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DEL-based Epistemic Planning: Decidability and Complexity

Thomas Bolandera, Tristan Charrierb, Sophie Pinchinatb, Francois Schwarzentruberb

aDTU Compute, Technical University of Denmark
bUniv Rennes, IRISA, France

Abstract

Epistemic planning can be used for decision making in multi-agent systems with distributed knowledge and capa-
bilities. Dynamic Epistemic Logic (DEL) has been shown to provide a very natural and expressive framework for
epistemic planning. In this paper, we present a systematic overview of known complexity and decidability results for
epistemic planning based on DEL, as well as provide some new results and improved proofs of existing results based
on reductions between the problems.

Keywords: epistemic planning, dynamic epistemic logic, automated planning, decision problems, complexity
theory, automata theory.

1. Introduction

In this introduction, we will first describe the transition from classical planning under full observability to multi-
agent epistemic planning based on dynamic epistemic logic (DEL). We will illustrate the complications that arise
when generalising from classical planning to multi-agent epistemic planning. For the sake of self-containment, we
will also include a brief informal introduction to dynamic epistemic logic, whereas the formal definitions are deferred
to Section 2. Readers who are both experts in automated planning and dynamic epistemic logic might consider to skip
the introduction, but might be interested in a novel DEL-formalisation of the coordinated attack problem in Example 2.
In this formalisation, we only use two simple message passing actions instead of relying on having infinitely many
messages of unbounded modal depth. This is achieved by making use of event models with postconditions, as allowed
by the general DEL setting.

Automated planning is a branch of artificial intelligence concerned with computing plans (sequences of actions)
leading to some desired goal. A human or robot could e.g. have the goal of picking up a parcel at the post office,
and then the problem amounts to finding a succesful sequence of actions achieving this. Epistemic planning is the
enrichment of planning with epistemic notions, that is, knowledge and beliefs. The human or robot might have to
reason about epistemic aspects such as: Do I know at which post office the parcel is? If not, who would be relevant
to ask: Maybe the parcel is a birthday present for my daughter, and I want to ensure that she doesn’t get to know,
and have to plan my actions accordingly (make sure she doesn’t see me with the parcel). The epistemic notions
are usually formalised using an epistemic logic. Epistemic planning can naturally be seen as the combination of
automated planning with epistemic logic, relying on ideas, concepts and solutions from both areas.

In general, epistemic planning considers the following problem: Given my current state of knowledge, and a
desirable state of knowledge, how do I get from one to the other? It is of central importance in settings where agents
need to be able to reason about their own lack of knowledge, and e.g. make plans of how to achieve the required
knowledge. It is also essential in multi-agent planning, where successful coordination and collaboration can only be
expected if agents are able to reason about the knowledge, uncertainty and capabilities of the other agents.

In classical STRIPS planning [23], there is only a single agent acting, actions are deterministic and the environment
is fully observable. The first step towards epistemic planning is to loosen the restrictions of full observability, leading
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Figure 1: The state space of a simple non-epistemic planning task with initial state s0 and goal formula ϕg = p ∧ q.

to planning under partial observability (PO planning) [13, 37]. In PO planning, partially observable states are normally
represented as belief states: sets of fully observable states (the set of all the fully observable states that the agent
consider possible, that is, cannot distinguish from the true state). Belief states are essentially the same as single-agent
S5 Kripke models in epistemic logic [25].

When moving to multi-agent environments, it becomes relevant for planning agents to reason about the mental
states of other agents: Does my daughter know what I bought for her birthday? Does my husband know that I already
picked up the parcel at the post office, and if not, should I inform him, so that he will not go there in vain? If a
planning agent represents her own mental state as a belief state, it makes sense to also represent the mental states of
other agents as belief states—or even sets of belief states, as the planning agent can (and probably most often will)
have uncertainty about the exact belief states of the other agents. Multi-agent S5 Kripke models in epistemic logic
offer a very elegant formalism for representing all these belief states, including beliefs about the belief states of other
agents, their beliefs about your belief states, etc. Hence, when representing states as such models, we can do planning
where agents can have arbitrarily deeply nested beliefs about other agents (arbitrary levels of Theory of Mind [36]).

In the following we will refer to (pointed) multi-agent Kripke models as epistemic states (they might or might not
be S5 models, depending on whether we attempt to capture knowledge or e.g. belief). Planning on epistemic states
gives a dramatic increase in expressive power and in applicability of the formalism to advanced multi-agent scenarios
where reasoning about the mental states of other agents is crucial like the birthday parcel example above. The goal in
that example could be the conjunction of three subgoals: 1) to have the parcel, 2) for the husband to know this fact, and
3) for the daughter not to know. This is clearly an epistemic goal (more precisely, the second and third subgoals are
epistemic), and requires representations of the belief states of the husband and daughter. The goal can be represented
in the language of epistemic logic, the logic underlying epistemic states. Planning to achieve the goal would amount
to searching through a state space of epistemic states. Checking whether the goal holds in a specific epistemic state is
then by standard model checking on such models.

The main complication and complexity of epistemic planning comes from the size and complexity of epistemic
states. To illustrate this, let’s first start with a basic example of single-agent non-epistemic planning under full observ-
ability.

Example 1. Figure 1 illustrates the state space of a very simple non-epistemic planning task over two atomic propo-
sitions p and q. In the initial state s0, both p and q are false. The goal is to make both true, that is, the goal formula is
ϕg = p∧ q. There are two actions available, do-p that makes p true and do-q that makes q true (both unconditionally).
Each state is represented in the figure as an oval with its set of true atomic propositions included inside the oval, and
the name of the state next to it. Transitions between states are represented by dashed edges labelled by the relevant
actions. Since s3 satisfies the goal formula, and we can get to s3 by executing do-p followed by do-q in the initial state
s0, one of the solutions to the planning task is the action sequence do-p, do-q.
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Figure 2: Example of an epistemic state s0 = (M,w1).
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post :
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Figure 3: Example of an epistemic action sendab = (E, e1).

Any planning domain uses only a finite set of atomic propositions. When doing single-agent planning under full
observability, it is sufficient to represent states as subsets of these propositions (the true propositions in that state). In
that case, the state space is hence necessarily finite. The plan existence problem—deciding whether a sequence of
actions achieving the goal exists—hence becomes decidable: The plan existence problem is a reachability problem on
a finite graph, where we look for the reachability of a state satisfying a propositional formula.

Moving to single-agent planning under partial observability, the story is more or less the same. To account for
partial observability, we use belief states (subsets of states), but since there are only finitely many states over a finite
set of atomic propositions, the state space is still finite (though it can become exponentially larger than under full
observability). The plan existence problem is then still a reachability problem on a finite graph, where we still look
for the reachability of a state satisfying a propositional formula (in all states of the belief state). Hence decidability of
the plan existence problem is still guaranteed.

When we move to epistemic states, the picture, however, changes. We can then no longer guarantee finite state
spaces, and hence not guarantee decidability, as we will now informally illustrate. One of the distinguishing features
of automated planning is the use of action models to provide compact representations of actions and their induced
state transitions. Since the development of dynamic epistemic logic (DEL) in the late 1990s [6], such compact action
descriptions have also been available to describe state transitions on epistemic states. In DEL, these action models
are often called event models. In the following, we will refer to (pointed) event models as epistemic actions. The next
example illustrates planning on epistemic states, using event models to describe actions.

Example 2. The coordinated attack problem [22] is famous in the distributed systems literature, and can be described
informally as follows. Two generals, a and b, are together with their respective armies in separate camps. They need
to attack their common enemy simultaneously if they want to win. However, their only way to communicate is by
means of a messenger, and this messenger may be captured at any time between the two camps. Assume general a and
the messenger are initially together, and that general a has decided to attack at dawn. We use the atomic proposition
d to denote that ‘general a will attack at dawn’. For i = a, b, we use the atomic proposition mi to denote that the
messenger is currently at the position of general i. Then we can use ¬ma ∧ ¬mb to express that the messenger has
been captured. The initial situation can now be described by the epistemic state of Figure 2. We call the nodes worlds.
They correspond to the states of a belief state, that is, each node is an oval containing the atomic propositions true in
the world and being labelled by its name. The world highlighted in bold, w1, is the actual world: actually, general a
has decided to attack at dawn (d), and actually the messenger is together with him (ma). However, agent b doesn’t
know whether a has decided to attack at dawn or not, which is illustrated by the indistinguishability edge labelled b
between w1 and w2: agent b also considers world w2 possible, in which agent a has not decided to attack at dawn,
since d is not true in that world.
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Figure 4: Initial segment of the state space of an epistemic planning task with initial state s0 and actions sendab and sendba.
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The action sendab of sending the messenger to agent b to inform about d can be described by the epistemic action
in Figure 3. Here the nodes are called events. They represent the possible events that can take place when the action
is executed. There is a direct parallel between epistemic states and epistemic actions. Epistemic states can consist of
multiple possible worlds with edges representing who cannot distinguish which worlds. Similarly, epistemic actions
can consist of multiple possible events with edges representing who cannot distinguish which events. Each event
is described by a precondition and a postcondition as in most action description languages for automated planning.
We write “pre : · · · ” for preconditions and “post : · · · ” for postconditions. In general, in epistemic planning based
on DEL, the precondition of an event can be any formula of the epistemic language. However, in the paper we will
also consider epistemic planning under syntactic restrictions on the preconditions (e.g. restricting modal depth), in
order to investigate how this impacts the complexity of epistemic planning. In the action sendab, both events have
propositional preconditions, that is, not using any epistemic operators. Postconditions are mappings from propositions
p into formulas ϕ, informally represented as sets of expressions of the form p:=ϕ. The assignment p:=ϕ expresses
that the truth value of p after the event has occurred will be the truth value that ϕ had before the event occurred.
In the action sendab, both events only have propositional postconditions, that is, any proposition is mapped into a
propositional formula (in fact, both only map into the trivial formulas ⊥ and >).

In the epistemic action of Figure 3, the actual event, here e1, is highlighted in bold. Its precondition is d ∧ ma

and its postcondition is ma:=⊥,mb:=>. The postcondition makes ma false and mb true, which in STRIPS syntax
would have been represented as ¬ma ∧ mb. This postcondition expresses that the messenger moves from general a
to general b. The precondition is d ∧ ma. This expresses that the event is only applicable if both d and ma are true
(if before the message is sent, general a has decided to attack at dawn and the messenger is at a). Event e1 being
the actual event means that executing the sendab action will actually result in event e1 happening (the message being
successfully delivered). Event e2 represents the messenger being captured: If it occurs, the postcondition will result
in the messenger being neither at a nor b (both propositions ma and mb are set to false after e2 has been applied).
Since general a doesn’t know whether the messenger will be captured on his way to agent b, events e1 and e2 are
indistinguishable to general a.

In addition to the action sendab, we will assume there to be a symmetric action sendba where the roles of generals
a and b have been swapped everywhere. The sendba epistemic action represents the action of successfully sending the
messenger back from b to a with the message d, but this time without general b knowing whether he will arrive safely.
We can think of the action sequence sendab, sendba as first sending the message d to general b, and then general b
confirming that he received the message.

Given an epistemic state s and an epistemic action α, we can compute the state resulting from executing α in s.
That resulting state is denoted s ⊗ α, where the formal definition of the ⊗ operator is deferred to Section 2. Given the
initial epistemic state s0 of Figure 2 and the actions sendab and sendba of Figure 3, we can now as in Example 1 build
a state space of all states accessible from s0 by the available actions. Figure 4 illustrates an initial segment of this state
space. An epistemic action α is only applicable in an epistemic state s if the precondition of the actual event of α is
satisfied in the actual world of s. Hence in s0 only sendab is applicable, and in any of the other states, also only one of
the actions sendab or sendba is applicable. That is to be expected: After any sequence of actions, the messenger will
be at one of the two generals, and can only move to the other general.

In s0, general b does not know that d is true, since b considers the world w2 possible. In s1, after the messenger
has delivered the message to b, general b gets to know that d is true. This is signified by general b in the actual world
w1

1 of s1 not considering any other worlds possible. In s1, general a however still considers it possible that b doesn’t
know d, since a considers it possible that b considers it possible that the actual world is w1

3 where d is false (signified
by the (a, b)-path from the actual world to w1

3). In s2, the message has been send from a to b and back. Now a knows
that b knows d and vice versa (no (a, b)- or (b, a)-path leads to a ¬d-world from w2

1). But b still considers it possible
that a considers it possible that b considers it possible that ¬d (due to the (b, a, b)-path to w2

4). In general, we can see
that the depth of iterated knowledge of the fact d increases with each new message being sent. However, crucially, it
can also be shown that each new message passing will just increase the length of the chain model, and the rightmost
world of that chain will always be a ¬d-world. Hence, independently of the number of messages sent, it will never
become common knowledge that d is true, i.e., d will never be true in all worlds of an epistemic state. It can hence
be shown that it can never become safe for the generals to form a coordinated attack [22]. However, if the goal of
the planning task is only to achieve n-th order shared knowledge that d is true, this will be achieved after n message
passings (that is, in state sn of the state space).
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What is crucial about the provided epistemic state space example is that every epistemic state has an outgoing
edge leading to an epistemic state with one more world than itself. This continues indefinitely, that is, we don’t have
an upper bound on the size of the epistemic states of the state space. Hence state spaces can become infinite, as is
exactly the case of the coordinated attack example. When state spaces are potentially infinite, decidability of the plan
existence problem is no longer guaranteed. The coordinated attack example turns out to belong to a relatively simple
class of epistemic planning tasks where the plan existence problem is indeed decidable, even if the state spaces of
many of the planning tasks of the class are infinite. For other, more general, classes of epistemic planning tasks, we
will show that the plan existence problem is undecidable. Proofs of undecidability of the plan existence problem have
been done by encoding Turing machines [11], two-counter machines [2] and cellular automata [16]. The point is
that certain classes of epistemic planning tasks are general enough to let the state spaces of particular planning tasks
simulate the executions of such powerful types of machines/automata.

In this paper, we seek to give a roadmap of decidability and complexity results concerning the plan existence
problem for different classes of epistemic planning tasks. The plan existence problem in general being undecidable
for epistemic planning might make epistemic planning less attractive, but many relevant planning tasks turn out to
belong to subclasses that are computationally much better behaved. To understand what makes epistemic planning
hard, and understand what kind of problems in epistemic planning are less hard, it is important to delve deeper into
these subclasses and the complexity of planning on them. This is exactly what this paper does. Primarily, we will
look at how the complexity of pre- and post-conditions of actions affect the complexity of doing planning over those
actions. If pre- and post-conditions are propositional, as for the coordinated attack problem, the plan existence problem
is decidable. In addition to decidability and complexity results based on constraints on pre- and post-conditions, we
also look specifically at classes of planning tasks where the epistemic states cannot “grow” (not become larger).
This brings us back to planning where state spaces are guaranteed to be finite, and the plan existence problem hence
decidable.

