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Abstract

Answer Set Programming (ASP) is an increasingly populané&aork for declarative programming that admits
the description of problems by means of rules and constrétiiatt form a disjunctive logic program. In particular,
many Al problems such as reasoning in a nonmonotonic settimgbe directly formulated in ASP. Although
the main problems of ASP are of high computational compfeitcated at the second level of the Polynomial
Hierarchy, several restrictions of ASP have been identifieithe literature, under which ASP problems become
tractable.

In this paper we use the concept of backdoors to identify restrictions that make ASP problems tractable.
Small backdoors are sets of atoms that represent “cleveom@gy shortcuts” through the search space and repre-
sent a hidden structure in the problem input. The concepadikdoors is widely used in the areas of propositional
satisfiability and constraint satisfaction. We show thatait be fruitfully adapted to ASP. We demonstrate how
backdoors can serve as a unifying framework that accomrasdateral tractable restrictions of ASP known from
the literature. Furthermore, we show how backdoors allotouteploy recent algorithmic results from parameter-
ized complexity theory to the domain of answer set programgmi
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1. Introduction

Answer Set Programmin@SP) is an increasingly popular framework for declarapuegramming|[96, 104]. ASP
admits the description of problem by means of rules and caings that form a disjunctive logic program. Solu-
tions to the program are so-called stable models or ansugeridany important problems of Al and reasoning can
be succinctly represented and successfully solved witlerAISP framework. It has been applied to several large
industrial applications, e.g., social networks|[80], nhattaking [60], planning in a seaport [111], optimization of
packaging of Linux distributions [57], and general gameyjpig [126].

The main computational problems for ASP (such as decidingtidr a program has a solution, or whether
a certain atom is contained in at least one or in all soluji@me located at the second level of the Polynomial
Hierarchy [34], thus ASP problems are “harder than NP” angtehigher worst-case complexity than CSP and
SAT. In the literature, several restrictions have beentitied that make ASP tractable [€4, 2].

1.1. Contribution

In this paper we use the concept lmdickdoorsto identify new restrictions that make ASP problems traetab
Small backdoors are sets of atoms that represent “cleveoméay shortcuts” through the search space and rep-
resent a hidden structure in the problem input. Backdoor weginally introduced by Williams, Gomes, and
Selman|[132, 133] as a tool for the analysis of decision k#asi in propositional satisfiability. Backdoors have
been widely used in the areas of propositional satisfighfliB2,117, 120, 84] and constraint satisfaction [68],
and also for abductive reasoning [108], argumentation, [883 quantified Boolean formulas [119]. A backdoor
is defined with respect to some fix¢arget classfor which the computational problem under consideration is
polynomial-time tractable. The size of the backdoor candmnsas a distance measure that indicates how far the
instance is from the target class.

In this paper we develop a rigorous theory of backdoors fewan set programming. We show that the concept
of backdoors can be fruitfully adapted for this setting, &mat backdoors can serve asigifying frameworkhat
accommodates several tractable restrictions of ASP known the literature.

For a worst-case complexity analysis of various problemsliing backdoors, it is key to pay attention to
how running times depend on the size of the backdoor, and hellvrunning time scales with backdoor size.
Parameterized Complexiti28, 46,/ 69] provides a most suitable theoretical framewlorksuch an analysis. It
provides the key notion dfxed-parameter tractabilityvhich, in our context, means polynomial-time tractability
for fixed backdoor size, where the order of the polynomialsdoet depend on the backdoor size. We show how
backdoors allow us to deploy recent algorithmic resultsnffgarameterized complexity theory to the domain of
answer set programming.

Parameterized complexity provides tools to provide a dgeranalysis opolynomial-time preprocessing
terms ofkernelization[8, [125]. A kernelization is a polynomial-time self-rediact of a parameterized decision
problem that outputs a decision equivalent problem ingtavitose size is bounded by a functibof the parameter
(the kernel size). It is known that every decidable fixedapaeter tractable problem admits a kernelization, but
some problems admit small kernels (of size polynomial ingheameter) and others don't. We provide upper and
lower bounds for the kernel size of various ASP problemsKtaor detection and backdoor evaluation), taking
backdoor size as the parameter.

Several algorithms in the literature are defined for disjionefree (i.e., normal) programs only. We provide a
general method fdlifting these parameters to disjunctive programs, preserving-fiaegmeter tractability under
certain conditions.

Although our main focus is on a theoretical evaluation, wespnt some experimental results where we con-
sider the backdoor size of structured programs and randogrgms of varied density.



1.2. Background and Related Work

Complexity of ASP Problem#Answer set programming is based on #stable-model semantidsr logic pro-
grams |[64} 65]. The computational complexity of varioushpems arising in answer set programming has been
subject of extensive studies. Eiter and Goitlob [34] havabtished that the main decision problems of (dis-
junctive) ASP are located at the second level of the Polyabhiierarchy. Moreover, Bidoit and Froidevaux [6]
and| Marek and TruszczynskKi [94] have shown that the problemsain NP-hard (co-NP-hard respectively) for
disjunction-free (so-calledormal) programs. Several fragments of programs where the masoniasy problems
are polynomial-time tractable have been identified, e.grnhbrograms [64], stratified programs [2] and programs
without even cycles [135]. Dantsit al. [24] survey the classical complexity of the main reasonirmpfems for
various semantics of logic programming, including fragtsesf answer set programming.

ASP SolversVarious ASP-solvers have been developed in recent yearsierSahat deal with one or more
fragments of disjunctive programs (normal, tight, or hegdie-free) and utilize techniques from SAT are Smod-
els [103], Assat/[91], Cmodels [89], and the solver Clasp].[580lvers that transform normal programs into
other problem domains are Lp2diff (difference logic,|[76Dingo (satisfiability modulo theories, [74]), and
Mingo (mixed integer linear programming, [92]). Solveratttackle disjunctive programs are DLV [88], GnT|[75],
and ClaspDL[30]. DLP utilizes the technique of unfoundea {&7], GnT uses techniques from SAT and extends
Smodels by means of a guess and check approach. ClaspD asegjoes from SAT and is based on logical
characterizations of disjunctive loop formulas|[86].

Parameterizations of ASPSo far there has been no rigorous study of disjunctive ASRinvihe framework of pa-
rameterized complexity. However, several results knowmfthe literature can be stated in terms of parameterized
complexity and provide fixed-parameter tractability. Tl@sidered parameters include the number of atoms of a
normal program that appear in negative rule bodies [5], threlyver of non-Horn rules of a normal program [5], the
size of a smallest feedback vertex set in the dependencgdigf a normal program [69], the number of cycles of
even length in the dependency digraph of a normal prograin 9@ treewidth of the incidence graph of a normal
program|[73, 100], and a combination of two parameters:ahgth of the longest cycle in the dependency digraph
and the treewidth of the interaction graph of a head-cyde-programs [4]. Very recently we established an fpt-
reduction that reduces disjunctive ASP to normal ASP; ireotkords, a reduction from the second level of the
Polynomial Hierarchy to the first level. The combinatorigpkesion is confined to the size of a smallest backdoor
with respect to normal programs, whereas the considerstmésy problem itself remains intractable|[40].

Backdoors. The concept of a backdoor was originally introduced for SA@ €SP by Williamset all [132,1133].
Since then, backdoors have been used frequently in thatliter The study of the parameterized complexity of
backdoor detection was initiated oy Nishimtaal. [105] who considered satisfiability backdoors for the base
classes Horn and 2CNF. Since then, the study has been edtémd@rious other base classes, including clus-
tering formulas|[106], renamable Horn formulas [110], Qréwrmulas [49], Nested formulas [47], acyclic for-
mulas [45], and formulas of bounded incidence treewidtl};[#8 a survey, see [46]. Several results extend the
concept of backdoors to other problems, e.g., backdoorf@et®nstraint satisfaction problems [132], quantified
Boolean formulas [119], abstract argumentation [107], abductive reasoning [108]. Samer and Szeider! [118]
have introducedbackdoor treegor propositional satisfiability which provide a more refineoncept of backdoor
evaluation and take the interaction of variables that fotma@kdoor into account.



1.3. Prior Work and Paper Organization

This paper is an extended and updated version of the papgrappeared in the proceedings of the 22nd In-
ternational Conference on Atrtificial Intelligence [39] aimdthe New Directions in Logic, Language and Com-
putation [41]. The present paper provides a higher leveletdit] in particular full proofs and more examples.
Furthermore, the paper extends its previous versions irfidll@ving way: additional attention is payed to the
minimality check (Lemm&3]3). Theordm b.3 is extended taiesbme very recent results in parameterized com-
plexity theory. A completely new section (Sectign 6) is dedbto a rigorous analysis of preprocessing methods
for the problems of backdoor detection and backdoor evialwaiVe present a general method to lift parameters
from rules of normal programs to disjunctive programs (Becfl). We extend the section on the theoretical com-
parison of parameters (Sectioh 8) by additional compasisorother parameters, e.g., weak feedback width and
interaction graph treewidth, and to other classes of progra.g., head-cycle-free and tight programs. Finally,
in Sectior® we provide some empirical data on backdoor teteand discuss the evaluation of backdoors in a
practical setting.

2. Preliminaries

2.1. Answer Set Programming

We consider a univerdd of propositionalatoms A literal is an atorma € U or its negationa. A disjunctive logic
program(or simply aprogran) P is a set ofrules of the following form

XUV VX e Y Ym T,

wherexs, ..., X, V1,...,Ym Z,. .., Z, are atoms andl m,n are non-negative integers. Lebe a rule. We write
{X1,...,%} = H(r) (the headof r), {y1,...,ym} = B*(r) (the positive body of) and{z,...,z,} = B7(r) (the
negative body of). We denote the sets of atoms occurring in a rube in a progranP by at¢) = H(r) U B*(r) U
B~(r) and atP) = | J,cp at(r), respectively. A rule is negation-freaf B~(r) = 0, r is normalif [H(r)| < 1,ris a
constraintif |H(r)| = 0, r is constraint-freeif |H(r) > 0], r is Horn if it is negation-free and normat, is positive
if it is Horn and constraint-free, is tautologicalif B*(r) N (H(r) u B~(r)) # 0, andr is non-tautologicalif it is
not tautological. We say that a program has a certain prpffeatl its rules have the propertydorn refers to the
class of all Horn programs. We denote the class of all normagnams byNormal. Let P andP’ be programs.
We say thatP’ is asubprogramof P (in symbolsP’ C P) if for each ruler’ € P’ there is some rule € P with
H(r’) € H(r), B*(r') < B*(r), B7(r') € B (r). We call a clas® of programshereditaryif for eachP € C all
subprograms oP are inC as well. Note that many natural classes of programs (andeaes considered in this
paper) are hereditary.

A set M of atomssatisfiesa ruler if (H(r) U B=(r)) n M # 0 or B*¥(r) \ M # 0. M is amodelof P if it
satisfies all rules oP. TheGelfond-Lifschitz (GL) reduaif a programP under a seM of atoms is the program™
obtained fromP by first removing all rules with B~(r) n M # 0 and second removing allz wherez € B7(r)
from the remaining rules [65]. M is ananswer sefor stable mod@lof a programP if M is a minimal model of
PM. We denote by AS?) the set of all answer sets Bf

Example2.1 Consider the program consisting of the following rules:

d«ace a« d,—b,-c; evce f;
f —d,c; c« f,e-b; c«d;
b«c f.



The setM = {b, c, f} is an answer set @, sincePM = {d — a e f «d,c; b« c evce f; cd; f}and
the minimal models oPM are{b, c, f} and{e, f}. -

It is well known that normal Horn programs have a unique amsgéand that this set can be found in linear
time. Van Emden and Kowalski [129] have shown that every ttaimg-free Horn program has a unique minimal
model. Dowling and Gallier [27] have established a linéawetalgorithm for testing the satisfiability of proposi-

tional Horn formulas which easily extends to Horn programghe following we state the well-known linear-time
result.

Lemma 2.1. Every Horn program has at most one model, and this model cdall in linear time.

2.2. ASP Problems

We consider the following fundamental ASP problems.

CHECKING
Given: A programP and a seM ¢ at(P).
Task: Decide whetheM is an answer set d®.

CONSISTENCY
Given: A programP.
Task: Decide whetheP has an answer set.

BRAVE REASONING
Given: A programP and an atona* € at(P).
Task: Decide whethea* belongs tasomeanswer set oP.

SKEPTICAL REASONING
Given: A programP and an atona* € at(P).
Task: Decide whethea* belongs taall answer sets dP.

COUNTING
Given: A programP.
Task:  Compute the number of answer setdof

ENuM
Given: A programP.
Task: List all answer sets d®.

We denote bydspReason the family of the reasoning problemsi€CKING, CONSISTENCY, and BRAVE REA-
SONING and by AspFull the family of all the problems defined above. THSpReason consists of decision
problems, andispFull adds to it a counting and an enumeration problem. In the $egueill occasionally write
Lnormal to denote a problerh € AspFull restricted to input programs frohdormal.

CHECKING is co-NP-hard in general [34], butHECKINGNomal IS polynomial [16]. GNSISTENCY and
BRAVE REASONING are Zg’-complete, KEPTICAL REASONING is H;’-complete [34]. Both reasoning prob-
lems remain NP-hard (or co-NP-hard) for normal programs, 95t are polynomial-time solvable for Horn pro-
grams|[64]. @UNTING is easily seen to beRthardl as it entails the problem #SAT.

1#P is the complexity class consisting of all the counting peol associated with the decision problems in NP.



2.3. Parameterized Complexity

We briefly give a basic background on parameterized contglexor more detailed information we refer to other
sources|[28, 42, 68, 101]. An instance oparameterized problem Is a pair (,k) € * x N for some finite
alphabetz. For an instancel (k) € ¥* x N we call | the main partandk the parameter ||I|| denotes the size
of |. L is fixed-parameter tractabli there exist a computable functiohand a constart such that we can decide
whether (,k) € L in time O(f(K)||1]|°). Such an algorithm is called dpt-algorithm If L is a decision problem,
then we identifyL with the set of all yes-instancek k). FPT is the class of all fixed-parameter tractable decision
problems.
LetL € ¥* x NandL’ € ¥* x N be two parameterized decision problems for some finite algisd andy’.
An fpt-reduction rfrom L to L’ is a many-to-one reduction fro&i x N to ¥”* x N such that for all € * we have
(I,k) e Lifand only ifr(l,k) = (I’,k’) € L’ andk’ < g(Kk) for a fixed computable functiog : N — N and there is
a computable functiori and a constart such that is computable in tim@(f (k)||1||°). Thus, an fpt-reduction is,
in particular, an fpt-algorithm. It is easy to see that thessIFPT is closed under fpt-reductions and it is clear for
parameterized problenis andL; that if L; € FPT and there is an fpt-reduction frdoa to L4, thenL, € FPT.
TheWeft Hierarchyconsists of parameterized complexity classes W{W/[2] ¢ --- which are defined as the
closure of certain parameterized problems under parainedereductions. There is strong theoretical evidence
that parameterized problems that are hard for classesand not fixed-parameter tractable. A promin&wi2]-
complete problem is HTING SET [2€] defined as follows:

HITTING SET

Given: A family of sets G, k) whereS = {S,,..., Sy} and an integek.

Parameter: The integek.

Task: Decide whether there exists ddtof size at mosk which intersects with all

the S; (H is ahitting setof S).

The class XP ohon-uniformtractable problems consists of all parameterized decfgioblems that can be solved
in polynomial time if the parameter is considered constdtat is, (,k) € L can be decided in tim@(||1]|T®)

for some computable functioh The parameterized complexity class paraNP contains edhpeterized decision
problemsL such that [, k) € L can be decidedion-deterministicallyin time O(f(K)||I||°) for some computable
function f and constant. A parameterized decision problem is paraNP-completeisfit NP and NP-complete
when restricted to a finite number of parameter values [42)c®BparaNP we denote the class of all parameterized
decision problems whose complement (yes and no instancagpsd) is in paraNP. Using the concepts and
terminology of Flum and Grohe [42], co-paraNFpara-coNP.

2.4. Graphs

We recall some notations of graph theory. We consider uaidideand directed graphs. Amdirected graplor

simply agraphis a pairG = (V, E) whereV # 0 is a set ofverticesandE C {{u,v} CV : u # v} is a set ofedges
We denote an edgi, w} by uv or vu. A graphG’ = (V’,E’) is asubgraphof G if V' € V andE’ € E and an
induced subgraplif additionally for anyu,v € V' anduv € E alsouv € E’. A path of length ks a graph with
k+ 1 pairwise distinct vertices,, . . ., .1, andk distinct edges;v;,1 where 1< i < k (possiblyk = 0). A cycle of
length k is a graph that consists kfdistinct verticesn, vo, .. ., Vk andk distinct edgesivo, . . ., ik 1Vk, VkV1. Let

G = (V,E) be a graphG is bipartite if the setV of vertices can be divided into two disjoint séisandV such
that there is no edgev € E with u,v € U oru,v € V. G is completef for any two verticesu,v € V there is an
edgeuv € E. G contains aliqueonV’ C V if the induced subgraph/(, E’) of G is a complete graph. Aonnected



component @f G is an inclusion-maximal subgragh = (V¢, Ec) of G such that for any two verticagv € V¢
there is a path i€ from utov.

A directed graphor simply adigraphis a pairG = (V, E) whereV # 0 is a set of vertices anfl C {(u,V) €
VxV :u=#v}isasetofdirected edgesA digraphG’ = (V’, E') is asubdigraphof G if V' € V andE’ ¢ E and an
induced subdigraplif additionally for anyu,v € V" and (4,v) € E also (i,v) € E’. A directed path of length Is
a digraph withk + 1 pairwise distinct verticeg, .. ., w1, andk distinct edgesw\, vi.1) where 1< i < k (possibly
k = 0). A directed cycle of length,ks a digraph that consists &fdistinct verticesvy, vo, ..., vk andk distinct
edges Vi, V2), . . ., (Vi-1, V&), (Vk, V1)-

We sometimes denote a (directed) path or (directed) cycke ssquence of vertices. Please observe that
according to the above definitions, the length of an undgkcicle is at least 3, whereas the length of a directed
cycle is at least 2.

A strongly connected componentdEa digraphG = (V, E) is an inclusion-maximal directed subgra@h=
(Vc, Ec) of G such that for any two verticas v € V¢ there are paths i@ from uto v and fromv to u. The strongly
connected components @fform a partition of the se¥ of vertices, we denote this partition by SEE}(

For further basic terminology on graphs and digraphs we tefa standard text [26, 12].

2.5. Satisfiability Backdoors

We also need some notions frgomopositional satisfiability A literal is an atom or its negation andctauseis
a finite set of literals, a CNF formula is a finite set of clausastruth assignmenis a mappingr : X — {0, 1}
defined for a seX C U of atoms. Forx € X we putr(-x) = 1 - 7(x). By 2X we denote the set of all truth
assignments : X — {0, 1}. Thetruth assignment reduaif a CNF formulaF with respect tor € 2% is the CNF
formulaF; obtained fromF by first removing all clausesthat contain a literal set to 1 hyy and second removing
from the remaining clauses all literals set to Obyr satisfies Hf F, = 0, andF is satisfiableif it is satisfied by
somer.

The following is obvious from the definitions:

Observation 2.1. Let F be a CNF formula and X a set of atoms. F is satisfiable ifamig if F. is satisfiable for
at least one truth assignmente 2%,

This leads to the definition of a strong backdoor relative ttaasC of polynomially solvable CNF formulas:
a setX of atoms is atrongC-backdoorof a CNF formulaF if F, € C for all truth assignments € 2X. Assume
that the satisfiability of formulaf € C of size||F|| = n can be decided in tim&®(n®). Then we can decide the
satisfiability of an arbitrary formul& for which we know a strong@-backdoor of sizé in time O(2n°) which is
efficient as long ak remains small.

A further variant of backdoors are deletion backdoors ddflmeremoving literals from a CNF formuld — X
denotes the formula obtained frafmby removing all literalsx, —=x for x € X from the clauses of. Then a seX
of atoms is aleletionC-backdoorof F if F — X € C. In general, deletio®-backdoors are not necessarily strong
C-backdoors. If all subsets of a formuladnalso belong ta@ (C is clause-induced), then deletiGhbackdoors are
strongC-backdoors.

Before we can use a strong backdoor we need to find it first. Bst reasonable target clasgethe detection
of a strongC-backdoor of size at mo&tis NP-hard ifk is part of the input. However, as we are interested in finding
small backdoors, it makes sense to parameterize the backdo@hd®ak and consider the parameterized com-
plexity of backdoor detection. Indeed, with respect to tlasses of Horn CNF formulas and 2-CNF formulas, the
detection of strong backdoors of size at miost fixed-parameter tractable [105]. The parameterized texitp
of backdoor detection for many further target classes has mwestigated [46].



3. Answer Set Backdoors

3.1. Strong Backdoors

In order to translate the notion of backdoors to the domakS#?, we first need to come up with a suitable concept
of a reduction with respect to a truth assignment. The falgvis a natural definition which generalizes a concept
of|Gottlobet al. [69].

Definition 3.1. Let P be a program, X a set of atoms, and 2X. Thetruth assignment reduof P underr is the
logic program R obtained from P by

1. removing all rules r with Kr) N 771(1) # 0 or H(r) C X;
2. removing all rules r with B(r) n 7%(0) # 0;
3. removing all rules r with B(r) n v=1(1) # 0;

4. removing from the heads and bodies of the remaining ruldsemals v, —v with ve X.

Definition 3.2. LetC be a class of programs. A set X of atoms sti@ngC-backdoorof a program P if R € C
for all truth assignments € 2%.

By a minimal strongC-backdoor of a prograr® we mean a strong-backdoor ofP that does not properly
contain a smaller strong-backdoor ofP; a smalleststrongC-backdoor ofP is one of smallest cardinality.

Example3.1 We consider the program of Examjile]2.1. The{bet} is a strongHorn-backdoor since all four
truth assignment reducB; = {d <~ a,e, a«d; e f; f},Pj ., ={d—ae f «d, f},Pc={d—ae e
f; f},andPp. = {d «— a,e; f « d; f}are in the classlorn. 4

3.2. Deletion Backdoors

Next we define a variant of answer set backdoors similar isfestility deletion backdoors. For a prograPrand

a setX of atoms we defin® — X as the program obtained fromhby deletinga, —a for a € X from the rules ofP.

