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Abstract

Increasingly, organisations flexibly outsource work onmmagerary basis to a global
audience of workers. This so-calledbwdsourcinghas been applied successfully
to a range of tasks, from translating text and annotatinggesato collecting in-
formation during crisis situations and hiring skilled werk to build complex soft-
ware. While traditionally these tasks have been small anddcbe completed
by non-professionals, organisations are now starting dawdsource larger, more
complex tasks to experts in their respective fields. Thesdestamclude, for exam-
ple, software development and testing, web design and ptadarketing. While
this emergingexpert crowdsourcingffers flexibility and potentially lower costs, it
also raises new challenges, as workers can be highly hetezogs, both in their
costs and in the quality of the work they produce. Specifjcéttie utility of each
outsourced task is uncertain and can vary significantly éetwdistinct workers
and even between subsequent tasks assigned to the same Virariteermore, in
realistic settings, workers have limits on the amount ofkntbey can perform and
the employer will have a fixed budget for paying workers. @itteis uncertainty
and the relevant constraints, the objective of the emplig/¢o assign tasks to
workers in order to maximise the overall utility achievea. férmalise this expert
crowdsourcing problem, we introduce a novel multi-armeddita(MAB) model,
the bounded MAB. Furthermore, we develop an algorithm teesdl eficiently,
called boundea-first, which proceeds in two stages: exploration and exgioin.
During exploration, it first usesB of its total budgetB to learn estimates of the
workers’ quality characteristics. Then, during explodat it uses the remaining
(1 - £) B to maximise the total utility based on those estimates. d#iis tech-
nigue allows us to derive a@(B%) upper bound on its performance regret (i.e.,
the expected dlierence in utility between our algorithm and the optimum)jolth
means that as the budd@increases, the regret tends to 0. In addition to this theo-
retical advance, we apply our algorithm to real-world dedafoDesk, a prominent
expert crowdsourcing site. Using data from real projecisuiding historic project
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budgets, expert costs and quality ratings, we show thatlgoritam outperforms
existing crowdsourcing methods by up to 300%, while achiguip to 95% of a
hypothetical optimum with full information.

Keywords:
Crowdsourcing, machine learning, multi-armed banditsiget limitation

1. Introduction

In recent years, a wide range of organisations, includirigrprises, governments,
academic institutions and charities, have turned to a nearging labour market
to achieve their operating objectives. Using the interttety advertise jobs to a
global audience and hire workers on a temporary basis to letentasks, often
in exchange for financial remuneration. This so-calteslwdsourcingpromises
considerable flexibility, as it quickly connects employarsl workers across the
globe without large recruitment overheads [40, 11].

A significant amount of existing research and technologa®so far concen-
trated on facilitating the crowdsourcing of small units asn (so-called “micro-
tasks”) that can be completed in minutes by non-profestiabaurers, including
survey participation, audio clip transcription or imageaation [20, 24]. Here,
workers are typically paid small, fixed amounts of money facte successfully
completed work unit, or even perform the work for free in tlieggence of other
non-monetary incentives [31]. Prominent examples of neatfiierings in this
space include Amazon’s Mechanical Turk, Galaxy Zoo and Mask!

However, in contrast to this crowdsourcing of non-profesals, a growing
number of businesses are beginning to crowdsource workrge-kcale projects
that require many hours offert by experts in a particular field. SuelRkpert crowd-
sourcingis used for the development and testing of large softwardicaions,
building websites, professionally translating documemt®rganising marketing
campaigng. The rising popularity of this approach is evident in the sadlemerg-
ing intermediaries that connect employers and expert werls of August 2013,
oDesk has 2.5m registered workers, while Freelancer has, &vith both having
witnessed an approximately two-fold increase in membetisinv2012.

Unlike the crowdsourcing of smaller and simpler units of kyaxpert crowd-
sourcing raises new challenges. First, the quality of a detap task can vary

greatly, both between filerent workers and even between several tasks completed

!Seemturk.com, galaxyzoo.org andmicrotask.com, respectively.
2For some examples of these, selesk.com, utest.com, trada.com or freelancer. com.
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by the same worker. For example, a highly-skilled softwargirgeer might com-
plete several times as many functions as an inexperiencekemio a single hour,
but the same skilled engineer may occasionally struggle avjgarticular task, per-
haps due to adverse personal circumstances [7]. This mearetemployer needs
to select workers carefully, in order to consistently aetia high quality.

Second, the online labour market is inherently open and rdim&n nature,
with a constant influx of new workers. Thus, there is typicdiltle or no prior
knowledge about the expected quality of a particular workes illustrate this,
more than 96% of workers advertising on oDesk have not cargbkny significant
amount of work in the past.As a result, an employer will often need to recruit
workers it has not previously dealt with and will only gaifidrmation about their
performance during the course of a project.

Third, experts often demand widely varying prices for thsgirvices. This can
be due to dferences in skill level, but is similarly influenced by indival expec-
tations, local wages and the cost of living in the worker'aroy of residence. As
an example of this, dlierent workers on oDesk charge from as little as $5 to over
$200 for one hour of Web design work. Clearly, an employee Inereds to balance
the cost of workers with the quality of their work — while sonverkers may be
cheaper than others, their quality could be consideralpeito

Finally, an employer in an expert crowdsourcing setting d&las to take into
account several real-world constraints. Typically, a@copwill have a fixed mon-
etary budget that cannot be exceeded. Furthermore, workersot complete an
arbitrary amount of work within the time scope of the projebt practice, each
worker has a limit on the number of hours they can dedicategivem project.

Taken together, these challenges pose a critical problemytorganisation that
wishes to crowdsource a considerable amount of work — howldhballocate
tasks to unknown workers in order to achieve the highestipesguality of service
while staying within a given budget? For example, a compamgiémenting a
large software project may wish to maximise the number ofkvngr features that
meet at least a certain level of quality; while an organiattrowdsourcing an
online marketing campaign might be interested in attrgdiire highest number of
new customers.

To address these challenges, we turn to the field of multedrpandits (MABS),
a class of problems dealing with decision-making under aaicgy [1]. These op-
timisation problems consider settings where actions he.pulling of a particular
arm) have initially unknown rewards that have to be learmugh noisy obser-

3In August 2013, only 85,329 out of the 2.5m registered warkeroDesk had completed at least
one hour of work or earned $1.
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vations, and the goal is to maximise the total amount of rds/ély sequentially
choosing diferent actions over time. This corresponds exactly to cingasitially
unknown workers in an expert crowdsourcing setting. Howex® we discuss in
Section 2, no existing MAB model considers the specific caindis of the expert
crowdsourcing setting. While some work considers MAB peoid with a fixed
budget, termed budget-limited MABs [33], and proposes abtitimited e-first
algorithm for this, their model does not consider task lnmier worker.

Addressing this shortcoming, we propose timinded MABa novel MAB
model that builds on and extends the budget-limited MAB nhéaldit the expert
crowdsourcing problem. Given this, we develop a new algorjtcalledbounded
e-first, that dficiently tackles the bounded MAB. Unlike the budget-limitefirst
algorithm it is based on, our algorithm explicitly modelsldgakes into account the
task limits per worker. More specifically, it operates asoiwk: To deal with the
unknown performance characteristics of workers, our #lyor divides its bud-
get into two amounts (as dictated by aparameter) to be used in two sequential
phases — an initiaéxplorationphase, during which it uniformly samples the per-
formance of a wide range of workers using the first part of itddet, and amx-
ploitation phase, during which it selects only the best workers ussigeiinaining
budget. In the latter, the algorithm chooses the best setodters by solving a
bounded knapsagbroblem [19].

The intuition behind the use of the bounded knapsack istthag knew the real
expected value of each worker's expected utility, then tkged crowdsourcing
problem could be reduced to a bounded knapsack problem. ‘owsince the
bounded knapsack is NP-hard, an exact algorithm (i.e., haddhat provides the
optimal solution) might not be able to guarantee a polynbroianing time. Thus,
we use an ficient approximation approachpunded greedj19], to estimate the
optimal solution of the bounded knapsack.

Furthermore, we show that using this algorithm allows ussialgish theo-
retical guarantees for its performance. More specificallyprove that thgerfor-
mance regrefi.e., the diference between the performance of a particular algorithm
and that of the optimal solution) of the boundefirst approach is at mo@(B:%)
with a high probability, whereB is the total budget. Thisub-lineartheoretical
bound necessarily implies that our algorithm has zbe-regretproperty, a key
measure of #iciency within the MAB literature. That is, & increases, thav-
erage regreti.e., the performance regret divided by the total budgatps to O.
This property guarantees that our algoritlsymptotically converget® the opti-
mal solution with probability 1 a8 tends to infinity (for more details, see [36]).
As this desirable theoretical property holds only in theitiwe also conduct ex-
tensive empirical experiments, in order to ascertain ffieiency of our proposed
approach for realistic budgets. To this end, we use reariisi data from projects
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carried out on oDesk, a prominent expert crowdsourcing ikebs
In carrying out this work, we advance the state of the art bavs:

¢ We propose the first principled approach that specificallyresses the ex-
pert crowdsourcing problem.

e We show that our approach outperforms current crowdsogirigiohniques
by up to 300% on a real-world dataset, and typically achiewesind 90%
of the optimal.

In addition, we make theoretical contributions to MABs a$ofes:

¢ We introduce a new version of MABs, called the bounded MAB giptihat
extends the budget-limited MAB by imposing a limit on the rhenof times
a particular arm may be pulled.

o We propose boundedHfirst, the first algorithm thatf&ciently tackles the
bounded MAB model.

e We devise the first theoretically proven upper bound for tagfgsmance
regret of the boundesHfirst algorithm.

