation p = (p1, . . . , pn) if its
excess under this imputation is strictly positive, e(C) > 0. If a coalition C
blocks the imputation p, we say that C is unstable under p.

A prominent solution concept focusing on stability is that of the core [40].

Definition 5. The core of a coalitional game Γ is the set of all imputations
(p1, . . . , pn) that are not blocked by any coalition, so that for any coalition C,
we have p(C) ≥ vΓ(C).

3Some existing literature refers to a payoff vector p = (p1, . . . , pn) as a pre-imputation
if
∑n

i=1 pi = v(I), and only considers it an imputation if for any agent i ∈ I we have pi ≥
v({i}). We use the simplified terminology, and call any payoff vector where

∑n
i=1 pi = v(I)

an imputation.
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Having an imputation (payoff distribution) in the core indicates that no
subset of the coalition is incentivized to split.

The core can be empty, which occurs when every possible imputation
in that case is blocked by some coalition. In such cases we must relax the
requirement of the solution concept. For example, deviating from the current
coalition structure and forming an alternative coalition may be costly. Thus,
coalitions that only have a small incentive to drop out of the grand coalition
would choose to remain. A relaxed solution concept that follows this rationale
is the ε-core [62]:

Definition 6. The ε-core is the set of all imputations (p1, . . . , pn) such that
the following holds: for any coalition C ⊆ I, p(C) ≥ vΓ(C)− ε.

Under an imputation in the ε-core, the excess e(C) = vΓ(C) − p(C) of
any coalition C is at most ε. If ε is large enough, the ε-core is guaranteed
to be non-empty. A natural question is to find the smallest value of ε that
makes the ε-core non-empty. This solution concept is known as the least core.
Formally, consider the game Γ and the set {ε | the ε-core of Γ is not empty}.
This set is compact, and thus has a minimal element εmin.

Definition 7. The least-core of the game Γ is the εmin-core of Γ.

The imputations in the least-core distribute the gains in a way that min-
imizes the worst-case deficit, or in other words, minimizes the incentive of a
coalition to drop out of the grand coalition.

Although the least-core minimizes the worst-case deficit, it can still leave
multiple possible imputations. The least-core does not, for example, mini-
mize the number of coalitions with this worst-case deficit, nor does it min-
imize the second-worst deficit. The nucleolus [58] refines the least core, se-
lecting the lexicographically minimal core.

2.1.2. The Shapley Value and Banzhaf Power Index

Another solution concept, which defines a single imputation, is the Shap-
ley value [60]. This approach focuses on fairness rather than on stability.
This value is the only imputation (payoff distribution) that fulfills certain
fairness axioms [60]. 4 We denote by π a permutation of the agents, so

4Shapley discussed three axioms [60]. These axioms roughly state that: dummy agents
who contribute nothing to all coalitions should get a payoff of zero; Equivalent agents,
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π : {1, . . . , n} → {1, . . . , n} and π is onto, and by Π the set of all pos-
sible such permutations. Denote by Sπ(i) the predecessors of i in π, so
Sπ(i) = {j|π(j) < π(i)}.

Definition 8. The Shapley value of a game Γ (with characteristic function
vΓ) is given by the imputation φ(vΓ) = (φ1(vΓ), . . . , φn(vΓ)) where

φi(vΓ) =
1

n!

∑
π∈Π

[vΓ(Sπ(i) ∪ {i})− vΓ(Sπ(i))]

The Shapley value can be interpreted as the marginal contribution an
agent makes, averaged across all possible permutations of agents that may
occur. The marginal contribution of an agent is the amount of additional
utility generated when that agent is added to its predecessors in the permu-
tation.

An important application of the Shapley value is that of power indices,
which attempt to measure an agent’s ability to change the outcome of a game,
and are used (for example) to measure political power. One prominent power
index is the Shapley-Shubik index, which is simply the Shapley value in a
simple coalitional game. Since in such a game the value of a coalition is
either 0 or 1, the formula for φi(v) simply counts the fraction of all orderings
of the agents in which agent i is critical for the coalition of its predecessors
and itself.

Another prominent power index, again defined for any simple coalitional
game, is the Banzhaf power index [14]. The Banzhaf index depends on the
number of coalitions in which an agent is critical, out of all possible coalitions.

Definition 9. The Banzhaf power index of a game Γ (with characteristic
function vΓ) is given by β(vΓ) = (β1(vΓ), . . . , βn(vΓ)) where

βi(vΓ) =
1

2n−1

∑
S⊂I|ai∈S

[vΓ(S)− vΓ(S \ {i})].

who contribute the same amount to any coalition containing neither of them, should get
an equal payoff; The payoff of any agent in a composed game, where the value of any
coalition is the sum of the values of that coalition in two composing games, should be the
sum of payoffs of that agent in the two composing games.
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2.2. Coalitional Skill Games (CSGs)

A coalitional skill domain is composed of a set of agents, I = {a1, . . . , an},
a set of tasks T = {t1, . . . , tm}, and a set of skills S = {s1, . . . , sk}. Each
agent ai has a set of skills S(ai) ⊆ S,5 and each task tj requires a set of
skills S(tj) ⊆ S. We denote the set of skills a coalition C has by S(C) =
∪ai∈CS(ai). We say a coalition of agents C ⊆ I can perform a task tj if every
skill required to perform the task is owned by some agent in the coalition,
so S(tj) ⊆ S(C). We denote the set of tasks a coalition C can perform as
T (C). The set T (C) consists of all the tasks tj ∈ T such that C can perform
tj.

We denote the set of skills required to perform a set of tasks T ′ ⊆ T
by S(T ′) = ∪tj∈T ′S(tj). A task value function maps a subset of the tasks a
coalition achieves to a real value: u : 2T → R. We normalize the function
u such that the utility of the empty task set is zero, so u(∅) = 0. We also
generally assume that we can freely dispose of tasks by not performing them.
Thus, u is increasing; so if T1 ⊂ T2 ⊆ T , we have u(T1) ≤ u(T2). The
free disposal of tasks has important implications, as it means a coalition can
never lose utility by being able to perform more tasks. Having the skills
required to perform a certain task does not mean the coalition must perform
the task. Rather, the coalition may decide not to make use of these skills.

An alternative definition may associate some tasks with a negative utility,
but our assumption throughout this work is that the utility gained by a
coalition is monotone in the set of tasks the coalition can achieve.6

We define the coalitional skill game for a coalitional skill domain as fol-
lows:

Definition 10 (CSG). A CSG is the coalitional game Γ in a coalitional
skill domain, where the players are the agents of the coalitional skill domain,
and the characteristic function of a coalition is the value of the tasks that
coalition can perform: vΓ(C) = u(T (C)).

Lemma 1. All CSGs are increasing coalitional games.

5When the context is clear, we sometimes use Si for S(ai).
6Such an alternative definition of skill games which allows negative weights to be as-

sociated with tasks is examined in [9], which analyzes the complexity of finding optimal
coalition structure in skill games.
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Proof. Adding agents to a coalition only adds skills to that coalition, so if
C ′ ⊆ C, we have S(C ′) ⊆ S(C) and thus T (C ′) ⊆ T (C), and u(T (C ′)) ≤
u(T (C)). Therefore, if C ′ ⊆ C we get that vΓ(C ′) ≤ vΓ(C), so CSGs are
increasing.

2.3. Restricted Forms of CSGs

The ability to tractably answer questions regarding CSGs depends on how
they are represented. A naive representation of a CSG is exponential in |T |
since every subset of tasks is associated explicitly with the value. In order to
make progress we consider restricted forms of CSGs, that remain expressive
(e.g., allowing use to represent any monotone characteristic function) while
allowing for computational analysis.

One restricted form of CSGs expresses the value of a coalition as the
number of tasks that coalition can accomplish. This restricted form of CSGs
is called TCSG—Task Count Skill Games. A representation of the charac-
teristic function in a TCSG simply contains a list of the tasks and a list of
required skills for each task.

Definition 11 (TCSG). Let T ′ ⊆ T be a subset of tasks. A TCSG is a
CSG where task value function u(T ′) = |T ′|.

A representation that is more general than TCSG but still concise is that
of WTSG—Weighted Task Skill Games. In a WTSG, each task tj has an
associated weight wj, and the characteristic function is the sum of the weights
of the accomplished tasks.

Definition 12 (WTSG). Let T ′ ⊆ T be a subset of tasks. A WTSG is a
CSG where each task tj ∈ T has a weight wj ∈ R+.7 The task value function
u(T ′) =

∑
j∈{j|tj∈T ′}wj.

CSGs where the task value function u can only obtain the values 0 and
1, so u : 2T → {0, 1}, are called simple skill games. We say a task subset
T wins the game if u(T ) = 1, otherwise we say T loses the game. Since for
any coalition C we have vΓ(C) = u(T (C)), in simple skill games vΓ’s range
is also {0, 1} and we have vΓ : 2I → {0, 1}.

