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Abstract

In this paper we address the interplay among intention, time, and belief in dynamic
environments. The first contribution is a logic for reasoning about intention, time
and belief, in which assumptions of intentions are represented by preconditions
of intended actions. Intentions and beliefs are coherent as long as these assump-
tions are not violated, i.e. as long as intended actions can be performed such that
their preconditions hold as well. The second contribution is the formalization of
what-if scenarios: what happens with intentions and beliefs if a new (possibly
conflicting) intention is adopted, or a new fact is learned? An agent is commit-
ted to its intended actions as long as its belief-intention database is coherent. We
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conceptualize intention as commitment toward time and we develop AGM-based
postulates for the iterated revision of belief-intention databases, and we prove a
Katsuno-Mendelzon-style representation theorem.

Keywords: Intention, BDI logic, Belief revision

1. Introduction

Sometime in the near future you will tell one of your household robots: “Bobby,
get me some beer from the store.” Bobby confirms your request, but when it is
walking to the store it encounters your partner, who says: “Bobby, our house is a
mess, go home and clean.” Bobby returns home, takes the mop out of the closet
and prepares to start cleaning. Just as it is ready to make its first swipe, one of
your friends walks in asking: “Bobby, it has been snowing outside, could you
clean my car?” In the meantime, you are getting increasingly frustrated by your
lack of beer, and when you see Bobby in the kitchen you shout: “You still didn’t
get my beers? Go get them immediately!” After letting Bobby run around for a
few days you complain to the manufacturer that your robots do not finish any of
the tasks they start with.

After the manufacturer updates the software on your robots, he happily tells
you the new version will no longer cause the robots to drop their commitments
so quickly. Delighted, you exclaim to your favorite robot: “Bobby, I have some
friends coming over tonight, get some ingredients and cook dinner so we can eat
at 7pm tonight”. Realizing the shop closes only at 5pm, Bobby 2.0 delays going
to the grocery story until the very last moment, hereby keeping its schedule free
for other possible tasks. Unexpectedly, on its way to the grocery store Bobby is
delayed by an open bridge and arrives at the store minutes after closing time. It
returns to your home empty-handed, leaving you and your friends hungry. It turns
out Bobby 2.0 is delaying every task until just before the deadline. Since tasks
often have unexpected delays, this means that most of the tasks are finished too
late, or not at all. Frustrated, you call the manufacturer again, complaining that
Bobby is procrastinating its commitments.

After uploading yet another version of the software, the manufacturer ensures
you that your robots will no longer postpone fulfilling their commitments, nor
will they drop them quickly. At this time you are rather skeptical, but still you
ask: “Bobby, I’d like to have dinner tonight again. Please buy the ingredients at
2pm, and cook for me at 6pm”. Around 12pm, your partner again realizes the
house hasn’t been cleaned properly for a long time, and therefore tells Bobby to
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clean the house intensively. At 6pm, you sit at your kitchen table wondering where
dinner is, so you call Bobby asking what happened. Bobby explains it had to clean
the house at 12pm, which took three hours, so it couldn’t fulfill its commitment to
go shopping at 2pm.

Disappointed, you return your robots to the manufacturer where they are dis-
mantled.

1.1. Commitment toward Time
The story of Bobby the robot is inspired by the example of Willie the robot,

due to Cohen and Levesque (1990). In their highly-cited article entitled “Inten-
tion = Choice + Commitment,” Cohen and Levesque specify the rational balance
of autonomous agents, focusing on the role that intention plays in maintaining
this balance. Their approach has typified much subsequent research on belief-
desire-intention (BDI) logics, namely to understand and study intention as com-
mitment in relation to goals, desires and beliefs. For instance, Rao and Georgeff
(1991) define various commitment strategies of agents, such as blindly-minded,
single-minded, and open-minded commitment strategies. A popular approach to
formalize the BDI theory is to specify a temporal logic such as linear-time logic
(LTL) or computational-tree logic (CTL*) and use modal operators for mental
states and use expressions of the form “some time in the future,” or ”in the next
time moment” to reason about the temporal behavior.

In approaches following the ideas of Cohen and Levesque by, for example,
Rao and Georgeff (1991) or Meyer et al. (1999), intention is typically defined as
commitment toward goals. However, being committed toward a goal is only one
dimension of a commitment. Another important dimension is commitment toward
time, i.e., when these commitments will be fulfilled. In the example above, Bobby
the robot is an online system; it is receiving orders, forming plans, scheduling
tasks, and executing them, all in parallel and in real-time. Bobby plans its com-
mitments at appropriate moments, making sure the different plans do not overlap
or are incompatible, while it at the same time may receive new instructions from
users.

Even in a simplified setting where we only consider commitments toward time,
already non-trivial complications arise. Commitments can play the role of as-
sumptions on which further plans are based. The three versions of Bobby the
household robot behave differently concerning their commitment to time. The
first version may use a stack-like data structure in order to execute its tasks: it
adds each new commitments on the stack, and then executes the tasks on top of its
stack. The second version may use a queue, and moreover delays executing these
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tasks until the very last moment. Finally, the last version is able to schedule its
commitments in time, but it cannot reschedule them. None of these versions seem
to be able to fulfil commitments in a desirable way. Instead, Bobby should be
able to make plans, store the commitments and use them as assumptions in further
planning.

1.2. Methodology: the database perspective
Shoham (2009) views the problem of intention revision as a database manage-

ment problem. In particular, he introduced the conceptual underpinnings of the
distinction between a reasoner such as a planner, and the involved belief-intention
databases. At any given moment, an agent must keep track of a number of facts
about the current situation. This includes beliefs about the current state, beliefs
about possible future states, beliefs about which actions are available now and in
the future, and also beliefs about plans at future moments. It is important that all
of this information be jointly consistent at any given moment and furthermore can
be modified as needed while maintaining consistency.

Figure 1: The database perspective

In this article we introduce a logic that formally models such a “database”, as
visualised in Figure 1. Consistency in this logic is meant to represent not only that
the agent’s beliefs are consistent and the agent’s future plans are consistent, but
also that the agent’s beliefs and intentions together form a coherent picture of what
may happen, and of how the agent’s own actions will play a role in what happens.
Our primary contribution in this article is to focus also on how the database is to
be modified, and in the process to provide a clear picture of how intentions and
beliefs relate.
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In this paper we distinguish two kinds of outputs produced in Figure 1:

Belief A belief is added to the Belief database. If the new belief is inconsistent
with the existing beliefs, then these beliefs will have to be revised to ac-
commodate it. Our account of belief revision follows the classical AGM
postulates (Alchourrón et al., 1985), which we then generalise to iterated
revision. The goal is thus to give general conditions on revision with new
information that the agent has already committed to incorporating.

Intention An intention is added to the Intention database. Here we focus on fu-
ture directed intentions, understood as time-labeled actions pairs (a, t) that
might make up a plan. Analogously to belief revision, it is assumed the
agent has already committed to a new intention, so it must be accommo-
dated by any means short of revising beliefs. The force of the theory is in
restricting how this can be accomplished. To be more precise, we purport to
model an intelligent database, which receives instructions from some rea-
soner (e.g. a STRIPS-like planner) that is itself engaged in some form of
practical reasoning. The job of the database is to maintain consistency and
coherence among intentions and beliefs.

This description, however, obscures some important subtleties in the interac-
tion between beliefs and intentions. The following will serve as a running example
that we will use frequently throughout the article.

Example 1 (Running Example). Bobby the household robot has the goal to buy
groceries in the morning and to buy cleaning equipment in the afternoon. How-
ever, it only has sufficient budget to do either one of the two, but not both of them.
Bobby thus believes it is possible to buy cleaning equipment and to buy food, but
it also believes it is impossible to buy both. If Bobby decides to buy food, then it
will cook food in the afternoon.

Upon adopting the intention to buy food, Bobby will come to have new beliefs
based on the predicted success of this intention, e.g., that he will be able to cook
afterwards. These further beliefs are important when planning when or how to
cook. The intention is also supported by the absence of certain beliefs. It would
be irrational for Bobby to adopt the intention to buy food if it believed it did not
have sufficient money. Likewise, even if it originally believed it has sufficient
money, upon learning it does not, the intention to cook food should be dropped.
Yet, when dropping this intention, other beliefs, such as that he will be able to
cook, have to be dropped as well, which may in turn force other intentions and
beliefs to be dropped. And so on.
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1.3. Weak beliefs
Regular beliefs concern the world as it is, independent of an agent’s future

plans, but including what sequences of actions are possible. Thus, additionally to
atomic facts, an agent may have beliefs about what the preconditions and postcon-
ditions of actions are, and about which sequences of actions are jointly possible.

We distinguish weak beliefs depending on intentions, from beliefs that do not
(strong beliefs). In other words, as usual we assume that postconditions lead to
weak beliefs. Since we are not considering actions whose effects are uncertain or
dependent on the conditions that obtain when the action is taken, if an action is
planned the planner believes whatever follows from it.

Postconditions-as-weak-beliefs: If an agent intends to take an action,
it weakly believes that its postconditions will hold.

A key element in our approach is that we treat preconditions of actions as
assumptions. This leads to an asymmetry on beliefs about preconditions and post-
conditions of actions. However, for preconditions we adopt Shoham’s weaker
requirement, which we call here preconditions-as-assumptions:

Preconditions-as-assumptions: If you intend to take an action you
cannot believe that its preconditions do not hold. (Shoham, 2009)

Preconditions of actions are treated as assumptions, in the sense that an agent
forms intentions under the assumption that these preconditions will be made true
somewhere in the future. Treating preconditions as assumptions is a good fit with
how real-time planning agents operate, because intended actions may be added as
long as they are consistent with beliefs, and once they are accepted they can be
used as additional assumptions to further plans (Shoham, 2009). For instance, the
household robot Bobby has the intention to cook dinner tonight, which is based
on the intention to buy the ingredients, which is in turn based on the assumption
that your friends will attend tonight, even if it does not know this for sure yet.
It is only when Bobby finds out your friends are not coming, it should drop its
intentions. This preconditions-as-assumptions requirement is sometimes called
strong consistency, and is weaker than Bratman’s means-end coherence require-
ment (Bratman, 1987) (see Section 6.1.2 for a more detailed discussion).

The preconditions-as-assumptions requirement has various consequences, both
for the logic and for the theory change operators introduced in this paper. For ex-
ample, suppose Bobby intends to buy food at moment 0, and in addition to buy
cleaning equipment at moment 2. This may be coherent despite Bobby’s belief
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that it does not have enough money for both, thanks to an action of robbing a
bank that it can perform at 1. If this is the only model where Bobby can buy
food at moment 0 and equipment at moment 2, then the resulting belief-intention
database may entail do(rob)1, even if Bobby would like to avoid robbing a bank
by any means. We will consider these potential complications in Section 4.4 after
we have introduced the formal machinery.

1.4. Results
We develop a branching-time temporal logic, called Parameterized-time Ac-

tion Logic (PAL) in order to formalize beliefs. The language of this logic contains
formulas to reason about possibility, preconditions, postconditions, and the exe-
cution of actions. The semantics of this logic is close to CTL*, and in this way
follows the tradition of BDI logics of Rao and Georgeff (1991). An important
difference is that we do not use modal operators to reason about time, but we use
explicit time points. We axiomatize this logic and proof that the axiomatization is
sound and strongly complete with respect to our semantics.

We separate strong beliefs from weak beliefs as described above. Strong be-
liefs are beliefs that occur in the belief database, and they are independent of
intentions. Weak beliefs are obtained from strong beliefs by adding intentions to
the strong beliefs, and everything that follows from that. We then formalize a
coherence condition on the beliefs and intentions. This condition states that the
agent weakly believes it is possible to jointly perform all of its intended actions.

The main technical result of the paper is that we develop a set of postulates
for the joint revision of belief and intentions, and that we prove a variation of
the Katsuno and Mendelzon (1991) representation theorem. To this end, we define
a revision operator that revises beliefs up to a specific time point. We show that
this leads to models of system behaviors which can be finitely generated, i.e. be
characterized by a single formula. We also proof various representation theorems
for iterated revision of belief and intention.

1.5. Map of the paper
The structure of this paper is as follows. In Section 2 we introduce and moti-

vate our logic PAL, we axiomatize it and we proof completeness. In Section 3 we
separate strong beliefs from weak beliefs, and we formalize a coherence condition
on belief and intention. In Section 4 we study single-step revision of beliefs and
intentions, and we study iterated revision in Section 5. We discuss related work in
both philosophy of mind and AI in Section 6, and we provide directions for future
work in Section 7. All the proofs can be found in the appendix.
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2. Parameterized-time Action Logic (PAL): a logic for belief and intention

Our aim in this section is to develop a logical system that represents an agent’s
beliefs about the current moment and future moment and actions that may be
performed. Table 1 contains all the most important symbols used in this article
and their meaning.

Logic (Section 2, 3) Revision (Section 4, 5)
Symbol Meaning Symbol Meaning
L Language of PAL ◦ AGM revision revision
Prop Set of atoms X|t Some set X bounded up to t
Act Set of actions ◦t Strong belief revision function
a Finite action sequence ⊗t Intention revision function
χ Atomic propositions ∗t Belief-intention revision function
T Semantic tree (S,R,v,act) π|t t-bounded path
S Set of states in a tree m|t t-bounded model
R Accessibility relation for tree γt

I Selection function
v Valuation function ≤t

ψ Total pre-order over models
act Action function ε Empty intention
π Path (s0,s1, . . .) in a tree Ψ Epistemic state
πt The t’th state of the path π ◦t Epistemic revision function
m = (T,π) Model in PAL (Ψ, I) Epistemic belief-intention database
M Set of models in PAL ∗t Iterated revision function
M Set of all models in PAL κt Spohn ranking function
Mod(ϕ) Set of all models of ϕ Bel(κt) Accepted propositions
SB Set of all strong beliefs •t Extended Spohn revision
SB Set of strong beliefs L |t Restricted language
Cn(SB) Belief database
BD Set of all belief databases
MSB Set of models of strong beliefs
MSB Set of all MSBs
(a, t) Intention
I Set of all intentions
I Intention database
ID Set of all intention databases
(SB, I) Belief-intention database
BI Set of all BI databases
WB(SB, I) Weak beliefs
Ext(M|t) Set of extensions of M|t

EBI Set of all epistemic databases
Cohere(I) Coherence formula

Table 1: Symbols used in this paper and their meaning
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2.1. Syntax
Beliefs are represented by the formal language L . The language uses the set

Prop containing all atoms which are true or false in a time instance (state). We
also consider formulas do(a)t which will semantically be defined as a transition
from t to t +1 using action a.

Definition 1 (Language). Let

• Act = {a,b,c, . . .} be a finite set of deterministic primitive actions;

• Prop = {p,q,r, . . .}∪{pre(a), post(a)} be a finite set of propositions where
a = (a1,a2, . . .) is a non-empty action sequence and {a,a1,a2, . . .} ⊆ Act
are actions. We denote atomic propositions with χ.

The sets Prop and Act are disjoint. The language L is inductively defined by the
following BNF grammar:

ϕ ::= χt | do(a)t |�tϕ | ϕ∧ϕ | ¬ϕ,

with χ ∈ Prop,a ∈ Act, and t ∈N. Furthermore, we abbreviate ¬�t¬ with ♦t , and
we define ⊥≡ p0∧¬p0 and >≡ ¬⊥.

Intuitively, pt means that the atomic formula p is true at time t, do(a)t means
that action a is executed at time t. To every finite sequence of actions a=(a1,a2, . . .)
and every time point t we associate a formula pre(a)t , which is understood as the
precondition for subsequently executing actions a1,a2, . . . at time t. Note pre and
postconditions are represented as particular propositions, and not abbreviations of
other propositional formulas.

We define preconditions for sequences of actions explicitly, because it is diffi-
cult to define the precondition for a sequence of actions using only preconditions
for individual actions. This can already be witnessed in our running example:
Bobby believes the preconditions to buy food and cleaning equipment are true
separately, but still does not believe the precondition for performing both actions
subsequently is true. These type of formulas will play a crucial role when we
formalize the coherence condition in Section 3.

The modal operator �t is interpreted as necessity, indexed with a time point t.
Intuitively, a formula of the form �t pt+1 means “it is necessary at time t that p is
true at time t +1. The other boolean connectives are defined as usual.

Example 2 (Running example (Ctd.)). Let our language contain:
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• Act= { f ood,equip,cook,nop}, where f ood is the action “buy food”, equip
is the action “buy cleaning equipment”, and cook is the action “cook”, and
nop is the special “no operation” action,2

• Prop consists of of pre and post statements with the actions in Act, such as
pre( f ood), pre( f ood,equip), pre( f ood,nop, f ood), post( f ood), post(nop).

Some examples of formulas in the language generated from Act and Prop are:

• pre( f ood)0∧do(nop)0∧do(equip)1 (the precondition to buy food at time
0 is true, no action is performed at time 0, and Bobby buys cleaning equip-
ment at time 1),

• ♦0(do( f ood)0∧¬do(cook)1) (it is possible at time 0 to buy food at time 0
and not to cook at time 1),

• ♦0do( f ood)0∧♦0do(equip)1∧¬♦0(do( f ood)0∧do(equip)1) (it is possi-
ble to buy food at time 0 and it is possible to buy equipment at time 1, but it
is not possible to do both),

• pre( f ood,cook)0 (the precondition to buy food at time 0 and then cook at
time 1 is true).

• do(equip)1 (Bobby will buy cleaning equipment at time 1),

• ♦0¬♦1do(cook)1 (it is possible at time 0 that it is not possible at time 1 to
cook),

•
∨

x∈Act pre( f ood,x,equip)0 (the precondition to buy food at time 0 and to
buy equipment at time 2 is true, if a right action is performed at time 1).

Note that in this article, we use pre(a)t to denote the proposition that is the pre-
condition of action a, but this is simply a naming convention. For instance, in the
example above, we denote the precondition for action f ood as pre( f ood), while
we explain in natural language that this means the agent has sufficient money to
buy food. Thus, we could equally have written hasEnoughMoneyForFood instead
of pre( f ood), but we chose to keep the former notation, to show the interplay

2In many of our examples it is useful include an action that does not do anything. In that case
we use the special action nop and the formulas pre(nop)≡> and post(nop)≡>.

10



between preconditions, actions, and postconditions in our examples more clearly.
One may choose to define pre/postconditions as abbreviations of state propositions
(possibly with time-indices), but since the internal structure of pre/postconditions
is not the focus of our paper, we define them simply as primitive objects (first-class
citizens).

The following definition collects all formulas up to some time t in a set Past(t),
which will turn out to be convenient when we axiomatize our logic. A formula
of the form do(a)t will be semantically defined as a transition from t to t + 1.
Therefore it does not belong to the formulas true up to time t if it does not fall
under the scope of a modality. We will make this more precise when we introduce
the semantics in the next subsection.

Definition 2. Past(t) is the set of all formulas from L generated by boolean com-
binations of pt ′, pre(a)t ′, post(a)t ′ , �t ′ϕ, and do(a)t ′−1 where t ′ ≤ t and ϕ is some
formula from L .

Note that ϕ in the definition above can contain formulas indexed by time
points greater than t. For instance, do(a)1 ∈ Past(2),�2♦5 pre(a)6 ∈ Past(2), but
do(a)3 6∈ Past(1) and do(a)1∨ p1 6∈ Past(1).

2.2. Semantics
The semantics of our logic is similar to CTL* (Reynolds, 2002), namely a tree

structure containing nodes and edges connecting the nodes. A tree can equiva-
lently be seen as an unfolded transition system, thereby representing all the pos-
sible runs through it. We choose to represent our semantics using trees because
it simplifies the completeness proofs. See Reynolds (2002) for an overview of
different kinds of semantics and conceptual underpinnings.

With each natural number i ∈ N we associate a set of states Si such that all
these sets are disjoint. We then define the accessibility relation between states
such that it generates an infinite, single tree.

Definition 3 (Tree). A tree is quadruple T = (S,R,v,act) where

• S =
⋃

n∈N Sn is a set of states, such that each St is the set of states at time t,
Si∩S j = /0 for i 6= j;

• R ⊆
⋃

n∈N Sn× Sn+1 is an accessibility relation that is serial, linearly or-
dered in the past and connected (so S0 is a singleton);

• v : S→ 2Prop is a valuation function from states to sets of propositions;
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• act : R→ Act is a function assigning actions to elements of the accessibility
relation, such that actions are deterministic, i.e. if act((s,s′)) = act((s,s′′)),
then s′ = s′′.

We evaluate formulas on a path in a tree. A path is a sequence of states in a
tree, connected by the accessibility relation R.

