
ar
X

iv
:1

10
4.

27
88

v4
  [

cs
.C

C
]  

6 
M

ar
 2

01
4

Backdoors to Tractable Answer Set Programming✩✩

Johannes Klaus Fichtea,b, Stefan Szeidera

aVienna University of Technology,
Favoritenstrasse 9-11, 1040 Vienna, Austria

bUniversity of Potsdam,
August-Bebel-Strasse 89, 14482 Potsdam, Germany

Abstract

Answer Set Programming (ASP) is an increasingly popular framework for declarative programming that admits
the description of problems by means of rules and constraints that form a disjunctive logic program. In particular,
many AI problems such as reasoning in a nonmonotonic settingcan be directly formulated in ASP. Although
the main problems of ASP are of high computational complexity, located at the second level of the Polynomial
Hierarchy, several restrictions of ASP have been identifiedin the literature, under which ASP problems become
tractable.

In this paper we use the concept of backdoors to identify new restrictions that make ASP problems tractable.
Small backdoors are sets of atoms that represent “clever reasoning shortcuts” through the search space and repre-
sent a hidden structure in the problem input. The concept of backdoors is widely used in the areas of propositional
satisfiability and constraint satisfaction. We show that itcan be fruitfully adapted to ASP. We demonstrate how
backdoors can serve as a unifying framework that accommodates several tractable restrictions of ASP known from
the literature. Furthermore, we show how backdoors allow usto deploy recent algorithmic results from parameter-
ized complexity theory to the domain of answer set programming.
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1. Introduction

Answer Set Programming(ASP) is an increasingly popular framework for declarativeprogramming [96, 104]. ASP
admits the description of problem by means of rules and constraints that form a disjunctive logic program. Solu-
tions to the program are so-called stable models or answer sets. Many important problems of AI and reasoning can
be succinctly represented and successfully solved within the ASP framework. It has been applied to several large
industrial applications, e.g., social networks [80], match making [60], planning in a seaport [111], optimization of
packaging of Linux distributions [57], and general game playing [126].

The main computational problems for ASP (such as deciding whether a program has a solution, or whether
a certain atom is contained in at least one or in all solutions) are located at the second level of the Polynomial
Hierarchy [34], thus ASP problems are “harder than NP” and have a higher worst-case complexity than CSP and
SAT. In the literature, several restrictions have been identified that make ASP tractable [64, 2].

1.1. Contribution

In this paper we use the concept ofbackdoorsto identify new restrictions that make ASP problems tractable.
Small backdoors are sets of atoms that represent “clever reasoning shortcuts” through the search space and rep-
resent a hidden structure in the problem input. Backdoors were originally introduced by Williams, Gomes, and
Selman [132, 133] as a tool for the analysis of decision heuristics in propositional satisfiability. Backdoors have
been widely used in the areas of propositional satisfiability [132, 117, 120, 84] and constraint satisfaction [68],
and also for abductive reasoning [108], argumentation [33], and quantified Boolean formulas [119]. A backdoor
is defined with respect to some fixedtarget classfor which the computational problem under consideration is
polynomial-time tractable. The size of the backdoor can be seen as a distance measure that indicates how far the
instance is from the target class.

In this paper we develop a rigorous theory of backdoors for answer set programming. We show that the concept
of backdoors can be fruitfully adapted for this setting, andthat backdoors can serve as aunifying frameworkthat
accommodates several tractable restrictions of ASP known from the literature.

For a worst-case complexity analysis of various problems involving backdoors, it is key to pay attention to
how running times depend on the size of the backdoor, and how well running time scales with backdoor size.
Parameterized Complexity[28, 46, 69] provides a most suitable theoretical frameworkfor such an analysis. It
provides the key notion offixed-parameter tractabilitywhich, in our context, means polynomial-time tractability
for fixed backdoor size, where the order of the polynomial does not depend on the backdoor size. We show how
backdoors allow us to deploy recent algorithmic results from parameterized complexity theory to the domain of
answer set programming.

Parameterized complexity provides tools to provide a rigorous analysis ofpolynomial-time preprocessingin
terms ofkernelization[8, 125]. A kernelization is a polynomial-time self-reduction of a parameterized decision
problem that outputs a decision equivalent problem instance whose size is bounded by a functionf of the parameter
(the kernel size). It is known that every decidable fixed-parameter tractable problem admits a kernelization, but
some problems admit small kernels (of size polynomial in theparameter) and others don’t. We provide upper and
lower bounds for the kernel size of various ASP problems (backdoor detection and backdoor evaluation), taking
backdoor size as the parameter.

Several algorithms in the literature are defined for disjunction-free (i.e., normal) programs only. We provide a
general method forlifting these parameters to disjunctive programs, preserving fixed-parameter tractability under
certain conditions.

Although our main focus is on a theoretical evaluation, we present some experimental results where we con-
sider the backdoor size of structured programs and random programs of varied density.
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1.2. Background and Related Work

Complexity of ASP Problems.Answer set programming is based on thestable-model semanticsfor logic pro-
grams [64, 65]. The computational complexity of various problems arising in answer set programming has been
subject of extensive studies. Eiter and Gottlob [34] have established that the main decision problems of (dis-
junctive) ASP are located at the second level of the Polynomial Hierarchy. Moreover, Bidoı́t and Froidevaux [6]
and Marek and Truszczynski [94] have shown that the problemsremain NP-hard (co-NP-hard respectively) for
disjunction-free (so-callednormal) programs. Several fragments of programs where the main reasoning problems
are polynomial-time tractable have been identified, e.g., Horn programs [64], stratified programs [2] and programs
without even cycles [135]. Dantsinet al. [24] survey the classical complexity of the main reasoning problems for
various semantics of logic programming, including fragments of answer set programming.

ASP Solvers.Various ASP-solvers have been developed in recent years. Solvers that deal with one or more
fragments of disjunctive programs (normal, tight, or head-cycle-free) and utilize techniques from SAT are Smod-
els [103], Assat [91], Cmodels [89], and the solver Clasp [59]. Solvers that transform normal programs into
other problem domains are Lp2diff (difference logic, [76]), Dingo (satisfiability modulo theories, [74]), and
Mingo (mixed integer linear programming, [92]). Solvers that tackle disjunctive programs are DLV [88], GnT [75],
and ClaspD [30]. DLP utilizes the technique of unfounded sets [87], GnT uses techniques from SAT and extends
Smodels by means of a guess and check approach. ClaspD uses techniques from SAT and is based on logical
characterizations of disjunctive loop formulas [86].

Parameterizations of ASP.So far there has been no rigorous study of disjunctive ASP within the framework of pa-
rameterized complexity. However, several results known from the literature can be stated in terms of parameterized
complexity and provide fixed-parameter tractability. The considered parameters include the number of atoms of a
normal program that appear in negative rule bodies [5], the number of non-Horn rules of a normal program [5], the
size of a smallest feedback vertex set in the dependency digraph of a normal program [69], the number of cycles of
even length in the dependency digraph of a normal program [90], the treewidth of the incidence graph of a normal
program [73, 100], and a combination of two parameters: the length of the longest cycle in the dependency digraph
and the treewidth of the interaction graph of a head-cycle-free programs [4]. Very recently we established an fpt-
reduction that reduces disjunctive ASP to normal ASP; in other words, a reduction from the second level of the
Polynomial Hierarchy to the first level. The combinatorial explosion is confined to the size of a smallest backdoor
with respect to normal programs, whereas the considered reasoning problem itself remains intractable [40].

Backdoors.The concept of a backdoor was originally introduced for SAT and CSP by Williamset al. [132, 133].
Since then, backdoors have been used frequently in the literature. The study of the parameterized complexity of
backdoor detection was initiated by Nishimuraet al. [105] who considered satisfiability backdoors for the base
classes Horn and 2CNF. Since then, the study has been extended to various other base classes, including clus-
tering formulas [106], renamable Horn formulas [110], QHorn formulas [49], Nested formulas [47], acyclic for-
mulas [45], and formulas of bounded incidence treewidth [48]; for a survey, see [46]. Several results extend the
concept of backdoors to other problems, e.g., backdoor setsfor constraint satisfaction problems [132], quantified
Boolean formulas [119], abstract argumentation [107], andabductive reasoning [108]. Samer and Szeider [118]
have introducedbackdoor treesfor propositional satisfiability which provide a more refined concept of backdoor
evaluation and take the interaction of variables that form abackdoor into account.
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1.3. Prior Work and Paper Organization

This paper is an extended and updated version of the papers that appeared in the proceedings of the 22nd In-
ternational Conference on Artificial Intelligence [39] andin the New Directions in Logic, Language and Com-
putation [41]. The present paper provides a higher level of detail, in particular full proofs and more examples.
Furthermore, the paper extends its previous versions in thefollowing way: additional attention is payed to the
minimality check (Lemma 3.3). Theorem 5.3 is extended to entail some very recent results in parameterized com-
plexity theory. A completely new section (Section 6) is devoted to a rigorous analysis of preprocessing methods
for the problems of backdoor detection and backdoor evaluation. We present a general method to lift parameters
from rules of normal programs to disjunctive programs (Section 7). We extend the section on the theoretical com-
parison of parameters (Section 8) by additional comparisons to other parameters, e.g., weak feedback width and
interaction graph treewidth, and to other classes of programs, e.g., head-cycle-free and tight programs. Finally,
in Section 9 we provide some empirical data on backdoor detection and discuss the evaluation of backdoors in a
practical setting.

2. Preliminaries

2.1. Answer Set Programming

We consider a universeU of propositionalatoms. A literal is an atoma ∈ U or its negation¬a. A disjunctive logic
program(or simply aprogram) P is a set ofrulesof the following form

x1 ∨ . . . ∨ xl ← y1, . . . , ym,¬z1, . . . ,¬zn

wherex1, . . . , xl , y1, . . . , ym, z1, . . . , zn are atoms andl,m, n are non-negative integers. Letr be a rule. We write
{x1, . . . , xl} = H(r) (the headof r), {y1, . . . , ym} = B+(r) (the positive body ofr) and {z1, . . . , zn} = B−(r) (the
negative body ofr). We denote the sets of atoms occurring in a ruler or in a programP by at(r) = H(r) ∪ B+(r) ∪
B−(r) and at(P) =

⋃

r∈P at(r), respectively. A ruler is negation-freeif B−(r) = ∅, r is normal if |H(r)| ≤ 1, r is a
constraintif |H(r)| = 0, r is constraint-freeif |H(r) > 0|, r is Horn if it is negation-free and normal,r is positive
if it is Horn and constraint-free,r is tautological if B+(r) ∩ (H(r) ∪ B−(r)) , ∅, andr is non-tautologicalif it is
not tautological. We say that a program has a certain property if all its rules have the property.Horn refers to the
class of all Horn programs. We denote the class of all normal programs byNormal. Let P andP′ be programs.
We say thatP′ is asubprogramof P (in symbolsP′ ⊆ P) if for each ruler′ ∈ P′ there is some ruler ∈ P with
H(r′) ⊆ H(r), B+(r′) ⊆ B+(r), B−(r′) ⊆ B−(r). We call a classC of programshereditary if for eachP ∈ C all
subprograms ofP are inC as well. Note that many natural classes of programs (and all classes considered in this
paper) are hereditary.

A set M of atomssatisfiesa rule r if (H(r) ∪ B−(r)) ∩ M , ∅ or B+(r) \ M , ∅. M is a modelof P if it
satisfies all rules ofP. TheGelfond-Lifschitz (GL) reductof a programP under a setM of atoms is the programPM

obtained fromP by first removing all rulesr with B−(r) ∩ M , ∅ and second removing all¬z wherez ∈ B−(r)
from the remaining rulesr [65]. M is ananswer set(or stable model) of a programP if M is a minimal model of
PM. We denote by AS(P) the set of all answer sets ofP.

Example2.1. Consider the programP consisting of the following rules:

d← a, e; a← d,¬b,¬c; e∨ c← f ;

f ← d, c; c← f , e,¬b; c← d;

b← c; f .
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The setM = {b, c, f } is an answer set ofP, sincePM
= {d← a, e; f ← d, c; b← c; e∨ c← f ; c← d; f } and

the minimal models ofPM are{b, c, f } and{e, f }. ⊣

It is well known that normal Horn programs have a unique answer set and that this set can be found in linear
time. Van Emden and Kowalski [129] have shown that every constraint-free Horn program has a unique minimal
model. Dowling and Gallier [27] have established a linear-time algorithm for testing the satisfiability of proposi-
tional Horn formulas which easily extends to Horn programs.In the following we state the well-known linear-time
result.

Lemma 2.1. Every Horn program has at most one model, and this model can befound in linear time.

2.2. ASP Problems

We consider the following fundamental ASP problems.

CHECKING

Given: A programP and a setM ⊆ at(P).
Task: Decide whetherM is an answer set ofP.

CONSISTENCY

Given: A programP.
Task: Decide whetherP has an answer set.

BRAVE REASONING

Given: A programP and an atoma∗ ∈ at(P).
Task: Decide whethera∗ belongs tosomeanswer set ofP.

SKEPTICAL REASONING

Given: A programP and an atoma∗ ∈ at(P).
Task: Decide whethera∗ belongs toall answer sets ofP.

COUNTING

Given: A programP.
Task: Compute the number of answer sets ofP.

ENUM

Given: A programP.
Task: List all answer sets ofP.

We denote byAspReason the family of the reasoning problems CHECKING, CONSISTENCY, and BRAVE REA-
SONING and byAspFull the family of all the problems defined above. ThisAspReason consists of decision
problems, andAspFull adds to it a counting and an enumeration problem. In the sequel we will occasionally write
LNormal to denote a problemL ∈ AspFull restricted to input programs fromNormal.

CHECKING is co-NP-hard in general [34], but CHECKINGNormal is polynomial [16]. CONSISTENCY and
BRAVE REASONING are ΣP

2-complete, SKEPTICAL REASONING is ΠP
2-complete [34]. Both reasoning prob-

lems remain NP-hard (or co-NP-hard) for normal programs [95], but are polynomial-time solvable for Horn pro-
grams [64]. COUNTING is easily seen to be #P-hard1 as it entails the problem #SAT.

1#P is the complexity class consisting of all the counting problems associated with the decision problems in NP.

6



2.3. Parameterized Complexity

We briefly give a basic background on parameterized complexity. For more detailed information we refer to other
sources [28, 42, 68, 101]. An instance of aparameterized problem Lis a pair (I , k) ∈ Σ∗ × N for some finite
alphabetΣ. For an instance (I , k) ∈ Σ∗ × N we call I the main part andk the parameter. ‖I‖ denotes the size
of I . L is fixed-parameter tractableif there exist a computable functionf and a constantc such that we can decide
whether (I , k) ∈ L in timeO( f (k)‖I‖c). Such an algorithm is called anfpt-algorithm. If L is a decision problem,
then we identifyL with the set of all yes-instances (I , k). FPT is the class of all fixed-parameter tractable decision
problems.

Let L ⊆ Σ∗ × N andL′ ⊆ Σ′∗ × N be two parameterized decision problems for some finite alphabetsΣ andΣ′.
An fpt-reduction rfrom L to L′ is a many-to-one reduction fromΣ∗ ×N to Σ′∗ ×N such that for allI ∈ Σ∗ we have
(I , k) ∈ L if and only if r(I , k) = (I ′, k′) ∈ L′ andk′ ≤ g(k) for a fixed computable functiong : N → N and there is
a computable functionf and a constantc such thatr is computable in timeO( f (k)‖I‖c). Thus, an fpt-reduction is,
in particular, an fpt-algorithm. It is easy to see that the class FPT is closed under fpt-reductions and it is clear for
parameterized problemsL1 andL2 that if L1 ∈ FPT and there is an fpt-reduction fromL2 to L1, thenL2 ∈ FPT.

TheWeft Hierarchyconsists of parameterized complexity classes W[1]⊆W[2] ⊆ · · · which are defined as the
closure of certain parameterized problems under parameterized reductions. There is strong theoretical evidence
that parameterized problems that are hard for classes W[i] are not fixed-parameter tractable. A prominentW[2]-
complete problem is HITTING SET [28] defined as follows:

HITTING SET

Given: A family of sets (S, k) whereS = {S1, . . . ,Sm} and an integerk.
Parameter: The integerk.
Task: Decide whether there exists setH of size at mostk which intersects with all

theSi (H is ahitting setof S).

The class XP ofnon-uniformtractable problems consists of all parameterized decisionproblems that can be solved
in polynomial time if the parameter is considered constant.That is, (I , k) ∈ L can be decided in timeO(‖I‖ f (k))
for some computable functionf . The parameterized complexity class paraNP contains all parameterized decision
problemsL such that (I , k) ∈ L can be decidednon-deterministicallyin time O( f (k)‖I‖c) for some computable
function f and constantc. A parameterized decision problem is paraNP-complete if itis in NP and NP-complete
when restricted to a finite number of parameter values [42]. By co-paraNP we denote the class of all parameterized
decision problems whose complement (yes and no instances swapped) is in paraNP. Using the concepts and
terminology of Flum and Grohe [42], co-paraNP= para-coNP.

2.4. Graphs

We recall some notations of graph theory. We consider undirected and directed graphs. Anundirected graphor
simply agraph is a pairG = (V,E) whereV , ∅ is a set ofverticesandE ⊆ { {u, v} ⊆ V : u , v } is a set ofedges.
We denote an edge{v,w} by uv or vu. A graphG′ = (V′,E′) is asubgraphof G if V′ ⊆ V andE′ ⊆ E and an
induced subgraphif additionally for anyu, v ∈ V′ anduv ∈ E alsouv ∈ E′. A path of length kis a graph with
k+ 1 pairwise distinct verticesv1, . . . , vk+1, andk distinct edgesvivi+1 where 1≤ i ≤ k (possiblyk = 0). A cycle of
length k, is a graph that consists ofk distinct verticesv1, v2, . . . , vk andk distinct edgesv1v2, . . . , vk−1vk, vkv1. Let
G = (V,E) be a graph.G is bipartite if the setV of vertices can be divided into two disjoint setsU andV such
that there is no edgeuv ∈ E with u, v ∈ U or u, v ∈ V. G is completeif for any two verticesu, v ∈ V there is an
edgeuv ∈ E. G contains acliqueonV′ ⊆ V if the induced subgraph (V′,E′) of G is a complete graph. Aconnected
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component Cof G is an inclusion-maximal subgraphC = (VC,EC) of G such that for any two verticesu, v ∈ VC

there is a path inC from u to v.
A directed graphor simply adigraph is a pairG = (V,E) whereV , ∅ is a set of vertices andE ⊆ { (u, v) ∈

V×V : u , v } is a set ofdirected edges. A digraphG′ = (V′,E′) is asubdigraphof G if V′ ⊆ V andE′ ⊆ E and an
induced subdigraphif additionally for anyu, v ∈ V′ and (u, v) ∈ E also (u, v) ∈ E′. A directed path of length kis
a digraph withk+ 1 pairwise distinct verticesv1, . . . , vk+1, andk distinct edges (vi , vi+1) where 1≤ i ≤ k (possibly
k = 0). A directed cycle of length k, is a digraph that consists ofk distinct verticesv1, v2, . . . , vk andk distinct
edges (v1, v2), . . . , (vk−1, vk), (vk, v1).

We sometimes denote a (directed) path or (directed) cycle asa sequence of vertices. Please observe that
according to the above definitions, the length of an undirected cycle is at least 3, whereas the length of a directed
cycle is at least 2.

A strongly connected component Cof a digraphG = (V,E) is an inclusion-maximal directed subgraphC =
(VC,EC) of G such that for any two verticesu, v ∈ VC there are paths inC from u to v and fromv to u. The strongly
connected components ofG form a partition of the setV of vertices, we denote this partition by SCC(G).

For further basic terminology on graphs and digraphs we refer to a standard text [26, 12].