The paper is structured as follows. In Section 2, we introduce the formal machinery of dynamic epistemic logic
and epistemic planning. Sections 3 and 4 are devoted to studying the complexity of the plan existence problem of
epistemic planning with restrictions on the modal depth of pre- and post-conditions. First, in Section 3, we prove
some novel reduction theorems that will allow us to point out the subclasses of planning tasks that are relevant to
study further. Then, in Section 4, we prove decidability and undecidability for a number of these subclasses. The
results of Section 4 are well-known, except Theorems 12, 14, 15 and 16 that are novel to this paper. The results of
Section 4, together with the reduction theorems of Section 3, leaves us with only one open case where the decidability
issue is still not settled. This open case will be discussed at the end of Section 4.

Overall, the paper contains a number of known results on (un)decidability of the plan existence problem in epis-
temic planning with restrictions on the modal depth of pre- and post-conditions, but also provides a new uniform
presentation of them. Additionally, using these known results, it settles the (un)decidability issue of all classes of such
planning tasks except one, using the novel reduction results from Section 3. The open case for which decidability is
not known is approached by Theorem 12, showing that the union of the class for which decidability is not known and
a simple decidable class already gives undecidability. However, the general problem is still open. The other novel
results of Section 3 are some Pspace results for variants of the plan existence problem and for certain subclasses of
planning tasks not characterised by the modal depth of pre- and postconditions. The remaining two sections cover
related work and a conclusion.

2. Background

In this section, we define dynamic epistemic logic. We first define the syntax of epistemic logic in Section 2.1,
then define its semantics in Section 2.2 and finally introduce epistemic actions leading to dynamic epistemic logic
in Section 2.3. We consider a given finite set of agent names (or simply agents) Ag and a given countable set of
atomic propositions (or simply atoms) AP. Agent names are usually denoted a, b, c, . . . and atomic propositions are
given names like p, q, r, p1, p2, . . . .

2.1. Syntax of epistemic logic
Definition 1. The language of epistemic logic LK is defined by the following grammar.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ,
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where p ∈ AP and a ∈ Ag.

Here Ka denotes the knowledge (or belief ) modality where Kaϕ reads “agent a knows (or believes) ϕ”. Classically,
we use K̂aϕ := ¬Ka¬ϕ, and define by the formulas ⊥ = p ∧ ¬p, > = ¬⊥ and the Boolean connectives ϕ ∨ ψ =

¬(¬ϕ ∧ ¬ψ), ϕ→ ψ = ¬ϕ ∨ ψ, ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ→ ϕ).
We also introduce the modal depth md(ϕ) of a formula ϕ defined as: md(p) = 0; md(¬ϕ) = md(ϕ); md(ϕ ∧ ψ) =

max{md(ϕ),md(ψ)}; md(Kaϕ) = 1 + md(ϕ). Intuitively, md(ϕ) is the maximal number of K operators in a branch of
the syntax tree of ϕ. For instance we have md(p ∧ q) = 0, md(Ka p) = 1 and md(Ka p ∧ KbK̂cq) = 2. The formulas
with modal depth 0 are the propositional formulas.

The size of a formula |ϕ| is defined inductively as follows: |p| = 1; |¬ϕ| = 1+|ϕ|; |ϕ∨ψ| = 1+|ϕ|+|ψ|; |Kaϕ| = 1+|ϕ|.

2.2. Semantics of epistemic logic
Definition 2. A Kripke model is a tuple M = (W, (→a)a∈Ag,V) where the domain W is a non-empty finite set of
(possible) worlds; →a ⊆ W ×W is binary relation on W called the epistemic relation for agent a; and V : W → 2AP

assigns a valuation to each atomic proposition. We suppose that for every w ∈ W,V(w) is finite. For any w ∈ W, the
pair s = (M,w) is called an epistemic state (or simply a state), and the world w is called the designated world or the
actual world.

The size of a Kripke modelM = (W, (→a),V), written |M|, is defined as |W|+
∑

a∈Ag | →a |+
∑

w∈W |V(w)|. Notice
that |M| is bounded by |W| + |Ag| × |W|2 + |AP′| × |W| where |AP′| is the union of the atomic propositions appearing in
the image of V. The size of an epistemic state s = (M,w), written |s|, is the size of its underlying Kripke modelM.
A Kripke model or epistemic state is called S5 if all its epistemic relations are equivalence relations over W. On S5,
we often call the epistemic relations indistinguishability relations (as we did in Section 1). We can now interpret the
formulas of LK over epistemic states as follows:

(M,w) |= p iff p ∈ V(w)
(M,w) |= ¬ϕ iff M,w 6|= ϕ
(M,w) |= ϕ ∧ ψ iff M,w |= ϕ andM,w |= ψ
(M,w) |= Kaϕ iff (M,w′) |= ϕ for all w′ ∈ W such that w→a w′

Example 3. We already presented an epistemic state s0 = (M,w1) in Figure 2. Each world w is represented by an
oval containing the propositions of V(w) and labelled by its name. The edges represent the epistemic relations, and the
actual world is highlighted in bold. In s0, the atomic proposition d is true but b does not know this, which is formally
expressed as (M,w1) |= d ∧ ¬Kbd.

2.3. Epistemic Actions and Product Update
Definition 3. An event model is E = (E, (→a)a∈Ag, pre, post) where the domain E is a non-empty finite set of events;
→a ⊆ E × E is a binary relation on E called the epistemic relation for agent a; pre : E → LK assigns a precondition
to each event; and post : E → (AP → LK) assigns a postcondition to each event. We suppose that post(e)(p) , p
only for a finite number of atoms p. For any e ∈ E, the pair α = (E, e) is called an epistemic action (or simply an
action), and the event e is called the designated event or actual event. An event e is said to have a propositional
precondition if pre(e) is a propositional formula, and is said to have a propositional postcondition if for every p ∈ AP,
post(e)(p) is a propositional formula. An event model or epistemic action is called propositional if each of its events
has propositional pre- and post-conditions.

The size of an event model E = (E, (→a)a∈Ag, pre, post), written |E|, is defined by

|E| = |E| +
∑
a∈Ag

| →a | +
∑
e∈E

| pre(e)| +
∑

p∈AP,post(e)(p),p

| post(e)(p)|


The size of an action α = (E, e) is the size of its underlying event model E. For conciseness, we specify a postcondition
mapping post(e) by only providing the values of propositions that it modifies, namely those propositions p such that
post(e)(p) , p, if any; if none, we say that the action is without postconditions or trivial. By convention, if no
postcondition is specified, it means it is trivial.
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Example 4. We already presented an epistemic action sendab = (E, e1) in Figure 3. The actual event e1 has precondi-
tion pre(e1) = d ∧ma. The postcondition of e1 is given by post(e1)(ma) = ⊥ and post(e1)(mb) = >, which in the figure
is represented by “post : ma:=⊥,mb:=>”. It is then implicitly understood that post(e1)(p) = p for all other atomic
propositions.

Note that epistemic actions are part of the domain description of planning domains, as they are the constructs in
which we define the available actions, their pre- and post-conditions. The semantics of epistemic actions is defined
via the so-called product update used to specify the successor state resulting from the application of an action in a
state.

Definition 4. Let a state s = (M,w) and an action α = (E, e) be given withM = (W, (→a)a∈Ag,V) and E = (E, (→a

)a∈Ag, pre, post). If s |= pre(e) we say that α is applicable in s. When α is applicable in s, the product update of s with
α is defined as

s ⊗ α = ((W′, (→a)a∈Ag,V′), (w, e))

where

• W′ =
{
(u, e) ∈ W × E | M, u |= pre(e)

}
;

• →a = {((u, e), (u′, e′)) ∈ W′ ×W′ | u→a u′ and e→a e′};

• V′((u, e)) =
{
p ∈ AP | u |= post(e)(p)

}
.

Example 5. The product update of the epistemic state s0 = (M,w1) of Figure 2 with the epistemic action sendab =

(E, e1) of Figure 3 is the epistemic state s1 of Figure 4. The worlds of s1 are w1
1 = (w1, e1), w1

2 = (w1, e2) and
w1

3 = (w2, e2). Note that there is no world (w2, e1) in s1 as (M,w2) 6|= pre(e1). Note also that the submodel of
s1 achieved by removing w1

1 is a copy of s0 with ma removed (made false). This is because the event e2 has the
trivial precondition >, so it will apply to any world and hence generate a full copy of the original epistemic state; the
postcondition of e2 then makes both ma and mb false everywhere in that copy. Note that we have s0 |= Kad ∧ ¬Kbd
but s1 |= Kad ∧ Kbd, as also informally stated in Example 1. Finally, note that sendba is not applicable in s0, since the
precondition of the designated event e1 of sendba is d ∧ mb which is not true in the designated world w1 of s0.

Definition 4 defines applicability of an action in a state. Sometimes we will also talk about applicability of a single
event e in a state s, which is defined as meaning s |= pre(e). Then an action α is applicable in a state s if its designated
event is applicable in s.

The examples provided so far are all on S5 models, that is, the epistemic relations are equivalence relations. Such
models are often argued to be models of knowledge [25], although it might be more appropriate to call them models
of ignorance, as the ignorance of an agent is modelled as the set of worlds that the agent cannot distinguish between.
It might not be the right model for modelling belief, though, since it can not model false beliefs. Assume an agent
a has a false belief that ϕ is true, that is, (M,w0) |= ¬ϕ ∧ Kaϕ in some modelM with actual world w0 (we still use
the symbol K, even in cases where K more appropriately models belief). Suppose we had (w0,w0) ∈ →a. Then we
wouldn’t have (M,w) |= ϕ for all w with (w0,w) ∈ →a, and hence we wouldn’t have (M,w0) |= Kaϕ. In other words,
under the given assumptions, we cannot have (w0,w0) ∈ →a. So if a falsely believes ϕ, the relation→a cannot be an
equivalence relation. In other words, an agent can only have false beliefs if the epistemic relation is not an equivalence
relation. Thus if we want to do epistemic planning where we instead model the beliefs of agents, and also allow agents
to have false beliefs, we should not insist on the epistemic relation being an equivalence relation. In the following, we
will not impose any conditions on the epistemic relation except where explicitly noted. In the general case, the way
to read an a-edge from w1 to w2 (that is, the way to read (w1,w2) ∈ →a) is to say that if the actual world had been w1,
agent a would consider it possible that the actual world is w2.

3. A classification of plan existence problems based on modal depth

We now first, in Section 3.1, define the plan existence problem. Next, in Section 3.2, we show that the plan
existence problem for arbitrary modal depths of pre- and post-conditions is reducible to the plan existence problem
where either pre- or post-conditions are propositional.
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3.1. Plan existence problem
Definition 5. An epistemic planning task (or simply a planning task) T = (s0, A, ϕg) consists of an epistemic state
s0 called the initial state; a finite set of epistemic actions A; and a goal formula ϕg ∈ LK. The size of an epistemic
planning task T = (s0, A, ϕg) is |T | = |s0| +

∑
α∈A |α| + |ϕg|. Let m, n be natural numbers or ∞. By T (m, n) we

denote the class of epistemic planning tasks in which the modal depth of the event preconditions are ≤ m, and the
modal depth of the event postconditions are ≤n. More precisely, we have (s0, A, ϕg) ∈ T (m, n) iff for every ((E, (→a

)a∈Ag, pre, post), e) ∈ A, every e′ ∈ E and every p ∈ AP, md(pre(e′)) ≤ m and md(post(e′)(p)) ≤ n. We furthermore use
T (m,−1) to denote the class of planning tasks in which the modal depth of the action preconditions are ≤m and the
actions are without postconditions.

The planning task of the coordinated attack problem introduced in Example 2 belongs to T (0, 0) as all pre- and
post-conditions are propositional. We say that a sequence of actions is a solution to an epistemic planning task if ϕg

is true after applying this sequence of actions in s0, which is formally defined as follows.

Definition 6. A solution to a planning task T = (s0, A, ϕg) is a sequence of actions α1, α2, . . . , αn from A such that for
all 1 ≤ i ≤ n, αi is applicable in s0 ⊗ α1 ⊗ · · · ⊗ αi−1 and

s0 ⊗ α1 ⊗ α2 ⊗ · · · ⊗ αn |= ϕg.

Example 6. We provide a variant of the consecutive numbers puzzle [45]. Consider two agents, Anne and Bill, noted
a and b. Anne is given an even number and Bill an odd number, say between 0 and N, and they both know that their
numbers are consecutive (for instance, Anne has 4 and Bill 3). The only allowed actions for them are to say “I don’t
know your number” or “I know your number”. The problem is then the following: can they, only using those actions,
get to know each other’s numbers?

Each instance of the puzzle can be formalised as an epistemic planning task T = (s0, A, ϕg) as follows. The atomic
propositions we use are {0i, . . . ,Ni | i ∈ {a, b}}, where ni reads “agent i has number n”. Consider the instance of the
puzzle having N = 6 and where Anne has the number 2 and Bill 1. The initial s0 representing this instance is illustrated
in Figure 5. More generally, for any instance the initial state is defined as s0 = (M,w) withM = (W, (→a)a∈Ag,V)
such that:

• W = {wnm | n,m ∈ {0, . . . ,N}, |n − m| = 1, n even};

• wnm →a wn′m′ if and only if n = n′ and |m′ − m| ∈ {0, 2};

• wnm →b wn′m′ if and only if |n′ − n| ∈ {0, 2} and m = m′;

• V(wnm) = {na,mb};

• w = wn′m′ if Anne has n′ and Bill has m′.

The formula “agent a knows the number of agent b” is ϕa =
∨N

m=0 Kamb. Similarly for agent b it is ϕb =
∨N

n=0 Kbna.
The set of available actions of T is then A = {ann(ϕ) | ϕ ∈ {ϕa,¬ϕa, ϕb,¬ϕb}}, where the structure of the ann(ϕ) is
illustrated in Figure 6. The action ann(ϕ) represents the public announcement of the formula ϕ [46]. The reason it
is called a public announcement is that it is a singleton epistemic action that simply preserves all the worlds where
ϕ is true. Hence, after the application of this action, ϕ will be universally true in the model, and become common
knowledge among all agents, or, in this case, both agents. Hence it corresponds to the truth of ϕ being publicly
broadcast to all (both) agents. See van Ditmarsch and Kooi [46] for further discussions of public announcements and
common knowledge.

The final component of the planning task T is the goal formula, which we define as ϕg = ϕa ∧ ϕb. So the planning
task is to achieve that both agents know the number of the other agent, and the only available actions are announcing
that they know or don’t know the number of the other agent. Note that this planning task belongs to T (1,−1), since
the preconditions are of modal depth 1 and there are no postconditions. It is also in T (m, n) for any m ≥ 1 and n ≥ −1.

Figure 7 provides a solution to the planning task for the instance with initial state given by Figure 5. After the
application of ann(¬ϕa) to the initial state, the remaining worlds are {w21,w23,w43,w45}, and after the application of
ann(ϕb) only {w21,w45} remain, so the formula ϕg has become true.
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0a, 1b 2a, 1b 2a, 3b 4a, 3b 4a, 5b 6a, 5b
w01 w21 w23 w43 w45 w65

b a b a b

a, b a, b a, b a, b a, b a, b

Figure 5: Initial epistemic state for the consecutive numbers puzzle with N = 6, and where Anne has 2 and Bill has 1.

pre : ϕ
e

a, b

Figure 6: The epistemic action ann(ϕ) .