7In this paper we assume that for any task tj we have a strictly positive weight wj > 0.
However, it is also possible to define games where a task may have a negative weight.
In the case where negative weights are allowed, the free disposal of tasks becomes more
controversial.
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Both TCSG and WTSG have special cases that are simple skill games.
These games require the number of completed tasks or the total weight of
completed tasks to exceed a certain threshold value k for a coalition to win.
These versions are called TCSG-T (Task Count Skill Games with Threshold)
and WTSG-T (Weighted Task Skill Games with Threshold).

Definition 13 (TCSG-T:). Let T ′ ⊆ T be a subset of tasks. TCSG-T is a
CSG with a threshold k where the task value function is u(T ′) = 1 if |T ′| ≥ k
and u(T ′) = 0 otherwise. Thus, the game has the characteristic function
vΓ(C) = 1 if |T (C)| ≥ k and vΓ(C) = 0 otherwise.

Definition 14 (WTSG-T). Let T ′ ⊆ T be a subset of tasks. WTSG-T is
a CSG where each task tj ∈ T has a non-negative weight wj ∈ R and with a
threshold k, where the task value function function u is defined as u(T ′) = 1
if w(T ′) > k and u(T ′) = 0 otherwise. Thus, the game has the characteristic
function vΓ(C) = 1 if w(T (C)) ≥ k and vΓ(C) = 0 otherwise.

The most restricted form of CSGs is that of STSG—a Single Task Skill
Game. In a STSG, there is only one task t, whose set of required skills S(t)
are all the skills in the domain, so we have S(t) = S. In STSGs, the task
value function is u({t}) = 1, and u(∅) = 0. A coalition C wins if it manages
to cover all the skills, so vΓ(C) = 1 if and only if S(t) ⊆ S(C), and since S(t)
is the set of all skills, we can simply say that a coalition wins if it covers all
the skills in the domain, so S(C) = S.

Definition 15 (STSG). An STSG is a TCSG where there is only a single
task t, so vΓ(C) = 1 if S(C) = S and vΓ(C) = 0 otherwise.

Example 1. Consider a STSG, in a domain with two skills: S = {s1, s2},
the single task t1 which requires both skills (i.e. S(t1) = {s1, s2}), and three
agents, I = {a1, a2, a3}. Agent a1 has the skill S(a1) = {s1}, and agents
a2, a3 have the skill S(a2) = S(a3) = {s2}. Since in order to complete the
task a coalition needs both skills, a winning coalition must contain a1 and one
of the two agents a2, a3. Thus, the winnings coalitions are {a1, a2}, {a1, a3}
and {a1, a2, a3}.

It is easy to verify that the imputation p = (1, 0, 0) is a core imputation.
On the one hand, any coalition C such that a1 /∈ C is losing and cannot
block this imputation; on the other hand any coalition C ′ such that a1 ∈ C ′
has a payoff of p(C ′) ≥ p1 = 1 and cannot block the imputation. Since p is
not blocked by any coalition, it is in the core. Similarly, a direct computation
using the formula of Definition 8 shows that the Shapley value is φ = (2

3
, 1

6
, 1

6
).
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All these restricted forms of skill games have concise representations, since
we can find a succinct representation for the task value function, and thus
also have a succinct representation for the characteristic function.

These restricted representations can also model many situations. For
example, TCSGs can express the fact that our goal is to save as many victims
as possible in a coordinated rescue problem. WTSGs can express the fact that
each oil patch has a different monetary worth, and our goal is to maximize
profits. TCSG-Ts can express the fact that to be successful, we must track
at least a certain number of objects in the cooperative sensor array domain.

Some questions remain computationally hard even with these restrictions.
For example, certain problems regarding power indices and the ε-core and
least-core are generally hard even for STSGs. Below, we either suggest ap-
proximation algorithms (for computing power indices) or focus on restricted
domains (for least-core related problems).

3. Expressiveness of Coalitional Skill Games

In this section we explore the ability of CSGs to express various charac-
teristic functions.

Lemma 1 has shown that CSGs are increasing games, so obviously CSGs
cannot represent non-monotone characteristic functions. We show that the
CSG representation is fully expressive for increasing games: STSGs can rep-
resent any simple increasing cooperative game, and WTSGs can represent
any increasing cooperative game.8

Theorem 1. STSGs are fully expressive for the class of simple increasing
games: it is possible to represent any simple increasing game as an STSG.

Proof. Consider a given simple increasing cooperative game over the set I
of players and with the characteristic function v : 2I → {0, 1}. Given this

8Related work on with coalition structure generation in skill games provides a proof
that WTSGs can express any cooperative game [9]. However, it examines non-monotone
skill games which do not allow the free disposal of tasks, whereas in this work we do make
the assumption of free disposal of tasks. The CSG model examined by Bachrach et al. [9]
allows tasks to be associated with negative weights, so performing an additional task can
diminish a coalition’s utility. Our results are in regard to the monotone model, which
respects the free-disposal assumption, and are not entailed by the results in Bachrach et
al. [9].
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original game, we construct an STSG representation for it as follows. For any
losing coalition L ⊆ I in the original game, we create a skill sL. This skill
is possessed by I \ L, i.e., all the agents who are not in L, and by no other
agents. The single task t in the constructed game requires all the skills, so
this is a proper STSG. First note that all the agents in L do not possess the
skill sL (as by construction this skill is only possessed by agents who are not
in L), so L cannot achieve the task t which requires sL. On the other hand,
consider a winning coalition W ⊆ I in the original game. The original game
is increasing, so since W is winning in that game, it cannot be the case that
W is contained in any losing coalition L. Thus for any losing coalition L,
there is an agent j ∈ W such that j /∈ L. By our construction, since j /∈ L,
player j is endowed with the skill sL. Thus, for any skill sL the coalition W
covers sL, so W covers all the skills and is a winning coalition. Therefore,
any losing coalition in the original game is also losing in the constructed
game, and any winning coalition in the original game is also winning in the
constructed game, so both games have the same characteristic function.

Theorem 1 shows that STSGs can represent any simple monotone game.
We now show that WTSGs can represent any monotone game (not necessarily
a simple game). Our method is based on game composition. Given two
games over the same set I of agents, v1 and v2 the composed game (v1 + v2)
over the agents I is defined as follows. For any coalition C ⊆ I we have
(v1 + v2)(C) = v1(C) + v2(C).

Lemma 2. If v1 and v2 have a WTSG representation, then there is a WTSG
representation for (v1 + v2).

Proof. Let I be the set of agents in v1 and v2. Let S1, S2 be the skills of
the agents in v1 and v2, accordingly. Let T1, T2 be the set of tasks in v1, v2

accordingly. Name the tasks and skills such that S1 ∩ S2 = ∅ and that
T1 ∩ T2 = ∅. Construct a WTSG G over the set I of agents as follows.
The set of tasks in G is T = T1 ∪ T2. The set of skills is S = S1 ∪ S2.
Each task requires exactly the same skills it originally required in v1 or v2.
Every agent ai ∈ I in the game G is endowed with all the skills she had
in both v1 and v2. Denote G’s function as v. If a coalition C achieves a
task t ∈ T1 in v1, it can also achieve it in v, as the task requires the same
skills it did in v1, and if the agents of C covered them in v1 they also cover
them in v. Similarly, if C achieves a task t ∈ T2 in v2, it can also achieve
it in v. However, if C does not achieve t in v1 it would not achieve it in v

17



(the same skills are still missing). Similarly if C does not achieve t in v2 it
would not achieve it in v. Denote the set of tasks C can achieve in v1 as W1

and the tasks C can achieve in v1 as W2. The value C achieves in v is thus
v(C) =

∑
t∈W1

w(t) +
∑

t∈W2
w(t) = v1(C) + v2(C). Thus, given a WTSG

representation for v1 and v2 we have built a WTSG representing (v1+v2).

We build a WTSG representation for a game by iterating through the
possible values the game’s function v can take, from lowest to highest. In
each step we examine the coalitions that have the next highest value in v,
and construct a WTSG where these coalitions get the difference between the
values. We then take the WTSG representation of the composed game.

Theorem 2. WTSGs are fully expressive for the class of general monotone
games: it is possible to represent any monotone cooperative game as a WTSG.

Proof. A game G over the n agents in I, with function v has 2n different
coalitions, so v has at most 2n different values. Order these values from
smallest to largest to obtain u0, . . . , um (where m < 2n). Denote the set of
coalitions which have a value of ui as Cui (so if C ∈ Cui then v(C) = ui).
Denote wi = ui − ui−1. Since v is monotone, u0 is obtained by the empty
coalition ∅, and w.l.o.g. we assume u0 = 0.