2.5. Satisfiability Backdoors

We also need some notions frompropositional satisfiability. A literal is an atom or its negation and aclauseis
a finite set of literals, a CNF formula is a finite set of clauses. A truth assignmentis a mappingτ : X → {0, 1}
defined for a setX ⊆ U of atoms. Forx ∈ X we putτ(¬x) = 1 − τ(x). By 2X we denote the set of all truth
assignmentsτ : X → {0, 1}. The truth assignment reductof a CNF formulaF with respect toτ ∈ 2X is the CNF
formulaFτ obtained fromF by first removing all clausesc that contain a literal set to 1 byτ, and second removing
from the remaining clauses all literals set to 0 byτ. τ satisfies Fif Fτ = ∅, andF is satisfiableif it is satisfied by
someτ.

The following is obvious from the definitions:

Observation 2.1. Let F be a CNF formula and X a set of atoms. F is satisfiable if andonly if Fτ is satisfiable for
at least one truth assignmentτ ∈ 2X.

This leads to the definition of a strong backdoor relative to aclassC of polynomially solvable CNF formulas:
a setX of atoms is astrongC-backdoorof a CNF formulaF if Fτ ∈ C for all truth assignmentsτ ∈ 2X. Assume
that the satisfiability of formulasF ∈ C of size‖F‖ = n can be decided in timeO(nc). Then we can decide the
satisfiability of an arbitrary formulaF for which we know a strongC-backdoor of sizek in time O(2knc) which is
efficient as long ask remains small.

A further variant of backdoors are deletion backdoors defined by removing literals from a CNF formula.F −X
denotes the formula obtained fromF by removing all literalsx,¬x for x ∈ X from the clauses ofF. Then a setX
of atoms is adeletionC-backdoorof F if F − X ∈ C. In general, deletionC-backdoors are not necessarily strong
C-backdoors. If all subsets of a formula inC also belong toC (C is clause-induced), then deletionC-backdoors are
strongC-backdoors.

Before we can use a strong backdoor we need to find it first. For most reasonable target classesC the detection
of a strongC-backdoor of size at mostk is NP-hard ifk is part of the input. However, as we are interested in finding
small backdoors, it makes sense to parameterize the backdoor search by k and consider the parameterized com-
plexity of backdoor detection. Indeed, with respect to the classes of Horn CNF formulas and 2-CNF formulas, the
detection of strong backdoors of size at mostk is fixed-parameter tractable [105]. The parameterized complexity
of backdoor detection for many further target classes has been investigated [46].
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3. Answer Set Backdoors

3.1. Strong Backdoors

In order to translate the notion of backdoors to the domain ofASP, we first need to come up with a suitable concept
of a reduction with respect to a truth assignment. The following is a natural definition which generalizes a concept
of Gottlobet al. [69].

Definition 3.1. Let P be a program, X a set of atoms, andτ ∈ 2X. Thetruth assignment reductof P underτ is the
logic program Pτ obtained from P by

1. removing all rules r with H(r) ∩ τ−1(1) , ∅ or H(r) ⊆ X;

2. removing all rules r with B+(r) ∩ τ−1(0) , ∅;

3. removing all rules r with B−(r) ∩ τ−1(1) , ∅;

4. removing from the heads and bodies of the remaining rules all literals v,¬v with v∈ X.

Definition 3.2. LetC be a class of programs. A set X of atoms is astrongC-backdoorof a program P if Pτ ∈ C
for all truth assignmentsτ ∈ 2X.

By a minimal strongC-backdoor of a programP we mean a strongC-backdoor ofP that does not properly
contain a smaller strongC-backdoor ofP; asmalleststrongC-backdoor ofP is one of smallest cardinality.

Example3.1. We consider the program of Example 2.1. The set{b, c} is a strongHorn -backdoor since all four
truth assignment reductsPb̄c̄ = {d← a, e; a← d; e← f ; f }, Pb̄,c = {d← a, e; f ← d; f }, Pbc̄ = {d← a, e; e←
f ; f }, andPbc = {d← a, e; f ← d; f } are in the classHorn . ⊣

3.2. Deletion Backdoors

Next we define a variant of answer set backdoors similar to satisfiability deletion backdoors. For a programP and
a setX of atoms we defineP− X as the program obtained fromP by deletinga,¬a for a ∈ X from the rules ofP.
The definition gives rise to deletion backdoors. We will see that finding deletion backdoors is in some cases easier
than finding strong backdoors.

Definition 3.3. LetC be a class of programs. A set X of atoms is adeletionC-backdoorof a program P if P−X ∈ C.

In general, not every strongC-backdoor is a deletionC-backdoor, and not every deletionC-backdoor is a
strongC-backdoor. But we can strengthen one direction requiring the base class to satisfy the very mild condition
of being hereditary (see Section 2) which holds for all base classes considered in this paper.

Lemma 3.1. If C is hereditary, then every deletionC-backdoor is a strongC-backdoor.

Proof. Let P be a program,X ⊆ at(P), andτ ∈ 2X. Let r′ ∈ Pτ. It follows from Definition 3.1 thatr′ is obtained
from somer ∈ P by deletingv,¬v for all v ∈ X from the head and body ofr. Consequentlyr′ ∈ P − X. Hence
Pτ ⊆ P− X which establishes the proposition.
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3.3. Backdoor Evaluation

An analogue to Observation 2.1 does not hold for ASP, even if we consider the most basic problem CONSISTENCY.
Take for example the programP = { x← y; y← x; ← x; z← ¬x } and the setX = {x}. Both reductsPx=0 = { z}
andPx=1 = { y } have answer sets, butP has no answer set. However, we can show a somewhat weaker asymmetric
variant of Observation 2.1, where we can map each answer set of P to an answer set ofPτ for someτ ∈ 2X.
This is made precise by the following definition and lemma (which are key for a backdoor approach to answer set
programming).

Definition 3.4. Let P be a program and X a set of atoms. We define

AS(P,X) = {M ∪ τ−1(1) : τ ∈ 2X∩at(P),M ∈ AS(Pτ) }.

Lemma 3.2. AS(P) ⊆ AS(P,X) holds for every program P and every set X of atoms.

Proof. Let M ∈ AS(P) be chosen arbitrarily. We putX0 = (X \ M) ∩ at(P) andX1 = X ∩ M and define a truth
assignmentτ ∈ 2X∩at(P) by settingτ−1(i) = Xi for i ∈ {0, 1}. Let M′ = M \ X1. Observe thatM′ ∈ AS(Pτ)
implies M ∈ AS(P,X) sinceM = M′ ∪ τ−1(1) by definition. Hence, to establish the lemma, it suffices to show that
M′ ∈ AS(Pτ). We have to show thatM′ is a model ofPM′

τ , and that no proper subset ofM′ is a model ofPM′
τ .

In order to show thatM′ is a model ofPM′
τ , chooser′ ∈ PM′

τ arbitrarily. By construction ofPM′
τ there is a

corresponding ruler ∈ P with H(r′) = H(r) \ X0 andB+(r′) = B+(r) \ X1 which gives rise to a ruler′′ ∈ Pτ, and
in turn, r′′ gives rise tor′ ∈ PM′

τ . SinceB−(r) ∩ X1 = ∅ (otherwiser would have been deleted formingPτ) and
B−(r) ∩ M′ = ∅ (otherwiser′′ would have been deleted formingPM′

τ ), it follows thatB−(r) ∩ M = ∅. Thusr gives
rise to a ruler∗ ∈ PM with H(r) = H(r∗) andB+(r) = B+(r∗). SinceM ∈ AS(P), M satisfiesr∗, i.e.,H(r) ∩ M , ∅
or B+(r) \ M , ∅. However,H(r) ∩ M = H(r′) ∩ M′ andB+(r) \ M = B+(r′) \ M′, thusM′ satisfiesr′. Since
r′ ∈ PM′

τ was chosen arbitrarily, we conclude thatM′ is a model ofPM′
τ .

In order to show that no proper subset ofM′ is a model ofPM′
τ choose arbitrarily a proper subsetN′ ( M′.

Let N = N′ ∪ X1. SinceM′ = M \ X1 andX1 ⊆ M it follows that N ( M. SinceM is a minimal model ofPM,
N cannot be a model ofPM . Consequently, there must be a ruler ∈ P such thatB−(r) ∩ M = ∅ (i.e., r is not
deleted by formingPM), B+(r) ⊆ N andH(r) ∩ N = ∅. However, sinceM satisfiesPM, and sinceB+(r) ⊆ N ⊆ M,
H(r) ∩ M , ∅. Thus r is not a constraint. Moreover, sinceH(r) ∩ M , ∅ and M ∩ X0 = ∅, it follows that
H(r) \ X0 , ∅. Thus, sinceH(r) ∩ X1 = ∅, H(r) \ X , ∅. We conclude thatr is not deleted when formingPτ
and giving rise to a ruler′ ∈ Pτ, which in turn is not deleted when formingPM′

τ , giving rise to a ruler′′, with
H(r′′) = H(r) \X0, B+(r′′) = B+(r) \X1, andB−(r′′) = ∅. SinceB+(r′′) ⊆ N′ andH(r′′)∩N = ∅, N′ is not a model
of PM′

τ .
Thus we have established thatM′ is a stable model ofPτ, and so the lemma follows.

In view of Lemma 3.2 we shall refer to the elements in AS(P,X) as “answer set candidates.”

Example3.2. We consider programP of Example 2.1 and the strongHorn -backdoorX = {b, c} of Example 3.1.
The answer sets ofPτ are AS(Pb̄c̄) = {{e, f }}, AS(Pb̄c) = {{ f }}, AS(Pbc̄) = {{e, f }}, and AS(Pbc) = {{ f }} for
τ ∈ 2{b,c}. We obtain the set AS(P,X) = {{e, f }, {c, f }, {b, e, f }, {b, c, f }}. ⊣

In view of Lemmas 3.2, we can compute AS(P) by (i) computing AS(Pτ) for all τ ∈ 2X (this produces the
set AS(P,X) of candidates for AS(P)), and (ii) checking for eachM ∈ AS(P,X) whether it is an answer set ofP.
The check (ii) entails (iia) checking whetherM ∈ AS(P,X) is a model of P and (iib) whetherM ∈ AS(P,X) is a
minimal model ofPM. We would like to note that in particular any constraint contained inP is removed in the
truth assignment reductPτ but considered in check (iia). Clearly check (iia) can be carried out in polynomial time
for eachM. Check (iib), however, is co-NP-hard in general [95], but polynomial for normal programs [16].
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Fortunately, for our considerations it suffices to perform check (iib) for programs that are “close toNormal,”
and so the check is fixed-parameter tractable in the size of the given backdoor. More precisely, we consider the
following parameterized problem and establish its fixed-parameter tractability in the next lemma.

STRONGC-BACKDOOR ASP CHECK

Given: A programP, a strongC-backdoorX of P and a setM ⊆ at(P).
Parameter: The size|X| of the backdoor.
Task: Decide whetherM is an answer set ofP.

Lemma 3.3. LetC be a class of normal programs. The problemSTRONG C-BACKDOOR ASP CHECK is fixed-
parameter tractable.

Proof. LetC be a class of normal programs,P a program, andX a strongC-backdoorX of P with |X| = k. We can
check in polynomial time whetherM is a model ofP and whetherM is a model ofPM. If it is not, we can reject
M, and we are done. Hence assume thatM is a model ofPM. In order to check whetherM ∈ AS(P) we still need
to decide whetherM is a minimal model ofPM. We may assume, w.l.o.g., thatP contains no tautological rules, as
it is clear that the test for minimality does not depend on tautological rules.

Let X1 ⊆ M ∩ X. We construct fromPM a programPM
X1⊆X by (i) removing all rulesr for which H(r) ∩ X1 , ∅,

and (ii) replacing for all remaining rulesr the headH(r) with H(r) \X, and the positive bodyB+(r) with B+(r) \X1.
Claim: PM

X1⊆X is Horn.

To show the claim, consider some ruler′ ∈ PM
X1⊆X. By construction, there must be a ruler ∈ P that gives raise

to a rule inPM, which in turn gives raise tor′. Let τ ∈ 2X be the assignment that sets all atoms inX ∩ H(r) to 0,
and all atoms inX \ H(r) to 1. Sincer is not tautological, it follows thatr is not deleted when we obtainPτ, and it
gives rise to a ruler∗ ∈ Pτ, whereH(r∗) = H(r) \ X. However, sinceC is a class of normal programs,r∗ is normal.
Hence 1≥ |H(r∗)| = |H(r) \ X| = H(r′), and the claim follows.

To test whetherM is a minimal model ofPM, we run the following procedure for every setX1 ⊆ M ∩ X.

If PM
X1⊆X has no model, then stop and return TRUE.

Otherwise, compute the unique minimal modelL of the Horn programPM
X1⊆X. If L ⊆ M \X, L∪X1 (

M, andL ∪ X1 is a model ofPM , then return FALSE. Otherwise return TRUE.

For each setX1 ⊆ M ∩ X the above procedure runs in linear time by Lemma 2.1. As thereareO(2k) setsX1

to consider, we have a total running time ofO(2kn) wheren denotes the input size ofP andk = |X|. It remains to
establish the correctness of the above procedure in terms ofthe following claim.

Claim: M is a minimal model of PM if and only if the algorithm returns TRUE for each X1 ⊆ M ∩ X.
(⇒). Assume thatM is a minimal model ofPM, and suppose to the contrary that there is someX1 ⊆ M ∩ X

for which the algorithm returns FALSE. Consequently,PM
X1⊆X has a unique minimal modelL with L ⊆ M \ X,

L ∪ X1 ( M, and whereL ∪ X1 is a model ofPM. This contradicts the assumption thatM is a minimal model of
PM. Hence the only-if direction of the lemma is shown.

(⇐). Assume that the algorithm returns TRUE for eachX1 ⊆ M ∩ X. We show thatM is a minimal model of
PM. Suppose to the contrary thatPM has a modelM′ ( M.

We run the algorithm forX1 := M′∩X. By assumption, the algorithm returns TRUE. There are two possibilities:
(i) PM

X1⊆X has no model, or (ii)PM
X1⊆X has a model, and for its unique minimal modelL the following holds:L is

not a subset ofM \ X, or L ∪ X1 is not a proper subset ofM, or L ∪ X1 is not a model ofPM.
We show that case (i) is not possible by showing thatM′ \ X is a model ofPM

X1⊆X.
To see this, consider a ruler′ ∈ PM

X1⊆X, and letr ∈ PM such thatr′ is obtained fromr by removingX from H(r)
and by removingX1 from B+(r). SinceM′ is a model ofPM , we have (a)B+(r) \ M′ , ∅ or (b) H(r) ∩ M′ , ∅.
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Figure 1: Exploit pattern of ASP backdoors if the target class C is normal and enumerable wheren denotes the
input size ofP.

Moreover, sinceB+(r′) = B+(r)\X1 andX1 = M′∩X, (i) implies∅ , B+(r)\M′ = B+(r)\X1 \M′ = B+(r′)\M′ ⊆
B+(r′) \ (M′ \ X), and sinceH(r) ∩ X1 = ∅, (ii) implies ∅ , H(r) ∩ M′ = H(r) ∩ (M′ \ X1) = H(r) ∩ (M′ \ X) =
(H(r) \ X) ∩ (M′ \ X) = H(r′) ∩ (M′ \ X). HenceM′ \ X satisfiesr′. Sincer′ ∈ PM

X1⊆X was chosen arbitrarily, we
conclude thatM′ \ X is a model ofPM

X1⊆X.
Case (ii) is not possible either, as we can see as follows. AssumePM

X1⊆X has a model, and letL be its unique
minimal model. SinceM′ \ X is a model ofPM

X1⊆X, as shown above, we haveL ⊆ M′ \ X.
We haveL ⊆ M \ X sinceL ⊆ M′ \ X andM′ \ X ⊆ M \ X.
Further we haveL ∪ X1 ( M sinceL ∪ X1 ⊆ (M′ \ X) ∪ X1 = (M′ \ X) ∪ (M′ ∩ X) = M′ ( M.
And finally L∪ X1 is a model ofPM, as can be seen as follows. Consider a ruler ∈ PM. If X1∩H(r) , ∅, then

L ∪ X1 satisfiesr; thus it remains to consider the caseX1 ∩ H(r) = ∅. In this case there is a ruler′ ∈ PM
X1⊆X with

H(r′) = H(r) \ X andB+(r′) = B+(r) \ X1. SinceL is a model ofPM
X1⊆X, L satisfiesr′. Hence (a)B+(r′) \ L , ∅

or (b) H(r′) ∩ L , ∅. SinceB+(r′) = B+(r) \ X1, (a) implies thatB+(r) \ (L ∪ X1) , ∅; and sinceH(r′) ⊆ H(r),
(b) implies thatH(r) ∩ (L ∪ X1) , ∅. ThusL ∪ X1 satisfiesr. Sincer ∈ PM was chosen arbitrarily, we conclude
thatL ∪ X1 is a model ofPM.

Since neither case (i) nor case (ii) is possible, we have a contradiction, and we conclude thatM is a minimal
model ofPM.

Hence the second direction of the claim is established, and so the lemma follows.

Figure 1 illustrates how we can exploit a strongC-backdoor to find answer sets. For a given programP and
a strongC-backdoorX of P we have to consider|2X| truth assignments to the atoms in the backdoorX. For each
truth assignmentτ ∈ 2X we reduce the programP to a programPτ and compute the set AS(Pτ). Finally, we obtain
the set AS(P) by checking for eachM ∈ AS(Pτ) whether it gives rise to an answer set ofP.

Example3.3. We consider the set AS(P,X) = {{e, f }, {c, f }, {b, e, f }, {b, c, f }} of answer set candidates of Exam-
ple 3.2 and check for each candidateL = {e, f }, M = {c, f }, N = {b, e, f }, andO = {b, c, f } whether it is an answer
set ofP. Therefore we solve the problem STRONG Horn -BACKDOOR ASP CHECK by means of Lemma 3.3.

First we test whether the setsL, M, N andO are models ofP. We easily observe thatN andO are models ofP.
But L andM are not models ofP since they do not satisfy the rulec← e, f ,¬b andb← c respectively, and we can
drop them as candidates. Then we positively answer the question whetherN andO are models of its GL-reducts
PN andPO respectively.
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Next we consider the minimality and apply the algorithm of Lemma 3.3 for each subset of the backdoorX =
{b, c}. We have the GL-reductPN

= {d← a, e; e∨ c← f ; f ← d, c; c← d; b← c; f }. For X1 = ∅ we obtain
PN

X1⊆X = {d ← a, e; e← f ; f ← d, c; ← d; ← c; f }. The setL = {e, f } is the unique minimal model ofPN
X1⊆X.

SinceL ⊆ N \ X, L ∪ X1 ( N, andL ∪ X1 is a model ofPN, the algorithm returns FALSE. We conclude thatN is
not a minimal model ofPN and thusN is not an answer set ofP.

We obtain the GL-reductPO
= {d ← a, e; e∨ c ← f ; f ← d, c; c ← d; b ← c; f }. For X1 = ∅ we have

PX1⊆X = {d ← a, e; e← f ; f ← d, e; ← d; ← c; f }. The setL = {e, f } is the unique minimal model ofPX1⊆X.
SinceL ∪ X1 ( O, the algorithm returns TRUE. ForX2 = {b} we getPX2⊆X = {d ← a, e; e← f ; f ← d, e; ←
d; f } and the unique minimal modelL = {e, f }. SinceL ⊆ O \ X, the algorithm returns TRUE. ForX3 = {c}
we obtainPX3⊆X = {d ← a, e; f ← d; ←; f } and no minimal model. Thus the algorithm returns TRUE. For
X4 = {b, c} we havePX4⊆X = {d ← a, e; f ← d; f } and the unique minimal modelL = { f }. SinceL ∪ X1 ( M,
the algorithm returns TRUE. Since only{b, c, f } ∈ AS(P,X) is an answer set ofP, we obtain AS(P) = {{b, c, f }}. ⊣

In view of Lemmas 3.2 and 3.3, the computation of AS(P) is fixed-parameter tractable for parameterk if we
know a strongC-backdoorX of size at mostk for P, and each program inC is normal and its stable sets can be
computed in polynomial time. This consideration leads to the following definition and result.