Definition 4 (Path). Given a tree T = (S,R,v,act), a path π = (s0,s1, . . .) in T is
a sequence of states such that (st ,st+1) ∈ R. We write πt to refer to the t’th state
of the path π. We use elements of the path as arguments for the valuation function
and the action function:

• v(πt) are the propositions true on path π at time t;

• act((πt ,πt+1)) is the next action on path π at time t. We abbreviate act((πt ,πt+1))
with act(π, t), since πt+1 is uniquely determined by the action.

We identify T with the set of paths in T , and we write π ∈ T to denote that a path
π exists in the tree T .

Intuitively, v(πt) are the propositions true at time t on path π, and act(π, t) is
the next action a on the path. We next define an equivalence relation ∼t on paths,
which is used to give semantics to the modal operator.

Definition 5 (Path equivalence). Two paths π and π′ are equivalent up to time t,
denoted π ∼t π′, if and only if they contain the same states up to and including
time t, i.e.

π∼t π
′ iff (∀t ′ ≤ t).(v(πt ′) = v(π′t ′)) and

(∀t ′ < t).(act(π, t ′) = act(π′, t ′)).

Formulas in PAL are evaluated on a path. Therefore, a model for a formula is
pair consisting of a tree and a path in this tree. This, together with some additional
constraints related to the pre- and post-conditions of actions, is our definition of a
model.

Definition 6 (Model). A model is a pair (T,π) with T = (S,R,v,act) such that
for all π ∈ T the following holds:

1. If act(π, t) = a, then post(a) ∈ v(πt+1);
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2. If pre(a) ∈ v(πt), then there is some π′ in T with π∼t π′ and act(π′, t) = a;

3. If pre(a,b) ∈ v(πt), then there is some π′ in T with π ∼t π′, act(π′, t) = a,
and pre(b) ∈ v(π′t+1);

4. If pre(a,b) ∈ v(πt), then pre(a) ∈ v(πt),

We refer to models of PAL with m1,m2, . . ., we refer to sets of models with
M1,M2, . . ., and we refer to the set of all models with M.

Remark 1. In our semantics, preconditions are sufficient conditions for actions
to be possible, but they are not necessary. Alternatively, one may strengthen this
by changing the Condition 2 of Definition 6 from an “if” to an “if and only if”.
However, our choice is an implementation of Shoham’s idea of “opportunistic
planning”: a planner may form intentions, even though at the moment of planning
it may not be clear whether preconditions are true (Shoham, 2009).

The conditions on models are there to formalize the consistency conditions
from the introduction. Condition 1 is straightforward: we simply expect postcon-
ditions to hold in a state after an action has been executed. Condition 2 and 3 put
a weaker requirement on the preconditions for actions: If the precondition holds,
then there is some path in which the action is executed. This is part of the weaker
requirement Shoham puts on preconditions. The opposite direction, stating that
preconditions are necessary for executing actions, will be formalized with a co-
herence condition on beliefs and intentions in Section 3.2. Condition 4 of a model
simply ensures that if the precondition of a sequence of action is true in a state,
then the precondition for any subsequence by removing actions from the end of
the sequence is also true in that state.

Example 3 (Running example (Ctd.)). Consider the partial PAL model (T,π′)
of the beliefs of Bobby the household robot from time 0 to time 2 in Figure 2,
where the thick path represents the actual path. We provide some examples of the
conditions of our model (Definition 6):

• since act(π,1) = equip, post(equip) ∈ v(π2) holds as well (Condition 1),

• since pre(cook) ∈ v(π′′1), there is some path, namely π′ with π′ ≡t π′′ and
act(π′,1) = cook (Condition 2),

• since pre( f ood,cook) ∈ v(π0), there exists some path, namely π′ with π≡0
π′,act(π′,0) = f ood, and pre(cook) ∈ v(π′1) (Condition 3),
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• since pre( f ood,cook) ∈ v(π0), pre( f ood) ∈ v(π0) holds as well (Condition
4).

t = 0 t = 1 t = 2

s0

{pre( f ood),
pre( f ood,cook)}

s1

{pre(equip)}
s2 {post(equip)}

s3

{pre(cook),
post( f ood)}

s4 {post(cook)}

s5

π

π′

π′′

nop

equip

food

cook

nop

Figure 2: Example PAL Model (T,π′) from t = 0 to t = 2.

We now provide the truth definitions. Recall that formulas are evaluated on a
path as a whole, and not in a state.

Definition 7 (Truth definitions). Let m=(T,π) be a model with T =(S,R,v,act):
T,π |= χt iff χ ∈ v(πt) with χ ∈ Prop
T,π |= do(a)t iff act(π, t) = a
T,π |= ¬ϕ iff T,π 6|= ϕ

T,π |= ϕ∧ϕ′ iff T,π |= ϕ and T,π |= ϕ′

T,π |=�tϕ iff for all π′ in T : if π′ ∼t π, then T,π′ |= ϕ

The truth definitions state that propositions are simply evaluated using the val-
uation function v, but do statements are different. They are about state transitions,
and therefore use the action function act. This is comparable to the distinction be-
tween state formulas and path formulas in CTL* (see the related work Section 6.3
for more details). Since we are evaluating formulas from a state, the modal opera-
tor �t is indexed with a time point t, and corresponds to the equivalence relations
∼t .

Example 4 (Running Example (Ctd.)). We provide some example of applica-
tions of the truth definition for the model in Figure 2:

T,π |= pre( f ood)0∧do(nop)0∧do(equip)1
T,π |= ♦0(do( f ood)0∧¬do(cook)1)
T,π |= ♦0do( f ood)0∧♦0do(equip)1∧¬♦0(do( f ood)0∧do(equip)1)
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T,π′ |= pre( f ood,cook)0
T,π′ 6|= do(equip)1
T,π′′ |= ♦0¬♦1do(cook)1

Definition 8 (Model of a formula). We say that a model m is a model of a for-
mula ϕ if m |= ϕ. We denote the set of all models of a formula ϕ by Mod(ϕ),
i.e.,

Mod(ϕ) = {m ∈M | m |= ϕ}.

We define the set of all models of a set of formulas Σ, as Mod(Σ)= {m∈M |m |=ϕ

for every ϕ ∈ Σ}=
⋂

ϕ∈Σ Mod(ϕ).

Next we turn to the notions of validity, satisfiability, and semantic conse-
quence. Valid formulas hold in every model, and satisfiable formulas hold in
some model.

Definition 9 (Validity, satisfiability, and semantic consequence).

• ϕ is valid, i.e. |= ϕ iff Mod(ϕ) =M.

• ϕ is satisfiable iff Mod(ϕ) 6= /0.

• ϕ is a semantic consequence of a set of formula Σ, i.e. Σ |= ϕ iff Mod(Σ)⊆
Mod(ϕ).

2.3. Axiomatization
In this part we present the axiomatization of our logic, and we explain the most

important axioms in turn.

Propositional tautologies (PROP)
�t(ϕ→ ϕ′)→ (�tϕ→�tϕ

′) (K)
�tϕ→ ϕ (T)
♦tϕ→�t♦tϕ (5)

Axioms PROP, K, T, and 5 together ensure our modal operator is an equivalence
relation. This is simply the modal logic system KT5.

χt →�tχt , where χ ∈ Prop (A1)
♦tχt → χt , where χ ∈ Prop (A2)
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Axioms A1 states that if a proposition is true in a state on a path, then it is nec-
essarily true at that time, i.e., it is true in all equivalent paths. The contraposition
of Axiom A2 states the same for negated propositions. These axioms follow from
the definition of the equivalence ∼t between paths: if two paths are equivalent up
to time t, then the same propositions are true in time t as well.

do(a)t →�t+1do(a)t (A3)
♦t+1do(a)t → do(a)t (A4)

Axioms A3 and A4 are similar to A1 and A2, but then for the case of actions. Re-
call that do statements are semantically represented as transitions between states
(Definition 7). Therefore, the modal operator is indexed with the next time point
t +1.

�tϕ→�t+1ϕ (A5)

Axiom A5 is a result of the fact that for some path π the number of paths equiv-
alent with π can only decrease as time moves forward. Therefore, if something
is true on all paths equivalent up to time t, then it is necessarily true on all paths
equivalent up to the next time moment t +1.

∨
a∈Act do(a)t (A6)

do(a)t →¬do(b)t , where b 6= a (A7)

Axioms A6 and A7 together state that exactly one action is executed at every time
moment.

do(a)t → post(a)t+1 (A8)
pre(a)t → ♦tdo(a)t (A9)
(pre(a,b)t ∧do(a)t)→ pre(b)t+1 (A10)
pre(a,b)t → pre(a)t (A11)

Axioms A8-A11 directly correspond to properties 1-4 of a model (definition 6).

(do(a)t ∧ϕ)→�t(do(a)t → ϕ) (A12)
where ϕ ∈ Past(t +1)

Axiom A12 ensures actions are deterministic. If something holds immediately
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after performing action a in time t (which is why ϕ ∈ Past(t +1)), then it neces-
sarily holds after performing that action in time t. Note this formula does not hold
without the restriction of ϕ to Past(t + 1), because because formulas containing
time points greater than t +1 may depend on actions performed after time t.

In addition to these axioms, PAL has two inference rules, a variant of Neces-
sitation and Modus Ponens:

From ϕ, infer �0ϕ (NEC)
From ϕ,ϕ→ ϕ′, infer ϕ′ (MP)

Note that in NEC we can replace �0ϕ with �tϕ, for any t, due to Axiom A5.
In other words, the following variant of necessitation is a derivable rule of the
logic:

From ϕ, infer �tϕ (NEC-t)

Remark 2. Continuing our discussion of Remark 1, one may strengthen Axiom
A9 as follows:

pre(a)t ↔ ♦tdo(a)t (A9*).

We next formalize the notion of theorems and derivability.

Definition 10 (Theorems in PAL). A derivation of ϕ within PAL is a finite se-
quence ϕ1, . . . ,ϕm of formulas such that:

1. ϕm = ϕ;

2. every ϕi in the sequence is either

(a) (an instance of) one of the axioms

(b) the result of the application of Necessitation or Modus Ponens to for-
mulas in the sequence that appear before ϕi.

If there is such a derivation for ϕ we write ` ϕ. and we say ϕ is a theorem of PAL.

We define theorems and derivability separately because we restrict the appli-
cation of the Necessitation rule to theorems only.
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Definition 11 (Derivability in PAL). A derivation for a formula ϕ from a set of
formulas Σ is a finite sequence ϕ1, . . . , ϕm of formulas such that:

1. ϕm = ϕ;

2. every ϕi in the sequence is either a theorem, a member of Σ, or the result
of the application of Modus Ponens to formulas in the sequence that appear
before ϕi.

If there is such a derivation from Σ for ϕ we write Σ ` ϕ. We then also say that ϕ

is derivable from the premises Σ.

Furthermore, a set of formulas Σ is consistent if we cannot derive a contra-
diction from it, i.e., Σ 6`⊥, and a set of formulas Σ is maximally consistent if it is
consistent and every superset is inconsistent.

We denote by Cn(Σ) the set of consequences of Σ, i.e.

Cn(Σ) = {ϕ | Σ ` ϕ}.

2.4. Soundness and Completeness
In this section we prove the axiomatization of PAL is sound and strongly com-

plete with respect to its semantics.

Theorem 1 (Completeness Theorem). The logic PAL is sound and strongly com-
plete, i.e. Σ ` ϕ iff Σ |= ϕ.

We provide a proof sketch of the theorem. The full proofs can be found in
Appendix A.

Proof Sketch. We prove the following formulation of completeness: each consis-
tent set of formulas Σ has a model. We prove the Lindenbaum lemma, stating
that each consistent set can be extended to a maximally consistent set Σ′, i.e. Σ′

is consistent and each proper superset of Σ′ is inconsistent. In the first step we
extend Σ to a maximally consistent set Σ0.

Then for each t we define an equivalence relation ≡t on maximally consistent
sets in the following way:

Σ
∗
1 ≡t Σ

∗
2 iff Σ

∗
1∩Past(t) = Σ

∗
2∩Past(t).

Let us denote the corresponding equivalence classes by [Σ∗]t , which means {Σ∗ |
Σ∗ ≡t Σ

∗}.
In the second part of the proof, using the maximally consistent superset Σ∗ of

Σ (which exists by the Lindenbaum lemma), we define the tree TΣ∗ = (S,R,v,act):
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1. S =
⋃

t∈N St where St = {[Σ
∗
]t | Σ

∗ ≡t Σ∗}

2. sRs′ iff (∃Σ∗, t ∈ N).(s = [Σ
∗
]t ∧ s′ = [Σ

∗
]t+1)

3. χ ∈ v(s) iff (∃Σ∗, t ∈ N).(s = [Σ
∗
]t ∧χt ∈ Σ

∗
).

4. a = act((s,s′)) iff (∃Σ∗).(s = [Σ
∗
]t ∧ s′ = [Σ

∗
]t+1∧do(a)t ∈ Σ

∗
).

Given a maximally consistent set (mcs) Σ∗, we construct a path πΣ∗ = (s0,s1, . . .)
from it by letting st = [Σ∗]t . So χ∈ v([Σ∗]t) iff χt ∈ Σ∗ and a= act(([Σ∗]t , [Σ∗]t+1))
iff do(a)t ∈ T ∗.

If π(Σ∗) = (s0,s1, . . .), where st = [Σ∗]t , then one can show that (TΣ∗,π(Σ
∗))

is a model. Finally, we prove that for each ϕ, (TΣ∗,π(Σ
∗) |= ϕ iff ϕ ∈ Σ∗), using

induction on the complexity of ϕ. Consequently, (TΣ∗,π(Σ
∗)) |= Σ.

Note that we can check satisfiability of any formula from L in finite time.
Indeed, for every formula ϕ ∈L there is a maximal time index t appearing in ϕ.
By Definition 7, for checking if ϕ is satisfied in a model m it is enough to check
the states and actions in the of m up to time t + 1. If we restrict the evaluation
functions v to the finite set of propositions from Prop relevant for ϕ,3 and since
we have finitely many deterministic actions, there are only finitely many different
ways to build a tree until a fixed time instance. Therefore, the number of those
time-restricted trees which satisfy the four conditions of Definition 6 is finite as
well. Thus, the satisfiability problem for the logic PAL is decidable.

3. Adding intentions

In the previous section we developed a logic for the belief database of Shoham’s
database perspective (Figure 1). We did not yet take intentions into account, which
is what we do in this section. Recall intentions are formalized as discrete atomic
action intentions of the form (a, t). We focus on two main tasks: separating beliefs
dependent on intentions (weak beliefs) from those that are not (strong beliefs), and
formalizing a coherence condition on beliefs and intentions. These two tasks cor-
respond to the two subsections of this section.

3Technical details can be found in Appendix A.
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3.1. Separating strong and weak beliefs
The idea behind strong beliefs (the terminology due to Van der Hoek and

Wooldridge (2003)) is that they represent the agent’s ideas about what is in-
evitable, no matter how it would act in the world. In our setting, a set of strong
beliefs is a set of formulas starting either with ♦0 or �0, and all consequences that
follow from it. First, we define a language for strong beliefs.

Definition 12 (Strong belief). The set of all of strong beliefs SB for L are gen-
erated by boolean combinations of �0ψ, where ψ is a PAL formula. A strong
belief is an element of SB.

We next provide some examples of strong beliefs for our running example.

Example 5 (Running example, Ctd.). Some examples of strong belief formulas
are:

• ♦0(do( f ood)0∧¬do(cook)1)

• ♦0do( f ood)0∧♦0do(equip)1∧¬♦0(do( f ood)0∧do(equip)1)

• ♦0¬♦1do(cook)1

• �0♦0do(cook)1

Next we define a set of strong beliefs, which is generated from the set of all
strong beliefs, and closed under consequence.

Definition 13 (Set of strong beliefs). A set of strong beliefs SB is the deductive
closure of a subset of formulas from SB, i.e. SB =Cn(Σ) where Σ⊆ SB.

The following example shows that a set of strong beliefs may also contain
formulas which are not in SB, since they are closed under consequence.

Example 6 (Set of strong beliefs). Let Σ = {¬♦0 p3,�0q2} ⊂ SB, and let the set
of strong beliefs SB = Cn(Σ). From Axioms A1 and A2 we obtain ¬p3 ∈ SB, as
well as q2 ∈ SB.

The reader may already have noted that, semantically, strong beliefs are inde-
pendent of the specific path on which they are true. Indeed, strong beliefs are true
in a tree rather than on a single path. Therefore, if a model (consisting of a tree
and a path) is a model for a strong belief formula ϕ, then all possible models with
the same tree are models of the strong belief formula ϕ. We make this idea precise
in the following definition.
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Definition 14 (Set of models of strong beliefs (msb set)). A set of models of strong
beliefs MSB ⊆M (i.e., an msb set) is a set of models such that MSB = {(T,π) :
π ∈ T}. The set MSB contains all msb sets.

Definition 14 ensures that if some model (T,π) is in a set of models of a
strong belief, then all other models (T,π′) are also in this set. Note that it would
also be possible to identify strong models with a tree T , but we have chosen not
to implement this to keep the presentation concise.

The following proposition shows a direct correspondence between a set of
strong beliefs and its models.

Proposition 1. Given a set of strong beliefs SB, the set of models of SB is an msb
set, i.e., Mod(SB) ∈MSB.

We now explain the semantics of strong beliefs models with our running ex-
ample.

Example 7 (Running example (Ctd.)). Consider the tree T of Figure 2 and let
π ∈ {π,π′,π′′}. The following statements hold:

• T,π |= ♦0(do( f ood)0∧¬do(cook)1)

• T,π |= ♦0do( f ood)0∧♦0do(equip)1∧¬♦0(do( f ood)0∧do(equip)1)

• T,π |= ♦0¬♦1do(cook)1

• T,π |=�0♦0do(cook)1

We obtain a belief-intention database by adding intentions to the strong be-
liefs. By intentions we assume action-time pairs, and an intention database is a
set of intentions. We also add the constraint that at most one action is intended
for a given time moment. We close the set of strong belief under consequence.
Alternatively we can also have a (finite) set of strong beliefs, as in Hansson’s base
revision (Hansson, 1999), but we follow the approach of Katsuno and Mendelzon.

Definition 15 (Belief database, intention database, belief-intention database).
An intention (a, t) is a pair consisting of an action a ∈ Act and a time point t.
I= Act×N denotes the set of all intentions.

A belief database SB is a set of strong beliefs closed under consequence, i.e.
SB =Cn(SB). BD denotes the set of all belief databases.
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An intention database I = {(a1, t1),(a2, t2), . . .} is a set of intentions such that
no two intentions exist at the same time point, i.e if i 6= j then ti 6= t j. ID⊆ 2Act×N

denotes the set of all intention databases.
A belief-intention database (SB, I) consists of a belief database and an inten-

tion database. BI= BD× ID denotes the set of all belief-intention databases.

We define weak beliefs by adding intentions to the strong beliefs, and closing
the result under consequence.

Definition 16 (Weak Beliefs). Given a belief-intention database (SB, I), the weak
beliefs are defined as follows:

WB(SB, I) =Cn(SB∪{do(a)t | (a, t) ∈ I}).

We provide an example for weak beliefs using our running example.

Example 8 (Running example (Ctd.)). Suppose the set SB contains strong be-
liefs describing the tree T of Figure 2. Some of the formulas in SB are:

• ♦0(do( f ood)0∧do(cook)1),

• ♦0do(equip)1,

• �0 pre( f ood,cook)0,

• ¬♦0(do( f ood)0∧do(equip)1).

Let I = {( f ood,0),(cook,1)}. Some examples of weak beliefs WB(SB, I) are:

• do( f ood)0∧do(cook)1,

• ¬do(equip)1,

• post( f ood)1∧ post(cook)2.

Note the model (T,π′) from Figure 2 is a model of WB(SB, I).

Note the difference between Example 7 and Example 8. Strong beliefs are
true in a tree, while weak beliefs depend on a path. In this way, weak beliefs
are contingent on the action executed on the actual path. We can thus understand
adding intentions to strong beliefs semantically by choosing a set of paths in a
tree.
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Remark 3. Note that since weak beliefs contain strong beliefs with intentions,
and everything following from that, they also contain postconditions of actions.
For instance, if I = {(a, t)} and SB= /0, then post(a)t ∈WB(SB, I) (by Axiom A8).
However, it does not mean that preconditions of intended actions are believed
as well, i.e. pre(a)t 6∈WB(SB, I). So an agent can believe it will execute its
intentions, while it doesn’t believe the preconditions hold (yet). This is why the
implication in Axiom A9 is not a bidirectional implication (see also Remark 2).