Consider the game v′1 over the agents I, where v′1(C) = 0 if v(C) = u0

and v′1(C) = 1 if v(C) > u0. This is a simple monotone game, so due to
Theorem 1 it has an STSG representation G′1. We can take this representa-
tion and modify the weight of the single task from 1 to w1. This is a WTSG
representation G1 with characteristic function v1 where v1(C) = v(C) = u1

if C ∈ Cu0 ∪ Cu1 , and where if C ∈ Cui for some i > 1 we have v1(C) = u1.
Now consider the game v′2 over the agents I, where v′2(C) = 0 if v(C) ≤ u1

and v′2(C) = 1 if v(C) > u1. Again, this is a simple monotone game, and
due to Theorem 1 has an STSG representation G′2. Again we take this rep-
resentation and modify the weight of the single task from 1 to w2. This is a
WTSG representation G2, with characteristic function v2. Due to Lemma 2
we can construct a WTSG representation H2 for (v1 + v2). Denote the char-
acteristic function of H2 as h2 = (v1 + v2). Note that if C ∈ Cu0 ∪Cu1 ∪Cu2
we have h2(C) = v(C), and if C ∈ Cui for some i > 2 we have h2(C) = u2.
We can continue this process to construct a WTSG representation for H3

then for H4 and so on, until we obtain the game Hm with characteristic func-

18



tion vm. However, vm(C) = v(C) for any coalition C, so this is a WTSG
representation for G, as required.

Example 2. We now provide an example for the construction in Theo-
rem 2. Consider the game v over 3 agents I = {a1, a2, a3} with the char-
acteristic function v(∅) = v({a1}) = v({a2}) = v({a3}) = 0, v({a1, a2}) =
v({a1, a3}) = v({a2, a3}) = 1 and v({a1, a2, a3}) = 5. In this game no single
agent makes any value, any two agents generate a value of 1, and the grand
coalition of all agents has the value of 5.

The construction of Theorem 2 generates a WTSG representation for the
game v′1 where any two agents have a value of 1, and the grand coalition has
a value of 1 as well, and composes it with a representation for the game v′2
where any coalition short of the grand coalition has a value of 0, and the
grand coalition has a value of 5− 1 = 4.

The construction for the game v′1 is done using Theorem 1. Since in the
game v′1 the losing coalitions are the singleton coalitions {a1}, {a2}, {a3}, the
construction creates three skills: the skill s1

1, owned by a2 and a3, the skill s1
2,

owned by a1 and a3, and the skill s1
3, owned by a1 and a2. The task for the

game v′1 requires all these three skills, s1
1, s

1
2, s

1
3.

By generating a representation for v′2, again using the construction of
Theorem 1, and composing the representations for the games v′1 and v′2 using
Lemma 2, we obtain a representation for the required game v.

Not every increasing cooperative game has a succinct representation as
a CSG. For example, the construction in Theorem 1 involved generating a
skill for every losing coalition, so the number of skills in this construction
may be exponential in the number of players. However we believe that many
domains, such as the examples in Section 1.1, can be described as CSGs in
a concise way. In the reminder of the paper, we show that CSGs also have
desirable computational characteristics.

4. Algorithms for Coalitional Skill Games

With general CSGs, the representation of the characteristic function may
be exponential in the number of tasks. However, restricting it as is done in
TCSG, WTSG, STSG (and TCSG-T and WTSG-T) gives a representation
that is always polynomial. We now define the specific computational prob-
lems of interest. All of these problems are stated with regard to a given CSG,
Γ, and sometimes with regard to a target agent ai.

19



Definition 16 (COALITION-VALUE (CV)). Given a coalition C ⊆ I and
CSG Γ, compute vΓ(C).

Definition 17 (VETO). In a simple CSG Γ, check if ai is a veto player, so
for every winning coalition C, we have ai ∈ C. In a general CSG, test if ai
is present in every coalition C where vΓ(C) > 0.

Definition 18 (DUMMY). Check if ai is a dummy player in CSG Γ, such
that for every coalition C (with ai /∈ C), we have vΓ(C ∪ {ai}) = v(C).

Definition 19 (CORE-NON-EMPTY (CNE)). Decide whether the core of
CSG Γ is non-empty.

Definition 20 (CORE). Return a representation of all imputations in the
core of CSG Γ.

Definition 21 (ε-CORE-MEMBERSHIP(ECM)). Given an imputation p =
(p1, . . . , pn), and CSG Γ, decide whether it is in the ε-core of the game.

Definition 22 (SHAPLEY). Compute agent ai’s Shapley value φi(vΓ) in
CSG Γ.

Definition 23 (BANZHAF). Compute agent ai’s Banzhaf power index βi(vΓ)
in CSG Γ.

We summarize our results in Table 1.9 Complexity results are stated
in regard to the succinct representations that are achieved through the re-
stricted forms of CSGs. Thus, our polynomial algorithms run in time that
is polynomial in the number of agent tasks and skills. Because the core may
sometimes contain infinitely many imputations, it is unclear how it should
be represented. When no compact representation is known we enter “N/A”
in the table. We have shown that testing whether the Shapley value exceeds
a given threshold is an NP-hard problem. However, we have not established
whether or not it is in NP. This remains open.

The most basic problem regarding the ε-core and least-core is ECM, which
tests if an imputation is ε-stable. Table 1 shows that ECM is hard (co-NP-
complete) even in the most restricted case of STSG. In domains where ECM

9Hardness of computing the Shapley value in STSGs, TCSGs and WTSGs is examined
in Aziz et al. [3], where it is shown to be #P-complete, as a consequence of intractability
results in the earlier version of the present paper in regard to the Banzhaf index.
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STSG TCSG WTSG TCSG-T WTSG-T
CV P P P P P

VETO P P P P P
DUMMY P P P co-NPC co-NPC

CNE P co-NP co-NP P P
ECM co-NPC co-NPC co-NPC co-NPC co-NPC

CORE P N/A N/A P P
SHAPLEY #P-C #P-C #P-C #P-C #P-C
BANZHAF #P-C #P-C #P-C #P-C #P-C

Table 1: Complexity of CSG problems

P—polynomial algorithm; NPC/co-NPC—NP-complete/co-NP-complete; co-NP—in co-

NP; #P-C—#P-complete; N/A—depends on the core representation.

can be solved in polynomial time, one can verify that a certain imputation is
in the ε-core, so it is “stable enough”. In such domains, another interesting
problem is finding such a “sufficiently stable” imputation (i.e., an imputation
in the ε-core). Further, one may want to determine the best “degree of
stability” that can be achieved. We formally define these problems:

Definition 24 (ε-CORE-FIND-IMPUTATION (ECF)). Given ε, find an
imputation p = (p1, . . . , pn) in the ε-core of a CSG game Γ if one exists, and
reply that no such imputation exists otherwise.

Definition 25 (LEAST-CORE-VALUE (LCV)). Compute the least-core value
in CSG Γ, which is the minimal value εmin such that the εmin-core is non-
empty.10

We provide results regarding restricted domains where the ECM, ECF
and LCV are tractable, so one can test for ε-core membership, find ε-core
imputations and compute the least core value. We show that for tree-like
STSGs with a bounded number of skills per agent, ECM, ECF and LCV are
all solvable in polynomial time. Further, these problems are also solvable in

10A non-integer value can be represented up to a certain degree of accuracy, and so the
LCV problem requires computing ε-min up to a certain accuracy. A tractable algorithm
is polynomial in the input size and logarithmic in the desired accuracy (i.e., polynomial
in the number of bits describing the accuracy level).
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polynomial time in TCSGs and WTSGs (as well as their threshold versions
TCSG-T and WTSG-T) under the additional restriction that the number
of tasks is bounded. Unfortunately, we could not provide a polynomial al-
gorithm for solving ECF and LCV in general CSGs, nor provide a hardness
result. Thus, this remains an interesting open problem. Since ECM is hard in
these domains, we conjecture that these problems are hard in general STSGs,
TCSGs and WTSGs.

We now present the analysis of each problem in the various CSG domains.
Since we focus on a given game Γ, from here on we drop the subscript Γ from
our notation.

4.1. Coalition Value

Theorem 3. COALITION-VALUE is in P, for all the following types of
CSGs: STSG, TCSG, WTSG, TCSG-T, and WTSG-T.

Proof. Given a coalition C, it is simple to compute S(C) in polynomial time,
as the union of all the skills of the agents in C. Thus, we can compute the set
of tasks T (C) accomplished by that C: for each tj ∈ T we check if S(tj) ⊂
S(C). Given T (C) in all these game forms, we can easily calculate v(C) (as
|T (C)| or w(T (C)), or by checking if these are above the threshold).