Interestingly, whether the epistemic planning task has a solution or not depends on N. Take for instance the initial
state with N = 2 shown in Figure 8. The applicable actions are ann(¬ϕb) and ann(ϕa). When applying any of those
actions, the epistemic state remains unchanged, therefore it is never possible to reach a state where agent b knows her
number, so ϕg can never become true.

We follow the conventions of Helmert [24] in defining the plan existence problem as follows.

Definition 7. Let T be a class of planning tasks. By PlanEx-T we denote the following decision problem, called the
plan existence problem on T : Given a planning task T ∈ T , does T have a solution?

Now that we have defined the plan existence problem, we show that in fact, any PlanEx-T (m, n) problem is
reducible to both PlanEx-T (0, 1) and PlanEx-T (1, 0).

3.2. Reductions to propositional pre- or postconditions
Let B and C be decision problems. We write B ≤P C when there is a polynomial-time reduction1 from B to C, that

is, a function r that transforms any instance x of B into an instance r(x) of C such that: 1) x is a positive instance of B
iff r(x) is a positive instance of C; and 2) r(x) is computable in polynomial time in the size of x. Note that if B ≤P C
and C is decidable, then so is B, and, contrapositively, if B is undecidable, then so is C. We now show polynomial
reductions from PlanEx-T (m, n) problems into other PlanEx-T (m′, n′) problems. First, since PlanEx-T (m, n) is a
sub-problem of PlanEx-T (m + k, n + l) for all k, l ≥ 0, we immediately obtain the following theorem.

Theorem 1. For all m ≥ 0 and n ≥ −1, PlanEx-T (m, n) ≤P PlanEx-T (m + k, n + `) for all k, ` ≥ 0.

This theorem gives the diagonal reduction edges of Figure 9. We will now show how to get rid of epistemic
formulas in preconditions, that is, how to compile epistemic preconditions into epistemic postconditions. Furthermore,
we will be able to make sure that all epistemic postconditions are of modal depth at most 1. In other words, we will
show how any planning task in T (m, n) can be turned into an equivalent planning task in T (0, 1). We first illustrate
the construction on a concrete epistemic action, the action α of Figure 10. For each formula ϕ in α (that may appear
as a precondition or in a postcondition assignment in α), for each epistemic subformula ψ of ϕ, we introduce a fresh
atomic proposition pψ. In our example, we generate the propositions pKa p, pKb p, pKbq and pKaKb p.

Action α is then simulated by the actions αchoose, α1, α2, α
′, executed in this order. Action αchoose assigns a certain

proposition pα to >, to impose that the actions α1, α2, α
′ are executed just after αchoose. Then, action α1 stores the

values of epistemic formulas of modal depth 1 into their associated propositions (pKa p, pKb p, pKbq in the example).
Action α2 does the same for epistemic formulas of modal depth 2 (pKaKb p in the example). Finally, action α′ is a copy
of α where each epistemic formula ϕ has been replaced by its corresponding proposition pϕ, and the new propositions
are reset to false. The order of execution is guaranteed by the introduction of new propositions p1, p2 and pexec. The
new goal formula ϕ′g becomes ϕg ∧

∧
α∈A ¬pα, where ϕg is the original goal formula and the

∧
α∈A ¬pα part ensures

the evaluation of ϕg just after some α′. This idea is generalized by the following theorem.

1The reader may refer to Padadimitriou [35].
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2a, 1b 2a, 3b 4a, 3b 4a, 5b

s0 ⊗ ann(¬ϕa): represents the situation after ann(¬ϕa).

w21 w23 w43 w45

a b a

a, b a, b a, b a, b

2a, 1b 4a, 5b

s0 ⊗ ann(¬ϕa) ⊗ ann(ϕb)

w21 w45

a, b a, b

Figure 7: Illustration of the solution to the consecutive number puzzle with initial state given by Figure 5.

0a, 1b 2a, 1b
w01 w21

b

a, b a, b

Figure 8: Initial epistemic state for the consecutive numbers puzzle with N = 2, where Anne has 2 and Bill has 1.

Theorem 2. For all m ≥ 0 and n ≥ −1, PlanEx-T (m, n) ≤P PlanEx-T (0, 1).

Proof. The proof is by generalising the construction above, and is provided in Appendix A.

This theorem gives the horizontal reduction edge of Figure 9, the reduction from PlanEx-T (1, 0) to PlanEx-T (0, 1).
Instead of getting rid of epistemic formulas in preconditions, we can choose to get rid of them in postconditions, that
is, to compile epistemic postconditions into epistemic preconditions. And, again, we can make sure that all epis-
temic conditions are of modal depth at most 1. In other words, we can prove that any planning task in T (m, n) can
be turned into an equivalent planning task in T (1, 0), that is, PlanEx-T (m, n) ≤P PlanEx-T (1, 0). We prove it in
the following way. First we show that PlanEx-T (m, n) ≤P PlanEx-T (max{m, n}, 0). From this we can conclude
PlanEx-T (0, 1) ≤P PlanEx-T (1, 0) (letting m = 0 and n = 1). Using Theorem 2, we can then finally conclude
PlanEx-T (m, n) ≤P PlanEx-T (1, 0) (by transitivity of ≤P). To prove PlanEx-T (m, n) ≤P PlanEx-T (max{m, n}, 0),
we simulate the execution of any action α with the execution of two actions, αassign and α′ with propositional post-
conditions. We add two types of atomic propositions: ppost(e)(p) that stores the value of post(e)(p) and pα that is true
if we are currently executing αassign and α′. The action αassign stores the truth value of post(e)(p) in the proposition
ppost(e)(p) by checking its value in the precondition. Then α′ is a copy of α where each post(e)(p) is now replaced by
ppost(e)(p). The order of execution αassign then α′ is ensured by pα.

Theorem 3. For all m ≥ 0 and n ≥ −1, PlanEx-T (m, n) ≤P PlanEx-T (1, 0).

Proof. The proof follows the idea sketched above, and is provided in Appendix B.

4. Complexity results for the plan existence problem based on modal depth

We now detail the results on the complexity of PlanEx-T (m, n) depending on m and n. In Section 4.1.1, we prove
the decidability of PlanEx-T (0, 0), that is, that planning on propositional pre- and post-conditions is decidable. In
Section 4.1.2, we show that the subclass T (0,−1) of T (0, 0) is PSPACE-complete. That is, planning with propo-
sitional preconditions and no postconditions is PSPACE-complete. Then, in Section 4.2.1, we explain the proof of
undecidability for PlanEx-T (1, 0), which allows us to deduce undecidability for all other PlanEx-T (m, n) with m ≥ 1
and n ≥ 0 using Theorem 1. Using Theorem 2, it allows us to furthermore deduce undecidability of PlanEx-T (m, n)
for all m ≥ 0 and n ≥ 1, see Figure 9. In other words, the plan existence problem is undecidable on any class of plan-
ning tasks that include all tasks with preconditions of modal depth ≤ 1 and with propositional postconditions; as well
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PlanEx-T (0,−1)

PlanEx-T (1,−1) PlanEx-T (0, 0)

PlanEx-T (2,−1) PlanEx-T (1, 0) PlanEx-T (0, 1)

PlanEx-T (3,−1) PlanEx-T (2, 0) PlanEx-T (1, 1) PlanEx-T (0, 2)

Decidable: Th. 4

Undecidable: Cor. 10Undecidable: Th. 11

(Un)decidability is
an open problem

Figure 9: A lattice of polynomial-time reductions between plan existence problem of the form PlanEx-T (m, n). An edge from A to B means A ≤P B,
so the problems get increasingly harder the higher we move up in the lattice. All the diagonal edges are by Theorem 1, whereas the horizontal
edge is by Theorem 2. Undecidable problems have a solid rectangle as border. Our main undecidability results are marked with theorem numbers,
and undecidability of all the other problems with a solid border follows using the reduction edges. Decidable problems have no border. Our main
decidability result is marked with its theorem number. The decidability of the other problem with no border follows using the reduction edges. The
only problem for which decidability is still an open problem (after having proved all theorems of this paper) is marked with a dashed border.

as on any class of planning tasks that include all tasks with propositional preconditions and postconditions of modal
depth ≤ 1. Afterwards, in Section 4.2.2, we explain the proof of undecidability for PlanEx-T (2,−1), showing that if
we allow preconditions of modal depth 2, then even without postconditions, the plan existence problem is undecid-
able. Given these results, the only PlanEx-T (m, n) for which (un)decidability is still not decided is PlanEx-T (1,−1),
as is easily seen from Figure 9. In Section 4.3, we discuss progress on the open case of PlanEx-T (1,−1) and prove
that we can reduce PlanEx-T (m, n) into PlanEx-(T (1,−1) ∪ T (0, 0)), hence proving PlanEx-(T (1,−1) ∪ T (0, 0)) to
be undecidable.

4.1. Decidable cases

4.1.1. The case of propositional pre- and post-conditions
The class of planning tasks with propositional pre- and post-conditions is T (0, 0). We already gave examples of

such tasks: Any goal formula for the coordinated attack problem considered in Example 2 will give a planning task
in T (0, 0). As illustrated in that example, the state space of the coordinated attack problem is infinite. However, the
plan existence problem for planning tasks in T (0, 0) is still decidable, as we will now show.

Theorem 4. PlanEx-T (0, 0) is decidable.

The rest of this subsection is dedicated to a proof of the theorem. Although there already exists an ad-hoc proof
of this result by Yu et al. [49], we provide here the proof from Aucher et al. [3]. This proof resorts to a powerful
result in classical logic, namely the decidability of first-order logic (FO) on automatic structures, that we will explain
beforehand. Indeed, first, one can show that any initial state and set of actions of a planning task in T (0, 0) yields an
infinite first-order structure, that turns out to be an automatic structure called a DEL structure, and whose elements
are sequences of applicable events. Second, since one can translate any epistemic goal formula into FO, the existence
of a solution can be rephrased as an FO query on the DEL structure, and is therefore decidable. Moreover, by taking
advantage of automata constructions underlying the model-checking procedure of automatic structures against FO
properties, we effectively build a finite-state automaton whose language is the set of all solutions to the planning task.

We first recall the seminal result that FO logic is decidable on automatic structures, by defining these structures
and recalling FO, and by explaining the model-checking procedure. The interested reader may refer to Blumensath
and Grädel [10] and Rubin [38] for further details.
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pre : KaKb p
post : p:=Ka p

e

pre : q
post : q:=¬Kbq

f

b

a

a, b

Action α

pre :
¬pexec∧

¬p1 ∧ ¬p2

post :
pα :=>
p1 :=>

echoose

a, b

Action αchoose

pre : p1 ∧ pα

post :

pKa p :=Ka p
pKb p :=Kb p
pKbq :=Kbq
p1 :=⊥
p2 :=>

e1

a, b

Action α1

pre : p2 ∧ pα

post :
pKaKb p :=Ka pKb p

p2 :=⊥
pexec :=>

e2

a, b

Action α2

pre : pKaKb p ∧ pα ∧ pexec

post :

p :=pKa p

pKa p :=⊥
pKb p :=⊥
pKbq :=⊥
pKaKb p :=⊥
pexec :=⊥
pα :=⊥

e′

pre : q ∧ pα ∧ pexec

post :

q :=¬pKbq

pKa p :=⊥
pKb p :=⊥
pKbq :=⊥
pKaKb p :=⊥
pexec :=⊥
pα :=⊥

b

a

a, b

Action α′

f ′

Figure 10: Example of actions αchoose, α1, α2, α
′ for the T (0, 1) construction.
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Structures and logics. First-order logic is interpreted over relational structures.

Definition 8. A relational structure is a structure of the form S = 〈D,R1 . . .Rp〉 where:

• D is a non-empty set called the domain;

• R1 . . .Rp are relations over D of arity r1 . . . rp, respectively (i.e. Ri ⊆ Dri ).

We take the convention to write Ri(d1, . . . , dri ) for (d1, . . . , dri ) ∈ Ri.

Example 7. The structure T2 = 〈{1, 2}∗, S 1, S 2〉 is the 2-ary tree, called the infinite full binary tree, that is the
relational structure whose domain is the set of node addresses and whose relations are the two binary relations S 1 and
S 2 relating a node with its first child and second child, respectively. The structure T2 can be extended as the structure
T el

2 = 〈{1, 2}∗, S 1, S 2, el〉 with the additional binary relation “at equal level in the tree”, namely el(x, y) holds if, and
only if, |x| = |y|.

The set of symbols {R1 . . .Rp} is called the signature of S = 〈D,R1 . . .Rp〉. We will loosely use symbol relations
R1, . . . ,Rp to denote the predicates of the first-order logic (FO) interpreted over the relational structure S, which we
define now. The formulas of FO (over signature {R1 . . .Rp}) conform to the following syntax:

Ψ ::= Ri(x1 . . . xri ) | ¬Ψ | (Ψ ∧ Ψ) | ∃xΨ

where x, x1, . . . , xri are first-order variables whose assignment ranges over the domain D of relational structures.
We write S, [xi 7→ di]1≤i≤n |= Ψ[x1 . . . xn] to express that formula Ψ(x1 . . . xn) with free variables x1, . . . , xn is true

in S whenever x1, . . . , xn are assigned to d1, . . . , dn respectively, and we denote by ΨS the n-ary relation made of all
the tuples that “satisfy” Ψ:

ΨS = {(d1 . . . dn) ∈ Dn | S, [xi 7→ di]1≤i≤n |= Ψ[x1 . . . xn]}

Automatic presentations. We now describe how some relational structures can be encoded using formal languages,
following the presentation of Rubin [38]. By alphabet we mean a finite set of symbols, named letters. A word over Σ

is a finite sequence of letters. We denote by Σ∗ the set of such sequences. For u ∈ Σ∗, we write |u| for its length, and
for any 0 ≤ n ≥ |u|, we let u[n] be the n + 1-th letter of u); u[0] is the first letter of word u. We assume familiarity with
the basic definitions of automata theory and the properties of regular languages.

As we will see, the domain of a relational structure will be encoded as a regular language over some alphabet
Σ. A relation of a relational structure is then a set of tuples of words over Σ, and we therefore need to decide on a
convention for how to represent those tuples. Given an alphabet Σ, we let � be a fresh padding symbol, and we let
Σ� be Σ ] {�}. Now, k-tuples of words will be encoded as words on the product alphabet Σ� × Σ� × . . .Σ� (k-times),
where the padding symbol � is used to align the words of the tuple, as they may have different lengths. For example,

say with Σ = {a, b}, we would align the three words aaba, b, and ba as the four-letter word
(a
b
b

) (a
�
a

) (b
�
�

) (a
�
�

)
over the

product alphabet Σ� × Σ� × Σ� (the elements of which are triples that we write vertically). This notion of alignment
is formally captured as the convolution of words, defined as follows.

Definition 9. The convolution u ⊗ v of two words u, v ∈ Σ∗ is a word in (Σ� × Σ�)∗ of length max(|u|, |v|) defined by

(u ⊗ v)[i] =



(
u[i]
v[i]

)
if i < min(|u|, |v|), that is, if both u[i] and v[i] are letters of Σ,(

u[i]
�

)
if |v| ≤ i < |u|,(

�
v[i]

)
if |u| ≤ i < |v|.