3.2. Commitment: the coherence condition on beliefs and intentions
This paper is about commitment. The agent is committed to its intentions as

long they are coherent with its beliefs. The coherent condition is that the agent
believes it is possible to perform all intended action. We thus require that the joint
preconditions of all intended actions not be disbelieved by the agent.

Definition 17 (Coherence). Given an intention database I = {(bt1 , t1), . . . ,(btn, tn)}4

with t1 < .. . < tn, let

Cohere(I) = ♦0
∨

at∈Act:t 6∈{t1,...,tn}
at=bt :t∈{t1,...,tn}

pre(at1,at1+1, . . . ,atn)t1. (1)

• For a given belief-intention database (SB, I), we say that it is coherent iff
SB is consistent with Cohere(I), i.e., SB 6` ¬Cohere(I).

• A pair (ψ, I) consisting of a strong belief formula ψ ∈ SB and an intention
database I is coherent iff ψ is consistent with I, i.e. ψ 6` ¬Cohere(I).5

Note we can define coherence semantically for a given msb set MSB (Defini-
tion 14) iff there exists some m ∈MSB with m |= Cohere(I). We then obtain the
correspondence that (SB, I) is coherent iff (Mod(SB), I) is coherent using com-
pleteness trivially.

Let us explain this definition with a simple example.

4t1, . . . , tn is not necessarily a sequence of subsequent integers. For instance t1 = 2, t2 = 5. The
disjunction below covers the remaining time indexes with all possible actions.

5We will use this formulation in the next section when we represent a set of strong beliefs SB
by a single formula ψ.
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Example 9. Let Act = {a,b} and I = {(a,1),(b,3)}. Then,

Cohere(I) = ♦0
∨

x∈Act

pre(a,x,b)1 = ♦0(pre(a,a,b)1∨ pre(a,b,b)1).
6

Intuitively, intentions cohere with beliefs if the agent considers it possible to
jointly carry out all of the intended actions. This is a minimal requirement on
rational balance between the two mental states.

In the next section we will consider the revision of belief-intention database.
We will require that a belief-intention database is coherent after revision.

Remark 4. Consider our example of Bobby intending to buy food at time 0. As
we pointed out, it is not actually necessary that Bobby believes it has sufficient
money; only that it does not believe it does not have sufficient money. We can also
ask: what can be Bobby’s working assumptions about the future, upon adopting
this intention? In so far as Bobby is committing himself to this action, we may
assume that it will buy food at time 0. If we then consider the paths in our belief
models on which this action is taken at time 0, the postconditions will hold along
all of them. However, to allow that the preconditions may not yet be believed, we
admit paths on which the preconditions do not hold. We only require that they
hold on some path in the set, so that Bobby cannot stray too far from reality.

Indeed, this is arguably closer to how we reason about future actions. We often
commit to actions without explicitly considering the path that will lead us there.
Eventually this decision will have to be made, but there is nothing incoherent
about glossing over these details at the current moment. Bobby should assume
it will have bought food at time 1 and can continue making plans about what it
will do with the food after this. But it should not assume the preconditions will
hold until it has made further, specific plans for bringing them about. And at the
current time, Bobby may not even bother worrying about it.

We now apply the coherence condition to our running example.

Example 10 (Running example (Ctd.)). Let (SB, I) be such that the strong be-
liefs are represented by the tree in Figure 37. We consider different choices for
I:

6Our construction of preconditions over action sequences may lead to a coherence condition
involving a big disjunction. Alternatively, one may explicitly denote the time of each precondition,
e.g. pre(a,b)(t1,t2). We chose the former since it is closer syntax of the other propositions.

7In other words, each tree in each model in the msb set SB is exactly the same up to time t = 2
as the tree in Figure 3.
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• Let I = {( f ood,0),(cook,1)}. In this case, (Mod(SB), I) is coherent, since
there is some model m∈Mod(SB) with m |=Cohere(I), i.e. m |=♦0 pre( f ood,equip)0.
In fact, from pre( f ood,cook)∈ v(s0), it follows that T,m |= pre( f ood,cook)0
holds for each model (T,m). From the completeness theorem, it follows that
(SB, I) is coherent as well.

• Let I = {( f ood,0),(equip,1)}. In this case (Mod(SB), I) is not coherent,
since there is not m ∈ Mod(SB) with m |= ♦0 pre( f ood,cook)0. Again by
completeness we obtain that (SB, I) is not coherent either.

t = 0 t = 1 t = 2

s0

{pre( f ood),
pre( f ood,cook)}

s1

{pre(equip)}
s2 {post(equip)}

s3

{pre(cook),
post( f ood)}

s4 {post(cook)}

s5

π

π′

π′′

nop

equip

food

cook

nop

Figure 3: The tree T of Figure 2 reprinted.

Next we show that a coherent belief-intention database implies joint consis-
tency of beliefs and intentions.

Proposition 2. Given some belief-intention database (SB, I), if (SB, I) is coher-
ent, then WB(SB, I) is consistent.

Proof Sketch. Using axioms A9, A10, and A12, for every a0, . . . ,am ∈Act and∈N
one can show that {pre(a0, . . . ,am)t} `♦t(do(a0)t∧♦t+1(do(a1)t+1∧♦t+2(. . .))).
By taking the contrapositive of A5, we obtain the theorem of PAL logic

` pre(a0, . . . ,am)t → ♦t

m∧
p=0

do(ap)t+p (2)

For an intention database I = {(bt1, t1), . . . ,(btn, tn)}, with t1 < .. . < tn, let us con-
sider its coherence formula Cohere(I) (Formula (1) from Def. 17). If we apply

25



the theorem (2) to the formulas under the scope of the disjunction in (1) (i.e.,
pre(at1,at1+1, . . . ,atn)t1), we obtain that Cohere(I) implies

♦0
∨

at∈Act:t 6∈{t1,...,tm}
at=bt :t∈{t1,...,tn}

♦t1(do(at1)t1 ∧do(at1+1)t1+1∧ . . .∧do(atn)tn)

Consequently, Cohere(I) implies ♦0♦t1
∧n

k=1 do(btk)tk , and by A5 this implies
♦0

∧n
k=1 do(btk)tk . Since I = {(bt1, t1), . . . ,(btn , tn)}, the last formula can be rewrit-

ten as ♦0
∧

(a,t)∈I do(a)t . Therefore, if (B, I) is coherent, then B∪{♦0
∧

(a,t)∈I do(a)t}
is a consistent set. By the fact that B is a strong belief set, B∪{

∧
(a,t)∈I do(a)t} is

consistent, i.e. WB(B, I) is consistent.

Note the reverse direction of Proposition 2 does not hold. We demonstrate this
in the next example.

Example 11 (Running example (Ctd.)). Suppose (SB, I) is such that the strong
beliefs are represented by the tree in Figure 3 and that I = {( f ood,0),(equip,1)}.
In this case the weak beliefs WB(SB, I) are consistent, because the following
holds:

WB(SB, I) ` do( f ood)0∧do(equip)1,

no contradiction is derived from this. However, (SB, I) is not coherent, because
there is no single path in the model in which all the preconditions of the intended
actions hold.

4. Revision of belief and intention

In this section we turn to the dynamic part of our belief-intention databases
by studying the revision of belief and intention. We provide and motivate a set
of revision postulates on a belief-intention database (SB, I) in Section 4.2, and
we prove our main representation theorem in Section 4.3. We discuss various
examples in Section 4.4.

The challenge of obtaining our result is two-fold:

• When revising a belief database that is bounded up to some time t with a
strong belief, we have to ensure that the resulting belief database is also
bounded up to t,
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• When revising a belief database we also have to ensure the new belief
database remains a strong belief.

Our solution to is to bound both the syntax of PAL and the revision operator
up to some time t in the first subsection. In the second subsection we do the same
for the semantics.

4.1. Preliminaries: Belief Revision
The AGM postulates (Alchourrón et al., 1985) formulate properties that should

be satisfied by any (rational) revision operators defined on deductively closed sets
of propositional formulas. Katsuno and Mendelzon (1991) represent a belief set B
as a propositional formula ψ such that B = {ϕ |ψ ` ϕ}. They define the following
six postulates for revision on ψ and show that these are equivalent to the eight
AGM postulates:

(R1) ψ◦ϕ implies ϕ

(R2) If ψ∧ϕ is satisfiable, then ψ◦ϕ≡ ψ∧ϕ

(R3) If ϕ is satisfiable, then ψ◦ϕ is also satisfiable

(R4) If ψ≡ ψ′ and ϕ≡ ϕ′, then ψ◦ϕ≡ ψ′ ◦ϕ′

(R5) (ψ◦ϕ)∧ϕ′ implies ψ◦ (ϕ∧ϕ′)

(R6) If (ψ◦ϕ)∧ϕ′ is satisfiable, then ψ◦ (ϕ∧ϕ′) implies (ψ◦ϕ)∧ϕ′

Given a set J of all interpretations over some propositional language, they
define a faithful assignment as a function that assigns each ψ to a pre-order≤ψ on
models satisfying the following three conditions:

1. If J,J′ ∈Mod(ψ), then J <ψ J′ does not hold.

2. If J ∈Mod(ψ) and J′ 6∈Mod(ψ), then J <ψ J′ holds.

3. If ψ≡ φ, then ≤ψ=≤φ.

They show in a representation theorem that a revision operator ◦ satisfies pos-
tulates (R1)-(R6) iff there exists a faithful assignment that maps each formula ψ

to a total preorder ≤ψ such that

Mod(ψ◦ϕ) = min(Mod(ϕ),≤ψ).
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4.2. Revision postulates
Recall from Section 4.1 that we aim to prove a representation theorem com-

parable to that of Katsuno and Mendelzon (1991). Therefore, we follow their
convention to fix a way of representing a belief set SB consisting of strong beliefs
by a single strong belief formula ψ such that SB = {ϕ | ψ ` ϕ}. One of the main
difficulties in this respect is that time in PAL is infinite in the future, so it is gen-
erally not possible to represent SB closed under consequence by a single formula
ψ, since this may potentially lead to an infinite conjunction. Therefore, we cannot
prove the Katsuno and Mendelzon representation theorem directly. In this section,
we define a bounded revision function and we restrict the syntax of PAL up to a
specific time point.

We first define some notation that we use in the rest of this section.

Notation.

• By slight abuse of terminology, a pair (ψ, I)∈ SB×ID consisting of a strong
belief formula ψ and an intention database I is also called a belief-intention
database,

• For ϕ,ψ ∈ SB, we write ϕ≡ ψ to denote that ` ϕ↔ ψ,

• ε is the special “empty” intention.

• We denote BI,SB,I, and ID bounded up to t with respectively BI|t ,SB|t ,I|t ,
and ID|t . However, if the restriction is clear from context, we may omit the
superscript notation.

Our aim is to define a bounded revision function ∗t revising a belief-intention
database (ψ, I) with a tuple (ϕ, i) consisting of a strong belief ϕ and an intention i,
denoted (ψ, I)∗t (ϕ, i). The bounded operator revises the formulas of the restricted
language L |t , that represent all the relevant information for planning up to time t.

Definition 18 (The language L |t). The language L |t consists of all formulas
ϕ ∈ L such that if pt ′ ,�t ′,do(a)t ′ or post(a)t ′ occurs in ϕ, then t ′ ≤ t. Fur-
thermore, if pre(a0, . . . ,ak)t ′ occurs in ϕ, then k+ t ′ ≤ t.

For instance, pre(a)3, post(a)3 ∈L |3, but pre(a,b,c)3 /∈L |3.
First we define the restricted operator ◦t which revises strong beliefs up to

given time instance t.
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Definition 19 (Strong belief revision function). A bounded strong belief revision
function is a function ◦t : BD×SB→ BD, which maps a strong belief database ψ

and a strong belief formula ϕ — all bounded up to t— to a strong belief database

ψ
′ = ψ◦t ϕ,

bounded up to t, and which satisfy the postulates of Katsuno and Mendelzon, R1–
R6.

The revision operator above captures the intuition that strong beliefs are in-
dependent of intentions. This avoids wishful thinking meaning that the desire (or
intention) for something to be true is used in place of/or as evidence for the truth-
fulness of the claim.

While revision of beliefs is independent of intentions, the revision of inten-
tions should take beliefs into account as well, in order to ensure coherence. For
instance, one can only accommodate a new intention if it is considered possible
that these intentions can be achieved. This is formalized in the next revision oper-
ator.

Definition 20 (Intention revision function). An intention revision function ⊗t :
BI× I→ BI maps a belief-intention database and an intention— all bounded up
to t— to a belief-intention database bounded up to t such that

(ψ, I)⊗t i = (ψ, I′),

where the following postulates hold.
(P1) (ψ, I′) is coherent.
(P2) If (ψ,{i}) is coherent, then i ∈ I′.
(P3) If (ψ, I∪{i}) is coherent, then I∪{i} ⊆ I′.
(P4) I′ ⊆ I∪{i}.
(P5) For all I′′ with I′ ⊂ I′′ ⊆ I∪{i}:(ψ, I′′) is not coherent.

Note that, by the definition, the revision of strong beliefs cannot be triggered by
intention revision.

Postulate (P1) states that the outcome of a revision should be coherent. Pos-
tulate (P2) states that the new intention i take precedence over all other current
intentions; if possible, it should be added, even if all current intentions have to
be discarded. We can consider also not prioritized operators, which are not al-
ways successful. However, here we follow the standard approach in AGM theory
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change, which assumes that a check whether the belief base must be updated is
done separately from the actual update.8 Postulate (P3) and (P4) together state
that if it is possible to simply add the intention, then this is the only change that
is made. These two postulates are comparable to inclusion and vacuity of AGM.
Finally, (P5) states that we do not discard intentions unnecessarily. This last pos-
tulate is a kind of maximality requirement, and is comparable to the parsimony
requirement introduced by Grant et al. (2010).

Up until now we have defined two revision operators separately: one for re-
vising with a strong belief and one for revising with an intention. Recall that it is
our aim to define “revising a belief-intention database with a belief/intention”. We
want to do this because the separate revision operators we defined up till now do
not capture all interactions between beliefs and intentions. In particular, we would
like to ensure that we capture the possibility for an agent to revise its intentions
after having revised his strong beliefs, in order to restore coherence.

In order to do so we define a single revision function revising a belief-intention
database by a pair (ϕ, i) in terms of the existing operators ◦t and ⊗t .

Definition 21 (Belief-intention revision function). A belief-intention revision func-
tion is a function ∗t : BI× (SB× I)→ BI of the form

(ψ, I)∗t (ϕ, i) = (ψ◦t ϕ, I)⊗t i,

where ◦t is a strong belief revision function and ⊗t is an intention revision func-
tion.

In other words, the procedures runs as follows:

1. Revise strong beliefs using (R1)-(R6),

2. Revise intentions using (P1)-(P5), possibly revising weak beliefs as well.

Therefore, revising strong beliefs does not depend on which intentions an agent
had, or which intention it revises with. However, revising intentions does have an
effect on the weak beliefs (see the last paragraph of Example 13).

We will show how revision works in our logic with various examples at the
end of this section, after we have proved the representation theorem.

8Note that if we would drop postulate P2, then this would corresponding to dropping Item 2 of
Definition 24.
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4.3. Representation Theorem
In this subsection we present the main technical result of this paper. We char-

acterize all revision schemes satisfying (R1)-(R6), (P1)-(P5) in terms of minimal
change with respect to an ordering among interpretations and a selection function
accommodating new intentions while restoring coherence.

In the previous subsection we bounded various sets of formulas up to some
time point t. We now do the same for models. We bound models up to t, which
means that all the paths in the model are “cut off” at t.

Definition 22 (t-bounded model). Suppose some model m = (T,π).

• A t-bounded path π|t is defined from a path π in T as π|t = (π′0, . . . ,π
′
t),

where each π′i contains the restriction of an evaluation of πi to exactly those
χ9 such that χi ∈L |t .

• A t-bounded model m|t is the pair (T |t ,π|t) where T |t = {π|t1 | π1 ∈ T}.

We denote the set of all t-bounded models with M|t .

Recall we defined a set of models of strong beliefs MSB as an msb set (Defi-
nition 14). A belief database SB consists of a set of strong beliefs, and we showed
in Proposition 1 that the set of models of SB is an msb set, i.e. Mod(SB) ∈MSB,
where MSB is the set containing all msb sets.

In order to represent revision semantically, we define a t-bounded version of
msb sets as well.

Definition 23 (t-bounded msb set). Given an msb set MSB (definition 14), the
t-bounded msb set contains all t-bounded models of MSB, i.e.

MSB|t = {m|t | m ∈MSB}.

Given an intention database I, we define a selection function γt
I that tries to

accommodate a new intention based on strong beliefs. The selection function
specifies preferences on which intention an agent would like to keep in the pres-
ence of the new beliefs.

9Recall from Definition 1 that we denote atomic propositions with χ.
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Definition 24 (Selection Function). Given an intention database I, a selection
function γt

I : MSB× I→ ID maps an msb set (Definition 14) and an intention to
an updated intention database—all bounded up to t— such that if γt

I(MSB|t , i)= I′,
then:

1. (MSB|t , I′) is coherent.

2. If (MSB|t ,{i}) is coherent, then i ∈ I′.

3. If (MSB|t , I∪{i}) is coherent, then I∪{i} ⊆ I′.

4. I′ ⊆ I∪{i}.

5. For all I′′ with I′ ⊂ I′′ ⊆ I∪{i}:(MSB|t , I′′) is not coherent.

The five conditions on the selection function are in direct correspondence with
postulates P1–P5 of the intention revision function.

Remark 5. We will show in Corollary 2 below that it is possible to represent each
set of strong beliefs SB (Definition 12) by a formula ψ such that Cn(SB) =Cn(ψ).
Using this corollary, we adapt the definition of a Katsuno and Mendelzon faithful
assignment below.

Katsuno and Mendelzon (1991) define a faithful assignment from a belief for-
mula to a pre-order over models. Since we are also considering intentions, we
extend this definition such that it also maps intentions databases to selection func-
tions.

Definition 25 (Faithful assignment). A faithful assignment is a function that as-
signs to each strong belief formula ψ ∈ SB|t a total pre-order ≤t

ψ over M and to
each intention database I ∈ D|t a selection function γt

I and satisfies the following
conditions:

1. If m1,m2 ∈Mod(ψ), then m1 ≤t
ψ m2 and m2 ≤t

ψ m1.

2. If m1 ∈Mod(ψ) and m2 6∈Mod(ψ), then m1 < m2.

3. If ψ≡ φ, then ≤t
ψ=≤t

φ
.

4. If T |t = T |t2 , then (T,π)≤t
ψ (T2,π2) and (T2,π2)≤t

ψ (T,π).
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Conditions 1 to 3 on the faithful assignment are the same as the conditions
that Katsuno and Mendelzon put on a faithful assignment. Condition 4 ensures
the two difficulties we pointed out in the beginning of this subsection are handled
correctly:

• It ensures we do not distinguish between models in the total pre-order ≤t
ψ

whose trees are the same up to time t. This is essentially what is represented
in the revision function by bounding the all input of the revision function ∗t
up to t.

• Moreover, ≤t
ψ does not distinguish between models obtained by selecting

two different paths from the same tree. In other words, it ensures that msb
sets (sets of models of a strong belief) remain in the same ordering. This
corresponds to the fact that we are using strong belief formulas in the revi-
sion, which do not distinguish between different paths in the same tree as
well.

We are now ready to state our main theorem. The full proof can be found in
Appendix B.

Theorem 2 (Representation Theorem). The function ∗t : BI× (SB× I)→ BI is
a belief-intention revision operator iff there exists a faithful assignment that maps
each ψ to a total pre-order ≤t

ψ and each I to a selection function γt
I such that if

(ψ, I)∗t (ϕ, i) = (ψ′, I′), then:

1. Mod(ψ′) = min(Mod(ϕ),≤t
ψ)

2. I′ = γt
I(Mod(ψ′), i)

We will use the remainder of this section to prove some results that we use
for the proof of the representation theorem above. We first show the number of
t-bounded models is finite.

Lemma 1. For each t ∈ N,M|t is finite.

Proof. Suppose some t ∈ N. Since actions are deterministic and there are finitely
many actions in our logic, each state has a finite number of successor states. More-
over, since there are finitely many propositions in L |t , the number of possible
valuations of the states is finite as well. Therefore, the number of models in M|t
is finite.
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The following lemma obtains a correspondence between semantic consequence
of two models equivalent up to t. The proof is by induction on the depth of the
formula.

Lemma 2. For each ϕ ∈L |t and models m1,m2 ∈M, if m|t1 = m|t2 , then m1 |= ϕ

iff m2 |= ϕ.