4.2. Veto Agents

Theorem 4. VETO is in P for all the following types of CSGs: STSG,
TCSG, WTSG, TCSG-T, and WTSG-T.

Proof. A veto agent ai in Γ is present in all winning coalitions (with v(C) = 1
for simple games and v(C) > 0 for general CSGs.) Consider C = I \ {ai}.
If v(C) = 0 then ai is veto since v(C ′) = 0 for all C ′ ⊂ C by Lemma 1. If
v(C) > 0 then ai is not veto. As seen in Theorem 3, we can compute v(C)
in polynomial time.

4.3. Dummy Agents

We now consider testing whether an agent is a dummy. Due to Theorem 3,
given a coalition C, we can compute v(C∪{ai}) and v(C) in polynomial time,
and see if v(C ∪ {ai}) > v(C). Thus, given a specific coalition, we can check
if a target agent contributes to that coalition. If this is the case for some
coalition C, then our target agent is a non-dummy. Thus, DUMMY is in
co-NP for all CSG classes we have defined.
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We say that a coalition C covers a set of skills S if for any skill s ∈ S
there exists at least on agent in C who possesses the skill s. We denote the
set of agents that do not cover the skill s by I−s = {aj ∈ I|s /∈ S(aj)}. I−s
can be calculated in polynomial time by going over each agent’s skill list, and
removing those whose skill list contains s. The algorithms for testing if an
agent is a dummy depend on the following lemma.

Lemma 3. If ai is a non-dummy in an STSG then there is some skill s ∈ Si
such that I−s covers S \ Si.

Proof. Suppose ai is not a dummy. Then it contributes to some coalition,
so there exists a coalition C such that C ∪ {ai} is winning but C is losing.
This only happens if C covers S \Si and fails to cover some skill s ∈ Si. If C
covers S \ Si, then any superset of it also covers S \ Si. I−s is a superset of
C, since C lacks the skill s (which means every agent aj ∈ C lacks s). Thus,
I−s covers S \ Si.

Theorem 5. DUMMY is in P for STSGs.

Proof. We can iterate through all skills s ∈ Si, and given each skill s ∈ Si
calculate I−s and check if it covers S \ Si. If there is such an s, then ai is
not a dummy (it contributes to I−s). If there is no skill s ∈ Si for which I−s
covers S \ Si, then through Lemma 3, ai is a dummy player.

Theorem 6. DUMMY is in P for TCSGs and WTSGs.

Proof. Let Γ be a WTSG, with tasks t1, . . . , tm. Let Γj be the STSG with
the single task tj, with the same agents and skills as Γ. Suppose ai is not a
dummy in Γ, so for some C ⊆ I \{ai} we have v(C ∪{ai}) > v(C). Then for
at least one task tj, C cannot achieve tj without ai, and ai is not a dummy
in Γj. Going the other way, if ai is not a dummy in some Γj, there is some
coalition C ′ which cannot achieve tj without ai, so that in Γ we also have
v(C ′∪{ai}) > v(C), and ai is not a dummy in Γ. Thus, in order to test if an
agent is not a dummy in a WTSG Γ, it is enough to test this for Γ1, . . . ,Γm.
If the agent is not a dummy in any of them, he is not a dummy in Γ, and if
he is a dummy in all of them, he is a dummy in Γ as well. Since TCSG is a
restricted class of WTSG, the same algorithm works for TCSGs as well.

While DUMMY is polynomial in TCSG and WTSG, it is co-NP-complete
in TCSG-T and WTSG-T. This is easy to show for WTSG-T. Matsui and
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Matsui have shown that testing if an agent is a dummy is hard in weighted
voting games [50]. When for each agent ai there is a single task ti which re-
quires a skill si that only ai owns, the WTSG-T becomes a weighted voting
game—so we get a natural reduction from weighted voting games. Prov-
ing the same for TCSG-T requires a different reduction. We show this by
reducing from 3SAT, a well-known NP-hard problem.

Definition 26 (3SAT). We are given a propositional formula in conjunctive
normal form (CNF) over n propositional variables y1, . . . , yn, denoted ψ =
c1 ∧ c2 ∧ . . .∧ cm, where ci is a disjunction of three literals ci = li,1 ∨ li,2 ∨ li,3
(each literal is the propositional variable yj or its negation ¬yj). We are
asked if there is an assignment that satisfies ψ.

We show that DUMMY in TCSG-T is co-NP-complete by showing that
a restricted case of testing whether an agent is a non-dummy is NP-hard.
Consider the restricted case of a TCSG-T Γ with a threshold k+ 1, that has
a certain task t which only requires one skill s (so S(t) = {s}), and where
an agent ai is the only agent with the skill s, and where no task other than t
requires the skill s. Adding ai to any coalition C makes that coalition able to
complete exactly one more task, t. A coalition in Γ wins if it covers at least
k + 1 tasks. Thus, ai is a non-dummy in Γ if and only if there is a coalition
of agents (without ai) that covers exactly k tasks (denoted COMPLETE-K-
TASKS).

Theorem 7. DUMMY is co-NP-complete for TCSG-T and WTSG-T.

Proof. We have noted that DUMMY, both in TCSG-T and in WTSG-T, is
in co-NP; it remains to show that it is co-NP hard. TCSG-T is a restricted
form of WTSG-T, so it is enough to show this for TCSG-T. We do this
by showing a reduction from 3SAT to COMPLETE-K-TASKS, and set the
threshold to be k = m tasks.

Given the 3SAT formula ψ = c1∧c2∧. . .∧cm over n propositional variables
y1, . . . , yn (where ci = li,1 ∨ li,2 ∨ li,3), we construct a TCSG-T game with
threshold m. For every propositional variable in ψ, the game has two skills,
syi and s¬yi . For every clause cj in ψ the game has a skill scj and three agents,
acj ,1, acj ,2, acj ,3. The skills of acj ,x depend on the literal x of cj, and S(acj ,x) =
{scj , slj,x}. For example, if we have c1 = y1 ∨ ¬y2 ∨ ¬y3, we create 3 agents:
agent ac1,1 with skills S(ac1,1) = {sc1 , sy1}, agent ac1,2 with skills S(ac1,2) =
{sc1 , s¬y2} and agent ac1,3 with skills S(ac1,3) = {sc1 , s¬y3}. For each clause
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ci we also create a task tci , which requires the skill sci , so S(tci) = {sci}. For
each propositional variable yi we create m+ 1 tasks t(yi,¬yi,1), . . . , t(yi,¬yi,m+1),
each of which requires the skills S(t(yi,¬yi,j)) = {syi , s¬yi}. The purpose of
these tasks is to eliminate covers where both yi and ¬yi are chosen.

Suppose there is a satisfying truth assignment A for ψ, in which the
variables assigned true are yt1, . . . , ytx and the variables assigned false are
yf1, . . . , yfy. We construct a winning coalition that covers exactly m tasks
from the truth assignment A as follows: each clause cj is satisfied through
at least one of the literals, say literal x in cj, denoted lj,x. We add the agent
acj ,x to C. Coalition C covers all the clauses cj of ψ, since A is a satisfying
truth assignment. On the other hand, C does not cover any of the tasks
t(yi,¬yi,j) (again, A is a valid truth assignment). Thus, if there is a satisfying
truth assignment, there is a coalition of agents in the created TCSG-T game
that completes exactly m tasks.

On the other hand, suppose there is a coalition C which covers exactly m
tasks in the created TCSG-T game. The covered tasks cannot include any
of the t(yi,¬yi,j) tasks, since each of these have m more identical copies, and
covering one of these means covering all m+ 1 of them. Thus the covered m
tasks are the tcj tasks. This means C holds agents that cover the skills scj
for all m clauses cj, and for no yi does it cover both syi and s¬yi . We build
the following truth assignment A: for each syi covered by C, set yi to true,
and set all the other variables to false. This truth assignment satisfies every
clause, since for each cj we have some literal in cj matching the value in the
truth assignment (or C would not cover scj).

4.4. The Core

We now consider the complexity of calculating the core of CSGs, or check-
ing if it is empty. We denote the set of all agents except ai as I−ai = I \{ai}.

Consider a simple game with no veto players. For every agent ai there
is a winning coalition that does not contain ai. Consider an imputation
p = (p1, . . . , pn) where pi > 0. Since

∑n
i=0 pi = 1 and since pi > 0 we get that

p(C) ≤
∑

aj∈I−ai
pj < 1, so p(C) < v(C) = 1 and C is a blocking coalition.

On the other hand, any imputation p that gives nothing to non-veto players
is in the core, since any coalition C that can block must have v(C) = 1,
so it must contain all the veto players; thus, it also has

∑
aj∈C pj = 1, and

therefore is not blocking. As a consequence, calculating the core of simple
games simply requires returning a list of veto players in that game, and
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checking if the core is non-empty simply requires testing if the game has any
veto players.11

Theorem 8. CORE and CORE-NON-EMPTY is in P for STSG, TCSG-T
and WTSG-T.