Notice that according to Definition 9, word u ⊗ v does not carry the product letter
(�
�
)
. The convolution is defined

similarly for k-tuples of words.
We now turn to the definition of automatic structures that rely on the notion of automatic presentations. Basically,

a relational structure has an automatic presentation if (i) its domain is encoded as some regular language, and (ii) each
of its relations, seen as the set of word convolutions that encode the elements of the relation, is also a regular language.
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Definition 10. An automatic presentation of a relational structure S = 〈D,R1 . . .Rp〉 is a tuple (AD,A1, . . . ,Ap) of
finite-state automata such that:

(1) There exists a one-to-one encoding function enc : D → L(AD). The inverse enc−1 of the encoding function is
the decoding function that retrieves the original element of D from its encoding in L(AD).

For an arbitrary relation R ⊆ Dr, we let enc(R) := {enc(d1) ⊗ . . . ⊗ enc(dr) |R(d1, . . . , dr)}.

(2) Every relation Ri (say of arity ri) among R1, . . . ,Rp is captured by the language of automaton Ai that encodes
the ri-tuples in Ri: L(Ai) = enc(Ri).

A structure is automatic if it has an automatic presentation.

Remark 1. We may assume that equality is among the relations Ri, represented by the regular language {u⊗u | u ∈ LD}.
In the literature, the standard definition of automatic presentations allows an element to have several encodings,
whenever equality can be presented by some regular language. However, both definitions yield the same class of
structures [10].

Example 8. Finite structures are automatic, since finite languages are regular. Both trees T2 and T el
2 of Example 7 are

also automatic. Finally, so is 〈N,≤〉 with a natural automatic presentation over a unary alphabet {1} by letting enc(n)
be the unary representation of n, that is, the word 1n. Automaton A≤ depicted in Figure 11 verifies that, provided an
input as the convolution of two finite sequences of 1’s, there are less 1’s in the former than in the latter.

q0start q

(1
1
)
,
(�

1
)

(1
�
)

(1
1
)
,
(�

1
)
,
(1
�
)

Figure 11: The finite-state automatonA≤ of Example 8 (ii).

For example, consider the pair of natural numbers (2, 3), that is encoded by the convolution 11 ⊗ 111 =
(1
1
)(1

1
) (�

1
)

and feed automatonA≤ with it. The automaton execution for this input will be

q0

(1
1
)
→ q0

(1
1
)
→ q0

(
�
1
)
→ q0,

which is accepting, since state q0 is an accepting state. This is what we expect since it is indeed the case that (2, 3) ∈ ≤.
On the contrary, feeding this automaton with the word 11 ⊗ ε, that encodes the pair (2, 0), yields execution

q0

(q
�

)
→ q

(q
�

)
→ q,

which is rejecting since state q is not accepting. This is of course also as expected, since (2, 0) < ≤. Note that the
automaton would also reject malformed input by mere blocking.
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We recall the known fundamental theorem regarding the model checking of automatic structures against FO, that
we first define.

Definition 11. FO Model checking
Input : An automatic presentation of some structure S, and a closed FO-formula Ψ.
Output : Yes if S |= Ψ, No otherwise.

The following theorem expresses that the verification of FO-definable properties over automatic structures with
an effective presentation can be automated, see for example [38, Th. 3.1].

Theorem 5. FO model checking is decidable.

The main ingredient of the proof of Theorem 5 relies on the fact that

ΨS = {(d1 . . . dn) ∈ Dn | S, [xi 7→ di]1≤i≤n |= Ψ[x1 . . . xn]}

is a regular n-ary relation, with an effective construction of a finite automaton that recognizes it.

Proposition 6. There is an algorithm that, given an automatic presentation of a relational structure S with encoding
function enc, and a formula Ψ(x1, . . . , xn) in FO, constructs an automatonAenc

Ψ
that recognizes enc(ΨS).

The proof of Proposition 6 relies on the closure of regular languages under intersection, complementation, and
projection over components; these operations faithfully reflect the logical conjunction, negation, and existential quan-
tification, respectively [38]. When enc is clear from the context or not necessary to mention explicitly, we will often
writeAΨ forAenc

Ψ
.

In the following, we describe the relational structures arising from epistemic planning tasks, and show that if all
actions are propositional, they are automatic for the identity encoding function.

DEL structures. Let an epistemic planning task T = (s0, A, ϕg) be given where every action is propositional. We
can turn the epistemic actions of A into a single epistemic action α, by taking the disjoint union of the individual
elements of A. This will give an action with multiple designated events, something we did not consider yet in this
paper, although fairly standard in many presentations of epistemic planning [11].

However, unlike most often the case in the literature, we do not interpret actions with multiple designated events as
a way to represent non-determinism (nature non-deterministically choses which designated event will occur). Here,
the multiple designated events feature is used to succinctly represent the choice of the planning agent between the
original epistemic actions in A: if we have A = {α1, α2} with α1 = (E1, e1) and α2 = (E2, e2), and we let α be the
disjoint union of α1 and α2, then the choice of the agent between executing α1 and α2 amounts to choosing between
the two designated events e1 and e2 in α.

We therefore without loss of generality consider planning tasks of the form T = (s0, α, ϕg) hence containing a
single action α written α = (E,E ) where E ⊆ E represents the choices of the planning agent. The number of
standard actions represented by such a multi-pointed action is |E |. We extend the definition of product update to
states and actions with multiple designated events in the obvious way: A world (w, e) of s ⊗ α is designated if w is a
designated world of s and e is a designated event of α.

Given a planning task of form T = (s0, α, ϕg), we call the pair consisting of the first two elements (s0, α) a DEL
presentation. A DEL presentation naturally induces a state space of the planning task, cf. Section 1. This state space
can be seen as a relational structure that we will call a DEL structure, to be defined next.

Following Maubert [32], given a DEL presentation (s0, α), we incorporate the initial state s0 = (M,w0) and the
infinitely many product updates s0 ⊗ α

n (n ∈ N)2 into a single relational structure, called a DEL structure, denoted
by s0α

∗. The domain of s0α
∗ is writtenH and is composed of all worlds of all updates s0⊗α

n (n ∈ N) called histories:
they are of the form h = we1 . . . en where w is a world ofM and e1, . . . , en are events of α, e.g. the world ((w, e1), e2) is
denoted we1e2. Notice that because we1 . . . en belongs to s0 ⊗ α

n, each event ei is applicable in the state s0 ⊗ α
i−1. We

take the convention to write V(h) for the set of atomic propositions that hold after history h has taken place. Among
the histories of H , we distinguish those that start in the designated world w0 of s0 and are followed by designated
events in E . Such histories are called designated histories. More formally, DEL structures are defined as follows.

2We use s0 ⊗ α
n as a shorthand for s0 ⊗ α ⊗ α ⊗ · · · ⊗ α with n occurrences of α. It is also possible to define product updates between actions,

so that αn will be an action representing n iterations of α, though we will not do that here.
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Definition 12 ([32, Def. 54, p. 105]). Let s0 = (M,w0) be a state and let α = (E,E ) be an action where E =

(E, (→a)a∈Ag, pre, post). The DEL structure induced by the DEL presentation (s0, α) is the relational structure s0α
∗ =

(H , (S e)e∈E, (→a)a∈Ag, (p)p∈AP, ), where all relations S e and→a are binary relations and relations p and are unary,
and where:

• the domainH is the disjoint union of the sets of worlds of s0 ⊗ α
n – namely, the histories;

• for each e ∈ E, S e(h, h′) whenever h′ = he;

• for each agent a ∈ Ag,→a (h, h′) whenever h and h′ are related by→a in s0 ⊗ α
n;

• p(h) whenever in the unique model s0 ⊗ α
n history h belongs to, we have p ∈ V(h);

• and finally, (h) whenever h is designated history.

A DEL structure is propositional if it is induced by a propositional DEL presentation (s0, α) where α is propositional.

Figure 12 shows the shape of a DEL structure generated by the online tool Hintikka’s world [41]3. Downward
dashed arrows represent S e-transitions (here there are two events named e and f ), while solid ones correspond to
epistemic relations of two distinct agents. The initial epistemic state s0 is depicted at the top. It has two worlds with
the designated one highlighted in bold. Each world is the root of a tree, thus making DEL structures be forests. The
remaining worlds are those of the successive updates s0 ⊗ α, s0 ⊗ α

2 and s0 ⊗ α
3, with some highlighted in bold, as

designated states. Every branch in this forest is a history, and those with only bold nodes are designated histories.
Some expert readers may view DEL structures as interpreted system, or more generally, as epistemic temporal logic
models [44].

s0

s0 ⊗ α

s0 ⊗ α
2

s0 ⊗ α
3

Figure 12: Example of a DEL structure (picture up to level 3).

We now investigate remarkable properties of propositional DEL structures.

Theorem 7. Propositional DEL structures are automatic structures, and their presentation is effectively computable
from (s0, α).

The proof of Theorem 7 relies on the central property that the domain of propositional DEL structures, that is the
set of its histories, is a regular language, and that choosing the very identity encoding function allows us to provide
finite-state automata for each relation of these structures. Rather than providing the full proof of Theorem 7 that may
be found in Maubert [32, Lemma 22, p. 109], we illustrate the construction on a small example.
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p q
w0 w1

a a

a

(a) The state s0 = (M,w0).

pre : p

post :
p:=⊥
q:=>

pre : ¬p ∧ q

post :
p:=>
q:=⊥

f0 f1

a

a a

(b) The action (α, { f0, f1}).

Figure 13: A simple propositional DEL presentation (s0, α) with designated events f0 and f1.

0start

{p}

{q}

w0

w1

f0f1

(a) The automatonAH .

0start

1 2

3 4

w0

w1

f0

f1

f0

f1

(b) Automaton that accepts designated histories.

Figure 14: Automata for histories and designated histories for the automatic structure s0α
∗
0.

Example 9. Consider the DEL presentation (s0, α) of Figure 13 that uses atomic propositions of AP′ = {p, q}. We
can view the precondition pre(e) of an event e as the set of all propositional valuations over AP′ that satisfy pre(e).
Moreover, we can see a propositional valuation v as the subset of propositions from AP′ that are set to true. For
instance, pre( f0) = p is represented as {{p}, {p, q}}. Given a valuation v ⊆ AP′, we write v ⊗ post(e) for the new
valuation obtained after the postcondition of e has been applied. For example, {p} ⊗ post( f0) = {q}.

We now turn to the encoding of the elements of the DEL structure. Histories of the DEL structure for the presen-
tation (s0, α) of Figure 13 are elements of the formal language {w0,w1}({ f0, f1})∗. In order to encode the relational
structure (H , S f0 , S f1 ,→a, p, q, ) (see Definition 12), we resort to the finite alphabet Σ = {w0,w1} ∪ { f0, f1} and use
the encoding of a history as such. Namely, we consider the identity encoding function enc(h) = h, for every h ∈ H .

We exhibit a finite-state automatonAH whose language is the image of enc, namely the setH itself. It is drawn in
Figure 14a. AutomatonAH has initial state 0 and other states that are valuations over AP′; thus it is finite. Moreover,
all states are accepting but state 0. Regarding the automaton transitions, letter w0 or w1 is expected in state 0. When
reading a world letter w, automaton moves from state 0 to valuation V(w). Then, from any valuation v, the automaton
expects to read an event letter e with v ∈ pre(e), that makes it move to the updated valuation v ⊗ post(e). One can
easily show that a word is in L(AH ) iff it is a history of the DEL structure. Among histories, some are designated. We
can build on automatonAH to verify whether each read letter is a designated object and obtain the automatonA that
accepts all designated histories, thus capturing the unary relation of the structure s0α

∗, as depicted in Figure 14b.
Regarding the remaining relations of the relational structure s0α

∗, we need to build automata for each e-successor
binary relation S e, the a-accessibility relation →a, and unary relations p for p ∈ AP′. Beforehand, we use AH in
order to build automaton AH×H that accepts the “full” binary relation H × H . Now, relation S e is captured by the
synchronous product of automaton AH×H and of an automaton that accepts all pairs of histories of the form (h, he),
depicted in Figure 15a. Similary, relation→a is represented by the product automaton betweenAH×H and automaton
A→a of Figure 15b. Finally, the unary relation p is represented by the automatonAp of Figure 15c.

As can be seen in Lemma 22, p. 109, of Maubert [32] and in the example above, in the proof of Theorem 7, the
encoding of the elements (the histories) of the DEL structure is the identity function. As a consequence, the encoding

3http://hintikkasworld.irisa.fr/
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(c) AutomatonAp.

Figure 15: Some automata for the automatic structure s0α
∗
0.

of a history displays the initial word where this history starts followed by the sequence of all performed events in
order along this history. This identity encoding makes the automaton of the goal formula a recogniser of the set of all
solutions of the planning task, that is, all action sequences that achieve the goal from the initial state. We explain how
in the next paragraph.

The plan existence problem and the plan synthesis. When considering the goal formula ϕg of a planning task, one
effectively builds a plan automaton that recognizes exactly all plans achieving ϕg. The algorithm that computes this
automaton is as follows. Given a planning task T = (s0, α, ϕg):

1. Compute the FO-formula Ψg(x) equivalent to ϕg (By the translation of epistemic logic into FO4, formula Ψg

indeed has a single free first-order variable);

2. Compute AΨg (Proposition 6) which accepts all histories in (s0, α) (Definition 12) that satisfy Ψg, or equiva-
lently ϕg.

3. Intersect automatonAΨg with automatonA (Figure 14b) in order to restrict its language to designated histories
we1 . . . en. Write the resulting automatonA(s0,α,ϕg).

We can now finalize the proof of Theorem 4: the effectively constructed automatonA(s0,α,ϕg) can be used to solve
the epistemic plan existence problem: if the language of A(s0,α,ϕg) is empty, then the answer is “No” for the instance
(s0, α, ϕg), otherwise the answer is “Yes”, and by a reachability analysis in this automaton, one can synthesize a
solution to the planning task.

Additionally, automatonA(s0,α,ϕg) contains a lot of information that can be further exploited. For example, one can
decide if there are infinitely many plans, since one can decide if a finite-state automaton accepts an infinite language.
Also, one may use automaton A(s0,α,ϕg) to search a shortest solution, or more generally an optimal solution, provided
the automaton is made “weighted” by giving a cost function on events.

4.1.2. The case of propositional preconditions and no postconditions

Theorem 8 ([15]). PlanEx-T (0,−1) is PSPACE-complete.

Proof. Originally, PlanEx-T (0,−1) was proven to be EXPSPACE [12], but the result was then strengthened to
PSPACE-completeness [15]. Both proofs use a fundamental property of T (0,−1), namely that actions with proposi-
tional preconditions and without postconditions commute: for all epistemic states s and epistemic actions α and α′ in
T (0,−1), s ⊗ α ⊗ α′ and s ⊗ α′ ⊗ α satisfy the same epistemic formulas [30]. Furthermore, when a modal depth d is
fixed (typically, the modal depth of the goal ϕg), we know that for all epistemic states s, s⊗α|α|

d
and s⊗α|α|

d+1 satisfy

4see Appendix C.
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the same epistemic formulas of modal depth at most d [39]. In particular, it means that when searching for a solution
to a planning task in T (0,−1), we never have to apply an action α more than |α|d times where d = md(ϕg).

