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Abstract

We investigate how robust the results of committee elections are to small changes in the
input preference orders, depending on the voting rules used. We find that for typical rules
the effect of making a single swap of adjacent candidates in a single preference order is either
that (1) at most one committee member might be replaced, or (2) it is possible that the whole
committee will be replaced. We also show that the problem of computing the smallest number
of swaps that lead to changing the election outcome is typically NP-hard, but there are natural
FPT algorithms. Finally, for a number of rules we assess experimentally the average number of
random swaps necessary to change the election result.

1 Introduction

We study how multiwinner voting rules—that is, procedures used to select fixed-size committees of
candidates—react to (small) changes in the input votes. We are interested both in the complexity
of computing the smallest modification of the votes that affects the election outcome and in the
extent of the possible changes. We start by discussing our ideas informally in the following example.

Consider a research-funding agency that needs to choose which of the submitted project pro-
posals to support. The agency asks a group of experts to evaluate the proposals and to rank them
from the best to the worst one. Then, the agency uses some formal process—here modeled as a
multiwinner voting rule—to aggregate these rankings and to select k projects to be funded. Let us
imagine that one of the experts realized that, instead of ranking some proposal A as better than B,
he or she should have given the opposite opinion. What are the consequences of such a “mistake”
of the expert? It may not affect the results at all, or it may cause only a minor change: Perhaps
proposal A would be dropped (to the benefit of B or some other proposal) or B would be selected

∗A preliminary version of this article appeared in Proceedings of the 10th International Symposium on Algorithmic

Game Theory, SAGT 2017 [6].
†Work done in part while Robert Bredereck was at the University of Oxford.
‡Work done in part while Piotr Skowron was at TU Berlin.
§Work done in part while Nimrod Talmon was at the Weizmann Institute of Science.
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(at the expense of A or some other proposal). We show that, while this indeed would be the case
under a number of multiwinner voting rules (e.g., under the k-Borda rule; see Section 2 for the
definitions), there exist other rules (e.g., Single Transferable Vote, further referred to as STV, or
the Chamberlin–Courant rule) for which such a single swap could lead to selecting a completely
disjoint set of proposals. As the agency would prefer to avoid situations where small changes in the
experts’ opinions lead to (possibly large) changes in the outcomes, the agency would want to be
able to compute the smallest number of swaps that would change the result. In cases where this
number is too small, the agency might invite more experts to gain confidence in the results.

Below we provide a slightly more formal introduction. First, a multiwinner voting rule is a
function that, given a set of rankings of the candidates and an integer k, outputs a family of size-k
subsets of the candidates (the winning committees). We consider the following three issues (for
simplicity, below we ignore ties and assume to always have a unique winning committee):

1. We say that a multiwinner rule R is ℓ-robust if (1) swapping two adjacent candidates in a
single vote can lead to replacing no more than ℓ candidates in the winning committee,1 and
(2) there are examples where exactly ℓ candidates are indeed replaced; we refer to ℓ as the
robustness level of R. The robustness level is between 1 and k, with 1-robustness being the
strongest form of robustness one could ask for. We investigate the robustness levels of several
multiwinner rules.

2. We say that the robustness radius of an election E (for committee size k) under a multiwinner
rule R is the smallest number of swaps of adjacent candidates which are necessary to change
the election outcome. We ask for the complexity of computing the robustness radius (referred
to as the Robustness Radius problem) under a number of multiwinner rules. This problem
is strongly related to the Margin of Victory [43, 9, 55, 4] and Destructive Swap

Bribery problems [21, 51]. Furthermore, our work follows up on the study of Shiryaev et
al. [51], who considered the robustness of single-winner rules.

3. In addition to the above-described contributions, we ask how many random swaps of adjacent
candidates are necessary, on average, to move from a randomly generated election to one with
a different outcome. We assess this kind of robustness of our rules experimentally.

There is quite a number of multiwinner rules. We consider only several of them, selected to
represent a varied set of ideas from the literature, ranging from variants of scoring rules, through
rules inspired by the Condorcet criterion, to the elimination-based STV rule. We find that all these
rules are either 1-robust—so a single swap can replace at most one committee member—or are
k-robust—so a single swap can replace the whole committee of size k.2 Somewhat surprisingly, this
phenomenon is deeply connected to the complexity of winner determination. Specifically, under
mild assumptions we show that if a rule has a constant robustness level, then it has a polynomial-
time computable refinement (that is, it is possible to compute one of its outcomes in polynomial
time). Since for many rules the problem of computing such a refinement is NP-hard, we get a quick
way of finding out that such rules have nonconstant robustness levels.