Definition 3.5. A classC of programs isenumerableif for each P∈ C we can computeAS(P) in polynomial time.
If AS(P) can be computed even in linear time, then we call the classlinear-time enumerable.

Theorem 3.1.LetC be an enumerable class of normal programs. The problems inAspFull are all fixed-parameter
tractable when parameterized by the size of a strongC-backdoor, assuming that the backdoor is given as an input.

Proof. Let X be the given backdoor,k = |X| andn the input size ofP. SincePτ ∈ C andC is enumerable, we
can compute AS(Pτ) in polynomial time for eachτ ∈ 2X, say in timeO(nc) for some constantc. Observe that
therefore|AS(Pτ)| ≤ O(nc) for eachτ ∈ 2X. Thus we obtain AS(P,X) in time O(2knc), and|AS(P,X)| ≤ O(2knc).
By Lemma 3.2, AS(P) ⊆ AS(P,X). By means of Lemma 3.3 we can decide whetherM ∈ AS(P) in timeO(2kn) for
eachM ∈ AS(P,X). Thus we determine from AS(P,X) the set of all answer sets ofP in timeO(2k·nc·2k·n+2k·nc) =
O(22knc+1). Once we know AS(P), then we can also solve all problems inAspFull within polynomial time.

Remark.If we know that each program inC has at most one answer set, andP has a strongC-backdoor of sizek,
then we can conclude thatP has at most 2k answer sets. Thus, we obtain an upper bound on the number of answer
sets ofP by computing a small strongC-backdoor ofP.

The following definition will be useful in the sequel.

Definition 3.6. LetC be a class of programs. We denote byC∗ the class containing all programs that belong toC
after removal of tautological rules and constraints.

In fact, it turns out that for several of our algorithmic results that work forC-backdoors also work forC∗-
backdoors, but the latter can be much smaller than the former. Hence we will often formulate and establish results
in terms of the more general notionC∗.

Observation 3.1. Whenever a classC of programs is (linear-time) enumerable, then so isC∗.

Proof. Let C be enumerable, letP∗ ∈ C∗, and letP be the program obtained fromP∗ by removing tautological
rules and constraints. SinceC is enumerable, we can compute AS(P) in polynomial time (or linear time, ifC
is linear-time enumerable). By well-known results [14, 15]AS(P) ⊆ AS(P∗), and in order to check whether
someM ∈ AS(P) belongs to AS(P∗) we only need to check whetherM satisfies all the constraints ofP∗, which
can be done in linear time.
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3.4. Backdoor Detection

Theorem 3.1 draws our attention to enumerable classes of normal programs. Given such a classC, is the detection
of C-backdoors fixed-parameter tractable? If the answer is affirmative, we can drop in Theorem 3.1 the assumption
that the backdoor is given as an input for this class.

Each classC of programs gives rise to the following two parameterized decision problems:

STRONGC-BACKDOOR DETECTION

Given: A programP and an integerk.
Parameter: The integerk.
Task: Decide whetherP has a strongC-backdoorX of size at mostk.

DELETION C-BACKDOOR DETECTION

Given: A programP and an integerk.
Parameter: The integerk.
Task: Decide whetherP has a deletionC-backdoorX of size at mostk.

By a standard construction, known as self-reduction or self-transformation [122, 28], one can use a decision
algorithm for DELETION C-BACKDOOR DETECTION to actually find the backdoor. We only require the base class
to be hereditary.

Lemma 3.4. LetC be a hereditary class of programs. IfDELETION C-BACKDOOR DETECTION is fixed-parameter
tractable, then also finding a deletionC-backdoor of a given program P of size at most k is fixed-parameter
tractable (for parameter k).

Proof. We proceed by induction onk. If k = 0 the statement is clearly true. Letk > 0. Given (P, k) we check for
all x ∈ at(P) whetherP− {x} has a deletionC-backdoor of size at mostk− 1. If the answer is NO for allx, thenP
has no deletionC-backdoor of sizek. If the answer is YES forx, then by induction hypothesis we can compute a
deletionC-backdoorX of size at mostk− 1 of P− x, andX ∪ {x} is a deletionC-backdoor ofP.

4. Target Class Horn

In this section we consider the important caseHorn as the target class for backdoors. As a consequence of
Lemma 2.1,Horn is linear-time enumerable. The following lemma shows that strong and deletionHorn ∗-
backdoors coincide.

Lemma 4.1. A set X is a strongHorn ∗-backdoor of a program P if and only it is a deletionHorn ∗-backdoor of P.

Proof. SinceHorn ∗ is hereditary, Lemma 3.1 establishes the if-direction. Forthe only-if direction, we assume for
the sake of a contradiction thatX is a strongHorn ∗-backdoor ofP but not a deletionHorn ∗-backdoor ofP. Hence
there is a ruler′ ∈ P− X which is neither tautological nor a constraint nor Horn. Letr ∈ P be a rule from which
r′ was obtained in formingP − X. We defineτ ∈ 2X by setting all atoms inX ∩ (H(r) ∪ B−(r)) to 0, all atoms in
X ∩ B+(r) to 1, and all remaining atoms inX \ at(r) arbitrarily to 0 or 1. Sincer is not tautological, this definition
of τ is sound. It follows thatr′ ∈ Pτ, contradicting the assumption thatX is a strongHorn ∗-backdoor ofP.

Definition 4.1. Let P be a program. Thenegation dependency graphNP is the graph defined on the set of atoms
of the given program P, where two atoms x, y are joined by an edge xy if there is a rule r∈ P with x ∈ H(r) and
y ∈ H(r) ∪ B−(r).
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Figure 2: Negation dependency graphNP of the programP of Example 2.1.

Tautological rules and constraints do not produce any edgesin the negation dependency graph, hence, if we
delete such rules from the program, we still obtain the same graph.

Example4.1. Figure 2 visualizes the negation dependency graphNP of the programP of Example 2.1. ⊣

The following lemma states how we can use recent results on the vertex cover problem to find deletion back-
doors for the target classHorn . A vertex coverof a graphG = (V,E) is a setS ⊆ V such that for every edgeuv ∈ E
we have{u, v} ∩ S , ∅.

Lemma 4.2. Let P be a program. A set X⊆ at(P) is a deletionHorn -backdoor of P if and only if X is a vertex
cover of the negation dependency graph NP.

Proof. Let X ⊆ H(r) ∪ B−(r) be a deletionHorn -backdoor ofP. Consider an edgeuv of NP. By construction of
NP there is a corresponding ruler ∈ P with (i) u, v ∈ H(r) andu , v or (ii) u ∈ H(r) andv ∈ B−(r). SinceX is a
deletionHorn -backdoor,|H(r) − X| ≤ 1 andB−(r) − X = ∅. Thus if Case (i) applies,{u, v} ∩ X , ∅. If Case (ii)
applies, again{u, v} ∩ X , ∅. We conclude thatX is a vertex cover ofNP.

Conversely, assume thatX is a vertex cover ofNP. Consider a ruler ∈ P − X for proof by contradiction. If
|H(r)| ≥ 2 then there are two variablesu, v ∈ H(r) and an edgeuv of NP such that{u, v} ∩ X = ∅, contradicting the
assumption thatX is a vertex cover. Similarly, if|B−(r)| ≥ 1 then we take a variableu ∈ B−(r) and a variablev ∈
H(r); suchv exists sincer is not a constraint. ThusNP contains the edgeuv with {u, v} ∩ X , ∅, contradicting the
assumption thatX is a vertex cover. Hence the claim holds.

Example4.2. For instance, the negation dependency graphNP of the programP of Example 2.1 consists of the
triangle{a, b, c} and a path (c, e). Then{b, c} is a vertex cover ofG. We observe easily that there exists no vertex
cover of size 1. Thus{b, c} is a smallest strongHorn ∗-backdoor ofP. ⊣

Theorem 4.1. STRONG Horn ∗-BACKDOOR DETECTION is fixed-parameter tractable. In fact, given a program
with n atoms we can find a strongHorn ∗-backdoor of size at most k in time O(1.2738k

+ kn) or decide that no such
backdoor exists.

Proof. Let P∗ be a given program. We delete fromP∗ all tautological rules and all constraints and obtain a pro-
gramP with n atoms. We observe that the strongHorn ∗-backdoors ofP∗ are precisely the strongHorn -backdoors
of P. Let NP be the negation dependency graph ofP. According to Lemma 7.2 a setX ⊆ at(P) is a vertex cover
of NP if and only if X is a deletionHorn ∗-backdoor ofP. Then a vertex cover of size at mostk, if it exists, can be
found in timeO(1.2738k

+kn) by Chenet al.[21]. By Lemma 4.1 this vertex cover is also a strongHorn ∗-backdoor
of P.

Now we can use Theorem 4.1 to strengthen the fixed-parameter tractability result of Theorem 3.1 by dropping
the assumption that the backdoor is given.

Corollary 4.1. All the problems inAspFull are fixed-parameter tractable when parameterized by the size of a
smallest strongHorn ∗-backdoor of the given program.
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5. Target Classes Based on Acyclicity

There are two causes for a program to have a large number of answer sets: (i) disjunctions in the heads of rules,
and (ii) certain cyclic dependencies between rules. Disallowing both yields enumerable classes.

In order to define acyclicity we associate with each disjunctive programP its dependency digraph DP and
its (undirected) dependency graph UP. These definitions extend similar notions defined for normalprograms by
Apt et al. [2] and Gottlobet al. [69].

Definition 5.1. Let P be a program. Thedependency digraphis the digraph DP which has as vertices the atoms
of P and a directed edge(x, y) between any two atoms x, y for which there is a rule r∈ P with x ∈ H(r) and
y ∈ B+(r) ∪ B−(r). We call the edge(x, y) negativeif there is a rule r∈ P with x∈ H(r) and y∈ B−(r).

Definition 5.2. Let P be a program. The(undirected) dependency graphis the graph UP obtained from the
dependency digraph Dp

1. by replacing each negative edge e= (x, y) with two edges xve, vey where ve is a newnegative vertex, and

2. by replacing each remaining directed edge(u, v) with an edge uv.

Example5.1. Figure 3 visualizes the dependency digraphDP and the dependency graphUp of the programP of
Example 2.1. ⊣
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Figure 3: Dependency digraphDP (left) and dependency graphUP (right) of the programP of Example 2.1.

Definition 5.3. Let P be a program.

1. Adirected cycle ofP is a directed cycle in the dependency digraph DP.

2. A directed cycle isbadif it contains a negative edge, otherwise it isgood.

3. A directed cycle isevenif it contains an even number of negative edges, otherwise itis odd.

4. Acycle ofP is a cycle in the dependency graph UP.

5. A cycle isbadif it contains a negative vertex, otherwise it isgood.

6. A cycle isevenif it contains an even number of negative vertices, otherwise it isodd.

Definition 5.4. The following classes of programs are defined in terms of the absence of various kinds of cycles:
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• no-C contains all programs that have no cycles,

• no-BC contains all programs that have no bad cycles,

• no-DC contains all programs that have no directed cycles,

• no-DC2contains all programs that have no directed cycles of lengthat least 3 and no directed bad cycles

• no-DBC contains all programs that have no directed bad cycles,

• no-EC contains all programs that have no even cycles,

• no-BEC contains all programs that have bad even cycles,

• no-DEC contains all programs that have no directed even cycles, and

• no-DBEC contains all programs that have no directed bad even cycles.

We letAcyc denote the family of all the eight classes defined above. We also writeD-Acyc to denote the subfam-
ily {no-DC, no-DC2, no-DBC, no-DEC, no-DBEC} ⊆ Acyc.

Example5.2. Consider the dependency graphs of the programP of Example 2.1 as depicted in Figure 3. For
instance the sequence (d, e, f ) is a cycle, (d, a) is a directed cycle (of length 2), (d, e, f ) and (c, e, f ) are directed
cycles (of length 3), (a, v(a,c), c, d) is a bad cycle, (c, f ) is a directed bad cycle. The sequence (d, e, f ) is an even
cycle and an even directed cycle, (c, e) is an directed bad even cycle.

The setX = {c} is a strongno-DBEC-backdoor since the truth assignment reductsPc=0 = P0 = {d ←; a ←
¬b; e ← f ; f } and P1 = {d ← a, e; f ← d; b; f } are in the target classno-DBEC. X is also a strong
no-BEC-backdoor, sinceP0 ∈ no-BEC and P1 ∈ no-BEC. The answer sets ofPτ are AS(Pc̄) = {{e, f }} and
AS(Pc) = {{b, f }}. Thus AS(P,X) = {{e, f }, {b, c, f }}, and since only{b, c, f } is an answer set ofP, we obtain
AS(P) = {{b, c, f }}. ⊣

The dependency and dependency digraphs contain cycles through head atoms for non-singleton heads. This
has the following consequence.

Observation 5.1.C ⊆ Normal holds for allC ∈ Acyc.

If we have two programsP ⊆ P′, then clearly the dependency (di)graph ofP is a sub(di)graph of the depen-
dency (di)graph ofP′. This has the following consequence.

Observation 5.2. All C ∈ Acyc are hereditary, and so isC∗.

The following is a direct consequence of the definitions of the various classes inAcyc.

Observation 5.3. LetC,C′ ∈ Acyc ∪ {Horn } such that the digraph in Figure 4 contains a directed path from the
classC to the classC′, thenC ⊆ C′. If no inclusion between two classes is indicated, then the classes are in fact
incomparable.

Proof. We first consider the acyclicity-based target classes. By definition we haveno-DC ( no-DBC andno-C (
no-BC ( no-DBC; it is easy to see that the inclusions are proper. However, contrary to what one expects,
no-C * no-DC, which can be seen by considering the programP1 = {x ← y, y ← x}. But the classno-DC2
which requires that a program has no directed cycles but may have directed good cycles of length 2 (as inP1)
generalizes both classesno-C andno-DC. By definition we haveno-DBC ( no-DBEC, no-DEC ( no-DBEC,
no-EC ( no-BEC, no-C ( no-EC, andno-DC ( no-DEC.
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Figure 4: Relationship between classes of programs with respect to their generality.

Next we consider the target classHorn . Let C ∈ {no-C, no-DC, no-EC}. We easily observe thatHorn * C
by considering the programP2 = {a ← b; b ← c; c ← a} which is obviously Horn but does not belong toC.
Conversely, we observe thatC * Horn by considering the programP3 = {a ← ¬b} which belongs toC but is
obviously not Horn. ThusC andHorn are incomparable. We observe thatHorn ( no-BC by again considering
the programP3 which belongs tono-BC, but is obviously not Horn, and by considering the fact that all rules r in
a Horn programP satisfy |H(r)| ≤ 1 andB−(r) = ∅ which yields that the dependency graphUP contains no bad
vertices and hence gives us thatUP contains no bad cycles.

The classno-DBC coincides with the well-known class ofstratifiedprograms [2, 63, 18]. A normal programP
is stratified if there is a mappingstr : at(P) → N, calledstratification, such that for each ruler in P the following
holds: (i) if x ∈ H(r) andy ∈ B+(r), thenstr(x) ≤ str(y) and (ii) if x ∈ H(r) andy ∈ B−(r), thenstr(x) < str(y).

Lemma 5.1(Apt et al. [2]). Strat = no-DBC.

The classno-DBEC, the largest class inAcyc, has already been studied by Zhao and Lin [135, 90], who showed
that every program inno-DBEC has at most one answer set, and this answer set can be found in polynomial time.
The proof involves the well-founded semantics [62]. Forno-DBC the unique answer set can even be found in
linear time [102].

In our context this has the following important consequence.

Proposition 5.1. All classes inAcyc are enumerable, the classesC ∈ Acyc withC ⊆ no-DBC are even linear-time
enumerable.

In view of Observation 5.1 and Proposition 5.1, all classes in Acyc satisfy the requirement of Theorem 3.1 and
are therefore in principle suitable target classes of a backdoor approach. Therefore we will study the parameterized
complexity of STRONGC-BACKDOOR DETECTION and DELETION C-BACKDOOR DETECTION for C ∈ Acyc. As
we shall see in the two subsections, the results for STRONGC-BACKDOOR DETECTION are throughout negative,
however for DELETION C-BACKDOOR DETECTION there are several (fixed-parameter) tractable cases.
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5.1. Strong Backdoor Detection

Theorem 5.1. For every target classC ∈ Acyc the problemSTRONGC-BACKDOOR DETECTION is W[2]-hard. If
no-DC ⊆ C, then evenSTRONGC∗-BACKDOOR DETECTION is W[2]-hard. Hence all these problems are unlikely
to be fixed-parameter tractable.

Proof. We give an fpt-reduction from the W[2]-complete problem HITTING SET to STRONGC-BACKDOOR DE-
TECTION, see Section 2.3. Let (S, k) be an instance of this problem withS = {S1, . . . ,Sm}. We construct a
programP as follows. As atoms we take the elements ofU =

⋃m
i=1 Si and new atomsa j

i andb j
i for 1 ≤ i ≤ m,

1 ≤ j ≤ k+1. For each 1≤ i ≤ mand 1≤ j ≤ k+1 we take two rulesr j
i , sj

i whereH(r j
i ) = {a

j
i }, B−(r j

i ) = Si ∪ {b
j
i },

B+(r j
i ) = Si ; H(sj

i ) = {b
j
i }, B−(sj

i ) = {a
j
i }, B+(sj

i ) = ∅.
We show thatS has a hitting set of size at mostk if and only if P has a strongC-backdoor of size at mostk.
(⇒). Let H an hitting set ofS of size at mostk. We choose an arbitrary truth assignmentτ ∈ 2H and show that

Pτ ∈ C. SinceH is a hitting set, each ruler j
i will be removed when formingPτ. Hence the only rules left inPτ are

the rulessj
i , and soPτ ∈ no-DC∩ no-C ⊆ C. ThusH is a strongC-backdoor ofP.

(⇐). Let X be a strongC-backdoor ofP of size at mostk. We show thatH = X∩U is a hitting set ofS. Choose
1 ≤ i ≤ mand considerSi . We first consider the caseno-DC ⊆ C. For each 1≤ j ≤ k+ 1 the programP contains a
bad even directed cycle (a j

i , b
j
i ). In order to destroy these cycles,X must contain an atom fromSi , since otherwise,

X would need to contain for each 1≤ j ≤ k + 1 at least one of the atoms from each cycle, but then|X| ≥ k + 1,
contradicting the assumption on the size ofX. HenceH is a hitting set ofS. Now we consider the caseno-C ⊆ C.
For each 1≤ j ≤ k + 1 the programP contains a bad even cycle (a j

i , vaj
i ,b

j
i
, b j

i , vbj
i ,a

j
i
). In order to destroy these

cycles,X must contain an atom fromSi , since otherwise,X would need to contain an atom from each cycle, again
a contradiction. HenceH is a hitting set ofS. Hence the W[2]-hardness of STRONGC-BACKDOOR DETECTION

follows.
In order to show that STRONG C∗-BACKDOOR DETECTION is W[2]-hard forno-DC ⊆ C, we modify the

above reduction from HITTING SET by redefining the rulesr j
i , sj

i . We put H(r j
i ) = {a

j
i }, B−(r j

i ) = Si ∪ {b
j
i },

B+(r j
i ) = ∅; H(sj

i ) = {b
j
i }, B−(sj

i ) = {a
j
i }, B+(sj

i ) = U. By the very same argument as above we can show thatS has
a hitting set of size at mostk if and only if P has a strongC∗-backdoor of size at mostk. We would like to state that
this reduction does not work for the undirected cases as it yields undirected cycles (b j

i , u, b
j′

i′ , u
′) for anyu, u′ ∈ U.