The remainder of this article is structured as follows. Ict®® 2, we discuss
related work. Then, in Section 3, we formally describe theeeikcrowdsourcing
problem. In Section 4, we outline our algorithm and then ysw®its performance
bounds in Section 5. In Section 6, we evaluate the algorithmpigcally and Sec-
tion 7 concludes.

2. Related Work

A significant amount of research has been carried out in thergéfield of crowd-
sourcing and specifically how to deal with workers of varyimality and how the
payments to workers influence the quality of their work. Wacdss this work in
Section 2.1. Then, in Section 2.2 we turn to the general fieldwti-armed ban-
dits, which are a natural model for the expert crowdsoursetiing we consider
here.

2.1. Crowdsourcing

Crowdsourcing has received considerable attention imtegears, and there have
been many successful applications. These include rapallgating information

during a disaster [12], completing tasks that af@idlilt to automate and need to
be solved by human workers [5, 39], running large-scale stsghies (i.e., surveys)
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[20] or contributing to scientific endeavours [9]. To supgpsuch applications,
several mature platforms have emerged. Amazon’s MecHanhick, for example,
supports the large-scale distribution of micro-tasks tman workers, Ushahidi
provides software for collecting information from the piabiin particular during
crisis situations, and Zooniverse hosts a range of largeeniscience projectsTo
exemplify the scale of these platforms, Amazon’s Mechdriicak lists between
100,000 and 200,000 available micro-tasks at any pointrie,tlUshahidi received
approximately 40,000 reports during the 2010 earthquakssiti and Zooniverse
currently has more than 700,000 volunteers.

In the context of these applications, some existing workdoasidered specifi-
cally how to deal with the highly heterogeneous performaqnedity of workers —
one of the key challenges for expert crowdsourcing we ifledtin Section 1. In
the crowdsourcing of micro-tasks, many approaches relydarrdantly allocating
the same task to multiple workers and then selecting therbsslt or a consensus
opinion, or on iteratively improving on the work of others2]2 In this context,
Dai et al.[10] describe a decision-theoretic control mechanism efaticitly bal-
ances the benefit of further iterations of improvements With cost this entails.
Zaidan and Callison-Burch [39] apply both redundancy asctive improvements
to the problem of crowdsourcing translations, and they show a classifier can
accurately identify the best solutions based on a numbepwfaih-specific fea-
tures. Other work demonstrates how machine learning arigtital inference
techniques can be used to build performance profiles of weded combine their
outputs in classification tasks to achieve a high overallgay [38], or to discard
inaccurate workers entirely [37].

However, while these techniques deal with the heterogengoality of work-
ers in settings with micro-tasks, they are less suitabléhi@expert crowdsourcing
setting we consider. First, they assume that tasks aredanizéormly (or even car-
ried out for free) and that the employer has little influenoeselecting particular
workers. Thus, the objective is typically to achieve thetlpessible performance
given a fixed set of workers. In our setting, the employer lassiclerably more
control over selecting individual workers, but also needske into account poten-
tially highly heterogeneous worker costs. Furthermorsisare generally higher
in expert crowdsourcing, where experts often demand $1@ebshour of work,
compared to the few cents that are normally paid per micsk-ta his makes it
infeasible to allocate the same tasks redundantly to a largeer of workers.

To address the specific challenges of expert crowdsoureingymber of ad
hoc approaches have appeared that are in use on existingsoomwing sites. For

4Seemturk.com, ushahidi.com andzooniverse.org, respectively.
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example, the expert crowdsourcing site viWorker has usegproach calledri-
alsourcing® Here, a subset of tasks of a larger project is sent to a largeéeu
of workers. Based on the quality of their output, the empldien picks the best
worker and assigns all remaining tasks to him or her. Anctipgrroach that has
appeared is the notion of @rated crowd where the expert crowdsourcing site
carefully selects and filters its workers based on the quafitheir work. Exam-
ples of sites using this approach include Genius Rocket aimk3peed. However,
while these sites consider the heterogeneous quality dfexsyrthey do not deal
with task limits and require a labour-intensive manualc@e process.

Another strand of work has looked at how to build systems ithdiice work
of a higher quality. Morriset al. [28] show howpriming, i.e., providing implicit
cues to €ect subconscious changes in behaviour, can be used to edtigher
performance in crowdsourcing tasks. Specifically, they alestrate that showing
positive images or playing positive music while collectiimgput for micro-tasks
increases the productivity of workers. Similarly, Huagtcal. [17] propose a sys-
tem that automatically optimises the design of crowdsaogrtasks (including the
provided incentives and the size, complexity and numbeasid) to maximise par-
ticular performance metrics. To exemplify this, they cdesian image annotation
task and show that up to 60—71% more unique high-qualitydag®e obtained by
carefully optimising the size and complexity of individuaicro-tasks compared
to a simple unoptimised baseline with the same budget anuatyper tag. Other
work has examined in detail how financial incentivéfeet the quality of work and
the level of participation in a crowdsourcing settings [26]. While the financial
incentives are typically set by the workers, and therefatedirectly controllable,
in the expert crowdsourcing settings we consider, work dading higher a qual-
ity of work through priming or optimal task design is largelymplementary to the
work presented in this paper. Specifically, these techsigqaeld be used to op-
timise how the requested work is presented to selected tsxjreiorder to further
increase productivity.

2.2. Multi-Armed Bandits

One area of work that is well suited to solving the expert @seurcing problem is
the field of multi-armed bandits (MABS), a class of probleraalthg with decision
making under uncertainty. In these optimisation probleaations (i.e., pulling a
single arm) have initially unknown rewards that have to laeriethrough noisy ob-
servations, and the goal is to maximise the total amountvedirgs by sequentially

5Note that vWorker (available atiorker.com) has been merged with Freelancer since the time
of writing of this paper.
6Seewww . geniusrocket.com andwww. thinkspeed. com.
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choosing diferent actions over time [29, 1, 4]. In particular, a MAB modehsists

of a machine withK arms, each of which delivers rewards that are independently
drawn from an unknown distribution when the machine’s arputed. Our goal

is to choose which of these arms to play. At each time step, wlleope of the
machine’s arms and receive a reward (or gByd he objective is to maximise the
return; that is, to maximise the sum of the rewards receiwext a sequence of
pulls. As the reward distributionsftier from arm to arm, the goal is to find the arm
with the highest expected pajas early as possible, and then to keep gambling
using that best arm [29, 4].

However, this MAB model gives an incomplete descriptionh# sequential
decision-making problem facing an agent in many real-weddnarios. To this
end, a variety of other related models have been studiedtigd?, 8, 13, 6].
Among existing MABs, one particularly pertinent piece ofrwas the budget-
limited MAB [33, 35], which addresses a similar problem te thne of expert
crowdsourcing. In particular, within budget-limited MABthe actions have dif-
ferent costs (i.e., the price of hiringftérent experts), and are constrained by a
certain total budget (i.e., the crowdsourcing budget oftimployer). To tackle this
problem, Tran-Thanket al. proposed a number officient algorithms, such as the
unbounded:-first and KUBE [33, 35]. However, the budget-limited MAB nedd
is not directly applicable to the expert crowdsourcingisgitbecause it is assumed
that individual workers can perform an unlimited amountasfikis and indeed the
optimal solution of the budget-limited MAB often assignsshtasks to a single
worker. This is not realistic in crowdsourcing, where, doghte workers’ individ-
ual preferences and other commitments, they cannot be asstmtomplete an
arbitrary number of tasks. Nevertheless, budget-limitesB\Milgorithms can form
a good basis for benchmarks against our proposed methoihwhithbounded set-
tings, as they providefgcient solutions for related problems (see Section 6.2 for
more details).

Another notable piece of related work is from dbal. [14], who also investi-
gate a multi-armed bandit model in the crowdsourcing domiamparticular, they
consider a problem where the system designer has to assagk &rom a set of
task types to an incoming worker (here, the set of task typesesent the arms to
be pulled). In this model, each type of task has a finite nurobgaisks, limiting
the number of times they can be allocated to workers. Theoaatthescribe an
algorithm that achieves near-optimal performance and pheyide a competitive
ratio. However, since their model does not include a totdged limit (only a lim-
itation in the number of pulls per arm), it requires &elient underlying solution
technique (i.e., not the bounded knapsack model), and ihissnot feasible for
our setting.

Other work has considered the problem of pure exploratioarm ranking, in

8
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bandit settings [25, 27, 3]. In particular, this problemusses on identifying the
ranking of the arms, given a threshold for the number of otk (budget). As we
will explain later in Section 4.2, within the explorationgse, our boundegHfirst
approach relies on an approximation method that aims tosghaonms with highest
reward-cost density values. Thus, the pure exploratioblpno can be regarded
as a sub-problem within the exploration phase, where we aiathieve &icient
exploration (i.e., quickly identify the highest rankingres). A number of algo-
rithms have been proposed to tackle this problem, such afditeg Races [25],
Bernstein Races [27], and Successive Rejects (SR) [3]. kHawas we will show
both in theory (see Section 5.2) and in practice (see Se6tinreplacing the uni-
form exploration phase of our algorithm with the above-nmm@d techniques does
not improve the performance effirst. Thus, these approaches do not outperform
uniform exploration within our settings.