The definition gives rise to deletion backdoors. We will e finding deletion backdoors is in some cases easier
than finding strong backdoors.

Definition 3.3. LetC be a class of programs. A set X of atoms detetionC-backdoorof a program P if B-X € C.

In general, not every strong-backdoor is a deletio-backdoor, and not every deleti@backdoor is a
strongC-backdoor. But we can strengthen one direction requiriegbtiise class to satisfy the very mild condition
of being hereditary (see Sectibh 2) which holds for all bdasses considered in this paper.

Lemma 3.1. If C is hereditary, then every deleti@tbackdoor is a strong-backdoor.

Proof. Let P be a programX C at(P), andr € 2X. Letr’ € P,. It follows from Definition[3.1 that’ is obtained
from somer € P by deletingv, v for all v e X from the head and body of Consequently’ € P — X. Hence
P. ¢ P — X which establishes the proposition. O



3.3. Backdoor Evaluation

An analogue to Observatién 2.1 does not hold for ASP, evee ifensider the most basic problendISISTENCY.
Take for example the prograf= { X <« V; Yy « X; « X; z < =X} and the seK = {x}. Both reduct®y-g = { z}
andPy-1 = {y} have answer sets, bBthas no answer set. However, we can show a somewhat weakanasym
variant of Observatioi 2.1, where we can map each answerf ot@ an answer set d?, for somer e 2%,
This is made precise by the following definition and lemmaiéivtare key for a backdoor approach to answer set
programming).

Definition 3.4. Let P be a program and X a set of atoms. We define
AS(P.X) = {MuUT Y1) :7e2X@P) M e AS(P,)}.
Lemma 3.2. AS(P) c AS(P, X) holds for every program P and every set X of atoms.

Proof. Let M € AS(P) be chosen arbitrarily. We py = (X\ M) n at(P) andX; = X n M and define a truth
assignmentr € 2X"aP) py settingr~1(i) = X, for i € {0,1}. Let M’ = M\ X;. Observe thaM’ € AS(P;)
impliesM e AS(P, X) sinceM = M’ U r~(1) by definition. Hence, to establish the lemma, it sufficesttow that
M’ € AS(P,). We have to show tha¥l’ is a model ofPM’, and that no proper subset & is a model ofPM’.

In order to show thaM’ is a model ofPM’, chooser’ € PM" arbitrarily. By construction oP¥’ there is a
corresponding rule € P with H(r’) = H(r) \ Xo andB*(r’) = B*(r) \ Xy which gives rise to a rule’” € P,, and
in turn, r”’ gives rise tor’ € PM. SinceB(r) N X; = 0 (otherwiser would have been deleted formirig) and
B=(r) n M’ = 0 (otherwiser” would have been deleted formim}"), it follows thatB=(r) N M = 0. Thusr gives
rise to a ruler* € PM with H(r) = H(r*) andB*(r) = B*(r*). SinceM € AS(P), M satisfies*, i.e.,Hr) N M # 0
or B¥(r) \ M # 0. However,H(r)n M = H(r’) n M” andB*(r) \ M = B*(r") \ M’, thusM’ satisfiesr’. Since
r’ e PM was chosen arbitrarily, we conclude thdt is a model ofPM’.

In order to show that no proper subsetMf is a model ofPM" choose arbitrarily a proper subgét C M’.
Let N = N’ U X;. SinceM’ = M\ X; andX; € M it follows thatN C M. SinceM is a minimal model oPM,
N cannot be a model @M. Consequently, there must be a rule P such thatB=(r) n M = 0 (i.e.,r is not
deleted by forming®™), B*(r) ¢ N andH(r) n N = 0. However, sinceM satisfiesPM, and sinceB*(r) C N € M,
H(r) "M # 0. Thusr is not a constraint. Moreover, sine&r) " M # @ andM N Xo = 0, it follows that
H(r) \ Xo # 0. Thus, sinceH(r) n X3 = 0, H(r) \ X # 0. We conclude that is not deleted when forming-
and giving rise to a rule’ € P, which in turn is not deleted when formirg}’, giving rise to a rule”’, with
H(r’") = H(r) \ Xo, BT (r””) = B*(r) \ X3, andB=(r””) = 0. SinceB*(r’”) € N’ andH(r’”) "N = 0, N” is not a model
of PM",

Thus we have established thdt is a stable model d?,, and so the lemma follows. O

In view of Lemmd_ 3.2 we shall refer to the elements in RX) as “answer set candidates.”

Example3.2 We consider prograr® of Example 2.1l and the stroridorn-backdoorX = {b, c} of Example 3.11.
The answer sets d?. are ASPy) = {{e f}}, AS(Py) = {{f}}, AS(Pws) = {{e f}}, and ASPy) = {{f}} for
7 € 2I6¢ We obtain the set AR X) = {{e, f}.,{c, f},{b,e f},{b,c, f}}. 4

In view of Lemmag 312, we can compute Ay (i) computing ASP;) for all 7 € 2% (this produces the
set ASP, X) of candidates for ASY)), and (ii) checking for eacM € AS(P, X) whether it is an answer set &f
The check (ii) entails (iia) checking whethit € AS(P, X) is a model of P and (iib) whethevl € AS(P, X) is a
minimal model ofPM. We would like to note that in particular any constraint @méed inP is removed in the
truth assignment reduét; but considered in check (iia). Clearly check (iia) can beiedrout in polynomial time
for eachM. Check (iib), however, is co-NP-hard in general [95], buypomial for normal programs [16].
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Fortunately, for our considerations it suffices to perfotmecek (iib) for programs that are “close kormal,”
and so the check is fixed-parameter tractable in the sizeeofitten backdoor. More precisely, we consider the
following parameterized problem and establish its fixethpeeter tractability in the next lemma.

STRONG C-BACKDOOR AsSpP CHECK

Given: A programP, a strongC-backdoorX of P and a seM cC at(P).
Parameter: The sizgX| of the backdoor.
Task: Decide whetheM is an answer set d?.

Lemma 3.3. LetC be a class of normal programs. The problS8nRONG C-BACKDOOR Asp CHECK is fixed-
parameter tractable.

Proof. LetC be a class of normal programa program, an& a strongC-backdoorX of P with |X| = k. We can
check in polynomial time whethe¥l is a model ofP and whetheM is a model ofPM. If it is not, we can reject
M, and we are done. Hence assume Mas a model ofPM. In order to check whethévl e AS(P) we still need
to decide whetheM is a minimal model oPM. We may assume, w.l.0.g., thatcontains no tautological rules, as
it is clear that the test for minimality does not depend ondiagical rules.

Let X; € M n X. We construct fronPM a prograrrPQé'lgx by (i) removing all ruleg for which H(r) N Xy # 0,
and (ii) replacing for all remaining rulasthe headH(r) with H(r) \ X, and the positive bodB*(r) with B*(r) \ X;.

Claim: P{ _, is Horn.
To show the claim, consider some rules P{ _. By construction, there must be a rule P that gives raise
to a rule inPM, which in turn gives raise to'. Lett € 2X be the assignment that sets all atom¥in H(r) to 0O,
and all atoms irK \ H(r) to 1. Sincer is not tautological, it follows that is not deleted when we obtaly, and it
gives rise to a rule* € P, whereH(r*) = H(r) \ X. However, since& is a class of normal programs, is normal.
Hence 1> [H(r*)| = |H(r) \ X] = H(r’), and the claim follows.

To test whetheM is a minimal model oPM, we run the following procedure for every sét < M N X.

If P} _, has no model, then stop and return TRUE.
1=

Otherwise, compute the unique minimal moteif the Horn progranP)'\("lgx. fFLCM\X LUX; C

M, andL U X; is a model ofPM, then return FALSE. Otherwise return TRUE.

For each seX; € M n X the above procedure runs in linear time by Lenima 2.1. As ther®(2") setsX;
to consider, we have a total running time®@g2¥n) wheren denotes the input size &fandk = |X|. It remains to
establish the correctness of the above procedure in terthe dbllowing claim.

Claim: M is a minimal model of B if and only if the algorithm returns TRUE for each X M N X.

(=). Assume thaM is a minimal model oPM, and suppose to the contrary that there is sdfne€ M N X
for which the algorithm returns FALSE. Consequent’l’;?j'lgx has a unique minimal modél with L € M \ X,
L U X; € M, and wherd_ U Xy is a model ofPM. This contradicts the assumption thdtis a minimal model of
PM. Hence the only-if direction of the lemma is shown.

(). Assume that the algorithm returns TRUE for eaghc M n X. We show thaMM is a minimal model of
PM. Suppose to the contrary thal! has a modeM’ C M.

We run the algorithm foK; := M’nX. By assumption, the algorithm returns TRUE. There are tvgsitdlities:
() P%gx has no model, or (ii)?>>“é'lgx has a model, and for its unique minimal modlethe following holds:L is
not a subset oM \ X, or L U Xy is not a proper subset ®, or L U X; is not a model oPM.

We show that case (i) is not possible by showing tat, X is a model 0“°>'\</|1gx-
To see this, consider arutee P} . and letr € PM such that” is obtained front by removingX from H(r)
and by removingX; from B*(r). SinceM’ is a model ofPM, we have (aB*(r) \ M’ £ 0 or (b) H(r) n M” # 0.
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Figure 1: Exploit pattern of ASP backdoors if the target €l@ds normal and enumerable wheanedenotes the
input size ofP.

Moreover, sincd8*(r’) = B*(r)\ Xy andX; = M’ n X, (i) implies® # B*(r)\ M’ = B*(r)\ Xy \M’ = B*(r')\ M’ C
B*(r') \ (M” \ X), and sinceH(r) N Xy = 0, (ii) implies® # Hr) n M’ = H(r) n (M’ \ X1) = H(r) n (M’ \ X) =
H)\ X)Nn(M"\ X) = H(r") n (M"\ X). HenceM’ \ X satisfies’. Sincer’ P%gx was chosen arbitrarily, we
conclude thaM’ \ X is a model ofP{ .

Case (ii) is not possible either, as we can see as foIIowsurAeP)'\("lgx has a model, and ldt be its unique
minimal model. SinceM’ \ X is a model oﬂ3>“é'1gx, as shown above, we hattec M’ \ X.

We havelL € M \ X sinceL ¢ M’ \ XandM’\ X M\ X.

Further we have. U X; € M sinceLUX; € (M"\ X)U X3 = (M"\ X)U(M'nX)=M" C M.

And finally L U X; is a model ofPM, as can be seen as follows. Consider a ritePM. If X, N H(r) # 0, then
L U X, satisfies; thus it remains to consider the cagn H(r) = 0. In this case there is a rufé € P} _, with
H({r’) = H(r) \ XandB*(r’) = B*(r) \ X;. SinceL is a model oﬂD)'\("lgx, L satisfiesr’. Hence (@B*(r')\L # 0
or (b)) H(r') nL # 0. SinceB*(r’) = B*(r) \ X1, (a) implies thatB*(r) \ (L U X;) # 0; and sinceH(r’) € H(r),
(b) implies thatH(r) N (L U X;) # 0. ThusL U X; satisfiesr. Sincer € PM was chosen arbitrarily, we conclude
thatL U X; is a model ofPM.

Since neither case (i) nor case (i) is possible, we have radintion, and we conclude thM is a minimal
model of PM.

Hence the second direction of the claim is established, arkdeslemma follows. O

Figure[1 illustrates how we can exploit a strofighackdoor to find answer sets. For a given progiand
a strongC-backdoorX of P we have to considgRX| truth assignments to the atoms in the backdéoFor each
truth assignment € 2X we reduce the prograi®to a progranP, and compute the set ABY). Finally, we obtain
the set ASP) by checking for eactM € AS(P;) whether it gives rise to an answer setRof

Example3.3. We consider the set AB(X) = {{e, f},{c, f},{b,e f},{b,c, f}} of answer set candidates of Exam-
ple[3.2 and check for each candidate: {e, f}, M = {c, f}, N = {b, e, f}, andO = {b, c, f} whether it is an answer
set of P. Therefore we solve the problenT8oNG Horn-BACKDOOR AsP CHECK by means of Lemmia3.3.

First we test whether the sdtsM, N andO are models oP. We easily observe th&t andO are models oP.
But L andM are not models dP since they do not satisfy the rute— e, f, —-b andb « crespectively, and we can
drop them as candidates. Then we positively answer theigneshetherN andO are models of its GL-reducts
PN and PP respectively.
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Next we consider the minimality and apply the algorithm ofrireal 3.3 for each subset of the backddoe
{b, c}. We have the GL-redu®N = {d «— a,e evc« f; f « d,c; c«— d; b« c; f}. ForX; = 0 we obtain
Plex =d—ae e—f; f—dc «d «c f]. Thesel = {e f}is the unique minimal model d?} _, .
SinceL € N\ X, LU X; € N, andL U X; is a model ofPN, the algorithm returns FALSE. We conclude thats
not a minimal model oPN and thusN is not an answer set .

We obtain the GL-redud®® = {d — a,e evc« f; f «d,c; c— d; b« ¢ f}. ForX; = 0 we have
Px,cx ={d —a,e e« f; f < d e «d; «c; f}. The selL = {e, f}is the unique minimal model d®x,cx.
SinceL U X; € O, the algorithm returns TRUE. Fof; = {b} we getPx,cx = {d «— a,e e f; f « d, g «
d; f} and the unique minimal modél = {e, f}. SinceL ¢ O\ X, the algorithm returns TRUE. Fofz = {c}
we obtainPy,cx = {d <« a,e f « d; «; f} and no minimal model. Thus the algorithm returns TRUE. For
Xa = {b,c} we havePy,cx = {d « a, e f « d; f} and the unique minimal modél = {f}. SinceL U X; C M,
the algorithm returns TRUE. Since orly, c, f} € AS(P, X) is an answer set d?, we obtain ASP) = {{b,c, f}}. 4

In view of Lemmag 32 and 3.3, the computation of RBis fixed-parameter tractable for paramekef we
know a strongC-backdoorX of size at mosk for P, and each program i@ is normal and its stable sets can be
computed in polynomial time. This consideration leads &oftilowing definition and result.

Definition 3.5. A classC of programs issnumerabléf for each Pe C we can computAS(P) in polynomial time.
If AS(P) can be computed even in linear time, then we call the dlasar-time enumerable

Theorem 3.1. LetC be an enumerable class of normal programs. The problemisagu/l are all fixed-parameter
tractable when parameterized by the size of a sti@rgackdoor, assuming that the backdoor is given as an input.

Proof. Let X be the given backdook = |X| andn the input size ofP. SinceP,; € C andC is enumerable, we
can compute AS¥,) in polynomial time for each € 2%, say in timeO(n°) for some constant. Observe that
therefore]AS(P;)| < O(n°) for eachr € 2X. Thus we obtain AF?, X) in time O(2n°), and|AS(P, X)| < O(2n°).
By Lemmd3.2, ASP) c AS(P, X). By means of Lemmia3.3 we can decide whetiles AS(P) in time O(2¥n) for
eachM e AS(P, X). Thus we determine from AB(X) the set of all answer sets Bfin time O(2%-n®-2¢.n+2%.n%) =
0(2%n°*1). Once we know ASP), then we can also solve all problemsAspFull within polynomial time. [

Remark.If we know that each program i@ has at most one answer set, dhtlas a stron@-backdoor of sizé,
then we can conclude thBthas at most'2answer sets. Thus, we obtain an upper bound on the numbeswéan
sets ofP by computing a small strong-backdoor ofP.

The following definition will be useful in the sequel.

Definition 3.6. LetC be a class of programs. We denote®ythe class containing all programs that belong@o
after removal of tautological rules and constraints.

In fact, it turns out that for several of our algorithmic risuthat work forC-backdoors also work fo€*-
backdoors, but the latter can be much smaller than the forderce we will often formulate and establish results
in terms of the more general noti@H.

Observation 3.1. Whenever a class of programs is (linear-time) enumerable, then s¢is

Proof. Let C be enumerable, |€®* € C*, and letP be the program obtained froRi by removing tautological
rules and constraints. Sing¢gis enumerable, we can compute &$({n polynomial time (or linear time, i

is linear-time enumerable). By well-known results![14, PH(P) < AS(P*), and in order to check whether
someM e AS(P) belongs to ASP*) we only need to check whethdt satisfies all the constraints &f, which
can be done in linear time. O
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3.4. Backdoor Detection

Theoreni 3.1l draws our attention to enumerable classes ofai@rograms. Given such a clagsis the detection
of C-backdoors fixed-parameter tractable? If the answer isvadfive, we can drop in Theordm B.1 the assumption
that the backdoor is given as an input for this class.

Each clas® of programs gives rise to the following two parameterizecigien problems:

STRONG C-BACKDOOR DETECTION

Given: A programP and an integek.
Parameter: The integek.
Task: Decide whetheP has a strong@-backdoorX of size at mosk.

DELETION C-BACKDOOR DETECTION

Given: A programP and an integek.
Parameter: The integek.
Task: Decide whetheP has a deletio-backdoorX of size at mosk.

By a standard construction, known as self-reduction ortsafsformation|[122, 28], one can use a decision
algorithm for DELETION C-BACKDOOR DETECTION to actually find the backdoor. We only require the base class
to be hereditary.

Lemma 3.4. LetC be a hereditary class of programs.DELETION C-BACKDOOR DETECTION s fixed-parameter
tractable, then also finding a deletiag-backdoor of a given program P of size at most k is fixed-patame
tractable (for parameter k).

Proof. We proceed by induction ok If k = 0 the statement is clearly true. Uet- 0. Given @, k) we check for

all x € at(P) whetherP — {x} has a deletiow-backdoor of size at mog&t— 1. If the answer is NO for alk, thenP

has no deletio-backdoor of sizék. If the answer is YES fok, then by induction hypothesis we can compute a
deletionC-backdoorX of size at mosk — 1 of P — x, andX U {x} is a deletionC-backdoor ofP. O

4. Target Class Horn

In this section we consider the important cdsern as the target class for backdoors. As a consequence of
LemmalZ2.1,Horn is linear-time enumerable. The following lemma shows thedrg and deletiorHorn *-
backdoors coincide.

Lemma4.1. A set X is a strongdorn *-backdoor of a program P if and only it is a deletiétorn *-backdoor of P.

Proof. SinceHorn* is hereditary, Lemmia 3.1 establishes the if-direction. tReronly-if direction, we assume for
the sake of a contradiction thatis a strongHorn *-backdoor ofP but not a deletiotHorn *-backdoor ofP. Hence
there is a rule’ € P — X which is neither tautological nor a constraint nor Horn. Let P be a rule from which
r’ was obtained in forming® — X. We definer € 2X by setting all atoms itxX N (H(r) U B7(r)) to 0, all atoms in
XN B*(r) to 1, and all remaining atoms i\ at(r) arbitrarily to 0 or 1. Since is not tautological, this definition
of ris sound. It follows that’ € P, contradicting the assumption thétis a strongHorn *-backdoor ofP. O

Definition 4.1. Let P be a program. Theegation dependency grapl is the graph defined on the set of atoms
of the given program P, where two atomgyare joined by an edge xy if there is a rulesrP with x e H(r) and
y e H(r)u B~ (r).
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Figure 2: Negation dependency grdgh of the progranP of Exampld Z2.11.

Tautological rules and constraints do not produce any eifgie negation dependency graph, hence, if we
delete such rules from the program, we still obtain the saraptg

Example4.1l Figurel2 visualizes the negation dependency gidplf the programP of Exampld 2.11. .

The following lemma states how we can use recent resultserettex cover problem to find deletion back-
doors for the target clag$orn. A vertex coveof a graphG = (V, E) is a sefS € V such that for every edgev € E
we have{u,vi NS # 0.

Lemma 4.2. Let P be a program. A set X at(P) is a deletionHorn-backdoor of P if and only if X is a vertex
cover of the negation dependency graph N

Proof. Let X € H(r) u B7(r) be a deletiorHorn -backdoor ofP. Consider an edgev of Np. By construction of
Np there is a corresponding rutes P with (i) u,v € H(r) andu # v or (ii) u € H(r) andv € B(r). SinceX is a
deletionHorn-backdoor,|H(r) — X| < 1 andB~(r) — X = 0. Thus if Case (i) appliedu, v} n X # 0. If Case (ii)
applies, agaifu, v} N X # 0. We conclude thaX is a vertex cover oNp.

Conversely, assume thXtis a vertex cover oNp. Consider a rule € P — X for proof by contradiction. If
[H(r)| = 2 then there are two variablesv € H(r) and an edgev of Np such thafu, v} n X = 0, contradicting the
assumption thaX is a vertex cover. Similarly, ifB=(r)| > 1 then we take a variable € B™(r) and a variabler
H(r); suchv exists since is not a constraint. Thulp contains the edgev with {u, v} N X # 0, contradicting the
assumption thaX is a vertex cover. Hence the claim holds. O

Example4.2 For instance, the negation dependency grislphof the programP of Example 2.1l consists of the
triangle{a, b, ¢} and a pathd, €). Then{b, c} is a vertex cover os. We observe easily that there exists no vertex
cover of size 1. Thufb, c} is a smallest stronglorn *-backdoor ofP. .

Theorem 4.1. STRONG Horn*-BACKDOOR DETECTION is fixed-parameter tractable. In fact, given a program
with n atoms we can find a stromdprn *-backdoor of size at most k in timgTR73& + kn) or decide that no such
backdoor exists.

Proof. Let P* be a given program. We delete froRi all tautological rules and all constraints and obtain a pro-
gramP with n atoms. We observe that the stradgrn*-backdoors oP* are precisely the strongorn-backdoors

of P. Let Np be the negation dependency graptPofAccording to Lemma 7]2 a s&t C at(P) is a vertex cover

of Np if and only if X is a deletiorHorn *-backdoor ofP. Then a vertex cover of size at mastf it exists, can be
found in timeO(1.2738+kn) by/Chenet al. [21]. By LemmdZ.1 this vertex cover is also a strdtgrn *-backdoor

of P. O

Now we can use Theorelm 4.1 to strengthen the fixed-paramatealvility result of Theoremn 3.1 by dropping
the assumption that the backdoor is given.

Corollary 4.1. All the problems in4spFull are fixed-parameter tractable when parameterized by the ciza
smallest stronddorn *-backdoor of the given program.
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5. Target Classes Based on Acyclicity

There are two causes for a program to have a large number weassts: (i) disjunctions in the heads of rules,
and (ii) certain cyclic dependencies between rules. Digaifig both yields enumerable classes.