For the classno-DBECwe can again strengthen the result and show that detecting a strongno-DBEC-backdoor
is already co-NP-hard for backdoor size 0; hence the problemis co-paraNP-hard (see Section 2.3).

Theorem 5.2. The problemSTRONG no-DBEC∗-BACKDOOR DETECTION is co-paraNP-hard, and hence not
fixed-parameter tractable unlessP= co-NP.

Proof. We reduce from the following problem, which is NP-complete [44, 85],

DIRECTED PATH VIA A NODE

Given: A digraphG ands,m, t ∈ V distinct vertices.
Task: Decide whetherG contains a directed path froms to t via m.

Let G = (V,E) be a digraph ands,m, t ∈ V distinct vertices. We define a programP as follows: For each
edgee = (v,w) ∈ E wherew , m we take a rulere: w← v. For each edgee = (v,m) we take a rulere: m← ¬v.
Finally we add the rulers,t: s← ¬t. We observe that the dependency digraph ofP is exactly the digraph we obtain
from G by adding the “reverse” edge (t, s) (if not already present), and by marking (t, s) and all incoming edges of
mas negative.
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Figure 5: Known complexity of the problem STRONGC-BACKDOOR DETECTION. (*) When we permit tautolo-
gies in the rules.

We show thatG has a path froms to t via m if and only if P < no-DBEC. AssumeG has such a path. Then
this path must contain exactly one incoming edge ofm, and hence it contains exactly one negative edge. The path,
together with the negative edge (t, s), forms a directed bad even cycle ofP, henceP < no-DBEC. Conversely,
assumeP < no-DBEC. Hence the dependency digraph ofP contains a directed bad even cycle, i.e., a cycle that
contains at least two negative edges. As it can contain at most one incoming edge ofm, the cycle contains exactly
one incoming edge ofm and the reverse edge (t, s). Consequently, the cycle induces inG a directed path froms
to t via m.

Figure 5 illustrates the known complexity results of the problem STRONG C-BACKDOOR DETECTION. An
arrow fromC to C′ indicates thatC′ is a proper subset ofC and hence the size of a smallest strongC′-backdoor is
at most the size of a smallest strongC-backdoor.

5.2. Deletion Backdoor Detection

The W[2]-hardness results of Theorems 5.1 and 5.2 suggest torelax the problem and to look fordeletion backdoors
instead of strong backdoors. In view of Lemma 3.1 and Observation 5.2, every deletion backdoor is also a strong
backdoor for the considered acyclicity-based target classes, hence the backdoor approach of Theorem 3.1 works.

Fortunately, the results of this section show that the relaxation indeed gives us fixed-parameter tractability
of backdoor detection for most considered classes. Figure 6illustrates these results. We obtain these results by
making use of very recent progress in fixed-parameter algorithmics on various variants of thefeedback vertex set
or thecycle transversalproblems.

Consider a graphG = (V,E) and a setW ⊆ V. A cycle in G is a W-cycle if it contains at least one vertex
from W. A setT ⊆ V is aW-cycle transversalof G if every W-cycle ofG is also aT-cycle. A setT ⊆ V is an
even-length W-cycle transversalof G if everyW-cycle ofG of even length is also aT-cycle. AV-cycle transversal
is also called afeedback vertex set.
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We give analog definitions for a digraphG = (V,E) andW ⊆ V. A directed cycle inG is a directedW-cycle if
it contains at least on vertex fromW. A setT ⊆ V is adirected W-cycle transversalof G if every directedW-cycle
of G is also a directedT-cycle. A setT ⊆ V is andirected even-length W-cycle transversalof G if every directed
W-cycle ofG of even length is also a directedT-cycle. A directedV-cycle transversal is also called adirected
feedback vertex set.

Theorem 5.3. The problemDELETION C∗-BACKDOOR DETECTION is fixed-parameter tractable for allC ∈
Acyc \ {no-DEC, no-DBEC}.

Proof. Let P∗ be a the program andk ≥ 0. We delete fromP∗ all constraints and tautological rules. Now, the
deletionC∗-backdoors ofP∗ are exactly the deletionC-backdoors ofP. Hence we can focus on the latter. LetUp

be the dependency graph andDp the dependency digraph ofP, respectively. Next we consider the various target
classesC mentioned in the statement of the theorem, one by one, and show how we can decide whetherP has a
deletionC-backdoor of size at mostk.

First we consider “undirected” target classes. Downey and Fellows [28] have shown that finding an feedback
vertex set of size at mostk is fixed-parameter tractable. We apply their algorithm to the dependency graphUp. If
the algorithm produces a feedback vertex setS of size at mostk, then we can form a deletionno-C-backdoor of
P of size at mostk by replacing each negative vertex inS by one of its two neighbors, which always gives rise to
an atom ofP. If Up has no feedback vertex set of size at mostk, thenP has no deletionno-C-backdoor of size
at mostk. Hence DELETION no-C-BACKDOOR DETECTION is fixed-parameter tractable. Similarly, DELETION

no-BC-BACKDOOR DETECTION is fixed-parameter tractable by finding aW-feedback vertex set ofUp, taking as
W the set of bad vertices ofUp. Cyganet al. [23] and Kawarabayashi and Kobayashi [83] showed that finding a
W-feedback vertex set is fixed-parameter tractable, hence sois DELETION no-BC-BACKDOOR DETECTION.

In order to extend this approach to DELETION no-EC-BACKDOOR DETECTION, we would like to use fixed-
parameter tractability of finding an evenW-cycle transversal, which was established by Misraet al.[97] for W = V,
and by Kakimuraet al. [81] for generalW. In order to do this, we use the following trick of Aracena, Gajardo, and
Montalva [98], that turns cycles containing an even number of bad vertices into cycles of even length. FromDp we
obtain a graphU′P by replacing each negative edgee = (x, y) with three edgesxue, ueve, andvey whereue andve

are new negative vertices, and by replacing each remaining directed edge (u, v) with two edgesxwe andwey where
we is a new (non-negative) vertex. We observe thatU′p can be seen as being obtained fromDp by subdividing
edges. Hence there is a natural 1-to-1 correspondence between cycles inUp and cycles inU′p. Moreover, a cycle
of Up containing an even number of negative vertices correspondsto a cycle ofU′p of even length, and a bad cycle
of Up corresponds to a bad cycle ofU′p. Thus, when we have an even cycle transversalS of U′p, we obtain a
deletionno-EC-backdoor by replacing each negative vertexv ∈ S by its non-negative neighbor. Hence DELETION

no-EC-BACKDOOR DETECTION is fixed-parameter tractable. For DELETION no-BEC-BACKDOOR DETECTION

we proceed similarly, using a evenW-cycle transversal ofU′p, letting W be the set of negative vertices ofU′p.
We now proceed with the remaining “directed” target classesno-DC, no-DC2, andno-DBC.
Let G = (V,E) be a digraph. Evidently, the directed feedback vertex setsof Dp are exactly the deletion

no-DC-backdoors ofP. Hence, by using the fixed-parameter algorithm of Chenet al. [20] for finding directed
feedback vertex sets we obtain fixed-parameter tractability of DELETION no-DC-BACKDOOR DETECTION.

To make this work for DELETION no-DC2-BACKDOOR DETECTION we consider instead ofDp the digraphD′p
obtained fromDp by replacing each negative edgee = (u, v) by two (non-negative) edges (u,we), (we, v), where
we is a new vertex. The directed cycles ofDp andD′P are in a 1-to-1 correspondence. However, directed cycles of
length 2 inD′p correspond to good cycles of length 2 inDp. Bonsma and Lokshtanov [13] showed that finding a
directed feedback vertex set that only needs to cut cycles oflength at least 3 is fixed-parameter tractable. Applying
this algorithm toD′P (and replacing each vertexwe in a solution with one of its neighbors) yields fixed-parameter
tractability of DELETION no-DC2-BACKDOOR DETECTION.
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Figure 6: Relationship between classes of programs and known complexity of the problem DELETION C-BACK-
DOOR DETECTION. An arrow fromC toC′ indicates that deletionC-backdoors are smaller than deletionC′-back-
doors. The FPT-results are established in Theorems 4.1 and 5.3. The XP-result is established in Theorem 5.5. The
co-paraNP-hardness result is established in Theorem 5.6.

The approach for DELETION no-DC-BACKDOOR DETECTION extends to DELETION no-DBC-BACKDOOR

DETECTION by considering directedW-feedback vertex sets of the digraphD′p obtained fromDp using a simple
construction already mentioned by Cyganet al. [23] where we replace each negative edgee = (u, v) by two (non-
negative) edges (u,we), (we, v) andW = {we : e is a negative edge}. The directedW-cycles ofD′p and the directed
bad cycles ofDP are obviously in a 1-to-1 correspondence. Thus when we have adirectedW-feedback vertex
setS of D′P, we obtain a deletionno-DBC-backdoor by replacing each vertexv ∈ S ∩W by its neighbor. The
fixed-parameter tractability of finding a directedW-feedback vertex set was shown by Chitniset al. [22].

According to Observation 5.2, the classes mentioned in Theorem 5.3 are hereditary. Hence using Theorem 5.3
we can drop the assumption in Theorem 3.1 that the backdoor isgiven and obtain directly:

Theorem 5.4. For all C ∈ Acyc \ {no-DEC, no-DBEC} all problems inAspFull are fixed-parameter tractable
when parameterized by the size of a smallest deletionC∗-backdoor.

Let us now turn to the two classesno-DEC, no-DBEC excluded in Theorem 5.3. We cannot establish that
DELETION no-DEC∗-BACKDOOR DETECTION is fixed-parameter tractable, as the underlying even cycle transver-
sal problem seems to be currently out of reach to be solved. However, in Theorem 5.5 below, we can at least show
that for every constantk, we can decide in polynomial time whether a strongno-DEC∗-backdoor of size at mostk
exists; thus the problem is in XP. For DELETION no-DBEC∗-BACKDOOR DETECTION the situation is differ-
ent: here we can rule out fixed-parameter tractability underthe complexity theoretical assumption P, co-NP
(Theorem 5.6).
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Theorem 5.5. The problemDELETION no-DEC∗-BACKDOOR DETECTION is in XP.

Proof. Let P be a program,n the input size ofP, andk be a constant. W.l.o.g., we assume thatP has no tautological
rules or constraints. We are interested in a deletionno-DEC-backdoor ofP of size at mostk. We loop over all
possible setsX ⊆ at(P) of size at mostk. Sincek is a constant, there is a polynomial numberO(nk) of such setsX.
To decide whetherX is a deletionno-DEC-backdoor ofP, we need to check whetherP − X ∈ no-DEC. For the
membership checkP−X ∈ no-DEC we have to decide whetherDP−X contains a bad even cycle. We use a directed
variant of the trick in the proof of Theorem 5.3 (in fact, the directed version is slightly simpler). LetDP−X be the
dependency digraph ofP−X. FromDP−X we obtain a new digraphD′P−X by subdividing every non-negative edge,
i.e., we replace each non-negative edgee = (x, y) by two (non-negative) edges (x, ue), (ue, y) whereue is a new
vertex. Obviously, directed even cycles inDP−X are in 1-to-1 correspondence with directed cycles of even length
in D′P−X. Whether a digraph contains a directed cycle of even length can be checked in polynomial time by means
of the following results. Vazirani and Yannakakis [131] have shown that finding a cycle of even length in a digraph
is equivalent to finding a so-called Pfaffian orientation of agraph. Since Robertson, Seymour, and Thomas [115]
have shown that a Pfaffian orientation can be found in polynomial time, the test works in polynomial time.

Theorem 5.6. The problemDELETION no-DBEC∗-BACKDOOR DETECTION is co-paraNP-hard, and hence not
fixed-parameter tractable unlessP= co-NP

Proof. The theorem follows from the reduction in the proof of Theorem 5.2.

6. Kernelization

If we want to solve a hard problem, then in virtually every setting, it is beneficial to first apply a polynomial
preprocessing to a given problem instance. In particular, polynomial-time preprocessing techniques have been
developed in ASP solving (see e.g., [37, 53, 56]). However, polynomial-time preprocessing for NP-hard problems
has mainly been subject of empirical studies where provableperformance guarantees are missing, mainly due
to the fact that if we can show that if we can reduce in polynomial-time a problem instance by just one bit,
then by iterating this reduction we can solve the instances in polynomial time. Contrastingly, the framework of
parameterized complexity offers with the notion ofkernelizationa useful mathematical framework that admits
the rigorous theoretical analysis of polynomial-time preprocessing for NP-hard problems. A kernelization is a
polynomial-time reduction that replaces the input by a smaller input, called a “kernel”, whose size is bounded
by some computable function of the parameter only. A well known result of parameterized complexity theory
is that a decidable problem is fixed-parameter tractable if and only if it admits a kernelization [29]. The result
leads us to the question of whether a problem also has a kernelization that reduces instances to a size which
is polynomially bounded by the parameter, so-calledpolynomial kernels. Indeed, many NP-hard optimization
problems admit polynomial kernels when parameterized by the size of the solution [116]. In the following we
consider kernelizations for backdoor detection and backdoor evaluation in the context of ASP. We establish that
for some target classes, backdoor detection admits a polynomial kernel. We further provide strong theoretical
evidence that for all target classes considered, backdoor evaluation does admit a polynomial kernel.

We will later use the following problem:

VERTEX COVER

Given: A graphG = (V,E) and an integerk.
Parameter: The integerk.
Task: Decide whether there is a vertex coverS ⊆ V (see Section 4) of size at mostk .
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Next we give a more formal definition of kernelization. LetL, L′ ⊆ Σ∗ × N be parameterized problems. A
bi-kernelizationis a polynomial-time many-to-one reduction from the problem L to problemL′ where the size of
the output is bounded by a computable function of the parameter. That is, a bi-kernelization is an algorithm that,
given an instance (I , k) ∈ Σ∗ × N outputs for a constantc in time O((‖I‖ + k)d) a pair (I ′, k′) ∈ Σ∗ × N, such that
(i) (I , k) ∈ L if and only if (I ′, k′) ∈ L′ and (ii) ‖I ′‖ + k′ ≤ g(k) whereg is an arbitrary computable function, called
the size of the kernel. IfL′ = L then the reduction is called akernelization, the reduced instance akernel. If g is
a polynomial then we say thatL admits apolynomial (bi-)kernel, for instance, the problem VERTEX COVER has
a kernel of at most 2k vertices and thus admits a polynomial kernel [21].L is calledcompressibleif it admits a
polynomial bi-kernel.

The following proposition states the connection between fixed-parameter tractable problems and kernels, as
observed by Downey, Fellows, and Stege [29]:

Proposition 6.1(Downeyet al.[29], Flum and Grohe [42]). A parameterized problem is fixed-parameter tractable
if and only if it is decidable and has a kernelization.

Thus, our fixed-parameter tractability results of Theorems3.1, 4.1, and 5.3 immediately provide that the men-
tioned problems admit a kernelization. In the following we investigate whether these problems admit polynomial
kernels.

6.1. Backdoor Detection

The first result of this section is quite positive.

Theorem 6.1. For C ∈ {Horn , no-C} the problemDELETION C∗-BACKDOOR DETECTION admits a polynomial
kernel. ForC = Horn the kernel has a linear number of atoms, forC = no-C the kernel has a quadratic number
of atoms.

Proof. First consider the caseC = Horn . Let (P, k) be an instance of DELETION Horn ∗-BACKDOOR DETECTION.
We obtain in polynomial time the negation dependency graphNP of P and consider (NP, k) as an instance of
VERTEX COVER. We use the kernelization algorithm of Chenet al. [21] for VERTEX COVER and reduce in
polynomial time (Np, k) to a VERTEX COVER instance (G, k′) with at most 2k many vertices. It remains to translate
G into a programP′ whereNP′ = G by taking for every edgexy ∈ E(G) a rulex← ¬y. Now (P′, k′) is a polynomial
kernel with a linear number of atoms.

Second consider the caseC = no-C. Let (P, k) be an instance of DELETION no-C∗-BACKDOOR DETECTION.
We obtain in polynomial time the dependency graphUP of P and consider (UP, k) as an instance of FEEDBACK

VERTEX SET (see Section 5.2). We use the kernelization algorithm of Thomassé [127] for FEEDBACK VERTEX

SET and reduce in polynomial time (Up, k) to a FEEDBACK VERTEX SET instance (G′, k′) with at most 4k2 vertices.
As above we translateG into a programP′ whereUP′ = G by taking for every edgexy ∈ E(G) a rule x ← ¬y.
Now (P′, k′) is a polynomial kernel with a quadratic number of atoms.

Similar to the construction in the proof of Theorem 5.3 we canreduce for the remaining classes the backdoor
detection problem to variants of feedback vertex set. However, for the other variants of feedback vertex set no
polynomial kernels are known.

We would like to point out that the kernels obtained in the proof of Theorem 6.1 are equivalent to the input
program with respect to the existence of a backdoor, but not with respect to the decision of reasoning problems. In
the next subsection we consider kernels with respect to reasoning problems.
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6.2. Backdoor Evaluation

Next we consider the problems inAspReason . We will see that neither of them admit a polynomial kernel when
parameterized by the size of a strongC-backdoor for the considered target classes, subject to standard complexity
theoretical assumptions.

Our superpolynomial lower bounds for kernel size are based on a result by Fortnow and Santhanam [43] re-
garding satisfiability parameterized by the number of variables.

SAT[VARS]

Given: A CNF formulaF.
Parameter: The numberk of variables ofF.
Task: Decide whetherF is satisfiable.

Proposition 6.2 (Fortnow and Santhanam [43]). If SAT[VARS] is compressible, then the Polynomial Hierarchy
collapses to its third level.

The following theorem extends a result for normal programs [125]. We need a different line of argument, as
the technique used in [125] only applies to problems in NP or co-NP.

Theorem 6.2. Let C ∈ Acyc ∪ {Horn }. Then no problem inAspReason admits a polynomial kernel when pa-
rameterized by the size of a smallest strongC-backdoor or deletionC-backdoor, unless the Polynomial Hierarchy
collapses to its third level.

Proof. We show that the existence of a polynomial kernel for any of the above problems implies that SAT[VARS]
is compressible, and hence by Proposition 6.2 the collapse would follow.

First consider the problem CONSISTENCY. From a CNF formulaF with k variables we use a reduction of
Niemela [104] and construct a programP1 as follows: Among the atoms of our programP1 will be two atomsax

andax̄ for each variablex ∈ var(F), an atombC for each clauseC ∈ F. We add the rulesax̄ ← ¬ax andax ← ¬ax̄

for each variablex ∈ var(F). For each clauseC ∈ F we add for eachx ∈ C the rulebC ← ax and for each¬x ∈ C
the rulebC ← ax̄. Additionally, for each clauseC ∈ F we add the rule← ¬bC. Now it is easy to see that the
formula F is satisfiable if and only if the programP1 has an answer set. We observe thatX = { ax : x ∈ var(F) }
(X = { ax, ax̄ : x ∈ var(F) }) is a smallest deletion (and smallest strong)C-backdoor ofP1 for eachC ∈ Acyc
(C = Horn ). Hence (P1, k), (P1, 2k) respectively, is an instance of CONSISTENCY, parameterized by the size of
a smallest strongC-backdoor or deletionC-backdoor, and if this problem would admit a polynomial kernel, this
would imply that SAT[VARS] is compressible.

For the problem BRAVE REASONING we modify the reduction from above. We create a programP2 that
consists of all atoms and rules fromP1. Additionally, the programP2 contains an atomt and a ruler with
H(r) = {t}, B+(r) = ∅, andB−(r) = ∅. We observe that the formulaF is satisfiable if and only if the atomt is
contained in some answer set ofP2. SinceX is still a backdoor of sizek (2k), and a polynomial kernel for BRAVE

REASONING, again it would yield that SAT[VARS] is compressible.
Let UNSAT[VARS] denote the problem defined exactly like SAT[VARS], just with yes and no answers swapped.