Let Ext(MSB|t) be the set of all possible extensions of a t-bounded msb set
MSB|t to models, i.e.

Ext(MSB|t) = {m ∈M | m|t ∈MSB|t}.

We next show that we can represent MSB|t by a single strong belief formula using
Ext(MSB|t).

Lemma 3. Given a t-bounded msb set MSB|t , there exists a strong belief formula
f orm(MSB|t) ∈ SB such that Mod( f orm(MSB|t)) = Ext(MSB|t).

The following corollary shows we can represent a belief database consisting
of strong beliefs up to some time t with a single formula.

Corollary 1. Given a t-bounded set of strong beliefs SB|t , there exists a strong
belief formula ψ ∈ SB such that SB|t = {ϕ | ψ ` ϕ}.

4.4. Examples
In this section we discuss various examples of revision of beliefs and inten-

tions in our framework. We start with the example from the introduction, in which
Bobby the household robot can only buy food and cleaning equipment if it robs a
bank.

Example 12 (Running example (robbing a bank)). Consider the following un-
desired situation. Suppose Bobby has a belief-intention database (ψ, I) and that
I = {( f ood,0)}, i.e. Bobby intends to buy food at time 0. Now suppose Bobby
would revise by the pair (>,(equip,2)): it would like to buy cleaning equipment
at time 2. This is coherent (despite Bobby’s belief that it does not have enough
money for both) thanks to an action rob of robbing a bank that it can perform at
time 1. Suppose moreover that this is the only model where Bobby can perform
both ( f ood,0) and (equip,2). Then by postulate P2 we obtain that the resulting
belief-intention database entails do(rob)1, even if it would like to avoid robbing a
bank by any means.
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In other words, it seems that the weak beliefs of an agent may entail actions it
did not intend to do, if those actions are the only means to carry out the intended
actions. However, if Bobby would like to avoid robbing a bank by all means, then
this should follow explicitly in its strong belief database, i.e., for all ` (up to the
considered time t)

ψ `�0¬do(rob)`.

Given that this is a strong belief, the agent does not believe in any possible futures
in which it rob a bank. A consequence of this is that the new intention (equip,2)
will not be incorporated into the intention database, because the belief-intention
database is not coherent after revision. If at some point later in time the agent
would consider it possible to rob a bank, then it should revise its strong beliefs
accordingly, but until that time the undesired action will not be weakly believed.

The above example shows that the agent can be coherent (it has the precondi-
tions for all intended actions by postulate P2), but unaware of its future action to
rob the bank (following from its weak beliefs). As shown in the example, this can
be avoided by asserting this explicitly in the logic, however, due to belief revision
this can change. If the agent really would never like to do this action, then this
action should simply not be part of the available actions of the agent.

Example 13 (Running example (adding an intention)). Suppose a belief-intention
database (ψ, I) such that all models in Mod(ψ) are the same as the partial model
in Figure 3 up to t = 2 and suppose that I = {( f ood,0),(cook,1)}. That is, Bobby
has the intention to buy food at time 0 and then to cook at time 1. Suppose now
Bobby changes its intention to buy cleaning equipment at time 1. Formally:

(ψ, I)∗1 (>,(equip,1)) = (ψ, I′).

First note (ψ, I ∪ {(equip,1)}) is not coherent because no two intentions can
occur at the same time moment. Moreover, since (ψ,(equip,1)) is coherent,
from (P2) and (P3) we obtain (equip,1) ∈ I′. Furthermore, from (P4) we have
that I′ ⊆ {( f ood,0),(cook,1),(equip,1)}. Finally, (ψ,{( f ood,0),(equip,1)}) is
not coherent either, since the agent does not believe the preconditions of buying
food and buying equipment are true along a single path. Combining this gives
I′ = {(equip,1)} as the only coherent outcome. Thus, Bobby no longer intends to
buy food and to cook, but to buy cleaning equipment instead.

Note that, although the strong beliefs didn’t change after revising with the new
intention, the weak beliefs did change. For example, post( f ood)1 ∈WB(ψ, I) \
WB(ψ, I′) and post(equip)2 ∈WB(ψ, I′)\WB(ψ, I).
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The revision function ∗t takes a tuple (ϕ, i) as input, and Definition 21 ensures
that revision of strong beliefs occurs prior to the revision of intentions. There-
fore, it may seem plausible that revising with (ϕ, i) is the same as first revising
with (ϕ,ε) and then with (>, i). In other words, the following postulate seems to
follow:

If (ψ, I)∗t (ϕ, i) = (ψ′, I′)
and ((ψ, I)∗t (ϕ,ε))∗t (>, i) = (ψ′′, I′′), (P*)

then ψ
′ ≡ ψ

′′ and I′ = I′′.

However, this property is not sound, and we show in the following example
that adding the postulate would in fact conflict with the maximality postulate for
intention revision (P5).

Example 14 (Joint vs separate revision). The operator ∗t can be instantiated to
separate revisions of belief-intention databases as follows:

• Revising by (>, i) mirrors revising by no belief and an intention i, i.e.

(ψ, I)∗t (>, i) = (ψ, I)⊗t i.

• Revising by (ϕ,ε) mirrors revising by a strong belief ϕ and no intention.

In spite of the fact that the operator ∗t revises beliefs prior to intentions, it is more
expressive than its two instantiated operators combined, and cannot be defined as
their composition. Indeed,

((ψ, I)∗t (ϕ,ε))∗t (>, i) 6= (ψ, I)∗t (ϕ, i).

This follows from the following example: Suppose some belief-intention database
(ψ, I) with beliefs up to t = 2 corresponding to the model on the left of Figure 4.
It is possible to go to the dentist (dentist) or to stay at work (work), and after that
to go eating (eating) or go to the movies (movies).

Before revision, the intentions are I = {(dentist,0),(eat,1)} (left image of
Figure 4, intentions shown as bold lines).

Suppose now the beliefs are revised with the fact that it is not possible to go
eating after going to the dentist (ϕ), i.e.,

ϕ≡�0(post(dentist)t →¬pre(eating)t),
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Figure 4: Left: Partial model of strong beliefs ψ of agent (ψ, I) with I =
{(dentist,0),(eat,1)} (bold lines). Right: Revised strong beliefs of agent after learning it
is not possible to eat (eat) after the dentist (dentist).

and with the intention to go to the movie at time 1 (i = (movie,1)). The resulting
strong beliefs after revising with ϕ are shown on the right of Figure 4.

Let us analyze two ways of revising this information:

• Suppose (ψ, I) is revised with both the new belief and the new intention.
That is,

(ψ, I)∗2 (ϕ, i) = (ψ′, I′).

Both (ψ′,{(dentist,0),(movie,1)}) and (ψ′,{(movie,1)}) are coherent, so
by the maximality postulate (P5), I′ = {(dentist,0),(movie,1)}. Hence, the
new intentions are to go to the dentist and then to go to the movie.

• Suppose beliefs are revised prior to intentions. That is,

(ψ, I)∗2 (ϕ,ε) = (ψ′, I)

(ψ′, I)∗2 (>, i) = (ψ′, I′).

Now, since (ψ′,{(dentist,0)}) and (ψ′,{(eating,1)}) are both coherent,
we either have I = {(dentist,0)} or I = {(eating,1)}. Suppose that I =
{(eating,1)}. In that case, since (ψ′,{(eating,1),(movie,1)} is incoherent,
we obtain I′ = {(movie,1)} by the postulates (P2) and (P4).

Thus, we see that revising separately allows a choice between the intention
to go eating or to go to the dentist after revising beliefs. When choosing to go
eating, the intention again has to be discarded because it is conflicting with the
new intention to go to the movie. In joint revision, this is not the case since the
choice between eating or the dentist can be made in light of the new incoming
intention, and the maximal set can be chosen.
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5. Iterated revision

Until now we only considered single-step revision of belief and intention. In
this part we develop an account of iterated revision by following the approach
of Darwiche and Pearl (1997) developed for propositional logic. They observe
that the AGM postulates are too permissive to enforce plausible iterated revision.
In order to remedy this, they suggest the following changes:

• Instead of performing revision on a propositional formula, perform revision
on an abstract object called an epistemic state Ψ, which contains the entire
information needed for coherent reasoning.

• Postulate (R4) is weakened as follows:

(R*4) If Ψ = Ψ′ and ϕ≡ ϕ′, then Ψ◦ϕ≡Ψ′ ◦ϕ′

• The following four desirable postulates are added for iterated revision:

(C1) If ϕ |= ϕ′, then (Ψ◦ϕ′)◦ϕ≡Ψ◦ϕ.

(C2) If ϕ |= ¬ϕ′, then (Ψ◦ϕ′)◦ϕ≡Ψ◦ϕ.

(C3) If Ψ◦ϕ |= ϕ′, then (Ψ◦ϕ′)◦ϕ |= ϕ′.

(C4) If Ψ◦ϕ 6|= ¬ϕ′, then (Ψ◦ϕ′)◦ϕ 6|= ¬ϕ′

Postulate (C1) states that if two beliefs are added, the first is redundant if the
second one is more specific. In other words, only revising with the second belief
would obtain the same belief set. (C2) states that if the first belief is inconsistent
with the second one, then revising with the first belief is unnecessary. (C3) en-
sures that a belief should be retained when revising with another belief implies it.
Finally, (C4) states that if a belief ϕ is not contradicted after revising with another
belief ϕ′, then it should remain uncontradicted when the revising by ϕ′ is preceded
by ϕ.

We now define the revision operator for our logic, assuming that an epistemic
state Ψ contains belief, which is represented by a strong belief formula denoted
by Bel(Ψ). As usual, we assume that that Ψ stands for Bel(Ψ) whenever it is em-
bedded in a formula, and that Bel(Ψ) is thus a set of strong beliefs. For example,
we say that (Ψ, I) is coherent if (Bel(Ψ), I) is coherent. Recall that we omit the
temporal restriction superscript from sets if it is clear from context.

Definition 26 (Bounded epistemic state revision function). A bounded epistemic
state revision function is a function ◦t which maps an epistemic state and a strong
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belief formula— all bounded up to t— to a strong belief database bounded up to
t, and which satisfy the postulates R1–R3, R*4, R5, R6 and C1–C4.

Similar to Section 4.2, we define a bounded revision function up to a fixed time
t, assuming that the strong beliefs and intentions in an epistemic belief-intention
databases are all bounded up to t.

Definition 27 (Epistemic belief-intention database). An epistemic belief-intention
database (Ψ, I) consists of an epistemic state Ψ, and an intention database I. The
set of all epistemic belief-intention databases bounded up to t is denoted by EBI|t ,
or simply EBI if t is clear from context.

Next we define the intention revision operator for an epistemic belief-intention
database. We omit the formal definition of the intention revision function on epis-
temic belief-intention databases, but it is defined analogously to Definition 20.
When we revise an epistemic belief-intention database with an intention, we leave
the epistemic state Ψ unchanged and we update the intention database by applying
Definition 20 to Bel(Ψ).

Definition 28 (Iterated revision of epistemic belief-intention databases). An epis-
temic belief-intention revision function is a function ∗t : EBI× (SB× I)→ EBI
of the form

(Ψ, I)∗t (ϕ, i) = (Ψ◦t ϕ, I)⊗t i,

where ◦t is an epistemic state revision function and ⊗t is an intention revision
function.

When switching from belief revision on a belief state to belief revision on an
epistemic state the definition of a faithful assignment should be adopted accord-
ingly. We will do this now for our setting.

Definition 29 (Faithful assignment for iterated revision). A t-bounded faithful
assignment for iterated revision is a function that assigns to each epistemic state
Ψ a total pre-order ≤t

Ψ
on all models, and to each intention database I ∈ ID|t a

selection function γt
I (Definition 24), such that the following conditions hold:

1. If m1,m2 ∈Mod(Ψ), then m1 ≤t
Ψ

m2 and m2 ≤t
Ψ

m1

2. If m1 ∈Mod(Ψ) and m2 6∈Mod(Ψ), then m1 <
t
Ψ

m2
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3. Ψ = Φ only if ≤Ψ=≤Φ

4. If T |t = T |t2 , then (T,π)≤t
Ψ
(T2,π2) and (T2,π2)≤t

Ψ
(T,π).

If (Ψ, I)∗t (ϕ, i) = (Ψ′, I′), then

5. If m1 ∈Mod(ϕ) and m2 ∈Mod(ϕ), then m1 ≤t
Ψ

m2 iff m1 ≤t
Ψ′ m2.

6. If m1 6∈Mod(ϕ) and m2 6∈Mod(ϕ), then m1 ≤t
Ψ

m2 iff m1 ≤t
Ψ′ m2.

7. If m1 ∈Mod(ϕ), m2 6∈Mod(ϕ) and m1 <
t
Ψ

m2, then m1 <
t
Ψ′ m2.

8. If m1 ∈Mod(ϕ), m2 6∈Mod(ϕ) and m1 ≤t
Ψ

m2, then m1 ≤t
Ψ′ m2.

The first four conditions are similar to the conditions on a faithful assignment
for single-step revision (Definition 25), with the difference that ≤t

ψ is replaced
with ≤t

Ψ
, and that Condition 3 has epistemic states in the antecedent instead of

strong belief formulas. Conditions 5-8 are the semantic counterpart of (C1)-(C4).

Theorem 3 (Representation Theorem for iterated revision). A function ∗t :EBI×
(SB×I)→EBI is an epistemic belief-intention revision operator iff there exists a
faithful assignment for iterated revision that maps each Ψ to a total pre-order≤t

Ψ

and each I to a selection function γt
I such that if (Ψ, I)∗t (ϕ, i) = (Ψ′, I′), then:

1. Mod(Ψ′) = min(Mod(ϕ),≤t
Ψ
)

2. I′ = γt
I(Mod(Bel(Ψ′)), i)

We next provide a concrete epistemic belief-intention revision operator, thus
showing consistency of all the postulates proposed for the epistemic state and
intention revision operators.

Our operator is based on Spohn’s ordinal conditional ranking functions, which
can be seen as representations of epistemic states. For a given time t, our ranking
function κt deals with epistemic states of our logic in a similar way as the operator
based on Spohn’s ranking function for propositional epistemic states, introduced
in Darwiche and Pearl (1997).

Definition 30 (Spohn ranking function). A Spohn ranking function κt : M→ N
assigns a rank to each model such that:

If m1 = (T1,π1) and m2 = (T2,π2) such that T |t1 = T |t2 , then κt(m1) = κt(m2).
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We extend the ranking to propositions as follows:

κt(ϕ) = min
m|=ϕ

κt(m).

Definition 31 (Accepted propositions). Given a ranking function κt , the accepted
propositions Bel(κt) are those for which the negation is implausible:

Bel(κt) = {ϕ | κ(¬ϕ)> 0}.

It follows that the models of these propositions are those which have rank 0:

Mod(Bel(κt)) = {m | κt(m) = 0}.

The fact that Bel(κt) is a set of strong beliefs follows from the condition we put
on the Spohn ranking function.

Now we define our revision operator. For the epistemic part we follow Dar-
wiche and Pearl (1997), while for intention revision we give prefer intentions that
occur sooner rather than later.

Definition 32 (Extended Spohn-based revision operator). The Extended Spohn-
based revision operator •t is defined as follows:

(κt , I)•t (ϕ, i) = (κ′t , I
′), where κ′t and I′ are such that10

κ
′
t(m) =

{
κt(m)−κt(ϕ), if m |= ϕ;
κt(m)+1, if m |= ¬ϕ,

and I′ is defined in the following iterative way. If n is the maximal time instance
that occurs in I, we define the sets of intentions

1. I−1 = {i}, if (Bel(κ′t),{i}) is coherent, otherwise I−1 = /0.

2. for every ` ∈ {0,1, . . . ,n}

(a) if there is no a such that (a, `) ∈ I, I` = I`−1.

(b) otherwise, if a is the unique action such that (a, `)∈ I, then I` = I`−1∪
{(a, `)}, if (Bel(κ′t), I`−1∪{(a, `)}) is coherent, otherwise I` = I`−1.

10We show in Appendix B that κ′t is a well defined Spohn ranking function.
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3. I′ = In.

We now pose our theorem.

Theorem 4. The function •t is an epistemic belief-intention revision operator.

The Extended Spohn-based revision operator is an example of an operator sat-
isfying the epistemic belief-intention revision function for iterated revision (Def-
inition 28) and puts additional constraints on intentions. It prioritizes the new
intention i, and after that it iteratively attempts to increase the set of new inten-
tions by adding them in temporal order, starting with the most recent ones. We
next give an example of how this may work in practice.

Example 15 (Running example (Extended Spohn-based revision)). Suppose
that Bobby the household robot has an epistemic belief-intention database EBI
with intentions I = {( f ood,0),(equip,1)}, and suppose its epistemic state is for-
malized as:

• κt(m) = 0, for every m ∈Mod(ϕ0), where

ϕ0 =�0 pre( f ood,equip)0

(“Bobby has precondition to buy both food and cleaning equipment”)

• κt(m) = 1, for every m ∈Mod(ϕ1), where

ϕ1 =�0¬pre( f ood,equip)0∧�0 pre( f ood)0∧�0 pre(equip)1

(“Bobby can carry out any of two intended actions, but not both of them”)

• κt(m) = 3, for every m ∈Mod(ϕ3), where

ϕ3 =�0¬pre( f ood)0∧�0¬pre(equip)1

(“Bobby cannnot carry out any of two intended actions”)

• κt(m) = 2, for all other models, i.e., for m ∈Mod(ϕ2), where ϕ2 = ¬ϕ0∧
¬ϕ1∧¬ϕ3 (note that we can read ϕ2 as “Bobby can buy only the cheaper
of the two items”)
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Thus, Bobby’s beliefs are represented by Bel(κt) (Definition 31), which include
that it believes it is possible to carry out both intended actions, so the agent is
coherent. In addition, the epistemic state specifies a preference ordering over
models as well, which is specified by the the ranking κ. It assumes that “Bobby
cannnot carry out any of two intended actions” is the least plausible proposition.

Suppose next that Bobby revises its epistemic belief-intention database with
(�0¬pre( f ood,equip)0,ε). The ranking function selects the minimal (i.e., the
most plausible) model in which the revised formula is consistent, which has rank-
ing 1. After revision, Bobby believes it is able to buy food or buy cleaning equip-
ment, i.e., any of those two, but not both. The new ranking κ′t is as follows:

• κ′t(m) = 0, for every m ∈Mod(ϕ1)

• κ′t(m) = 1, for every m ∈Mod(ϕ0∨ϕ2)

• κ′t(m) = 2, for every m ∈Mod(ϕ3)

The agent can then use κ′t for future revision. Using the intention revision op-
eration of Definition 32, it will keep the intention that it intends to carry out
first, which means I′ = {( f ood,0), and the intention to buy cleaning equipment is
dropped.

6. Related Work

We compare our work to the logic of intention, temporal logic, collective in-
tentions, and our own previous work.

6.1. Logic of intention
We first give an overview of the literature on the logic of intention, before

making a comparison with the theory introduced in this paper. In the overview,
we discuss the philosophy of mind, the logic of intention of Cohen and Levesque,
and other work.

6.1.1. Philosophy of mind
Before the early 1990s most work on intention was done by philosophers. The

dominant view prior to the 1980s was that fundamental mental states included
belief-like attitudes such as belief and knowledge on the one hand, and desire-like
attitudes such as desires and preferences on the other (Davidson, 1963). These
capture the “two directions of fit” between world and mind (Searle, 1983). It was
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generally believed that intentions could be reduced to these more basic mental
states. For instance, an intention can be thought of as a complex kind of belief: an
intention to ϕ at some time t might be a belief that the agent will ϕ at t, perhaps
by virtue of this very belief (Holton, 2008). This belief-desire model of the mind
was also common in decision theory in the spirit of Savage (1954), as well as
in artificial intelligence. The basic idea underlying all this is that rational action
amounts to what leads to the most desirable outcome, given the agent’s beliefs
about the world and preferences about how it ought to be.

In the mid 1980s Michael Bratman wrote the book “Intentions, plans, and
practical reason” (Bratman, 1987), which turned out to be very influential in both
philosophy and in artificial intelligence. In the book, he argued convincingly that
intentions cannot be reduced to any “more basic” mental states, but that intentions
must be taken as basic themselves. While his argument is quite complex for non-
philosophers, the fundamental ideas are very simple. Intentions are subject to
their own set of norms, which cannot be reduced to those for beliefs or desires.
For instance, there are norms for intention consistency that do not apply to desires:
if someone knows that ϕ and ψ are mutually inconsistent, it is irrational to intend
ϕ and to ψ simultaneously, but it would not be irrational to desire both ϕ and ψ.