The Robustness Radius problem tends to be NP-hard (sometimes even for a single swap)
and, thus, we seek fixed-parameter tractability (FPT) results. For example, we find several FPT
algorithms parameterized by the number of voters (these algorithms are useful, e.g., for scenarios

1The formal definition is more complex due to the possibility of ties.
2We also construct somewhat artificial rules with robustness levels between 1 and k.
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Voting Rule Robustness Level Complexity of Robustness Radius

SNTV, Bloc, k-Borda (P) 1 P

k-Copeland (P) 1 NP-hard, FPT(m), W[1]-hard(n)
NED (NP-hard [1]) k NP-hard, FPT(m), W[1]-hard(n)

STV (NP-hard3 [12]) k NP-hard(B), FPT(m), FPT(n)
β-CC (NP-hard [49, 42, 3]) k NP-hard(B), FPT(m), FPT(n)

Table 1: Summary of our results. For each rule, we provide the complexity of its winner determi-
nation. The parameters m, n, and B mean, respectively, the number of candidates, the number of
voters, and the robustness radius; NP-hard(B) means NP-hard even for constant B.

with few experts, such as in our introductory example). See Table 1 for an overview of our theo-
retical results. We mention that Misra and Sonar [46] followed up on our results and, in particular,
have considered several variants of the Chamberlin–Courant rule and certain nearly-structured
preference domains. Recently, Gawron and Faliszewski [30] applied our notions of robustness to
the case of approval elections.

We furthermore perform an experimental evaluation of the robustness of our rules with respect
to random swaps. We conclude that, on average, to change the outcome of an election, one needs
to make the most swaps under the k-Borda rule, whereas STV and SNTV (Single Non-Transferable
Vote) require fewest swaps to achieve this result.

The paper is organized as follows. In Section 2 we provide the necessary background definitions,
including the definitions of the rules that we focus on. In Section 3 we introduce the robustness
level notion and determine robustness level values for our rules. In Section 4 we link low robustness
level values with the ability to compute refinements of multiwinner rules. Then, in Sections 5 and 6,
we introduce the Robustness Radius problem and study its computational complexity; in the
former section we mostly focus on the classic complexity, whereas in the latter we provide several
FPT algorithms. In Section 7 we describe our experiments. We conclude in Section 8.

2 Preliminaries

In this section we describe our model of elections and the voting rules that we focus on. We assume
familiarity with classic and parameterized computational complexity theory, but we briefly recall
the essential notions from the latter. For each positive integer m, we write [m] to denote the set
{1, . . . ,m}.

Elections. An election E = (C, V ) consists of a set of candidates C = {c1, . . . , cm} and of a
collection of voters V = (v1, . . . , vn). We consider the ordinal election model, where each voter v is
associated with a preference order ≻v, that is, with a ranking of the candidates from the most to
the least desirable one (according to this voter); we sometimes refer to preference orders as to votes.
A multiwinner voting rule R is a function that, given an election E = (C, V ) and a committee
size k, outputs a set R(E, k) of size-k subsets of C, referred to as the winning committees (each of
these committees ties for victory).

3For STV there is a polynomial-time algorithm for computing a single winning committee, but deciding whether
a given committee wins is NP-hard.
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Remark 1. Sometimes when we specify a preference order, we write A ≻ B to denote the fact that
each candidate in the set A is preferred to each candidate in the set B, but the particular order of
the candidates within these sets is irrelevant for the discussion.