Proof. Due to Theorem 4, for these games we can find all the veto agents in
polynomial time. One representation of the core in any simple game is a list
of veto agents, as in such games any imputation that allocates all the payoff
among the veto agents, in any way, is in the core and any other imputation is
blocked (if there are not veto agents in such games the core is empty). Since
we can generate the list of veto agents in polynomial time, we can compute
the core in polynomial time.

Theorem 9. CORE-NON-EMPTY is in co-NP for STSG, TCSG, TCSG-T
and WTSG, and WTSG-T.12

Proof. Malizia et al. [48] show that CORE-NON-EMPTY is in co-NP for any
coalitional game where the coalitional function can be computed in polyno-
mial time. The result follows by Theorem 3.13

4.5. The ε-Core and Least-Core

We now consider ε-core and least-core related problems. Determining
whether a certain imputation p = (p1, . . . , pn) is in the ε-core is equivalent
to testing whether the maximal excess of any coalition is at most ε. We can
thus focus on the complexity of finding the maximal excess of any coalition
given an imputation.14 For this, it is sufficient to study ECM.

11We can also present a polynomially testable sufficient condition for emptiness of the
core of the non-threshold version WTSG/TCSG. Consider an agent ai such that I−ai

cannot complete all the tasks. Such an agent must have a unique skill s required for some
task t ∈ T (so s ∈ S(t)) that no other agent has, so s ∈ S(ai), but s /∈ S(I−ai

). We call
such an agent a unique-skill agent. Suppose there are no unique-skill agents, and consider
some agent ai. I−ai covers all the skills and completes all the tasks. Thus, I−ai blocks
any imputation where pi > 0, since v(I−ai

) =
∑

t∈T w(t). ai was any agent, so for all i we
have pi = 0, so the core is empty.

12This result shows that CNE is in co-NP, but of course does not show that it is co-NP-
complete.

13We thank an anonymous reviewer of the earlier conference version of this paper for
directing us to Malizia et al. [48].

14Given a polynomial algorithm to compute the maximal excess of any coalition given
an imputation, we can test ε-core membership: if the maximal excess is at most ε then
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Even in the simple domain of STSG, the ECM problem is coNP-Complete
and equivalent to the weighted set-cover problem.

Definition 27 (Weighted Set-Cover (WSC)). We are given a set E of el-
ements and a collection of subsets S = {S1, . . . , Sn} where Si ⊆ E and
∪Si = E, and positive weights c1, . . . , cn, and are asked to find a subset
S ′ ⊆ S that covers E (i.e., such that ∪Si∈S′Si = E) of minimal weight (i.e.,
minimizing

∑
i∈S′ ci).

The restricted version of WSC where all the weights are identical is the
SET-COVER problem. SET-COVER is a prominent NP-complete prob-
lem [39].

Theorem 10. ECM is co-NP-Complete in any of the CSG forms: STSGs,
TCSG, WTSG, TCSG-T, and WTSG-T.15

Proof. A coalition C with an excess greater than ε (so e(C) = v(C)−p(C) ≥
ε) violates the ε-core constraints. Thus, the decision version of ECM requires
making sure that under a given imputation there does not exist a coalition
with an excess of at least ε for some ε ≥ 0. Equivalently, ECM requires
making sure that the maximal excess across all coalitions is at most ε. Due
to Theorem 3, given a coalition C we can compute the value v(C) and its
payoff p(C) in polynomial time, and thus can also compute its excess e(C) =
v(C)− p(C). Thus, ECM is in coNP for all of the above CSG classes.

this is an ε-core imputation and otherwise it is not. On the other hand, given the ability
to test for ε-core membership, we can also compute the maximal excess, by performing a
“binary search”, querying whether the imputation is in the ε1-core, ε2-core, ε3-core and
so on, where εi is chosen in a binary search for the “correct” maximal excess value. Thus,
a polynomial algorithm for ECM allows computing the maximal excess up to any desired
degree of accuracy in polynomial time.

15Following the conference version of this paper, Aziz et al. have studied threshold
versions of monotone cooperative games [2]. They have examined the length of simple
cooperative games—the size of the smallest winning coalition. They have shown that
computing the length of an STSG is an NP-hard problem. Further, they have shown that
if computing the length of a simple game is NP-hard, testing for ε-core membership (ECM)
is also hard. This provides an alternative proof to the one given in this theorem. We have
chosen to keep the current proof as it ties together ECM with the weighted set cover
problem (WSC). In addition to this relation resulting in certain inapproximability results,
our polynomial algorithm for restricted cases (see Theorem 11) relies on this relation as it
uses a method for solving a restricted case of WSC.

27



We now show that computing the maximal excess emax = max{e(C)|C ⊆
I} even in the restricted class of STSG is equivalent to a weighted set-cover
problem. Any losing coalition C has a non-positive excess (i.e., p(C) ≥ v(C))
under any imputation. Thus, the maximal excess occurs for some winning
coalition, and we have emax = max{e(C)|v(C) = 1}. Any winning coalition
C has v(C) = 1, so the maximal excess occurs for a winning coalition C that
minimizes p(C). By definition p(C) =

∑
i∈C pi, so finding the maximal excess

coalition requires finding a subset of agents C whose skill set S(C) = ∪i∈C′Si
covers all skills S (i.e., ∪i∈C′Si = S) and whose sum of payoffs p(C) =

∑
i∈C pi

is minimal. This is simply a weighted set-cover instance with subsets S =
{S1, . . . , Sn} and weights p = {p1, . . . , pn}.

The above result holds even if the imputation is always the equal imputa-
tion where pi = pj for any two agents i, j, in which case ECM is equivalent to
SET-COVER (rather than WSC). The result holds even for the equal impu-
tation when each skill is shared by exactly two agents (i.e., for any skill s we
have exactly two agents who own that skill), in which case the ECM problem
translates to the prominent NP-complete VERTEX-COVER problem [39].16

Unfortunately, WSC is also hard to approximate, and unless NP has
slightly super-polynomial algorithms (which is highly unlikely), the best
polynomial-time approximation algorithm for it achieves an approximation
factor of Θ(lnn) [37]. A simple algorithm for computing the maximal excess
(or for solving ECM) through approximating WSC requires a FPTAS for
SET-COVER.

To provide tractable algorithms for the ECM problem, we focus on re-
stricting the inputs. The problem of WSC has been studied for a class of
problems in which the inputs are tree-like and have a constant bounded max-
imal subset size [42].17

Consider for example the case of sensor networks, where each agent is
present in a certain geographical location, and a “skill” represents an agent’s
ability to cover a certain geographical point of interest with its sensors. In
this case, a point of interest may only be covered by agents who reside in its

16To see this equivalence, consider each vertex to be an agent, and each edge to be a
skill connecting the two agents that share the skill.

17Techniques for tree decomposition, and algorithms for problems where the input’s
structure is known to be somewhat “similar” to a tree, have received much attention in
other parts of the literature [55, 17, 1, 29].
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vicinity, so a “skill” is owned by agents who reside in a continuous geographi-
cal space. Further, in many domains the sensor network may be quite sparse,
so each agent would only cover at most a few points of interest. When the
coverage is sparse, it is also unlikely that there would be a cycle of agents
where every two agents in the cycle share a certain point of interest that
both cover. The skill structure in such domains is tree-like in the sense de-
scribed below, so certain core-related problems that are generally hard can
be tractably handled.

We use the approach of Guo and Niedermeier [42], who showed that
when each of the subsets has a size at most b (where b is constant), so
b = maxSi∈S|Si|, and when the subset collection is tree-like, then WSC can
be solved in polynomial time.18 We first give the definition of a “tree-like”
subset collection (Guo and Niedermeier’s work provides a few examples for
tree-like subset collections [42]):

Definition 28 (Tree-like subset collection). A collection S = {S1, . . . , Sn} of
subsets over the elements X (such that Si ⊆ X) is tree-like if it is possible
to arrange the subsets of S in an acyclic undirected graph (unrooted tree) T
such that there is a one-to-one correspondence between the vertices of the tree
and the subsets, and such that for every element x ∈ X all the nodes in T
corresponding to the subsets that contain x induce a subtree of T .