Given these two properties, the algorithm is defined as follows for any planning task T = (s0, A, ϕg) with A =

{α1, . . . , αm }.

1. First, compute d = md(ϕg).

2. Second, non-deterministically guess n1, . . . , nm such that ni ∈ 0, . . . , |αi|
d.

3. Third, check that αn1
1 , . . . , α

nm
m is a solution to T .

Since n1, . . . , nm are written in binary, the guesses are performed in polynomial space. The third point is the hardest
part of the proof, since it must be done in polynomial space. The idea is to develop a model checking procedure where
the worlds of the model s0 ⊗ α

k1
1 ⊗ · · · ⊗ α

km
m with ki ≤ ni are represented by tuples (k1, . . . , km), which are stored

in polynomial space. The algorithm is thus running non-deterministically in polynomial space. Since NPSPACE =

PSPACE [40], the result is proved.
The PSPACE lower bound is by reduction from True Quantified Binary Formula (TQBF). The proof can be found

in Bolander et al., 2015 [12, Th. 5.3].

4.2. Undecidable cases

In Section 4.2.1 we will show that PlanEx-T (1, 0) is undecidable, and can hence conclude that all PlanEx-T (m, n)
with either m ≥ 1, n ≥ 0 or m ≥ 0, n ≥ 1 are undecidable, using Theorems 1 and 2 (see again Figure 9 for an illustration
of this). Since PlanEx-T (0, 0) has already been proved decidable, the only remaining cases are PlanEx-T (n,−1) for
n ≥ 0. In Section 4.2.2 we detail the undecidability of one of these remaining cases, PlanEx-T (2,−1).

4.2.1. The case of precondition of modal depth 1
In 2011, Bolander and Andersen [11] proved that the plan existence problem PlanEx-T (1, 0) is undecidable. Their

proof was done by a reduction from the halting problem of a Turing machine to PlanEx-T (1, 0). More recently, Lê
Cong et al. [16] proposed a proof that PlanEx-T (1, 1) is undecidable, and because PlanEx-T (1, 1) ≤P PlanEx-T (1, 0)
(see Theorem 3), so is PlanEx-T (1, 0). The proof of Lê Cong et al. relies on a cellular automaton instead of a Turing
machine, but remains close to the one of Bolander and Andersen: a configuration of the machine (Turing machine
or cellular automaton) is encoded by an epistemic state; the initial configuration is encoded by the initial epistemic
state; epistemic actions simulate steps of computation; the goal formula specifies that the configuration is halting.
The advantages of the proof of Lê Cong et al. are the following. First, cellular automata are less cumbersome than
Turing machines: no need to handle left-going and right-going transitions. Second, their proof gives small conditions
on the planning tasks for which the plan existence problem is already undecidable: two agents, S5 models, and only 6
atomic propositions are sufficient to get undecidability. More importantly, it is undecidable even if the actions and the
goal are also fixed. Intuitively, it means that there is a fixed domain for which the plan existence problem is already
undecidable (just the initial epistemic state may vary). For these reasons, we sketch the proof of Lê Cong et al.

Theorem 9 ([16]). PlanEx-T (1, 1) is undecidable, even if we restrict to S5 models, 2 agents, 3 actions, and 6 atomic
propositions.

We sketch the proof in the following. Before giving the reduction, we recall some background on (one-dimensional
three-cell neighborhood) cellular automata. An infinite sequence of cells are settled on a line (tape); each cell is in a
state represented by a symbol5 of a finite alphabet Σ. A transition function f maps a three-cell neighborhood (left-cell
symbol, current symbol, right-cell symbol) to the new symbol of the cell. Formally, a cellular automaton is a pair
A = (Σ, f ) where Σ is a finite alphabet and f : Σ3 → Σ is a (partial) transition function. For instance, the Rule
110 cellular automaton [48] is the two-symbol cellular automaton AR110 = ({0, 1}, f110) where f110 is defined by the
propositional formula f110(x, y, z) := (x ∧ y ∧ ¬z) ∨ (x ∧ ¬y ∧ z) ∨ (¬x ∧ y ∧ z) ∨ (¬x ∧ y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ z).

5We use ‘symbol’ instead of ‘cell state’, to avoid confusion with a knowledge state.
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Figure 16: Rule 110 transition function ( f110(1, 0, 1) = 1, etc.) and some successive configurations.

A configuration, that is, the symbols of cells on an infinite line, is modeled by an infinite word c ∈ ΣZ, that is, a
map that assigns a symbol c[i] to any integer i ∈ Z. A computation step is performed by the following rule. Given a
cellular automatonA and an infinite word c ∈ ΣZ, we define the successor of c byA to be the infinite word c′ defined
by c′[i] := f (c[i− 1], c[i], c[i + 1]). We write c→A c′. It may happen that the successor is not defined since f may be
partial. Figure 16 shows the transition function f110 graphically and some successive configurations.

A cellular automaton is deemed universal if it can simulate any Turing machine; the quest for finding such small
universal cellular automata started in the 1960s. A common hypothesis is to assume a blank background: we consider
that alphabets always contain a special symbol and that transition functions map to . Furthermore, we assume
that configurations are finite, in the sense that almost all cell symbols are except a finite number; configurations are
of the form ωu ω where u is a finite word, called the support. Starting from a finite configuration only leads to finite
configurations, after a finite number of computation steps.

Smith proved in 1968 [42, Theorem 40] that any m-symbol n-state Turing machine can be simulated by a (m+2n)-
symbol6 cellular automaton with a blank background. As Minsky constructed a 4-symbol 7-state universal Turing
machine MMinsky [33], there exists a 4 + 2×7 = 18-symbol universal cellular automatonASmith = (ΣSmith, fSmith), that
simulates MMinsky. As a consequence, there exists a finite word7 hSmith, such that following decision problem called
CellularAutomataReach, is undecidable:

Given a finite word u, decide whether ωu ω →∗
ASmith

c where the configuration c contains the pat-
tern hSmith.

The rest of our proof sketch describes a reduction from CellularAutomataReach into PlanEx-T (1, 0). This is achieved
by simulating executions of cellular automata with blank backgrounds.

Encoding cellular automaton configurations in epistemic states. First of all, we introduce sufficiently many proposi-
tions to encode symbols of the alphabet. For alphabet ΣSmith with 18 symbols that we respectively write `0, `1, . . . , `17,
only 5 propositions p1, . . . , p5 suffice. Given a symbol `, we note enc(`) the encoding of `: enc(`0) = ¬p1 ∧ . . .¬p5,
enc(`1) = p1 ∧ ¬p2 . . .¬p5, etc. Without loss of generality, we suppose that symbol is `0 and is encoded by the
valuation making all pi false. In the remainder, ~p denotes the sequence of propositions pi’s.

Now we encode the finite supports of configurations by means of so-called finite linear states [16]—such states
appear in real epistemic puzzles such as the consecutive number puzzle presented in Example 6. For odd n > 0, we
define a finite linear state bounded by n as an epistemic state of the form (({−n, . . . ,−1, 0, 1, . . . n}, (→a)a∈Ag,V), 0)
where:

1. →a=
{
(k, k) | k ∈ J−n; nK

}
∪
{
(2k, 2k + 1), (2k + 1, 2k) | −n+1

2 ≤ k ≤ n−1
2

}
;

2. →b=
{
(k, k) | k ∈ J−n; nK

}
∪
{
(2k, 2k − 1), (2k − 1, 2k) | −n+1

2 ≤ k ≤ n−1
2

}
;

3. ♥ ∈ V(k) iff k is even;

4. for all i, pi < V(−n),V(−n + 1),V(n − 1),V(n).

6Referred to as (m + 2n)-state by Smith [42].
7According to the notation of Table 14.8-1 p. 279 in Minsky, 1967 [33], word hSmith is q30, with our notation, it is 3 .
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post : ♥ := >
pre : ¬K̂b♥
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a, b a, b a, b
a, b
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Figure 17: Skeleton of action F.

A finite linear state bounded by n then encodes a finite configuration c whose support is of length smaller than 2n − 3
when V(k) makes enc(`i) true iff c[k] = `i; we require that the two terminal (−n and n) and the two pre-terminal (n−1,
−n + 1) worlds encode (Condition 4). For instance, the ASmith configuration ω `9`5`2

ω where c[−1] = 9 can
be represented by:

♥ p1, p4 ♥, p1, p3 p2 ♥

−3 −2 −1 0 1 2 3

b a b a b a

a, b a, b a, b a, b a, b a, b a, b

Given a finite word u, let us set once and for all the finite linear state su used to encode u: substituting u m for u
with m ∈ {0, 1, 2, 3} so that |u| will be congruent to 3 modulo 4, we let su be the finite linear state bounded by |u|+3

2
where V(k − |u|−1

2 ) makes enc(`i) true iff u[k] = `i for 0 ≤ k ≤ |u| − 1, and makes enc( ) true outside of this range.
These are only technicalities ensuring a sufficiently large odd index for the interval state to respect constraints with a
pseudo-centered word.

Simulating cellular automata in DEL. We define an action F mimicking one computation step of the cellular automa-
ton: if s is a finite linear state encoding a configuration c, then s ⊗ F is (isomorphic to) a finite linear state encoding
the successor of c. Action F is partially given by Figure 17. Intuitively, the actual event e0 copies every non-terminal
world; event e−1 keeps the left-tip world, while e−2 and e−3 clone it to append two new worlds to the left. Events
e1, e2, e3 play a similar part. In the end, action F adds two new worlds on each side, while preserving the canonical
knowledge state structure that we aim for, including the tips’ asymmetry relatively to the agents.

We finish the definition of F by adding postconditions for the p j, corresponding to the application of a transition
function f . Suppose without loss of generality that ♥ holds in a given world k ∈ {−n + 1, . . . , n − 1}. Bits of c[k − 1]
are obtained by taking the b-transition to the ¬♥-world of world k. The ith bit of c[k − 1] is given by K̂b(¬♥ ∧ pi). In
the following we use the notation 〈K̂b(¬♥ ∧ pi)〉i to denote the sequence of formulas K̂b(¬♥ ∧ pi). In the same way,
the ith bit of c[k + 1] is given by K̂a(¬♥ ∧ pi). The case where ♥ does not hold in the current world is symmetric. We
model f by propositional formulas f j(~p−, ~p, ~p +) over three sequences of atomic propositions ~p− (left cell symbol),
~p (middle cell symbol), ~p + (right cell symbol) that return the value of the jth bit of the new symbol at the middle
cell. The postconditions for the p j in F are thus defined as follows. First, post(ek)(p j) = ⊥ for all k , 0. Event e0
effectively applies f where post(e0)(p j) is the formula(

♥ → f j

(
〈K̂b(¬♥ ∧ pi)〉i, ~p, 〈K̂a(¬♥ ∧ pi)〉i

))
∧

(
¬♥ → f j

(
〈K̂a(♥ ∧ pi〉i), ~p, 〈K̂b(♥ ∧ pi)〉i

))
.

We will refer to FSmith for the epistemic action that corresponds to the transition function fSmith of the cellular automa-
tonASmith.

On top of proposition ♥, when considering the particular cellular automatonASmith, we need no more than 5 extra
propositions to encode all symbols of alphabet ΣSmith of cardinality 18, so that an overall set of 6 propositions suffices.

The interested reader can run simulations in DEL of cellular automata using the online software Hintikka’s world.
Figure 18 shows a screenshot of Hintikka’s World depicting a finite linear state.

Detecting the pattern hSmith. The pattern hSmith can be located far from the designated world in the current state. That
is why we introduce two more actions RSmith and LSmith that shifts the cells, while still enforcing growth of the state in
order to avoid information overflow on each side. The two new actions are defined below:
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Figure 18: The finite linear state encoding the configuration 0011100. The real world corresponds to the central cell 1. Agent b (on the right in the
real world) imagines a world that corresponds to the right cell 1 in which agent a imagines a world that corresponds to the right-right cell 0, etc.

• RSmith (right shift) is defined by the same structure as FSmith is, except for the following postconditions on event
e0: for all i, the assignment of pi is replaced by pi := (♥ ∧ K̂b(¬♥ ∧ pi)) ∨ (¬♥ ∧ K̂a(♥ ∧ pi));

• LSmith (left shift) is akin to RSmith; let us just give the postcondition for pi on e0 since nothing else differs:
pi := (♥ ∧ K̂a(¬♥ ∧ pi)) ∨ (¬♥ ∧ K̂b(♥ ∧ pi)).

Now we define formulas encoding the occurrence of a pattern h in the configuration. We first define the formula
wenc(h) := wenc♥(h) ∨ wenc¬♥(h) where formulas wenc♥(h) and wenc¬♥(h) are inductively defined by:

• wenc♥(ε) = ♥ and wenc¬♥(ε) = ¬♥;

• for all letters `, wenc♥(`h)=♥∧enc(`)∧K̂awenc¬♥(h);

• for all letters `, wenc¬♥(`h)=¬♥∧enc(`)∧K̂bwenc♥(h).

From a CellularAutomataReach-instance u, we compute the equivalent planning task: the initial epistemic state
is su; the set of actions is {FSmith, LSmith,RSmith}; the goal formula is wenc(hSmith). Note that the set of actions and the
goal formula do not depend on u. This completes the sketch of the construction for proving Theorem 9. The following
then follows directly from Theorems 3, 1 and 9.

Corollary 10. PlanEx-T (1, 0) is undecidable, as well as each problem PlanEx-T (m, n) with m ≥ 1 and n ≥ 0.

We can benefit from the undecidability result for PlanEx-T (1, 1) given in Theorem 9 and from the reduction pro-
vided by Theorem 3 for the particular case PlanEx-T (1, 1) ≤P PlanEx-T (1, 0) to draw conclusions on PlanEx-T (1, 0):
it remains undecidable for S5 models, 2 agents, and for some fixed bounded values on the number of agents, of actions,
and of propositions. We however believe that the obtained bounds via the two reductions CellularAutomataReach ≤P

PlanEx-T (1, 1) ≤P PlanEx-T (1, 0) can be improved.

4.2.2. The case of preconditions of modal depth 2 and no postconditions
Aucher and Bolander [2] proved that PlanEx-T (∞,−1) is undecidable, using a reduction from the halting problem

for two-counter machines known to be undecidable [33] (the∞ in the first argument of T means that the proof didn’t
put any constraints on the modal depth of preconditions). Charrier et al. [15] strengthened the construction of that
proof in order to achieve the following.
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Theorem 11 ([15]). PlanEx-T (2,−1) is undecidable.

Proof. We begin by defining two-counter machines and then explain roughly the idea of the proof by Charrier et
al. [15]. Formally, a two-counter machine M is a sequence of instructions (I0, . . . , IN) where:

• For ` < N, I` is either inc(i), goto(`′) or gotocond(i, `′), with i ∈ {1, 2}, `′ ≤ N and ` , `′;

• IN = halt.

A configuration of a two-counter machine M is a triple (`, c1, c2) where ` ∈ {0, . . . ,N} is the program counter
and c1, c2 ∈ N are the two data counters. Instruction inc(i) increments data counter i, instruction goto(`) jumps to
instruction I` and instruction gotocond(i, `) jumps to instruction I` only if data counter i has value 0, and decrements
data counter i otherwise.