In order to define acyclicity we associate with each disjwacprogramP its dependency digraph @and
its (undirected) dependency graph-UThese definitions extend similar notions defined for norpraggrams by
Apt et al. [2] and Gottlobet al. [69].

Definition 5.1. Let P be a program. Thdependency digrapis the digraph @ which has as vertices the atoms
of P and a directed edgéx, y) between any two atoms X, y for which there is a rule P with x € H(r) and
y € B*(r) u B7(r). We call the edgéx, y) negativeif there is a rule re P with xe H(r) and ye B7(r).

Definition 5.2. Let P be a program. Théundirected) dependency grajhthe graph U obtained from the
dependency digraph D

1. by replacing each negative edge-€x, y) with two edges »v Vey Where ¥ is a newnegative vertexand

2. by replacing each remaining directed edgev) with an edge uv.

Example5.1 Figure[3 visualizes the dependency digraphand the dependency graph, of the programP of
Example Z.1L. 4

ﬁ
ANV

Figure 3: Dependency digrafde (left) and dependency grapbe (right) of the progranP of Exampld 2.1L.

Definition 5.3. Let P be a program.

Adirected cycle oP is a directed cycle in the dependency digraph D

A directed cycle ibadif it contains a negative edge, otherwise igisod

A directed cycle igvenif it contains an even number of negative edges, otherwisedd
Acycle of P is a cycle in the dependency graph.U

A cycle ishadif it contains a negative vertex, otherwise itgsod

o g A~ w NP

A cycle isavenif it contains an even number of negative vertices, othenitis odd

Definition 5.4. The following classes of programs are defined in terms of biseace of various kinds of cycles:
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e no-C contains all programs that have no cycles,

e no-BC contains all programs that have no bad cycles,

e no-DC contains all programs that have no directed cycles,

e no-DC2 contains all programs that have no directed cycles of lemgtleast 3 and no directed bad cycles
e no-DBC contains all programs that have no directed bad cycles,

e no-EC contains all programs that have no even cycles,

e No-BEC contains all programs that have bad even cycles,

e no-DEC contains all programs that have no directed even cycles, and

e no-DBEC contains all programs that have no directed bad even cycles.

We letAcyc denote the family of all the eight classes defined above. ¥devalite D-Acyc to denote the subfam-
ily {no-DC, no-DC2, no-DBC, no-DEC, no-DBEC} C Acyc.

Example5.2 Consider the dependency graphs of the progrRusf Example 2.1l as depicted in Figure 3. For
instance the sequenced, €, f) is a cycle, (, a) is a directed cycle (of length 2)d,e, f) and €, e, f) are directed
cycles (of length 3),d, v(a¢), C,d) is a bad cycle,q, f) is a directed bad cycle. The sequendge(f) is an even
cycle and an even directed cycle, €) is an directed bad even cycle.

The setX = {c} is a strongno-DBEC-backdoor since the truth assignment redirRgs) = Pp = {d «; a «
-b; e« f; flandP; = {d « a,e f « d; b; f} are in the target classo-DBEC. X is also a strong
no-BEC-backdoor, sincd’y € no-BEC andP; € no-BEC. The answer sets d?; are ASPz) = {{e f}} and
AS(P.) = {{b, f}}. Thus ASE, X) = {{e, f},{b,c, f}}, and since onlyb,c, f} is an answer set d?, we obtain
AS(P) = {{b,c, f}}. a4

The dependency and dependency digraphs contain cyclagthiiead atoms for non-singleton heads. This
has the following consequence.

Observation 5.1. C € Normal holds for allC € Acyc.

If we have two program® c P’, then clearly the dependency (di)graphPofs a sub(di)graph of the depen-
dency (di)graph of’. This has the following consequence.

Observation 5.2. All C € Acyc are hereditary, and so i§*.
The following is a direct consequence of the definitions ef\hrious classes iAcyc.

Observation 5.3. LetC,C’ € Acyc U {Horn} such that the digraph in Figulie 4 contains a directed pattmfrthe
classC to the clasC’, thenC c C’. If no inclusion between two classes is indicated, then sses are in fact
incomparable.

Proof. We first consider the acyclicity-based target classes. Byitlen we haveno-DC C no-DBC andno-C C
no-BC C no-DBC; it is easy to see that the inclusions are proper. Howeveriraxy to what one expects,
no-C ¢ no-DC, which can be seen by considering the progfam= {x < y, y « x}. But the class10-DC2
which requires that a program has no directed cycles but raag Hirected good cycles of length 2 (asHp)
generalizes both classas-C andno-DC. By definition we haveno-DBC C no-DBEC, no-DEC C no-DBEC,
no-EC C no-BEC, no-C C no-EC, andno-DC C no-DEC.
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no-DBEC

no-DEC no-DBC no-BEC
no-DC2 no-BC no-EC
no-DC no-C Horn

Figure 4: Relationship between classes of programs withedo their generality.

Next we consider the target clas®rn. LetC € {no-C, no-DC, no-EC}. We easily observe thaiorn ,Q_ C
by considering the program, = {a « b; b « c; ¢ « a} which is obviously Horn but does not belong@o
Conversely, we observe th@t ¢ Horn by considering the programz = {a « —b} which belongs taC but is
obviously not Horn. Thug andHorn are incomparable. We observe thédrn C no-BC by again considering
the progranP3; which belongs tao-BC, but is obviously not Horn, and by considering the fact thiatudes r in
a Horn progran® satisfy|H(r)| < 1 andB~(r) = 0 which yields that the dependency gragh contains no bad
vertices and hence gives us thht contains no bad cycles.

[l

The class10-DBC coincides with the well-known class sfratifiedprograms|[2, 63, 18]. A normal prograb
is stratifiedif there is a mappingtr : at(P) — N, calledstratification such that for each rulein P the following
holds: (i) if x e H(r) andy € B*(r), thenstr(x) < str(y) and (ii) if x e H(r) andy € B7(r), thenstr(x) < str(y).

Lemma 5.1(Apt et al. [2]). Strat = no-DBC.

The clas$10-DBEC, the largest class iAcyc, has already been studied by Zhao and Lin[135, 90], who stiowe
that every program ino-DBEC has at most one answer set, and this answer set can be fouolymomial time.
The proof involves the well-founded semantics| [62]. RorDBC the unique answer set can even be found in
linear time [102].

In our context this has the following important consequence

Proposition 5.1. All classes indcyc are enumerable, the class€ss Acyc with C € no-DBC are even linear-time
enumerable.

In view of Observatiofl 5]1 and Propositionl5.1, all classegdyc satisfy the requirement of Theorém13.1 and
are therefore in principle suitable target classes of admmkapproach. Therefore we will study the parameterized
complexity of SRONGC-BACKDOOR DETECTIONand DELETION C-BACKDOORDETECTIONfor C € Acyc As
we shall see in the two subsections, the results firBiG C-BACKDOOR DETECTION are throughout negative,
however for DELETION C-BACKDOOR DETECTION there are several (fixed-parameter) tractable cases.
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5.1. Strong Backdoor Detection

Theorem 5.1. For every target clas€ € Acyc the problemSTRONG C-BACKDOOR DETECTION is W[2]-hard. If
no-DC C C, then everSTRONGC*-BACKDOOR DETECTION is W[2]-hard. Hence all these problems are unlikely
to be fixed-parameter tractable.

Proof. We give an fpt-reduction from the W[2]-complete problenTifiNG SET to STRONG C-BACKDOOR DE-
TECTION, see Section 213. LeS(k) be an instance of this problem with = {Si,...,Sm}. We construct a
programP as follows. As atoms we take the elementdof= T, Si and new atoms/ andb! for 1 <i < m,
1< j<k+1. Foreachki<mand1< j<k+1we take tworules', s' whereH(r/) = {a'}, B (r) = Sju{b'},
B*(r)) = Si; H(s) = (b}, B7(5)) = (&}, B*(s) = 0.

We show thas has a hitting set of size at mdstf and only if P has a stron@-backdoor of size at mo&t

(=). LetH an hitting set ofs of size at mosk. We choose an arbitrary truth assignmert 2" and show that
P. € C. SinceH is a hitting set, each rule# will be removed when formin@,. Hence the only rules left iR, are
the ruless{, and soP; € no-DC n no-C ¢ C. ThusH is a strongC-backdoor ofP.

(<). Let X be a strong-backdoor ofP of size at mosk. We show thaH = XN U is a hitting set o5. Choose
1 <i < mand conside;. We first consider the cas®-DC C C. For each X< j < k+ 1 the progranP contains a
bad even directed cych’(, bi‘). In order to destroy these cycles must contain an atom froig;, since otherwise,
X would need to contain for eachd j < k+ 1 at least one of the atoms from each cycle, but ¢ k + 1,
contradicting the assumption on the sizexofHenceH is a hitting set ofS. Now we consider the cas®-C C C.
For each 1< j < k + 1 the programP contains a bad even CyCIejj(Vajj’b_j,biJ,Vb_j’a]_j). In order to destroy these
cycles,X must contain an atom froi®;, since otherwiseX would need to contain an atom from each cycle, again
a contradiction. HenckHl is a hitting set ofS. Hence the W[2]-hardness off SONG C-BACKDOOR DETECTION
follows.

In order to show that 8RONG C*-BACKDOOR DETECTION is W[2]-hard forno-DC < C, we modify the
above reduction from HTING SET by redefining the rules!, s'. We putH(r)) = {a'}, B7(r)) = Sj u {b'},
B*(r)) = 0; H(s) = {b/}, B7(s) = (&}, B*(s) = U. By the very same argument as above we can showsthas
a hitting set of size at moktif and only if P has a strong*-backdoor of size at mo&t We would like to state that
this reduction does not work for the undirected cases aslilyiundirected cyclest;)i’(, u, blJ u’) foranyu,u’ € U.

[l

For the classi0-DBEC we can again strengthen the result and show that detectingngeo-DBEC-backdoor
is already co-NP-hard for backdoor size 0; hence the proidaro-paraNP-hard (see Section|2.3).

Theorem 5.2. The problemSTRONG no-DBEC*-BACKDOOR DETECTION is co-paraNPhard, and hence not
fixed-parameter tractable unle®s= co-NP.

Proof. We reduce from the following problem, which is NP-completé,[85],

DIRECTED PATH VIA A NODE
Given: A digraphG ands m,t € V distinct vertices.
Task: Decide whethe6 contains a directed path frogto t via m.

Let G = (V,E) be a digraph and, m,t € V distinct vertices. We define a prografas follows: For each
edgee = (v,w) € E wherew # mwe take a rulge: w « v. For each edge = (v, m) we take a rulgg: m « -v.
Finally we add the rules;: s < —t. We observe that the dependency digrapR &f exactly the digraph we obtain
from G by adding the “reverse” edgg §) (if not already present), and by markirtgg) and all incoming edges of
mas hegative.
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co-paraNP-hard no-DBEC
A

no-DEC no-DBC no-BEC
A
W[2]-hard  no-DC2 no-BC no-EC  WI[2]-hard*
A
no-DC no-C Horn in FPT

Figure 5: Known complexity of the problemr80NG C-BACKDOOR DETECTION. (*) When we permit tautolo-
gies in the rules.

We show thats has a path frons to t via mif and only if P ¢ no-DBEC. AssumeG has such a path. Then
this path must contain exactly one incoming edgenpénd hence it contains exactly one negative edge. The path,
together with the negative edgg §), forms a directed bad even cycle Bf henceP ¢ no-DBEC. Conversely,
assumeP ¢ no-DBEC. Hence the dependency digraphRPtontains a directed bad even cycle, i.e., a cycle that
contains at least two negative edges. As it can contain at omesincoming edge ah, the cycle contains exactly
one incoming edge ah and the reverse edgg §). Consequently, the cycle induces@a directed path frons
totviam. O

Figure[5 illustrates the known complexity results of thelpeon STRONG C-BACKDOOR DETECTION. An
arrow from¢C to C’ indicates that’ is a proper subset @ and hence the size of a smallest straiighackdoor is
at most the size of a smallest stro@igbackdoor.

5.2. Deletion Backdoor Detection

The W[2]-hardness results of Theorems 5.1[and 5.2 suggestatothe problem and to look faleletion backdoors
instead of strong backdoors. In view of Lemmal 3.1 and Obsients.2, every deletion backdoor is also a strong
backdoor for the considered acyclicity-based target eladsence the backdoor approach of Thedremin 3.1 works.

Fortunately, the results of this section show that the edlar indeed gives us fixed-parameter tractability
of backdoor detection for most considered classes. F[gultasfrates these results. We obtain these results by
making use of very recent progress in fixed-parameter dlgoits on various variants of tHeedback vertex set
or thecycle transversaproblems.

Consider a grapls = (V,E) and a setWW C V. A cycle inG is aW-cycle if it contains at least one vertex
fromW. A setT C V is aW-cycle transversabf G if every W-cycle of G is also aT-cycle. A setT € Vis an
even-length W-cycle transverg#lG if every W-cycle of G of even length is also &-cycle. AV-cycle transversal
is also called deedback vertex set
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We give analog definitions for a digra@ = (V, E) andW C V. A directed cycle irG is a directedV-cycle if
it contains at least on vertex frolt. A setT C V is adirected W-cycle transversaf G if every directed/V-cycle
of G is also a directed -cycle. A setT C V is andirected even-length W-cycle transvereélG if every directed
W-cycle of G of even length is also a directddcycle. A directedV-cycle transversal is also calledd&ected
feedback vertex set

Theorem 5.3. The problemDELETION C*-BACKDOOR DETECTION is fixed-parameter tractable for all €
Acyc \ {no-DEC, no-DBEC].

Proof. Let P* be a the program ankl > 0. We delete fronP* all constraints and tautological rules. Now, the
deletionC*-backdoors oP* are exactly the deletio@-backdoors oP. Hence we can focus on the latter. ILg

be the dependency graph abg the dependency digraph & respectively. Next we consider the various target
classegC mentioned in the statement of the theorem, one by one, awd Isb we can decide wheth& has a
deletionC-backdoor of size at mo&t

First we consider “undirected” target classes. Downey agltbWws [28] have shown that finding an feedback
vertex set of size at moktis fixed-parameter tractable. We apply their algorithm ®dependency graghp. If
the algorithm produces a feedback vertexSeif size at mosk, then we can form a deletiomo-C-backdoor of
P of size at mosk by replacing each negative vertex3rby one of its two neighbors, which always gives rise to
an atom ofP. If U, has no feedback vertex set of size at mioghenP has no deletiomo-C-backdoor of size
at mostk. Hence CELETION no-C-BACKDOOR DETECTION is fixed-parameter tractable. SimilarlyEDETION
no-BC-BACKDOOR DETECTION is fixed-parameter tractable by finding\afeedback vertex set &f ,, taking as
W the set of bad vertices &f,. ICyganet al. [23] and Kawarabayashi and Kobayashil [83] showed that findin
W-feedback vertex set is fixed-parameter tractable, henteBBLETION no-BC-BACKDOOR DETECTION.

In order to extend this approach teeDETION no-EC-BACKDOOR DETECTION, we would like to use fixed-
parameter tractability of finding an eviévtcycle transversal, which was established by Matral. [97] for W = V,
and by Kakimureaet al. [81] for generalW. In order to do this, we use the following trick of Aracenaj&do, and
Montalva [98], that turns cycles containing an even numlbéad vertices into cycles of even length. Fr@pwe
obtain a graptJ;, by replacing each negative edge- (x,y) with three edgesue, UeVe, andvey whereue andve
are new negative vertices, and by replacing each remainiagted edgel, v) with two edgesxw, andwgy where
We is @ new (non-negative) vertex. We observe tgtcan be seen as being obtained fr@rp by subdividing
edges. Hence there is a natural 1-to-1 correspondence éretyeles inJ, and cycles irlJ;,. Moreover, a cycle
of Uy, containing an even number of negative vertices correspandgycle ofU; of even length, and a bad cycle
of Up corresponds to a bad cycle bf,. Thus, when we have an even cycle transvegsaf Uj, we obtain a
deletionno-EC-backdoor by replacing each negative verexs by its non-negative neighbor. Henc&DETION
no-EC-BACKDOOR DETECTION is fixed-parameter tractable. FOEDETION no-BEC-BACKDOOR DETECTION
we proceed similarly, using a ev&it-cycle transversal dfl, letting W be the set of negative vertices Wf,.

We now proceed with the remaining “directed” target clasge®C, no-DC2, andno-DBC.

Let G = (V,E) be a digraph. Evidently, the directed feedback vertex sEtS, are exactly the deletion
no-DC-backdoors ofP. Hence, by using the fixed-parameter algorithm_of Céieall [20] for finding directed
feedback vertex sets we obtain fixed-parameter tractabiliDELETION no-DC-BACKDOOR DETECTION.

To make this work for BLETION no-DC2-BACKDOOR DETECTION we consider instead @, the digrapiDy,
obtained fromD,, by replacing each negative edge- (u, V) by two (non-negative) edges,e), (We, V), where
We is a new vertex. The directed cycles@f andDg, are in a 1-to-1 correspondence. However, directed cycles of
length 2 inDj, correspond to good cycles of length 20n. [Bonsma and Lokshtanov [13] showed that finding a
directed feedback vertex set that only needs to cut cycllEngth at least 3 is fixed-parameter tractable. Applying
this algorithm toDj, (and replacing each vertex in a solution with one of its neighbors) yields fixed-paragnet
tractability of DELETION no-DC2-BACKDOOR DETECTION.
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co-paraNP-hard no-DBEC

in XP no-DEC no-BEC
(FPTopen)

no-DC2 no-BC no-EC

FPT

no-DC no-C Horn

Figure 6: Relationship between classes of programs andkieomplexity of the problem BLETION C-BACK-
DOOR DETECTION. An arrow fromC to C’ indicates that deletio@-backdoors are smaller than deletiGiiback-
doors. The FPT-results are established in Theofenhs 4[1.d@nd e XP-result is established in Theodem 5.5. The
co-paraNP-hardness result is established in Thebrem 5.6.

The approach for BLETION no-DC-BACKDOOR DETECTION extends to [BELETION no-DBC-BACKDOOR
DETECTION by considering directetvV-feedback vertex sets of the digraptj obtained fromD,, using a simple
construction already mentioned by Cygetral. [23] where we replace each negative eédge (u, v) by two (non-
negative) edgesi(we), (We, V) andW = {we : eis a negative edge The directedV-cycles ofDj, and the directed
bad cycles oDp are obviously in a 1-to-1 correspondence. Thus when we hamreetedW-feedback vertex
setS of D, we obtain a deletiomo-DBC-backdoor by replacing each vertexc S n W by its neighbor. The
fixed-parameter tractability of finding a directédtfeedback vertex set was shown/by Chiteisl. [22]. O

According to Observation 5.2, the classes mentioned in fEmel&.3 are hereditary. Hence using Theorem 5.3
we can drop the assumption in Theorlenm 3.1 that the backdgivea and obtain directly:

Theorem 5.4. For all C € Acyc \ {no-DEC, no-DBEC} all problems inA4spFull are fixed-parameter tractable
when parameterized by the size of a smallest deletiehackdoor.

Let us now turn to the two classe®-DEC, no-DBEC excluded in Theoremh 5.3. We cannot establish that
DELETION no-DEC*-BACKDOOR DETECTION is fixed-parameter tractable, as the underlying even cyatestver-
sal problem seems to be currently out of reach to be solvedieMer, in Theorerh 515 below, we can at least show
that for every constark, we can decide in polynomial time whether a stravogDEC*-backdoor of size at mogt
exists; thus the problem is in XP. ForeDETION no-DBEC*-BACKDOOR DETECTION the situation is differ-
ent: here we can rule out fixed-parameter tractability undercomplexity theoretical assumption# co-NP
(Theoreni 5.6).
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Theorem 5.5. The problemDELETION no-DEC*-BACKDOOR DETECTION s in XP.

Proof. Let P be a programn the input size oP, andk be a constant. W.l.0.g., we assume thaias no tautological
rules or constraints. We are interested in a deletiorDEC-backdoor ofP of size at mosk. We loop over all
possible setX C at(P) of size at mosk. Sincek is a constant, there is a polynomial numig¥n*) of such set.

To decide whetheK is a deletionrno-DEC-backdoor ofP, we need to check wheth&— X € no-DEC. For the
membership checkR - X € no-DEC we have to decide wheth&r_x contains a bad even cycle. We use a directed
variant of the trick in the proof of Theorem 5.3 (in fact, theedted version is slightly simpler). L&p_x be the
dependency digraph & - X. FromDp_x we obtain a new digrapb;_, by subdividing every non-negative edge,
i.e., we replace each non-negative edge (x,y) by two (non-negative) edges,Ue), (Ue, y) Whereue is a new
vertex. Obviously, directed even cyclesDp_x are in 1-to-1 correspondence with directed cycles of evegtle

in D;_y. Whether a digraph contains a directed cycle of even lengpibe checked in polynomial time by means
of the following results. Vazirani and Yannakakis [131] aahown that finding a cycle of even length in a digraph
is equivalent to finding a so-called Pfaffian orientation gfraph. Since Robertson, Seymour, and Thomas [115]
have shown that a Pfaffian orientation can be found in polyabtime, the test works in polynomial time. O

Theorem 5.6. The problemDELETION no-DBEC*-BACKDOOR DETECTION is co-paraNPhard, and hence not
fixed-parameter tractable unle®s= co-NP

Proof. The theorem follows from the reduction in the proof of Theoi®2. O

6. Kernelization

If we want to solve a hard problem, then in virtually everytisgt, it is beneficial to first apply a polynomial
preprocessing to a given problem instance. In particulalynmmial-time preprocessing techniques have been
developed in ASP solving (see e.q.,/[37,53, 56]). Howewagrmial-time preprocessing for NP-hard problems
has mainly been subject of empirical studies where provpbléormance guarantees are missing, mainly due
to the fact that if we can show that if we can reduce in polyradiine a problem instance by just one bit,
then by iterating this reduction we can solve the instanogsolynomial time. Contrastingly, the framework of
parameterized complexity offers with the notion kafrnelizationa useful mathematical framework that admits
the rigorous theoretical analysis of polynomial-time pogmessing for NP-hard problems. A kernelization is a
polynomial-time reduction that replaces the input by a ssnahput, called a “kernel”, whose size is bounded
by some computable function of the parameter only. A wellvkmoesult of parameterized complexity theory
is that a decidable problem is fixed-parameter tractabladfanly if it admits a kernelization [29]. The result
leads us to the question of whether a problem also has a kextieh that reduces instances to a size which
is polynomially bounded by the parameter, so-caledlynomial kernels Indeed, many NP-hard optimization
problems admit polynomial kernels when parameterized bysthe of the solution [116]. In the following we
consider kernelizations for backdoor detection and bagkédwaluation in the context of ASP. We establish that
for some target classes, backdoor detection admits a polghdernel. We further provide strong theoretical
evidence that for all target classes considered, backd@buation does admit a polynomial kernel.