3. Model Description

We first introduce the bounded MAB model (Section 3.1). Rmilw this, we
describe the expert crowdsourcing problem, and show howamentap it to the
bounded MAB model (Section 3.2).

3.1. Bounded Multi-Armed Bandits

The budget-limited MAB model consists of a slot machine wtlarms, denoted
by 1L2,...,N. At each time step, an agent choosesron-emptysubsetS(t) c
{1,...,N} to pull (its action). When pulling arm the agent has to pay a pulling
cost, denoted by, and receives a non-negative reward drawn from a distdbuti
associated with that specific arm. The agent has a cost bi&ggdtich it cannot
exceed during its operation time (i.e., the total cost ofipglarms cannot exceed
this budget limit). Since reward values are typically boeshdéh real-world appli-
cations, we assume that the reward distribution of each asmafbounded support.
Let »; denote the mean value of the rewards that the agent receamspiulling
armi. Within our model, the agent’s goal is to maximise the sumesfards it
earns from pulling the arms of the machine, with respect ¢ohiidgetB. How-
ever, the agent has no initial knowledge of fheof each armi, so it must learn
these values in order to choose a policy that maximises itsafuewards. Given
this, our objective is to find the optimal pulling algorithmvhich maximises the
expectation of the total reward that the agent can achieiteout exceedind.
Formally, letA be an arm-pulling algorithm, giving a finite sequence of qull
Let NiB (A) be the random variable that represents the total numberligf gfuarm
i by A, with respect to the budget limB. Note thatNE (A) is a random variable
since the behaviour gk depends on the observed rewards. Thus, we have:

9
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NP (A) = ) 1t e SA (). (1)
t
whereSA (t) is the subset thak chooses to pull at time sté@nd|{i € SA(t)} de-
notes the indicator function whether afriis chosen to be pulled &t To guarantee
that the total cost of the sequen&eannot exceed, we have:

N
P[Z NE (A) G < B] =1, )
i=1

whereP(:) denotes the probability of an event. In addition, withir euodel, we
assume that the agent cannot pull each iammore tharl; times in total. That is:

vi: P(NP(A)<L)=1 (3)

Now, letGE (A) be the total reward earned by usiAdo pull the arms within budget
limit B. The expectation o8 (A) is:

N
E[G®(A)]= > E[NF &) )
i=1

Then, letA* denote an optimal solution that maximises the expectedirtaard,
that is:

N
A* = arg mAaxZ E [NiB (A)] i (5)
=

Note that in order to determin&*, we have to know the value @f in advance,
which does not hold in our case. Thus) represents a theoretical optimal algo-
rithm, which is unachievable in general (but which we wileus Section 6 to
benchmark our approach).

Nevertheless, for any algorithiy, we can define the regret féras the difer-
ence between the expected total reward&@nd that of the theoretical optimum
A*. More precisely, lettindR® (A) denote the regret, we have the following:

R®(A) = E[GB(A")] - E[G® (1)]. (6)

The objective here is to derive a method of generating a seguef arm pulls that
minimises this regret for the class of bounded MAB problerifinéd above.

Note that if we set the limitg; = co for each armi (i.e., there is no pull limit)
and we restrictS (t)] = 1 for eacht (i.e., the agent can only pull a single arm at
each time step), we get the budget-limited MAB, and in additif we setB = ~

10
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(there is no budget limit either), we get the standard MAB eid@fbr more details,
see [33, 36]).

3.2. Expert Crowdsourcing

Given the bounded MAB model above, we now show how to map theréxrowd-
sourcing problem to bounded MABs. In particular, within apert crowdsourc-
ing system, an employer (agent) can assign tasks to a firitef seorkers. This
set of workers is usually determined through an open calpésticipation by the
employer, to which qualified and available workers respbrigach workeri cor-
responds to an arm and assigning a single task to that woakebe regarded as
pulling the arm. This incurs a cost that is set by the worker, and the outcome
of the assignment is of variable utility with unknown mear{this corresponds to
the rewards in the bounded MAB). As described in Section dh @@rkeri has a
different maximum number of tasks that can be assigned to it. Finally, the em-
ployer has a total budgd to spend on crowdsourcing and it wishes to maximise
the overall sum of the achieved utility.

To illustrate this, an employer may wish to carry out a largéveare devel-
opment project, where each task represents a single houorf by one of the
workers. The utility generated by such a task is the numbevarking features
that meet certain quality requirements. However, workbiexge diferent prices
per hourg;, and have dferent skill levels, represented by their expected number of
working features they can implement per hayr,The employer has a set budget to
spend on developers, e.8.= $5,000, and wishes to maximise the total number of
working feature$. In so doing, it wants to choose the best subset of workers who
provide the optimal solution. However, the employer hasat@tinto account the
working hour preferences of each worker, which limits thialtaumber of hours a
worker can spend on the project.

Given the mapping and the illustrative example above, thpping between
expert crowdsourcing and bounded MABs is trivial. With glstiabuse of notation,
hereafter we will use both standard terms of MAB (i.e., armd]|s, and agent)
and expert crowdsourcing (i.e., workers, task assignnagat,employer). In what
follows, we propose anficient algorithm to tackle the bounded MAB. We then
continue with its theoretical and empirical performancalgsis.

"To illustrate this, although there are 100,000s of workersoDesk, typically only up to 20
respond to each such job advert (see Figure 1 on page 24 fdisthibution of responses to adverts).

8This is a realistic budget — in August 2013, over $19 millioares spent on oDesk, with an
average spend per project of over $4,000.
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4. The Boundede-First Algorithm

Recall that within our settingy; are unknowra priori. Given this, the agent has
to explorethese values by repeatedly pulling a particular arm in oto@stimate
its expected reward value. However, if it solely focuses xpigration, the agent
typically fails to maximise the total expected reward (iexploif). In contrast, if

it stops exploring too quickly, it may fail to determine thesbarms to pull. Given
this, the key challenge of bounded MABs (and of other banditiefs in general)
is to find an dicient trade-& between exploration and exploitation. Within this
section, we propose a novel algorithm théftagently trades & exploration with
exploitation by splitting exploration from exploitatioflhe intuition behind this
explicit distinction is that by doing so, we can control thegree of exploration
by setting the value of, which becomes very useful for the theoretical analysis
(see Section 5 for more details). Besides, this approactstv@sn to be ficient

in many real-world applications, compared to other bandgen methods such
as UCB ore-greedy [30, 32, 33, 36]. In what follows, we first describe tx-
ploration phase of the algorithm (Section 4.1), followeditsyexploitation phase
(Section 4.2).

4.1. Uniform Exploration

Within the exploration (or trial) phase, we dedicatesaportion of budgetB to
estimate the expected reward values of the arms. First, peatedly pull all arms

in the first{ZﬁBC_J time steps. ThatisS(t) = {1,...,N}ifl1l <t < {Zﬁ—BCJ
=1 =14
Following this, we sort the arms by their cost in an increggimon-decreasing)
order, and we sequentially pull the arms starting from theewith the lowest cost,
one after the other, until the next pull would exceed the iamg budget. We
repeat the last step until none of the arms can be furtheegulith the remaining

budget. Given this, if><l.e’(|0|ore denotes the number of times we pull armwithin

. | . ..
the exploration phase, we ha[/giﬁf—qJ < x P For the sake of simplicity, we
assume thatt; > X", Otherwise, we stop pulling arironceL; is reached. The
reason for choosing this method is that, since we do not knbighwarms will be
chosen in the exploitation phase, we need to treat them lgqndhe exploration
phase. Hereafter we refer to the allocation sequence peefbiby the uniform

algorithm asAn;.

4.2. Bounded Knapsack-Based Exploitation

In order to describe the exploitation phase of the bourdfcst algorithm, we start
with the introduction of the bounded knapsack problem, Whiarms the founda-
tion of the method used in this phase. We then describdfammeat approximation
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method for solving this knapsack problem, which we subsetijese in the ex-
ploitation phase.

The bounded knapsack problem is formulated as follows. Giveypes of
items, each typé has a corresponding valwg and weightw;. In addition, there
is also a knapsack with weight capadly The bounded knapsack problem selects
integer units of those types that maximise the total valuieais in the knapsack,
such that the total weight of the items does not exceed thesatk weight capac-
ity. However, each itemhcannot be chosen more thantimes. That is, the goal is
to find thenon-negative integers; xxo, . .., Xy that

N N
max) xvi st > xw <C, Vi: 0<x<L ©)

i=1 i=1
Note that if we set each, = 1, we get the standard knapsack (or thelknapsack)
model. Since the bounded knapsack is a well-knd¥#hard problem [19, 23],
exact algorithms (i.e., methods that achieve optimal smig) cannot guarantee a
low computation cost. However, near-optimal approximation methods have been
proposed to solve this problem, such as bounded greedy edy(a detailed sur-
vey of these algorithms can be found in [19]). In particulere we make use of a
simple, but #icient, approximation method, th®unded greedglgorithm, which
hasO (N logN) computational complexity, wherd is the number of item types
[19]. The reason for this choice is that besides fiiciency, it provides a solution
with specific properties that can be used for theoreticalyarsa(see Section 5 for
more details).