The subset collection is tree-like if it is possible to create edges between
the subsets so that for any element x ∈ X, the induced subgraph on the
subsets that contain x is a tree. Many skill domains such as the sensor
network domain described above may exhibit these properties, so algorithms
tailored for such domains can be used to solve core-related problems in these
domains.19

Since ECM is equivalent to WSC, and since Guo and Niedermeier [42]
provide a polynomial algorithm for WSC where the subset collection is tree-
like and each subset contains at most b elements (for a constant b), we obtain
the following corollary:

18The algorithm in [42] is fixed parameter tractable. Fixed parameter tractable algo-
rithms with parameter k run on input I of size |I| in time f(k) · |I|O(1), where f is any
computable function (typically exponential). In the case of [42] the parameter k is the
size of the largest subset in the input.

19The results of Tarjan and Yannakakis [65] show that it is possible to test whether a
subset collection is tree-like, and if so to construct a subset-tree for it, in linear time.
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Corollary 1. Given an STSG where each agent has at most b skills and the
collection of the agents’ skill subsets is tree-like, it is possible to solve ECM
in polynomial time.

For solving ECM in the other CSG classes, we need another restriction:
the number of tasks must also be bounded by a constant q.

Definition 29 (Bounded tree-like CSG domain). We say a CSG domain
is a bounded tree-like CSG domain if each of the agents’ skill subsets
has at most b skills (where b is a constant), where there are at most q tasks
(where q is a constant), and where the agents’ skill subsets are tree-like.

There is no limitation on the total number of skills or the total number
of agents. We now provide the equivalent result to Corollary 1 for the other
CSG classes.

Theorem 11. In bounded tree-like CSG domains of the classes TCSG, WTSG,
TCSG-T, and WTSG-T, it is possible to solve ECM in polynomial time.

Proof. We say a task subset T ′ ⊆ T is achievable by the coalition C if C
covers the set of skills S(T ′) = ∪tj∈T ′S(tj). If T ′ is achievable by coalition
C, then we have T ′ ⊆ T (C) where T (C) is the set of all tasks the coalition
C can achieve. We have assumed free disposal of tasks, so u(T (C)) ≥ u(T ′)
and the value of a coalition C is v(C) = u(T (C)) ≥ u(T ′). Thus, if for any
coalition that can achieve T ′ we have p(C) ≤ u(T ′)− ε then C has a deficit
e(C) = v(C) − p(C) ≥ ε and the imputation p is not in the ε-core. On the
other hand, T (C) ⊆ T , so if for any T ′ ⊆ T we have p(C) > u(T ′) − ε,
then all coalitions have a deficit of at most ε, and the imputation p is in
the ε-core. Thus, to check if the maximal deficit under an imputation is at
most ε (or in other words, to solve ECM), it suffices to examine every task
subset T ′ ⊆ T and test whether any coalition C that achieves T ′ has a payoff
p(C) > u(T ′)− ε.

We now note that in bounded CSG domains, there is a constant number
of tasks, so there is a constant number of task subsets. Thus we must only
examine a constant number of task subsets T ′ and test whether any coalition
C that achieves T ′ has a payoff p(C) > u(T ′) − ε. Such a test for a specific
task subset T ′ requires polynomial time. In all the above CSG domains, it is
possible to compute u(T ′) in polynomial time. Also, to achieve T ′, a coalition
must cover S(T ′). Since the domain is bounded and tree-like, the method
of Guo and Niedermeier [42] allows testing the minimal payoff p(C) of any
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coalition that covers S(T ′): similarly to the proof of Theorem 10, this is
simply a Weighted Set-Cover problem and can be solved in polynomial time
in tree-like domains where the agents’ skill subsets have at most b skills.

The above Corollary 1 and Theorem 11 indicate that in certain restricted
domains, verifying ε-core imputations (or computing the maximal excess un-
der a given imputation) can be performed in polynomial time. We now show
that in these restricted domains, the problems of finding ε-core imputations
and computing the least-core are also in P.

We first show that ECF can be solved in polynomial time in these re-
stricted domains, using a separation oracle.

Theorem 12. In bounded tree-like CSG domains of the classes STSG, TCSG,
WTSG, TCSG-T, and WTSG-T, ECF is solvable in polynomial time.

Proof. We first consider an exponential-size feasibility linear program for
computing an imputation in the ε-core. The program simply considers all
the possible 2n coalitions over the n players, C1, . . . , C2n . The ε-core can be
written directly as a linear program over the variables p1, . . . , pn (represent-
ing the agents’ payoffs in the imputation), with a constraint for each such
coalition.

Feasible (p1, . . . , pn) s.t.:
1.1. v(C1)−

∑
i|ai∈C1

pi < ε (Coalition C1 constraint)

1.2. v(C2)−
∑

i|ai∈C2
pi < ε (Coalition C2 constraint)

...
1.2n. v(C2n)−

∑
i|ai∈C2n

pi < ε (Coalition C2n constraint)

2.
∑n

i=1 pi = v(I) (Imputation constraint)

Table 2: Exponential linear program for the core

The above program is a feasibility linear program, and any solution for it,
p = (p1, . . . , pn), is an imputation in the ε-core. However, its size is exponen-
tial in the number of agents, so even writing this program requires exponen-
tial time. Nonetheless, we can use a separation oracle to either find an ε-core
imputation or show that the ε-core is empty.20 Our proofs of Corollary 1 and

20A separation oracle is an algorithm that, given a candidate feasible solution either
returns a violated constraint, or confirms that the solution is feasible. A linear program
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Theorem 11 used the relation between ECM and Weighted Set-Cover, and
taking a candidate imputation p = (p1, . . . , pn) as input, find a coalition C
with payoff p(C) that achieves a task subset T ′ such that p(C) ≤ u(T ′)− ε,
if such a subset exists. Such coalitions are exactly the ones for which the
constraint is violated in the above linear program, and provide a separation
oracle. Given this separation oracle, the above linear program can be solved
in polynomial time and without the need to specify it explicitly.

Theorem 12 shows that under the above restrictions regarding the CSG
domain, given a certain ε it is possible to find an imputation in the ε-core in
polynomial time if one exists, or determine that the ε-core is empty. We now
consider the problem of finding the least-core.

Corollary 2. In bounded tree-like CSG domains of the classes STSG, TCSG,
WTSG, TCSG-T, and WTSG-T, LCV is solvable in polynomial time, and it
is also possible to find an imputation in the least-core in polynomial time.21

Proof. First note that the maximal value any coalition can achieve is v(I),
so the v(I)-core is always non-empty. We can perform a binary search on the
minimal value of ε such that the ε-core is non-empty, applying the algorithm
of Theorem 12 on each tested value.

Thus, although Theorem 10 shows that in general (non-tree-like) CSGs,
even testing for an ε-core imputation is hard, the key questions regarding the
least-core and ε-core are tractably solvable for more restricted domains.

4.6. The Shapley Value and Banzhaf Power Index

We now consider calculating the Shapley value and Banzhaf power index
in CSGs. Dummy players have a Shapley value and Banzhaf index of 0.
Thus, computing either index allows testing for whether an agent is a dummy
player. The problems SHAPLEY and BANZHAF have decision problem
versions: testing whether the Shapley value or Banzhaf power index of an

can be solved in polynomial time by the ellipsoid method as long as it has a polynomial-
time separation oracle, and it is not necessary to explicitly write down the program [59, 41].

21The least-core value is computed up to a desired degree of accuracy, so the methods
here compute ε′min such that the distance between the true εmin value and this value is at
most |εmin−ε′min| < δ, and the running time is polynomial in the accuracy (or logarithmic
in the number of bits to represent it). The imputation found is in the ε′min-core.
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agent exceeds a certain threshold K. We show that these decision problems
are NP-hard as a corollary of our result regarding the DUMMY problem.

Corollary 3. The decision versions of SHAPLEY and BANZHAF are NP-
hard in TCSG-T and WTSG-T.

Proof. DUMMY is NP-hard in these domains, due to Theorem 7. Given the
Shapley value or Banzhaf index, we can answer DUMMY by comparing the
index to 0. Thus, computing these indices in these domains (or the decision
problem of testing whether they are greater than some value) is NP-hard.

The decision versions of SHAPLEY and BANZHAF are NP-hard, but
may not even be in NP, so these problems may not be NP-complete. We
show a stronger result of #P-completeness for the Banzhaf value, for all
domains. We first define two #P-complete problems:

Definition 30 (#SET-COVER (#SC)). We are given a set S and a collec-
tion C = {S1, . . . , Sn} that for all Si we have Si ⊂ S. A set cover is a subset
C ′ ⊂ C such that ∪Si∈C′Si ⊇ S. Given S and C, we are asked to compute
the number of different set covers of S.

Definition 31 (#VERTEX-COVER (#VC)). We are given an undirected
graph G = 〈V,E〉, and are asked to count the number of vertex covers in
the graph. A vertex cover is a subset V ′ ⊆ V such that for every edge e =
(u, v) ∈ E, either u ∈ V ′ or v ∈ V ′.