We will later use the following problem:

VERTEX COVER

Given: A graphG = (V, E) and an integek.
Parameter: The integek.
Task: Decide whether there is a vertex co®c V (see Sectiohl4) of size at mdst
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Next we give a more formal definition of kernelization. Uetl’ € * x N be parameterized problems. A
bi-kernelizationis a polynomial-time many-to-one reduction from the prable to problemL’ where the size of
the output is bounded by a computable function of the parm@that is, a bi-kernelization is an algorithm that,
given an instancel (k) € =* x N outputs for a constartin time O((||l|| + k)¥) a pair (’,K’) € =* x N, such that
@) (I,k) e Lifand only if (1’,k’) € L’ and (ii) ||l’]| + K" < g(K) whereg is an arbitrary computable function, called
the size of the kernel. If’ = L then the reduction is calledlernelization the reduced instancekarnel If gis
a polynomial then we say thatadmits apolynomial (bi-)kernelfor instance, the problem BRTEX COVER has
a kernel of at mostRvertices and thus admits a polynomial kernel [2L]is calledcompressibléf it admits a
polynomial bi-kernel.

The following proposition states the connection betweeeadfigarameter tractable problems and kernels, as
observed by Downey, Fellows, and Stege [29]:

Proposition 6.1(Downeyet al.[29],I[Flum and Grohe [42])A parameterized problem is fixed-parameter tractable
if and only if it is decidable and has a kernelization.

Thus, our fixed-parameter tractability results of TheorBnik[4.1, an@ 513 immediately provide that the men-
tioned problems admit a kernelization. In the following wedstigate whether these problems admit polynomial
kernels.

6.1. Backdoor Detection

The first result of this section is quite positive.

Theorem 6.1. For C € {Horn, no-C} the problemDELETION C*-BACKDOOR DETECTION admits a polynomial
kernel. ForC = Horn the kernel has a linear number of atoms, &= no-C the kernel has a quadratic number
of atoms.

Proof. First consider the cage = Horn. Let (P, k) be an instance of BLETION Horn*-BACKDOOR DETECTION.
We obtain in polynomial time the negation dependency gnsiptof P and consider Np, k) as an instance of
VERTEX COVER. We use the kernelization algorithm lof Chetnal. [21] for VERTEX COVER and reduce in
polynomial time (N, k) to a VERTEX COVER instance G, k') with at most X many vertices. It remains to translate
G into a progranP’ whereNp = G by taking for every edgey € E(G) arulex « -y. Now (P, k') is a polynomial
kernel with a linear number of atoms.

Second consider the ca€e= no-C. Let (P, k) be an instance of ELETION no-C*-BACKDOOR DETECTION.
We obtain in polynomial time the dependency grduh of P and considerUp, k) as an instance of FEEDBACK
VERTEX SET (see Sectiofh 512). We use the kernelization algorithim_ofnTdssé|[127] for EEDBACK VERTEX
SET and reduce in polynomial timé&J(, k) to a FEEDBACK VERTEX SET instance ¢, k') with at most &2 vertices.
As above we translaté into a programP” whereUp: = G by taking for every edgey € E(G) a rulex « -y.
Now (P, k') is a polynomial kernel with a quadratic number of atoms. O

Similar to the construction in the proof of Theorémli5.3 we atuce for the remaining classes the backdoor
detection problem to variants of feedback vertex set. Hewder the other variants of feedback vertex set no
polynomial kernels are known.

We would like to point out that the kernels obtained in thegbraf Theoren 6.1 are equivalent to the input
program with respect to the existence of a backdoor, but ithtrespect to the decision of reasoning problems. In
the next subsection we consider kernels with respect tongag problems.
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6.2. Backdoor Evaluation

Next we consider the problems spReason. We will see that neither of them admit a polynomial kerneewh
parameterized by the size of a strafidpackdoor for the considered target classes, subjectndatd complexity
theoretical assumptions.

Our superpolynomial lower bounds for kernel size are based result by Forthow and Santhanam| [43] re-
garding satisfiability parameterized by the number of \des.

SAT[VARS]
Given: A CNF formulaF.
Parameter: The numbek of variables ofF.
Task: Decide whetheF is satisfiable.

Proposition 6.2 (Fortnow and Santhanarn [43])f SAT[VARS] is compressible, then the Polynomial Hierarchy
collapses to its third level.

The following theorem extends a result for normal prografi2b]. We need a different line of argument, as
the technique used in [125] only applies to problems in NFoeNe.

Theorem 6.2. LetC € Acyc U {Horn}. Then no problem imMspReason admits a polynomial kernel when pa-
rameterized by the size of a smallest straigackdoor or deletiorC-backdoor, unless the Polynomial Hierarchy
collapses to its third level.

Proof. We show that the existence of a polynomial kernel for any efghove problems implies thanfVARS]
is compressible, and hence by Proposition 6.2 the collajpsgdiollow.

First consider the problem d\sisTENCY. From a CNF formulaF with k variables we use a reduction of
Niemela [104] and construct a progrdea as follows: Among the atoms of our progrd®a will be two atomsay
andagx for each variablex € var(F), an atombc for each claus€ € F. We add the ruleay « —ay anday <« —ax
for each variablec € var(F). For each claus€ € F we add for eachx € C the rulebc < ax and for each-x € C
the rulebc « ax. Additionally, for each claus€ € F we add the rule— -bc. Now it is easy to see that the
formulaF is satisfiable if and only if the prograi®, has an answer set. We observe tkat {ay : x € var(F)}

(X = {ax,ax : x € var(F)}) is a smallest deletion (and smallest stroggpackdoor ofP; for eachC € Acyc
(C = Horn). Hence Py, k), (P1, 2k) respectively, is an instance ofdBISISTENCY, parameterized by the size of
a smallest strong@-backdoor or deletioi-backdoor, and if this problem would admit a polynomial kayrhis
would imply that T[VARS] is compressible.

For the problem BAVE REASONING we modify the reduction from above. We create a progiyrthat
consists of all atoms and rules froRy. Additionally, the progranP, contains an atont and a ruler with
H(r) = {t}, B*(r) = 0, andB~(r) = 0. We observe that the formula is satisfiable if and only if the atoris
contained in some answer set®. SinceX is still a backdoor of siz& (2k), and a polynomial kernel for Bave
REASONING, again it would yield that 8T[VARS] is compressible.

Let UNSAT[VARS] denote the problem defined exactly likai$VARS], just with yes and no answers swapped.
A bi-kernelization for INSAT[VARS] is also a bi-kernelization for & [VARS] (with yes and no answers swapped).
Hence 3T[VARS] is compressible if and only if NSAT[VARS] is compressible. An argument dual to the pre-
vious one for BRAVE REASONING shows that a polynomial kernel fokBPTICAL REASONING, parameterized
by backdoor size, would yield thatNBAT[VARS] is compressible, which, as argued above, would yield that
SAT[VARS] is compressible. O
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7. Lifting Parameters

In this section we will introduce a general method to lift AB&ameters that are defined for normal programs
to disjunctive programs. Thereby we extend several alymstthat have been suggested for normal programs to
disjunctive programs. The lifting method also gives us aerahtive approach to obtain some results of Segfion 5.
Throughout this section we assume for simplicity that thritrprogramP has no tautological rules or constraints,
all considerations can be easily extended to the general cas

The following definition allows us to speak about paramefi@rgrograms in a more abstract way.

Definition 7.1. An ASP-parameteis a function p that assigns every program P some non-negatieger gP)
such that pP’) < p(P) holds whenever Hs obtained from P by deleting rules or deleting atoms frotesulf p
is only defined for normal programs, we call in@rmal ASP-parametefFor an ASP parameter p we write o
denote the normal ASP-parameter obtained by restricting qotrmal programs.

We impose the conditiop(P’) < p(P) for technical reasons. This is not a limitation, as mostirs{parameters
satisfy this condition.
There are natural ASP-parameters associated with backdoor

Definition 7.2. For a classC of programs and a program P Isty:(P) denote the size of a smallest strafidpack-
door anddb:(P) denote the size of a smallest delet@iackdoor of P.

We will “lift” normal ASP-parameters to general disjunctiprograms as follows.

Definition 7.3. For a normal ASP-parameter p we define the ASP-paramétdaygsetting, for each disjunctive
program P, p(P) as the minimuniX| + p(P — X) over all inclusion-minimal deletioiormal-backdoors X of P.

The next lemma shows that this definition is compatible wiletionC-backdoors ifC € Normal. In other
words, if C is a class of normal programs, then we can divide the task dinjna deletionC-backdoor for a
programP into two parts: (i) to find a deletiolormal-backdoorX, and (ii) to find a deletiorC-backdoor of
P-X

Lemma 7.1(Self Lifting). LetC be a class of normal programs. Thdh; = (dbé,)T.

Proof. LetC be a class of normal programs, aRa program. LeX be a deletiorC-backdoor ofP of size diz:(P).
ThusP — X € C ¢ Normal. HenceX is a deletionNormal-backdoor ofP. We select an inclusion-minimal
subseX’ of X that is still a deletiorNormal-backdoor ofP (say, by starting witlX’ = X, and then looping over all
the elements of X, and if X’ — x s still a deletionC-backdoor, then setting’ := X’ — x.) What we end up with is
an inclusion-minimal deletiohlormal-backdoorX’ of P of size at most d(P). LetP’ = P— X" andX” = X-X".
P’ is a normal program. Sind® — X" = P — X, it follows thatP’ — X" € C. HenceX” is a deletionC-backdoor
of P. Thus, by the definition ofib’., we have thadbg(P) < X'+ X’ = die(P).

Conversely, let db(P) = k. Hence there is a deletidtormal-backdoorX’ of P such thatX’|+ db-(P-X’) = k.
Let P = P - X'. Since di(P") < k —|X’|, it follows thatP’ has a deletiorC-backdoorX” of sizek — |X’|. We
put X = X" U X and observe thaP — X = P’ — X” € C. HenceX is a deletionC-backdoor ofP. Since
dbe(P) < [X| < X'+ X" < dbg(P) < k, the lemma follows. 0

Example7.1 Consider the prograrR of Example 2.1l and let #nelg( denote the number of atoms that appear in
negative rule bodies of a normal program (we will discuss glsirameter in more detail in Section]8.2).

We determine #négP) = 2 by the following observations: The ¥t = {c} is a deletiorNormal-backdoor of
PsinceP-X; ={d < a e a«d,—-b; e f; f « d; « f,e=b; « d; b; f}belongs to the claddormal.
The setX, = {€} is a deletionNormal-backdoor ofP sinceP — X; = {d « a; a« d,=b,-C; ¢ « f; f «
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d,c; c« f,=b; c « d; b« c; f}belongs to the clagdormal. Observe thak; and X, are the only inclusion-
minimal deletionNormal-backdoors of the program. We obtain #nel{P, X;) = 2 since #ned? — X;) = 1. We
have #ne§(P, X,) = 3 since #ned? — X») = 2. Thus #neyP) = 2. 4

For every ASP-parametgrwe consider the following problem.

BouND[ p]
Given: A programP and an integek.
Parameter: The integek.
Task: Decide whethep(P) < k holds.

For a problemL € AspFull and an ASP-parametgrwe write L[p] to denote the problerh parameterized
by p. That s, the instance of the problem is augmented with agerk, the parameter, and for the input progr&m
it holds thatp(P) < k. Moreover, we write_[p]n to denote the restriction df] p] where instances are restricted
to normal program®. Similarly, BOuND[p]n is the restriction of BUND[p] to nhormal programs. For all the
problemsL[p]n, p only needs to be a normal ASP-parameter.

Next we state the main result of this section.

Theorem 7.1 (Lifting). Let p be a normal ASP-parameter such ti&buND[p]y and ENUM[p]n are fixed-
parameter tractable. Then for all £ AspFull the problem [p'] is fixed-parameter tractable.

We need some definitions and auxiliary results to estaltistitteorem.

Definition 7.4. Let P be a disjunctive program. Thmead dependency graptp of the program P is the graph
which has as vertices the atoms of P and an edge between anjistirct atoms if they appear together in the
head of a rule of P.

Lemma 7.2. Let P be a disjunctive program. A setcXat(P) is a deletionNormal-backdoor of P if and only if X
is a vertex cover of the head dependency graph H

Proof. Let X be a deletiorNormal-backdoor ofP. Consider an edgav of Hp, then there is a rule € P with
u,v € H(r) andu # v. SinceX is a deletiorNormal-backdoor ofP, we have{u, v} N X # 0. We conclude thaX is
a vertex cover ofdp.

Conversely, assume that is a vertex cover oHp. We show thatX is a deletionNormal-backdoor ofP.
Assume to the contrary, thB— X contains a rule whose head contains two variabley. Consequently, there is
an edgauvin Hp such thafu, v} n X = 0, contradicting the assumption théts a vertex cover. O

Lemma 7.3. Let G = (V, E) be a graph, n= |E|, and let k be a non-negative integer. G has at n&snclusion-
minimal vertex covers of size at most k, and we can list alh stectex covers in timé(2<n).

Proof. We build a binary search trek of depth at mosk where each nodeof T is labeled with a se§;. We
build the tree recursively, starting with the ragowith labelS; = 0. If S; is a vertex cover ofs we stop the current
branch, and becomes a “success” leaf ®f If t is of distancek from the root ands; is not a vertex cover of,
then we also stop the current branch, abécomes a “failure” leaf of . It remains to consider the case wh&e
is not a vertex cover antis of distance smaller thanfrom the root. We pick an edgev € E such that,v ¢ S;
(such edge exists, otherwiSg would be a vertex cover) and add two childteti’ to t with labelsSy = S; U {u}
andSy = S; U {Vv}. Itis easy to see that for every inclusion-minimal vertexar® of G of size at mosk there is a
success ledfwith S; = S. SinceT hasO(2) nodes, the lemma follows. O

From Lemma§7]2 arid 7.3 we immediately obtain the next result
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Proposition 7.1. Every disjunctive program of input size n has at n&snclusion-minimal deletioMormal-back-
doors of size at most k, and all these backdoors can be enteddratimeO(2¢n).

Proof of Propositio 7]l Let p be a normal ASP-parameter such thatus[p]ny and BouND[p]y are fixed-
parameter tractable. L& be a given disjunctive program of input siz&ndk an integer such thai’ (P) < k. In
the following, when we say some task is solvable fipi-time’, we mean that it can be solved in tin@ f (k) n°)
for some computable functiohand a constart.

By Propositior_Z.llL we can enumerate all inclusion-minimgletion Normal-backdoors of size at moktin
time O(2n). We can check whethas(P — X) < k — |X| for each such backdoof in fpt-time since BOUND[ p]n
is fixed-parameter tractable by assumption. Sipb@) < k, there is at least one such Sétwhere the check
succeeds.

We pick such seK and compute ASE, X) in fpt-time. That this is possible can be seen as followsviQisly,
for each truth assignmente 2% the progranP; is normal sincé® — X is normal, and clearlp(P;) < p(P-X) <k
by Definition[7.1. We can compute ABY) in fpt-time since BNUM[ p]y is fixed-parameter tractable by assumption.
Since there are at mosf 8uch program®;, we can indeed compute the set RX) in fpt-time.

By Lemmd 3.2 we have A®) ¢ AS(P, X), hence it remains to check for eabhe AS(P, X) whether it gives
rise to an answer set & SinceX is a deletiorNormal-backdoor ofP, and since one easily observes tRarmal
is hereditary, it follows by Lemmla_3.1 thtis a strongNormal-backdoor ofP. Hence Lemma&a 313 applies, and
we can decide whethevl € AS(P) in time O(2“n). Hence we can determine the set RBi{n fpt-time. Once we
know the set AP), we obtain for every problerh € AspFull thatL[p'] is fixed-parameter tractable. O

Example7.2 Consider the prograr® of Example[ 2.1l with the the deletioNormal-backdoorX; = {c} from
Example[Z]l. We want to enumerate all answer setP.of\We obtain with Ben-Eliyahu’s algorithm [5] the
sets ASPg) = {{e, f}} and ASP.) = {{b, f}}, and so we get the set ABKX) = {{e, f},{b,c, f}} of answer set candi-
dates. By means of the algorithm that solves the problemo8iG C-BACKDOOR AspP CHECK (see Lemma_313)
we observe thab, c, f} is the only answer set @. -

8. Theoretical Comparison of ASP-Parameters

In this section we compare several ASP-parameters in tefitheio generality Let p andg be ASP-parameters.
We say thatp dominates in symbolsp < q) if there is a functionf such thatp(P) < f(q(P)) holds for all
programsP. The parametep strictly dominates din symbolsp < q) if p < g but notqg < p, andp andq are
incomparable(in symbolsp = q) if neither p < g norqg < p. For simplicity we only consider programs that
contain no tautological rules. It is easy to adapt the regolthe more general case where tautological rules are
allowed.

Observation 8.1. Let p and q be ASP-parameters and: L 4spFull . If p dominates q and[lp] € FPT, then also
L[q] € FPT.

Observation 8.2. Let p and q be normal ASP-parameters and {<, <,>}. Then po q if and only if g o q.

In the following we define various auxiliary programs whick will use as examples, to separate the parame-
ters from each other and establish incomparability ortsiees results.

Example8.1L Let mandn be some large integers. We define the following programs:

P? ::{a<__'bl7""_|bn}’
P):={a «-b:l<ix<n),
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P} = (b « -& ae—-b :1<i<n),

P ={bi & acDb:1<i<n},

Pls =P Uf{a—d; d—dyp:1<i<nju{g e by di—c;de—b:1<i<ny
P, = P3U{di < -bi:1<i<n},

Pg53= Pg5\{a<——|bi; bj —-a:1l<i<n}Uf{ag«—-a}uf{b «<a:1<i<n},
Pyi={C < -a; ¢ b b«-a a<ea acd; d<a:l<i<ny

PR = {b « —a&; & < -b:1<i<n},

P, ={b «a; g« -b:1<i<nj}

Pog:={b «a; a<b:1<i<n}
PR:={a«eby,....bhc:1<i<n},
Pl:i={aj—a:1<i<j<n}

Pg ={beag...,an}U{G « Ciu1:1<i<n}u{cuy < c1}),
Pg:={ay « —ay; ag «— —a}U{b « a3 ay — b :1<i<n}, and

Pl={aVvbec ceb b—a:l1<i<n})

8.1. ASP-Parameters Based on Backdoor Size

Backdoor-based ASP-parameters can be related to eachimtteems of their underlying base classes. We just
need a very weak assumption which holds for all target ctassasidered in the paper:

Proposition 8.1. LetC,C’ be classes of programs that are closed under the union aiidts;'popie. fccc
thendhy < dbe andshy < sh., evendhe (P) < die(P) and sk (P) < sky(P) for every program P. I’ \ C
contains a program with at least one atom, tl@ C’ impliesdby < dbe andshy < she.

Proof. The first statement is obvious. For the second statememR,def’ \ C with |at(P)] > 1. We construct the
programP" consisting ofn disjoint copies of° and observe th&®" € C’ but d(P"), sk (P") > n. O

Hence the relationships between target classes as sta@servation 513 carry over to the corresponding
backdoor-based ASP-parameters that i€, & C’ then a smallest strong (deletiofi)-backdoor is at most the size
of a smallest strong (deletiox}-backdoor.

Accoring to Lemm&3]1 every deleti@backdoor is a strong-backdoor only ifC is hereditary, hence it also
holds for smallest backdoors and we immediately get frond#faitions:

Observation 8.3. If C is hereditary, thersh. dominatesib..

According to Lemma&_4]1 every stroridorn-backdoor of a program is a deletidttorn-backdoor and vice
versa and we observe:

Observation 8.4. shyorn = dbyom -

2A classC of programs isclosed under the union of disjoint copiigor every P € C alsoP U P’ € C whereP”’ is a copy ofP with
at(P) nat(P’) = 0.
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Observation 8.5. We make the following observations about programs from pleB].

1.

10.

11.

12.

. Consider program B Since P is Horn and contains no bad cycle and no directed cydl@;om (P5)

Consider program §, and Fj, and let Pe {P],, P3,}. Since P- {a} is Horn and contains no cycle and no
directed cycle, we obtaidbyomn (P) < 1, dbho-c(P) < 1, anddbno-pc(P) < 1. According to Observation 8.1

we havedbe(P§;) < 1anddbe(P3,) < 1 whereC € {Horn} U Acyc.

. Consider program . Since B, - {a} is Horn and contains no directed cycle and no bad cycle, we ob-

tain dbromn (P§;) = 0, dbno.pc(P3;) < 1, and dbne-c(P3;) < 1. According to Observation 8.1 we have
dbe(P3;) < 1 whereC € {Horn, no-BC, no-BEC} U D-Acyc.

. Consider program B,. Since B, — {a} contains no even cycléfno-ec(P3,) < 1.

. Consider program P2 The negation dependency graph ¢fd@ntains2n disjoint paths gy and ac;, thus

smallest deletiot{orn-backdoor are of size at least n.jeontains n disjoint bad cycles, n directed cycles
of length at leasB, and n directed even cycles. Hence smallest delefiddackdoors are of size at least n
and thusdbC(PQ) > n whereC € {Horn, no-C, no-BC, no-DC, no-DC2, no-EC, no-BEC, no-DEC}.

. Consider program B. The negation dependency graph df, Rontains n disjoint paths and thus

dbyom (Pg,) = n. P, contains n disjoint directed bad even cycles and g psec(Pg;) = n. According
to Observatior 811 we obtaitoc(Pz,) > n whereC € {Horn} U Acyc.