(Committee) Scoring Rules. Given a voter v and a candidate c, by posv(c) we denote the
position of c in v’s preference order (the top-ranked candidate has position 1, the following candidate
has position 2, and so on). A scoring function for m candidates is a function γm : [m] → R that
associates each candidate-position with a score. Examples of scoring functions include (1) the
Borda scoring functions, βm(i) = m − i; and (2) the t-Approval scoring functions, αt(i), defined
such that αt(i) = 1 if i ≤ t and αt(i) = 0 otherwise (α1 is typically referred to as the Plurality
scoring function). For a scoring function γm, the γm-score of a candidate c in an m-candidate
election E = (C, V ) is defined as γm-scoreE(c) =

∑

v∈V γm(posv(c)).
For a given election E and a committee size k, the SNTV score of a size-k committee S is defined

as the sum of the Plurality scores of its members. The SNTV rule outputs the committee(s) with the
highest score (i.e., the rule outputs the committees that consist of k candidates with the highest
plurality scores; there may be more than one such committee due to ties). Bloc and k-Borda
rules are defined analogously, but using k-Approval and Borda scoring functions, respectively. The
Chamberlin–Courant rule [10] (abbreviated as β-CC, where β indicates the Borda scoring function)
also outputs the committees with the highest score, but computes these scores in a different way:
The score of a committee S in a vote v is the Borda score of the highest-ranked member of S,
and the score of a committee in an election is the sum of the scores that it obtains in all votes.
Given a committee S and a voter v, we refer to the member of S that v ranks highest as his or her
representative (in this committee).

Remark 2. In a couple of proofs, we use the concept of the dissatisfaction score that the voters
associate with a committee according to the β-CC rule. The dissatisfaction score of a voter v for a
committee S is equal to (m−1) minus the Borda score of the most preferred member of S (according
to v). For example, if S contains v’s top preferred candidate, then the dissatisfaction score of v
from S is equal to zero; if S contains v’s second most preferred candidate, then such dissatisfaction
score is equal to one, and so on. The total dissatisfaction score of a committee S is the sum of the
dissatisfaction scores that the individual voters assign to it.

SNTV, Bloc, k-Borda, and β-CC are examples of committee scoring rules [20, 24, 53]. However,
while the first three rules are polynomial-time computable, winner determination for β-CC is well-
known to be NP-hard [49, 42] and W[2]-hard when parameterized by the committee size [3]. Yet,
there are many ways of dealing with this negative result, including FPT-algorithms for other
parameters [3], approximation algorithms [42, 52], algorithms for restricted domains [3, 54, 48],
and heuristics [25].

Condorcet-Inspired Rules. A candidate c is a Condorcet winner (resp. a weak Condorcet win-
ner) if for each other candidate d, more than (at least) half of the voters prefer c to d. In the
multiwinner case, a committee is Gehrlein strongly-stable (resp. weakly-stable) if every committee
member is preferred to every nonmember by more than (at least) half of the voters [31], and a
multiwinner rule is Gehrlein strongly-stable (resp. weakly-stable) if it outputs exactly the Gehrlein
strongly-stable (weakly-stable) committees whenever they exist. For example, let the NED (Num-
ber of External Defeats) score of a committee S be the number of pairs (c, d) such that (i) c is
a candidate in S, (ii) d is a candidate outside of S, and (iii) at least half of the voters prefer c

4



to d. Then, the NED rule [11], defined to output the committees with the highest NED score4,
is Gehrlein weakly-stable. In contrast, the k-Copeland0 rule is Gehrlein strongly-stable but not
weakly-stable (the Copelandα score of a candidate c, where α ∈ [0, 1], is the number of candi-
dates d such that a majority of the voters prefer c to d, plus α times the number of candidates
e such that exactly half of the voters prefer c to e; winning k-Copelandα committees consist of k
candidates with the highest scores). Detailed studies of Gehrlein stability mostly focused on the
weak variant of the notion [2, 37]. Some recent findings, as well as results from this paper, suggest
that the strong variant is more appealing [1, 50]. For example, all Gehrlein weakly-stable rules are
NP-hard to compute [1], whereas there are strongly-stable rules (such as k-Copeland0) that are
Polynomial-time computable. (However, we mention that there are approximation algorithms for
some Gehrlein weakly-stable rules [50].)

Single Transferable Vote (STV). Let E = (C, V ) be an election with m candidates and
n voters. To select a committee of size k, the STV rule proceeds as follows. First, it computes
the quota value q; in our case we use the Droop quota [18] q = ⌊ n

k+1⌋ + 1. Then it executes up
to m rounds as follows. In a single round, it checks whether there is a candidate c who is ranked
first by at least q voters and, if so, then it (i) includes c into the winning committee, (ii) removes
exactly q voters that rank c first from the election, and (iii) removes c from the remaining preference
orders. If such a candidate does not exist, then a candidate d that is ranked first by the fewest
voters is removed. Note that this description does not specify which q voters to remove or which
candidate to remove if there is more than one that is ranked first by the fewest voters. We adopt
the parallel-universes tie-breaking model and we say that a committee wins under STV if there is
any way of breaking such internal ties that leads to the committee being elected [12].