Another example of a norm of intentions, and one which has been very influ-
ential in computer science, is the idea that intentions constrain further practical
reasoning in a characteristic way. Bratman (and others) have argued that if some-
one intends to ϕ, that gives her a pro tanto reason to ϕ, even in the face of evidence
that she ought not ϕ. If we think of intentions as making up a plan, then recon-
sidering an intention potentially requires revising an entire plan, which can be
computationally expensive and problematic in real time. A consequence of this
relative resistance to revision is that intentions can be very useful for resource-
bounded agents who have to select appropriate actions at different times. Both
by adopting appropriate policies that can apply at different times to similar deci-
sion problems, and by devising complex plans which can easily be followed when
computation time is limited, an agent with intentions is able to avoid performing
complex computations every time a new decision problem arises. Observations
such as those above are common knowledge in artificial intelligence by now, but
it is important to realize there is a well explored philosophical foundation under-
lying them.

6.1.2. Cohen and Levesque
Inspired by the philosophical literature, research in artificial intelligence in

the 1990s began to explore intentions. One of the first attempts of what was
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later known as the belief-desire-intention architecture was in a paper by Bratman
et al. (1988), which systematized many aspects of the view laid out in Bratman’s
book (Bratman, 1987), including flowcharts and some suggestions for implemen-
tations. Most importantly, it served as a call for other researchers to investigate
these matters more systematically and formally.

One of the most well-known and first attempts of a formalization of intention
revision was by Cohen and Levesque (1990). They developed a formal logical
language, including modal operators for mental state such as “belief” and “having
a goal”, for temporal expressions, and for descriptions of events such as “A hap-
pens” or “x did action a”. The main point of the paper is to define a useful notion
of intention. To this end they first define a P-GOAL, or persistent goal, which is
a goal p that one believes now not to hold, and which will cease to be a goal as
soon as either the agent believes p will never hold, or the agent comes to believe
p is true. Intending to take an action a is then defined in terms of a P-GOAL for
agent x (Cohen and Levesque, 1990, p.245):

INTEND(x,a) := (P-GOALx[DONEx(BELx(HAPPENSa))?;a]).

Unpacking this, agent x intends to a just in case x has a persistent goal to en-
sure that x will believe a will be carried out, up until a is in fact carried out. They
also define “intending to bring about some state of affairs”, and show their ap-
proach solves the “Little Nell” problem (see Section 6.2.3) and avoid the “Dentist
Problem” (Bratman, 1987).

While Cohen and Levesque’s approach is much cited, it is fair to say that it
is rather complicated. Some early criticisms of technical details can be found
in Singh (1992). In the textbook by Shoham and Leyton-Brown (2008) the ap-
proach is called “the road to hell”. Due to the complexity of the logic, mathemat-
ical properties such as axiomatizability, decidability and complexity of fragments
were never investigated. None of the BDI logics that were introduced subse-
quently adapted Cohen and Levesque’s four steps definition of intention and in-
stead considered intentions to be primitive. Moreover, while Cohen and Levesque
provide some criteria for the abandonment of intentions through the notion of
rational balance (forbidding to intend something that is true or believed to be im-
possible to achieve), it does not further analyze the ’other reasons’ for which a
persistent goal is abandoned. More details on these critiques can be found in a
recent articles by Herzig et al. (2016).

Some of Cohen and Levesque’s shortcomings were corrected to an extent in
subsequent work. For instance, Rao and Georgeff (1991) provide an approach for
an alternative, and arguably simpler, formalism based on CTL.
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6.1.3. Other related work on intention revision
There exists previous work on intention dynamics, that is, how intentions

change over time. van der Hoek et al. (2007) (see also Wooldridge (2000)
and Wooldridge and Jennings (1995)) explore a system similar to Rao and Georgeff’s
with representations of beliefs, desires, and intentions separately, including a spe-
cific module for practical reasoning; they propose how to revise intentions to-
gether with beliefs. Their treatment is mainly syntactical, and they do not attempt
to obtain a correspondence between postulates for revision and a pre-order over
model, which is what we do here. Grant et al. (2010) continue this line of work,
offering postulates for intention revision (similar to our contribution). They de-
velop AGM-style postulates for belief, intention, and goal revision. They provide
a detailed analysis and propose different reconsideration strategies, but restrict
themselves to a syntactic analysis as well. Lorini and Herzig (2008) introduce a
logic of intention with modal operators for attempt, tacking the question of when
an agent’s intentions translate into an actual attempted action. Finally, Shapiro
et al. (2012) also explore intention revision, working in a setting with complex
hierarchical plans.

6.2. Comparison: The interplay between intention, time, and belief
To compare our theory with the one of Cohen and Levesque, we reconsider

the running example. You instruct your future household robot Bobby to buy gro-
ceries for you in the afternoon. Bobby therefore believes to be in the supermarket
in the afternoon, but this belief is based on the assumption that it has sufficient
money to buy a bus ticket. Moreover, you instruct Bobby to clean the windows
coming weekend, and Bobby’s belief that it will clean the windows is based on
the assumption that it has all the necessary cleaning products on time, and that
it is not raining at that day. These assumptions are the preconditions of the ac-
tions Bobby intends to perform. When Bobby adopts intentions, it may form new
beliefs based on these intentions. For instance, after Bobby adopts the intention
to buy groceries in the afternoon, it is able to adopt new intentions based on this
belief, for instance to cook food in the evening. Such intention-based beliefs are
called weak beliefs (van der Hoek et al., 2007; Icard et al., 2010). In contrast,
unconditional beliefs, beliefs that are no dependent on the predicted success of
intentions, are called strong beliefs.

Our theory can explain how intentions and weak and strong beliefs change
over time. Yesterday Bobby believed that it will rain tomorrow and be sunny the
day after, but today it believes that tomorrow the sun may possibly shine and it
will be cloudy the day after. Likewise, yesterday Bobby intended to buy groceries
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tomorrow, but now it intends to do laundry tomorrow. We say there is internal
dynamics (rain today and sun tomorrow) and external dynamics (Bobby’s beliefs
today and Bobby’s beliefs tomorrow, or Bobby’s intentions today and Bobby’s
intentions tomorrow).

6.2.1. Assumptions
The first improvement is the formalisation of the assumptions of the intentions,

i.e. the preconditions of the intended actions. From the intention to take the train
to Paris it may seem already quite risky to derive the belief that there still are
tickets for the train, and from my intention to present a paper at IJCAI next year,
it is surely too strong to infer a belief that I will finish the paper in time and that
the paper will be accepted. Such a belief would be based on irrational wishful
thinking.

However, we cannot ignore the assumptions either. Suppose I would have
believed that there are no more tickets for the train to Paris tomorrow, then it
would surely have been irrational to adopt the intention to go to Paris by train
tomorrow. On the contrary, suppose I learn now that there are no more tickets
for the train tomorrow, then I would drop my intention to go to Paris. So from
the intention to go to Paris we can infer that I do not believe that there are no
more tickets. Note the essential difference between believing that there are still
tickets, and the absence of a belief that there are no more tickets. This difference
is represented very precisely in modal logic by the two formulas SB0(tickets) and
¬SB0¬(tickets). The former implies the latter, but not vice versa.

If we represent a generic intention at time t for α by Itα, and the precondition
of α by pre(α), then we may impose the following constraint on our modal logic:

Itα implies ¬Bt¬pre(α).

The assumptions may be seen as a kind of presupposition as it is studied in
linguistics: the sentence “The king of France is bold” presupposes that France is
a kingdom. Likewise, the intention to go to Paris presupposes that there still are
such tickets. It is well known that it is challenging to find a suitable definition of
presupposition. For example, if we derive the weak intention-based belief that we
will be in Paris tomorrow, can we deduce also a weak intention-based belief that
there are still tickets? The fact that we will be in Paris implies that we were able
to obtain a ticket.

The absence of the belief that there are still tickets may be represented also
using negation as failure in logic programming (Clark, 1978), because we cannot
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derive the belief that there are no more tickets. Moreover, it can also be repre-
sented by a justification in default logic (Reiter, 1980), or more generally by a
consistency check.

Consider the situation where I have the intention to give a seminar in Paris
tomorrow, and in addition that I have the intention to give a seminar in London
tomorrow. The preconditions of these intended actions are that I am in Paris and
I am in London tomorrow, and clearly this is not possible. However, it is possible
that I am in Paris tomorrow, and it is possible that I am in London tomorrow. It is
just not possible that I am both in Paris and in London.

In other words, the logic has to derive that it is possible for all intended actions
to be performed, and thus that for all intended actions, the preconditions hold. We
introduce a new name for this happy situation where all intended actions can be
performed. We say that a set of intentions and beliefs is coherent if it is possible
that all actions can be performed and all preconditions hold.

6.2.2. What if statements
One of the contributions in the formalisation of the interplay between inten-

tion, time, and belief is to model what-if statements: what will happen with my
intentions and beliefs if I learn that the tickets for the train tomorrow are sold out?
What happens if I learn that my paper for IJCAI is rejected? What happens if I
adopt a new intention to go to a birthday party in Amsterdam tomorrow?

Our contribution adopts the AGM Alchourrón et al. (1985) framework for the-
ory change. To be able to use this framework, we first need to make some addi-
tional restrictions to our language of beliefs and intentions, and we need to define
the operators we consider together with their postulates. Then we characterize the
set of operators satisfying the postulates using a representation theorem.

Since we do not have a logical language with explicit belief operators, we
cannot represent the coherence of a belief-intention base by a formula ”it is not
believed that ...”. Instead, we represent the coherence of a belief-intention base in
a different way. We use an idea similar to negation as failure: the belief intention
base is consistent with the precondition of the (sequence of) intended actions.

6.2.3. The “Little Nell” problem: Not giving up too soon
McDermott (1982) discusses the following difficulty with a naive planning

system:

Say a problem solver is confronted with the classic situation of a
heroine, called Nell, having been tied to the tracks while a train ap-
proaches. The problem solver, called Dudley, knows that “If Nell is

48



going to be mashed, I must remove her from the tracks.” (He prob-
ably knows a more general rule, but let that pass.) When Dudley
deduces that he must do something, he looks for, and eventually exe-
cutes, a plan for doing it. This will involve finding out where Nell is,
and making a navigation plan to get to her location. Assume that he
knows where she is, and he is not too far away; then the fact that the
plan will be carried out will be added to Dudley’s world model. Dud-
ley must have some kind of database- consistency maintainer (Doyle,
1979) to make sure that the plan is deleted if it is no longer necessary.
Unfortunately, as soon as an apparently successful plan is added to
the world model, the consistency maintainer will notice that “Nell is
going to be mashed” is no longer true. But that removes any justifi-
cation for the plan, so it goes too. But that means “Nell is going to
be mashed” is no longer contradictory, so it comes back in. And so
forth.

The agent continuously plans to save Nell, and abandons its plan because it
believes it will be successful. If we view this problem from the database perspec-
tive, we require some way to separate beliefs about plans from beliefs that are not
about plans. Otherwise, the planner may believe certain facts hold and adopt the
plans accordingly, while these facts may be dependent on performing the plan.

This problem has been considered extensively in the literature (cf. Cohen
and Levesque (1990); Shoham (2009); Icard et al. (2010); Van der Hoek and
Wooldridge (2003)). Our solution is to separate strong beliefs from weak beliefs.
The beliefs in the belief database of the agent (those that will be used by the plan-
ner) are strong beliefs, and the weak beliefs are computed by adding intentions to
the strong beliefs, and everything following from that.

6.3. Temporal Logic
Our theory distinguishes internal and external dynamics. The temporal refer-

ences of the facts (e.g., rain1, sun2) represent internal dynamics, and the temporal
references on the modal operators (e.g., I−1,WB1) represent external dynamics.
Internal and external dynamics can also be represented by temporal modal opera-
tors such as next and until in temporal logics, as discussed in this section. In this
article we instead use explicit time indexes, but in the future work in Section 7
we discuss how this can be extended to implicit time in temporal logics. The core
ideas and results of this paper do not depend on this choice.
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Time in temporal logics can be defined in an implicit or explicit manner. A
time model is implicit when the meaning of formulas depends on the evaluation
time, and this is left implicit in the formula. Standard LTL and CTL define time
implicitly. For instance, �Φ means that ∀t ∈ [T0,∞].Φ(t), where T0 is the evalua-
tion time (the so-called current time instant). A standard way of introducing real
time into the syntax of temporal languages constrains the temporal operators with
time intervals (Emerson and Trefler, 1999; Koymans, 1990; Alur and Henzinger,
1990; Alur et al., 1996). In order to model such time intervals, timed automata
may be used. These automata model the behavior of time-critical systems. A
timed automaton is in fact a program graph that is equipped with a finite set of
real-valued clock variables, called clocks for short (Alur and Dill, 1994). Timed
CTL (TCTL, for short) is a real-time variant of CTL aimed to express properties
of timed automata. In TCTL, the until modality is equipped with a time interval
such that ΦUJΨ asserts that a Ψ-state is reached within t ∈ J time units while only
visiting Φ-states before reaching the Ψ-state. The formula ∃�JΦ asserts that there
exists a path for which during the interval J, Φ holds; ∀�JΦ requires this to hold
for all paths (Baier and Katoen, 2008). While such logics allow one to express
timed constraints on the modalities in TCTL, there is no way to refer explicitly to
the states at which a certain formula holds.

When time is explicit, the language represents the time through a variable. For
example, in the following formula an explicit model of time is used:

∀t.�(E ∧T = t)→ ♦(A∧T − t < 10)

where E is an event (Bellini et al., 2000). This is for instance formalized by Ostroff
(1989) when solving control problems using real-time temporal logic (RTTL).

The logic of strategic abilities ATL* (Alternative-Time Temporal Logic), in-
troduced and studied by Alur et al. (1998), is a logical system, suitable for spec-
ifying and verifying qualitative objectives of players and coalitions in concurrent
game models. Formally, ATL* is a multi-agent extension of the branching time
logic CTL* with strategic path quatifiers 〈〈C〉〉 indexed with coalitions C of play-
ers. Bulling and Goranko (2013) propose a quantitative extension of ATL*, in
which it is possible to express temporal constraints as well. For instance, the
expression φ∧ x = t denotes that φ will be true after t transitions, where each
transition adds 1 to x.

Many logical systems have been developed for reasoning about the pre and
postconditions of actions with explicit time points, such as the Event Calculus
(Mueller, 2014), Temporal Action Logics (Kvarnström, 2005), extensions to the
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Fluent Calculus (Thielscher, 2001), and extensions to the Situation Calculus (Pa-
padakis and Plexousakis, 2003) (see (Patkos, 2010, Ch.2) for an overview). Our
logic is considerably more simple, but the reason for this is because of the type
of revision we characterized in this article. Although there are a number of cor-
respondences between AGM postulates and some of the approaches above, none
of them prove representations theorems linking revision to a total pre-order on
models.

As we mentioned, the structure of our models is full branching time structure
of CTL*. In addition, we have the actions attached to the elements of accessibility
relation R. Since our formulas are different than those of CTL*, it should be
noted that the part of PAL built on propositional letters, modalities and Boolean
connectives, is embedded in the fragment of CTL* with only © (next) and A
(universal path quantifier) operators. This is because any formula of the form �tφ

can be written as the formula©tAψ in CTL*, where©t stands for t occurrences
of the © operator and ψ is the translation of φ, which takes into account that t-
th moment becomes the actual moment and in which �t operators are translated
likewise. For example, the formula p1∧�2((p∨q)3∧q4) would be translated to
©p∧©2A(©(p∨q)∧©2q).11).

As presented in Meier et al. (2008), the satisfiability problem for this fragment
of CTL* is known to be PSPACE-complete. It would be interesting to see if
those results can be modified for PAL and how the addition of actions in our logic
influence its complexity.

6.4. Collective intentions
An important issue in the philosophical literature on collective intentionality

is the question of whether collective intentions can be reduced to individual in-
tentions (i.e., reductionist theories), or whether collective intentions are first-class
citizens and cannot be reduced.

Bratman (2014) offers a clear example of reductionist theory of collective
intention as it decomposes the concept of collective intention in terms of more
primitive concepts such as the concepts of individual intention, belief and com-
mon belief. He defines “shared cooperative activity” using the following three
characteristics:

11Note that, some formulas, like �2 p1 cannot be translated directly, but the presence of the
K-axiom and A1 and A5 overcome that problem, since they imply that �tχ is equivalent to χ if
χ ∈ Past(t). Thus, �2 p1 can be first transformed to an equivalent formula p1 in our logic, which
allows translation to a CTL* formula©p.
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1. Each participant must be mutually responsive to the intentions of others;

2. The participants must each be committed to the joint activity;

3. The participants must each be committed to supporting the effort of the
others;

Consider the example of Alice and Bill who intend to paint a house together. Sup-
pose Alice wants to paint the house red and Bill wants to paint it blue. Both are
aware that their subplans conflict, and that the other is aware of it as well. There-
fore they do not have a shared cooperative activity, even if they end up painting the
house together. But subplans do not have to be identical in order to have a shared
cooperative activity. For instance, if Bill wants to use cheap paint but Alice want
to buy from a specific store, they could buy cheap paint from that specific store.
Bratman puts the following constraints on an action J to be a shared cooperative
activity:

1. We do J (which can involve cooperation, but doesn’t have to);

2. It is common knowledge between us that we are both committed to mesh
subplans;

3. (2) leads to (1) by way of mutual responsiveness (in the pursuit of complet-
ing our action) of intention and in action.

Examples of non-reductionist theories of collective intention are, for example,
Gilbert (1990), who simplifies the problem of collective intentionality to the sit-
uation of two people walking together. From this, she identifies four necessary
conditions on collective intentions. Tuomela and Miller (1988) distinguish the
concept of joint I-intention from the concept of joint We-Intention. According
to their theory, the concept of joint We-intention cannot be reduced to individual
mental attitudes of the agents in the group such as beliefs, desires and individual
intentions. Imagine for instance that Anne and Bob intend to lift a table together.
First, Ann needs to intend to do her part. Next, she should believe that it is pos-
sible to lift the table and believe that Bob also intends to do his part. Moreover,
Ann needs to believe that Bob also believes that carrying the table is possible.

Searle (1995) also argues that collective intentionality cannot be reduced to
individual intentionality. According to Searle, coordination and cooperation is
crucial in defining we-intentions, and he gives the following counter example to
Tuomela and Miller’s we-intentions: A group of business school graduates in-
tend to pursue their own selfish interests, but believe that by doing so, they will
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indirectly serve humanity. They also believe that their fellow graduates will do
likewise, but they do not actively cooperate with one another in pursuing their
goals. Searle holds that this fulfills the Tuomela and Miller criteria, but collective
intentionality does not actually exist in such a situation.

Velleman (1997) is concerned with how a group is capable of making a deci-
sion using speech acts, which he considers to be intentions in itself. He argues
that collective intention is not the summation of multiple individual intentions (as
Tuomela and Miller thought), but rather one shared intention. An intention exists
outside of the mind of agent, within a verbal statement. The causal power is in the
verbal statement, because of the desire not to speak falsely.

The philosophical dispute is reflected in the computer science literature as
well. For instance, Cohen and Levesque (1991), following their well-known work
on individual intentions (discussed above), propose a reductive account of col-
lective intentions by defining them in terms of group goals and mutual beliefs.
Dunin-Keplicz and Verbrugge (2002), in contrast, regard both collective inten-
tions and individual intentions a “first-class citizens”. Frameworks for flexible
teamwork also regularly use theories of collective intentions. For instance, Tambe
(1996) uses the notion of joint intentions by Cohen and Levesque as a basic build-
ing block to define teamwork.

6.5. Development of the framework and relation to our previous wok
6.5.1. Development of PAL

This article combines and builds further on a series of previous papers pub-
lished by us. The initial proposal of the database perspectives is due to Shoham
(2009). His proposal is largely informal but the main ideas form the basis of this
article and our formalism can be seen as a formalization of his main ideas. The
first formalization of the database perspective was in Icard et al. (2010), where we
presented a formal semantic model to capture action, belief and intention, based
on Shoham’s database perspective. We provided postulates for belief and inten-
tion revision, and stated a representation theorem relating our postulates to the for-
mal model. However, we noted that there were problems with this formalization,
and much of our further work consists of developing the right formal framework.
First, we showed that the axiomatization of the original logic is incomplete, and
we provided a complete axiomatization (van Zee et al., 2015a). We also adapted
the coherence condition in various ways (see next subsection). In van Zee et al.
(2015b) we proved representation theorems for the belief database, and in van Zee
and Doder (2016a) we extended this to intentions. We discussed various extension
to our framework, focusing on enterprise-level decision making (van Zee, 2015)
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and a multi-agent perspective (van Zee et al., 2014). In this article we provide
a complete formal model that combines all our previous work. We furthermore
provide the full proofs of all the theorems and we develop an account of iterated
revision and a multi-agent extension.