The set CM = {0, . . . ,N} × N × N is thus the set of all potential configurations.
The transition function→M on CM is defined as follows. For all (`, c1, c2) ∈ CM:

• If I` = inc(1), (`, c1, c2)→M (` + 1, c1 + 1, c2);

• If I` = inc(2), (`, c1, c2)→M (` + 1, c1, c2 + 1);

• If I` = goto(`′), (`, c1, c2)→M (`′, c1, c2) ;

• If I` = gotocond(1, `′), (`, c1, c2)→M

(`′, 0, c2) if c1 = 0;
(` + 1, c1 − 1, c2) otherwise;

• If I` = gotocond(2, `′), (`, c1, c2)→M

(`′, c1, 0) if c2 = 0;
(` + 1, c1, c2 − 1) otherwise.

A two-counter machine M halts if there exist c1, c2 such that (0, 0, 0) →∗M (N, c1, c2), where →∗M denotes the
reflexive transitive closure of→M . The halting problem for two-counter machines consists in deciding, given a two-
counter machine, whether it halts or not. This problem is known to be undecidable [33].

The reduction. Charrier et al. [15] define an effective reduction r that, given a two-counter machine M, computes an
epistemic planning task r(M) of PlanEx-T (2,−1). Only one agent is needed, so Ka is noted K and K̂a is noted K̂. To
ease the reading of the figures, we do not name the worlds.

The initial epistemic state represents the initial configuration (0, 0, 0) drawn in Figure 19, whereas Figure 20
depicts the epistemic state representing the configuration (1, 0, 2). It is composed of three zones:

• One for the program counter (PC) such that the program counter is ` = i if the only world in this zone having a
successor is the one labeled by ai. Initially, ` = 0 so the only world having a successor is the one labeled by a0.

• One for each data counter, c1 and c2. Each zone contains two worlds labeled by pi and qi with i ∈ {1, 2}. The
world labeled by qi marks the beginning of the chain representing the integer stored in ci, and the chain is made
of worlds labeled by pi. Initially, ci = 0, so the chain is made of one world labeled by pi.

Each program line `:I` is represented by some action. We do not detail every instruction here but give examples.
The action for the instruction goto(`′) at program counter ` is given in Figure 22 and uses repl(`, `′) given in Figure 21.
In the program counter zone, it removes the successor for the world labeled by a` (with the precondition a` ∧ K̂K⊥)
and creates a successor for the world labeled by a`′ (with the events having precondition a`′ ). In the data counter
zones, the action does not change anything.

Another example is inc(1) given in Figure 24, using the portion repl(`, `′) and the portion lengthen(1) of Figure
23. It replaces the program counter ` with ` + 1 and adds a world labeled by p1 in the c1 portion of the Kripke model.

The goal formula checks that the epistemic state is in program counter N, that is, ϕg =
∧N
`=0 K̂a`.

Combining Corollary 10 and Theorem 11, we can conclude that the only decision problem PlanEx-T (m, n) for
which decidability or undecidability has not yet been established is PlanEx-T (1,−1). Unfortunately, this case remains
open. We discuss some advances towards solving this open problem in the next section.
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PC ` = 0 c1 = 0 c2 = 0

a0 a1 aN

a0

. . . p1 q1 p2 q2

Figure 19: Epistemic state representing the initial configuration (0, 0, 0).

PC ` = 1 c1 = 0 c2 = 2

a0 a1 . . . aN

a1

p1 q1 p2

p2

p2

q2

Figure 20: Epistemic state representing the configuration (1, 0, 2).

pre :
∧N
`=0 ¬a` ∧

∧2
i=1 ¬pi ∧ ¬qi

pre : a0 . . . pre : a` ∧ K̂K⊥ pre : a`′

pre : a`′

. . . . . . pre : aN

Figure 21: Action portion repl(`, `′) for ` , `′.

pre :
∧N
`=0 ¬a` ∧

∧2
i=1 ¬pi ∧ ¬qi

repl(`, `′) pre : p1 pre : q1 pre : p2 pre : q2

Figure 22: Action α`:goto(`′) for `:goto(`′).

pre : pi ∧ K̂qi pre : qi

pre : pi ∧ K̂qi

pre : pi ∧ ¬K̂qi

e0

Figure 23: Action portions lengthen(i).
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pre :
∧N
`=0 ¬a` ∧

∧2
i=1 ¬pi ∧ ¬qi

repl(`, ` + 1)

lengthen(1)

e0 pre : p2 pre : q2

Figure 24: Action α`:inc(1) for `:inc(1).

4.3. The open case of actions with preconditions of modal depth 1 and no postconditions

The decidability of PlanEx-T (1,−1) is still an open problem. There are some hints that the DEL structure (see
Definition 12) may not be automatic as for PlanEx-T (0, 0) [20]. In other words, the technique used in Theorem 4 to
prove that PlanEx-T (0, 0) is decidable may be not suitable to prove that PlanEx-T (1,−1) is.

The problem PlanEx-T (1,−1) may also be undecidable. At least when extending the actions from the decidable
class T (0, 0) with the actions from the class T (1,−1) we already get an undecidable class (a class with an undecidable
plan existence problem). In other words, PlanEx-T ((0, 0) ∪ (1,−1)) is undecidable, where T ((0, 0) ∪ (1,−1)) is the
class of planning tasks in which each action either belongs to T (0, 0) or T (1,−1). Even worse, we will prove that
just adding public announcements of modal depth 1 to T (0, 0) is sufficient to make the corresponding plan existence
problem undecidable. To prove this undecidability result, we provide in Appendix D a reduction from PlanEx-T (1, 0)
to PlanEx-T ((0, 0) ∪ (1,−1)). The reduction is quite technical although the overall idea is simple. Each action α in
the original plan is simulated by the execution of three actions:

1. a propositional action that creates a copy of each world augmented with a possible valuation ν of fresh propo-
sitional variables pψ, one for each precondition appearing in α;

2. the public announcement that, for every preconditions ψ of α, formula pψ ↔ ψ holds, said differently the public
announcement that rules out all augmented worlds where valuation ν has not properly set some proposition pψ;

3. a copy of α that is a propositional action, but where each precondition ψ of α is replaced by pψ.

Theorem 12. PlanEx-T (1, 0) ≤P PlanEx-T ((0, 0) ∪ (1,−1)). Actually, PlanEx-T (1, 0) reduces to the restriction
of PlanEx-T ((0, 0) ∪ (1,−1)) in which each action either has propositional pre- and post-conditions, or is a public
announcement (i.e. containing a unique event) of modal depth at most 1.

Proof. The detailed proof is in Appendix D.

Corollary 13. PlanEx-T ((0, 0) ∪ (1,−1)) is undecidable.

5. PSPACE variants of the plan existence problem

PSPACE can be seen as the new algorithmic challenge, after the class NP. For having efficient algorithms for
decision problems in PSPACE, a lot of efforts are put in the design of efficient QBF (quantified binary formulas)
solvers (see for instance Marques-Silva [31]).

Theorem 8 showed that epistemic planning for actions with propositional preconditions and no postcondition is
PSPACE-complete. In this section, we discuss two important ways to obtain decidability (and below PSPACE!) and
to limit the search-space to a finite one. First we can bound the length of solutions (Subsection 5.1): this is called
bounded epistemic planning. Second, we can focus on epistemic actions whose application does not make epistemic
models grow (Subsection 5.2).
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5.1. Bounded epistemic planning
In this section, we address the bounded version of the plan existence problem, defined as follows.

Definition 13. By BoundedPlanEx, we denote the following decision problem, called the bounded plan existence
problem:

Given a planning task T , given a integer β written in unary, does T have a solution of length smaller
than β?

In the previous problem, the bound is written unary as in the so-called polynomial-length plan existence prob-
lem [43]. This assumption is reasonable since the planner that solves BoundedPlanEx should at least have allocated
enough memory cells to store the output.

Theorem 14. BoundedPlanEx is PSPACE-complete.

Proof. PSPACE-membership is proved by reducing in polynomial time BoundedPlanEx to model-checking against
the dynamic language of DEL, which is in PSPACE [4]. The dynamic language has a dynamic construction 〈A〉ϕ,
where A is a finite set of actions, as in dynamic logics that says “there is an action α in A that is executable, and after
executing it, ϕ holds’”. Let us consider a planning task T = (s0, A, ϕg). Without loss of generality, we suppose that
A contains a public skip action (that is, an action made up of one event with a self-loop, whose precondition is > and
with no postcondition). Thus, T has a solution of length smaller than β iff T has a solution of length β iff s0 |= 〈A〉βϕg,
where 〈A〉β is 〈A〉 . . . 〈A〉 where the modality 〈A〉 is repeated β times.

PSPACE-hardness is proved by reducing in polynomial time from the plan existence problem where the initial
epistemic state is a chain, actions are tree-like, all preconditions are propositional, and there are no postconditions.
The plan existence problem for such planning tasks is PSPACE-hard [12, Th. 5.4]. Actually, if a planning task
T = (s0, A, ϕg) being an instance of this plan existence problem has a solution, it has a solution of length at most
maxα∈A(`(α)), where `(α) is the number of leaves of the tree α. The reduction maps T to (T,maxα∈A(`(α))).

5.2. Separable event models
We introduce separable actions, also defined as globally deterministic actions by Bolander and Andersen [11].

The intuition between separable actions is simple: preconditions must be mutually inconsistent, defined formally as
follows.

Definition 14. An action α = (E, e0) with E = (E, (REa )a∈Ag, pre, post) is separable if and only if for all events e, f ∈ E
such that e , f , the formula pre(e) ∧ pre( f ) is unsatisfiable.

Example 10. We provide some example of separable and non-separable actions. Actions with a single event are
trivially separable. Such actions are usually called public actions. Public actions without postconditions are called
public announcements, as already previously mentioned. General public actions represent a possibly ontic action
being executed publicly, so that it is common knowledge among all agents that it has been executed (the postcondition
will become common knowledge). Semi-private announcements to a group G ⊆ Ag are also separable, since they are
defined to be of the following following form:

pre : ϕ pre : ¬ϕ

eϕ e¬ϕ

Ag \G

Ag Ag

Such a semi-private announcement represents ϕ being announced to the agents in G (these agents only consider the
event eϕ possible), whereas the agents not in G will not know whether ϕ or ¬ϕ has been announced (they cannot
distinguish events eϕ and e¬ϕ). Public actions and semi-private announcements are for instance considered in the
work of Kominis and Geffner [27].

Non-separable actions include semi-private assignments, defined by:
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pre : >

post : p:=>
pre : >

post : p:=⊥

e> e⊥

Ag \G

Ag Ag

Such a semi-private assignment represents p being set true, but the agents not in G doesn’t know whether p is set true
or false. It is not separable since the preconditions of both events are simply >, and these are clearly not mutually
inconsistent.

When actions are separable, the following two facts hold:

• The plan existence problem is NP-complete if all actions are without postconditions.

• The plan existence problem is PSPACE-complete otherwise.

It is proven by Bolander et al. [12] that for actions with one event and without postconditions, the plan existence
problem is NP-complete. For actions with one event and with postconditions, it is proven by Jensen [26] that the plan
existence problem is PSPACE-complete. Let us concentrate on upper bound results.

Theorem 15. We consider the plan existence problem under the constraint that A only contains separable actions
without postconditions. This problem is in NP.

Proof. We define the following algorithm:

procedure existplan(s0, A, ϕG)
(∃)(∃)(∃) choose an integer k ∈ {0, . . . , |s0|}

(∃)(∃)(∃) choose actions α1, . . . , αk ∈ A
let s = s0
for i = 1 to k:

if αi is applicable in s then s = s ⊗ αi else reject
if s |= ϕG then accept else reject

The algorithm tries to find a solution by choosing non deterministically the sequence of actions executed. It is impor-
tant to notice that since the actions are separable and without postconditions, it is sufficient to consider a solution of
at most |s0| actions, since each application of an action will either remove a world, an epistemic edge or do nothing.
We then store the initial model into a state s and update this state by applying all actions αi and failing if one is not
applicable. Since actions are separable, then the product update is performed in polynomial time. Finally, we check
that ϕG, which is a formula of LK, is satisfied in the epistemic state s. Since the model checking against epistemic
logic is in PTIME 8 this concludes the proof.

Theorem 16. We consider the plan existence problem under the constraint that A only contains separable actions.
This problem is in PSPACE.

Proof. We write a trivial algorithm searching for a solution:

procedure existplan(s0, A, ϕG)
if s0 |= ϕG then accept
else :

(∃)(∃)(∃) choose an action α ∈ A
if α is applicable in s0 then existplan(s ⊗ α, A, ϕG) else reject

8Epistemic logic is a fragment of CTL whose model checking is in PTIME [47].
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It chooses an action and calls back to itself with the product update in input. It stops whenever the goal has been
reached. Since the actions are separable, then |s ⊗ α| ≤ |s|, so the space needed is polynomial. Therefore we have an
algorithm in NPSPACE, which proves the PSPACE-membership since PSPACE = NPSPACE.

Remark 2. In theory, the separability constraint is too strong. It is sufficient to say that for the input epistemic state
s0, for any actions α1, . . . , αn ∈ A and action α ∈ A, in each world of s0⊗α1⊗· · ·⊗αn, at most one of the events of α is
applicable. Indeed if this constraint is true, then the epistemic state will never increase in size, and so the algorithms
presented before still work. Yet, this constraint is hard to check. That is why separability is an easier criterion. It is
still possible to design an algorithm that applies the procedures of separable actions and stops if the current epistemic
state increases in size. Similarly, if s0 ⊗ α1 ⊗ . . . αn is never bigger than P(|s0|) for a fixed polynomial P then the
Theorems 15 and 16 would still work (just replace i ≤ |s0| by i ≤ P(|s0|)).

6. Related work

The undecidability of the plan existence problem for epistemic planning was originally established by Bolander
and Andersen [11] (for the class T (1, 0)). The decidability of PlanEx-T (0, 0) was proved by Yu et al. [49] (and non-
elementary algorithms were provided by Aucher et al. [3] and Douéneau-Tabot et al. [21]). Furthermore, the PSPACE-
complete result for PlanEx-T (0,−1) was proved by Charrier et al. [15], which improved the previous EXPSPACE
upper bound of Bolander et al. [12].