We can compute some STV winning committee by breaking the internal ties in some arbitrary
way, but it is NP-hard to decide if a given committee wins [12].

Parametrized Complexity. A parameterized problem is a standard decision problem where in
addition to the problem instance I we also distinguish a parameter value ρ (in our problems a typical
parameter would be the number of candidates or the number of voters). An FPT algorithm for a
parameterized problem is an algorithm that runs in f(ρ)|I|O(1) time, where f is some computable
function. That is, an FPT algorithm can run in exponential time, provided that the exponential
part of the running time depends on the parameter value only.

The existence of an FPT-algorithm means that, from the parameterized complexity point of
view, the problem is tractable (with respect to a given parameter). There is also a theory of
hardness of parameterized problems that includes the notion of W[1]-hardness. If a problem is
W[1]-hard for a given parameter, then it is widely believed that there is no FPT-algorithm for the
same parameter. The typical approach to showing that a certain parameterized problem is W[1]-
hard is to reduce to it a known W[1]-hard problem, using the notion of a parameterized reduction.
In our case, instead of using the full power of parameterized reductions, we use standard many-one
reductions that ensure that the value of the parameter in the output instance is upper-bounded by
a function of the parameter of the input instance.

For more details on parameterized complexity, we point the readers to the textbooks of Cygan
et al. [14], Downey and Fellows [17], Flum and Grohe [28], and Niedermeier [47].

4Originally, the definition of the NED rule [11] used a “dual” definition of the NED score, and thus it was choosing
committees whose NED score was the smallest.

5



3 Robustness Levels of Multiwinner Rules

In this section we introduce the notion of the robustness level of a multiwinner rule and establish
its value for several prominent rules. Informally speaking, the robustness level measures the extent
to which a winning committee might change after modifying a single vote in a given election in
the smallest possible way. We formalize this intuition below (note that our definition takes into
account that a voting rule can output several tied committees).

Definition 1. The robustness level of a multiwinner rule R for committees of size k is the smallest
value ℓ such that for each election E = (C, V ) with |C| ≥ k, each election E′ obtained from E by
making a single swap of adjacent candidates in a single vote, and each committee W ∈ R(E, k),
there exists a committee W ′ ∈ R(E′, k) such that |W ∩W ′| ≥ k − ℓ.

In other words, if we have an ℓ-robust rule andW is some winning committee for election E, then
after swapping two adjacent candidates in some vote in E we certainly have a winning committeeW ′

that differs from W in at most ℓ candidates (and, indeed, there are cases where these committees
differ in exactly ℓ members).5 Yet, one may worry what happens if for the new election we also
have some new committees, completely unrelated to those in E. To deal with this issue, it suffices
to revert the roles of E and E′ in Definition 1. For example, if we had R(E, k) = {W} and
R(E′, k) = {W,W ′} where W and W ′ were disjoint, then applying Definition 1 for E and E′ would
not lead to conclusions about the robustness of our rule, but applying it with the roles of E and
E′ reversed, and considering committee W ′, we would conclude that the rule is k-robust.

It turns out that all of the rules that we consider belong to one of the two extremes: Either
they are 1-robust (i.e., they are very robust) or they are k-robust (i.e., they are possibly very
non-robust). We start by considering a large class of 1-robust rules.

Proposition 1. Let R be a voting rule that assigns points to candidates and selects those with the
highest scores. If a single swap in an election affects the scores of at most two candidates (possibly
decreases the score of one and possibly increases the score of the other), then the robustness level
of R is equal to one.