6.5.2. Alternative coherence conditions
An obvious coherence condition we can put on beliefs and intentions is the

following:

B `
∧

(a,t)∈I

post(a)t .

However, this solution suffers from the well-known “Little Nell” problem,
identified by McDermott (McDermott, 1982) (Section 6.2.3).

A weaker variant is formalized semantically by Icard et al. (2010) as follows:

π,0 |= ♦
∧

(a,t)∈I

pre(a)t

Although the semantics in the current article is slightly different, the general idea
of this formula is clear: There exists a path, equivalent with the current path up to
time 0, in which all the preconditions of the intended actions hold.

However, this is clearly too weak. An agent may believe that all the precon-
ditions hold on a paths where none of its intended actions are carried out. We
discuss various examples for this in other papers (van Zee et al., 2015a; van Zee
and Doder, 2016a,b)

In order to resolve this, we propose a different condition van Zee et al. (2015a),
requiring that the beliefs of an agent should be consistent with the preconditions
of it’s intended action. The agent does not have to believe the preconditions of its
intended actions, but it should not believe the negation of the precondition of an
intended action. Therefore, we introduce precondition formulas that are derived
from the contingent beliefs:

Pre(BI) =Cl(BI ∪{
∧

(a,t)∈I

pre(a)t}})

We can then express the condition as follows: Pre(BI) is consistent.
In a followup paper (van Zee and Doder, 2016a) we note that this condition is

too weak as well (we refer to that paper for examples and additional motivation).
The main problem is that it is not possible to define the precondition of a set
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of actions in terms of preconditions of individual actions, because it cannot be
ensured that all the intentions are fulfilled on the same path as well. Therefore,
in order to formalize a coherence condition in PAL, we extend the language with
preconditions of finite action sequences, which ensures that after executing the
first action, the precondition for the remaining actions are still true.

6.5.3. Timeful application
Separately, Shoham further developed his ideas with Jacob Banks, one of his

PhD students, and behavioral economist Dan Ariely in the intelligent calendar ap-
plication Timeful, which attracted over $6.8 million in funding and was acquired
by Google in 201512, who aim to integrate it into their Calendar applications.
As Shoham (2016) says himself: “The point of the story is there is a direct link be-
tween the original journal paper and the ultimate success of the company.” (p.47)
Thus, it seems clear that his philosophical proposal has lead to some success on
the practical side. In our research, we aim to show that his proposal can lead to
interesting theoretical insights as well.

7. Future Work

Shoham (2009) suggests a large number of direction of future work for the
database perspective. In this article we already studied iterated revision as well as
a multi-agent extension. We discuss some remaining directions of research which
we deem most promising.

7.1. Quantitative beliefs
Our focus in this paper has been on qualitative models of belief and belief re-

vision. However, much of our framework could be naturally extended to capture
intention revision in the context of quantitative belief revision. Imagine we have a
distribution P defined on the (finite) set M|t of bounded models. This naturally in-
duces a distribution P on L |t , whereby P(ϕ) = P({m ∈M|t : m |= ϕ}). Whereas
the definition of coherence we gave above in Def. 17 is quite minimal, one can
imagine replacing this definition with one slightly stronger. A natural strength-
ening in the probabilistic setting would be to require P(Cohere(I))> θc for some
threshold θc > 0. That is, one might like to be reasonably confident that one’s plan
will succeed. The question now is how to model qualitative belief in this setting.

12http://venturebeat.com/2015/05/04/google-acquires-scheduling-apptimeful-
and-plans-to-integrate-it-into-google-apps/
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Recent work in philosophical logic has suggested various ways of bridging
quantitative and qualitative frameworks, using the notion of an acceptance rule: a
rule for determining a belief set B from a probability measure P. For concreteness,
we illustrate how our framework could be extended by drawing on a concrete ex-
ample, namely the acceptance rule defined by Leitgeb (2014). In short, we would
select a second threshold θb and, following Leitgeb, propose that the agent be-
lieves ψ just in case P(ψ | ϕ)> θb for any ϕ with P(ϕ)> 0. This notion of “stable
belief” fits well with our framework, as it is guaranteed that there is always a sin-
gle strongest stable proposition ψ. Following our assumption of “opportunistic
planning” we would typically have that θb > θc, allowing that we do not nec-
essarily outright believe that the preconditions for our intended actions will be
satisfied.

While we have defined weak beliefs in terms of a pair (SB, I), in this setting it
would make sense to define them using the full distribution. Intuitively, we weakly
believe ϕ if its probability is stably high given that all of the intended actions are
carried out; that is, we could define

WB(P, I) = {ϕ : P
(
ϕ |

∧
(a,t)∈I

do(a, t)
)
> θb}

Because the set of beliefs is stable under conditioning, this set would of course
extend the closure of the set of strong beliefs together with {do(a, t) : (a, t) ∈ I}.

An interesting question in this setting is whether it would be possible to prove
an analogue of our Theorem 2. Leaving the definition of a selection function
for intentions intact (but substituting the quantitative notion of coherence), one
question would be what are reasonable postulates characterizing intention revision
together with belief revision when the latter amounts to probabilistic conditional-
ization? Coming from the other direction, is there a natural probabilistic notion of
updating that would allow our representation theorem to go through with exactly
the same postulates? For instance, Mierzewski (2018) has shown that AGM can
be recovered in the quantitative setting if updating is by conditionalization, but
only after shifting from one’s distribution to the maximum entropy measure with
the same set of stable (strong) beliefs. That our representation result would go
through in our joint revision setting we leave as a worthy conjecture.

7.2. Teleology
One aspect we left out of our study purposely is the idea of teleology, or the

purpose for which I form intentions. It is clear that some notion of goal is required
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to capture teleological aspects of intending, which is why Cohen and Levesque
started with goal. Although it was beneficial for our analysis of intention revi-
sion to abstract away from goals, they are clearly central to the revision problem.
Information about goals allows the agent to, for instance, replace intentions in-
stead of merely discarding them. This paves the road to develop a richer notion
of intentions, such as that “intentions normally pose problems for the agents; the
agent needs to determine a way of achieving them” (Cohen and Levesque, 1990).
Interestingly, viewed from Shoham’s database perspective, adding goals to the
formalism blurs the distinction between planner and databases. If the databases
take over part of the planning, then well-known problems such as the frame prob-
lem become more stringent: Once a fact is established (for example, as a post-
condition of an intention), it persists until it explicitly contradicts postconditions
established by future intentions. Existing action logics (e.g., the Event Calculus or
the Fluent Calculus) and database approaches (e.g., TMMS by Dean and McDer-
mott (1987)) have dealt with these problems in detail, so comparing and possibly
enriching them with our formalism seems both useful and relevant future work.

8. Conclusion

We study the interplay between intention, time, and belief, and present two
main contributions.

The first contribution is to formalize assumptions of intentions. We observe
that assumptions cannot be used to derive strong beliefs from weak beliefs, but
cannot be ignored either. In order to deal with this, we first develop a branching-
time temporal logic, called Parameterized-time Action Logic (PAL) in order to
formalize beliefs. The language of this logic contains formulas to reason about
possibility, preconditions, postconditions, and the execution of actions. The se-
mantics of this logic is close to CTL*, and in this way follows the tradition of
BDI logics of Rao and Georgeff (1991). An important difference is that we do
not use modal operators to reason about time, but we use explicit time points.
We axiomatize this logic and prove that the axiomatization is sound and strongly
complete with respect to our semantics.

We separate strong beliefs from weak beliefs. Strong beliefs are beliefs that
occur in the belief database, and they are independent of intentions. Weak beliefs
are obtained from strong beliefs by adding intentions to the strong beliefs, and
everything that follows from that. We formalize a coherence condition on the
beliefs and intentions, which states that the agent weakly believes it is possible to
jointly perform all of its intended actions.
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Our second contribution is to model what-if statements. In other words, we
study the dynamics of the interplay between intentions, time, and beliefs. Our
approach is to use the well-known and well-studied AGM theory of belief revision
as our starting point. We develop a set of postulates for the joint revision of
belief and intentions, and we prove a variation of the Katsuno and Mendelzon
(1991) representation theorem. To this end, we define a revision operator that
revises beliefs up to a specific time point. We show that this leads to models of
system behaviors which can be finitely generated, i.e. be characterized by a single
formula. In addition, we study iterated revision.
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Appendix A. Completeness Proofs

Theorem 1 (Completeness Theorem). The logic PAL is sound and strongly com-
plete, i.e. Σ ` ϕ iff Σ |= ϕ.

T ` ϕ⇒ T |= ϕ (soundness) can be proven by standard techniques. We use
the remainder to prove strong completeness: T |= ϕ ⇒ T ` ϕ.

We prove strong completeness by constructing a canonical model, but before
this we introduce some concepts that we will need in different parts of the proof.
These concepts will be largely familiar to most readers.

Definition 33 (Maximally consistent set (mcs)). Given the logic PAL, a set of
formulas T is PAL-consistent if one cannot derive a contradiction from it, i.e. if⊥
cannot be inferred from it, in the proof system for PAL. A set of formulas T ∗ is a
maximally PAL-consistent set (mcs) if it is PAL-consistent and for every formula
ϕ, either ϕ belong to the set or ¬ϕ does.

We denote the part of a mcs up to and include time t with T ∗t , formally: T ∗t =
T ∗∩Past(t) (see Def. 1 of original paper).

Lemma 4 (Lindenbaum’s lemma). Every consistent set of formulas can be ex-
tended to a maximal consistent set of formulas.

Lemma 5 (The Deduction Theorem). Σ∪{ϕ} ` ψ ⇒ Σ ` ϕ→ ψ

Definition 34 (Mcs Equivalence Relation). Suppose some t ∈ N and two mcs’s
T ∗ and T ∗, we define the equivalence relation between T ∗ and T ∗, denoted by
T ∗ ≡t T ∗ as follows: T ∗ ≡t T ∗ iff T ∗∩Past(t) = T ∗∩Past(t).

Definition 35 (Equivalence class). Let T ∗ be a mcs. [T ∗]t is the set of all mcs’s
that are equivalent to T ∗ up and including time t, i.e. [T ∗]t = {T

∗ | T ∗ ≡t T ∗}.

The next step is to reduce truth of a formula in a maximal consistent set to
membership of that set, which is the content of the truth lemma. We first present a
lemma that we need in the proof of the valuation lemma, which follows after that.

Lemma 6. Let Σ = {ϕ1, . . . ,ϕn} be some set of PAL-formulas and abbreviate
{�tϕ1, . . . ,�tϕn} with �tΣ. If Σ ` ϕ, then �tΣ `�tϕ
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Proof. Suppose {ϕ1, . . . ,ϕn} ` ϕ. By the deduction lemma, ` (ϕ1∧ . . .∧ϕn)→
ϕ. Applying necessitation gives ` �t((ϕ1 ∧ . . .∧ ϕn) → ϕ), and from the K-
axiom it follows that ` �t(ϕ1 ∧ . . . ∧ ϕn) → �tϕ. Since �t(ϕ1 ∧ . . . ∧ ϕn) ≡
�tϕ1 ∧ . . .�tϕn, we obtain (1) ` (�tϕ1 ∧ . . .�tϕn) → �tϕ. Finally, since (2)
{�tϕ1, . . . ,�tϕn} `�tϕ1∧ . . .∧�tϕn holds as well, we combine (1) and (2) and
conclude that {�tϕ1, . . . ,�tϕn} `�tϕ.

Lemma 7. T ∗t `�tT ∗t

Proof. We show that for all ϕ ∈ T ∗t we have T ∗t ` �tϕ by induction on the depth
of the proof. Take an arbitrary ϕ ∈ T ∗t . We distinguish two base cases, one where
ϕ is a proposition, and another where ϕ is an atomic “do” formula.

(Base case 1) Suppose ϕ = χt ′ with χ∈ Prop and t ′ ≤ t. �t ′χt ′ follows by applying Axiom
A1. Then, apply Axiom A3 repeatedly until �tχt ′ follows.

(Base case 2) Suppose ϕ= do(a)t ′ with t ′< t (note that do(a)t cannot occur in T ∗t because
it does not occur in Past(t)). Using Axiom A4 and then repeatedly Axiom
A3 we obtain �tdo(a)t ′ .

(Conjunction) Suppose ϕ = ψ∧χ. The induction hypothesis is T ∗t ` �tψ and T ∗t ` �tχ,
so therefore from T ∗t ` ψ∧χ we obtain T ∗t ` �tψ∧�tχ. Since �tψ∧�tχ

is equivalent to �t(ψ∧χ), it follows directly that T ∗t `�t(ψ∧χ).

(Box) Suppose ϕ =�t ′ψ. By transitivity (which is not an axiom of our logic, but
it holds in KT5): �t ′ψ→ �t ′�t ′ψ. Next, apply Axiom A3 repeatedly to
obtain �t�t ′ϕ.

(Negation) We make another case distinction on the negated formula. That is, we as-
sume T ∗t ` ¬ϕ and we show T ∗t `�t¬ϕ, again by induction on the depth of
the formula.

(Base case 1) Suppose ϕ = ¬χt ′ with χ ∈ Prop and t ′ ≤ t, then �t¬χt follows from
Axiom A2 and A3 as described before.

(Base case 2) Suppose ϕ = ¬do(a)t ′ with t ′ < t. We apply Axiom A5 and A3 re-
peatedly until we have �t¬do(a)t ′ .
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(Conjunction) Suppose ϕ = ¬(ψ∧χ). The induction hypothesis is T ∗t ` �t¬ψ and
T ∗t ` �t¬χ, which implies T ∗t ` �t¬ψ∨�t¬χ, which again implies
T ∗t `�t(¬ψ∨¬χ). Using De Morgan we obtain T ∗t `�t¬(ψ∧χ).

(Box) Suppose ϕ = ¬�t ′ψ, which is equivalent to ♦t ′¬ψ. From Axiom 5
we obtain �t ′♦t ′¬ψ, and by again applying Axiom A3 repeatedly we
obtain �t♦t ′¬ψ, which is equivalent to �t¬�t ′ψ, and this is what we
had to show.

Lemma 8 (Valuation lemma). For any maximal consistent set T ∗, the following
are true

1. T ∗ is deductively closed: T ∗ ` ϕ implies that ϕ ∈ T ∗;
2. ϕ ∈ T ∗ iff ¬ϕ 6∈ T ∗;
3. ϕ∧ψ ∈ T ∗ iff ϕ ∈ T ∗ and ψ ∈ T ∗;
4. �tϕ ∈ T ∗ iff for all T ∗ s.t. T ∗ ≡t T ∗ : ϕ ∈ T ∗.

Proof. 1. Because T ∗ is maximally consistent, either ϕ∈ T ∗ or ¬ϕ∈ T ∗. Sup-
pose that T ∗ ` ϕ, and suppose for contradiction that ¬ϕ ∈ T ∗. From this it
follows that T ∗ ` ¬ϕ and therefore T ∗ `⊥, which would contradict consis-
tency of T ∗. Hence ϕ ∈ T ∗.

2. Follows directly from the definition of a maximally consistent set.

3. Follows directly as well.

4. ⇒: Suppose �tϕ ∈ T ∗. Take arbitrary T ∗ with T ∗ ≡t T ∗. From Def. 34
(equivalent mcs) it follows that �tϕ∈ T ∗. Therefore, by Axiom T we obtain
ϕ ∈ T ∗.

⇐: We show this by contraposition. Therefore, suppose �tϕ 6∈ T ∗. We will
show that there exists some T ∗ with T ∗ ≡t T ∗ and ϕ 6∈ T ∗.

Suppose for contradiction that ¬ϕ is not consistent with T ∗t , i.e. T ∗t ∪
{¬ϕ} `⊥, so by the Deduction Theorem (Lemma 5), T ∗t ` ϕ holds. By
Lemma 6, we have (1) �tT ∗t ` �tϕ. From Lemma 7 it follows that (2)
T ∗t ` �tT ∗t , so combining (1) and (2) gives T ∗t ` �tϕ. But this contradicts
with our initial assumption that �tϕ 6∈ T ∗. Thus, the assumption is invalid
so T ∗t ∪{¬ϕ} is consistent.
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By Lindenbaum’s lemma, T ∗t can be extended to a mcs T ∗, and since T ∗t ⊆
T ∗, it follows directly that T ∗ ≡t T ∗. Therefore, there exists a mcs T ∗ with
T ∗ ≡t T ∗ and ϕ 6∈ T ∗, and this is what we had to show.

We construct the canonical model by naming the states in our model as equiv-
alence classes of mcs’s, which are parameterized by a time point. For instance,
the state s = [T ∗]t is named as the set of mcs’s equivalent to the mcs T ∗ up to and
including time t. We then define accessibility relation between states named after
equivalence classes up to and including subsequent time points of the same mcs.
Finally, the valuation function assigns the set of propositions that are true in an
equivalence class to the corresponding state.

Definition 36 (Canonical Tree). Given a mcs T ∗, we obtain a PAL-canonical
tree TreeT ∗ = (S,R,v,act), where

1. S =
⋃

t∈N St where St = {[T
∗
]t | T

∗ ≡0 T ∗}
2. sRs′ iff (∃T ∗, t ∈ N).(s = [T ∗]t ∧ s′ = [T ∗]t+1)
3. p ∈ v(s) iff (∃T ∗, t ∈ N).(s = [T ∗]t ∧ pt ∈ T ∗).
4. a = act((s,s′)) iff (∃T ∗).(s = [T ∗]t ∧ s′ = [T ∗]t+1∧do(a)t ∈ T ∗)

Note that the existential quantifier in (3) of Def. 36 could equivalently be re-
placed by a universal quantifier, because of the definition of equivalence classes
(Def. 35): All mcs’s in [T ∗]t are equivalent up to time t, so if some timed propo-
sition pt is an element of some mcs in this set, then it is necessarily an element of
any other mcs in this set as well.

Lemma 9. Given a mcs T ∗, TreeT ∗ is a tree.

Proof. Suppose some T ∗ and let TreeT ∗ = (S,R,v,act). We have to show that R
is serial, linearly ordered in the past, and connected.

• serial: Suppose some s ∈ S s.t. s = [T ∗]t. We have to show that there exists
some s′ ∈ S such that sRs′, i.e. there exists some T ′

∗
s.t. s = [T ′]t and

s′ = [T ′]t+1. This directly follows for T ′ = T and by the fact that T ∗ is a
mcs.

• linearly ordered in the past: Suppose some s ∈ S s.t. s = [T ∗]t and t > 0
(t = 0 is the root of the tree). We show that there exists exactly one s′ s.t.
s′Rs. Suppose for contradiction that there exist s′,s′′ ∈ S with s′ = [T ′]t−1
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and s′′ = [T ′′]t−1 such that s′ 6= s′′, i.e. T ′ 6≡t−1 T ′′. However, then T ′ 6≡t T ′′

holds as well, but this contradicts with s′Rs and s′′Rs. Thus, s′ 6= s′′ is not
possible.

• connected: Suppose s,s′ ∈ S with s = [T ∗]t and s′ = [T ′
∗
]t ′ . We show that

there exists some s′′ such that s′′R∗s and s′′R∗s′, where R∗ is the transitive
closure of R. This directly holds for s′′ = [T ∗]0, since then s′′ ∈ {[T ∗]0 |
T ∗ ≡0 T ∗}.

Given a mcs T ∗, we construct a path πT ∗ = (s0,s1, . . .) from it by letting st =
[T ∗]t . So p ∈ vp(πT ∗t) iff pt ∈ T ∗ and a = act(π,T ∗t) iff do(a)t ∈ T ∗.

Given a path π in a canonical tree TreeT ∗ and a t ∈ N, we denote

Tπ|t := T ∗∩Past(t),

where T ∗ ∈ πt . Note that the definition is correct: Tπ|t does not depend on the
choice of the element from Tπ by Definition 2 and 3. We construct the set Tπ from
a path π as follows:

Tπ =
⋃
t∈N

Tπ|t .

The next two lemmas show that for each π in the canonical tree TreeT ∗ , Tπ is
a mcs.

Lemma 10. Given a mcs T ∗, For any path π in the canonical tree TreeT ∗: Tπ|t ⊆
Tπ|t+1.