A bi-kernelization for UNSAT[VARS] is also a bi-kernelization for SAT[VARS] (with yes and no answers swapped).
Hence SAT[VARS] is compressible if and only if UNSAT[VARS] is compressible. An argument dual to the pre-
vious one for BRAVE REASONING shows that a polynomial kernel for SKEPTICAL REASONING, parameterized
by backdoor size, would yield that UNSAT[VARS] is compressible, which, as argued above, would yield that
SAT[VARS] is compressible.
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7. Lifting Parameters

In this section we will introduce a general method to lift ASP-parameters that are defined for normal programs
to disjunctive programs. Thereby we extend several algorithms that have been suggested for normal programs to
disjunctive programs. The lifting method also gives us an alternative approach to obtain some results of Section 5.
Throughout this section we assume for simplicity that the input programP has no tautological rules or constraints,
all considerations can be easily extended to the general case.

The following definition allows us to speak about parametersfor programs in a more abstract way.

Definition 7.1. An ASP-parameteris a function p that assigns every program P some non-negative integer p(P)
such that p(P′) ≤ p(P) holds whenever P′ is obtained from P by deleting rules or deleting atoms from rules. If p
is only defined for normal programs, we call it anormal ASP-parameter. For an ASP parameter p we write p↓ to
denote the normal ASP-parameter obtained by restricting p to normal programs.

We impose the conditionp(P′) ≤ p(P) for technical reasons. This is not a limitation, as most natural parameters
satisfy this condition.

There are natural ASP-parameters associated with backdoors:

Definition 7.2. For a classC of programs and a program P letsbC(P) denote the size of a smallest strongC-back-
door anddbC(P) denote the size of a smallest deletionC-backdoor of P.

We will “lift” normal ASP-parameters to general disjunctive programs as follows.

Definition 7.3. For a normal ASP-parameter p we define the ASP-parameter p↑ by setting, for each disjunctive
program P, p↑(P) as the minimum|X| + p(P− X) over all inclusion-minimal deletionNormal-backdoors X of P.

The next lemma shows that this definition is compatible with deletionC-backdoors ifC ⊆ Normal. In other
words, if C is a class of normal programs, then we can divide the task of finding a deletionC-backdoor for a
programP into two parts: (i) to find a deletionNormal-backdoorX, and (ii) to find a deletionC-backdoor of
P− X.

Lemma 7.1(Self Lifting). LetC be a class of normal programs. ThendbC = (db↓
C
)↑.

Proof. LetC be a class of normal programs, andP a program. LetX be a deletionC-backdoor ofP of size dbC(P).
Thus P − X ∈ C ⊆ Normal. HenceX is a deletionNormal-backdoor ofP. We select an inclusion-minimal
subsetX′ of X that is still a deletionNormal-backdoor ofP (say, by starting withX′ = X, and then looping over all
the elementsx of X, and ifX′ − x is still a deletionC-backdoor, then settingX′ := X′ − x.) What we end up with is
an inclusion-minimal deletionNormal-backdoorX′ of P of size at most dbC(P). Let P′ = P−X′ andX′′ = X−X′.
P′ is a normal program. SinceP′ − X′′ = P− X, it follows thatP′ − X′′ ∈ C. HenceX′′ is a deletionC-backdoor
of P. Thus, by the definition ofdb↑

C
, we have thatdb↑

C
(P) ≤ |X′| + |X′′| = dbC(P).

Conversely, let db↑
C
(P) = k. Hence there is a deletionNormal-backdoorX′ of P such that|X′|+dbC(P−X′) = k.

Let P′ = P − X′. Since dbC(P′) ≤ k − |X′|, it follows thatP′ has a deletionC-backdoorX′′ of sizek − |X′|. We
put X = X′ ∪ X′′ and observe thatP − X = P′ − X′′ ∈ C. HenceX is a deletionC-backdoor ofP. Since
dbC(P) ≤ |X| ≤ |X′| + |X′′| ≤ db↑

C
(P) ≤ k, the lemma follows.

Example7.1. Consider the programP of Example 2.1 and let #neg(P) denote the number of atoms that appear in
negative rule bodies of a normal program (we will discuss this parameter in more detail in Section 8.2).

We determine #neg↑(P) = 2 by the following observations: The setX1 = {c} is a deletionNormal-backdoor of
P sinceP − X1 = { d ← a, e; a← d,¬b; e← f ; f ← d; ← f , e,¬b; ← d; b; f } belongs to the classNormal.
The setX2 = {e} is a deletionNormal-backdoor ofP sinceP − X2 = { d ← a; a ← d,¬b,¬c; c ← f ; f ←
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d, c; c← f ,¬b; c← d; b← c; f } belongs to the classNormal. Observe thatX1 andX2 are the only inclusion-
minimal deletionNormal-backdoors of the programP. We obtain #neg↑(P,X1) = 2 since #neg(P − X1) = 1. We
have #neg↑(P,X2) = 3 since #neg(P− X2) = 2. Thus #neg↑(P) = 2. ⊣

For every ASP-parameterp we consider the following problem.

BOUND[p]

Given: A programP and an integerk.
Parameter: The integerk.
Task: Decide whetherp(P) ≤ k holds.

For a problemL ∈ AspFull and an ASP-parameterp we write L[p] to denote the problemL parameterized
by p. That is, the instance of the problem is augmented with an integerk, the parameter, and for the input programP
it holds thatp(P) ≤ k. Moreover, we writeL[p]N to denote the restriction ofL[p] where instances are restricted
to normal programsP. Similarly, BOUND[p]N is the restriction of BOUND[p] to normal programs. For all the
problemsL[p]N, p only needs to be a normal ASP-parameter.

Next we state the main result of this section.

Theorem 7.1 (Lifting) . Let p be a normal ASP-parameter such thatBOUND[p]N and ENUM[p]N are fixed-
parameter tractable. Then for all L∈ AspFull the problem L[p↑] is fixed-parameter tractable.

We need some definitions and auxiliary results to establish the theorem.

Definition 7.4. Let P be a disjunctive program. Thehead dependency graphHP of the program P is the graph
which has as vertices the atoms of P and an edge between any twodistinct atoms if they appear together in the
head of a rule of P.

Lemma 7.2. Let P be a disjunctive program. A set X⊆ at(P) is a deletionNormal-backdoor of P if and only if X
is a vertex cover of the head dependency graph HP.

Proof. Let X be a deletionNormal-backdoor ofP. Consider an edgeuv of HP, then there is a ruler ∈ P with
u, v ∈ H(r) andu , v. SinceX is a deletionNormal-backdoor ofP, we have{u, v} ∩ X , ∅. We conclude thatX is
a vertex cover ofHP.

Conversely, assume thatX is a vertex cover ofHP. We show thatX is a deletionNormal-backdoor ofP.
Assume to the contrary, thatP− X contains a ruler whose head contains two variablesu, v. Consequently, there is
an edgeuv in HP such that{u, v} ∩ X = ∅, contradicting the assumption thatX is a vertex cover.

Lemma 7.3. Let G= (V,E) be a graph, n= |E|, and let k be a non-negative integer. G has at most2k inclusion-
minimal vertex covers of size at most k, and we can list all such vertex covers in timeO(2kn).

Proof. We build a binary search treeT of depth at mostk where each nodet of T is labeled with a setSt. We
build the tree recursively, starting with the rootr with labelSr = ∅. If St is a vertex cover ofG we stop the current
branch, andt becomes a “success” leaf ofT. If t is of distancek from the root andSt is not a vertex cover ofG,
then we also stop the current branch, andt becomes a “failure” leaf ofT. It remains to consider the case whereSt

is not a vertex cover andt is of distance smaller thank from the root. We pick an edgeuv ∈ E such thatu, v < St

(such edge exists, otherwiseSt would be a vertex cover) and add two childrent, t′′ to t with labelsSt′ = St ∪ {u}
andSt′ = St ∪ {v}. It is easy to see that for every inclusion-minimal vertex coverS of G of size at mostk there is a
success leaft with St = S. SinceT hasO(2k) nodes, the lemma follows.

From Lemmas 7.2 and 7.3 we immediately obtain the next result.
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Proposition 7.1. Every disjunctive program of input size n has at most2k inclusion-minimal deletionNormal-back-
doors of size at most k, and all these backdoors can be enumerated in timeO(2kn).

Proof of Proposition 7.1.Let p be a normal ASP-parameter such that ENUM[p]N and BOUND[p]N are fixed-
parameter tractable. LetP be a given disjunctive program of input sizen andk an integer such thatp↑(P) ≤ k. In
the following, when we say some task is solvable in “fpt-time”, we mean that it can be solved in timeO( f (k) nc)
for some computable functionf and a constantc.

By Proposition 7.1 we can enumerate all inclusion-minimal deletionNormal-backdoors of size at mostk in
timeO(2kn). We can check whetherp(P − X) ≤ k − |X| for each such backdoorX in fpt-time since BOUND[p]N

is fixed-parameter tractable by assumption. Sincep↑(P) ≤ k, there is at least one such setX where the check
succeeds.

We pick such setX and compute AS(P,X) in fpt-time. That this is possible can be seen as follows. Obviously,
for each truth assignmentτ ∈ 2X the programPτ is normal sinceP−X is normal, and clearlyp(Pτ) ≤ p(P−X) ≤ k
by Definition 7.1. We can compute AS(Pτ) in fpt-time since ENUM[p]N is fixed-parameter tractable by assumption.
Since there are at most 2k such programsPτ, we can indeed compute the set AS(P,X) in fpt-time.

By Lemma 3.2 we have AS(P) ⊆ AS(P,X), hence it remains to check for eachM ∈ AS(P,X) whether it gives
rise to an answer set ofP. SinceX is a deletionNormal-backdoor ofP, and since one easily observes thatNormal
is hereditary, it follows by Lemma 3.1 thatX is a strongNormal-backdoor ofP. Hence Lemma 3.3 applies, and
we can decide whetherM ∈ AS(P) in timeO(2kn). Hence we can determine the set AS(P) in fpt-time. Once we
know the set AS(P), we obtain for every problemL ∈ AspFull thatL[p↑] is fixed-parameter tractable.

Example7.2. Consider the programP of Example 2.1 with the the deletionNormal-backdoorX1 = {c} from
Example 7.1. We want to enumerate all answer sets ofP. We obtain with Ben-Eliyahu’s algorithm [5] the
sets AS(Pc̄) = {{e, f }} and AS(Pc) = {{b, f }}, and so we get the set AS(P,X) = {{e, f }, {b, c, f }} of answer set candi-
dates. By means of the algorithm that solves the problem STRONGC-BACKDOOR ASP CHECK (see Lemma 3.3)
we observe that{b, c, f } is the only answer set ofP. ⊣

8. Theoretical Comparison of ASP-Parameters

In this section we compare several ASP-parameters in terms of their generality. Let p andq be ASP-parameters.
We say thatp dominates q(in symbolsp � q) if there is a functionf such thatp(P) ≤ f (q(P)) holds for all
programsP. The parameterp strictly dominates q(in symbolsp ≺ q) if p � q but notq � p, andp andq are
incomparable(in symbolsp ⊲⊳ q) if neither p � q nor q � p. For simplicity we only consider programs that
contain no tautological rules. It is easy to adapt the results to the more general case where tautological rules are
allowed.

Observation 8.1. Let p and q be ASP-parameters and L∈ AspFull . If p dominates q and L[p] ∈ FPT, then also
L[q] ∈ FPT.

Observation 8.2. Let p and q be normal ASP-parameters and◦ ∈ {�,≺, ⊲⊳}. Then p◦ q if and only if p↑ ◦ q↑.

In the following we define various auxiliary programs which we will use as examples, to separate the parame-
ters from each other and establish incomparability or strictness results.

Example8.1. Let mandn be some large integers. We define the following programs:

Pn
1 := { a← ¬b1, . . . ,¬bn },

Pn
2 := { ai ← ¬b : 1 ≤ i ≤ n },
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Pn
31 := { bi ← ¬a; a← ¬bi : 1 ≤ i ≤ n },

Pn
32 := { bi ← a; a← bi : 1 ≤ i ≤ n },

Pn
33 := Pn

31∪ { a← d1; di ← di+1 : 1 ≤ i ≤ n } ∪ { ci ← bi ; di ← ci ; di ← bi : 1 ≤ i ≤ n },

Pn
34 := Pn

33∪ { di ← ¬bi : 1 ≤ i ≤ n },

Pn
35 := Pn

35 \ { a← ¬bi ; bi ← ¬a : 1 ≤ i ≤ n } ∪ { a0← ¬a } ∪ { bi ← a0 : 1 ≤ i ≤ n },

Pn
4 := { ci ← ¬ai ; ci ← bi ; bi ← ¬ai ; ai ← ei ; ei ← di ; di ← ai : 1 ≤ i ≤ n },

Pn
51 := { bi ← ¬ai ; ai ← ¬bi : 1 ≤ i ≤ n },

Pn
52 := { bi ← ai ; ai ← ¬bi : 1 ≤ i ≤ n },

Pn
53 := { bi ← ai ; ai ← bi : 1 ≤ i ≤ n },

Pn
6 := { a← b1, . . . , bn, ci : 1 ≤ i ≤ n },

Pn
7 := { a j ← ai : 1 ≤ i < j ≤ n },

Pm,n
8 := { b← a1, . . . , am } ∪ { ci ← ci+1 : 1 ≤ i ≤ n } ∪ { cn+1 ← c1 },

Pn
9 := { a2← ¬a1; a3← ¬a2 } ∪ { bi ← a3; a1← bi : 1 ≤ i ≤ n }, and

Pn
11 := { ai ∨ b← c; c← b; b← ai : 1 ≤ i ≤ n }.

⊣

8.1. ASP-Parameters Based on Backdoor Size

Backdoor-based ASP-parameters can be related to each otherin terms of their underlying base classes. We just
need a very weak assumption which holds for all target classes considered in the paper:

Proposition 8.1. LetC,C′ be classes of programs that are closed under the union of disjoint copies2. If C ⊆ C′

thendbC′ � dbC and sbC′ � sbC, evendbC′(P) ≤ dbC(P) and sbC′(P) ≤ sbC(P) for every program P. IfC′ \ C
contains a program with at least one atom, thenC ⊆ C′ impliesdbC′ ≺ dbC andsbC′ ≺ sbC.

Proof. The first statement is obvious. For the second statement, letP ∈ C′ \ C with |at(P)| ≥ 1. We construct the
programPn consisting ofn disjoint copies ofP and observe thatPn ∈ C′ but dbC(Pn), sbC(Pn) ≥ n.

Hence the relationships between target classes as stated inObservation 5.3 carry over to the corresponding
backdoor-based ASP-parameters that is, ifC ⊆ C′ then a smallest strong (deletion)C′-backdoor is at most the size
of a smallest strong (deletion)C-backdoor.

Accoring to Lemma 3.1 every deletionC-backdoor is a strongC-backdoor only ifC is hereditary, hence it also
holds for smallest backdoors and we immediately get from thedefinitions:

Observation 8.3. If C is hereditary, thensbC dominatesdbC.

According to Lemma 4.1 every strongHorn -backdoor of a program is a deletionHorn -backdoor and vice
versa and we observe:

Observation 8.4. sbHorn = dbHorn .

2A classC of programs isclosed under the union of disjoint copiesif for every P ∈ C alsoP ∪ P′ ∈ C whereP′ is a copy ofP with
at(P) ∩ at(P′) = ∅.
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Observation 8.5. We make the following observations about programs from Example 8.1.

1. Consider program Pn31 and Pn
32 and let P∈ {Pn

31,P
n
32}. Since P− {a} is Horn and contains no cycle and no

directed cycle, we obtaindbHorn (P) ≤ 1, dbno-C(P) ≤ 1, anddbno-DC(P) ≤ 1. According to Observation 8.1
we havedbC(Pn

31) ≤ 1 anddbC(Pn
32) ≤ 1 whereC ∈ {Horn } ∪ Acyc.

2. Consider program Pn33. Since Pn33 − {a} is Horn and contains no directed cycle and no bad cycle, we ob-
tain dbHorn (Pn

33) = 0, dbno-DC(Pn
33) ≤ 1, and dbno-BC(Pn

33) ≤ 1. According to Observation 8.1 we have
dbC(Pn

33) ≤ 1 whereC ∈ {Horn , no-BC, no-BEC} ∪D-Acyc.

3. Consider program Pn34. Since Pn34− {a} contains no even cycle,dbno-EC(Pn
34) ≤ 1.

4. Consider program Pn4. The negation dependency graph of Pn
4 contains2n disjoint paths aibi and aici , thus

smallest deletionHorn -backdoor are of size at least n. Pn
4 contains n disjoint bad cycles, n directed cycles

of length at least3, and n directed even cycles. Hence smallest deletionC-backdoors are of size at least n
and thusdbC(Pn

4) ≥ n whereC ∈ {Horn , no-C, no-BC, no-DC, no-DC2, no-EC, no-BEC, no-DEC}.

5. Consider program Pn51. The negation dependency graph of Pn
51 contains n disjoint paths and thus

dbHorn (Pn
51) = n. Pn

51 contains n disjoint directed bad even cycles and thusdbno-DBEC(Pn
51) = n. According

to Observation 8.1 we obtaindbC(Pn
51) ≥ n whereC ∈ {Horn } ∪ Acyc.

6. Consider program Pn52. Since Pn52 contains n disjoint directed bad cycles,dbno-DBC(Pn
52) = n.

7. Consider program Pn53. Since Pn53 contains n disjoint even cycles, n disjoint directed cyclesof length at
least3, and n disjoint directed even cycles, we obtain by Observation 8.1dbC(Pn

53) ≥ n whereC ∈ {no-C,
no-DC, no-DC2, no-EC, no-DEC}.

8. Consider program Pn6. Since Pn6 is Horn and contains no cycle and no directed cycle,dbHorn (Pn
6) =

dbno-C(Pn
6) = dbno-DC(Pn

6) = 0. According to Observation 8.1 we havedbC(Pn
6) = 0 where C ∈

{Horn } ∪ Acyc.

9. Consider program Pn7. Since Pn7 is Horn and contains no bad cycle and no directed cycle,dbHorn (Pn
7) =

dbno-BC(Pn
7) = dbno-DC(Pn

7) = 0. According to Observation 8.1 we havedbC(Pn
7) = 0 whereC ∈

{Horn , no-BC, no-BEC} ∪D-Acyc.

10. Consider program Pm,n8 . Since Pm,n8 is Horn and Pm,n
8 − {c1} contains no cycle and no directed cycle, we

obtain dbHorn (Pm,n
8 ) = 0, dbno-C(Pm,n

8 ) ≤ 1, dbno-DC(Pm,n
8 ) ≤ 1. According to Observation 8.1 we have

dbC(P
m,n
8 ) ≤ 1 whereC ∈ {Horn } ∪ Acyc.

11. Consider program Pn9. Since Pn9−{a2} is Horn and Pn
9−{a1} contains no cycle and no directed cycle, we have

dbHorn (Pn
9) ≤ 1, dbno-C(Pn

9) ≤ 1, anddbno-DC(Pn
9) ≤ 1. According to Observation 8.1 we havedbC(Pn

9) ≤ 1
whereC ∈ {Horn } ∪ Acyc.

12. Consider program Pn11 and let X := {b}. Since Pn11 − X is normal, X is a deletionNormal-backdoor of
Pn

11. Observe that X is the only inclusion-minimal deletionNormal-backdoor of Pn11. Since Pn11−X is Horn,
dbHorn (Pn

11−X) = 0. Since Pn11−X contains no cycle, no even cycle, and no directed cycle,dbC(Pn
11−X) = 0

whereC ∈ Acyc. Consequently,db↑
C
(Pn

11) = |X| + dbC(Pn
11− X) = 1 whereC ∈ {Horn } ∪ Acyc.
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Figure 7: Domination Lattice (relationship between normalASP-parameters): An arrow fromp to p′ indicates
that p′ strictly dominatesp. †: #headCycles is not strictly more general when we apply lifting (Observation 8.21).
‡: deptw does not yield tractability (Proposition 8.11). A label i of an edge indicates that Propositioni establishes
the result.