The bounded greedy algorithm works as follows: %edenote thedensityof
typei. At the beginning, we sort the item types by decreasmg tenThis has
O(NlogN) computational complexity. Then, in the first round of thigaithm,
we identify the item type with the highest density and setecimany units of this
item as are feasible, without either exceeding the knapsaphcity or its item
limit L;. Following this, in the second round, we identify the itenthathe highest
density among the remaining feasible items (i.e., itemsdtilifit into the residual
capacity of the knapsack), and again select as many unitedsasible, without
exceeding the remaining capacity or the corresponding liteit We repeat this
step in each subsequent round, until there is no feasibie litét. Clearly, the
maximal number of rounds M. The reason for choosing this algorithm is that it

9There are pseudo-polynomial exact algorithms such as dgngragramming or dominance
relationship based approaches [23], but as we will show, late can achievefBcient performance
with polynomial approximations.
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Algorithm 1 Boundede-First Algorithm
1. Exploration phase:
t=1; B = ¢B;
while pulling is feasibledo
pull all the arms;
B =B - 3N agt=t+1;
end while
while pulling is feasibledo
if B™P°"®< min; ¢ then
STOP!{pulling is not feasiblg
end if
pull armi (t), wherei (t) =t mod N {choose the subsequent arm to pull
Bi(fl = Btexpl -G, t=t+ 1;
. end while
. Exploitation phase:
. use bounded greedy that solves Equation 8 to pull the arms;

e o e =
a s wN PO

provides a well-behaved sequence of items (i.e., they aered by density), that
can be €éiciently exploited in the theoretical performance analysis

Now, we reduce the task assignment problem in the exploitgbhase to a
bounded knapsack problem as follows. edénote the estimate @f after the
exploration phase. This estimate can be calculated by gitaking the average of
the received reward samples from arn@Given this, we aim to solve the following
integer program:

N N
max ﬁixiexplon st Z G Xiexplon <(1-¢)B, (8)
i=1 i=1
Vi 0< Xiexplon < Li _ Xiexplore,
wherex®°" are the decision variables, representing the number ostimeepull
armi in the exploitation phase. In order to solve this problem,use the above-
mentioned bounded greedy algorithm for the bounded kn&pstaving the value
of eachxf’(p'o't, we now run the exploitation algorithm as follows: At eactyser
quent time step, if the number of times arm has been pulled does not exceed
xieXp'o't, then we pull that arm at Hereafter we refer to this exploitation approach

asAgreedy When used together with the uniform exploration technidescribed
above, we refer to this algorithm asundeds-first, or Ac_irst.
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The pseudo code of the algorithm is depicted in Algorithmnlwhat follows,
we formally examine the performance of this algorithm.

5. Performance Analysis

In this section, we first derive an upper bound for the bourdfist algorithm, for
any givene value. We then show that byfeiently tuning the value of, we can
refine the upper bound @(B%) (Section 5.1). In addition, we also investigate the
performance of the modified version of thdirst, where the uniform exploration
phase is replaced with Successive Rejects (SR), a stdte-@frt pure exploration
algorithm [3]. In particular, we also provide @(BS) bound for this modified
version, however, with larger cfiient constants (Section 5.2). This implies that
even with this more sophisticated exploration method, wenotachieve a better
performance, compared to that of uniform exploration.

5.1. Regret Bounds @fFirst with Uniform Exploration

Recall that bothA,ni andAgreedytogether form sequend& _irst, which is the policy
generated by the boundedirst algorithm. The expected reward for this policy can
be expressed as the sum of the expected performantg@ndAgreeqy That is:

G® (Actirst) = G*® (Auni) + G 8 (Agreeay) - )

Now, without loss of generality, we assume that the rewastridution of each
arm has support in [@], and the pulling cost; > 1 for eachi (our result can be
scaled for diferent size supports and costs as appropriate)i"?&t arg max ‘é—j

Similarly, leti™" = arg min ’é—J’ In addition, letCmax = max; ’é—J’ andcyin =
min; ’é—J’ respectively. We state the following:

Theorem 1. Let0 < &,8 < 1. Suppose thatB > Z,-N:l cj. With at least probability
B, the performance regret of the boundedirst approach is at most

R/ ARSINE
Crningtima 8(-1n*5%) 5
2+ + eBdnax+ 2N , (20)

(il e

o
where Ghax = maxy;| |’§ - C—JJ
values).

(i.e., the largest distance betweerffelient density

To prove this theorem, we will make use of the following versbf Hodfding’s
concentration inequality for bounded random variables:
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Theorem 2 (Hodfding’s inequality [15]). Let X, X», ..., X, denote the sequence
of random variables with common ranfg 1], such that for anyL. < t < n, we have
E[XiX1,...,X-1] = u. Let S, = %Z{Ll X;. Given this, for any > 0, we have:

P(Sy > p+0) < 2% (11)
P(Sh<u-0) <2, (12)

The proof can be found, for example, in [15].

Now, if we relax the bounded knapsack problem defined in S8ecti2 (see
Equation 7) such that can be fractional, we get thHeactional bounded knapsack
[19, 23]. Marcello and Toth (1990) proved that the boundeekedy algorithm
provides an optimal solution to the fractional bounded lsaak, and this optimal
solution is always at least as high as the optimal solutioth@f(integer) bounded
knapsack (for more details, see [19]).

Given this, let(%Xy, ..., Xn) denote the optimal solution to the fractional relax-
ation of the knapsack problem given in Equation 8 (i.e., ttablem we have to
solve within the exploitation phase and that uses the et values). In ad-
dition, let{x7,..., x{) denote the corresponding optimal solution to this problem
when the truey; values are known. Recall that both of these solutions carbbe o
tained using the bounded greedy algorithm. Next, we prozéalfowing auxiliary
lemmas:

Lemma 3. ]E[G(l E)B(A*)] < ZJ L XTHj
Lemma4. E [GSB (Auni)] > B (#min/cmin) — 1

Lemmabs. E [G(l‘s)B(Agreedy)] > Z?‘:l Kjuj — L.

Proof of Lemma 3. Note that the right hand side of the inequality is the optima
solution of the fractional bounded knapsack. In additidwe, left hand side is the
optimal solution of the integer bounded knapsack problenmaorddver, it is well
established that the optimal solution of the fractionalbpem is always higher

than that of the integer knapsack [23, 19]. This concludeptbof. O
Proof of Lemma 4. Note that for any arnj, N, ¢iX”®*'® > €B - c;, since none

of the arms can be pulled after the stoprgf; without exceedingB. Furthermore,
Hi Hjmin
i =G G .
= (Cl) I(Cimi“)
Recall thafu; < 1. Thus:

min min B jmin
Z explore > [Z explore }M > (eB - C,mm)'ul > €Dfjmin 1

|m|n |m|n Cimin
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476 m]

a7z Proof of Lemma 5. Without loss of generality, assume that the bounded greedy
a3 chooses the arms to pull in the order oR1 .., N. Letb denote the largest index

ars - such thatxy # 0. SinceAgreedyalso uses the bounded greedy, we can easily show
a0 that fori < b:

exploit _

X,
41 and

exploit _ | &

[ %] .
# Note that ifi > b, thenx™™°" > 0. Thus

b-

b-1
B[ (Ageea)] 2 ) Ryt + %0l ko 2 Y Kty + (o - Dpan (13)
=1 =1

}_\

ss3 Which concludes the proof, singg < 1. O
a4 Proof of Theorem 1 Using Hodtding’s inequality for each arm and for any
a5 pOSitived;, we have:

explore

P (i — uil > 6;) < 2e” 290%

1-\p
By settings; = % we can prove that, with at least probabilgty

i — pil < 6

a6 holds for each arm Hereafter, we strictly focus on this case. We first show that

E[GP(A")] < sBEM 4 B [GA-9B (A%)] 4 ke, (14)

max max
I

a7 In particular, letr; be the diference between the number of pulls of anmithin the
s optimal solution ofGB (A*) and that ofG(-9)B (A*). Note thato; can be negative.
s0  We know that:

N
E[GB(A)| = ) o + E[GHB (A")].
i=1

a0 In addition, from [19, 23], we have:
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i=1

wherecmin = min; ¢;. By solving the relaxed unbounded knapsack (and allowing

negativeo; values as well), we have that

Jjmax Jjmax Cmi Jdjmax
Z oipi < (B + Cmin) ﬁ( = SBC_rIn_ax + mé?nalx .
i=1 i i i
Putting the previous inequalities together, we get Equatid. This implies that

RS (A i) < (sB“;QZ‘i E[6 ()|
+ (B[GHB(AY)] - E[GH 8 (Agreeq)]).- (15)

Using Lemma 4, we can bound the first term on the right-hanel asdfollows:

eBE™ g |G*® (Aun)]| < gB( “i”“”) +1 = eBmax+ L. (16)

max Cimax  Cjmin

We now turn to bound the second term on the right-hand sidgoétion 15. From
Lemmas 5 and 3 we get:

N
5[50 6 ] 3,33 1
= =1

Since(Xy, ..., Xn) is the optimal solution of the fractional bounded knapsdek t
we have to solve at the exploitation phase, we have:

Similarly, we have

This is due ta)x], ..., ;) being the real optimal solution. Recall that— | < 6;
holds for each arm This implies that
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s 3o 355
j:l :1 =1

Note thatx] < % < (1-¢)B. Similarly we have:xj+ < (1-¢)B. This implies
that

N N
E[G* 98 (A")] - B[G" 9 (Agreeay)| < (1-£)B Y 25j <B > 2. (17)
j=1 =1

Recall thatyj =

2% explore

explore _ eB > eB

Zz'\lzl ] 2 Zszl Cj
The second inequality can be easily proven by using elemeatgebra. Substi-
tuting these into Equation 17, and combining with Equatiénae conclude the

proof. O
Now, by using elementary algebra, we can show that by setting
1
2 N\ N3
_|_N (_ml VB)ZC,- , (18)
dmaxB 2 j=1

the upper bound given in Theorem 1 is minimised. Thus, we get:

Theorem 6. Leteop: denote the abovementioned value that minimises Equation 10

and0 < g < 1. By setting the exploration budget to beyg, with at least proba-
bility B, the regret of the boundegfirst algorithm is at most

1
CrminMimax 2 1- WB N °
2+ = +3|33[N2(—|nT D Cithmax| - (19)

i =1

That is, the upper bound can be tighteneoﬂ(JB%). The proof only requires
elementary algebra, and is omitted for brevity. This resufilies that the regret
bound is guaranteed to be sub-linear (i.e., less@@)), and thus, our algorithm
converges to the optimal solution in an asymptotic mannepalticular, for any
0 < @ < 1, there is a sfliciently largeBy such that for any budget si&> By, the
performance of our algorithm for that budget size is gu@@ahtto be better than
ana-ratio of the optimal solution.
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Algorithm 2 Exploration with Successive Rejects
1: Initialisation phase:

A1 =1{1,2,...,N}, setng as given in Equation 20,= 1;
B®S=eB— YN | MkCk;
while B> 0 do

pull armi, B = B —¢;;

i=(@{+1) modN;
end while
Exploration phase:
t=1;
: whilet < K do
pull each arm inA; with (n; — n_1) times;
eliminate the arm with lowest estimated mean reward fignand denote
the new set withA, 1;
13: t=t+1;
14: end while

R =
N B o

5.2. Regret Bounds efFirst with Successive Rejects Exploration

Recall the performance of the exploitation phase mainfigsedn how accurately
we can estimate the correct ranking (in decreasing ordetheofdensity of the
arms. This motivates the usage of the uniform distributivhjch explores all
arms equally, and thus, the ranking of the arms canfibgantly identified. How-
ever, due to the nature of the bounded greedy algorithm, ¢hf@nmance of the
exploitation phase in fact typically relies only on the teghirranking arms, and not
the full ordering, as we may run out of budget before reacltireglower-ranking
arms. Thus, it is not obvious whether we should focus onlyigh-nanking arms,
instead of aiming to identify the full ordering (as we do wilte uniform explo-
ration). Given this, we now analyse the performance of a fremtiversion of the
g-first algorithm, where the uniform exploration approachdplaced with other
exploration methods that do not aim to estimate the corrdlcofdering. As men-
tioned in Section 2, there are a number of algorithms dedidoethis problem.
Among them, Successive Rejects (SR) proposed by Audétext (2010), prov-
ably outperforms the other methods (see [3] for more dgtaiiéven this, we re-
place the uniform exploration approach with SR, in orderttolyg whether we can
improve the performance of boundedirst. In what follows, we first describe how
SR can be adapted to our setting and then we provide theadregigret bounds.
The pseudo code of the SR-based exploration can be foundyorifim 2. Let

I(N) = 5 + Zﬂ-\‘:‘zl % andng = 0. For eachk € {1,2,...,N — 1}, we set the value of
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nk as follows:
1 B

I(N) (N + 1 - K)Cmax]’

wherecmax = max; ¢j. Within the initialisation phase, we sBt** = ¢B- Zl'(\'zl NKCx

and allocate the residual budgB®* among the arms (lines 3 7). Within the

exploration phase, at each time stewe pull all the arms within the set of armg

exactly x—ni_1) times. We then eliminate the arm with the lowest estimatedm

reward from the set of arms and continue with the next time @iees 10— 14).
Following Audibertet al. (2010), we can show that in SR, there is exactly one

arm which is pullech; times, onen, times, ..., and two that are pulleg,_; times.

Furthermore, the total consumed budget does not exc®elh particular, without

loss of generality, we assume that the order of arm elinonas 1, 2,..., N — 1.

We have:

N = (20)

N- 1 ¢B I(N)
anck < Z MkCrmax < Z I(N) (N + 1 k) " I(N) 2 = BI(N) o

Given this, the regret of this approach can be bounded assll

Theorem 7. Let0 < ¢,8 < 1. Suppose thaiB > Z;-\':l cj. With at least probability
B, the performance regret of the boundedirst with SR exploration approach is at

most
Crminimax (N+3)InN BFmETJ%W
2+ max + &Bdnax + 2N > . (22)
" E

In addition, by optimally tuning;, we can show that the regret is at most

1
o _ N 3

i
Note that forN > 9, this regret bound is clearly worse than that of #ierst
approach with uniform exploration (see Equation 19),(—'\5‘32)'LNcmax > Zﬂ-\‘zl Cj
holds for this case. In particular, fof > 9, we have

(N+3)InN > (N+3),
2
and thus,

(N+3)InN

N

=1
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This implies that folN > 9, by using uniform exploration, we can achieve a better
regret bound, compared to exploration with 8R.

Proof of Theorem 7. Similar to the proof of Theorem 1, we can show that with at
leasts probability, the regret is at most

N
Crinfimax _
2+ o +gBdmaX+ZBZ(SJ, (23)

max
|

_n B
wheres; = % Without loss of generality, we assume that within the SR

exploration, the order of arm elimination is2l...., N — 1. From the definition of
SR, we have that for eadhe {1,2,...,N - 1}

explore > eB > eB
X 2 TIN)IN + 1= K)Cmae | = 20NN + L= K)Cmm
and B
explore> &
N E AN G

That is, we get

SINY(N + 1 = K) eI 252 \/ —2A(N)CmaxIn 2
Z +
B B

M=
3
>
|

I(N)CmaIn 22 N
\/ ()chn [w/§+z \/]]. (24)

We now rely on the following fact:

NII—‘

I(N) =

i 1
=2
In addition, we can use induction to show that

N
V2+ ) \/TsN\/N(N;Nl)JrlsN\/N;3.
=2

1%For the case oN < 9, it is not always guaranteed that the fiméent constant of SR is worse
than that of uniform exploration, as it also depends on theegaofc;.
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These imply that

N 1- N

—I(N)Cmax N =2 N
Zajs\/ e 25)
=1

B 2

which concludes the proof. In addition, by optimally tunitige value ofe, we
achieve the regret bound given in Equation 22. O

6. Experimental Evaluation

While we have so far developed theoretical upper boundshfoperformance re-
gret of our algorithm, we now turn to practical aspects arair@re its performance
in realistic settings. This is necessary and complementshawretical analysis,
because the latter concentrates on asymptotic performamasds as the budget
tends to infinity and for arbitrary performance distribaso In this section, we are
now interested in how the algorithm performs for realisticlipet sizes and perfor-
mance distributions that occur in real expert crowdsogrsettings. To this end,
we run the algorithm on a range of problems from a large realdvdataset and
compare its results with a number of benchmarks. In thevatig, we first out-
line the dataset we use to generate our experiments (Sécliprthen describe the
benchmarks (Section 6.2) and detail our results (Secti®n & addition, we also
compare the performance of our uniform exploration apgrosith other explo-
ration methods in Section 6.4.

6.1. Experimental Setup

To test our algorithm on realistic settings, we use real tfata the expert crowd-
sourcing website oDesK. Specifically, we assume an employer wishes to crowd-
source a large-scale software project and is looking toJsiva experts. Since only
a small fraction of all registered Java experts will be @aldé at any time, we deter-
mine the number of applicants by sampling from the real hisabdistribution of
applicants per Java-related job. This distribution is shawFigure 1 (we consider
only closed jobs and truncate the distribution to the irdkff, 100], as smaller
jobs are trivial and as there was a small number of extrenagfyeloutliers).

To determine the characteristics of those workers, we sathpm from the set
of more than 30,000 Java experts registered on the websiteed€h experi, we
use their real advertised hourly costs égrand we randomly determine their task

This data is available through their AP| évelopers.odesk.com and was downloaded in
February 2012.
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Figure 1: Distribution of applicants for jobs with “Java”ykgord on oDesk.

limits L; by drawing from the discrete uniform distribution on $D00] (since real
data on these limits is not available through the ABIY.hat is, a worker would
spend between a single hour up to approximately two and anwaking years on
a project.

Finally, to establish the worker’s utility distribution,eanuse real feedback rat-
ings received from employers for previously completed gxty (indicating the
quality of their work), as well as some additional noise toamt for variability
in the work they perform. Specifically, the quality distritoun is the sum of two
random variables,.0- R + 0.1- U(0, 1), whereR,; is the empirical distribution of
the user’s actual ratings obtained on previous jdbsdU (0, 1) is the continuous
uniform distribution on the interval [A] (to add a small amount of noise). Thus,
a sample from this distribution represents the quality efwork achieved in one
hour and ranges from 0 to 1, where 0 is the worst, making naiboition to the
employer’s overall utility and 1 is the highest quality asldble. Trivially, the
expected qualityy;, is then 09 - E[R] + 0.05.

2Note that task limits are measured in hours, and 5000 workings limit is approximately 2
years. This value is reasonable as some workers on oDeskiling to work on large projects for
more than a year.

13Ratings on oDesk are 1 — 5 stars, which we map to the interya].[Wote we use this only to
generate realistic distributions and assuRnes unknown to our agent. To avoid bias when only few
ratings are available, we pad this empirical distributiathwamples fronU (0, 1) until itis based on
at least five samples.
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6.2. Benchmarks

To demonstrate that our algorithm outperforms the statheofitt, we compare its
performance to a number of benchmark methods:

1.

3.