Proof. Suppose some mcs T ∗ and somoe arbitrary path π in the canonical tree
TreeT ∗ . From the construction of the canonical tree we have that πtRπt+1 iff there
is some T ∗ with πt = [T ∗]t and πt+1 = [T ∗]t+1. Clearly, we have that T ∗t ⊆ T ∗t+1,
and since Tπ|t ∈ [T ∗]t and Tπ|t ∈ [T ∗]t+1, we also have that Tπ|t ⊆ Tπ|t+1.

Lemma 11. Given a mcs T ∗, for any path π in the canonical tree TreeT ∗: Tπ is a
mcs.

Proof. (Consistent) From Lemma 10 we have that Tπ|0 ⊆ . . . ⊆ Tπ|t . Moreover,
Tπ|t ⊆ T ∗ where T ∗ is a mcs, which is consistent by definition, so Tπ is consistent
as well.

(Maximal) Suppose an arbitrary PAL-formula ϕ. Then there is a maximal t
that appears in ϕ, therefore, ϕ ∈ Past(t). By definition, ϕ ∈ Tπ|t or ¬ϕ ∈ Tπ|t .
Since Tπ|t ⊆ Tπ, we have that ϕ ∈ Tπ or ¬ϕ ∈ Tπ. Hence Tπ is maximal.
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The following three lemmas are direct consequences of the construction of Tπ

and πT .

Lemma 12. Given a mcs T ∗, two paths π and π′ in the canonical tree TreeT ∗ and
some time point t: π∼t π′ iff Tπ ≡t Tπ′ .

Lemma 13. Given two mcs T ∗ and T ∗ and some time point t, T ∗ ≡t T ∗ iff πT ∗ ∼t
πT ∗ .

Lemma 14. Given a mcs T ∗, in the canonical tree TreeT ∗ ,

1. For each π, π(Tπ) = π.

2. For each T ∗, T(πT∗)
= T ∗.

Note that by the previous lemma, for every path π in the canonical tree TreeT ∗ ,
there exists a unique mcs T ∗ such that π = πT ∗ .

Lemma 15. Given a mcs T ∗: (TreeT ∗,πT ∗) is a model.

Proof. Suppose some T ∗. From Lemma 9 we have that TreeT ∗ is a tree. In order
to show that (TreeT ∗,πT ∗) is a model we prove the three conditions on a model.
Recall that

πT ∗ = (s0,s1, . . .) where st = [T ∗]t .

1. Suppose act(s, t) = a. By the truth definition we have that do(a) ∈ st , so
by the construction of st : do(a)t ∈ T ∗. By Axiom A9, post(a)t+1 ∈ T ∗, so
post(a) ∈ st+1

2. Suppose pre(a,b)t ∈ st , so similarly we have pre(a,b) ∈ st , and hence
pre(a,b)t ∈ T ∗. By Axiom A11, pre(a)t ∈ T ∗ and so pre(a) ∈ st .

3. We can prove this condition in the same way.

Lemma 16 (Truth lemma). Given a mcs T ∗: for every maximally PAL-consistent
set of formula T ∗ and for every formula ϕ :

(TreeT ∗,πT ∗) |= ϕ iff ϕ ∈ T ∗
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Proof. By induction on the depth of the proof.
(Base case) Suppose ϕ = χt , for some atomic proposition χ ∈L . From the

truth definition we have TreeT ∗,πT ∗ |= χt iff χ ∈ v(πT ∗t). From the construction
of πT ∗ it follows then directly that χt ∈ T ∗. Suppose ϕ = do(a)t . From the truth
definition we have TreeT ∗,πT ∗ |= do(a)t iff act(π,T ∗t) = a. Again, from the con-
struction of πT ∗ we obtain do(a)t ∈ T ∗.

(Negation) Suppose ϕ = ¬ψ. From the valuation lemma we know that ¬ψ ∈
T ∗ iff ψ 6∈ T ∗. By the induction hypothesis, ψ 6∈ T ∗ is equivalent to TreeT ∗ ,πT ∗ 6|=
ψ. According to the truth definition that is equivalent to TreeT ∗,πT ∗ |=¬ψ. Hence,
¬ψ ∈ T ∗ is equivalent to TreeT ∗,πT ∗ |= ¬ψ.

(Conjunction) Suppose ϕ = ψ∧χ. From the valuation lemma we know that
ψ∧χ ∈ T ∗ iff ψ ∈ T ∗ and χ ∈ T ∗. By the induction hypothesis, that is equivalent
to TreeT ∗,πT ∗ |= ψ and TreeT ∗,πT ∗ |= χ, respectively. Lastly, applying the truth
definition, this is equivalent to TreeT ∗,πT ∗ |= ψ∧ χ. Therefore, ψ∧ χ ∈ T ∗ iff
TreeT ∗,πT ∗ |= ψ∧χ.

(Necessity) Suppose ϕ =�tψ. We show both directions of the bi-implication
separately.
⇒: Suppose that TreeT ∗,πT ∗ |=�tψ, i.e. for all π′ with πT ∗ ∼t π′ : TreeT ∗,π

′ |=
ψ. Pick such π′ arbitrarily. From Lemma 14 we have that there is a unique mcs
T
∗

such that π′ = π
T
∗ . Thus, TreeT ∗,πT

∗ |= ψ holds, and by the induction hypoth-

esis, ψ ∈ π(T
∗
) holds as well. Since π(T ∗)∼t π(T

∗
), from Lemma 13 we obtain

T ∗ ≡t T
∗
. Thus, by the valuation lemma we obtain �tψ ∈ T ∗.

⇐: Suppose that �tψ ∈ T ∗. By the valuation lemma, for all T
∗

with T ∗ ≡t

T
∗

: ψ ∈ T
∗
. Take such T

∗
arbitrarily. From the induction hypothesis we have

that TreeT ∗ ,πT
∗ |= ψ. Since T ∗ ≡t T

∗
, it follows from Lemma 13 that πT ∗ ∼

t π
T
∗ .

Since T
∗

was chosen arbitrarily, we have that for all π′ with πT ∗ ∼t π′ it holds that
TreeT ,π

′ |= ψ. Therefore, TreeT ∗,πT ∗ |=�tψ.

We can now prove that the logic PAL is strongly complete:

Theorem 1, Completeness. We prove this by contraposition, showing that T 6` ϕ

implies T 6|= ϕ. If T 6` ϕ, then T ∪{¬ϕ} is consistent, so there is a mcs T ∗ ⊃ T
containing ¬ϕ, as the Lindenbaum lemma shows. By the Truth lemma we have
that TreeT ∗,πT ∗ |= ¬ϕ iff ¬ϕ ∈ T ∗. And thus TreeT ∗,πT ∗ |= ¬ϕ, since ¬ϕ ∈
T ∗. Hence there is a model, namely Tree, and a path, namely πT ∗ , where all the
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formulas from T hold, and ϕ doesn’t hold. Therefore, T 6|= ϕ, and that is what we
had to show.

Proposition 3. The logic PAL is decidable.

Proof. Consider a formula ϕ ∈L . Since ϕ contains a finite number of time in-
dexes, there is a maximal time index t appearing in ϕ. By Definition 7, for check-
ing if ϕ is satisfied in a model m it is enough to check the states and actions in
m up to time t + 1. We define the set Prop(ϕ) as the smallest set such that: if
p` appears (for some `) in ϕ, then p ∈ Prop(ϕ); if post(a)` appears in ϕ, then
pre(a), post(a) ∈ Prop(ϕ); if pre(a1, . . . ,an)` appears in ϕ and (a j, . . . ,ak) is a
subsequence of (a1, . . . ,an), then pre(a j, . . . ,ak), post(a j) ∈ Prop(ϕ). By Defini-
tion 7, satisfiability of the formula ϕ in any considered model will not depend on
the value of any proposition outside of Prop(ϕ), in any state.

Thus, we can consider the models restricted to time t + 1 such that the eval-
uation functions v are also restricted to Prop(ϕ). Clearly, ϕ is satisfiable, if it is
satisfiable in such a restricted model.

Since there are finitely many deterministic actions, and finitely many restricted
evaluation functions v (to Prop(ϕ)) there are only finitely many possible trees with
paths whose length is t +1 and in each state s, v(s)⊆ Prop(ϕ).

For each of them we can check if they can be extended to a model by checking
if it satisfies the four conditions of Definition 6 and, if it does, if ϕ is satisfied in
it. Thus, the satisfiability problem for the logic PAL is decidable.

Appendix B. Representation Theorem Proofs

Recall that Mod(ϕ) is the set of models of ϕ. Similarly, given some t-restricted
PAL formula ϕ, we define Mod|t(ϕ) as the set of t-restricted models of ϕ. Recall
from the paper that Ext(MSB|t) is the set of all possible extensions of a set of
bounded model of strong beliefs MSB|t to models, i.e.

Ext(MSB|t) = {m ∈M | m|t ∈MSB|t}.

Note that Ext is defined on the sets of bounded models of strong beliefs only. In
order to simplify notation in the proof of the representation theorem, we define
the following abbreviation:
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Given a set of restricted models {m|t1 , . . . ,m
|t
n}, with m|ti = (T |ti ,π

|t
i ), we intro-

duce Ext(m|t1 , . . . ,m
|t
n) as:

Ext(m|t1 , . . . ,m
|t
n) := Ext({(T |t ,π|t) |

n∨
k=1

T |t = T |ti }). (B.1)

Lemma 17. Given a set of t-bounded models of strong beliefs MSB|t , there exists
a strong belief formula f orm(MSB|t) such that Mod( f orm(MSB|t))=Ext(MSB|t).

Proof. For a given T |t we define the strong belief formula

f orm(T |t) =
∧

π|t ′∈T |t
♦0α

π|t ′ ∧
∧

π|t ′ 6∈T |t
¬♦0α

π|t ′,

where

α
π|t =

t∧
n=0

 ∧
χ∈v(π|t n)

χn∧
∧

χ6∈v(π|t n)

¬χn∧
∧

act(π|t ,n)=a

do(a)n

 .

Intuitively, f orm(T |t) is a strong belief formula describing all of the paths of T up
to t. Each α

π|t is a formula describing the path π up to t: It contains all propositions
that are true and false at each time moment, and all actions that are executed. Note
that Axiom A7 of PAL-P ensures that only one action can be executed per time
moment.

Let T ′ be a tree. From the construction of the formula f orm(T |t) it follows that
if T |t ′ = T |t , then for every π′ ∈ T ′ we have (T ′,π′) |= f orm(T |t). On the other
hand, if T |t ′ 6= T |t , then there is π such that either π|t ∈ T |t \T |t ′ or π|t ∈ T |t ′ \T |t .
Suppose that π|t ∈ T |t \T |t ′. Then for any π ∈ T ′ we have (T ′,π′) 6|= ♦0α

π|t , so
(T ′,π′) 6|= f orm(T |t). Similarly, if π|t ∈ T |t ′\T |t , then (T ′,π) 6|=¬♦0α

π|t , so again
we have (T ′,π) 6|= f orm(T |t). Thus, we proved

Mod( f orm(T |t)) = Ext({(T |t ,π|t) ∈M|t | π|t ∈ T |t}).

Now we define

f orm(M|t SB) =
∨
{ f orm(T |t) | (T |t ,π|t) ∈M|t SB}.

Note that the set of propositional letters from L |t is finite, and that we have finitely
many deterministic actions, so M|t SB is a finite set. Consequently, the above dis-
junction is finite.
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Finally, we have

Mod( f orm(M|t SB))

=
⋃
{Mod( f orm(T |t)) | (T |t ,π|t) ∈M|t SB}

=
⋃

Ext({(T |t ,π|t) ∈M|t SB | π|t ∈ T |t})

= Ext(M|t SB).

Note that f orm is defined on the set of bounded models of strong beliefs only.
In order to simplify notation in the proof of the representation theorem, we define
the following abbreviation:

Given a set of models {m1, . . . ,mn}, with mi =(Ti,πi), we introduce f orm(m1, . . . ,mn)
as:

f orm(m1, . . . ,mn) := f orm({(T |t ,π|t) |
n∨
i

T |t = T |ti }). (B.2)

Lemma 18. If ϕ is a formula of strong beliefs bounded up to t, and T |t1 = T |t2 , then
(T1,π1) |= ϕ iff (T2,π2) |= ϕ.

Proof. By induction on the complexity of ϕ.

Corollary 2. Given a t-bounded strong belief set B, there exists a t-bounded for-
mula of strong beliefs ψ such that B = {ϕ | ψ ` ϕ}.

Proof. For a given belief set B, from Lemma 18 follows that Mod|t(B) is a set
of t-bounded models of a strong beliefs such that Ext(Mod|t(B)) = Mod(B). If
ψ = f orm(Mod|t(B)), then form Lemma 17 we obtain Mod(ψ) = Mod(B), and
by the completeness theorem, B =Cl(ψ).

Note that for a formula ϕ ∈ Bt , the satisfiability of the formula in a model m
depends only on the paths in its restricted counterpart m|t , for a set of intentions
bounded up to t so we can write that

(M|t , I) is coherent iff (M, I) is coherent. (B.3)

We next repeat the definition of faithful assignment from the paper and we re-
state the representation theorem. After that, we prove the representation theorem.
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Definition 25 (Faithful assignment). A faithful assignment is a function that as-
signs to each strong belief formula ψ ∈ SB|t a total pre-order ≤t

ψ over M and to
each intention database I ∈ D|t a selection function γt

I and satisfies the following
conditions:

1. If m1,m2 ∈Mod(ψ), then m1 ≤t
ψ m2 and m2 ≤t

ψ m1.

2. If m1 ∈Mod(ψ) and m2 6∈Mod(ψ), then m1 < m2.

3. If ψ≡ φ, then ≤t
ψ=≤t

φ
.

4. If T |t = T |t2 , then (T,π)≤t
ψ (T2,π2) and (T2,π2)≤t

ψ (T,π).

Theorem 2 (Representation Theorem). The function ∗t : BI× (SB× I)→ BI is
a belief-intention revision operator iff there exists a faithful assignment that maps
each ψ to a total pre-order ≤t

ψ and each I to a selection function γt
I such that if

(ψ, I)∗t (ϕ, i) = (ψ′, I′), then:

1. Mod(ψ′) = min(Mod(ϕ),≤t
ψ)

2. I′ = γt
I(Mod(ψ′), i)

Proof. The belief part of the representation proof is almost identical to the existing
proofs of Katsuno and Mendelzon, apart from dealing with the new postulate for
strong beliefs.

“ ⇒′′: Suppose that ∗t : BI× (SB× I) → BI is a belief-intention revision
operator. Then there exist a strong belief revision function ◦t (which satisfies
(R1)–(R6)) and an intention revision function ⊗t (which satisfies the postulates
(P1)–(P5) from Definition 25) such that ∗t can be represented as follows: (ψ, I)∗t
(ϕ, i) = (ψ◦t ϕ, I)⊗t i.

Given models m1 and m2, let ψ◦t f orm(m1,m2) = ψ′ (note that we use the ab-
breviation (B.2) for f orm). We define≤t

ψ by m1≤t
ψ m2 iff m1 |=ψ or m1 |=ψ′. We

also define γt
I by γt

I(MSB|t , i)= I′, where ( f orm(MSB|t), I)⊗t i=( f orm(MSB|t), I′).
In the first part of the proof, modifying the proof technique of Katsuno and

Mendelzon, we show that 1) ≤t
ψ is a total pre-order, 2) the assignment ψ to ≤t

ψ is
faithful, 3) Mod(ψ′) = min(Mod(ϕ),≤t

ψ). Then we show that 4) γt
I is a selection

function and 5) I′ = γt
I(Mod|t(ψ′), i).

1. To show: ≤t
ψ is a total pre-order.
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• To show: Totality and reflexivity. From (R1) and (R3): Mod(ψ ◦t
f orm(m1,m2)) is a nonempty subset of Ext(m|t1 ,m

|t
2) (note that we use

the abbreviation (B.1) for Ext). Therefore, for each m ∈ Ext(m|t1) and
m′ ∈ Ext(m|t2), we have that either m≤t

ψ m′ or m′≤t
ψ m. We now show,

without loss of generality, that for each m,m′ ∈Ext(m|t1), both m≤t
ψ m′

and m′ ≤t
ψ m hold. Therefore, let m,m′ ∈ Ext(m|t1), so m|t = m|t ′. By

Lemma 3 of the paper, Mod( f orm(m|t)) = Ext(m|t) = Ext(m|t ′) =
Mod( f orm(m|t ′)). Hence, f orm(m) ≡ f orm(m′), so f orm(m,m′) ≡
f orm(m). By (R4): Mod(ψ◦t f orm(m|t)) = Mod(ψ◦t f orm(m,m′))).
By (R1), m ∈ Mod(ψ ◦t f orm(m), so m ∈ Mod(ψ ◦t f orm(m,m′)).
Hence, by the definition of ≤t

ψ: m ≤t
ψ m′. We can prove m′ ≤t

ψ m
similarly. This proves that ≤t

ψ is total, which implies reflexivity.

• To show: Transitivity. Assume m1 ≤t
ψ m2 and m2 ≤t

ψ m3. We show
m1 ≤t

ψ m3. There are three cases to consider:

(a) m1 ∈Mod(ψ). m1 ≤t
ψ m3 follows from the definition of ≤t

ψ.
(b) m1 6∈Mod(ψ) and m2 ∈Mod(ψ). Since Mod(ψ∧ f orm(m1,m2))=

Ext(m|t2) holds, Mod(ψ◦t f orm(m1,m2))=Ext(m|t2) follows from
(R2). Thus m1 6≤t

ψ m2 follows from m1 6∈Mod(ψ). This contra-
dicts m1 ≤t

ψ m2, so this case is not possible.
(c) m1 6∈ Mod(ψ) and m2 6∈ Mod(ψ). By (R1) and (R3), Mod(ψ ◦t

f orm(m1,m2,m3)) is a nonempty subset of Ext(m|t1 ,m
|t
2 ,m

|t
3). We

now consider two subcases.
i. Mod(ψ◦t f orm(m1,m2,m3))∩Ext(m|t1 ,m

|t
2) = /0. In this case,

Mod(ψ ◦t f orm(m1,m2,m3)) = Ext(m|t3) holds. If we regard
ϕ and ϕ′ as f orm(m1,m2,m3) and f orm(m2,m3) respectively
in Conditions (R5) and (R6), we obtain

Mod(ψ◦t f orm(m1,m2,m3))∩Ext(m|t2 ,m
|t
2) = Mod(ψ◦t f orm(m2,m3)).

Hence, Mod(ψ ◦t f orm(m2,m3)) = Ext(m|t3). This contra-
dicts m2 ≤t

ψ m3 and m2 6∈Mod(ψ). Thus, this subcase is not
possible.

ii. Mod(ψ◦t f orm(m1,m2,m3))∩Ext(m|t1 ,m
|t
2) 6= /0. Since m1≤t

ψ

m2 and m1 6∈Mod(ψ), m1 ∈Mod(ψ◦t f orm(m1,m2)) holds.
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Hence, by regarding ϕ and ϕ′ as f orm(m1,m2,m3) and f orm(m1,m2)
respectively in Conditions (R5) and (R6), we obtain

Mod(ψ◦t f orm(m1,m2,m3))∩Ext(m|t1 ,m
|t
2) = Mod(ψ◦t f orm(m1,m2)).

Thus,

m1 ∈Mod(ψ◦t f orm(m1,m2,m3))∩Ext(m|t1 ,m
|t
2)

holds. By using conditions (R5) and (R6) again in a similar
way, we can obtain m1 ∈ Mod(ψ ◦t f orm(m1,m3)). There-
fore, m1 ≤t

ψ m3 holds.

2. To show: The assignment mapping ψ to ≤t
ψ is faithful. We prove the four

conditions separately

(a) The first condition follows from the definition of ≤t
ψ.

(b) For the second condition, assume that m∈Mod(ψ) and m′ 6∈Mod(ψ).
Then Mod(ψ ◦t f orm(m,m′)) = Ext(m|t) follows from (R2). There-
fore, m <t

ψ m′ holds.

(c) The third condition follows from (R4).

(d) For the fourth condition, for m1 = (T1,π1) and m2 = (T2,π2) such that
T |t1 = T |t2 , let ψ′ be as above. Since ψ,ψ′ ∈ Bt , by Lemma 18 we
obtain m1 |= ψ iff m2 |= ψ and m1 |= ψ′ iff m2 |= ψ′, so m1 ≤t

ψ m2 and
m2 ≤t

ψ m1.

3. To show: Mod(ψ′) = min(Mod(ϕ),≤t
ψ). Note that this can be equivalently

rewritten as Mod(ψ ◦t ϕ) = min(Mod(ϕ),≤t
ψ). If ϕ is unsatisfiable then

both sets are empty. So we assume ϕ is satisfiable. We show both contain-
ments separately.