To circumvent undecidability or such high complexities, other approaches have been investigated that revolve
around syntactic compilation into classical planning [34, 27, 17]. The common point between these approaches is the
restricted expressivity of either Kripke models or event models, so that the epistemic plan existence problem reduces
to classical planning. For example, the setting of Muise et al. [34] permits event models with a single event with
so-called conditional effects (non-deterministic postconditions), allowing for an exponential reduction to classical
planning. In Cooper et al. [17], the authors also consider event models with a single event and conditional effects,
the difference being that the Kripke model is implicitly formalized by valuations over a richer set of atomic propo-
sitions. This set contains new propositions of the form Kwa p for “Agent a knows whether p is true”. In Kominis
and Geffner[27], restricting to public announcements, public assignments and semi-private announcements yields a
polynomial reduction to classical planning.9

Variants of the plan existence problem have also been considered that do not rely on DEL. For instance, one may
use Alternating Temporal Logic (ATL) [1] extended to an imperfect information setting and enriched with knowledge
modalities (AETL). ATL is itself an extension of computation-tree logic CTL [5] with dynamic modalities to express
the existence of strategies. In this setting, one can express the existence of a strategy for a group of agents that ensures
to reach a situation where some property ϕ holds, hence it can answer planning problems. Notice that the setting
is very expressive and allows to express properties that go beyond planning issues. The model checker MCMAS
[29] can solve AETL, but in a very restricted framework: the temporal dynamics (histories) rely on a finite (i.e.,
regular) model, only equivalence accessibility relations between states are allowed, and the knowledge semantics is
memoryless, meaning that agents can only rely on their information about the current state and not about the whole
history that led to it. This is opposed to the perfect recall knowledge semantics where agents remember all information
along the history, as in the DEL setting. Our undecidability results entail the undecidability of the model checking
problem for a perfect recall knowledge semantics, as independently proved by Dima and Tiplea [18]. Additionally,
notice that whether the temporal dynamics resulting from the DEL structure is regular is still an open problem; it is
regular for propositional event models, as explained in Section 4.1.1.

Incidentally, in the case of propositional actions, other works have established much stronger results that entail
the decidability of the epistemic plan existence problem and its synthesis (as explained Section 4.1.1). For example,
Maubert [32] and Bozzelli et al. [14] showed that model checking against CTL∗Kn is decidable over the class of DEL
presentations; the automata-theoretic approach underlying this result allows to synthesize epistemic plans (action
sequences), but it also allows to synthesize so-called epistemic protocols, in the sense of Aucher [3, Definition 6, page
4]. Notice that the more recent work by Douéneau-Tabot et al. [21] establishes the even stronger result that chain-
MSO properties (a more expressive setting than CTL∗Kn) can be model-checked over propositional DEL structures.

9This is expected since all these event models are separable.
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More recently, Liberman and Rendsvig [28] have considered epistemic planning in the FODEL setting, that is, DEL
extended with first-order (FO) logical features: under the assumption of propositional actions, the epistemic plan
existence problem remains decidable, as long as the interpretation of the FODEL presentation carries a finite domain.
Their elegant proof relies on the ability to finitely bound the number of different models (modulo bisimulation). An
alternative proof would be to use our Theorem 7 that amounts to reasoning on automatic structures, since FODEL
specifications interpreted over finite FO domains yield DEL presentations.

As already discussed in this section, the plan existence problem takes various forms and is still a very active
area. The reader may refer to the recent report by Baral et al. [7] that provides a comprehensive survey on the many
techniques that address this problem.

7. Conclusion

We surveyed complexity results of the plan existence problem based on dynamic epistemic logic (DEL). These
results are summarized in Figure 25, where arrows denote an embedding of a class of actions into another.
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Figure 25: Overview of the plan existence problem complexity.

We investigated a classification of the (epistemic) plan existence problem based on bounding the modal depth
of pre- and post-conditions of actions, which allowed us to embed many existing results in the literature. As a
result, we obtained decidability only for propositional actions, but undecidability even for actions of modal depth 1.
Nevertheless, the status of the plan existence problem remains open for actions with preconditions of modal depth 1
and no postconditions. However, we showed that the little addition of public announcements of modal depth 1 to the
decidable case of propositional actions already yields undecidability. This last result reflects how tricky the open case
is.
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The established undecidability results may seem very disheartening, yet there is still hope for epistemic planning
based on dynamic epistemic logic. Indeed, in addition to the case of propositional actions with no postconditions,
we exhibited two more cases where the plan existence problem is decidable. The first is the bounded plan existence
problem, where the length of the solution we seek is bounded by an input integer β. The second is the plan existence
problem for separable actions, where the preconditions of any pair of events are logically inconsistent. For these cases,
we obtained PSPACE-completeness complexity, just as for classical planning, which is very promising.

In the light of all these results, we can draw some conclusions. The hardness of epistemic planning lies in the
combination of two factors: the growth of the epistemic state sizes and the conditionals for executing the events (i.e.
the preconditions). When one of these factors is alleviated, the plan existence problem becomes decidable. Indeed, in
the propositional action case, the model may grow arbitrarily, but the conditionals are sufficiently simple to be captured
by regular models, namely automatic structures. On the other hand, for separable actions, the model does not grow
at all, but the conditionals may be arbitrarily expressive. Actually, the concomitant presence of both factors entailing
undecidability is highlighted by one of our results: gathering public announcements and propositional actions already
makes the problem undecidable since propositional actions may make the epistemic state arbitrarily large while the
public announcements introduce intricate conditionals. For future work, we advocate that the current undecidable
classes appeal for a criteria to partition them into decidable classes.

The first avenue for future research is to formally study the necessary conditionals for executing events, in order
to find properties such as “there exist a finite number of epistemic states modulo bisimulation” or “when precondition
formulas belong to class ..., the DEL-structure is automatic”. More generally, it is important to tame the classes of
relational structures one can catch with DEL presentations. We have seen that those are automatic for propositional
DEL presentations, and actually they fall into an even smaller class called regular automatic trees [19] with the very
nice property that any chain Monadic Second Order Logic definable property can be checked. A deep investigation of
which classes of structures are “DEL-presentable” is worth pursuing. In the same line, the recent work [28] opens a
new horizon to consider FODEL (i.e. first-order DEL) presentations. While this recent work reveals decidability for
propositional actions and finite first-order domains (and the proposed proof is ad hoc), we believe the proof via our
Theorem 7 (see Section 6) can be generalized to subclasses of FODEL presentations with possibly infinite domain
interpretations.

A second avenue is to study epistemic planning for meaningful cases, namely for those arising from practical
applications, rather than in their full generality. Typically, for applications in security, it is relevant to study private
communication event models, which currently do not appear as an entire class of our classification.
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Appendix

In subsequent proofs, we need a criteria for equivalence between epistemic states. This criteria is bisimulation as
defined in [8].

Definition 15 (Bisimulation). Let P ⊆ AP and (M,w0), (M′,w′0) be two epistemic states withM = (W, (→a)a∈Ag,V)
and M′ = (W′, (→′a)a∈Ag,V′). We say that (M,w0), (M′,w′0) are P-bisimilar if there exists a relation B ⊆ W ×W′

such that (w0,w′0) ∈ B and for all (w,w′) ∈ B:

• P-conservation: for all p ∈ P, p ∈ V(w) if and only if p ∈ V′(w′);

• Zig: if w→a u then there exists u′ ∈ W′ such that w′ →′a u′ and (u, u′) ∈ B;

• Zag: if w′ →′a u′ then there exists u ∈ W such that w→a u and (u, u′) ∈ B.

Appendix A. Proof of Theorem 2

In this proof we need the definition of the set of subformulas of a formula ϕ. It is noted SF(ϕ), and is defined
by structural induction on ϕ: SF(p) = {p}; SF(¬ϕ) = {¬ϕ} ∪ SF(ϕ); SF(ϕ1 ∨ ϕ2) = {ϕ1 ∨ ϕ2} ∪ SF(ϕ1) ∪ SF(ϕ2);
SF(Kaϕ) = {Kaϕ} ∪ SF(ϕ).

Let T = (s0, A, ϕg) be a planning task in T (m, n) and let P ⊆ AP be the set of atomic propositions appearing in T .
We define the following set P′:

P′ = P ∪ {pψ | ψ ∈ SF(ϕ), ϕ appears in some action α ∈ A, md(ψ) ≥ 1} ∪ {p1, . . . , pmax(m,n)} ∪ {pα | α ∈ A} ∪ {pexec}

For any formula ϕ, we define a new formula tr(ϕ) of modal depth at most one as follows: for formulas ϕ that already are
of modal depth at most one, tr(ϕ) = ϕ. For formulas ϕ of modal depth at least two, tr(ϕ) is ϕwhere its subformulas ψ of
modal depth md(ϕ)−1 have been replaced by pψ: tr(p) = p; tr(>) = >; tr(¬ϕ) = ¬tr(ϕ); tr(ϕ1∨ϕ2) = tr(ϕ1)∨ tr(ϕ2);
tr(Kaψ) = Ka pψ.

We construct a planning task T ′ = (s′0, A
′, ϕ′g) from T as follows: s′0 = s0, ϕ′g = ϕg ∧ ¬pexec ∧

∧max(m,n)
i=1 ¬pi and

A′ =
⋃
α∈A

{αchoose, α1, . . . , αmax(m,n), α
′}

where the new actions for simulating α = (E, e0) with E = (E, (→a)a∈Ag, pre, post) are the following.

• αchoose = (Echoose, echoose), Echoose = ({echoose}, ({(echoose, echoose)})a∈Ag, prechoose, postchoose) with prechoose(echoose) =

¬pexec ∧
∧max(m,n)

i=1 ¬pi and postchoose(echoose)(p1) = >; postchoose(echoose)(pα) = >.

• αk = (Ek, ek), Ek = ({ek}, ({(ek, ek)})a∈Ag, prek, postk) with prek(ek) = pk ∧ pα and postk(ek)(pϕ) = tr(ϕ) for any
formula ϕ of modal depth k such that pϕ ∈ P′; postk(ek)(pk) = ⊥; if k < max(m, n) then postk(ek)(pk+1) = >

else postk(ek)(pexec) = >.

• α′ = (E′, e′0), E′ = (E′, (→′a)a∈Ag, pre′, post′) with E′ = {e′ | e′ ∈ E}. →′a = {(e′, f ′) | e →a f } for all a ∈ Ag.
pre′(e′) = pexec ∧ pα ∧ tr(pre(e)) for all e′ ∈ E′. post′(e′)(p) = tr(post(e)(p)) for all e′ ∈ E′ and p ∈ P;
post′(e′)(p) = ⊥ for all e′ ∈ E′ and p ∈ P′ \ P.

Lemma 17. For any epistemic state s and action α over a set of atomic propositions P, the epistemic states s⊗α and
s ⊗ αchoose ⊗

⊗max(m,n)
k=1 αk ⊗ α

′ are P-bisimilar.

Proof. Let s = (M,w0) withM = (W, (→a)a∈Ag,V) and α = (E, e0) with E = (E, (→a)a∈Ag, pre, post). The bisimula-
tion is B = {((w, e), (w, echoose, e1, . . . , emax(m,n), e′) | w ∈ W, e ∈ E}. The Zig and Zag properties are easy to prove, the
difficult part is to prove that (M,w) |= ϕ if and only if (M,w) ⊗ αchoose ⊗

⊗max(m,n)
k=1 αk |= tr(ϕ) with ϕ any formula

appearing in a precondition or a postcondition in α. Indeed, if such a property is proven, then:
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• B is well defined because (w, echoose, e1, . . . , emax(m,n), e′) passed all the preconditions if and only if w passed the
precondition of e (because the only problematic precondition is pre′(e′) = tr(pre(e))).

• The P-conservation is direct because:
p ∈ V(w, e) if and only if (M,w) |= post(e)(p)

if and only if (M,w) ⊗ αchoose ⊗
⊗max(m,n)

k=1 αk |= tr(post(e)(p))
if and only (M,w) ⊗ αchoose ⊗

⊗max(m,n)
k=1 αk |= post′(e′)(p)

if and only if p ∈ V(w, echoose, e1, . . . , emax(m,n)).

The property (M,w) ⊗ αchoose ⊗
⊗max(m,n)

k=1 αk |= tr(ϕ) is a consequence of the following lemma.

Lemma 18. For any i ∈ {1, . . . ,max(m, n)}, for any formula ϕ of modal depth at most i and any Kripke modelM with
its relevant propositions on P, (M,w) |= ψ if and only if (M,w) ⊗ αchoose ⊗

⊗i
k=1 αk |= tr(ψ).

By induction on i.

• For i = 1, we have tr(ψ) = ψ and (M,w)⊗αchoose ⊗
⊗i

k=1 αk = (M,w)⊗αchoose ⊗α1. Since αchoose and α1 only
contain one event, do not remove any world from M and do not modify any proposition from P, we directly
obtain that (M,w) |= ψ if and only if (M,w) ⊗ αchoose ⊗ α1 |= tr(ψ).

• For i > 1: if the property is true for i − 1 then in (M,w) ⊗ αchoose ⊗
⊗i

k=1 αk, any atomic proposition pχ with
χ of modal depth i − 1 has now the correct value of χ in each world w. Therefore for any formula ψ of modal
depth i, we indeed have (M,w) |= ψ if and only if (M,w) ⊗ αchoose ⊗

⊗i
k=1 αk |= tr(ψ).

For any action α we define the abbreviation πα = αchoose ⊗
⊗max(m,n)

k=1 αk ⊗α
′. Then we have proved thatM⊗α1 ⊗

· · ·⊗αk is P-bisimilar toM⊗πα1 ⊗· · ·⊗παk , so the goal formula ϕg is either true in both of false in both. Since the rest
of the conjunction in ϕ′g is necessarily true inM⊗ πα1 ⊗ · · · ⊗ παk , we have proved that ϕg is true inM⊗ α1 ⊗ · · · ⊗ αk

if and only if ϕ′g is true inM⊗ πα1 ⊗ · · · ⊗ παk .
We conclude the proof by highlighting that necessarily the plans are of the form πα1 , . . . , παk . Indeed, each πα j

cannot be cut down because of the proposition pα j , and ϕ′g is necessarily false if evaluated before πα j is finished
because all propositions pi and pexec must be false.

Appendix B. Proof of Theorem 3

Let T = (s0, A, ϕg) be a planning task in T (m, n) over a set of atomic propositions P, with s0 = (M,w0), M =

(W, (→a)a∈Ag,V). Let P′ = P ∪ Ppost ∪ {pα | α ∈ A} with Ppost = {ppost(e)(p) | e appears in some action α ∈ A, p ∈ P}.
We first detail an exponential reduction and then explain how to extract a polynomial reduction. From T , we construct
a planning task T ′ = (s′0, A

′, ϕ′g) in T (max{m, n}, 0) over P′ by letting s′0 = s0, ϕ′g = ϕg ∧
∧
α∈A ¬pα and

A′ =
⋃
α∈A

{αv
assign | v ∈ 2Ppost } ∪ {α′}

where the new actions for simulating α = (E, e0) with E = (E, (→a)a∈Ag, pre, post) are the following.

• αv
assign = (Eassign, ev), Eassign = (Eassign, (→a,assign)a∈Ag, preassign, postassign) with

– Eassign = {ev | v ∈ 2Ppost };

– →a,assign= Eassign × Eassign;

– preassign(ev) =
∧
α∈A ¬pα ∧

∧
post(e)(p) in α and v post(e)(p) ∧

∧
post(e)(p) in α and not in v ¬ post(e)(p) ;

– postassign(ev)(ppost(e)(p)) =

{
> if post(e)(p) ∈ v
⊥ otherwise ; postassign(ev)(pα) = >.
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τ(p)(x) := p(x) for each p ∈ AP
τ(¬ϕ)(x) := ¬τ(ϕ)(x)
τ(ψ ∧ χ)(x) := τ(ψ)(x) ∧ τ(χ)(x)
τ(Kaϕ)(x) := ∀y(Ra(x, y)→ τ(ϕ)(y))

Table C.1: Translation of LK into FO.