8.2. ASP-Parameters Based on the Distance from Horn

Our backdoor-based ASP-parameter dbHorn can be considered as a parameter that measures the distance of a
program from being a Horn program. In the literature some normal ASP-parameters have been proposed, that
also can be considered as distance measures from Horn. In this section we compare them with dbHorn . Since
the ASP-parameters considered in the literature are normal, we compare the parameters for normal programs only.
However, in view of Observation 8.2 the results also hold forthe lifted parameters to disjunctive programs.

Definition 8.1 (Ben-Eliyahu [5]). Let P be a normal program. Then

#neg(P) := |{ a ∈ at(P) : a ∈ B−(r) for some rule r∈ P }|,

#non-Horn(P) := |{ r ∈ P : r is not Horn }|.

Proposition 8.2(Ben-Eliyahu [5]). For each L∈ AspFull , L[#neg]N ∈ FPTand L[#non-Horn]N ∈ FPT.

Since BOUND[p]N for p ∈ {#neg, #non-Horn} is clearly solvable in polynomial time and thus fixed-parameter
tractable, we can use the Lifting Theorem (Theorem 7.1) to obtain the following result.
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Corollary 8.1. For each L∈ AspFull , L[#neg↑] ∈ FPTand L[#non-Horn↑] ∈ FPT.

Observation 8.6. We make the following observations about programs from Example 8.1.

1. Consider program Pn1 which contains n atoms that occur in B−(r) for some rule r∈ P and exactly one
non-Horn rule, so#neg(Pn

1) = n and#non-Horn(Pn
1) = 1.

2. Consider program Pn2 which contains only the atom b that occurs in B−(r) for some rule r∈ Pn
2 and n

non-Horn rules, so#neg(Pn
2) = 1 and#non-Horn(Pn

2) = n.

3. Consider program Pn31 which contains for1 ≤ i ≤ n the atoms a, bi that occur in B−(r) for some rule r∈ Pn
31

and the non-Horn rules bi ← ¬a and a← ¬bi , hence#neg(Pn
31) = n+ 1 and#non-Horn(Pn

31) = 2n.

4. Consider program Pn32 which is Horn. Thus#neg(Pn
32) = #non-Horn(Pn

32) = 0.

5. Consider program Pn35 which contains only the atom a that occurs in B−(r) for some rule r∈ Pn
35 and exactly

one non-Horn rule, so#neg(Pn
35) = #non-Horn(Pn

35) = 1.

6. Consider program Pn4 which contains for1 ≤ i ≤ n the atoms ai that occur in B−(r) for some rule r∈ Pn
4 and

the non-Horn rules bi ← ¬ai and ci ← ¬ai , thus#neg(Pn
4) = n and#non-Horn(Pn

4) = 2n.

7. Consider program Pn51 which contains for1 ≤ i ≤ n the atoms ai and bi that occur in B−(r) for some
rule r ∈ P and the non-Horn rules bi ← ¬ai and ai ← ¬bi , hence#neg(Pn

51) = #non-Horn(Pn
51) = 2n.

8. Consider the program Pn52 which contains the atoms bi that occur in B−(r) for some rule r∈ Pn
52 and the

non-Horn rules ai ← ¬bi , hence#neg(Pn
52) = #non-Horn(Pn

52) = n.

9. Consider programs Pn53, Pn
6, Pn

7, and Pm,n
8 which are Horn. Thus#neg(Pn

53) = #non-Horn(Pn
53) = #neg(Pn

6) =
#non-Horn(Pn

6) = #neg(Pn
7) = #non-Horn(Pn

7) = #neg(Pm,n
8 ) = #non-Horn(Pm,n

8 ) = 0.

10. Consider the program Pn9 which contains only the atoms a1 and a2 that occur in B−(r) for some rule r∈ Pn
9

and only the non-Horn rules a2← ¬a1 and a3← ¬a2, hence#neg(Pn
9) = #non-Horn(Pn

9) = 2.

11. Consider the program Pn11. The set X:= {b} is the only inclusion-minimal deletionNormal-backdoor of
Pn

11. Since Pn11 − X is Horn, we have#neg(Pn
11 − X) = #non-Horn(Pn

11 − X) = 0. Thus#neg↑(Pn
11) =

|X| + #neg(Pn
11− X) = 1 and#non-Horn↑(Pn

11) = |X| + #non-Horn(Pn
11− X) = 1.

Proposition 8.3. #negand#non-Hornare incomparable.

Proof. The proposition directly follows from consideringPn
1 andPn

2 where #neg(Pn
1) = n and #non-Horn(Pn

1) = 1;
and #neg(Pn

2) = 1 and #non-Horn(Pn
2) = n by Observation 8.6.

However, it is easy to see that dbHorn dominates both parameters.

Proposition 8.4. dbHorn strictly dominates#negand #non-Horn. dbC and #neg; and dbC and #non-Hornare
incomparable whereC ∈ {no-C, no-DC, no-DC2, no-EC, no-DEC}.

Proof. For a normal programP define the setsB−(P) = { a ∈ at(P) : a ∈ B−(r) for some ruler ∈ P } and
H(P) = { a ∈ H(r) : r ∈ P, r is not Horn}. We observe thatB−(P) and H(P) are deletionHorn -backdoors
of P, hence dbHorn (P) ≤ #neg(P) and dbHorn (P) ≤ #non-Horn(P). To show that dbHorn strictly dominates the
two parameters, considerPn

31 where dbHorn (Pn
31) ≤ 1, but #neg(Pn

31) = n + 1 and #non-Horn(Pn
31) = 2n by

Observations 8.5 and 8.6.
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The second statement follows from considering the programsPn
31 andPn

53 where dbC(Pn
31) ≤ 1 andp(Pn

31) ≥ n+
1; and dbC(Pn

53) ≥ n andp(Pn
53) = 0 forC ∈ {no-C, no-DC, no-DC2, no-EC, no-DEC} andp ∈ {#neg, #non-Horn}

by Observations 8.5 and 8.6. Hence dbC ⊲⊳ #neg and dbC ⊲⊳ #non-Horn forC ∈ {no-C, no-DC, no-DC2, no-EC,
no-DEC}.

8.3. ASP-Parameters Based on the Distance from Being Stratified

Ben-Eliyahu [5] and Gottlobet al. [69] have considered ASP-parameters that measure in a certain sense how
far away a program is from being stratified. In this section wewill investigate how these parameters fit into our
landscape of ASP-parameters. Similar to the last section the parameters have been considered for normal programs
only, hence we compare the parameters for normal programs only. Again, in view of Observation 8.2 the results
also hold for the lifted parameters to disjunctive programs.

Recall from Section 2.4 that SCC(G) denotes the partition of the vertex set of a digraph into strongly connected
components.

Definition 8.2 (Ben-Eliyahu [5]). Let P be a normal program, DP its dependency digraph, and A⊆ at(P). P/A
denotes the program obtained from P by (i) deleting all rulesr in the program P where H(r) ∩ A = ∅ and
(ii) removing from the bodies of the remaining rules all literals ¬a with a< A. Then

lstr(P) :=
∑

C∈SCC(DP)

min{#neg(P/C), #non-Horn(P/C)}.

lstr(P) is called thelevel of stratifiabilityof P.

Proposition 8.5(Ben-Eliyahu [5]). For each L∈ AspFull , L[lstr]N ∈ FPT.

Since BOUND[lstr]N and BOUND[lstr]N are clearly solvable in polynomial time and thus fixed-parameter
tractable, we can use the Lifting Theorem (Theorem 7.1) to obtain the following result.

Corollary 8.2. For each L∈ AspFull , L[lstr↑] ∈ FPT.

Observation 8.7. We make the following observations about programs from Example 8.1.

1. Consider program Pn31 and let P:= Pn
31. The partitionSCC(DP) contains only the set C:= at(P) and thus

P/C = P. By Observation 8.6#neg(P) = n+ 1 and#non-Horn(P) = 2n and hencelstr(Pn
31) = n+ 1.

2. Consider program Pn32 and let P := Pn
32. The partitionSCC(DP) contains only the set C:= at(P) and

P/C = P. Since#neg(P) = 0 by Observation 8.6, we havelstr(Pn
32) = 0.

3. Consider program Pn35 and let P := Pn
35. The partitionSCC(DP) contains only the set C:= at(P). Thus

P = P/C. Since#neg(Pn
35) = 1 by Observation 8.6, we concludelstr(Pn

35) ≤ 1.

4. Consider program Pn4 and let P:= Pn
4. We haveSCC(DP) contains exactly the sets Ai := {ai , ei , di}, Bi := {bi},

and Ci := {ci} where1 ≤ i ≤ n. Hence P/Ai = { ai ← ei ; ei ← di ; di ← ai } and P/Bi = { bi } and
P/Ci = { ci ; ci ← bi }. Since#neg(P/C) = 0 for every C∈ SCC(DP), we havelstr(Pn

4) = 0.

5. Consider program Pn51 and Pn
52 and let P∈ {Pn

51,P
n
52}. The partitionSCC(DP) contains exactly the sets Ci :=

{ai , bi} where1 ≤ i ≤ n and hence P/Ci = { bi ← ¬ai ; ai ← ¬bi }, respectively P/Ci = {bi ← ai ; ai ←

¬bi : 1 ≤ i ≤ n}. Since#neg(P/Ci ) = #non-Horn(P/Ci ) = 2, respectively#neg(P/Ci ) = #non-Horn(P/Ci ) = 1,
and there are n components we obtainlstr(Pn

51) = 2n andlstr(Pn
52) = n.
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6. Consider program Pn53 and let P := Pn
53. The partitionSCC(DP) contains only the set C:= at(P) and

P/C = P. Since#neg(P) = 0 by Observation 8.6, we havelstr(Pn
53) = 0.

7. Consider program Pn6 and let P:= Pn
6. The partitionSCC(DP) contains exactly the sets A:= {a}, Bi := {bi},

and Ci := {ci} where1 ≤ i ≤ n. Hence P/A = { a← b1, . . . , bn, ci : 1 ≤ i ≤ n } and P/Bi = P/Ci = ∅ where
1 ≤ i ≤ n. Since#neg(P/C) = 0 for every C∈ SCC(DP), we havelstr(Pn

6) = 0.

8. Consider program Pn7 and let P := Pn
7. The partitionSCC(DP) contains exactly the sets Ci := {ai} where

1 ≤ i ≤ n. Thus P/Ci = { ai ← a j : 1 ≤ j < i }. Hence#neg(P/Ci ) = 0 for every C∈ SCC(DP). We obtain
lstr(Pn

7) = 0.

9. Consider program Pm,n8 and let P:= Pm,n
8 . The partitionSCC(DP) contains exactly the sets Ai := {ai} where

1 ≤ i ≤ m, B := {b}, and C := { ci : 1 ≤ i ≤ n }. Hence P/Ai = ∅ where1 ≤ i ≤ m, P/B = {b← a1, . . . , am},
and P/C = { ci ← ci+1 : 1 ≤ i ≤ n } ∪ { cn+1 ← c1 }. Since#neg(P/Ai ) = 0 where1 ≤ i ≤ m, #neg(P/B) = 0,
and#neg(P/C) = 0, we obtainlstr(Pm,n

8 ) = 0.

10. Consider program Pn9 and let P := Pn
9. The partitionSCC(DP) contains only the set C:= at(P). Hence

P/C = P. Since#neg(P) = #non-Horn(P) = 2, we havelstr(Pn
9) = 2.

11. Consider program Pn11. The set X= {b} is the inclusion-minimal deletionNormal-backdoor of Pn11 by
Observation 8.5. We have P:= Pn

11 − X = { ai ← c; c; ← ai : 1 ≤ i ≤ n }. The partitionSCC(DP)
contains the sets Ai := {ai} where1 ≤ i ≤ n and C := {c}. Hence P/Ai = { ai ← c } where1 ≤ i ≤ n
and P/C = { c }. Since#neg(P/C) = 0 for every C ∈ SCC(DP), we obtainlstr(P) = 0. Consequently,
lstr↑(Pn

11) = |X| + lstr(Pn
11− X) = 1.

Observation 8.8. lstr strictly dominates#negand#non-Horn.

Proof. Let P be a normal program. We first show that
∑

C∈SCC(DP) #neg(P/C) ≤ #neg(P). Define the setB−(P) =
{ a ∈ at(P) : a ∈ B−(r) for some ruler ∈ P }. By definition B−(P/A) ⊆ B−(P) for someA ⊆ at(P), thus
⋃

C∈SCC(DP) B−(P/C) ⊆ B−(P). Let C,C′ ∈ SCC(DP) and C , C′. By definition of a strongly connected
component we haveC ∩ C′ = ∅ and by definition we have thatB−(P/C) ⊆ C and B−(P/C′ ) ⊆ C′. Hence
B−(P/C) ∩ B−(P/C′ ) = ∅. Consequently

∑

C∈SCC(DP) #neg(P/C) ≤ #neg(P). A similar argument shows that
∑

C∈SCC(DP) #non-Horn(P/C) ≤ #non-Horn (P). Since lstr(P) =
∑

C∈SCC(DP) min{#neg(P/C), #non-Horn(P/C)}, we
have lstr(P) ≤ #neg(P) and lstr(P) ≤ #non-Horn(P). To show that lstr strictly dominates the two parameters,
consider programPn

4 where lstr(Pn
4) = 0, but #neg(Pn

4) ≥ n and #non-Horn (Pn
4) ≥ 2n by Observations 8.6 and 8.7.

Hence the observation is true.

Proposition 8.6. dbno-DBC strictly dominateslstr. Moreover,dbC and lstr are incomparable for the remaining
target classes namelyC ∈ Acyc \ {no-DBC, no-DBEC} ∪ {Horn }.

Proof. We first show that dbno-DBC dominates lstr. For a normal programP define the setsB−(P) = { a ∈ at(P) : a ∈
B−(r) for some ruler ∈ P } andH(P) = { a ∈ H(r) : r ∈ P, r is not Horn}. Let C ∈ SCC(DP), we define

XC =















B−(P/C), if |B−(P/C)| ≤ |H(P/C)|;

H(P/C), otherwise.

andX = {XC : C ∈ SCC(DP) }. We show thatX is a deletionno-DBC-backdoor ofP. By definition for every
directed bad cyclec = (x1, . . . , xl) of DP the atomxi ∈ C′ where 1≤ i ≤ l andC′ ∈ SCC(DP) (all vertices
of c belong to the same strongly connected component). Moreover, by definition we have for every negative
edgexi , x j ∈ DP of the dependency digraphDP a corresponding ruler ∈ P such thatx j ∈ H(r) and xi ∈ B−(r).
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SinceXC consists of eitherB−(P/C) or H(P/C), at least one of the atomsxi , x j belongs toXC. Thus for every
directed bad cyclec of the programP at least one atom of the cycle belongs toX. HenceP− X ∈ no-DBC andX
is a deletionno-DBC-backdoor ofP. We obtain dbno-DBC(P) ≤ lstr(P). To show that dbno-DBC strictly dominates
lstr, consider programPn

31 where dbno-DBC(Pn
31) ≤ 1 and lstr(Pn

31) = n + 1 by Observations 8.5 and 8.7. Hence
dbno-DBC ≺ lstr.

Then we show that the parameters dbC and lstr are incomparable. Consider the programsPn
3 andPn

4 where
dbC(Pn

31) ≤ 1 and lstr(Pn
31) = n + 1; and lstr(Pn

4) = 0 and dbC(Pn
4) ≥ n for C ∈ {Horn , no-C, no-BC, no-DC,

no-DC2, no-EC, no-BEC, no-DEC} by Observations 8.5 and 8.7. We conclude dbC ⊲⊳ lstr.

Definition 8.3 (Gottlobet al. [69]). Let P be a normal program, DP its dependency digraph, UP its dependency
graph, and A⊆ at(P). P̂/A denotes the program obtained from P/A by removing from the bodies of every rule
all literals a with a < A. at+(P) denotes the maximal set W⊆ at(P) such that there is no bad W-cycle in the
dependency graph UP, in other words the set of all atoms that do not lie on a bad cycle of P. Then

fw(P) := min{ |S| : S is a feedback vertex set of UP } and

wfw(P) := fw({ r ∈ P̂/C − at+(P̂/C) : C ∈ SCC(DP), P̂/C < no-DBC }).

fw(P) is called thefeedback-widthof P, andwfw(P) is called theweak-feedback-widthof P.

Observation 8.9. Let P be a normal program and DP its dependency digraph. Thenfw(P) = dbno-C(P) and hence

wfw(P) = dbno-C({ r ∈ P̂/C − at+(P̂/C) : C ∈ SCC(DP), P̂/C < no-DBC }).

Proposition 8.7(Gottlobet al. [69]). For each L∈ AspFull , L[fw] N ∈ FPTand L[wfw] N ∈ FPT.

Since BOUND[fw] N and BOUND[wfw] N is fixed-parameter tractable, we can use the Lifting Theorem(Theo-
rem 7.1) to obtain the following result.

Corollary 8.3. For each L∈ AspFull , L[fw ↑] ∈ FPTand L[wfw ↑] ∈ FPT.

Observation 8.10.We make the following observations about programs from Example 8.1.

1. Consider the program Pn31 and define P:= Pn
31. The partitionSCC(DP) contains only the set C:= at(P).

For every atom a∈ C the program P contains a bad{a}-cycle and thusat+(P̂/C) = ∅. Consequently,
P̂/C − at+(P̂/C) = P̂/C = P. As P< no-DBC, { r ∈ P̂/C − at+(P̂/C),C ∈ SCC(DP), P̂/C < no-DBC } = P. We
havedbno-C(P) = 1 by Observation 8.5 and according to Observation 8.9 we obtain wfw(Pn

31) = 1.

2. Consider program Pn32 and let P:= Pn
32. The partitionSCC(DP) contains only the set C:= at(P), P̂/C = P.

For every atom a∈ C we haveP̂/C ∈ no-DBC and thus{ r ∈ P̂/C − at+(P̂/C) : C ∈ SCC(DP), P̂/C <
no-DBC } = ∅. Consequently,wfw(Pn

32) = 0.

3. Consider the programs Pn33, Pn
34, and Pn

35 and let P∈ {Pn
33,P

n
34,P

n
35}. We first observe that the dependency

digraph of P contains only one strongly connected component. Hence the partitionSCC(DP) contains only
the set C := at(P). For every atom a∈ C program P contains a bad{a}-cycle and thusat+(P̂/C) = ∅.
Consequently,P̂/C − at+(P̂/C) = P̂/C = P. Since P< no-DBC, we obtain{ r ∈ P̂/C − at+(P̂/C),C ∈
SCC(DP), P̂/C < no-DBC } = P. We havedbno-C(P) = n since P contains n disjoint{bi}-cycles. According
to Observation 8.9 we concludewfw(Pn

33) = wfw(Pn
34) = wfw(Pn

35) = n.

4. Consider program Pn4 and let P := Pn
4. The partitionSCC(DP) contains exactly the sets Ai := {ai , di , ei},

Bi := {bi}, and Ci := {ci} where1 ≤ i ≤ n. HenceP̂/Ai = { ai ← ei ; ei ← di ; di ← ai }, P̂/Bi = { bi } and
P̂/Ci = { ci }. For every C∈ SCC(DP) the programP̂/C ∈ no-DBC. Consequently,{ r ∈ P̂/C − at+(P̂/C),C ∈
SCC(DP), P̂/C < no-DBC } = ∅ and we obtainwfw(Pn

4) = 0.

35



5. Consider program Pn51 and let P:= Pn
51. The partitionSCC(DP) contains exactly the sets Ci := {ai , bi} where

1 ≤ i ≤ n and thusP̂/Ci = { ai ← ¬bi ; bi ← ¬ai }. Sincedbno-C(P̂/Ci ) = 1 and there are n components we
obtainwfw(Pn

51) = n.