Budget-limited e-first: a practically €icient budget-limited MAB algo-
rithm that assigns all tasks to a single expert, that canigecthe highest
total quality with respect to his task limit, during the exiphtion phase [33].
This algorithm has been demonstrated to be the nibsigat among budget-
limited MAB algorithms in practice (see [32] for more deil

. Trialsourcing: an existing approach that is used on the expert crowdsourc-

ing website vWorker (see Section 2.1). This first assignegleitask to each
of the applicants and then chooses the worker with the higkstenated
quality-cost density out of these until that worker readbtetask limit. This
algorithm can be regarded as a simpler version of the buagiéd e-first
with only one round of exploration.

Random: this algorithm randomly chooses a single worker to whonsit a
signs all tasks. This represents a typical expert crowdsogitask alloca-
tion, where the employer chooses an applicant from somempeef prior
distribution (see, e.gfreelancer.comor utest.com). Within our exper-
iments, we sample this applicant from a uniform prior dttion (we have
also tested with other priors without any significant imgnments).

. Uniform: this approach uniformly assigns tasks to all applicants.indlude

this to test the #iciency of pure exploration (i.e., uniform task assignment)

. Bounded KUBE: this is a modified version of KUBE, a budget-limited

MAB algorithm with optimal theoretical performance regtaiunds (see
[32, 35] for more details), that is adapted to our boundedp&aek set-
ting. In particular, at each time step, bounded KUBE solvesraespond-
ing bounded knapsack problem and uses the frequency ofreccer of the
arms within the optimal solution of the knapsack problemhasdistribution
from which it randomly chooses an arm to pull. In contrastuoapproach,
bounded KUBE does not have theoretical performance guseanand it
is also computationally more expensive (see Section 6.8fme details).
By comparing against this benchmark algorithm, we aim toastrate that
thee-first approach is typically mordiécient than other, more sophisticated,
approaches in practice, especially in the budget-limiettrgys (for similar
discussions, see, e.g., [32, 36, 21]).

. Simplified bounded KUBE: this is a simplified version the the bounded

KUBE. In particular, in order to improve the computationdii@ency of
bounded KUBE, it does not solve the corresponding boundepdack prob-
lem as the bounded KUBE algorithm does (note that bounde@sauk
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problems are NP-hard). Instead, the simplified bounded K@Bgroach
approximates the optimal solution by using the boundeddyresethod (see
[32, 35] for more details).

7. Optimal: this is ahypotheticaloptimal algorithm with full knowledge of
each worker’'s mean qualify;. We approximate its performance in this sec-
tion using the solution to the corresponding fractional imed knapsack
problem. Hence, any results we present are an upper bourtteqretfor-
mance of any algorithm.

6.3. Results

Throughout this section, we adopt the basic setup desciib&kction 6.1, but
vary a number of controlled parameters to evaluate how gari#hm performs in

a variety of settings. Specifically, we first consider segtimvith varying budgets,
to represent smaller or larger project sizes (Section 6.3Hen, we examine how
the algorithm performs when the number of candidates isgai$ection 6.3.2),
and then we investigate how varying correlations betweemtfality and cost of a
worker dfect the performance of the algorithm (Section 6.3.3).

6.3.1. Performance with Variable Budgets
To analyse the behaviour of each algorithm iffafient job scenarios, we vary
the budgetB. In particular, we first focus on four filerent job types: (i) small
(B = $500); (ii) moderateB = $5,000); (iii) large B = $30000); and (iv) ex-
tremely large B = $100000). Throughout our experiments, we also restrict the
set of candidates for a particular budget, as highly-paidkers are unlikely to
apply for a low-budget project. Thus, for the four settingedi here, we restrict
the candidates to those that charge at most $30, $50, $1062a0d respectively.
These are realistic values based on real jobs that have lbeertiaed on oDesk.
Additionally, for each budget, we re-sample the number atdtexperts 100
times to achieve statistical significance, and we calcl@afé confidence intervals
for all results. These results are depicted in Table 1 (Withd5% confidence in-
tervals shown in brackets). Here, we setéhalue of our algorithm to @5, while
the & value of the budget-limited-first is set to 05, Q1, and 015, respectively
(we have also tested withfiierente values, which result in the same broad trends).
As we can see from the results, our algorithm typically oditpens the existing
algorithms by up to 78%. In particular, it outperforms theldpet-limitede-first by
23% in the case of a small budget € 0.1 for the budget-limited algorithm). In
addition, our method outperforms this benchmark by 85%9%4,0é8nd 155% in the
cases of moderate, large, and extremely large budgetgateggy. This significant
improvement over the benchmarks is due to several reasanst, &locating a
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Small Moderate Large Extreme
(Bgoi%dfg)g'f'rs’t 59.88(0.35) | 707.14(3.49)| 3,833.8(18.61) 11,065(54.07)
Budget-limited
oirst (o - 0.05) | 36:61(0:25) | 360.41(L55)| 1873(7.8) | 4,0628(16.14)
Budget-limited
et o - 0.10) | 4862(0.27) | 38272(1.56)| 1,910.8(7.81)| 4,347(16.09)
Budget-limited
ofirst (o - 0.15) | 44-03(0:26) | 374.15(1.55)| 1,951.7(7.82) | 4,206.1(16.11)
Trialsourcing 53.29(0.28) | 362.80(1.61)| 1,804.6(7.86)| 3,864.5(16.38)
Random 26.34(0.2) | 186.63(0.36)| 991.2(6.97) | 2,345.6(16.44)
Uniform 24.91(0.08) | 135.23(0.55)| 723.11(4.25) | 2,167.1(13.79)
Bounded KUBE | 46.9(0.33) | 397.14(3.06)| 2,721.04(18.19) -
Simplified 28.24(0.31) | 277.42(3.25)| 2,176.46(20.36)6,307.07(49.88
bounded KUBE | %% el S et
Optimal 98.09(0.53) | 946.66(2.1) | 4,917.1(20.17) 14,102(58.77)

Table 1: Performance evaluation of the algorithms ifiedént job settings with smalB(= 500),
moderate B = 5,000), large B = 30,000) and extremely largeB(= 100000) budgets. The numbers
represent the total collected utility of each algorithm.
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part of the budget to exploration ensures that our algoriitiemtifies the best-
performing workers, which are then exploited with the remraj budget. Second,
unlike most of the other benchmarks, it also takes into aactask limits in an
intelligent way and therefore hires several high-qualityrkeers in parallel while
satisfying their respective task constraints. Other beragks, such as the budget-
limited e-first algorithm, due to their nonfigcient way of handling task limits, here
often fail to achieve high performance. As the budget rigdgcomes increasingly
likely that this limit is met, explaining the relatively Higr performance of our
approach compared to the benchmarks in settings with lémgdgets. Compared
to the budget-limitec:-first algorithm, the other benchmarks perform even worse
— trialsourcing lacks the necessary exploration to idgritife best-performing
workers, while the uniform and random approaches do notitggkeaccount the
workers’ performance distributions at all.

We can also observe that our algorithm outperforms the nasifersions of
KUBE, a theoretically fiicient budget-limited MAB algorithm, by up to 78%. In
particular, bounded KUBE always outperforms its simplif@xinterpart. How-
ever, it also incurs a significantly higher computationastc@and thus, it is not
possible to use bounded KUBE to calculate the solution ferdase of an ex-
tremely large budget within reasonable tiffeMore specifically, apart from the
modified versions of KUBE, all the algorithms achieve lesmthh second running
time for the small, moderate and large cases, and they séll tess than 2 seconds
for the extremely large case. On the other hand, the singlifimunded KUBE
approach needs approximately 7 seconds for the large cabé /aseconds for the
extremely large case. In addition, the running time of therlaed KUBE method
is around 1 hour for the large case, and it cannot achieve esujts for the ex-
tremely large case. Nevertheless, both bounded KUBE arsihiiglified version
are outperformed by our approach. One possible reasontiKtHBE needs more
exploration to find &icient solutions, and thus, typically provides lef&céency in
cases with lower budgets (for more discussions, see [32, 36]

Note that our algorithm approaches the theoretical optirbyrap to 75% (in
the cases of moderate, large and extreme budgets), whibhigvees 61% of the
optimal solution’s performance in the scenario with smaliidgeets. This confirms
the theoretical regret bounds that show that our soluticalityuapproaches the
optimum with a growing budget.

While these results cover a wide range of possible budgeldgaround 80% of

1All the numerical tests appearing in this paper are perfdrre a personal computer,
Intel® Xeon® CPU W3520 @2.67GHz with 12GB RAM running the Fedora 18 ojamatys-
tem.

28



718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

Performance evaluation

=
o

Bounded-first (¢ = 0.15) |
~G - g-first (e = 0.10)
- - Trialsourcing
-+ -Random
—4— Uniform
Bounded KUBE
““““ Regret bound

©
<

©
<

\,
e

Al
o O

Total performance (%)
8 3

[
5O O

=
(@]
I

L L L L L
100 200 300 400 500 600 700 800 900 1000
Budget size

Figure 2: Performance ratio of the algorithms (compareteaiptimal solution) in case of jobs with
small budgets (smaller than $D0).

the jobs on oDesk have a budget smaller tha®@®1L Given this, we next further
analyse the performance of the algorithms within this budgage (restricting
the set of candidates to those that charge at most $30 pe). hbloe results are
depicted in Figure 2 (for ease of comparison, the performasaow expressed
as a percentage of the optimal). We also depict the regreidboalculated from
Theorem 1 as well, to demonstrate that our algorithm indesdguarantee the
regret bound. Note that hereafter we only show the resultseobounded KUBE
(as it has been shown in Table 1 that it outperforms its sifedlicounterpart).