• α′ = (α, e′0), E′ = (E′, (→′a)a∈Ag, pre′, post′) with:

– E′ = {e′ | e ∈ E};

– →′a = {(e′, f ′) | e→a f } for all a ∈ Ag;

– pre′(e′) = pα ∧ pre(e) for all e′ ∈ E′;

– post′(e′)(p) = ppost(e)(p) for all e ∈ E and p ∈ P; post′(e′)(p) = ⊥ for all p ∈ P′ \ P.

The correctness proof is direct for this construction. Indeed, let αv
assign be the only applicable action in (M,w).

Then in each world ofM, only one event of αv
assign is executed and tags the propositions ppost(e)(p) to the correct value of

post(e)(p). Therefore (M,w) is exactly the same as (M,w)⊗αv
assign with ppost(e)(p) tagged with the correct value and pα

true in every world. Therefore, (M,w)⊗α and (M,w)⊗αv
assign⊗α

′ are P-bisimilar. Therefore (M,w)⊗α1⊗· · ·⊗αk |= ϕg

if and only if (M,w) ⊗ (α1)assign ⊗ α
′
1 ⊗ · · · ⊗ (αk)assign ⊗ α

′
k |= ϕ′g, since the rest of the formula ϕ′g forbids the plans to

end with some (αi)assign.
To obtain a polynomial reduction, we divide the action αv

assign into actions αpost(e)(p) having two events and just
assigning the value of post(e)(p). Since the actions αv

assign differ only in the designated event, we introduce two actions
αpost(e)(p) for each post(e)(p). By also introducing new propositions to impose that all αpost(e)(p) are executed in order,
we thus can simulate the set of αv

assign with a polynomial number of actions of size two, which makes the reduction
polynomial.

Appendix C. Epistemic logic can be translated into FO from page 19

Recall that epistemic logic is interpreted over Kripke models (see Definition 2) that are particular relational struc-
tures: a Kripke modelM = (W, (→a)a∈Ag,V) is the relational structure whose domain is W and whose relations are
the binary relations→a⊆ W ×W, one for each a ∈ Ag, and the unary relations V(p) ⊆ W, one for each p ∈ AP. For
readability of the FO-formulas, the binary relations→a and the unary relations V(p) will instead be written Ra and p.

We now define a translation τ : LK → FO that maps a formula ϕ onto a first-order formula with a single variable,
hence written τ(ϕ)(x) to emphasize this free variable as x. Mapping τ is designed so that given an epistemic state
(M,w) and a formula ϕ ∈ LK, (M,w) |= ϕ if, and only if,M, [x 7→ w] |= τ(ϕ)(x).

The translation is defined in Table C.1 obtained by induction over the formula ϕ. It expends the semantics of the
knowledge operator Ka as a universal quantification over the Ra-neighborhood of a world: for example, the formula
Ka p ∧ K̂bq translates into Ψ(x) := ∀y(Ra(x, y)→ p(y)) ∧ ∃z(Rb(x, z) ∧ q(z)).

For the correctness of translation τ, known as the standard translation in the literature, the reader may refer to [9,
Section 2.2].

Appendix D. Proof of Theorem 12

For pedagogical reasons, we first discuss an exponential reduction from PlanEx-T (1, 0) to PlanEx-T ((0, 0) ∪
(1,−1)). The trick to make it polynomial is the same as for reduction given in the proof of Theorem 3.

Appendix D.1. Overall idea

Let us illustrate our reduction with the action α from Figure D.26. For the next paragraph we ignore the role of
execα, etagAssign, etagLost, f lagAssigned, f lagLost. Action α is simulated by the execution of the three actions αassign ⇒

αcheck ⇒ α′, executed in that order:
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pre : Ka p
post : p:=>

pre : Ka p
post : p:=⊥

pre : (K̂a p ∧ K̂b p)
post : p:=¬p

e1 e2 e3

b a

a, ba, ba, b

Action α

pre :
∧
β∈A ¬execβ

post :
pKa p:=⊥ pK̂a p∧K̂b p‘:=⊥
execα:=>

pre :
∧
β∈A ¬execβ

post :
pKa p:=> pK̂a p∧K̂b p‘:=⊥
execα:=>

e⊥,⊥ e>,⊥

pre :
∧
β∈A ¬execβ

post :
pKa p:=⊥ pK̂a p∧K̂b p‘:=>
execα:=>

pre :
∧
β∈A ¬execβ

post :
pKa p:=> pK̂a p∧K̂b p‘:=>
execα:=>

e⊥,> e>,>

a, b

a, b

a, b

a, b a, b
a, b

pre :
∧
β∈A ¬execβ

post :
f lagAssigned:=>
execα:=>

etagAssign cc

c c

a, b, c

a, b, c

a, b, c a, b, c

a, b, c

Action αassign

pre : execα ∧ ¬ f lagAssigned ∧ ¬K̂c f lagLost ∧ K̂c f lagAssigned ∧ (pKa p ↔ Ka p) ∧ (pK̂a p∧K̂b p‘ ↔ (K̂a p ∧ K̂b p))

echeck

a, b, c

Action αcheck

pre : execα ∧ pKa p

post :
p:=>
execα:=⊥

pKa p:=⊥ pK̂a p∧K̂b p‘:=⊥

pre : execα ∧ pKa p

post :
p:=⊥
execα:=⊥

pKa p:=⊥ pK̂a p∧K̂b p‘:=⊥

pre : execα ∧ pK̂a p∧K̂b p‘

post :
p:=¬p
execα:=⊥

pKa p:=⊥ pK̂a p∧K̂b p‘:=⊥

pre : execα ∧ ( f lagAssigned ∨ f lagLost)

post :
f lagAssigned:=⊥ f lagLost:=>
execα:=⊥
pKa p:=⊥ pK̂a p∧K̂b p‘:=⊥

e1
e2 e3

etagLost

b a

a, b, ca, b, ca, b, c

a, b, c

c c c

Action α′

Figure D.26: Example of an action α in T (1, 0) that is simulated by actions αassign, αcheck and α′ in T (0, 0) ∪ T (1,−1)).
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lost

αassign

αcheck

α′

α′

Figure D.27: Possible orders of the actions αassign, αcheck and α′.

1. αassign is a propositional action that copies all worlds augmented with all possible assignments ν on new atomic
propositions pKa p and pK̂a p∧K̂b p‘, where ϕ1 = Ka p and ϕ2 = K̂a p ∧ K̂b p are the (epistemic) preconditions
appearing in α. These new propositional variables serve as placeholders whose truth values will be compared
with the actual truth value of formulas ϕ1 and ϕ2 with action αcheck. Since we do not know in advance which
event is executable in the designated world, we create copies of αassign where each possible assignment on
pϕ1 , . . . , pϕn is designated. That is why we have several designated events in αassign.

2. αcheck is a public announcement that keeps all worlds in which the value of pψ is equal to the truth value of
formula ψ.

3. α′ is a propositional action consisting of a copy of α where each epistemic precondition ψ is replaced by pψ.

Now, imposing the order of execution αassign ⇒ αcheck ⇒ α′ is tricky.

1. In order to have αassign as the first action being executed for simulating an action α, we introduce a propositional
variable execα that remains true during all the simulation of action α. Thus actions αcheck, α

′ are for sure
executed after αassign, and no actions βcheck, βassign with β , α can be executed after αassign.

2. Now αcheck is a public announcement: it cannot modify another atomic proposition to impose that αcheck is
executed between αassign and α′. We then rely on the method of manipulating a flag in an extra possible world
for a new agent c. We add to action αassign a new event etagAssign that will add a successor world for agent c
where a certain proposition f lagAssigned is true. The execution of αcheck requires K̂a f lagAssigned to be true,
that is, requires that αassign was executed just before. Also, as αcheck contains ¬ f lagAssigned in its precondition,
its execution will remove all f lagAssigned-worlds. Thus, as action αcheck requires formula K̂a f lagAssigned to
be true, action αcheck cannot be perfored two times in a row.

3. Second, we add to α′ a new event etagLost that tags f lagAssigned-worlds with f lagLost and keeps f lagLost-
worlds. The presence of f lagLost-worlds mean that the simulation is incorrect, it happens when α′ is executed
just after αassign. The presence of some f lagLost-worlds implies that there will always be some f lagLost-
worlds: the whole simulation is incorrect forever.

Figure D.27 shows the possible orders of the actions. The goal formula is ϕ′g = ϕg ∧
∧
β∈A ¬execβ ∧¬K̂c f lagLost:

• ϕg the previous goal should be satisfied;

•
∧
β∈A ¬execβ: the goal should be evaluated between simulations of original actions;

• ¬K̂c f lagLost: the simulation should not be incorrect.
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Appendix D.2. Formal definition of the reduction

Let T = (s0, A, ϕg) be a planning task in T (1, 0) over a set of atomic propositions P, with s0 = (M,w0),M =

(W, (→a)a∈Ag,V). Let P′ = P∪
⋃
α∈A Pα∪{ f lagAssigned, f lagLost}∪{execα | α ∈ A} with Pα = {pϕ | ϕ appears in α}.

We define a new planning task T ′ = (s′0, A
′, ϕg) in T ((0, 0) ∪ (1,−1)) on P′, where the actions of T (1,−1) are

public announcements. First, s′0 is the state s0. We introduce an new agent c with→c = {(w,w) | w ∈ W}. Second
ϕ′g = ϕg ∧

∧
α∈A ¬execα ∧ ¬K̂c f lagLost. Finally, the set actions is A′ =

⋃
α∈A

(
{αv

assign | v ∈ 2Pα } ∪ {αcheck, α
′}
)
, that

are defined as follows, provided α = (E, e0).

• αv
assign = (Eassign, ev), Eassign = (Eassign, (→a,assign)a∈Ag, preassign, postassign) with

– Eassign = {ev | v ∈ 2Pα } ∪ {etagAssign};

– →a,assign= {(ev, fv′ ) | v, v′ ∈ 2Pα } ∪
{
(etagAssign, etagAssign)

}
for all agents a different from c;

→c,assign= {(ev, fv) | v ∈ 2Pα } ∪
{
(ev, etagAssign) | v ∈ 2Pα

}
∪

{
(etagAssign, etagAssign)

}
;

– preassign(e) =
∧
β∈A ¬execβ for all e ∈ Eassign;

– postassign(e)(execα) = > for all e ∈ Eassign,

postassign(ev)(pϕ) =

{
> if pϕ ∈ v
⊥ otherwise , postassign(etagAssign)( f lagAssigned) = >.

• αcheck = (Echeck, echeck),Echeck = ({echeck}, ({(echeck, echeck)})a∈Ag, precheck) is without postconditions with

precheck(echeck) = execα ∧ ¬ f lagAssigned ∧ ¬K̂c f lagLost ∧ K̂c f lagAssigned ∧
∧

ϕ appearing in α

(pϕ ↔ ϕ).

• α′ = (E′, e′0), E′ = (E′, (→′a)a∈Ag, pre′, post′) with

– E′ = {e′ | e ∈ Eα} ∪ {etagLost}

– →′a= {(e′, f ′) | e→a f } ∪ {(etagLost, etagLost)} for all agents a different from c;
→′c= {(e

′, e′), (e′, etagLost) | e ∈ Eα} ∪ {(etagLost, etagLost)},

– pre′(e′) = ppre(e) ∧ execα, pre′(etagLost) = execα ∧ ( f lagAssigned ∨ f lagLost).

– post′( f ′)(p) = ppost(e)(p) for p ∈ P and f ′ , etagLost,
post′(etagLost)( f lagAssigned) = ⊥, post′(etagLost)( f lagLost) = >,
post′(e′)(execα) = ⊥ for all events e′ ∈ E′.

We now prove the correctness of this construction. We begin by proving the following lemma.

Lemma 19. The plans for T ′ are of the form (α1)v1
assign, (α1)check, α1

′, . . . , (αn)vn
assign, (αn)check, αn

′.

To prove the lemma, we introduce the following property Pr on epistemic states: “In the designated world,∧
β∈A ¬execβ ∧ ¬K̂c f lagLost is true”.

Notice that ϕ′g can be only true in models where Pr is true. Let us see the potential actions executable from a
epistemic state where Pr is true. First, only the actions αassign are executable for some action α ∈ A, since exec is
false. Then, there are two possibilities:

• We can execute αcheck. In this case the formula ¬K̂c f lagLost remains true since αassign only removes worlds. We
cannot execute αcheck a second time since all f lagAssigned-worlds are removed, so the formula K̂c f lagAssigned
is now false everywhere. After executing αcheck, we can only execute α′. In that case all c-successors of
the designated world are not tagged by f lagAssigned (because αcheck removed them) or f lagLost (because
¬K̂c f lagLost is true). Therefore etagLost is not applicable in these worlds, so no c-successor of the designated
world is tagged by f lagLost after executing α′. After executing α′, the formula

∧
β∈A ¬execβ is also true in the

designated world, therefore Pr holds.
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• We can execute directly α′, but then the formula ¬K̂c f lagLost will be false in the new epistemic state, therefore
Pr is not true. The goal formula ϕ′g is then false in this model, and it will never be true since we cannot assign
f lagLost to false by any action and if we remove worlds tagged by f lagLost with αcheck, we also remove all
worlds at the same time because of the ¬K̂c f lagLost constraint.

Therefore, in models where Pr is true, the only way to arrive to a goal formula is to reach another model where Pr
is true, thus executing a sequence of actions of the form (α1)v1

assign, (α1)check, α1
′, . . . , (αn)vn

assign, (αn)check, αn
′. Since s0

is also a model where Pr is true, this concludes the proof of the lemma.
We now prove the following lemma.

Lemma 20. α1, . . . , αn is a plan for T if and only if (α1)v1
assign, (α1)check, α1

′, . . . , (αn)vn
assign, (αn)check, αn

′ is plan for T ′.

We prove this lemma by showing that s ⊗ α1 ⊗ · · · ⊗ αn is P-bisimilar to s ⊗ (α1)v1
assign ⊗ (α1)check ⊗ α1

′ ⊗ · · · ⊗

(αn)vn
assign ⊗ (αn)check ⊗ αn

′. We prove this property by recurrence on n:

• n = 0: s is P-bisimilar to s.

• n > 0: we suppose that s⊗(α1)v1
assign⊗(α1)check⊗α1

′⊗· · ·⊗(αn−1)vn−1
assign⊗(αn−1)check⊗αn−1

′ = s′n−1 is P-bisimilar to
s⊗α1⊗· · ·⊗αn−1 = sn−1. First note that sn−1 is P-bisimilar to s′n−1⊗(αn)vn

assign without f lagAssigned worlds, since
the action (αn)vn

assign without the event etagAssign does not change any proposition on P, and epistemic relations
are also preserved. Furthermore, the action (αn)check removes f lagAssigned-worlds, thus sn−1 is P-bisimilar to
s′n−1 ⊗ (αn)vn

assign ⊗ (αn)check. The event etagLost is then not applicable αn
′, then it is equivalent to αn with each

formula ϕ replaced by pϕ. Since (αn)check ensured that pϕ is equivalent to ϕ in s′n−1, we conclude that sn−1 ⊗ αn

is P-bisimilar to s′n−1 ⊗ (αn)vn
assign ⊗ (αn)check ⊗ αn

′.

To make the reduction polynomial, we apply the same idea as for the proof of Theorem 3.
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