We note that #VC is a special case of #SC, where the collection S to
be covered is the set of all the edges and the collection of subsets includes
a subset for every vertex, which contains all the edges in which this ver-
tex occurs (i.e., the subset representing the vertex v contains all the edges
that have v as one of their endpoints). The problem #SC is known to be
#P-complete, even for some very restricted classes of graphs such as planar
bipartite graphs of degree at most four [66]. Since checking if a collection
of subsets of a target set S indeed covers all the elements of S, the problem
#SC is also #P-complete.

We now show that BANZHAF is #P-complete in all the restricted ver-
sions of CSGs defined in this paper, using a reduction from #SC.
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Theorem 13. BANZHAF in STSG, TCSG, WTSG, TCSG-T and WTSG-T
is #P-complete.22

Proof. STSG is a restricted case of all the other types of games, so it is
enough to show #P-completeness of BANZHAF in STSGs. The Banzhaf
power in STSGs is the proportion of coalitions where ai is critical out of
all coalitions containing ai. Since the number of coalitions containing ai is
known to be 2n−1, we only need to calculate the number of coalitions where
ai is critical. First, we note this problem is in #P, since due to Theorem 3
we have a simple polynomial procedure that can test if ai is critical in some
coalition containing ai.

We show that BANZHAF is #P-complete in STSGs by a reduction from
#SC. Let the #SC instance contain subsets S = {S1, . . . , Sn}. We build the
following STSG, with n + 1 agents. Agent ai has the skill set Si, and an+1

has a single new skill, so Sn+1 = {snew}, such that snew /∈ S. The BANZHAF
query is regarding the Banzhaf index of an+1. Every winning coalition must
cover snew, which can only be done using an+1. Consider a coalition C that
does not contain an+1 and covers S. While C is losing, C∪{an+1} is winning,
and an+1 is critical in C∪{an+1}. Consider a coalition C that does not contain
an+1 and does not cover S. C is losing, and C ∪{an+1} is also losing, so an+1

is not critical in C ∪ {an+1}. Denote by x the number of coalitions that do
not contain an+1, and do cover S. Since each such coalition covers S, it is a
set cover in the original problem. Since an+1 is not critical to any coalition
that does not contain an+1, the number of coalitions where an+1 is critical is
exactly x. Thus, if the BANZHAF answer is x

2n
, then the #SC answer is x.

Thus a polynomial algorithm for BANZHAF also solves #SC, so BANZHAF
is #P-complete.

5. Similar Cooperative Game Representation Languages

Related research deals with similar models of cooperation among agents,
and alternative cooperative game representation languages. We now examine

22Following the conference version of this paper, the computational complexity of com-
puting the Shapley value in STSGs, TCSGs and WTSGs was examined in Aziz et al. [3].
Aziz et al. have shown that computing the Shapley value in these CSG versions is #P-
complete, strengthening our results, which only showed NP-hardness. In fact, they show
that in any representation language that allows adding a dummy agent to any game com-
puting the Shapley value is #P-hard if computing the Banzhaf index is #P-hard.
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similarities and differences between these languages and the CSG represen-
tation, both in terms of expressivity and computational aspects. We provide
a general discussion regarding many representation languages, and provide
a deeper discussion regarding the representations we believe are closest to
the CSG representation: linear production games [52], the anonymous proof
solution representation [68] and Coalitional Resource Games [67].

5.1. Expressiveness And Succinctness Of Representation Languages

Section 1.3 discussed several representation languages proposed for coop-
erative games. In Section 3 we showed that even STSGs, the most restrictive
CSG class, can represent any simple increasing game. Further, we showed
that WTSGs can represent any increasing game. This completeness in terms
of expressivity is a significant advantage that CSGs have over other repre-
sentation languages that are limited in expressiveness. The most prominent
restricted representation is the class of weighted voting games [14, 50, 33, 35],
where each agent has a weight, and a coalition of agents wins the game if the
sum of the weights of its participants exceeds a certain threshold.

While some characteristic functions cannot be represented as a weighted
voting game (see Elkind et al. [34] for a discussion of the expressiveness of
weighted voting games), certain problems such as computing the core or
finding veto agents can be solved in polynomial time in these games. In-
terestingly, even in this simple representation, certain problems are already
computationally hard, such as testing whether an agent is a dummy, com-
puting power indices or computing the least-core and the nucleolus.

Other examples of restricted cooperative game representations are cooper-
ative graph games [30] and various forms of network games [12, 3, 13]. Many
such incomplete representations admit polynomial algorithms for problems
that are computationally hard in CSGs, such as computing power indices or
core-related problems. Thus, if a game is given in one of these restricted rep-
resentations, it is better to use algorithms tailored for these representations.
On the other hand, these languages are not fully-expressive, and so for each
of them there are some characteristic functions that cannot be represented
using the language.

Recently, Aziz et al. [2] have examined the impact of certain restrictions
on CSGs that allow them to be solved more efficiently. Specifically, they show
that in STSGs where the total number of skills is bounded by a constant, it is
possible to compute the least-core in polynomial time (as well as the Cost-of-
Stability and the nucleolus [10, 58]). However, this restriction regarding the
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bounded number of skills is severe. Our algorithm for computing the least-
core in Section 4.5 only requires that the number of skills any single agent
may have is bounded, but allows an arbitrary number of skills in total. On
the other hand, our algorithm has the additional requirement of a tree-like
structure.

Previous work on computational game theory has uncovered various fully-
expressive representation languages, which can describe any characteristic
function. Examples include the marginal contribution network language
(MC-Nets) [44], the sparse synergy representation [23], and the Multi-Attribute
Coalitional Games (MACGs) [45], which generalize both of these.23 Any
fully-expressive representation can represent any characteristic function, but
different representations may require a different amount of space to rep-
resent the same game. Work on representing functions in a concise form
has provided a insightful definition regarding the succinctness of representa-
tions [18, 47, 25, 20]: a language L is at least as expressive as a language
L′ if there is a polynomial translator that converts any input of L′ into an
equivalent input in L (where ’equivalence’ means that the value functions
coincide).24 The running time of algorithms that analyze cooperative games
depends on the input size, so a polynomial algorithm that takes the input in
one language may not be useful if the input is given in another language—
the input would need to be converted to the required language, which may
take an exponential amount of time and may result in an exponentially long
representation. CSGs are closely related to the set-cover problem, and can
compactly represent domains where agents must have a certain resource or
cover certain skills in order to achieve a task. In contrast, marginal contribu-
tion networks and the sparse synergy representation are quite different from
a set-cover domain, and so there appears to be no straightforward conversion
from these forms into a compact CSG representation. Similarly, we do not
see a way to convert a compact CSG representation into a compact form of

23Ieong et al. [45] provide a full discussion of the relation between marginal contribution
networks, the sparse synergy representation, and MACGs.

24Note that some of our complexity results imply a succinctness gap: CSGs are strictly
more succinct than the explicit representation unless P = NP (some problems, such as
DUMMY, are hard for WTSGs, but can trivially be solved in polynomial time when the
input is given in the explicit representation, as this input under the explicit representation
is already of a size exponential in the number of agents). We thank an anonymous reviewer
for pointing this out.
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these other representations.
MACGs [45] are a general framework for building representation lan-

guages for cooperative games, and is in fact a “meta-model.” The properties
of a MACG representation depends on the choice of an aggregator which takes
attributes associated with agents and outputs a numeric value. Specifically,
the expressive power of an MACG representation and its computational prop-
erties depend on the the aggregators used. Thus, the computational prop-
erties of the MACG model must be examined under a a specific choice of
aggregators. It is possible to express CSGs using certain such aggregators,
such as an aggregator that tests whether at least one of the agents in a set
is endowed with a certain skill. In this sense, CSGs can be thought of as a
restricted case of the MACG framework, so our analysis provides algorithmic
results for this specific aggregator.

We now consider the representations that we see as closest to the CSG
representation language.

5.2. Linear Production Games

Linear production games [52] are games where agents pool together re-
sources in order to manufacture finished goods that can be sold at a given
market price. In such games, there are n different types of input resources,
and each agent is endowed with a certain quantity of each resource. Similarly,
there are k different finished goods that can be produced, each of which can
be sold at a certain market price. Each such finished good requires a certain
amount of the n different input resources. When several agents form a coali-
tion, they have at their disposal the sum of the individual endowments of the
input resources. The utility a coalition can produce is the maximal revenue
the coalition can achieve for the finished goods it can produce (fractional
quantities of goods are allowed).

Linear production games have certain similarities with CSGs, and es-
pecially with WTSGs. Both have different “resources” with which agents
are endowed—the input resources in linear production games and the agent
skills in CSGs. Similarly, there are outputs that coalitions of agents strive
to achieve—finished goods in linear production games, and completed tasks
in CSGs. Finally, the market prices of finished goods in linear production
games are somewhat parallel to the weights of tasks in WTSG.