Proof. Let E be an election, k be a committee size, and W be a committee in R(E, k). We
write s(c) to denote the individual R-score of a candidate c in E. We rename the candidates so
that (i) s(c1) ≥ · · · ≥ s(cm) and (ii) W = {c1, . . . , ck}. Now consider an election E′ obtained
from E by a single swap. This swap can increase the score of at most one candidate, say ci, while
decreasing the score of at most one other candidate, say cj . There are four cases to consider:

1. If i ≤ k and j > k, then W is still winning in E′.

2. If i ≤ k and j ≤ k, then either W or {c1, . . . , ck+1} \ {cj} is a winning committee in E′.

3. If i > k and j > k, then either W or {c1, . . . , ck−1} ∪ {ci} is a winning committee in E′.

4. If i > k and j ≤ k, then either W or {c1, . . . , ck−1} ∪ {ci} or {c1, . . . , ck+1} \ {cj} or
{c1, . . . , ck} \ {cj} ∪ {ci} is a winning committee in E′.

In each case, there is a committee W ′ ∈ R(E′, k) such that |W ∩ W ′| ≥ k − 1 and, so, R is
1-robust.

5Consequently, k-robustness means that the committees may be disjoint.
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Proposition 1 suffices to deal with four of our rules: SNTV, Bloc, k-Borda, and k-Copelandα

(for each α). Indeed, it applies to all (weakly) separable committee scoring rules (i.e., rules defined
analogously the our first three rules; see the work of Elkind et al. [20] for a formal definition) and
to many multiwinner rules that are straightforward extensions of single-winner ones (as is the case
for k-Copelandα).

Corollary 1. SNTV, Bloc, k-Borda, and k-Copelandα (for each α) are 1-robust.

In contrast, Gehrlein weakly-stable rules are k-robust. This is quite interesting because for
elections with odd numbers of voters, k-Copelandα rules output Gehrlein weakly-stable committees
whenever they exist [2]. That is, the non-robustness of Gehrlein weakly-stable rules can be seen as
a consequence of tie-breaking in head-to-head contests between candidates.

Proposition 2. Each Gehrlein weakly-stable rule is k-robust, where k is the committee size.

Proof. Consider the following election, described through its majority graph (in a majority graph,
each candidate is a vertex and there is a directed arc from candidate u to candidate v if more than
half of the voters prefer u to v; the classic McGarvey’s theorem says that each majority graph
can be implemented with polynomially-many votes [45]). We form an election with candidate set
C = A ∪ B ∪ {c}, where A = {a1, . . . , ak} and B = {b1, . . . , bk}, and with the following majority
graph: The candidates in A form one cycle, the candidates in B form another cycle, and there are
no other arcs (i.e., for all other pairs of candidates (x, y) the same number of voters prefers x to y
as the other way round). We further assume that there is a vote, call it v, where c is ranked directly
below a1 (McGarvey’s theorem easily accommodates this need).

In the constructed election, there are two Gehrlein weakly-stable committees, A and B. To see
this, note that if a Gehrlein weakly-stable committee contains some ai, then it must also contain
all other members of A (otherwise there would be a candidate outside of the committee that is
preferred by a majority of the voters to a committee member). An analogous argument holds for B.

If we push c ahead of a1 in vote v, then a majority of the voters prefers c to a1. Thus, A is no
longer Gehrlein weakly-stable and B becomes the unique winning committee. Since (1) A and B
are disjoint, (2) A is among the winning committees prior to the swap, and (3) B is the unique
winning committee after the swap, we have that every Gehrlein weakly-stable rule is k-robust.

We view the above result as particularly negative. The reason is that Gehrlein weakly stable
rules are meant to select groups of individually excellent candidates, that is, groups of candidates
that perform very well on their own, independently of the other members of the winning committee.
Such rules are useful, for example, in sport competitions or various other contests to select final-
ists [2, 20] (for a more detailed discussion of individual excellence, diversity, and proportionality,
we point to the overview of Faliszewski et al. [23]). Thus, a single swap of two adjacent candidates
in a single preference order certainly should not result in a rule declaring all candidates that were
previously seen as “individually best” to no longer be “good enough.” On the other hand, we
view the following results—where we show that β-CC and STV are only k-robust—as less negative.
Indeed, β-CC aims at choosing a diverse committee that covers the views of as many voters as
possible, whereas STV seeks a committee that represents these views proportionally. While the
fact that a single swap can replace the whole committee seems undesirable, it is natural that can-
didates’ memberships in diverse/proportional committees are correlated, so replacing one of them
can lead to a cascading effect of replacing them all. Further, it is quite plausible that there are
several disjoint committees that achieve diversity or proportionality to nearly the same extent (see,
e.g., the experiments of Elkind et al. [19]).
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Example 1. To illustrate the issue of correlation between the members of a diverse/proportional
committee, consider the following example. We have 104 candidates, a, b, c, d, e1, . . . , e100, and
four voters v1, v2, v3, v4 with the following preference orders:

v1 : a ≻ c ≻ e1 ≻ · · · ≻ e100 ≻ b ≻ d, v2 : b ≻ d ≻ e1 ≻ · · · ≻ e100 ≻ a ≻ c,

v3 : a ≻ d ≻ e1 ≻ · · · ≻ e100 ≻ b ≻ c, v4 : b ≻ c ≻ e1 ≻ · · · ≻ e100 ≻ a ≻ d.

It is natural to select committee {a, b} as a diverse committee of size two because then each voter has
his or her most desirable representative in the committee (indeed, this committee can also be seen
as proportional). Yet, if for some reason we had to remove b from the committee, then it might also
make sense to remove a from it and choose committee {c, d} instead. This way each voter would
still have a nearly perfect representative. On the contrary, choosing one of the committees {a, c}
or {a, d} would mean that one voter would rank both members of the committee at the two bottom
positions (including the candidates e1, . . . , e100 would also lead to a committee that is less desirable
than {c, d}).

The next two propositions build on ideas similar to those used in the proof of Proposition 2,
but they are targeted for their respective rules.

Proposition 3. β-CC is k-robust, where k is the committee size.

Proof. We form an election with candidate set C := A∪B∪{x, y}, where |A| = k− 1, |B| = k− 1,
and with 2k − 1 voters. The first voter has preference order

v1 : x ≻ y ≻ A ≻ B,

while the remaining pairs of voters, one for each i ∈ [k − 1], have preference orders

v2i : ai ≻ x ≻ A \ {ai} ≻ B ≻ y,

v2i+1 : bi ≻ y ≻ A ≻ B \ {bi} ≻ x.

Observe that the only winning committee is {x} ∪ B. To see this, note that {x} ∪ B has
dissatisfaction score of only k − 1 (recall Remark 2). Further, each voter has a different favorite
candidate, there are 2k − 1 voters, and the committee size is only k. Hence, k − 1 is the lowest
possible dissatisfaction score value. Further, each committee with dissatisfaction score k − 1 must
contain k of the “favorite” candidates from {x} ∪ A ∪ B and every voter that is not represented
by her favorite candidate must be represented by her second choice. Now, if x were not in the
committee, voter v1 could not be represented by its second choice because y /∈ {x} ∪ A ∪ B. So,
x belongs to each winning committee and y does not belong to any of them. As a consequence, all
remaining members of the winning committee are from B since only voters v2i, i ∈ [k − 1], can be
represented by their second choices.

If we swap x and y in the first vote, then, following analogous argumentation, the unique
winning committee becomes {y} ∪ A. Finally, we mention that the construction above works for
every committee size.

Proposition 4. STV is k-robust, where k is the committee size.

Proof. Let us fix the committee size k and consider a set of m = 2k candidates C := A∪B, where
A = {a1, . . . , ak} and B = {b1, . . . , bk}. For each pair of candidates ai ∈ A and bj ∈ B, we form
k+1 voters with preference order ai ≻ bj ≻ · · · and k+1 voters with preference order bj ≻ ai ≻ · · · .
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Let v be one of the voters with preference order b1 ≻ a1 ≻ · · · . We modify v’s vote by swapping
b1 and a1 and we refer to v as the pivotal vote. Altogether, we have n = 2k2(k + 1) voters, so the

STV quota value is q = ⌊2k
2(k+1)
k+1 ⌋ + 1 = 2k2 + 1. Initially, each candidate in A ∪ B, except for

a1 and b1, has the same Plurality score equal to k(k + 1), candidate a1 has one point more, and
candidate b1 has one point less.