6. Consider program Pn52 and let P := Pn
52. We observe that the partitionSCC(DP) contains exactly the

sets Ci := {ai , bi}. For every atom a∈ Ci where1 ≤ i ≤ n there is a bad{a}-cycle in the dependency
graph of P̂/Ci and thusat+(P̂/Ci ) = ∅. Consequently,̂P/Ci − at+(P̂/Ci ) = P̂/Ci . SinceP̂/Ci < no-DBC,
{ r ∈ P̂/C − at+(P̂/C) : C ∈ SCC(DP), P̂/C < no-DBC } = P. We observe thatdbno-C(P) = n and according to
Observation 8.9 we obtainwfw(Pn

52) = n.

7. Consider program Pn6 and let P:= Pn
6. The partitionSCC(DP) contains exactly the sets A:= {a}, Bi := {bi},

and Ci := {ci} where1 ≤ i ≤ n. HenceP̂/A = { a } and P̂/Bi = P̂/Ci = ∅ where1 ≤ i ≤ n. Since
dbno-C(P̂/C) = 0 for every C∈ SCC(DP), we obtainwfw(Pn

6) = 0.

8. Consider program Pn7 and let P := Pn
7. Since the partitionSCC(DP) contains exactly the sets{ai} where

1 ≤ i ≤ n, P̂/{ai } = { ai } and thuswfw(P̂/{ai }) = 0. We obtainwfw(Pn
7) = 0.

9. Consider program Pm,n8 and let P := Pm,n
8 . The partitionSCC(DP) contains exactly the sets Ai := {ai}

for 1 ≤ i ≤ m, B := {b}, and C := { ci : 1 ≤ i ≤ n }. HenceP̂/Ai = ∅ for 1 ≤ i ≤ m, P̂/B = ∅, and
P̂/C = { ci ← ci+1 : 1 ≤ i ≤ n } ∪ { cn+1 ← c1 }. The programŝP/Ai , P̂/B, andP̂/C belong to the classno-DBC
for 1 ≤ i ≤ m. Consequently{ r ∈ P̂/C − at+(P̂/C) : C ∈ SCC(DP), P̂/C < no-DBC } = ∅. Hence we conclude
that wfw(Pm,n

8 ) = 0.

10. Consider program Pn9 and let P:= Pn
9. The partitionSCC(DP) contains only the set C:= at(P). For every

atom a∈ C there is a bad{a}-cycle in the dependency graph of P and thusat+(P̂/C) = ∅. Consequently,
P̂/C − at+(P̂/C) = P̂/C = P. Since P< no-DBC, { r ∈ P̂/C − at+(P̂/C) : C ∈ SCC(DP), P̂/C < no-DBC } = P.
By Observation 8.5dbno-C(P) ≤ 1 and according to Observation 8.9 we obtainwfw(Pn

9) ≤ 1.

11. Consider program Pn11 and let P:= Pn
11. The set X= {b} is the inclusion-minimal deletionNormal-backdoor

of Pn
11 by Observation 8.5 and P:= Pn

11 − X = { ai ← c; c; ← ai : 1 ≤ i ≤ n }. The partitionSCC(DP)
contains exactly the sets{ai} for 1 ≤ i ≤ n and {c}. HenceP̂/{ai } = { ai } for 1 ≤ i ≤ n andP̂/{c} = { c }.
We observe thatdbno-C(P̂/C) = 0 for every C ∈ SCC(DP) and according to Observation 8.9 we obtain
wfw(P) = 0. Consequently,wfw↑(Pn

11) = |X| + wfw(Pn
11− X) = 1.

In the following proposition we state the relationship between the parameter wfw and our backdoor-based ASP
parameters. The first result (dbno-DBC strictly dominates wfw) was anticipated by Gottlobet al. [69].

Proposition 8.8. wfw strictly dominatesdbno-C and dbno-DBC strictly dominateswfw. Moreover,dbC and wfw
are incomparable for the remaining target classes namelyC ∈ {Horn , no-BC, no-DC, no-DC2, no-EC, no-BEC,
no-DEC}.

Proof. We first show that wfw strictly dominates dbno-C. Let P be a normal program andX be a deletion
no-C-backdoor ofP. DefineP̂ = { P̂/C − at+(P̂/C) : C ∈ SCC(DP), P̂/C < no-DBC }. SinceP̂ ⊆ P andno-C
is hereditary (Observation 5.2),̂P − X ∈ no-C and henceX is a deletionno-C-backdoor ofP̂. Consequently,
wfw(P) ≤ dbno-C(P̂). To show that wfw is strictly more general than dbno-C, consider the programPn

4 where
wfw(Pn

4) = 0 and dbno-C(Pn
4) = n. Hence wfw≺ dbno-C by Observations 8.1 and 8.10.

Next, we show that dbno-DBC strictly dominates wfw. LetP be a normal program and̂P = { P̂/C−at+(P̂/C) : C ∈
SCC(DP), P̂/C < no-DBC }. According to Observation 8.9 wfw(P) = dbno-C(P̂) and thus it is sufficient to show
that dbno-DBC(P) < dbno-C(P̂). Let X be an arbitrary deletionno-C-backdoor ofP̂. Sinceno-C ⊆ no-DBC
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Observation 8.1 yields thatX is also a deletionno-DBC-backdoor ofP̂. Let c be an arbitrary directed bad cycle of
DP. As all vertices ofc belong to the same partitionC ∈ SCC(DP), at(P̂/C) ⊆ C, andDP̂/C is an induced subdigraph

of DP on at(P̂/C), we obtainc is a directed bad cycle inDP̂/C. SinceP̂ = { P̂/C − at+(P̂/C) : C ∈ SCC(DP), P̂/C <

no-DBC } and by definition there is no at+(P̂/C)-cycle in UP, there is no directed bad at+(P̂/C)-cycle in DP and
hencec is also a directed bad cycle inDP̂/C. SinceX is a deletionno-DBC-backdoor ofDP̂/C andc is a directed

bad X-cycle in DP̂/C, X is also a deletionno-DBC-backdoor ofP. Consequently, dbno-DBC(P) ≤ dbno-C(P̂) =
wfw(P). To show that dbno-DBC is strictly more general than the parameter wfw, consider the programPn

33 where
dbno-DBC(Pn

33) = 0 and wfw(Pn
33) = n by Observations 8.5 and 8.10. Hence dbno-DBC ≺ lstr.

The third statement follows from considering the programsPn
33, Pn

34, andPn
4 where dbC(Pn

33) ≤ 1 for C ∈
{Horn , no-BC, no-DC, no-DC2, no-BEC, no-DEC} and dbno-EC(Pn

34) ≤ 1 and wfw(Pn
33) = wfw(Pn

34) = n; and
wfw(Pn

4) = 0 and dbC(Pn
4) = n by Observations 8.5 and 8.10. Hence dbC ⊲⊳ wfw for C ∈ {Horn , no-BC, no-DC,

no-DC2, no-EC, no-BEC, no-DEC}.

Observation 8.11.Let p∈ {#neg, #non-Horn, lstr}, then p andwfw are incomparable.

Proof. To show thatp and wfw are incomparable consider the programsPn
31 andPn

35 wherep(Pn
31) ≥ n + 1 and

wfw(Pn
31) = 1; andp(Pn

35) ≤ 1 and wfw(Pn
35) = n by Observations 8.6, 8.7 and 8.10.

8.4. Incidence Treewidth

Treewidth is graph parameter introduced by Robertson and Seymour [112, 113, 114] that measures in a certain
sense the tree-likeness of a graph. See [9, 10, 11, 70] for further background and examples on treewidth. Treewidth
has been widely applied in knowledge representation, reasoning, and artificial intelligence [32, 70, 73, 99, 109].

Definition 8.4. Let G= (V,E) be a graph, T a tree, andχ a labeling that maps any node t of T to a subsetχ(t) ⊆ V.
We call the setsχ(·) bagsand denote the vertices of T asnodes. The pair(T, χ) is a tree decompositionof G if the
following conditions hold:

1. for every vertex v∈ V(G) there is a node t∈ V(T) such that v∈ χ(t) (“vertices covered”);

2. for every edge vw∈ E(G) there is a node t∈ V(T) such that v,w ∈ χ(t) (“edges covered”); and

3. for any three nodes t1, t2, t3 ∈ V(T), if t2 lies on the unique path from t1 to t3, thenχ(t1) ∩ χ(t3) ⊆ χ(t2)
(“connectivity”).

Thewidth of the tree decomposition(T, χ) is max{ |χ(t)| − 1 : t ∈ V(T) }. Thetreewidthof G, denoted bytw(G), is
the minimum taken over the widths of all possible tree decompositions of G.

We will use the following basic properties of treewidth.

Lemma 8.1 (Folklore, e.g., [114]). Let G be a graph and C1, . . . ,Cl its connected components, thentw(G) =
max{ tw(C j) : 1 ≤ i ≤ l }.

Lemma 8.2(Folklore, e.g., [7]). Let G be a graph. If G has a feedback vertex set size at most k, thentw(G) ≤ k+1.

Treewidth can be applied to programs by means of various graph representations.
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Figure 8: Incidence graphIP of the programP of Example 2.1.

Definition 8.5 (Jaklet al. [73]). Let P be a normal program. Theincidence graphIP of P is the bipartite graph
which has as vertices the atoms and rules of P and where a rule and an atom are joined by an edge if and only if
the atom occurs in the rule. Theninctw(P) := tw(IP). The parameterinctw(P) is called theincidence treewidthof
P.

Proposition 8.9(Jaklet al. [73]). For each L∈ AspFull \ {ENUM}, L[inctw]N ∈ FPTand forENUM[inctw]N the
solutions can be enumerated with fixed-parameter linear delay between any two consecutive solutions.

Observation 8.12.We make the following observations about programs from Example 8.1.

1. Consider the programs Pn32 and Pn
51. We observe that its incidence graph consists of the n cyclesbi , r i , ai , r2i ,

ai , r i , bi , r2i respectively, where1 ≤ i ≤ n. According to Lemma 8.2 a cycle has treewidth at most2 and
according to Lemma 8.1 we haveinctw(Pn

32) ≤ 2 and inctw(Pn
51) ≤ 2.

2. Consider the programs Pn6 and Pn
7. Its incidence graph contains a clique on n vertices. Thus bydefinition

inctw(Pn
6) ≥ n− 1 and inctw(Pn

6) ≥ n− 1.

3. Consider program Pm,n8 . The incidence graph consists of a tree on the vertices r1, b, a1, . . . , am and a
cycle r1, c1, . . . , rn, cn, rn+1, cn+1, rn+2. By definition a tree has treewidth1, according to Lemma 8.2 a cycle
has treewidth at most2, and according to Lemma 8.1 we obtaininctw(Pm,n

8 ) ≤ 2.

The following observation states why we cannot apply our lifting theorem and extend the parameter treewidth
from normal to disjunctive programs.

Observation 8.13. ENUM[inctw]N < FPT.

Proof. Consider the programPn
51 where inctw(Pn

51) ≤ 2. Let M ⊆ at(P) such that eitherai ∈ M or bi ∈ M.
According to the definitions we obtain the GL-reductPM := { ai : ai ∈ M } ∪ { bi : bi ∈ M }. SinceM is a
minimal model ofPM , M is also an answer set ofP. Thus the programP has 2n many answer sets. Consequently,
enumerating the answer sets ofP takes timeΩ(2n).

Proposition 8.10. LetC ∈ {Horn } ∪ Acyc and p∈ {dbC, #neg, #non-Horn, lstr,wfw}, then p andinctw are incom-
parable.

Proof. We observe incomparability from the programsPn
51 and Pn

6 where p(Pn
51) ≥ n and inctw(Pn

51) = 2; and
p(Pn

6) ≤ 1 and inctw(Pn
6) ≥ n− 1 by Observations 8.5, 8.6, 8.7, 8.10, and 8.12.
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8.5. Dependency Treewidth

One might ask whether it makes sense to consider restrictions on the treewidth of the dependency graph. In this
section we show that the dependency treewidth strictly dominates the incidence treewidth and backdoors with
respect to the target classno-C, but unfortunately parameterizing the main ASP problems bythe dependency
treewidth does not yield fixed-parameter tractability.

Definition 8.6. Let P be a program, thendeptw(P) = tw(UP). We calldeptw(P) thedependency treewidthof P.

Observation 8.14.We make the following observations about programs from Example 8.1.

1. Consider programs Pn32 and Pn
6 where the dependency graph is a tree. Thusdeptw(Pn

32) = deptw(Pn
6) = 1.

2. Consider program Pn51. We observe that its dependency graph consists of n disjointcycles bi , vbi ,ai , ai , vai ,bi

for 1 ≤ i ≤ n. According to Lemma 8.2 a cycle has treewidth at most2 and according to Lemma 8.1 we
obtaindeptw(Pn

51) ≤ 2.

3. Consider program Pn7. Its dependency graph contains a clique on n vertices as a subgraph. Hence
deptw(Pn

7) ≥ n− 1.

Proposition 8.11. deptw strictly dominatesinctw and dbno-C. Let C ∈ {Horn } ∪ Acyc \ {no-C, no-EC} and
p ∈ {dbC, #neg, #non-Horn, lstr,wfw}, then p anddeptware incomparable.

Proof. Let P be a normal program, andIP its incidence graph. Let (T, χ) be an arbitrary tree decomposition ofIP.
We create a tree decomposition (T, χ′) for UP as follows: For everyr ∈ P let vr be the corresponding vertex
in IP. We replace the occurrence of avr ∈ χ(t) by H(r) for all nodest ∈ V(T). Then the pair (T, χ′) satisfies
Condition 1 and 2 of a tree decomposition ofUP. Since all edges ofIP are covered in (T, χ) for everyr ∈ P exists
a t ∈ V(T) such thatvr ∈ χ(T) andh ∈ χ(T) whereH(r) = { h }. Because allvr are connected in the bags of the tree
decomposition (T, χ) and all corresponding elementsh are connected in (T, χ), the Condition 3 holds for (T, χ′).
Thus (T, χ′) is a tree decomposition of the dependency graphUP. Since the width of (T, χ′) is less or equal to the
width of (T, χ) it follows tw(UP) ≤ tw(IP) for a normal programP. To show that deptw strictly dominates inctw,
consider the programPn

6 where deptw(Pn
6) ≤ 1 and inctw(Pn

6) ≥ n. Hence deptw≺ inctw.
Let P be a normal program andX a deletionno-C-backdoor ofP. ThusX is a feedback vertex set of the

dependency graphUP. According to Lemma 8.2 tw(UP) ≤ k + 1. Hence deptw� dbno-C. To show that deptw
strictly dominates dbno-C consider the programPn

51 where deptw(Pn
51) ≤ 2 and dbno-C(Pn

51) ≥ n. Consequently,
deptw≺ dbno-C and the proposition sustains.

To show the last statement, consider again the programsPn
51 andPn

7 where deptw(Pn
51) ≤ 2 andp(Pn

51) ≥ n;
and deptw(Pn

7) ≥ n− 1 andp(Pn
7) = 0 by Observations 8.5, 8.7, 8.10, and 8.14.

Proposition 8.12. For each L∈ AspReason , LN is NP-hard, even for programs that have dependency treewidth2.

Proof. First consider the problem CONSISTENCY. From a 3-CNF formulaF with k variables we construct a
programP as follows: Among the atoms of our programP will be two atomsax andax̄ for each variablex ∈
var(F) and a new atomf . We add the rulesax̄ ← ¬ax andax ← ¬ax̄ for each variablex ∈ var(F). For each
clause{l1, l2, l3} ∈ F we add the rulef ← h(l1), h(l2), h(l3),¬ f whereh(¬x) = ax andh(x) = ax̄. Now it is easy
to see that the formulaF is satisfiable if and only if the programP has an answer set. LetUP be the undirected
dependency graph ofP. We construct the following tree decomposition (T, χ) for UP: the treeT consists of
the nodet f and for eachx ∈ var(F) of the nodest f x, txx̄, and tx̄x and the edgest f t f x, t f xtxx̄, and txx̄tx̄x. We
label the nodes byχ(t f ) := { f , vf } and for eachx ∈ var(F) by χ(t f x) := {ax, ax̄, f }, χ(txx̄) := {ax, ax̄, vaxāx}, and
χ(tx̄x) := {ax, ax̄, vāxax}. We observe that the pair (T, χ) satisfies Condition 1. The rulesax̄ ← ¬ax andax ← ¬ax̄
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yield the edgesaxvaxāx, vaxāxāx, axvāxax, vāxaxāx in UP which are all “covered” byχ(txx̄) andχ(tx̄x). The rule
f ← h(l1), h(l2), h(l3),¬ f yields the edgef vf which is covered byχ(t f ) and yields the edgesf ax or f ax̄ which are
covered byχ(t f x). Thus Condition 2 is satisfied. We easily observe that Condition 3 also holds for the pair (T, χ).
Hence (T, χ) is a tree decomposition of the dependency graphUP. Since max{ |χ(t)| − 1 : t ∈ V(T) } = 2, the tree
decomposition (T, χ) is of width 2 and deptw(P) = 2. Hence the problem CONSISTENCY[deptw]N is NP-hard,
even for programs that have dependency treewidth 2. We observe hardness for the problems BRAVE REASONING

and SKEPTICAL REASONING by the very same argument as in the proof of Theorem 6.2 and theproposition
holds.

8.6. Interaction Treewidth

Definition 8.7 (Ben-Eliyahu and Dechter [4]). Let P be a normal program. Theinteraction graphis the graph AP
which has as vertices the atoms of P and an edge xy between any two atoms x and y for which there are rules r, r′ ∈
P such that x∈ at(r), y ∈ at(r′), and H(r) ∩ H(r′) , ∅.3

Definition 8.8 (Kanchanasut and Stuckey [82], Ben-Eliyahu and Dechter [4]). Let P be a program. Thepositive
dependency digraphD+P of P has as vertices the atomsat(P) and a directed edge(x, y) between any two atoms x, y ∈
at(P) for which there is a rule r∈ P with x∈ H(r) and y∈ B+(r).4

Let G = (V,E) be a graph andc = (v1, . . . , vl) a cycle of lengthl in G. A chordof c is an edgeviv j ∈ E where
vi andv j are not connected by an edge inc (non-consecutive vertices).G is chordal(triangulated) if every cycle in
G of length at least 4 has a chord.

Definition 8.9 (Ben-Eliyahu and Dechter [4]). Let G be a digraph and G′ a graph. Then

lc(G) := max{{2} ∪ { |c| : c is a cycle in G}},

cs(G′) := {w : G′ is a subgraph of a chordal graph with all cliques of size at most w }, and

fw(G′) := min{ |S| : S is a feedback vertex set of G′ }.

lc is thelength of the longest cycle. cs is theclique size.5

Let P be a normal program, AP its interaction graph, and D+P its positive dependency digraph. Then

cluster(P) := cs(AP) · log lc(D+P)

cyclecut(P) := fw(AP) · log lc(D+P).

cluster(P) is called thesize of the tree clustering. cyclecut(P) is called thesize of the cycle cutset decomposition.

In fact the definition ofcs(G) is related to the treewidth:

Lemma 8.3(Robertson and Seymour [114]). Let G be a graph. Thentw(G) = cs(G) + 1.

3This definition is equivalent to the original definition in [4] which is given in terms of cliques: the interaction graph isthe graph where
each atom is associated with a vertex and for every atoma the set of all literals that appear in rules that havea in their heads are connected
as a clique.

4Ben-Eliyahu and Dechter [4] used the term dependency graph while the term positive dependency graph was first used by
Kanchanasut and Stuckey [82] and became popular by Erdem andLifschitz [35].

5The original definition is based on the length of the longest acyclic path in any component ofG instead of the length of the longest
cycle and the term clique width is used instead of clique size.
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Corollary 8.4. Let P be a normal program, AP its interaction graph, and D+P its dependency digraph. Then

cluster(P) = (tw(AP) − 1) · log lc(D+P)

Proposition 8.13(Ben-Eliyahu and Dechter [4]). For each L∈ AspFull , L[cluster]N ∈ FPTand L[cyclecut]N ∈
FPT.