The key difference between linear production games and CSGs is that in
CSGs the input resources have no quantities. As these resources in CSGs are
skills, they can be used as many times as required. In contrast, quantities lie
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at the heart of linear production games, where the amounts of the finished
goods a coalition can manufacture depends on the amounts of input resources
a coalition has, and the amount required to produce each finished good.

Interestingly, a key result regarding linear production games is that they
always have a non-empty core [52]. In fact, a certain core imputation can
be found in these games using linear programming duality. Since CSGs can
express games with empty cores, there are some games that can be expressed
as a CSG, but not as a linear production game. On the other hand, for some
CSG forms, even testing whether the core is empty is computationally hard,
whereas a core imputation always exists in a linear production game, and
can be found in polynomial time.

5.3. Anonymous Proof Solutions

Yokoo et al. [68] consider open, anonymous coalitional environments,
where a single agent can use multiple identifiers (or false names), pretending
to be multiple agents, and distribute its ability among these identifiers. This
requires a model of what abilities agents have, so they can be split among
their false identities. The setting examined is similar to general CSGs: there
are several skills S, and each agent ai has some subset of skills Si ⊂ S. The
model assumes that no two agents possess the same skill, so for any ai 6= aj
we have Si ∩ Sj = φ. The characteristic function of the game is defined
on the set of skills that a coalition has: v : 2S → R. Yokoo et al. [68] do
not consider the computational complexity of calculating solution concepts,
focusing instead on strategic agent behavior.

Still, the expressiveness of their anonymous-environment model is essen-
tially equivalent to that of general CSGs. In one direction, any game com-
pactly represented by the anonymous-environment model can also be repre-
sented as a compact CSG, by defining a task for each skill (which requires
exactly this skill). In this way, it is possible to map any subset of skills a
coalition may have to any utility for that coalition. In the other direction,
the anonymous-environment model can directly map a subset of skills that
a coalition has to the utility of that coalition, and so can express instances
described in the CSG model, which defines the utility through tasks. On
the other hand, our task-based CSG representation is at least as compact
as the anonymous-environment representation, and can sometimes save an
exponential amount of space over that representation. The reason for this is
that if a certain skill subset S ′ ⊂ S enables the achievement of a task, the
CSG model does not have to specify the utility for any skill subset X such
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that S ′ ⊂ X, and this is assumed to be at least the utility of S ′ (so a new
value must only be specified if S ′′ allows achieving additional tasks).

5.4. Coalitional Resource Games

Wooldridge and Dunne [67] present a model of Coalitional Resource
Games. In such games, agents are interested in achieving goals. A set of
different resources are required to reach these goals. Each agent is endowed
with different amounts of each resource, and wants to achieve one of a dif-
ferent subset of goals. A goal subset satisfies a coalition if for every agent in
that coalition it contains a goal desired by that agent. A goal set is feasible
for a coalition if that coalition has sufficient resources to achieve all the goals
in that set.

One main concern is in regard to properties of goal subsets that are
successful—both feasible and satisfying for a coalition. Wooldridge and
Dunne [67] consider the complexity of several questions such as: whether a
coalition has a successful goal set (NP-complete); whether a certain resource
r is necessary for a coalition (co-NP complete); and whether a successful goal
set G′ for a coalition is optimal in its use of the resource r (co-NP complete).
Many results for CRGs are negative, so that although small representations,
answering many questions regarding them is computationally hard.

Formally, Coalitional Resource Games (CRGs) have set I = {a1, . . . , an}
of agents, a set G = {g1, . . . , gm} of possible goals, a set R = {r1, . . . , rt} of
resources, an endowment function en : I × R → N mapping an agent and a
resource to the amount of that resource that the agent has, and a requirement
function req : G×R→ N mapping a goal and a resource to the amount of that
resource required to obtain that goal. The amount of resource rj available to
a coalition C of agents is en(C, rj) =

∑
ai∈C en(aj, rj). Similarly, the amount

of rj required for a set of goals G′ is req(G′, rj) =
∑

gkinG′
req(gk, rj).

A goal subset G′ ⊂ G satisfies a coalition C ⊂ I if for every agent ai ∈ C
there is a goal g ∈ G′ such that g ∈ Gi, and the set of goal sets that satisfy
a coalition C is denoted by sat(C) = {G′ ⊂ G|∀ai ∈ C, Gi ∩ G′ 6= φ}. A
set of goals G′ is feasible for coalition C ⊂ I if that coalition has sufficient
resources to achieve all the goals in G′. We denote the set of feasible goal
sets for coalition C by feas(C) = {G′ ⊂ G|∀rj ∈ R, req(G′, rj) ≤ en(C, r)}.

Our model of CSGs is somewhat similar to that of CRGs.25 CSGs define

25Another somewhat related class of games are Cooperative Boolean Games (CBGs) [32].
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tasks to accomplish, and CRGs define goals desired by agents. Performing a
task in CSGs requires a coalition to have a certain set of skills, and achieving
a goal in CRGs requires certain resources. However, significant differences
exist between the models.

First, completing a goal in a CRG requires different amounts of various
resources. In a CSG, tasks simply require the use of a skill, and the only
requirement is for an agent in the coalition to have the skill (the skill is not
consumed when performing the task). This can be modeled in CRGs by
requiring just 1 unit of the resource for any goal, giving an agent 2|I| units
of that resource, enough for any possible coalition. In this sense, CRGs are
more expressive than CSGs. However, this expressiveness of CRGs comes at
a price, since many questions regarding CRGs are computationally hard. For
example, while computing the value of a coalition in a CSG can be done in
polynomial time, testing whether there exists a feasible and satisfying goal
set (a question that resembles computing the value of a coalition) is NP-hard
in CRGs; many questions relating to agent properties are hard in CRGs while
finding veto agents in CSGs admits a simple polynomial algorithm.

Second, the CRG model does not define a coalitional game, but rather
defines for each coalition C the successful goal sets for that coalition, sf (C) ⊂
G, which are both feasible and satisfying. A solution in the CRG model is
simply a goal set that is both feasible and satisfying for a coalition. However,
if there are several such goal sets, it is unclear which of them is chosen. It is
possible to define a simple coalitional game, with the characteristic function
defined to be 1 for coalitions that have successful goal sets and 0 for coalitions
that do not, such that,

vCRG(C) =

{
1 if ∃G′ ⊆ G that G′ ∈ sf(C)

0 otherwise

However, such a definition has several drawbacks. Testing if a certain
coalition has a successful goal set is NP-complete, so simply evaluating the
value of the game is computationally hard, even for a single coalition. More
importantly, if a goal satisfies a coalition, all the agents are satisfied as at
least one of their goals is achieved. This makes the question of dividing the

These games can be viewed as a hybrid of CRGs and a non-cooperative game proposed
by Harrensein et al. [43]. Despite structural similarities, CBGs are not transferable-utility
cooperative games, and so it is not possible to compare their expressiveness with CSGs.
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total utility among the agents meaningless. In comparison, the model of CSG
assumes that accomplishing different tasks generates a certain utility, which
has to be divided among all the agents. An example of this situation is a
common project that requires completing various tasks, that all the agents
have to accomplish, and that generate a certain revenue. The agents are
not satisfied just by the project having succeeded, but rather gain utility
according to the share of the revenue received.

6. Conclusions

We examined a simple but expressive model of cooperation among agents,
Coalitional Skill Games (CSGs). We considered several restricted CSG do-
mains, and examined the computational complexity of some key problems
related to game-theoretic solution concepts in these domains. We showed
that we could calculate the value of a coalition in polynomial time in all
restricted forms, although some problems of interest remain computationally
hard. Some key results provide tractable algorithms for testing veto agents
and dummy agents (in most domains) and computing the core or testing its
emptiness (in most domains), while showing that computing power indices
is computationally hard.

Several questions remain open for future research. First, this paper
presents several negative results, especially regarding the ε-core and least-
core in general domains and regarding computing power indices. Power in-
dices, however, can be approximated using general algorithms. On the other
hand, this work only provided positive results regarding ε-core and least-core
related problems in CSGs in quite restricted domains. It would be interesting
to see if there are other restricted domains where such problems can be tack-
led, and to find a power index approximation method tailored for CSGs that
would outperform such generic power index approximation schemes. Second,
there are game-theoretic solution concepts refining the least-core, such as the
nucleolus [58], and a further step would be to examine the complexity of com-
puting these solution concepts. We conjecture that computing the nucleolus
is hard in general CSGs but could be handled in restricted domains. Third,
it is still open to decide whether core non-emptiness is co-NP-complete for
TCSGs and WTSGs. Finally, it would be interesting to see how CSG-based
models can be used in applied settings.
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