. Consider program B,. Since R, contains n disjoint directed bad cycletdtyo psc(PL,) = n.

. Consider program B,. Since B, contains n disjoint even cycles, n disjoint directed cydesength at

least3, and n disjoint directed even cycles, we obtain by Obsesuéildhc(Pg,) > n whereC € {no-C,
no-DC, no-DC2, no-EC, no-DEC]}.

. Consider program P Since R is Horn and contains no cycle and no directed cyd®qom(Pg) =

dbnoc(Pg) = dbnopc(Pg) = 0. According to Observatiol 8.1 we hawb:(Pg) = 0 where C
{Horn} U Acyc.

m

dbno-sc(P)) = dbnopc(P§) = 0. According to Observation 8.1 we hadbc(P;) = 0 whereC €
{Horn, no-BC, no-BEC} U D-Acyc.

Consider program £". Since B" is Horn and B — {c1} contains no cycle and no directed cycle, we
obtain dbyom (Pg") = 0, dbno-c(Pg™) < 1, dbo-nc(Pg™) < 1. According to Observation 8.1 we have
dbe(Pg™") < 1 whereC € {Horn} U Acyc.

Consider program £ Since B—{ay} is Horn and B} —{a;} contains no cycle and no directed cycle, we have
dbrom (Pg) < 1, dbnoc(Pg) < 1, anddbyo.oc(Pg) < 1. According to Observation 8.1 we hastc(Pg) < 1
whereC € {Horn} U Acyc.

Consider program  and let X := {b}. Since B, — X is normal, X is a deletioMNormal-backdoor of
P!,. Observe that X is the only inclusion-minimal deletiormal-backdoor of B,. Since P, — X is Horn,
dbnom (P7,—X) = 0. Since B, - X contains no cycle, no even cycle, and no directed cgbigpP, —X) = 0

whereC € Acyc. Consequently;lbg(PQl) = |X| + die(P}, — X) = 1whereC € {Horn} U Acyc.
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Figure 7: Domination Lattice (relationship between nor8IP-parameters): An arrow from to p’ indicates
that p’ strictly dominatesp. ': #headCycles is not strictly more general when we applpntif{Observatiof 8.21).
- deptw does not yield tractability (Propositibn 8.11). Adhi of an edge indicates that Propositibestablishes
the result.

8.2. ASP-Parameters Based on the Distance from Horn

Our backdoor-based ASP-parametepgp can be considered as a parameter that measures the disfaace o
program from being a Horn program. In the literature somanabrASP-parameters have been proposed, that
also can be considered as distance measures from Horn. sIsdbiion we compare them withgy,. Since

the ASP-parameters considered in the literature are npmeatompare the parameters for normal programs only.
However, in view of Observatidn 8.2 the results also holdterlifted parameters to disjunctive programs.

Definition 8.1 (Ben-Eliyahu [5]) Let P be a normal program. Then

#negP) = |{a € at(P) : ac B (r) for some rule re P},
#non-HornP) := |{r € P: ris not Horn }|.

Proposition 8.2(Ben-Eliyahu[5]) For each Le AspFull, L[#neg) € FPTand L#non-Hornk € FPT.

Since BOUND[ p]n for p € {#neg#non-Horn is clearly solvable in polynomial time and thus fixed-parsane
tractable, we can use the Lifting Theorem (Theokem 7.1) taintthe following result.

31



Corollary 8.1. For each Le AspFull, L[#ned] € FPTand Li#non-Horr] € FPT.
Observation 8.6. We make the following observations about programs from Bl 1.

1. Consider program Pwhich contains n atoms that occur i @) for some rule re P and exactly one
non-Horn rule, safnegP?) = n and#non-HornpP}) = 1.

2. Consider program Pwhich contains only the atom b that occurs in(B for some rule re PJ and n
non-Horn rules, s@negP?) = 1 and#non-HornP%) = n.

3. Consider program &, which contains fod < i < n the atoms a,ilthat occur in B (r) for some rule re P3;
and the non-Horn rulesjb— —-a and a«< -bj, hence#negPy,) = n+ 1 and#non-HornP3,) = 2n.

4. Consider program B, which is Horn. Thuginegf3,) = #non-Hornp3,) = 0.

5. Consider program B which contains only the atom a that occurs in(B for some rule re P5, and exactly
one non-Horn rule, s:#nengS) = #non-HornPQS) =1

6. Consider program Pwhich contains fod < i < n the atoms gthat occur in B (r) for some rule re P} and
the non-Horn rules b« —a; and ¢ « —a;, thus#negf}) = n and#non-HornP}) = 2n.

7. Consider program  which contains forl < i < n the atoms gand k that occur in B(r) for some

rule r € P and the non-Horn rules;— —g and a « -bj;, hence#negPy,) = #non-HornPy,) = 2n.

8. Consider the program B which contains the atoms that occur in B (r) for some rule re Pg, and the
non-Horn rules @« -b;, hence#negPs,) = #non-HornPg,) = n.

9. Consider programs B, Pg, P}, and " which are Horn. ThugnegPy,) = #non-HornPL,) = #negPy) =
#non-HornPy) = #negPy) = #non-HornPY) = #negPg™") = #non-HormpPg'") = 0.

10. Consider the program@which contains only the atomg and & that occur in B (r) for some rule re Pg
and only the non-Horn rules,a— —a; and & « —ap, hence#negPy) = #non-HornPyg) = 2.

11. Consider the program'P. The set X:= {b} is the only inclusion-minimal deletioNormal-backdoor of
P!,- Since B, — X is Horn, we havefnegf), — X) = #non-HornpP}, - X) = 0. Thus#ned(PTl) =
IX| +#negP}, — X) = 1 and #non-Horﬁ(PQl) = |X| + #non-HornP?, — X) = 1.

Proposition 8.3. #negand#non-Hornare incomparable.

Proof. The proposition directly follows from considerir®f andP; where #nedf]) = n and #non-Hormg}) = 1;
and #nedf?)) = 1 and #non-Horri)) = n by Observatioh 816. O

However, it is easy to see thatgly, dominates both parameters.

Proposition 8.4. dbyom strictly dominates#negand #non-Horn dby: and #neg and db: and #non-Hornare
incomparable wher€ € {no-C, no-DC, no-DC2, no-EC, no-DEC]}.

Proof. For a normal progranP define the set8 (P) = {a € at(P) : a € B (r) forsomerule € P} and

H(P) = {a € H(r) : r € P, risnotHorn}. We observe thaB~(P) and H(P) are deletionHorn-backdoors
of P, hence dhom (P) < #negP) and diyom (P) < #non-HornP). To show that dhom strictly dominates the
two parameters, considét;, where diyom (P3,) < 1, but #negfj;) = n+ 1 and #non-Horr3,) = 2n by

Observations 815 and 8.6.
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The second statement follows from considering the progRipandPg, where dig(P3;) < 1 andp(P3,) > n+
1; and dlp(PZ,) > nandp(Pg,) = 0 for C € {no-C, no-DC, no-DC2, no-EC, no-DEC} andp € {#neg#non-Horn
by Observations 815 arid 8.6. Hence:dk #neg and dp > #non-Horn forC € {no-C, no-DC, no-DC2, no-EC,
no-DEC]. [l

8.3. ASP-Parameters Based on the Distance from Being fBtchti

Ben-Elivahu [5] and _Gottlofet al. [6€] have considered ASP-parameters that measure in ancegase how
far away a program is from being stratified. In this sectionwikeinvestigate how these parameters fit into our
landscape of ASP-parameters. Similar to the last sectmpdhameters have been considered for normal programs
only, hence we compare the parameters for normal prograiys Again, in view of Observatioh 812 the results
also hold for the lifted parameters to disjunctive programs

Recall from Sectioh 214 that SCG) denotes the partition of the vertex set of a digraph intorgly connected
components.

Definition 8.2 (Ben-Eliyahu [5]) Let P be a normal program, pits dependency digraph, and @ at(P). P/a
denotes the program obtained from P by (i) deleting all rulés the program P where ) N A = 0 and
(if) removing from the bodies of the remaining rules alliéts —a with a¢ A. Then

Istr(P) := Z min{#negP,c), #non-HornP,c)}.
CeSCCEp)

Istr(P) is called thelevel of stratifiabilityof P.
Proposition 8.5(Ben-Eliyahu[5]) For each Le AspFull, L[Istr]y € FPT.

Since BouND[Istr]y and BouND[lstr]y are clearly solvable in polynomial time and thus fixed-paeten
tractable, we can use the Lifting Theorem (Theokem 7.1) taintithe following result.

Corollary 8.2. For each Le AspFull, L[Istr'] € FPT.
Observation 8.7. We make the following observations about programs from pleB].

1. Consider program B and let P:= PJ,. The partitonSCCQp) contains only the set C= at(P) and thus
P,c = P. By Observatiof 818negfP) = n+ 1 and#non-HornP) = 2n and hencdstr(P3,) = n+ 1.

2. Consider program B, and let P := P3,. The partitionSCCQDp) contains only the set C= at(P) and
P,c = P. Since#negP) = 0 by Observatiof 816, we havgtr(P3,) = 0.

3. Consider program B and let P:= PJ.. The partitionSCCDp) contains only the set C= at(P). Thus
P = P,c. Since#negPy;) = 1 by Observation 816, we concludir(P5;) < 1.

4. Consider program Pand let P:= P}. We havesCCp) contains exactly the sets A= {g;, 6, d;}, B := {bi},
and G := {¢} wherel < i < n. Hence Pp = {a « @&; g « d; d < a}and Pg = {b} and

Pic; = {¢Ci; G « by }. Since#negP,c) = 0 for every Ce SCCQOp), we havdstr(P}) = 0.

5. Consider program P, and F}, and let Pe {Pg,, PZ,}. The partitionSCCDp) contains exactly the setg G-
{ai,bi} wherel < i < nandhence R = {b « —a; a « -b;}, respectively i, = {by « a; & «
=bi 1 1 <i < n}. Since#negP,c,) = #non-HornP,c,) = 2, respectively#negP,c,) = #non-HornP,c) = 1,
and there are n components we obtti(PZ,) = 2n andlstr(Pg,) = n.
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6. Consider program B, and let P := P{,. The partitonSCCQp) contains only the set C= at(P) and
P,c = P. Since#negP) = 0 by Observatiof 816, we havstr(Pg,) = 0.

7. Consider program Pand let P:= P{. The partitionSCCQp) contains exactly the sets:A {a}, B; := {bj},
and G := {¢} wherel <i < n. Hence Pao = {a « by,...,by, ¢ : 1 <i <n}and Pg = P, = 0 where
1<i<n. Since#negP,c) = O for every Ce SCCOp), we havdstr(Py) = 0.

8. Consider program Pand let P:= PJ. The partitionSCCDp) contains exactly the sets C= {a;} where
1<i<n Thus R ={g < aj: 1< j<i}. Hence#negP,,) = 0 for every Ce SCCDp). We obtain
Istr(P5) = 0.

9. Consider program P" and let P:= Pg"". The partitionSCCQp) contains exactly the sets A= {a;} where
1<i<m,B:={b}j,andC:={c :1<i<n} Hence P =0wherel<i<m,Pg={bea,...,am},
and Pc ={G « G111 <i<n}U{cn1 <« C1}. Since#negP,s) = O0wherel <i < m,#negP,s) = 0,
and#negf,c) = 0, we obtainlstr(Pg") = 0.

10. Consider program Pand let P:= Pg. The partitionSCCQOp) contains only the set C= at(P). Hence
P,c = P. Since#negP) = #non-HornP) = 2, we havdstr(Pg) = 2.

11. Consider program . The set X= {b} is the inclusion-minimal deletiohlormal-backdoor of P, by
Observatiorf 85. We have P P}, - X = {g « ¢ ¢, « & : 1 <i < n}. The partitionSCCDp)
contains the sets;A= {a} wherel < i < nand C:= {c}. Hence Pa = {& « c}wherel <i <n

and Pc = {c}. Since#negP,c) = O for every Ce SCCDp), we obtainistr(P) = 0. Consequently,
Istr’(PY,) = [X| + Istr(P], — X) = 1.

Observation 8.8. Istr strictly dominatesthegand#non-Horn

Proof. Let P be a normal program. We first show tH8tcsccp,) #negl,c) < #negfP). Define the seB™(P) =

{a € at(P) : a € B7(r) forsomeruler € P}. By definition B7(P,a) € B~ (P) for someA < at(P), thus
Ucesccpr) B (Pic) € B(P). LetC,C" € SCCOp) andC # C’. By definition of a strongly connected
component we hav€ n C’ = 0 and by definition we have th& (P,c) < C and B (P,c) € C’. Hence

B (P;c) N B (P,cr) = 0. Consequentlyyccsccpp) #negP,c) < #negfP). A similar argument shows that
Y.cesccpr) #Non-HorP c) < #non-Horn P). Since IstrP) = Y. cescepy) Mint#negP c), #non-HornP )}, we
have IstrP) < #negP) and Istrf) < #non-HornP). To show that Istr strictly dominates the two parameters,
consider progran®; where Istrf}) = 0, but #negl}}) > nand #non-HornR}) > 2n by Observationg 816 and 8.7.
Hence the observation is true. O

Proposition 8.6. dbno.pec Strictly dominatedstr. Moreover,dly; and Istr are incomparable for the remaining
target classes namey € Acyc \ {no-DBC, no-DBEC} U {Horn}.

Proof. We first show that dk.pgc dominates Istr. For a normal progrd®rdefine the setB~(P) = {ac at(P) : a €
B~(r) for some rule € P} andH(P) = {a€ H(r) : r € P ris not Horn}. LetC € SCCDp), we define

Xe = B (Pc), if IB7(Pic)l < IH(P/C)l;
H(P,c), otherwise.

andX = {Xc : C € SCCDp)}. We show thaiX is a deletionno-DBC-backdoor ofP. By definition for every
directed bad cycle = (xg,...,X%) of Dp the atomx; € C’ where 1< i < | andC’ € SCCQp) (all vertices
of ¢ belong to the same strongly connected component). Morgbyedefinition we have for every negative
edgex;, X; € Dp of the dependency digragbp a corresponding rule € P such thatx; € H(r) andx € B7(r).
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Since Xc consists of eitheB~(P,c) or H(P,c), at least one of the atoms, x; belongs toXc. Thus for every
directed bad cycle of the programP at least one atom of the cycle belongstoHenceP — X € no-DBC and X
is a deletiomo-DBC-backdoor ofP. We obtain diy-psc(P) < Istr(P). To show that diy-psc Strictly dominates
Istr, consider progran®y, where dlopec(P3,) < 1 and IstrP3,) = n+ 1 by Observations 8.5 arid 8.7. Hence
dbno-peC < Istr.

Then we show that the parametersdind Istr are incomparable. Consider the progréhsnd P where
dbe(P3,) < 1 and IstrP],) = n+ 1; and IstrP}) = 0 and dig(P},) > nfor C € {Horn, no-C, no-BC, no-DC,
no-DC2, no-EC, no-BEC, no-DEC} by Observations 8|5 aid 8.7. We conclude elolstr. O

Definition 8.3 (Gottlobet al. [69]). Let P be a normal program, Pits dependency digraph, dits dependency
graph, and AcC at(P). |5/A denotes the program obtained fromaFoy removing from the bodies of every rule
all literals a with a ¢ A. at"(P) denotes the maximal set W at(P) such that there is no bad W-cycle in the
dependency graph &) in other words the set of all atoms that do not lie on a badewtIP. Then

fw(P) := min{|S| : S is a feedback vertex set of Yand
wiw(P) := fw({r € P,c — at"(P,c) : C € SCCOp), P c ¢ no-DBC}).

fw(P) is called thefeedback-widtrof P, andwfw(P) is called theweak-feedback-widtlof P.
Observation 8.9. Let P be a normal program and&its dependency digraph. Thém(P) = dbn.c(P) and hence

wiw(P) = dbno.c({r € P/c — at'(P/c) : C € SCCOp), Pc ¢ no-DBC}).
Proposition 8.7 (Gottlobet al. [69]). For each Le AspFull, L[fw]n € FPTand Uwfw]y € FPT.

Since BounD[fw] y and BouND[wfw]  is fixed-parameter tractable, we can use the Lifting TheqEneo-
rem[Z.1) to obtain the following result.

Corollary 8.3. For each Le AspFull, L[fw'] € FPTand Uwfw'] € FPT.
Observation 8.10. We make the following observations about programs from pielh].

1. Consider the program R and define P.= P3,. The partitionSCCp) contains only the set C= at(P).
For every atom ac C the program P contalns a bafh} cycle and thuat*(P/c) = (. Consequently,
P/C — af(P/c) P/C = P. As P¢ no-DBC, {r € P/C - at*(P/C) C € SCCDp), P/C ¢ no-DBC} = P. We
havedbn,.c(P) = 1 by Observatiof 815 and according to Observafion 8.9 we obtdw(P3,) = 1

2. Consider program £ and let P:= P3,. The partitionSCCQp) contains only the set C= at(P), P/c =P.
For every atom ac C we haveP/c e no DBC and thus{r € P/C - at*(P/c) C € SCCDp), P/C ¢
no-DBC} = 0. Consequentlywfw(P3,) =

3. Consider the programsie, P, and P} and let Pe {P],, P7,, P3.}. We first observe that the dependency
digraph of P contains only one strongly connected compordance the partitiorSCCQp) contains only
the set C:= at(P) For every atom ac C program P contains a bafh}-cycle and thusat' (P/c) = 0.
ConsequentIyP/c —at"(P,c) = Pc = P. Since P¢ no-DBC, we obtain{r € P,c — at'(P,c),C ¢
SCCQp), P/C ¢ no-DBC} = P. We havalb,..c(P) = n since P contains n disjoirib;}-cycles. According

to Observation 819 we concludgw(P3,;) = wiw(P3,) = wiw(PJ.) = n.

4. Consider program Pand let P:= Pj. The partitionSCCQDp) contains exactly the sets A= {a, di, &},
Bi := {bi}, and G := {c;} wherel < i < n. HenceP/p = {a « &;  « d; d < &}, P/g = {b}and
P/c, = {c ). For every Ce SCCOp) the programP,c € no DBC. Consequently,r € P,c —at"(P,c),C €
SCCPp), P,c ¢ N0-DBC} = 0 and we obtairwfw(P]) =
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5. Consider program B and let P:= P,. The partitionSCC(p) contains exactly the sets G {a;, bj} where
l1<i<nand thus;l5/ci ={g « -bj; b « g }. Sincedtho_c(ﬁ/ci) = 1 and there are n components we
obtainwfw(Pg,) = n.

6. Consider program B, and let P := PL,. We observe that the partitioBCCQp) contains exactly the
sets G = {a,bi}. For every atom ae Ci wherel < i < nthereis a bao[a }-cycle in the dependency
graph of P,c, and thusat'(P,c;) = 0. ConsequentlyP,c, — at'(P,c) = P)c. SinceP,c, ¢ no-DBC,
{re P/C at*(P/c) C € SCCDp), P/C ¢ no-DBC} = P. We observe thath,,.c(P) = n and according to

Observatior 89 we obtaiwfw(PL,) = n.

7. Consider program gand let P:= Pg. The partitionSCC(p) contains exactly the sets:A {a}, B := {b;},
and G := {G} wherel < i < n. HenceP,, = {a} and I3/B, = Pic, = 0 wherel < i < n. Since

dbno- C(P/C) = O for every Ce SCCQp), we obtainwfw(Pg) =

8. Consider program Pand let P:= P; Since the partitiorSCCDp) contalns exactly the sets;} where
1<i<n, Py = {a}and thuswfw(P4)) = 0. We obtairwfw(P5) =

9. Consider program P" and let P:= Pg"". The partitionSCCQp) contains exactly the sets A= {a;}
fori1 <i<m,B:={b},andC:={G :1<i<n}. HencePjp, =0forl<i<m,P;p =0, and
Pic=1{G < Gy1:1<i<n}U{cy1 < ¢ ). The program$,a, P/, andP,c belong to the classo-DBC
for 1 <i < m. Consequentlyr € P,c — at"(P,c) : C € SCCOp), P/c ¢ no-DBC} = 0. Hence we conclude

thatwfw(Pg™") = 0

10. Consider program Pand let P:= Pg. The partitionSCCp) contains only the set C= at(P). For every
atom ae C there is a badaj}-cycle in the dependency graph of P and tlam*s(ﬁ/c) = (. Consequently,
P,c —at"(P,c) = Pic = P. Since Pz no-DBC, {r € P,c - at+(F“>/C) : C € SCCOp), P,c ¢ no-DBC} =
By Observatiof 818lbno.c(P) < 1 and according to Observatidn 8.9 we obtaifw(Pg) < 1.

11. Consider program ', and let P:= P],. The set X= {b} is the inclusion-minimal deletioNormal-backdoor
of P}, by Observation 815 and P= P}, - X = {& « ¢; ¢ AR 1<i<n}. The partitianCC(Dp)
contains exactly the sefs;} for 1 < i < n and{c}. HenceP,5, = {a}for1 <i < nandP,q = {c}.
We observe thadbno_c(ﬁ/c) = 0 for every Ce SCCQp) and according to Observatidn 8.9 we obtain
wfw(P) = 0. Consequentlywfw'(P],) = [X| + wiw(P}, — X) =

In the following proposition we state the relationship beg¢w the parameter wfw and our backdoor-based ASP
parameters. The first result (@bsc strictly dominates wfw) was anticipated by Gottlebal. [69].

Proposition 8.8. wfw strictly dominatesdb,g.c and dbn.psc strictly dominatesnvfw. Moreover,db: and wfw
are incomparable for the remaining target classes nangety{Horn, no-BC, no-DC, no-DC2, no-EC, no-BEC,
no-DEC}.

Proof. We first show that wfw strictly dominates glbc. Let P be a normal program and be a deletion
no-C-backdoor ofP. DefineP = {P,c — at*(Pc) : C € SCCDp),P,c ¢ no-DBC}. SinceP ¢ P andno-C
is hereditary (Observatidn 5.2 — X € no-C and henceX is a deletionno-C-backdoor ofP. Consequently,
wiw(P) < dbno.c(P). To show that wfw is strictly more general than,dle, consider the prograr®, where
wiw(P}) = 0 and dh.c(P}) = n. Hence wiw< dbno.c by Observations 811 afnd 8110.