We claim that STV chooses A as the unique winning committee. Indeed, all the candidates have
fewer Plurality points than the quota value, so in the first round STV removes candidate b1, whose
score is lowest. As a consequence, the scores of all candidates from A become k(k + 1) + (k + 1),
whereas the scores of all candidates from B do not change. In the following rounds there are two
possibilities: Either no candidate meets the quota and some member of B is removed (in effect, the
scores of all the candidates in A increase by the same amount while the scores of candidates in B
do not change) or all the candidates in A meet the quota (between the first round and the current
one, all members of A always have the same Plurality score and the scores of the candidates from B
never increase). If the latter happens, then in the following rounds all members of A are selected
for the committee. During these rounds the scores of candidates from B increase (as members of A
are removed from the election and included in the committee), but no member of B ever obtains
score higher than n− qk = 2k2(k + 1)− (2k3 + k) = 2k2 − k, which is lower than the quota value.

Now, let us consider what happens when we swap b1 and a1 in the pivotal vote. As a conse-
quence, all the candidates have the same score and STV eliminates some arbitrary candidate in
the first round. If it eliminates some member of B, then—by the same reasoning as above—it
chooses committee A. However, if it eliminates a member of A, then, by the same token, it chooses
committee B. As (a) A and B are disjoint, (b) only A is winning before the swap, and (c) both A
and B are winning after the swap, we conclude that STV is k-robust.

So far we have only seen voting rules that are either 1-robust or k-robust. Indeed, we are not
aware of any classical rule with robustness level between these two extremes, but we conclude this
section by showing that there are hybrid multi-stage rules with arbitrary robustness levels. For
example, the rule which first elects half of the committee as k-Borda does and then the other half as
β-CC does has robustness level of roughly k/2 (such a rule is not completely artificial—for example,
Kocot et al. [40] use a similar strategy for finding committees that perform well according to both
k-Borda and the Chamberlin–Courant rule).

Proposition 5. For each committee size k and each ℓ ∈ [k] there is a multiwinner rule that is
ℓ-robust for committees of size k.

Proof. Since we know that, for example, k-Borda and β-CC are, respectively, 1-robust and k-robust
for all possible committee sizes, it suffices to show rules with robustness levels between 2 and k−1.
We fix a committee size k > 1 and let ℓ be an integer between 2 and k − 1. We let ℓ′ := ℓ − 1
and we define a voting rule that first selects k − ℓ′ committee members exactly as (k − ℓ′)-Borda
would, and then selects further ℓ′ candidates that, jointly, maximize the β-CC score of the whole
committee. We refer to this rule as (k − ℓ′)-Borda/ℓ′-CC. We will show that this rule is ℓ-robust
(however, it will be easier to express this as (ℓ′ + 1)-robustness).

We first show that our rule is at least (ℓ′ + 1)-robust. Let E be some election (with at least k
candidates), let W be a winning committee for this election, and let WB be its part that is selected
using (k− ℓ′)-Borda. Let E′ be an election obtained from E by swapping two adjacent candidates.
Since (k − ℓ′)-Borda is 1-robust, our rule certainly has some winning committee W ′ for E′ whose
(k− ℓ′)-Borda part differs from WB in at most one candidate. As a consequence, for this committee
it must be the case that |W ′ ∩W | ≥ k− ℓ′ − 1. This shows that our rule is at least (ℓ′ +1)-robust.
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Next we show that indeed there are elections where a single swap leads to replacing ℓ′ + 1
candidates. To this end, we use an election very similar to that used in Proposition 3. We let the
candidate set be C := A ∪B ∪ {x, y} ∪D, where |A| = |B| = ℓ′ and |D| = k − ℓ′ − 1. We form the
voters as follows:

1. We construct voter v1 with preference order v1 : x ≻ y ≻ A ≻ B ≻ D.

2. For each i ∈ [ℓ], we construct a pair of voters with preference orders:

v2i : ai ≻ x ≻ y ≻ A \ {ai} ≻ B ≻ D,

v2i+1 : bi ≻ y ≻ x ≻ A ≻ B \ {bi} ≻ D.

3. For each j ∈ [k− ℓ− 1] we construct sufficiently many pairs of voters with preference orders:

wj : dj ≻ D \ {dj} ≻ x ≻ y ≻ B ≻ A,

w′
j : dj ≻ D \ {dj} ≻ y ≻ x ≻ A ≻ B,

so that all candidates in D have higher Borda scores than all other ones, and candidates x
and y have higher Borda scores than all members of A and B.