As we can see, for jobs with very small budgets (i.e., smdftlan $100), the
performance of our algorithm is similar to that of the budiyeited e-first and
trialsourcing. This is due to the fact that with a small buddmnger exploration
is a luxury, and thus, those approaches perform well witly ardmall budget for
exploration. However, if the budget is higher than $100, algorithm clearly
outperforms the others by up to 67%. As before, this is becaws approach
identifies the best-performing workers and deals with tisk tamits of workers
(which start to become an issue with a rising budget). We tsnabserve that the
uniform and random algorithms are clearly worse than ouraaagh for any budget
size, as they do not take into account the workers’ perfoomarmaracteristics at
all. In addition, it can clearly be seen that our algorithnthis only one that can
guarantee the regret bound (as the others all perform wbasethe regret bound
as the budget rises above $150).

Interestingly, the budget-limited-first and trialsourcing algorithms first per-
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Figure 3: Performance ratio of the algorithms (comparetémiptimal solution) in case of jobs with
large budgets (between $80 and $2M00).

form better with an increasing budget (compared to the agjinbut their per-
formance eventually starts to decrease. This is due to tymsipg factors —
initially, an increasing budget means the approaches camdsmore of their bud-
get on exploiting the best workers; however, eventuallytéisi limits become an
issue, resulting in workers hitting their limits more fremly. This trend is not
displayed by the uniform approach, which consistently grent better with an in-
creasing budget. This is because it is nfieeted by task limits and because the
relative advantage of the optimal solution decreases ae morkers are included
due to the larger budget. We can also observe that when thgebigismall, the
performance of bounded KUBE is ndfieient, compared to the others, as it needs
more time to converge.

Another interesting set of jobs is those with large budgetshey present long-
term investments that require careful task allocation.sT e also vary the budget
B from $5000 to $20000, to analyse the performance of the algorithms (for con-
sistency fixing the set of candidates to those that chargeoat $0 per hour). In
fact, this range covers 77% of large jobs on oDesk (i.e.,yatsbudget> $5,000).
From Figure 3, we can see that our algorithm typically odtgers the others by
up to 200%, and it achieves around 95% of the optimum. Heeesignificantly
higher performance compared to the benchmarks is due tobilty af our al-
gorithm to take into account the workers’ task limits andidivthe high budget
between several workers. In addition, our algorithm odtpers the others by up
to 162% (for the case of budg& = $10000). We can also see that when the
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Figure 4: Performance ratio of the algorithms (comparedht dptimal solution) with budget
B = $5000 and: (A) small number of candidates (varied between 518); (B) large number
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Figure 5: Performance ratio of the algorithms (comparedhéodptimal solution) with budge® =
$30000 and: (A) small number of candidates (varied between 518J; (B) large number of
candidates (varied between 100 and 1000).

budget is sfficiently large, bounded KUBE achieves a higher performaocom-
pared to other benchmarks. However, it can still only aahiegs than 60% of the
boundedg-first.

To conclude this section, we note that the bounddilst algorithm performs
well in most cases, achieving up to 95% of the optimal sofuti®his proportion
is largest for projects with a high budget, which is not sisipg given the per-
formance bounds discussed in Section 5. It also achievdsghest performance
gains compared to the benchmarks in those settings, asdneabout task limits,
and so our approach is particularly beneficial for largdespeojects.
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6.3.2. Performance with Variable Numbers of Candidates

In this section, we investigate the performance of all athors when we increase
the number of candidates available for a crowdsourcingeptojSettings with a
large number of candidates are likely to create new chadlergr the learning ap-
proaches (boundegHfirst, budget-limitede-first and trialsourcing), because these
rely on exploringall candidates first prior to exploitation. To this end, Figudes
and 5 show the performance results (as a percentage of timeabypof all algo-
rithms for settings with moderate and extremely large btgjgespectively, as we
vary the number of candidates from 5 to 1000 (again, for @b@scy, including
only candidates that charge at most $100 per hour). Noteltleato computational
issues, we do not show the results of the bounded KUBE algositwithin this
section (recall that in general, they are outperformed bypooposed method).

In Figure 4, we note that all learning approaches perforn wieén there are
few candidates, as they can explore all available candidatd are likely to select
a good worker during the exploitation phase. However, asitheber of candi-
dates is increased, the performance decreases. This ie daedral factors. First,
as more candidates are available, the quality of the opsiation increases. Sec-
ond, bothe-first approaches sample each worker fewer times, leadifegsoaccu-
rate quality estimates. Similarly, trialsourcing has arréasingly smaller budget
left for exploitation, which also explains the significambd in quality when the
number of candidates reaches 250. Here, most of the budgetnis purely on ex-
ploration, and so the performance of trialsourcing apgreadhat of the uniform
algorithm.

In Figure 5, similar trends can be observed for larger budg&s in Sec-
tion 6.3.1, our approach, boundesfirst, performs significantly better than all
other benchmarks when the budget is high. Here, the highdgdiwalso allows
it to sustain a high quality of around 80-90% of the optimarewhen there are
a few hundreds of candidates. This is because it haffigisat budget to explore
even the larger number of candidates. In addition, we caths¢®ur method out-
performs the best benchmark by up to 300% (in the case of bilge80,000 and
when the number of candidates is between 100 and 300). Omgisant increase
in relative performance to the other benchmarks is againtaltiee ability of our
algorithm to rely on several high-quality workers withirethrespective task lim-
its, while most of the other benchmarks rely on a single wottkat eventually hits
its task limit.

6.3.3. Performance with Variable Correlation between Goxl Quality
Boundede-first, and the other algorithms evaluated here, depend orpanng
workers based on their quality-cost density (i.e., theiinested quality divided by
their cost). However, when there is a strong correlatiowbeh cost and quality, as
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Figure 6: Performance ratio of the algorithms (comparech® dptimal solution) with dierent
quality-cost density and with (A) small budg& & $500); (B) moderate budgeB(= $5,000); (C)
large budgetB = $30,000); and (D) extremely large budgd € $10Q000). The noise variance is
1.0 in all the cases.

is often the case in traditional labour markets, where magklyr+skilled workers
can demand higher wages [18], this may not be an informagagufe to distin-
guish workers. Thus, in this section, we do not use the inparrelations from
the oDesk data set, as we did in previous section, but ralfeertlais artificially, to
test our approach in settings with a range of such correlatio

To achieve this, we use the advertised cost of a wodkernd determine its
mean quality ag; = D-¢;, whereD is a random variable representing the worker’s
quality-cost density. Here, we sample a valueDBdior each worker from a distri-
bution with meanE [D] = 1 and variance Vaf)] = v, and we vary to explore
different levels of correlation. Thus, when= 0, the quality depends completely
on the cost, but ag is increased, the correlation drops. To achieve this, weause
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Figure 7: Performance ratio of the algorithms (comparech&dptimal solution) with dierent
quality-cost density and with (A) small budgd® & $500); (B) moderate budgeB(= $5,000); (C)
large budgetB = $30000); and (D) extremely large budge®® € $10Q000). The noise variance is
10.0 in all the cases.

mixture of uniform distributions for samplin®.*®> Given a mean;, we then pro-
duce noisy samples for each worker by multiplying the meamardigther random
variableN with meanE [N] = 1 and a variance that we set to either Vid} [= 1
(low noise) or VarN] = 10 (high noise), using the same type of mixture distribu-
tion as forD. We vary Var N] here to determine how the algorithms respond to
different levels of noise.

15Specifically, we assume that it has the cumulative prodgiistributionFp(X) = @ - x + (1 -
a@)- &2 for 0 < x < k, wherek = 3-v+1 anda = 1-k*, while Fp(x < 0) = 0 andFp(x > k) = 1. In
the special case wheve= 0, we assumé&p(X < 1) = 0 andFp(x > 1) = 1. Thus, this distribution
is a mixture of two uniform distributions — with probability, the sample is drawn from a uniform
distribution with support [01] and with probability (3 ), it is drawn from one with support [k].
We choose this formulation as it is simple and allows us titratily control the variance while still
ensuring a non-negative support.
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Figure 6 shows the results in settings with low noise as wease the variance
of the quality-cost density, with low (B = $500), moderateR = $5,000), large
(B = $30000), and extremely largeB(= $10Q000) budgets (we choose these
as representative results — higher budgets follow simitamds). For the sake of
better visibility, the regret bound is left out from the figar(however, they show
similar trends to previous figures). Several interestiegds emerge here. When
the variance is extremely low (around= 0), all approaches perform well. This
is because workers here are completely homogeneous, exthtbe same level of
quality for each currency unit spent. However, as the vadas increased slightly,
performance drops quickly for all approaches, as they aneless likely to choose
the best workers.

Interestingly, in the setting with larger budgets (Figus€B), 6 (C), and 6 (D)),
the performance of the learning approaches eventuallissiaing again. This is
because these settings can produce experts with a higlyduatiow cost that are
likely to be identified during the exploration phase and tbeploited. This &ect
does not occur in the setting with a low budget (Figure 6 (APcause here the
exploration budget is low and outliers are less likely todenitified (for thes-first
algorithms) or the exploitation budget is too low (for thialsourcing algorithm).
We can also see that the larger the budget is, the better garitaim performs
compared to the benchmark approaches, for the same reasdesaibed previ-
ously.