Observation 8.15.We make the following observations about programs from Example 8.1.

1. Consider programs Pn51 and Pn
53 and let P∈ {Pn

51,P
n
53}. The interaction graph Ap contains n disjoint paths

ai , bi for 1 ≤ i ≤ m. Hence AP contains no cycles andfw(AP) = 0 and according to Lemma 8.2 we
obtain tw(AP) ≤ 1. Moreover, the positive dependency graph D+P contains no edges, n disjoint cycles of
length exactly2 respectively. Thus lc(D+P) = 2. Consequently,cluster(Pn

51) ≤ 1 andcyclecut(Pn
51) ≤ 1; and

cluster(Pn
53) ≤ 1 andcyclecut(Pn

53) ≤ 1.

2. Consider program Pm,n8 and let P := Pm,n
8 . The interaction graph AP contains a clique on m vertices and

thustw(AP) ≥ m− 1. According to Lemma 8.3 we obtain cs(AP) ≥ m− 2. According to Lemma 8.2 we have
fw(AP) ≥ m− 2. Moreover, the positive dependency graph D+P contains the cycle c1, c2, . . . , cn, cn+1. Thus
lc(D+P) = n. Consequently,cluster(Pm,n

8 ) ≥ (m− 2) · logn andcyclecut(Pm,n
8 ) ≥ (m− 2) · logn.

Observation 8.16.clusterstrictly dominatescyclecut.

Proof. Let P be a normal program andAP its interaction graph. According to Lemma 8.2 we obtain tw(AP) ≤
fw(AP) + 1. Hence cluster(P) ≺ cyclecut(P).

Proposition 8.14. inctw strictly dominatescluster. LetC ∈ {Horn } ∪ Acyc and p∈ {dbC, #neg, #non-Horn, lstr,
wfw}, then p andclusterare incomparable; and p andcyclecutare incomparable.

Proof. We first show that inctw dominates cluster. LetP be a normal program,IP its incidence graph, andAP

its interaction graph. Let (T, χ) be an arbitrary tree decomposition ofAP. We create a tree decomposition (T, χ′)
for IP as follows: For everyr ∈ P let vr be the corresponding vertex inIP. By definition for everyr ∈ P there is
a bagχ(t) wheret ∈ V(T) such that at(r) ⊂ χ(t). We setχ′(t) = χ(t) ∪ {vr}. Then the pair (T, χ′) clearly satisfies
Condition 1 and 2 of a tree decomposition ofIP by definition. Since everyvr occurs in exactly one bag Condition 3
holds for (T, χ′). Thus (T, χ′) is a tree decomposition of the interaction graphAP. Since the width of (T, χ′) is
less or equal to the width of (T, χ) plus one it follows tw(IP) ≤ tw(AP) + 1. To show that inctw strictly dominates
cluster, consider the programPm,n

8 where inctw(Pm,n
8 ) ≤ 2 and cluster(Pm,n

8 ) = (m− 2) logn by Observations 8.12
and 8.15. Hence inctw≺ cluster.

Let p ∈ {dbC, #neg, #non-Horn, lstr, wfw} andC ∈ {Horn } ∪ Acyc. We show the incomparability of the
parameterp and cyclecut. In fact we show something stronger, there are programsP where p is of constant
size, but both tw(D+P), fw(D+P) respectively, andlc(IP) can be arbitrarily large and there are programs where the
converse sustains. Therefor we consider the programsPn

51 andPm,n
8 wherep(Pn

51) ≥ n and cluster(Pn
51) ≤ 1 and

cyclecut(Pn
51) ≤ 1; andp(Pm,n

8 ) ≤ 1 and cyclecut(Pm,n
8 ) ≥ (m− 2) · logn and cluster(Pm,n

8 ) ≥ (m− 2) · logn by
Observations 8.5, 8.6, 8.7, 8.10, and 8.15. Consequently, the second statement holds.

8.7. Number of Bad Even Cycles

Definition 8.10 (Lin and Zhao [90]). Let P be a normal program. Then

#badEvenCycles(P) := |{ c : c is a directed bad even cycle of P}|
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Proposition 8.15. For each L∈ AspFull , L[#badEvenCycles]N ∈ FPT.

Observation 8.17.We make the following observations about programs from Example 8.1.

1. Consider program Pn4 which contains no directed bad even cycle. Hence#badEvenCycles(Pn
4) = 0.

2. Consider program Pn51 which contains n disjoint directed bad even cycles. Thus#badEvenCycles(Pn
51) = n.

3. Consider programs Pn52, Pn
7, and Pm,n

8 which contain no directed bad even cycle. Consequently we obtain
#badEvenCycles(Pn

52) = #badEvenCycles(Pn
7) = #badEvenCycles(Pm,n

8 ) = 0.

4. Consider program Pn9 which contains the directed bad even cycles a1, a2, a3, bi for 1 ≤ i ≤ n. Since there are
n of those directed bad even cycles we obtain#badEvenCycles(Pn

9) = n.

Proposition 8.16. dbno-DBEC strictly dominates#badEvenCycles. Moreover,dbC and#badEvenCyclesare incom-
parable for the remaining target classesC ∈ Acyc \ {no-DBEC} ∪ {Horn }. Let p∈ {#neg, #non-Horn, lstr, wfw,
inctw, deptw, cluster, cyclecut}, then p and#badEvenCyclesare incomparable.

Proof. To see that dbno-DBEC strictly dominates #badEvenCycles. LetP be a normal program. IfP has at mostk
directed bad even cycles, we can construct a deletionno-DBEC-backdoorX for P by taking one element from
each directed bad even cycle intoX. Thus dbno-DBEC(P) ≤ #badEvenCycles(P). If a programP has a deletion
no-DBEC-backdoor of size 1, it can have arbitrarily many even cyclesthat run through the atom in the backdoor,
e.g. programPn

9 where dbno-DBEC(Pn
9) ≤ 1 and #badEvenCycles(Pn

9) = n by Observations 8.5 and 8.17. It follows
that dbno-DBEC ≺ #badEvenCycles and the proposition holds.

To show the second statement, consider the programsPn
4, Pn

52, andPn
9 where dbC(Pn

9) = 1 forC ∈ Acyc∪{Horn }
and #badEvenCycles(Pn

9) = n; conversely dbC(Pn
4) ≥ n for C ∈ {Horn , no-C, no-BC, no-DC, no-DC2, no-

EC, no-DEC, no-BEC}, dbno-DBC(Pn
52) ≥ n, and #badEvenCycles(Pn

4) = #badEvenCycles(Pn
52) = 0. Hence

dbC ⊲⊳ #badEvenCycles forC ∈ Acyc \ {no-DBEC} ∪ {Horn } by Observations 8.5 and 8.17.
To show the third statement, consider the programsPn

51, Pn
52, Pn

7, and Pm,n
8 , Pn

9 where inctw(Pn
7) ≥ n − 1

and deptw(Pn
7) ≥ n − 1, p(Pn

52) ≥ n for p ∈ {#neg, #non-Horn, lstr, wfw}, cyclecut(Pm,n
8 ) ≥ (m − 2) logn,

cluster(Pm,n
8 ) ≥ (m− 2) logn, and #badEvenCycles(Pn

7) = #badEvenCycles(Pm,n
8 ) = #badEvenCycles(Pn

52) = 0;
converselyp(Pn

51) ≤ 2 for p ∈ {inctw, deptw, cluster, cyclecut}, p(Pn
9) ≤ 2 for p ∈ {#neg, #non-Horn, lstr, wfw},

and #badEvenCycles(Pn
51) = #badEvenCycles(Pn

9) = n by Observations 8.5, 8.6, 8.7, 8.10, 8.12, 8.14, 8.15, and
8.17. Hencep ⊲⊳ #badEvenCycles forp ∈ {#neg, #non-Horn, lstr, wfw, inctw, deptw, cluster, cyclecut}.

8.8. Number of Positive Cycles (Loop Formulas)

Definition 8.11 (Fages [38]). Let P be a normal program and D+P its positive dependency digraph. Then

#posCycles := |{ c : c is a directed cycle in D+P }|

The program P is calledtight if #posCycles= 0.6

The parameter has been generalized to disjunctive programsby Lee and Lifschitz [86].

6Fages [38] used the term positive-order consistent insteadof tight.
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Proposition 8.17(Fages [38]). For L ∈ AspReason , L[#posCycles]N is NP-hard or co-NP-hard, even for tight
programs.

Observation 8.18.We make the following observations about programs from Example 8.1.

1. Consider programs Pn32 and Pn
53 where the positive dependency digraphs contain n directed cycles, hence

#posCycles(Pn
32) = #posCycles(Pn

53) = n.

2. Consider program Pn51 and Pn
7 where the positive dependency digraphs contain no cycle. Hence

#posCycles(Pn
51) = #posCycles(Pn

7) = 0.

3. Consider program Pm,n8 . Its positive dependency digraph contains only the cycle c1, c2, . . . , cn, cn+1, thus
#posCycles(Pn

8) = 1.

Proposition 8.18. Let C ∈ {Horn } ∪ Acyc and p ∈ {dbC, #neg, #non-Horn, lstr, wfw, inctw, deptw, cluster,
cyclecut, #badEvenCycles}, then p and#posCyclesare incomparable.

Proof. We observe incomparability from the programsPn
32, Pn

51, Pn
53, Pn

7, and Pn,m
8 . We havep(Pn

51) ≥ n for
p ∈ {dbC #neg, #non-Horn, lstr, wfw, #badEvenCycles}, inctw(Pn

7) ≥ n− 1, deptw(Pn
7) ≥ n− 1, cyclecut(Pn,m

8 ) ≥
(m−2)· logn, cluster(Pn,m

8 ) ≥ (m−2)· logn, and #posCycles(Pn
51) = #posCycles(Pn

7) = 0 and #posCycles(Pm,n
8 ) = 1;

conversely forp ∈ {dbC, #neg, #non-Horn, lstr, wfw, inctw, deptw} we havep(Pn
32) ≤ 1, for p ∈ {cluster, cyclecut}

we havep(Pn
53) ≤ 2 and #posCycles(Pn

32) = #posCycles(Pn
53) = n by Observations 8.5, 8.6, 8.7, 8.10, 8.12, 8.14,

8.15, 8.17, and 8.18. Consequently, the proposition holds.

8.9. Head-Cycles

Definition 8.12 (Ben-Eliyahu and Dechter [4]). Let P be a program and D+P its positive dependency digraph. A
head-cycleof D+P is a {x, y}-cycle7 where x, y ∈ H(r) for some rule r∈ P. The program P ishead-cycle-freeif D+P
contains no head-cycle.

One might consider the number of head-cycles as a parameter to tractability.

Definition 8.13. Let P be a program and D+P its positive dependency digraph. Then

#headCycles := |{ c : c is a head-cycle of D+P }|

But as the following proposition states that the ASP-reasoning problems are already NP-complete for head-
cycle-free programs.

Proposition 8.19(Ben-Eliyahu and Dechter [4]). Each L∈ AspReason is NP-hard or co-NP-hard, even for head-
cycle-free programs.

Observation 8.19.We make the following observations about programs from Example 8.1.

1. Consider program Pn51. Since the positive dependency digraph of Pn
51 contains no cycle,#headCycles(Pn

51) =
0.

2. Consider program Pn11. The positive dependency digraph of Pn
11 contains the head cycles aibc for 1 ≤ i ≤ n.

Thus#headCycles(Pn
11) = n.

7See Section 5.2 for the definition of aW-cycle.
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Even though the parameter #headCycles does not yield tractability for the ASP-reasoning problems we are
interested in the relationship between our lifted parameters and the parameter #headCycles. We will first restrict the
input programs to normal programs in Observation 8.20 and then consider disjunctive programs Observation 8.21.

Observation 8.20. Let C ∈ {Horn } ∪ Acyc and p ∈ {dbC, #neg, #non-Horn, lstr, wfw, inctw, deptw, cluster,
cyclecut, #badEvenCycles, #posCycles}, then#headCyclesstrictly dominates p.

Proof. By definition every normal program is head-cycle-free, hence #headCycles strictly dominatesp.

Observation 8.21. LetC ∈ {Horn } ∪ Acyc and p∈ {dbC, #neg, #non-Horn, lstr,wfw}, then p↑ and#headCycles
are incomparable.

Proof. To that the parameters are incomparable consider the programs Pn
51 and Pn

11 where p(Pn
51) ≥ n and

#headCycles(Pn
51) = 0; and p(Pn

11) = 1 and #headCycles(Pn
11) = n by Observations 8.5, 8.6, 8.7, 8.10, and

8.19.

9. Practical Considerations

Although the main focus of this paper is theoretical, we discuss in this section some practical considerations and
present some empirical data.

9.1. Backdoor Detection

We have determined strongHorn ∗-backdoors for various benchmark programs by means of encodings into answer
set programming, integer linear programming (ILP), local search (LS), and propositional satisfiability. It turned
out that compilations into ILP and ASP itself perform best. The integer linear program was generated using
the open source mathematics framework Sage [36] with Python[130], solved using ILOG CPLEX 12 [72] and
Gurobi [71]. We did not check optimality (considering LP duality gap and branch and bound tree). Hence the
found strongHorn ∗-backdoors might be not optimal, but presumably close to optimal. For some selected instances
we verified optimality using a SAT solver and unary cardinality constraints [123]. The answer set program that
solves backdoor detection was generated by means of ASP metaprogramming [58] and solved using clasp [121]
and a variant (unclasp) [1].

Table 1 illustrates our results on the size of small strongHorn ∗-backdoors of the considered bench-
mark instances. We mainly used benchmark sets from the first three Answer Set Programming Competi-
tions [17, 25, 52], because most of the instances contain only normal and/or disjunctive rules and no extended
rules (cardinality/weight-constraints)8. The structured instances have, as expected, significantlysmaller strong
Horn ∗-backdoors than the random instances. So far we have no good evidence why in particular the sets
KnightTour andSolitaire have rather large strongHorn ∗-backdoors compared to the other structured in-
stances.

For the acyclicity based target classesC ∈ Acyc we have computed small deletionC-backdoors only for very
few selected instances with moderate size since the currently available algorithms can only deal with rather small
instances within a reasonable computation time. The size ofsmall deletionno-C∗-backdoors of selected instances
of Solitairewas about half of the size of small strongHorn ∗-backdoors.

8We are aware that one can preprocess extended rules and compile them into normal rules. Even though recent versions of thesolver
clasp provide such an option [55], those compilations blow up the instances significantly. Hence we omitted it for pragmatic reasons.
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domain instance set disj. #atoms horn bd(%) stdev

AI HanoiTower – 32956.7 4.28 0.08
StrategicCompanies + 2002.0 6.03 0.04
MinimalDiagnosis + 111856.5 10.74 1.72

Graph GraphColoring – 3544.4 19.47 0.80
Planning MSS/MUS + 49402.3 3.80 0.70

ConformantPlanning + 1378.2 8.76 2.14
Cryptography Factoring – 3336.8 16.20 1.30
Puzzle Labyrinth – 55604.9 3.42 0.82

KnightTour – 23156.9 33.08 0.20
Solitaire – 11486.8 38.88 0.20

Random RandomQBF + 160.1 50.00 0.00
RLP – 184.2 68.00 5.00
RandomNonTight – 50.0 93.98 1.08

Table 1: Size of smallest strongHorn -backdoors (bd) for various benchmark sets, given as % of thetotal number
of atoms (#atoms) by the mean over the instances.
ConformantPlanning: secure planning under incomplete initial states [128] instances provided by Gebser and Kamin-
ski [50]. Factoring: factorization of a number where an efficient algorithm would yield a cryptographic attack by Geb-
ser [31] instances provided by Gebser [51].HanoiTower: classic Towers of Hanoi puzzle by Truszczynski, Smith and
Westlund; for instances see [17].GraphColoring: classic graph coloring problem by Lierler and Balduccini;for in-
stances see [17].KnightTour: finding a tour for the knight piece travelling any square following the rules of chess by
Zhou, Calimeri, and Santoro; for instances see [17].Labyrinth: classical Ravensburger’s Labyrinth puzzle by Gebser;
for instances see [17].MinimalDiagnosis: an application in systems biology [54]; for instances see [17]. MSS/MUS:
problem whether a clause belongs to some minimal unsatisfiable subset [77] instances provided by Gebser and Kaminski [50].
Solitaire: classical Peg Solitaire puzzle by Lierler and Balduccini;for instances see [17].StrategicCompanies: en-
coding theΣP

2 -complete problem of producing and owning companies and strategic sets between the companies [52].Mutex:
equivalence test of partial implementations of circuits, instances provided by Marateaet al. [93] based on QBF instances
of Ayari and Basin [3].RandomQBF: translations of randomly generated 2-QBF instances usingthe method by Chen and
Interian [19] instances provided by Gebser [52].RLP: Randomly generated normal programs, of various density (number of
rules divided by the number of atoms) [134] instances provided by [52].RandomNonTight: Randomly generated normal
programs provided by Schultz and Gebser [51] withn = 40, 50, and 60 variables, respectively with 40 instances perstep
instances provided by Gebser and Schaub [51].

9.2. Backdoor Evaluation

Instead of applying the algorithm from Section 3 directly, one can possibly use backdoors to control modern
heuristics in ASP solvers to obtain a speed-up. Most modern solver heuristics work independently from the current
truth assignment. They assign to each atom in the program a score and incorporate into the score the learned
knowledge based on derived conflicts (history of the truth assignments). Various studies on the effect of restricting
decision heuristics to a subset of variables based on structural properties have been carried out in the context
of SAT, both positive [66, 67, 124] and negative effects [79]have been observed depending on the domain of
the instances. Järvisalo and Junttila [78] have proven that a very restricted form of branching (branch only on a
subset of the input variables) implies a super-polynomial increase in the length of the optimal proofs for learning-
based heuristics. However, very recent results by Gebseret al. [61] suggest that modern ASP-solvers with a
clause learning heuristic can benefit from additional structural information on the instance when a relaxed form of
restricted branching is used, namely increasing the score of atoms if a certain structural property prevails. Those
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properties have to be manually identified. Since backdoor atoms are of structural importance for the problem it
seems reasonable to initially increase the score of the atoms if the atom is contained in the considered backdoor.
As strongHorn ∗-backdoors are relatively easy to compute and very easy to approximate one could occasionally
update the heuristic based on a newly computation of a backdoor. So a solver could benefit from backdoors in both
the initial state and while learning new atoms. A rigorous empirical study following these considerations is subject
of current research.

10. Summary and Future Work

We have introduced the backdoor approach to the domain of propositional answer set programming. In a certain
sense, the backdoor approach allows us to augment known tractable classes and makes efficient solving methods
for tractable classes generally applicable. Our approach makes recent progress in fixed-parameter algorithmics
applicable to answer set programming and establishes a unifying approach that accommodates several parameters
from the literature. This framework gives rise to a detailedcomparison of the various parameters in terms of
their generality. We introduce a general method of lifting parameters from normal to disjunctive programs and
establish several basic properties of this method. We further studied the preprocessing limits of ASP rules in terms
of kernelization taking backdoor size as the parameter.

The results and concepts of this paper give rise to several research questions. For instance, it would be inter-
esting to consider backdoors for target classes that contain programs with an exponential number of answer sets,
but where the set of all answer sets can be succinctly represented. A simple example is the class of programs that
consist of (in)dependent components of bounded size. It would be interesting to enhance our backdoor approach to
extended rules in particular to weight constrains. Finally, it would be interesting to investigate whether backdoors
can help to improve problem encodings for ASP-solvers.
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the 22nd International Symposium on Mathematical Foundations of Computer Science (MFCS’97), volume 1295 ofLecture Notes in
Computer Science, pages 19–36. Springer Verlag, 1997.

46
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