• To show: Mod(ψ◦t ϕ)⊆min(Mod(ϕ),≤t
ψ). Assume for contradiction

that m ∈Mod(ψ◦t ϕ) and m 6∈min(Mod(ϕ),≤t
ψ). By condition (R1),

m is a model of ϕ. Hence, there is a model m′ of ϕ such that m′ <t
ψ m.

We consider two cases:

(a) m′ ∈ Mod(ψ). Since m′ ∈ Mod(ϕ), ψ∧ϕ is satisfiable. Hence,
by condition (R2), ψ◦t ϕ≡ ψ∧ϕ holds. Thus, m ∈Mod(ψ) fol-
lows from m ∈ Mod(ψ ◦t ϕ). Therefore, m ≤t

ψ m′ holds. This
contradicts m′ <t

ψ m.
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(b) Mod(ψ ◦t f orm(m,m′)) = Ext(m|t). Since both m and m′ are
models of ϕ, ϕ∧ f orm(m,m′)≡ f orm(m,m′) holds. Thus,

Mod(ψ◦t ϕ)∩Ext(m|t ,m|t ′)⊆Mod(ψ◦t f orm(m,m′))

follows from condition (R5). Since we assume Mod(ψ◦t f orm(m,m′))=
Ext(m|t ′), we obtain m 6∈Mod(ψ◦t ϕ). This is a contradiction.

• To prove: min(Mod(ϕ),≤t
ψ) ⊆ Mod(ψ ◦t ϕ). Assume for contradic-

tion that m ∈ min(Mod(ϕ),≤t
ψ) and m 6∈Mod(ψ◦t ϕ). Since we also

assume that ϕ is satisfiable, it follows from condition (R3) that there
is an interpretation m′ such that m′ ∈Mod(ψ ◦t ϕ). Since both m and
m′ are models of ϕ, f orm(m,m′)∧ϕ ≡ f orm(m,m′) holds. By using
conditions (R5) and (R6), we obtain

Mod(ψ◦t ϕ)∩Ext(m|t ,m|t ′) = Mod(ψ◦t f orm(m,m′)).

Since m 6∈ Mod(ψ ◦t ϕ), Mod(ψ ◦t f orm(m,m′)) = Ext(m|t ′) holds.
Hence, m′ ≤t

ψ m holds. On the other hand, since m is minimal in
Mod(ϕ) with respect to≤t

ψ, m≤t
ψ m′ holds. Since Mod(ψ◦t f orm(m,m′))=

Ext(m|t ′), m ∈ Mod(ψ) holds. Therefore, m ∈ Mod(ψ ◦t ϕ) follows
from condition (R2). This is a contradiction.

4. To show: γt
I is a selection function. This is direct consequence of the com-

pleteness theorem and the postulates (P1)-(P5), taking into account (Ap-
pendix B). For example, if (P1) holds, then ψ′ is consistent with Cohere(I′),
so by completeness there is a model of both ψ′ and Cohere(I′). since
Mod(ψ′) = min(Mod(ϕ),≤t

ψ), we obtain that (Mod(ψ′), I′) is coherent.

5. To show: I′ = γt
I(Mod|t(ψ′), i). This is true since from our definition of γt

I
we have that (ψ′, I)⊗t i = (ψ′,γt

I(Mod|t(ψ′), i)).

“⇐”: Assume that there is a faithful assignment that maps ψ to a total pre-order
≤t

ψ and I to a selection function γt
I . We define the t-bounded revision operator ∗t

as follows:

(ψ,C)∗t (ϕ,c) = ( f orm(min(Mod|t(ϕ),≤t
ψ),γ

t
I(min(Mod|t(ϕ),≤t

ψ), i)).

First we show that the operator is correctly defined, i.e. that min(Mod|t(ϕ),≤t
ψ)

is a set of t-bounded models of strong beliefs. Let T |t = T ′|t . Since ϕ ∈ SB|t , by
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Lemma 18 we obtain that (T,π) |= ϕ iff (T ′,π′) |= ϕ. Now suppose that (T,π) ∈
min(Mod(ϕ),≤t

ψ). If (T ′,π′) /∈ min(Mod(ϕ),≤t
ψ), then (T,π) < (T ′,π′), which

is impossible by the definition of faithful assignment. Thus, min(Mod|t(ϕ),≤t
ψ)

is a set of t-bounded models of strong beliefs.
Let us now prove that ∗t can be represented as a composition of a strong belief

revision function ◦t which satisfies the postulates (R1)–(R6), and an intention
revision function⊗t which satisfies the postulates (P1)–(P5) (from Definition 25),
in the following way:

(ψ, I)∗t (ϕ, i) = (ψ◦t ϕ, I)⊗t i.

Namely, we define the operator ◦t by ψ◦t ϕ = f orm(min(Mod|t(ϕ),≤t
ψ)), and the

operator ⊗t by (ψ′, I)⊗t i = (ψ′,γt
I(Mod|t(ψ′), i)). First we show that ◦t satisfies

conditions (R1)–(R6). It is obvious that condition (R1) follows from the definition
of the revision operator ◦t . It is also obvious that conditions (R3) and (R4) follow
from the definition of the faithful assignment. What remains to show is condition
(R2), (R5), and (R6).

• To prove: (R2). It suffices to show if Mod(ψ∧ϕ) is not empty then Mod(ψ∧
ϕ)=min(Mod(ϕ),≤t

ψ). Mod(ψ∧ϕ)⊆min(Mod(ϕ),≤t
ψ) follows from the

conditions of the faithful assignment. To prove the other containment, we
assume that m∈min(Mod(ϕ),≤t

ψ) and m 6∈Mod(ϕ∧ϕ). Since Mod(ψ∧ϕ)
is not empty, there is a model m′ ∈ Mod(ψ∧ϕ). Then m 6≤t

ψ m′ follows
from the conditions of the faithful assignment. Moreover, m′ ≤t

ψ m follows
from the conditions of the faithful assignment. Hence, m is not minimal in
Mod(ϕ) with respect to ≤t

ψ. This is a contradiction.

• To prove: (R5) and (R6). It is obvious that if (ψ ◦t ϕ)∧ ϕ′ is unsatisfi-
able then (R6) holds. Hence, it suffices to show that if min(Mod(µ),≤t

ψ

)∩Mod(ϕ′) is not empty then

min(Mod(ϕ),≤t
ψ)∩Mod(ϕ′) = min(Mod(ϕ∧ϕ

′),≤t
ψ)

holds. Assume that m∈min(Mod(ϕ),≤t
ψ)∩Mod(ϕ′) and m 6∈min(Mod(ϕ∧

ϕ′),≤t
ψ). Then, since m ∈ Mod(ϕ∧ϕ′), there is an interpretation m′ such

that m′ ∈Mod(ϕ∧ϕ′) and m′ <ψ m. This contradicts m∈min(Mod(ϕ),≤t
ψ

). Therefore, we obtain

min(Mod(ϕ),≤t
ψ)∩Mod(ϕ′)⊆min(Mod(ϕ∧ϕ

′),≤t
ψ).
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To prove the other containment, we assume that m 6∈ min(Mod(ϕ),≤t
ψ)∩

Mod(ϕ′) and m∈min(Mod(ϕ∧ϕ′),≤t
ψ). Since m∈Mod(ϕ′),m 6∈min(Mod(ϕ),≤t

ψ

) holds. Since we assume that min(Mod(ϕ),≤t
ψ)∩Mod(ϕ′) is not empty,

suppose that m′ is an element of min(Mod(ϕ),≤t
ψ)∩Mod(ϕ′). Then m′ ∈

Mod(ϕ∧ϕ′) holds. Since we assume that m ∈ min(Mod(ϕ∧ϕ′),≤t
ψ) and

≤t
ψ is total, m ≤t

ψ m′ holds. Thus, m ∈ min(Mod(ϕ),≤t
ψ) follows from

m′ ∈min(Mod(ϕ),≤t
ψ). This is a contradiction.

Note that the conditions (R1)-(R6) imply the conditions (P1)-(P6). For example,
suppose (R3) and let (ψ, I)∗t (ϕ, i) = (ψ′, I′). Then ψ′ = f orm(min(Mod(ϕ),≤t

ψ

)∩Mod(ϕ′)) = ψ ◦t ϕ so if ϕ is satisfiable, ψ′ is satisfiable as well. Thus, (P3)
holds.

Finally. the postulates (P1)-(P5) follow directly (using the completeness the-
orem and taking into account (Appendix B)) from the conditions the conditions
1-5 of the definition of selection function.

Appendix C. Iterated Revision Proofs

Theorem 3 (Representation Theorem for iterated revision). A function ∗t :EBI×
(SB×I)→EBI is an epistemic belief-intention revision operator iff there exists a
faithful assignment for iterated revision that maps each Ψ to a total pre-order≤t

Ψ

and each I to a selection function γt
I such that if (Ψ, I)∗t (ϕ, i) = (Ψ′, I′), then:

1. Mod(Ψ′) = min(Mod(ϕ),≤t
Ψ
)

2. I′ = γt
I(Mod(Bel(Ψ′)), i)

Proof. The proof of this theorem consists from two parts. In the first part, we show
that the function ∗t : EBI× (SB× I)→ EBI, which maps an epistemic belief-
intention database, a strong belief formula, and an intention— all bounded up to
t— to an epistemic belief-intention database bounded up to t, is a composition
((Ψ, I) ∗t (ϕ, i) = (Ψ ◦t ϕ, I)⊗t) of two functions, ◦t and ⊗t , that satisfy R1–R3,
R*4, R5 and R6, and P1–P5, respectively, if and only if there exist (i) a mapping
of each epistemic state Ψ to a total pre-order ≤t

Ψ
, such that

(1) If m1,m2 ∈Mod(Ψ), then m1 ≤t
Ψ

m2 and m2 ≤t
Ψ

m1

(2) If m1 ∈Mod(Ψ) and m2 6∈Mod(Ψ), then m1 <
t
Ψ

m2

79



(3) Ψ = Φ only if ≤Ψ=≤Φ

(4) If T |t = T |t2 , then (T,π)≤t
Ψ
(T2,π2) and (T2,π2)≤t

Ψ
(T,π),

(in this proof, we call this mapping restricted faithful assignment), and (ii) a map-
ping of each I to a selection function γt

I such that if (Ψ, I)∗t (ϕ, i) = (Ψ′, I′), then:

1. Mod(Ψ′) = min(Mod(ϕ),≤t
Ψ
)

2. I′ = γt
I(Mod(Bel(Ψ′)), i)

Note that this statement is a simplification of the representation theorem which
does not consider the postulates (C1)-(C4) from Definition 28 nor the conditions
5–8 of Definition 29. The proof of this statement is symmetric to the proof of
Theorem 2, so we will not repeat it here.

In the second part, we complete the proof, modifying the proof technique of
Darwiche and Pearl, showing that ◦t in addition satisfies (C1)-(C4) iff the operator
and its corresponding restricted faithful assignment (introduced above) satisfy the
conditions 5–8 of Definition 29. Let us assume

Ψ◦t ϕ = Ψ′,
Ψ◦t ϕ′ = Ψ′′, and
Ψ′′ ◦t ϕ = Ψ′′′.
Now we prove the following statements:

• (C1) is equivalent to the condition 5 of Definition 29:

(1) Assume that if m1 ∈ Mod(ϕ′) and m2 ∈ Mod(ϕ′), then m1 ≤t
Ψ

m2 iff
m1 ≤t

Ψ′′ m2 (the condition 5 applied to ϕ′). Assume also ϕ |= ϕ′. In order
to infer (C1), we need to prove Ψ′ ≡Ψ′′′. From condition 5 we obtain that
the restrictions of ≤t

Ψ
and ≤t

Ψ′′ to the set (Mod(ϕ))2 coincide. Therefore,
from Mod(Ψ′) = min(Mod(ϕ),≤t

Ψ
) and Mod(Ψ′′′) = min(Mod(ϕ),≤t

Ψ′′)
we obtain Mod(Ψ′) = Mod(Ψ′′′), i.e., Ψ′ ≡Ψ′′′.

(2) For the other direction, assume that ϕ |= ϕ′ always imply Ψ′ ≡Ψ′′′ (C1).
Assume also that m1 ∈Mod(ϕ′) and m2 ∈Mod(ϕ′). We need to show that
m1 ≤t

Ψ
m2 iff m1 ≤t

Ψ′′ m2. Let us chose ϕ = f orm(m1,m2) (note that we use
the abbreviation (B.2) for f orm). Then

Mod(ϕ) = Ext(m|t1)∪Ext(m|t2)⊆Mod(ϕ′),

i.e., ϕ |= ϕ′. By (C1) we have Ψ′ ≡ Ψ′′′. Note that the condition (4)
of the restricted faithful assignment ensures that for each m′1 ∈ Ext(m|t1)
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we have m1 ≤t
Ψ

m′1 and m′1 ≤t
Ψ

m1 and, similarly, for each m′2 ∈ Ext(m|t2)
we have m2 ≤t

Ψ
m′2 and m′2 ≤t

Ψ
m2. Consequently, min(Mod(ϕ),≤t

Ψ
) =

min(Mod(ϕ),≤t
Ψ′′); and we showed m1 ≤t

Ψ
m2 iff m1 ≤t

Ψ′′ m2.

• The proof that (C2) is equivalent to the condition 6 of Definition 29 is sym-
metric to the proof that (C1) is equivalent to the condition 5.

• (C3) is equivalent to the condition 7 of Definition 29:

(1) Assume that if m1 ∈ Mod(ϕ′), m2 6∈ Mod(ϕ′) and m1 <t
Ψ

m2, then
m1 <t

Ψ′′ m2 (the condition 7 applied to ϕ′). Assume also Ψ′ |= ϕ′. In or-
der to infer (C3), we need to prove Ψ′′′ |= ϕ′. We will use the following
fact:

(i) Ψ′ |= θ iff there is a model m∈Mod(ϕ∧θ) s.t. for every m′ ∈Mod(ϕ∧
¬θ) we have m≤t

Ψ
m′.

Then there exists m ∈Mod(ϕ∧ϕ′) such that for every m′ ∈Mod(ϕ∧¬ϕ′)
we have m≤t

Ψ
m′. Then, by (C3), there exists m∈Mod(ϕ∧ϕ′) such that for

every m′ ∈Mod(ϕ∧¬ϕ′) we have m≤t
Ψ′′ m

′. Using (i) we obtain Ψ′′′ |= ϕ′.

(2) For the other direction, assume that Ψ′ |= ϕ′ always imply Ψ′′′ |= ϕ′

(C*3). Assume also that m1 ∈Mod(ϕ′), m2 6∈Mod(ϕ′) and m1 <
t
Ψ

m2. We
need to show that m1 <

t
Ψ′′ m2. Let us chose ϕ = f orm(m1,m2) (again, we

use the abbreviation (B.2) for f orm), i.e., Mod(ϕ) = Ext(m|t1)∪Ext(m|t2).
Note that Ψ′ |= ϕ′ by (i), because m1 ∈ Mod(ϕ∧ ϕ′), Mod(ϕ∧¬ϕ′) =

Ext(m|t2) and m1 <
t
Ψ

m2. Consequently, by (C3), Ψ′′′ |= ϕ′. Then Mod(ϕ∧
ϕ′)Ext(m|t1), Mod(ϕ∧¬ϕ′) = Ext(m|t2) and (i) imply m1 <

t
Ψ′′ m2.

• The proof that (C4) is equivalent to the condition 8 of Definition 29 is sim-
ilar to the proof that (C3) is equivalent to the condition 7.

Thus, we proved that an operator ◦t , which satisfies the postulates R1–R3, R*4,
R5 and R6, also satisfies (C1)-(C4) iff the operator and its corresponding restricted
faithful assignment satisfy the conditions 5–8 of Definition 29, which completes
the proof.

Proposition 4. If κt is a Spohn ranking function, then κ′t from Definition 32 is
also a Spohn ranking function.
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Proof. Let κt be a Spohn ranking function and let m1 = (T1,π1) and m2 = (T2,π2)

such that T |t1 = T |t2 . Then

• κt(m1) = κ2(m2), by Definition 30,

• for a strong belief formula ϕ bounded up to t, we have m1 ∈ Mod(ϕ) iff
m2 ∈Mod(ϕ).

Therefore, by definition of κ′t we have κ′t(m1) = κ′t(m2).

Theorem 4. The function •t is an epistemic belief-intention revision operator.

Proof. First we define the function γt
I : MSB× I→ ID, which maps an msb set

(Definition 14) and an intention to an updated intention database—all bounded up
to t— as follows: γt

I(MSB|t , i) = I′, where I′ is defined iteratively (below, n is the
maximal time instance that occurs in I):

1. I−1 = {i}, if (MSB|t ,{i}) is coherent, otherwise I−1 = /0.

2. for every ` ∈ {0,1, . . . ,n}

(a) if there is no a such that (a, `) ∈ I, I` = I`−1.

(b) otherwise, if a is the unique action such that (a, `) ∈ I, then I` = I`−1∪
{(a, `)}, if (MSB|t , I`−1∪{(a, `)}) is coherent, otherwise I` = I`−1.

3. I′ = In.

Now we show that γt
I :MSB×I→ ID is a selection function. We need to show

that the conditions 1–5 of Definition 24 hold:

1. (MSB|t , I−1) is obviously coherent, and in the step 2.b a new intention is
added only if coherence is preserved, so (MSB|t , I′) is coherent.

2. If (MSB|t ,{i}) is coherent, then I−1 = {i}, so i ∈ I′.

3. If (MSB|t , I∪{i}) is coherent, then I−1 = {i} and every intention from I will
be added in 2.b, so I∪{i}= I′.

4. I′ ⊆ I∪{i} by the construction of I′.
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5. Let us consider I′′ such that I′ ⊂ I′′ ⊆ I ∪{i}. Then there is (a,k) ∈ I′′ \
I′. Since (a,k) /∈ I′, by step 2.b we have that (MSB|t , Ik−1 ∪ {(a,k)}) is
not coherent, and since Ik−1 ∪{(a,k)} ⊆ I′ ∪{(a,k)} ⊆ I′′, we obtain that
(MSB|t , I′′) is not coherent.

For any Spohn ranking function κt , we define, similarly as Darwiche and Pearl, the
pre-order ≤κt on the set of models in the following way: m1 ≤κt m2 iff κt(m1)≤
κt(m2).

Let (κt , I)•t (ϕ, i) = (κ′t , I
′). Then, by Definition 32,

κ
′
t(m) =

{
κt(m)−κt(ϕ), if m |= ϕ;
κt(m)+1, if m |= ¬ϕ.

Assume that m1 ∈ Mod(Bel(κ′t)). Then κ′t(m1) = 0. Also, by the above
definition we have that m1 ∈ Mod(ϕ). Then κt(m1) = κt(ϕ) since κ′t(m1) =
κt(m1)−κt(ϕ) and we know κ′t(m1) = 0. From κt(m1) = κt(ϕ) = minm|=ϕ κt(m),
we obtain that m1≤κt m for every m∈Mod(ϕ), so m1 ∈min(Mod(ϕ),≤κt ). Thus,
we proved that Mod(Bel(κ′t))⊆min(Mod(ϕ),≤κt ).

Now assume that m1 ∈min(Mod(ϕ),≤κt ). Then we have that: m1 ∈Mod(ϕ).
Also, m1 ≤κt m for every m ∈ Mod(ϕ) and thus κt(m1) ≤ κt(m) for every m ∈
Mod(ϕ). Consequently, κt(m1) = κt(ϕ), so κ′t(m1) = κt(m1)−κt(ϕ) = 0. There-
fore, m1 ∈Mod(Bel(κ′t)), so min(Mod(ϕ),≤κt )⊆Mod(Bel(κ′t)).

Thus, we proved that

Mod(Bel(κ′t)) = min(Mod(ϕ),≤κt ).

It remains to prove that≤κt satisfies the conditions 1–8 of Definition 29. Then,
by Theorem 3, •t satisfies all the postulates.

1. Assume that m1,m2 ∈Mod(Bel(κt)). Then κt(m1) = 0 and κt(m2) = 0, so
m1 ≤κt m2 and m2 ≤κt m1.

2. Assume that m1 ∈Mod(Bel(κt)) and m2 /∈Mod(Bel(κt)). Then κt(m1) = 0
and κt(m2) 6= 0, so m1 <κt m2.

3. Third condition follows directly from the definition of ≤κt .

4. If T |t = T |t2 , then κt((T,π)) = κt((T2,π2)) by Definition 30, so (T,π) ≤κt

(T2,π2) and (T2,π2)≤κt (T,π).

5. – 8. follow directly from the definition of κ′t .

Now the result follows directly form Theorem 3.
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