Next, we show that di3.pgc strictly dominates wfw. LeP be a normal program arfdl= { |5/C—at+(|5/c) :Ce
SCCDp), P/c ¢ no-DBC}. According to Observation 8.9 Wil = dbno.c(P) and thus it is sufficient to show
that dio-pec(P) < dbno.c(P). Let X be an arbitrary deletiomo-C-backdoor ofP. Sinceno-C ¢ no-DBC
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Observatiof 8]1 yields that is also a deletiomo-DBC-backdoor ofP. Letc be an arbitrary directed bad cycle of
Dp. As all vertices ot belong to the same partitidb e SCCQp), at(l3/c) cC, andD,s/C is an induced subdigraph
of Dp on at@,c), we obtainc is a directed bad cycle iBs .. SinceP = {Pc — at"(Pc) : C € SCCOp),Pc ¢
no-DBC} and by definition there is no *s(tlS/C)—cycIe inUp, there is no directed bad*&ﬁ/c)—cycle in Dp and
hencec is also a directed bad cycle D . SinceX is a deletionno-DBC-backdoor ofDp = andc is a directed
bad X-cycle in D,s/c, X is also a deletiomo-DBC-backdoor ofP. Consequently, d-pec(P) < dbho.c(P) =
wfw(P). To show that diy-pec is strictly more general than the parameter wfw, considermpitogramP3, where
dbno-pec(P3,) = 0 and wiwP3,) = n by Observations 815 ad 8]10. Hencedlbsc < Istr.

The third statement follows from considering the progrd®g P3,, and P} where dig(P3;) < 1 forC €

{Horn, no-BC, no-DC, no-DC2, no-BEC, no-DEC} and on-EC(P&) <1 and WfWng) = wa(Pg4) =n; and
wfw(P}) = 0 and dig(P}) = n by Observationk 815 arid 8]10. Hence: b wiw for C € {Horn, no-BC, no-DC,
no-DC2, no-EC, no-BEC, no-DEC]}.

O

Observation 8.11.Let pe {#neg#non-Hornlstr}, then p andvfw are incomparable.

Proof. To show thatp and wfw are incomparable consider the progra®sand P, wherep(P3,) > n+ 1 and
wiw(P3,) = 1; andp(Pjs) < 1 and wiwj,) = n by Observations 816, 8.7 ahd 8.10. O

8.4. Incidence Treewidth

Treewidth is graph parameter introduced by Robertson agch®ar [112 ) 113| 114] that measures in a certain
sense the tree-likeness of a graph. See |9, 10, 11, 70] thefubackground and examples on treewidth. Treewidth
has been widely applied in knowledge representation, reéagoand artificial intelligence [32, 70,/73,/99, 109].

Definition 8.4. Let G = (V, E) be a graph, T atree, anda labeling that maps any node t of T to a subgg} C V.
We call the setg(-) bagsand denote the vertices of T aedes The pair(T, y) is atree decompositioof G if the
following conditions hold:

1. for every vertex ¥ V(G) there is a node & V(T) such that ve x(t) (“vertices covered”);
2. for every edge vw E(G) there is a node € V(T) such that yw € x(t) (“edges covered”); and

3. for any three nodes tty, t3 € V(T), if to lies on the unique path from to tz, theny(t1) N x(t3) € x(to)
(“connectivity”).

Thewidth of the tree decompositiofT, y) is max |y ()| — 1 : t € V(T) }. Thetreewidthof G, denoted byw(G), is
the minimum taken over the widths of all possible tree decsitipns of G.

We will use the following basic properties of treewidth.

Lemma 8.1 (Folklore, e.g.,1[114]) Let G be a graph and €...,C, its connected components, themG) =
maxtw(Cj) : 1<i<I}.

Lemma 8.2(Folklore, e.g.,[[7]) Let G be a graph. If G has a feedback vertex set size at moskiiG) < k+ 1.

Treewidth can be applied to programs by means of varioushgegresentations.
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Figure 8: Incidence graphp of the progranP of Exampld 2.11.

Definition 8.5 (Jaklet all [73]). Let P be a normal program. Thacidence graphp of P is the bipartite graph
which has as vertices the atoms and rules of P and where a ndeaa atom are joined by an edge if and only if
the atom occurs in the rule. Thémctw(P) := tw(lp). The parameteinctw(P) is called theincidence treewidtiof

P.

Proposition 8.9(Jaklet all [73]). For each Le AspFull \ {ENUM}, L[inctw]y € FPTand for ENuM[inctw]y the
solutions can be enumerated with fixed-parameter lineaaydbetween any two consecutive solutions.

Observation 8.12. We make the following observations about programs from pie].

1. Consider the programsZPand Fl,. We observe that its incidence graph consists of the n ciclasa;, rai,
a;, ri, bi, ry respectively, wheré < i < n. According to Lemm@a_8.2 a cycle has treewidth at n2oahd
according to Lemm@a 8.1 we hairetw(P3,) < 2 andinctw(Pz,) < 2.

2. Consider the programsghand F,. Its incidence graph contains a clique on n vertices. Thusédfinition
inctw(Pg) > n— 1andinctw(Pg) > n— 1.

3. Consider program P". The incidence graph consists of a tree on the vertigeb, &y,...,an and a
cycle r,C1,...,In, Cn, Ms1, Cnil, Mni2. By definition a tree has treewidth according to Lemmia 8.2 a cycle
has treewidth at most, and according to Lemnia 8.1 we obtamttw(Pg™") < 2.

The following observation states why we cannot apply otintifttheorem and extend the parameter treewidth
from normal to disjunctive programs.

Observation 8.13. ENUMJinctw]y ¢ FPT.

Proof. Consider the prograr®y, where inctwPy) < 2. LetM c at(P) such that eitheg; € M or bj € M.
According to the definitions we obtain the GL-rediRY = {a : & € M} U {b; : bj € M}. SinceM is a
minimal model ofPM, M is also an answer set & Thus the progran® has 2 many answer sets. Consequently,
enumerating the answer setshbtakes timeQ(2"). O

Proposition 8.10. LetC € {Horn} U Acyc and pe {dhbe, #neg #non-HornIstr, wiw}, then p andnctw are incom-
parable.

Proof. We observe incomparability from the prograi$, and P§ wherep(P3,) > n and inctwfg,) = 2; and
p(Pf) < 1 and inctwPf) > n— 1 by Observations 8.5, 8/6.8[7. 8,10, and B.12. ad
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8.5. Dependency Treewidth

One might ask whether it makes sense to consider restrictiarthe treewidth of the dependency graph. In this
section we show that the dependency treewidth strictly dates the incidence treewidth and backdoors with
respect to the target clas®-C, but unfortunately parameterizing the main ASP problemgheydependency
treewidth does not yield fixed-parameter tractability.

Definition 8.6. Let P be a program, thedeptw) = tw(Up). We calldeptwP) thedependency treewidtbf P.
Observation 8.14. We make the following observations about programs from pie@1.
1. Consider programs B and F} where the dependency graph is a tree. TheptwPy,) = deptwPy) = 1.

2. Consider program B. We observe that its dependency graph consists of n digjgatés i, i, 4, &, Va b
for 1 <i < n. According to Lemm@a8.2 a cycle has treewidth at n2ombd according to Lemma 8.1 we
obtaindeptwy,) < 2.

3. Consider program £ Its dependency graph contains a clique on n vertices as graph. Hence
deptwP?) > n- 1.

Proposition 8.11. deptw strictly dominatesinctw and dbno.c. LetC e {Horn} U Acyc \ {no-C,no-EC} and
p € {dk¢, #neg #non-Hornlstr, wfw}, then p anddeptware incomparable.

Proof. Let P be a normal program, arg its incidence graph. Lefl( y) be an arbitrary tree decompositionlef
We create a tree decomposition, ¢’) for Up as follows: For every € P let v, be the corresponding vertex
in Ip. We replace the occurrence ofvae x(t) by H(r) for all nodest € V(T). Then the pairT, y’) satisfies
Condition 1 and 2 of a tree decompositionls$. Since all edges dfs are covered inT, y) for everyr € P exists
at € V(T) such that; € y(T) andh € x(T) whereH(r) = { h}. Because aN; are connected in the bags of the tree
decomposition T, y) and all corresponding elemertisare connected inT(, y), the Condition 3 holds forT x’).
Thus [T, x’) is a tree decomposition of the dependency gridph Since the width of T, y’) is less or equal to the
width of (T, ) it follows tw(Up) < tw(lp) for a normal progranP. To show that deptw strictly dominates inctw,
consider the prograrR} where deptwg) < 1 and inctwPg) > n. Hence deptw inctw.

Let P be a normal program and a deletionno-C-backdoor ofP. ThusX is a feedback vertex set of the
dependency grapblp. According to Lemma 812 tifp) < k + 1. Hence deptws db,o.c. To show that deptw
strictly dominates diy.c consider the prograrRy, where deptwy,) < 2 and dho.c(PZ,) = n. Consequently,
deptw< dbno.c and the proposition sustains.

To show the last statement, consider again the progRipand P where deptws,) < 2 andp(Pg,) > n;
and deptwiP}) > n— 1 andp(PJ) = 0 by Observations 8.5, 8.7, 8]110, dnd 8.14. O

Proposition 8.12. For each Le AspReason, Ly is NP-hard, even for programs that have dependency treeviddth

Proof. First consider the problem @d\siISTENCY. From a 3-CNF formulaF with k variables we construct a
programP as follows: Among the atoms of our prografmwill be two atomsay and ax for each variablex €
var(F) and a new atonf. We add the rulesy « -ayx anday « —ax for each variablex € var(F). For each
clause{ly, I, 13} € F we add the rulef < h(ly), h(l2), h(3), = f whereh(-x) = ay andh(x) = ax. Now it is easy
to see that the formul& is satisfiable if and only if the prograf has an answer set. LElp be the undirected
dependency graph d®. We construct the following tree decompositioh, {) for Up: the treeT consists of
the nodet; and for eachx € var(F) of the noded;y, txx, andtzx and the edgesitsy, tixtxg, andtxizx. We
label the nodes by(ts) := {f,vs} and for eachx € var(F) by x(tix) := {ax. ax f}, x(txx) := {ax, ax Va3, }, and
x(tx) = {ax, ax Vaa, ). We observe that the pailf () satisfies Condition 1. The ruleg « —-ax anday « —ax
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yield the edgesiyVa,a,, Vaa8x 8xVaa,, Vaadx IN Up which are all “covered” byy(tx) and x(txx). The rule
f « h(l1), h(l2), h(l3), = f yields the edgdv; which is covered by(t;) and yields the edgeka, or faxwhich are
covered byy(tix). Thus Condition 2 is satisfied. We easily observe that GmrdB also holds for the paifT( y).
Hence T, x) is a tree decomposition of the dependency grdph Since max|y(t)] - 1 :t € V(T)} = 2, the tree
decomposition T, y) is of width 2 and deptwf) = 2. Hence the problem @\sisTENCYdeptw]y is NP-hard,
even for programs that have dependency treewidth 2. Wewabsardness for the problem&KBvVE REASONING

and XEPTICAL REASONING by the very same argument as in the proof of Theoremh 6.2 angrtposition
holds. O

8.6. Interaction Treewidth

Definition 8.7 (Ben-Elivahu and Dechter/[4])Let P be a normal program. Theteraction graphs the graph A
which has as vertices the atoms of P and an edge xy betweewamydms x and y for which there are rules’re
P such that e at(), y € at(’), and Hr) n H(r’) # 08

Definition 8.8 (Kanchanasut and Stuckey [82], Ben-Eliyahu and Dechtér |4t P be a program. Thpositive
dependency digrap};, of P has as vertices the atora{P) and a directed edggx, y) between any two atomsye
at(P) for which there is a rule i P with xe H(r) and ye B+(r)H

LetG = (V,E) be a graph and = (vi,...,V) a cycle of lengtH in G. A chordof cis an edgey;v; € E where
v; andv; are not connected by an edgeci(non-consecutive verticesk is chordal (triangulated) if every cycle in
G of length at least 4 has a chord.

Definition 8.9 (Ben-Elivahu and Dechier![4])Let G be a digraph and Ga graph. Then

Ic(G) := maxX{2} U {|c|: cis acycle in G},
cqG’) := {w: G’ is a subgraph of a chordal graph with all cliques of size at wos and
fw(G’) := min{|S| : S is a feedback vertex set of G

Ic is thelength of the longest cycles is theclique sizd
Let P be a normal program, fAits interaction graph, and Pits positive dependency digraph. Then

clusterP) := cqAp) - loglc(Df)
cyclecutP) := fw(Ap) - loglc(D}).

cluster@) is called thesize of the tree clusteringyclecut) is called thesize of the cycle cutset decomposition
In fact the definition ot qG) is related to the treewidth:

Lemma 8.3(Rabertson and Seymour [114])et G be a graph. Thetw(G) = cqG) + 1.

3This definition is equivalent to the original definition in] (#hich is given in terms of cliques: the interaction grapkhis graph where
each atom is associated with a vertex and for every attime set of all literals that appear in rules that hawe their heads are connected
as a clique.

4Ben-Elivahu and Dechler [[4] used the term dependency grabite whe term positive dependency graph was first used by
Kanchanasut and Stuckey [82] and became popular by Erderhifsatiitz [35].

5The original definition is based on the length of the longegtkc path in any component @ instead of the length of the longest
cycle and the term clique width is used instead of clique.size
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Corollary 8.4. Let P be a normal program, fits interaction graph, and Dits dependency digraph. Then
clusterP) = (tw(Ap) — 1) - loglc(D{)

Proposition 8.13(Ben-Eliyahu and Dechter|[4])For each Le AspFull, L[clusterh € FPTand L{cyclecut) €
FPT.

Observation 8.15. We make the following observations about programs from ple@1.

1. Consider programs P and P, and let Pe {P1,, P2,}. The interaction graph Acontains n disjoint paths

a, b for 1 < i < m. Hence A contains no cycles anfiw(Ap) = 0 and according to Lemma 8.2 we
obtaintw(Ap) < 1. Moreover, the positive dependency grapp &@ntains no edges, n disjoint cycles of
length exactly? respectively. Thus (Df) = 2. ConsequentlyclusterPf,;) < 1 andcyclecutfPy,) < 1; and

clusterPy,) < 1andcyclecutPs,) < 1.

2. Consider program P" and let P:= Pg*". The interaction graph Acontains a clique on m vertices and
thustw(Ap) > m— 1. According to Lemmia8.3 we obtain(és) > m— 2. According to Lemmia 8.2 we have
fw(Ap) > m— 2. Moreover, the positive dependency grapp &ntains the cyclecc, .. ., Cy, Chy1. Thus
Ic(D}) = n. Consequenthcluster@g™) > (m— 2) - logn andcyclecutPg™) > (m-2) - logn.

Observation 8.16. clusterstrictly dominatesyclecut

Proof. Let P be a normal program andp its interaction graph. According to Lemrha 8.2 we obtainAp)( <
fw(Ap) + 1. Hence clusteR) < cyclecutf). O

Proposition 8.14. inctw strictly dominatesluster LetC e {Horn} U Acyc and pe {dlg, #neg #non-Horn Istr,
wfw}, then p anctlusterare incomparable; and p andyclecutare incomparable.

Proof. We first show that inctw dominates cluster. [Rbe a normal programy its incidence graph, andp
its interaction graph. Lefl{, y) be an arbitrary tree decomposition &f. We create a tree decompositioh {)
for Ip as follows: For every € P let v, be the corresponding vertex ip. By definition for everyr € P there is
a bagy(t) wheret € V(T) such that at) c x(t). We sety’(t) = x(t) U {v}. Then the pairT, x’) clearly satisfies
Condition 1 and 2 of a tree decompositionl pty definition. Since every, occurs in exactly one bag Condition 3
holds for (T, x’). Thus [T, y’) is a tree decomposition of the interaction grajgh Since the width of T, /) is
less or equal to the width off (y) plus one it follows twlp) < tw(Ap) + 1. To show that inctw strictly dominates
cluster, consider the prograR}™" where inctwPg") < 2 and clustef®g™") = (m - 2) logn by Observations 8.12
and8.15. Hence inctw cluster.

Let p € {dg, #neg, #non-Horn, Istr, wivandC e {Horn} U Acyc. We show the incomparability of the
parameterp and cyclecut. In fact we show something stronger, there emgr@msP where p is of constant
size, but both twi;), fw(Df) respectively, andc(lp) can be arbitrarily large and there are programs where the
converse sustains. Therefor we consider the progminsand Pg“’” wherep(Pg;) > nand clusterz,) < 1 and
cyclecutPy,) < 1; andp(Pz") < 1 and cyclecu®Rg"") > (m-2) - logn and clusterl®g"") > (m - 2) - logn by
Observationk 815, 8.6, 87, 8110, and 8.15. Consequendysecond statement holds. O

8.7. Number of Bad Even Cycles

Definition 8.10 (Lin.and Zhab![90]) Let P be a normal program. Then
#badEvenCycle$)) := |[{ ¢ : cis a directed bad even cycle ofj|P
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Proposition 8.15. For each Le AspFull, L[#badEvenCycleg] € FPT.
Observation 8.17. We make the following observations about programs from ple@1.
1. Consider program Pwhich contains no directed bad even cycle. He#isadEvenCycle$()) = 0.
2. Consider program £, which contains n disjoint directed bad even cycles. ThedEvenCycle$,) = n.

3. Consider programs B, PY, and Fg‘” which contain no directed bad even cycle. Consequently uarob
#badEvenCycles{l,) = #badEvenCycle$() = #badEvenCycle$z™") = 0.

4. Consider program Pwhich contains the directed bad even cyclgsag, az, b for 1 < i < n. Since there are
n of those directed bad even cycles we obthiadEvenCycle&) = n.

Proposition 8.16. dbn-pgec strictly dominatestbadEvenCyclesMoreover,dly: and#badEvenCycleare incom-
parable for the remaining target class€se Acyc \ {no-DBEC} U {Horn}. Let pe {#neg #non-Horn Istr, wiw,
inctw, deptw cluster cyclecut, then p andtbadEvenCycleare incomparable.

Proof. To see that dh.peec strictly dominates #badEvenCycles. [ebe a normal program. PP has at mosk
directed bad even cycles, we can construct a deletmDBEC-backdoorX for P by taking one element from
each directed bad even cycle irf¥o Thus dio.peec(P) < #badEvenCycle®). If a programP has a deletion
no-DBEC-backdoor of size 1, it can have arbitrarily many even cyttas run through the atom in the backdoor,
e.g. progranPg where dio.psec(Pg) < 1 and #badEvenCycleB]) = n by Observations 85 and 8117. It follows
that diyo-peec < #badEvenCycles and the proposition holds.

To show the second statement, consider the progRfal,, andPg where dig(Pg) = 1 forC € AcycU{Horn}
and #badEvenCycleBf) = n; conversely dp(P;) > n for C € {Horn, no-C, no-BC, no-DC, no-DC2, no-
EC, no-DEC, no-BEC}, dbno-pec(PE,) = n, and #badEvenCycleBf) = #badEvenCycle$,) = 0. Hence
dhe = #badEvenCycles fat € 4cyc \ {no-DBEC} U {Horn} by Observations 815 afd 8]17.

To show the third statement, consider the progrsﬂg@ sz, P?, and Pg“’”, Pg where inctwP}) > n-1
and deptwPl) > n -1, p(PL,) > nfor p € {#neg, #non-Horn, Istr, wiyy cyclecutPg") > (m - 2)logn,
clusterg") > (m - 2)logn, and #badEvenCycleBf) = #badEvenCycles") = #badEvenCycle&{,) = 0;
converselyp(Pg,) < 2 for p € {inctw, deptw, cluster, cyclecytp(Pg) < 2 for p € {#neg, #non-Horn, Istr, wijy
and #badEvenCycleBf,) = #badEvenCycle$()) = n by Observations 81%, 8.6, 837, 8110, 8.02, 8[14,18.15, and
[8.17. Hencep = #badEvenCycles fop € {#neg, #non-Horn, Istr, wiw, inctw, deptw, cluster, cyclgcu

[l

8.8. Number of Positive Cycles (Loop Formulas)
Definition 8.11 (Fages|[38]) Let P be a normal program and/Dits positive dependency digraph. Then
#posCycles= |{ ¢ : cis a directed cycle in B}

The program P is calledight if #posCycles= ol

The parameter has been generalized to disjunctive prodmgee and Lifschiiz| [86].

SFagesl|[38] used the term positive-order consistent insiétight.
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Proposition 8.17 (Fages|[38]) For L € AspReason, L[#posCyclesy is NP-hard or co-NPhard, even for tight
programs.

Observation 8.18. We make the following observations about programs from ple@1.

1. Consider programs B and FZ, where the positive dependency digraphs contain n direcyetes, hence
#posCyclesfy,) = #posCyclesfy,) = n.

2. Consider program P, and P, where the positive dependency digraphs contain no cycle.ncéle

#posCyclesy,) = #posCycles?) = 0.
3. Consider program ?”. Its positive dependency digraph contains only the cyglexc. .., Cq, Chy1, thus
#posCyclesfy) = 1.

Proposition 8.18. LetC € {Horn} U Acyc and p € {db¢, #neg #non-Horn Istr, wfw, inctw, deptw cluster
cyclecut #badEvenCyclgsthen p and?posCyclesre incomparable.

Proof. We observe incomparability from the program$,, Pp,, PL., P, andPg™. We havep(Pg,) > n for
p € {db¢ #neg, #non-Horn, Istr, wiw, #badEvenCydlemctw(P) > n— 1, deptwf?) > n - 1, cyclecutpg™) >
(m-2)-logn, clusterPg™) > (m-2)-logn, and #posCycle$y,) = #posCycles®?) = 0 and #posCyclesg™") = 1;
conversely forp € {dhc, #neg, #non-Horn, Istr, wiw, inctw, depjwve havep(P3,) < 1, for p € {clustet cyclecut
we havep(Pg,) < 2 and #posCycle®f,) = #posCyclesfy,) = n by Observations 815, 8.6, 8[7, 8110, §12, 8.14,
[8.15[8.1¥, and 8.18. Consequently, the proposition holds. O

8.9. Head-Cycles

Definition 8.12 (Ben-Eliyahu and Dechier [4])Let P be a program and Dits positive dependency digraph. A
head-cycleof Df is a{x, y}—cycl@ where xy € H(r) for some rule re P. The program P ifiead-cycle-freéf D
contains no head-cycle.
One might consider the number of head-cycles as a paramdtactability.
Definition 8.13. Let P be a program and Dits positive dependency digraph. Then
#headCycles= |{ c : c is a head-cycle of P}

But as the following proposition states that the ASP-reempproblems are already NP-complete for head-
cycle-free programs.