Finally, Figure 7 shows the results when individual quatigmples of a par-
ticular worker have a high variance (V&] = 10). Note that we have also left
the regret bound out from the figure in order to achieve beitgpility. This is a
more challenging setting for all of the learning algorithbeause it reduces the
accuracy of the quality estimates. Here, we first note thtterlow budget setting
(Figure 7 (A)), there is only a small drop in performance caneg to the previous
settings with low noise. This is because estimating theityuaflworkers with such
a limited budget is already challenging. A larger drop inliqya apparent for the
moderate budget (Figure 7 (B)), where the high noise redilneeaccuracy of the
guality estimates (as the noise variance now typically edsehe variance of the
quality-cost density). However, despite the significanfdl@ increase in the noise
variance, the performance of the learning algorithms Ikrstasonable, with only
an approximately 10% decrease in the total utility achiew@a the other hand, we
can see that as the budget is further increased (Figures anrC)7 (D)), the per-
formance of our algorithm improves, compared to the smallrmoderate budget
cases. This is due to the fact that with &®iently large budget size, our algorithm
can dficiently explore the quality of each worker, and thus, it cahieve a high
performance within the exploitation phase.

To conclude the experimental section, we note that our mega@lgorithm,
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Figure 8: Performance ratio of the algorithms (compareteaiptimal solution) in case of jobs with
(A) small budgets (smaller than D0); and (B) large budgets (between $5610000).s = 0.15
for all the algorithms.

boundede-first, consistently outperforms all of the existing benehknapproaches
over a range of realistic settings. Sometimes, this regulismany-fold improve-

ment over the best existing approach, and it typically aeser0-90% of the hy-
pothetical optimal with full information. Performance iarficularly good when

the overall budget is high (allowing ample exploration) aviten the variance of
the quality-cost density is high (allowing the algorithmfé@us on the most cost-
effective workers). On the other hand, when there are manyadailvorkers in

the system, performance degrades, but our approach gtilfisantly outperforms

existing benchmarks.

6.4. Comparison with Other Exploration Policies

We now turn to the investigation of whether we can improvepgbgormance of
the bounded-first algorithm by replacing the uniform exploration apach with
other policies. Recall that in Section 5, we have proved lgaieplacing the uni-
form approach with Successive Rejects (SR), the theotetigaet bound, that the
boundede-first approach can achieve, is increased. Hence, it is l&sgeat. In
this section, we further demonstrate that by usingfkttieg Races for exploration,
the performance cannot be improved either. To do so, we canqa algorithm
with Hoeffding Races and SR, using the above-mentioned parametiagsettn
what follows, we first briefly describe the Hoéging Races exploration algorithm,
and then discuss the numerical results.

The Hoefding Races algorithm relies on Theorem 2 as follows. Suppitsge
the number of pulls of armis x;, and let 0< 8 < 1. From Theorem 2, we can

36



887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

guarantee that with at least €13) probability, we have:

B
—|n§
2%

i — pil <

wherey; is the current estimate of ariis expected reward valyg. Given this, at
each time step, Hoefding Races maintains an upper confidence (UC) and lower
confidence (LC) value for each arisuch that

2x(t)”

>
NI

UGi(H) = ai() +

(26)

2x(t)’

wherey;(t) is the estimate gi; at time stef, andx;(t) is the number of pulls of arm

i up to time sted. Hoedftding Races initially uniformly pulls the arms. However,
if for a certaint there exist arms # j such thatUC;(t) < LCj(t), the algorithm
eliminates arm from the set of arms (i.e., it does not pull aimnymore). The
algorithm stops when there is only one arm left. Note thataciice s is typically
set to be M5 (see [25] for more details).

To compare the performance of the algorithms, we focus orsteoarios: (i)
small budget; and (ii) large budget cases. In particulag tduits nature, Ha@d-
ing Races only displays aftierent behaviour when the budget idtatiently large
(otherwise it will behave exactly as the uniform explorajioThe results are de-
picted in Figure 8. We can clearly observe that in case thgédiud small, both
Hoeffding Races and uniform exploration provide the same pedoo®. This is
due to the fact that the Héeing Races method does not have fisient budget
to eliminate the arms, and thus, it continues with the ihitraform pull behaviour
(Figure 8(A)). On the other hand, as the budget becomesr]angeffding Races
can start eliminating the arms within the exploration phages, however, results
in a decreased performanci@ency. A possible reason is that by eliminating the
arms, Hoéding Races only focuses on the best arms (it pulls them th&) nTdss,
however, may lead to poor performance within the explataphase, as we might
need an accurate estimation of the ranking of all the armsderado dficiently
solve the corresponding bounded knapsack problem. Thisastlae reason why
SR performs poorly, compared to the uniform pull approachisTs in line with
our theoretical analysis in Section 5.2.

It is worth noting that we also achieve broadly similar reswhen we modify
Hoeffding Races and SR to find the arm with the highest densityeaadisof the

>
NI

LCi(t) = () -

(27)
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arm with the highest expected reward. A possible reasombehis is that it is
not suficient either to solely focus on arms with the highest denagyhose might
have low pulling limits and this will lead to a poor perfornzanin the exploitation
phase.

7. Conclusions and Future Work

In this paper, we introduced the expert crowdsourcing gmobdith variable worker
performance, heterogeneous costs and task limits per wdrkéhis problem, an
employer wishes to assign tasks within a limited budget tetaosworkers such
that its total utility is maximised. To solve this problemgewntroduced a new
MAB model, the bounded MAB, with a limited number of pulls @@m to repre-
sent task limits. Given this, we proposed a simple, lthicient, boundea-first-
based algorithm that uses a uniform pull strategy for exgion, and a bounded
knapsack-based approach for exploitation. We proved thatalgorithm has a
O(B%) theoretical upper bound for its performance regret. Thisliteneans that
our algorithm has the desirable zero-regret property, yinglthat the algorithm
asymptotically converges to the optimal solution as thegbtitends to infinity.

To establish the performance of our algorithm in realistioest crowdsourcing
settings, we also applied it to real data from oDesk, a premtiexpert crowdsourc-
ing website. We showed that the algorithm consistently exditgpms state-of-the-
art crowdsourcing algorithms within this domain by up to 8)Qalso achieving
up to 95% of a hypothetical optimal benchmark that has fditiimation about the
workers’ performance distributions. Furthermore, the ieicgd results confirmed
our theoretical bounds, indicating that the algorithm vgoplest for projects with
large budgets.

As a result, our work could potentially form a promising Isatsi crowdsourc-
ing websites which aim to providdieient teams of experts. We envisage that it
could be used to automate the formation of curated crowdghadre currently
mostly formed on an ad hoc basis (see Section 2.1). In pktjoour algorithm
could be employed to implement a crowdsourcing intermgdiahich, given a
customer’s budget for a project, automatically explorestamtial crowd of work-
ers and then assembles a promising team of the best performer

In addition to this, our work also constitutes a general gbation to the field
of MABs and is applicable to a wide range of decision-makimgbfems under
uncertainty beyond the domain of expert crowdsourcing. dnentraditional labour
markets, our approach could be used to hire unknown cootsatd work on a
large project, or it could be used to allocate existing woskeithin a company to
a new project (where costs are incurred by removing workers their day jobs
and performance may be unknown if no similar projects hawn warried out in
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the past). Another potential application of our work is datomputing, where
services are potentially unreliable or vary in their qyakind where the maximum
number of jobs on one service is restricted either by a fixexdliitee or by user
quotas. Finally, our work applies generally to resourcecaltion problems with
costly but limited resources of an unknown quality. For eglana government
may need to procure medicines to fight a new epidemic, butuhgertain what
medicines work best and it is restricted by budget conggand stock levels of
the medicines.

Currently, our work also has a number of limitations that wi explore fur-
ther in future work. First, our approach does not exploit ket that in many
real-world applications employers typically have addidbinformation about the
applicants, which could be used to find the best workers moiekly (e.g., repu-
tation ratings or lists of qualifications). However, as tihirmation might not be
accurate either, it is not trivial how tdfeciently handle it in practice. One possible
way is to maintain belief-based models for each user’s grafihich measures the
uncertainty of our knowledge about the user, based on dustiservations. These
belief models are then iteratively updated as we observautiliy values from
the users while assigning tasks to them. Our model, howeees not currently
handle such belief updates. Thus, as possible future warknignd to extend our
analysis to these settings.

Our current work also assumes that a particular workerfopmance is static,
that is, it is drawn from a stationary distribution. Howevitrmay be the case
that due to external reasons (e.g., health and weathertmorglior other duties),
the performance distribution may vary over time. The boudngldirst algorithm
might fail to tackle these settings, as it is not capable aflfiag dynamic environ-
ments. In particular, due to the explicit split of explooatifrom exploitation, our
algorithm might not be able to detect future changes oncexpéoration phase
is completed. One possible way to extend our model is to usditalgorithms
that do not split exploration from exploitation, such as U@B-greedy (for more
details, see [30, 32]). However, these algorithms are ngigded for the bounded
multi-armed bandit model, and thus, it is not trivial how tdesd them to our set-
tings. Given this, we also aim to extend our proposed algorito systems with
dynamic behaviour.

Furthermore, our model considers independent tasks, wher®tal utility of
the tasks is the sum of each individual task’s utility. Hoemwasks may féect
each other’s value, and thus, the total utility of these daslay not be equal to
their sum of utility. For example, two tasks may contain ¢ts@ping parts. This
implies that their total utility is less than their sum. Innt@st, two other tasks
might complement each other, boosting each other’s valbeth are completed
(i.e., their total utility is higher than their sum). As odgarithm is currently not
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designed to address this setting, we intend to extend ouehtadhis scenario as
well.
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