Proposition 8.19(Ben-Eliyahu and Dechier![4])Each Le AspReason is NP-hard or co-NP-hard, even for head-
cycle-free programs.

Observation 8.19. We make the following observations about programs from ple@].

1. Consider program . Since the positive dependency digraph gfédntains no cycletheadCyclesty,) =
0.

2. Consider program . The positive dependency digraph df, Bontains the head cyclesta for1 <i < n.
Thus#headCyclest),) = n.

"See Sectiop 512 for the definition ofe-cycle.

43



Even though the parameter #headCycles does not yield littgtdor the ASP-reasoning problems we are
interested in the relationship between our lifted paramsetad the parameter #headCycles. We will first restrict the
input programs to normal programs in Observalion18.20 aed tdonsider disjunctive programs Observaltion18.21.

Observation 8.20. LetC € {Horn} U Acyc and p € {db¢, #neg #non-Horn Istr, wiw, inctw, deptw cluster
cyclecut #badEvenCyclestposCycles then#headCyclestrictly dominates p.

Proof. By definition every normal program is head-cycle-free, leeficeadCycles strictly dominates O

Observation 8.21.LetC € {Horn} U Acyc and pe {dbc, #neg#non-Hornlstr, wfw}, then g and#headCycles
are incomparable.

Proof. To that the parameters are incomparable consider the pnsgPd, and P}, where p(PZ,) > n and
#headCyclest,) = O; andp(P};) = 1 and #headCycleB(,) = n by Observation$s 85, 8.6, 8.7, 810, and
B.19. O

9. Practical Considerations

Although the main focus of this paper is theoretical, we whscin this section some practical considerations and
present some empirical data.

9.1. Backdoor Detection

We have determined stromtprn *-backdoors for various benchmark programs by means of éamgehto answer
set programming, integer linear programming (ILP), loadrsh (LS), and propositional satisfiability. It turned
out that compilations into ILP and ASP itself perform bestheTinteger linear program was generated using
the open source mathematics framework Sage [36] with Pyfhd®], solved using ILOG CPLEX 12 [72] and
Gurobi [71]. We did not check optimality (considering LP tityagap and branch and bound tree). Hence the
found strongHorn*-backdoors might be not optimal, but presumably close tor@dt For some selected instances
we verified optimality using a SAT solver and unary cardiyationstraints|[123]. The answer set program that
solves backdoor detection was generated by means of ASPpmugfeamming|[58] and solved using clasp [121]
and a variant (unclasp)![1].

Table[1 illustrates our results on the size of small stréthgrn*-backdoors of the considered bench-
mark instances. We mainly used benchmark sets from the FireetAnswer Set Programming Competi-
tions [17,[25) 52], because most of the instances contaiy rmmimal and/or disjunctive rules and no extended
rules (cardinality/weight—constrair@) The structured instances have, as expected, significantbller strong
Horn*-backdoors than the random instances. So far we have no godenee why in particular the sets
KnightTour andSolitaire have rather large strorigorn*-backdoors compared to the other structured in-
stances.

For the acyclicity based target clasges Acyc we have computed small deletiahbackdoors only for very
few selected instances with moderate size since the clyr@rdilable algorithms can only deal with rather small
instances within a reasonable computation time. The sizenall deletiomo-C*-backdoors of selected instances
of solitaire was about half of the size of small strokigrn*-backdoors.

8\We are aware that one can preprocess extended rules andedngon into normal rules. Even though recent versions obtiteer
clasp provide such an option [55], those compilations blpwhe instances significantly. Hence we omitted it for pratign@asons.
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domain instance set disj. #atoms horn bd(%) stdev

Al HanoiTower - 32956.7 4.28 0.08
StrategicCompanies + 2002.0 6.03 0.04
MinimalDiagnosis + 111856.5 10.74 1.72

Graph GraphColoring — 3544.4 19.47 0.80

Planning MSS/MUS + 49402.3 3.80 0.70
ConformantPlanning + 1378.2 8.76 2.14

Cryptography Factoring - 3336.8 16.20 1.30

Puzzle Labyrinth — 55604.9 3.42 0.82
KnightTour - 23156.9 33.08 0.20
Solitaire — 11486.8 38.88 0.20

Random RandomQBF + 160.1 50.00 0.00
RLP - 184.2 68.00 5.00
RandomNonTight — 50.0 93.98 1.08

Table 1: Size of smallest stromdprn-backdoors (bd) for various benchmark sets, given as % dbtiaénumber

of atoms (#atoms) by the mean over the instances.

ConformantPlanning: secure planning under incomplete initial states [128fanses provided by Gebser and Kamin-
ski [50]. Factoring: factorization of a number where an efficient algorithm vebyield a cryptographic attack by Geb-
ser [31] instances provided by Gebser| [5HanoiTower: classic Towers of Hanoi puzzle by Truszczynski, Smith and
Westlund; for instances see [17GraphColoring: classic graph coloring problem by Lierler and Balducciioi, in-
stances see [17KnightTour: finding a tour for the knight piece travelling any squarddaing the rules of chess by
Zhou, Calimeri, and Santoro; for instances see [IIldbyrinth: classical Ravensburger's Labyrinth puzzle by Gebser;
for instances see [17MinimalDiagnosis: an application in systems biology [54]; for instances §E84.[MSS/MUS:
problem whether a clause belongs to some minimal unsatisgabset [77] instances provided by Gebser and Kaminski [50
Solitaire: classical Peg Solitaire puzzle by Lierler and Balducdmijnstances see [17ftrategicCompanies: en-
coding thezb-complete problem of producing and owning companies amdesjic sets between the companies [52it ex:
equivalence test of partial implementations of circuitstances provided by Maratesall [93] based on QBF instances
of |lAvari and Basin|[3].RandomQBF': translations of randomly generated 2-QBF instances usiagnethod by Chen and
Interian [19] instances provided by Gebser [521.p: Randomly generated normal programs, of various densitgnper of
rules divided by the number of atoms) [134] instances predibly [52]. RandomNonTight: Randomly generated normal
programs provided by Schultz and Gebser [51] witk: 40, 50, and 60 variables, respectively with 40 instancesssgr
instances provided by Gebser and Schaub [51].

9.2. Backdoor Evaluation

Instead of applying the algorithm from Sectibh 3 directipeocan possibly use backdoors to control modern
heuristics in ASP solvers to obtain a speed-up. Most mod#weisheuristics work independently from the current
truth assignment. They assign to each atom in the progranora smd incorporate into the score the learned
knowledge based on derived conflicts (history of the trufiggsnents). Various studies on the effect of restricting
decision heuristics to a subset of variables based on stalgbroperties have been carried out in the context
of SAT, both positive 1[66, 67, 124] and negative effects [[@ye been observed depending on the domain of
the instances._Jarvisalo and Junttilal [78] have provenhaheery restricted form of branching (branch only on a
subset of the input variables) implies a super-polynonmiatdase in the length of the optimal proofs for learning-
based heuristics. However, very recent results by Gedisdr [61] suggest that modern ASP-solvers with a
clause learning heuristic can benefit from additional stmat information on the instance when a relaxed form of
restricted branching is used, namely increasing the sdamtoms if a certain structural property prevails. Those
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properties have to be manually identified. Since backdaumatare of structural importance for the problem it
seems reasonable to initially increase the score of thesaifotine atom is contained in the considered backdoor.
As strongHorn*-backdoors are relatively easy to compute and very easypimgimate one could occasionally
update the heuristic based on a newly computation of a back&o a solver could benefit from backdoors in both
the initial state and while learning new atoms. A rigorougpgital study following these considerations is subject
of current research.

10. Summary and Future Work

We have introduced the backdoor approach to the domain pbpitional answer set programming. In a certain
sense, the backdoor approach allows us to augment knowalitaclasses and makes efficient solving methods
for tractable classes generally applicable. Our approagkemrecent progress in fixed-parameter algorithmics
applicable to answer set programming and establishes ginmiipproach that accommodates several parameters
from the literature. This framework gives rise to a detaitenparison of the various parameters in terms of
their generality. We introduce a general method of liftiraygmeters from normal to disjunctive programs and
establish several basic properties of this method. Wedugtudied the preprocessing limits of ASP rules in terms
of kernelization taking backdoor size as the parameter.

The results and concepts of this paper give rise to sevesahreh questions. For instance, it would be inter-
esting to consider backdoors for target classes that coptagrams with an exponential number of answer sets,
but where the set of all answer sets can be succinctly refaxkeA simple example is the class of programs that
consist of (in)dependent components of bounded size. Itddmiinteresting to enhance our backdoor approach to
extended rules in particular to weight constrains. Fin#élyould be interesting to investigate whether backdoors
can help to improve problem encodings for ASP-solvers.

References

[1] Benjamin Andres, Benjamin Kaufmann, Oliver MattheisidaTorsten Schaub. Unsatisfiability-based optimizatiorclasp. In
A. Dovier and V. Santos Costa, editorBechnical Communications of the 28th International Cosrfiee on Logic Programming
(ICLP'12), volume 17, pages 212-221. Leibniz International Procegdin Informatics (LIPIcs), 2012.

[2] Krzysztof R. Apt, Howard A. Blair, and Adrian Walker. Takds a theory of declarative knowledgé-oundations of deductive
databases and logic programmingages 89-148, 1988.

[3] Abdelwaheb Ayari and David Basin. Bounded model corettam for monadic second-order logics. In E. Emerson and istl&§
editors,Computer Aided Verificatigrvolume 1855 of_ecture Notes in Computer Scienpages 99-112. Springer Verlag, 2000.

[4] Rachel Ben-Eliyahu and Rina Dechter. Propositionalamstins for disjunctive logic program#nn. Math. Artif. Intell, 12(1):53-87,
1994,

[5] Rachel Ben-Eliyahu. A hierarchy of tractable subsetsctimputing stable models. Artif. Intell. Res,.5:27-52, 1996.

[6] Nicole Bidoit and Christine Froidevaux. Negation byfaldt and unstratifiable logic programsTheoretical Computer Science
78(1):85-112, 1991.

[7] Hans L. Bodlaender and Arie M. C. A. Koster. Combinatbdptimization on graphs of bounded treewidffihe Computer Journal
51(3):255-269, 2008.

[8] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellosred Danny Hermelin. On problems without polynomial kesndl of
Computer and System Sciencgs(8):423—-434, 2009.

[9] Hans L. Bodlaender. A tourist guide through treewidéttta Cyberneticall(1-2):1-22, 1993.

[10] Hans L. Bodlaender. Treewidth: Algorithmic techniguend results. In Igor Privara and Peter Ruzicka, edifersceedings of
the 22nd International Symposium on Mathematical Foumatiof Computer Science (MFCS'9¥blume 1295 of_ecture Notes in
Computer Sciencgages 19-36. Springer Verlag, 1997.

46



[11] Hans L. Bodlaender. Discovering treewidth. In Petejtd% Méaria Bielikova, Bernadette Charron-Bost, anttegj Sykora, editors,
31st Conference on Current Trends in Theory and Practice @hg@uter Science (SOFSEM’'Q5)olume 3381 ofLecture Notes in
Computer Sciencgages 1-16. Springer Verlag, 2005.

[12] John A. Bondy and U. S. R. Murtyraph theory volume 244 ofGraduate Texts in MathematicSpringer Verlag, New York, 2008.

[13] Paul Bonsma and Daniel Lokshtanov. Feedback verteingaixed graphs. In Frank Dehne, John lacono, and Jorggeadack,
editors,Algorithms and Data Structuresolume 6844 otecture Notes in Computer Scienpages 122-133. Springer Verlag, 2011.

[14] Stefan Brass and Jurgen Dix. Characterizations ofdibginctive well-founded semantics: Confluent calculi dedated GCWA.
Journal of Automated Reasoning:143-165, 1998.

[15] Francesco Buccafurri, Nicola Leone, and PasqualeoR@trong and weak constraints in disjunctive datalog.uhgédri Dix, Ulrich
Furbach, and Anil Nerode, editorspgic Programming and Nonmonotonic Reasonimglume 1265 ofLecture Notes in Computer
Sciencepages 2-17. Springer Verlag, 1997.

[16] Marco Cadoli and Maurizio Lenzerini. The complexitympositional closed world reasoning and circumscriptibrof Computer
and System Sciencek8(2):255-310, 1994.

[17] Francesco Calimeri, Giovambattista lanni, FrancdRimza, Mario Alviano, Annamaria Bria, Gelsomina CatalaBasanna Cozza,
Wolfgang Faber, Onofrio Febbraro, Nicola Leone, Marco ManAlessandra Martello, Claudio Panetta, Simona Perristin
Reale, Maria Santoro, Marco Sirianni, Giorgio Terracinad @ierfrancesco Veltri. The third answer set programmiogue-
tition: Preliminary report of the system competition trackn James Delgrande and Wolfgang Faber, edittusgic Program-
ming and Nonmonotonic Reasonjngplume 6645 ofLecture Notes in Computer Scienqeages 388-403. Springer Verlag, 2011.
https://www.mat.unical.it/aspcomp2011/OfficialPrabuite.

[18] Ashok K. Chandra and David Harel. Horn clause queriesgemeralizationsThe Journal of Logic Programmin@(1):1-15, 1985.

[19] Hubie Chen and Yannet Interian. A model for generatiagdom quantified boolean formulas. In Leslie Pack Kaelbing
Alessandro Saffiotti, editor&roceedings of the 19th International Joint Conference difigial Intelligence (IJCAI'05) volume 19,
pages 66-71, Edinburgh, Scotland, August 2005. MorganrKanifi.

[20] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivamdalgor Razgon. A fixed-parameter algorithm for the dirediesetiback
vertex set problemJournal of the ACM (JACM)b5(5):1-19, 2008.

[21] Jianer Chen, lyad A. Kanj, and Ge Xia. Improved upperrusufor vertex coverTheoretical Computer Sciencél1(40-42):3736—
3756, September 2010.

[22] Rajesh Chitnis, Marek Cygan, Mohammadtaghi Hajiagheyd Daniel Marx. Directed subset feedback vertex sexésifparameter
tractable. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts,daRoger Wattenhofer, editordutomata, Languages, and Programming
volume 7391 oL ecture Notes in Computer Scienpages 230—241. Springer Verlag, 2012.

[23] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, andkiib Onufry Wojtaszczyk. Subset feedback vertex set is Hfpadmeter
tractable. InProceedings of the 38th International Colloquium on Auttandanguages and Programming (ICALP’1¢plume 6755
of Lecture Notes in Computer Scienpages 449-461. Springer Verlag, 2011.

[24] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andoeonkov. Complexity and expressive power of logic pragraing. ACM
Computing Surveys (CSUR3(3):374—-425, 2001.

[25] Marc Denecker, Joost Vennekens, Stephen Bond, Margios€r, and Mirostaw Truszczyhski. The second answer segtamming
competition. In Esra Erdem, Fangzhen Lin, and Torsten Sgheditors,Logic Programming and Nonmonotonic Reasonimgume
5753 ofLecture Notes in Computer Scienpages 637-654. Springer Verlag, 2009.

[26] Reinhard DiestelGraph Theoryvolume 173 ofGraduate Texts in MathematicSpringer Verlag, New York, 2nd edition, 2000.

[27] William F. Dowling and Jean H. Gallier. Linear-time alithms for testing the satisfiability of propositional hdormulae.J. Logic
Programming 1(3):267—-284, 1984.

[28] Rodey G. Downey and Michael R. Fellow®arameterized ComplexityMonographs in Computer Science. Springer Verlag, New
York, 1999.

[29] Rodey G. Downey, Michael R. Fellows, and Ulrike StegardPneterized complexity: A framework for systematicalinfronting
computational intractability. I€ontemporary Trends in Discrete Mathematics: From DIMA@S BIMATIA to the Futurgvolume 49
of AMS-DIMACS pages 49-99. American Mathematical Society, 1999.

[30] Christian Drescher, Martin Gebser, Torsten Grote,j&min Kaufmann, Arne Kdnig, Max Ostrowski, and Torsten &dh Conflict-
driven disjunctive answer set solving. In Gerhard Brewka &rdome Lang, editor®roceedings of the 11th International Conference
on Principles of Knowledge Representation and Reasonifja®), pages 422—-432. AAAI Press, 2008.

[31] Christian Drescher, Martin Gebser, Benjamin Kaufmamd Torsten Schaub. Heuristics in conflict resolutiboRR abs/1005.1716,
2010.

[32] Paul E. Dunne. Computational properties of argumestesys satisfying graph-theoretic constraimdificial Intelligence 171(10-
15):701 — 729, 2007. jce:title¢ Argumentation in Artifidiatielligencej/ce:titleg,.

[33] Wolfgang Dvorak, Sebastian Ordyniak, and Stefani®re Augmenting tractable fragments of abstract arguatamt. Artificial
Intelligence 186(0):157-173, 2012.

[34] Thomas Eiter and Georg Gottlob. On the computationat obdisjunctive logic programming: Propositional cas@n. Math. Artif.
Intell., 15(3—4):289-323, 1995.

a7


https://www.mat.unical.it/aspcomp2011/OfficialProblemSuite

[35] Esra Erdem and Vladimir Lifschitz. Tight logic progranTheory and Practice of Logic Programming499-518, 2003.

[36] William A. Stein et.al. Sage Mathematics Software (Version 5.1.rc0) The Sage Development Team, 2012.
http://www.sagemath.org.

[37] Wolfgang Faber, Nicola Leone, Cristinel Mateis, andr&a Pfeifer. Using database optimization techniques farnmonotonic
reasoning. InProceedings of the 7th International Workshop on Dedudire¢abases and Logic Programming (DDLP’99)ages
135-139. Prolog Association of Japan, I. O. Committee, 1999

[38] Francois Fages. Consistency of Clark’s completionexistence of stable modeldournal of Methods of Logic in Computer Science
1(1):51-60, 1994.

[39] Johannes K. Fichte and Stefan Szeider. Backdoors ¢tatsle answer-set programming. In Toby Walsh, edRooceedings of the
22nd International Conference on Artificial Intelligendd@AlI'11), pages 863—868, Barcelona, Catalonia, Spain, July 2011.

[40] Johannes K. Fichte and Stefan Szeider. Backdoors tmaldy for disjunctive logic programs. In Marie des Jardarsl Michael
Littman, editors Proceedings of the 27th AAAI Conference on Atrtificial Iigelhce (AAAI'13) pages 320-327, Bellevue, WA, USA,
July 2013. AAAI Press.

[41] Johannes K. Fichte. The good, the bad, and the odd: €ytlenswer-set programs. In Daniel Lassiter and Marijak®ak, editors,
Proceedings of the 23th European Summer School in Logiaqyuage and Information (ESSLLI'11) and in New Directions ogic,
Language and Computation (ESSLLI'10 and ESSLLI'11 StuSessions, Selected Papers Serigslume 7415 of_ecture Notes in
Computer Sciencgages 78-90. Springer Verlag, 2012.

[42] Jbrg Flum and Martin GroheParameterized Complexity Thepmolume XIV of Theoretical Computer Sciencé&pringer Verlag,
Berlin, 2006.

[43] Lance Fortnow and Rahul Santhanam. Infeasibility atémce compression and succinct pcps for sipof Computer and System
Sciences77(1):91-106, 2011.

[44] Steven Fortune, John Hopcroft, and James Wyllie. Thectid subgraph homeomorphism problérheoretical Computer Science
10(2):111-121, 1980.

[45] Serge Gaspers and Stefan Szeider. Backdoors to asgtlitn Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and Rogéattenhofer,
editors,Automata, Languages, and Programmjimglume 7391 ot ecture Notes in Computer Scienpages 363-374. Springer Verlag,
2012.

[46] Serge Gaspers and Stefan Szeider. Backdoors to s#itisfa In Hans Bodlaender, Rod Downey, Fedor Fomin, andiéaarx,
editors, The Multivariate Algorithmic Revolution and Beyonglume 7370 ofLecture Notes in Computer Sciengeges 287-317.
Springer Verlag, 2012.

[47] Serge Gaspers and Stefan Szeider. Strong backdooestedhsatisfiability. In Alessandro Cimatti and RobertogS&hni, editors,
Proceedings of the 15th International Conference on Thaad/Applications of Satisfiability Testing (SAT'12dlume 7317 of_ecture
Notes in Computer Scienggages 72—85. Springer Verlag, June 2012.

[48] Serge Gaspers and Stefan Szeider. Strong backdoooutméd treewidth sat. IRroceedings of the 54th Annual IEEE Symposium
on Foundations of Computer Science (FOCS, Brkeley, California, USA, October 27—29 2013. To appear.

[49] Serge Gaspers, Sebastian Ordyniak, M. S. Ramanuj&et Saurabh, and Stefan Szeider. Backdoors to g-Horn. ladNatPortier
and Thomas Wilke, editor®roceedings of the Eleventh Annual ACM-SIAM Symposium ser®e Algorithms (San Francisco, CA,
2000)30th International Symposium on Theoretical Aspett€omputer Science (STACS'13plume 20 ofLeibniz International
Proceedings in Informatics (LIPIcspages 67—79, Dagstuhl, Germany, 2013. Schloss Dagstuhl.

[50] Martin Gebser and Roland Kaminski. Personal commuitioa2012.

[51] Martin Gebser and Torsten Schaub. Asparagus. url:/ldgparagus.cs.uni-potsdam.de, 2009.

[52] Martin Gebser, Lengning Liu, Gayathri Namasivayam,dfn Neumann, Torsten Schaub, and Mirostaw Truszczyh3kie first
answer set programming system competition. In Chitta Ba&arhard Brewka, and John Schlipf, editoPspceedings of the 9th
Conference on Logic Programming and Nonmonotonic ReagdiRNMR’07) volume 4483 ol_ecture Notes in Computer Science
pages 3-17. Springer Verlag, 2007.

[53] Martin Gebser, Benjamin Kaufmann, André Neumann, Bordten Schaub. Advanced preprocessing for answer séhgolm Malik
Ghallab, Constantine D. Spyropoulos, Nikos Fakotakis,Nikdlaos M. Avouris, editorsProceedings of the 18th European Conference
on Artificial Intelligence (ECAI'08)volume 178 ofFrontiers in Artificial Intelligence and Applicationpages 15-19, Patras, Greece,
July 2008. Advanced preprocessing for answer set solving.

[54] Martin Gebser, Torsten Schaub, Sven Thiele, Bjorndggaand Philippe Veber. Detecting inconsistencies irddniglogical networks
with answer set programming. In Maria Garcia de la Banda améit& Pontelli, editors|.ogic Programmingvolume 5366 otecture
Notes in Computer Scienggages 130-144. Springer Verlag, 2008.

[55] Martin Gebser, Roland Kaminski, Benjamin Kaufmann \M@strowski, Torsten Schaub, and Sven Thiele. A user’s guidgingo,
clasp, clingo, and iclingo. Technical report, Universitgtgtlam, 2010.

[56] Martin Gebser, Roland Kaminski, Benjamin Kaufmannd danrsten Schaub. Challenges in answer set solving. In Maialduccini
and TranCao Son, editorspgic Programming, Knowledge Representation, and Nonmeoim Reasoningvolume 6565 of_ecture
Notes in Computer Sciengeages 74-90. Springer Verlag, 2011.

48



[57] Martin Gebser, Roland Kaminski, Benjamin Kaufmanng diorsten Schaub. Multi-Criteria Optimization in Answert $eogram-
ming. In John Gallagher and Michael Gelfond, editdfschnical Communications of the 27th International Cosriee on Logic
Programming (ICLP’11) volume 11 ofLeibniz International Proceedings in Informatics (LIPJcpages 1-10, Dagstuhl, Germany,
2011. Schloss Dagstuhl.

[58] Martin Gebser, Roland Kaminski, and Torsten Schaub.mg@lex optimization in answer set programmingheory Pract. Log.
Program, 11(4-5):821-839, 2011.

[59] Martin Gebser, Benjamin Kaufmann, Roland Kaminski,xXMastrowski, Torsten Schaub, and Marius Schneider. PaiasEae
potsdam answer set solving collectioll. Communications24(2):107-124, 2011.

[60] Martin Gebser, Thomas Glase, Orkunt Sabuncu, and dlorSthaub. Matchmaking with answer set programming. Ind°€dr
balar and Tran Cao Son, editoRroceedings of 12th International Conference on Logic Paogming and Nonmonotonic Reasoning
(LPNMR’13) volume 8148 ol ecture Notes in Computer Scienpages 342—-347, Corunna, Spain, September 15-19 2018g8pri
Verlag.

[61] Martin Gebser, Benjamin Kaufmann, Ramon P. OteroefdRomero, Torsten Schaub, and Philipp Wanko. Domain-8péeiuristics
in answer set programming. Proceedings of 27th Conference on Artificial Intelligen8&AI'13), 2013.

[62] Allen Van Gelder, Kenneth A. Ross, and John S. Schlighe Tell-founded semantics for general logic programhsof the ACM
38(3):620-650, 1991.

[63] Allen Van Gelder. Negation as failure using tight datiens for general logic program3.he Journal of Logic Programming(1—
2):109-133, 1989.

[64] Michael Gelfond and Vladimir Lifschitz. The stable m&demantics for logic programming. In Robert A. Kowalskdd¢enneth A.
Bowen, editorsProceedings of the 5th International Conference and Sympo$lCLP/SLP’88) volume 2, pages 1070-1080. MIT
Press, 1988.

[65] Michael Gelfond and Vladimir Lifschitz. Classical r&gn in logic programs and disjunctive databaddew Generation Compuit.
9(3/4):365-386, 1991.

[66] E. Giunchiglia, A. Massarotto, and R. Sebastiani. A&ctd the rest will follow: Exploiting determinism in plangjras satisfiability.
In Jack Mostow and Charles Rich, editoProceedings of the 15th National Conference on Atrtificiaélligence (AAAI'98) pages
948-953, Madison, WI, USA, 1998. AAAI Press.

[67] E. Giunchiglia, M. Maratea, and A. Tacchella. Depertderd independent variables in propositional satisfighilibgics in Artificial
Intelligence pages 296-307, 2002.

[68] G. Gottlob and S. Szeider. Fixed-parameter algoritfonsrtificial intelligence, constraint satisfaction aratabase problem&he
Computer Journal51(3):303-325, 2008.

[69] Georg Gottlob, Francesco Scarcello, and Martha Sid€xed-parameter complexity in Al and honmonotonic re@sgnAtrtificial
Intelligence 138(1-2):55-86, 2002.

[70] Georg Gottlob, Reinhard Pichler, and Fang Wei. Bourtdeelvidth as a key to tractability of knowledge represéoednd reasoning.
Artificial Intelligence 174(1):105-132, 2010.

[71] Inc. Gurobi Optimization. Gurobi optimizer referenc@nual, 2014. Version 5.0.2.

[72] IBM. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manuatrsion 12 release 4 edition, 2011.

[73] Michael Jakl, Reinhard Pichler, and Stefan Woltran.swar-set programming with bounded treewidth. In Craig Bieut editor,
Proceedings of the 21st International Joint Conference difiéial Intelligence (IJCAI'09) volume 2, pages 816—822, Pasadena, CA,
USA, July 2009. Elsevier Science Publishers, North-Hallan

[74] TomiJanhunen and llkka Niemela. Compact translatafmon-disjunctive answer set programs to propositiorealsbs. In Marcello
Balduccini and Tran Son, editorkpgic Programming, Knowledge Representation, and Nonmenim Reasoningvolume 6565 of
Lecture Notes in Computer Scienpages 111-130. Springer Verlag, 2011.

[75] T.Janhunen, I. Niemel&, D. Seipel, P. Simons, and ¥dd. Unfolding partiality and disjunctions in stable modemantics ACM
Trans. Comput. Log7(1):1-37, 2006.

[76] Tomi Janhunen, llkka Niemela, and Mark Sevalnev. Cotimgustable models via reductions to difference logic. ImeESrdem,
Fangzhen Lin, and Torsten Schaub, editBreceedings of the 10th International Conference on LogigRamming and Nonmonotonic
Reasoning (LPNMR '09)olume 5753 ot ecture Notes in Computer Scienpages 142-154. Springer Verlag, 2009.

[77] Mikolas Janota and Joao Marques-Silva. A tool foceinscription-based mus membership testing. In James&elgrand Wolfgang
Faber, editord, ogic Programming and Nonmonotonic Reasonvmume 6645 of ecture Notes in Computer Scienpages 266—271.
Springer Verlag, 2011.

[78] Matti Jarvisalo and Tommi Junttila. Limitations ofsteicted branching in clause learningonstraints 14(3):325-356, 2009.

[79] M. Jarvisalo and llkka Niemela. The effect of struatlbranching on the efficiency of clause learning SAT sa@viAn experimental
study. Journal of Algorithms63(1-3):90-113, 2008.

[80] Holger Jost, Orkunt Sabuncu, and Torsten Schaub. Stiggenew interactions related to events in a social netfarlelderly. In
Proceedings of the 26th BCS Conference on Human Compuégattion (HCI’12) Birmingham, UK, 12 - 14 September 2012. British
Computer Society, Swinton.

49



[81] Naonori Kakimura, Ken-ichi Kawarabayashi, and Yus#abayashi. Erdds-posa property and its algorithmic igptibns: parity
constraints, subset feedback set, and subset packing.na Randall, editorProceedings of the 23rd Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’12pages 1726—1736, San Francisco, CA, USA, 2012. Societpdaistrial and Applied Mathematics
(SIAM).

[82] Kanchana Kanchanasut and Peter J. Stuckey. Transfgmarmal logic programs to constraint logic prograifiseoretical Computer
Science105(1):27 — 56, 1992.

[83] Kenichi Kawarabayashi and Yusuke Kobayashi. Fixedxpeeter tractability for the subset feedback set probleththa s-cycle
packing problem. Technical report, University of Tokyopda, 2010.

[84] Stephan Kottler, Michael Kaufmann, and Carsten Sinz.nefv bound for an NP-hard subclass of 3-SAT using backdoonrs. |
Hans Kleine Buning and Xishun Zhao, editdPspceedings of the 11th International Conference on Thaad/Applications of Satisfi-
ability Testing (SAT’08)volume 4996 ot ecture Notes in Computer Sciengages 161-167, Guangzhou, China, May 2008. Springer
Verlag.

[85] Andrea S. Lapaugh and Christos H. Papadimitriou. Ttemeyath problem for graphs and digraphetworks 14(4):507-513, 1984.

[86] Joohyung Lee and Vladimir Lifschitz. Loop formulas ftisjunctive logic programs. In Catuscia Palamidessipedibgic Program-
ming, volume 2916 of ecture Notes in Computer Scienpages 451-465. Springer Verlag, 2003.

[87] Nicola Leone, Pasquale Rullo, and Francesco ScarcBikjunctive stable models: Unfounded sets, fixpoint s¢iognand compu-
tation. Information and Computatiqri35:69-112, 1997.

[88] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thométerz Georg Gottlob, Simona Perri, and Francesco Scarcdllee DLV
system for knowledge representation and reaso@M Transactions on Computational Logic (TOCE}3):499-562, 2006.

[89] Yuliya Lierler. cmodels — sat-based disjunctive answet solver. In Chitta Baral, Gianluigi Greco, Nicola Lepaad Giorgio
Terracina, editord,ogic Programming and Nonmonotonic Reasonvgume 3662 of ecture Notes in Computer Sciengages 447—
451. Springer Verlag, 2005.

[90] Fangzhen Lin and Xishun Zhao. On odd and even cyclesimablogic programs. In Anthony G. Cohn, edit®roceedings of the
19th national conference on Artifical intelligence (AAAl)Dpages 80-85, San Jose, CA, USA, July 2004. AAAI Press.

[91] Fangzhen Lin and Yuting Zhao. ASSAT: Computing answeis ®f a logic program by SAT solverdrtificial Intelligence 157(1-
2):115-137, 2004.

[92] Guohua Liu, Tomi Janhunen, and llkka Niemela. Answetsogramming via mixed integer programming. In Sheilalkéith and
Thomas Eiter, editorfRroceedings of the 13th International Conference on thadtpies of Knowledge Representation and Reasoning
(KR'12), pages 32—-42, Rome, Italy, 2012. AAAI Press.

[93] Marco Maratea, Francesco Ricca, Wolfgang Faber, acdlbiLeone. Look-back techniques and heuristics in dlv:lémgntation,
evaluation, and comparison to gbf solvedsurnal of Algorithms63(1-3):70 — 89, 2008.

[94] Wiktor Marek and M. Truszczynski. Computing intersentof autoepistemic expansions. Broceedings of the 1st International
Conference on Logic Programming and Nonmonotonic Reasg¢ghPNMR’91) pages 37-50. MIT Press, 1991.

[95] Wiktor Marek and Mirostaw Truszczyhski. Autoepistienogic. J. of the ACM 38(3):588-619, 1991.

[96] Victor W. Marek and Miroslaw Truszczynski. Stable mtsdand an alternative logic programming paradigm. In KragsR. Apt,
Victor W. Marek, Miroslaw Truszczynski, and David S. Warreditors, The Logic Programming Paradigm: a 25-Year Perspegtive
pages 375-398. Springer Verlag, September 1999.

[97] Pranabendu Misra, Venkatesh Raman, M.S. RamanujanSaket Saurabh. Parameterized algorithms for even cyaisversal. In
MartinCharles Golumbic, Michal Stern, Avivit Levy, and &iMorgenstern, editor&raph-Theoretic Concepts in Computer Science
volume 7551 oL ecture Notes in Computer Sciengages 172—-183. Springer Verlag, 2012.

[98] Marco Montalva, Julio Aracena, and Anahi Gajardo. ®a complexity of feedback set problems in signed digragEigctronic
Notes in Discrete Mathematic30(0):249—-254, 2008.

[99] Michael Morak and Stefan Woltran. Preprocessing of @laxNon-Ground Rules in Answer Set Programming. In Agasbovier
and Vitor Santos Costa, editorBechnical Communications of the 28th International Cagrfiee on Logic Programming (ICLP’12)
volume 17 ofLeibniz International Proceedings in Informatics (LIP)cpages 247-258, Dagstuhl, Germany, 2012. Schloss Dagstuhl

[100] Michael Morak, Reinhard Pichler, Stefan Rummeled &tefan Woltran. A dynamic-programming based asp-solverTomi
Janhunen and llkka Niemela, editoPspceedings of 12th European Conference on Logics in Adtifintelligence (JELIA'10)volume
6341 ofLecture Notes in Computer Scienpages 369-372, Helsinki, Finland, September 2010. Sgrivierlag.

[101] Rolf Niedermeier.Invitation to Fixed-Parameter Algorithm®Oxford Lecture Series in Mathematics and its Applicatidbgford
University Press, 2006.

[102] IlIkka Niemela and Jussi Rintanen. On the impact dtitcation on the complexity of nonmonotonic reasonidgurnal of Applied
Non-Classical Logics4(2):141-179, 1994.

[103] llIkka Niemela, Patrik Simons, and Tommi Syrjanemdlels: A system for answer set programmi@@RR cs.Al/0003033, 2000.

[104] Illkka Niemela. Logic programs with stable model setizs as a constraint programming paradig@nn. Math. Artif. Intell,
25(3):241-273, 1999.

[105] Naomi Nishimura, Prabhakar Ragde, and Stefan SzeiDetecting backdoor sets with respect to Horn and binaryses. In
Holger H. Hoos and David G. Mitchell, editorBroceedings of the 7th International Conference on Theoy Applications of Sat-

50



isfiability Testing (SAT'04)volume 3542 ofLecture Notes in Computer Sciengmges 96-103, Vancouver, BC, Canada, May 2004.
Springer Verlag.

[106] Naomi Nishimura, Prabhakar Ragde, and Stefan Szeffldving #SAT using vertex coverdcta Informatica 44(7-8):509-523,
2007.

[107] Sebastian Ordyniak and Stefan Szeider. Augmentadble fragments of abstract argumentation. In Toby Walditor, Proceed-
ings of the 22nd International Joint Conference on Atrtifitidelligence (IJCAI'11) pages 1033—-1038. AAAI Press/IJCAI, 2011.

[108] Andreas Pfandler, Stefan RUmmele, and Stefan Szé8dekdoors to abduction. In Francesca Rossi, edtarceedings of the 23nd
International Joint Conference on Atrtificial Intelligen@dCAI'13), pages 1046—-1052, Beijing, China, August 2013. AAAI PIdE5AL.

[109] Reinhard Pichler, Stefan Rummele, and Stefan WoltBelief revision with bounded treewidth. In Esra Erdermdzhen Lin, and
Torsten Schaub, editorspgic Programming and Nonmonotonic Reasonivimume 5753 of ecture Notes in Computer Scienpages
250-263. Springer Verlag, 2009.

[110] Igor Razgon and Barry O'Sullivan. Almost 2-SAT is fixpdrameter tractabld. of Computer and System Scienc&x8):435-450,
20009.

[111] Francesco Ricca, G. Grasso, Mario Alviano, Marco Manw Lio, S. liritano, and Nicola Leone. Team-building wahswer set
programming in the gioia-tauro seapcoffheory and Practice of Logic Programmin2:361-381, 4 2012.

[112] Neil Robertson and P.D. Seymour. Graph minors. llarar tree-width Journal of Combinatorial Theory, Series B6(1):49-64,
1984.

[113] Neil Robertson and P.D. Seymour. Graph minors-a surlieSurveys in combinatorics, 1985: invited papers for the A@ritish
Combinatorial Conferenggpage 153. Cambridge Univ Pr, 1985.

[114] Neil Robertson and P.D. Seymour. Graph minors. iioatgmic aspects of tree-widttdournal of Algorithms7(3):309-322, 1986.

[115] Neil Robertson, P.D. Seymour, and Robin Thomas. Peemia, Pfaffian orientations, and even directed circditmals of Mathe-
matics 150(3):929-975, 1999.

[116] Frances Rosamond. Table of racesPémameterized Complexity Newslettpages 4-5. 2010. http://fpt.wikidot.cam/.

[117] Yongshao Ruan, Henry A. Kautz, and Eric Horvitz. Thekutoor key: A path to understanding problem hardness. IroBsbL.
McGuinness and George Ferguson, editBreceedings of the 19th National Conference on Artifici&ligence, 16th Conference on
Innovative Applications of Artificial Intelligencpages 124-130. AAAI Press / The MIT Press, 2004.

[118] Marko Samer and Stefan Szeider. Backdoor trees. IreR@h Holte and Adele E. Howe, editoi®foceedings of 23rd Conference
on Artificial Intelligence (AAAI'08)pages 363-368, VVancouver, BC, Canada, July 2008.

[119] Marko Samer and Stefan Szeider. Backdoor sets of igghBoolean formulasJournal of Automated Reasoning?(1):77-97,
20009.

[120] Marko Samer and Stefan Szeider. Fixed-parametetatvdity. In Armin Biere, Marijn Heule, Hans van Maaren, ahoby Walsh,
editors,Handbook of Satisfiabilitychapter 13, pages 425-454. 10S Press, 2009.

[121] Torsten Schaub, Martin Gebser, Benjamin KaufmanmaibKaminski, and Sven Thiele. Potassco, the potsdam asgivsolving
collection, bundles tools for answer set programming, 2009

[122] C.P. Schnorr. On self-transformable combinatoriabfems. In H. Konig, B. Korte, and K. Ritter, editofdathematical Program-
ming at Oberwolfachvolume 14 ofMathematical Programming Studigsages 225-243. Springer Verlag, 1981.

[123] Carsten Sinz. Towards an optimal CNF encoding of tawoleardinality constraints.Principles and Practice of Constraint
Programming-CP 2005ages 827-831, 2005.

[124] Ofer Strichman. Tuning SAT checkers for bounded matdelcking. InComputer Aided Verificatigrpages 480-494. Springer
Verlag, 2000.

[125] Stefan Szeider. Limits of preprocessing. In Wolfraor@ard and Dan Roth, editoBroceedings of the 25th Conference on Atrtificial
Intelligence (AAAI'11)pages 93-98, San Francisco, CA, USA, August 2011.

[126] Michael Thielscher. Answer set programming for s@aplayer games in general game playing. In Patricia M. Hitl ®avid S.
Warren, editorsProceedings of the 25th International Conference on LogagRamming (ICLP’09) volume 5649 ot ecture Notes in
Computer Sciencgages 327-341. Springer Verlag, Pasadena, CA, USA, July 2009.

[127] Stéephan Thomassé. A quadratic kernel for feedbarkex set. In Claire Mathieu, editoProceedings of the twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA'@8pes 115-119, New York, NY, USA, January 2009. Societyrfdustrial
and Applied Mathematics, Society for Industrial and Apgldathematics (SIAM).

[128] Son Thanh To, Enrico Pontelli, and Tran Cao Son. A confmt planner with explicit disjunctive representatiorbefief states. In
Alfonso Gerevini, Adele E. Howe, Amedeo Cesta, and loanefaRdis, editorsProceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS;@®ges 305-312, Thessaloniki, Greece, September 20091 Ress.

[129] M. H. Van Emden and Robert. A. Kowalski. The semantitpredicate logic as a programming language ACM 23:733-742,
October 1976.

[130] Guido van Rossum. Python tutorial. Technical Rep@tR9526, Centrum voor Wiskunde en Informatica (CWI), Antaen, May
1995.

[131] Vijay Vazirani and Mihalis Yannakakis. Pfaffian ortations, 0/1 permanents, and even cycles in directed grapfismo Lepisto
and Arto Salomaa, editor8utomata, Languages and Programminglume 317 oLecture Notes in Computer Scienpages 667—681.

51


http://fpt.wikidot.com/

Springer Verlag, 1988.

[132] Ryan Williams, Carla Gomes, and Bart Selman. Backsldottypical case complexity. In Georg Gottlob and Toby Wadstitors,
Proceedings of the 18th International Joint Conference atifigial Intelligence (IJCAI'03) pages 1173-1178, Acapulco, Mexico,
August 2003. Morgan Kaufmann.

[133] Ryan Williams, Carla Gomes, and Bart Selman. On theneotions between backdoors, restarts, and heavy-tagedneombina-
torial search. Innformal Proceedings of the 6th International Conferenoelbieory and Applications of Satisfiability Testing (SAY,03
pages 222-230, Portofino, Italy, May 2003.

[134] Yuting Zhao and Fangzhen Lin. Answer set programmingse transition: A study on randomly generated program&atnscia
Palamidessi, editoRroceedings of the 19th International Conference on LogagRamming (ICLP’03) volume 2916 of ecture Notes
in Computer Scienggages 239-253, Mumbai, India, December 9-13 2003. Sprvertag.

[135] Jicheng Zhao. A study of answer set programming. Mitgkis, The Hong Kong University of Science and Technol®gpt. of
Computer Science, 2002.

52



	1 Introduction
	1.1 Contribution
	1.2 Background and Related Work
	1.3 Prior Work and Paper Organization

	2 Preliminaries
	2.1 Answer Set Programming
	2.2 ASP Problems
	2.3 Parameterized Complexity
	2.4 Graphs
	2.5 Satisfiability Backdoors

	3  Answer Set Backdoors
	3.1 Strong Backdoors
	3.2 Deletion Backdoors
	3.3 Backdoor Evaluation
	3.4 Backdoor Detection

	4 Target Class Horn
	5 Target Classes Based on Acyclicity
	5.1 Strong Backdoor Detection
	5.2 Deletion Backdoor Detection

	6 Kernelization
	6.1 Backdoor Detection
	6.2 Backdoor Evaluation

	7 Lifting Parameters
	8 Theoretical Comparison of ASP-Parameters
	8.1 ASP-Parameters Based on Backdoor Size
	8.2 ASP-Parameters Based on the Distance from Horn
	8.3 ASP-Parameters Based on the Distance from Being Stratified
	8.4 Incidence Treewidth
	8.5 Dependency Treewidth
	8.6 Interaction Treewidth
	8.7 Number of Bad Even Cycles
	8.8 Number of Positive Cycles (Loop Formulas)
	8.9 Head-Cycles

	9 Practical Considerations
	9.1 Backdoor Detection
	9.2 Backdoor Evaluation

	10 Summary and Future Work