As a consequence, in the (k−ℓ′)-Borda phase our rule selects all candidates from D and candidate x
(x has higher score than y due to voter v1). Then, in the ℓ′-CC phase, our rule selects all ℓ′ can-
didates from B. To see this, we first note that all the voters from the third group already have
their top-ranked candidates in the committee, and, so, do not affect the selection of the remaining
candidates; then we reuse the reasoning from Proposition 3.

If we swap candidates x and y in vote v1, then candidate y will be selected instead of candidate x
in the (k− ℓ′)-Borda phase, and all the candidates from A will be selected as the remaining ℓ′ com-
mittee members in the ℓ′-CC phase. All in all, prior to swapping x and y in vote v1, our election
has a unique winning committee D ∪ {x} ∪B, but after the swap D ∪ {y} ∪A becomes the unique
winning committee. These committees differ in exactly ℓ′ + 1 = ℓ candidates, which completes the
proof.

4 Computing Refinements of Robust Rules

It turns out that the dichotomy between 1-robust and k-robust rules is strongly connected to the
one between polynomial-time computable rules and those that are NP-hard. To make this claim
formal, we need the following definition.

Definition 2. A multiwinner rule R is scoring-efficient if the following holds:

1. There is an algorithm that given three positive integers n, m, and k (k ≤ m) outputs (i) an
election E with n voters and m candidates, and (ii) a size-k committee S, such that S ∈
R(E, k). This algorithm runs in polynomial time with respect to n, m, and k.

2. There is a polynomial-time computable function fR that for each election E, committee size k,
and committee S, outputs score fR(E, k, S) of committee S in election E, so that R(E, k)
consists exactly of the committees with the highest fR-score.

The first condition from Definition 2 is quite straightforward to satisfy. For example, for most
natural voting rules it is easy to compute a winning committee for an election where all voters rank
the candidates identically. In particular, this holds for weakly unanimous rules.

10



Definition 3 (Elkind et al. [20]). A rule R is weakly unanimous if for each election E = (C, V )
and each committee size k, if each voter ranks the same set W of k candidates on top (possibly in
a different order), then W ∈ R(E, k).

All voting rules which we consider in this paper are weakly unanimous (indeed, voting rules
which are not weakly unanimous are somewhat “suspicious”). Further, all our rules, except STV,
satisfy the second condition from Definition 2. For example, while winner determination for β-CC
is indeed NP-hard, computing the score of a given committee can be done in polynomial time.
With this background, we are ready to state and prove the main result of this section.

Theorem 6. Let R be a 1-robust scoring-efficient multiwinner rule. Then there is a rule R′

such that for each election E and committee size k we have R′(E, k) ⊆ R(E, k) and the winner
determination for R′ is polynomial-time computable.

Proof. Our proof proceeds by showing a polynomial-time algorithm that given an election E and
committee size k finds a single committee W such that W ∈ R(E, k); we define R′(E, k) to
output {W}.

Let E = (C, V ) be our input election and let k be the size of the desired committee. Let
E′ = (C, V ′) be an election with |V ′| = |V |, whose existence is guaranteed by the first condition
of Definition 2, and let S′ be a size-k R-winning committee for this election, also guaranteed by
Definition 2. The idea is to transform E′ into E by a sequence of swaps, while at the same time
transforming committee S′ to an R-winning committee for E (for ease of presentation, we assume
that all elections in our discussion contain the same voters, but with possibly different preference
orders).

Let E0, E1 . . . , Et be a sequence of elections such that E0 = E′, Et = E, and for each integer
i ∈ [t], we obtain Ei from Ei−1 by (i) finding a voter v and two candidates c and d such that in
Ei−1 voter v ranks c right ahead of d, but in E voter v ranks d ahead of c (although not necessarily
right ahead of c), and (ii) swapping c and d in v’s preference order. We note that at most |C||V |2

swaps suffice to transform E′ into E (i.e., t ≤ |C||V |2).
For each i ∈ {0, 1, . . . , t}, we find a committee Si ∈ R(Ei, k). We start with S0 = S′ (which

satisfies our condition) and for each i ∈ [t], we obtain Si from Si−1 as follows: Since R is 1-robust,
we know that at least one committee S′′ from the set {S′′ | |Si−1∩S′′| ≥ k−1} is winning in Ei. We
try each committee S′′ from this set and compute its fR-score (recall Condition 2 of Definition 2).
The committee with the highest fR-score must be winning in Ei and we set Si to be this committee
(by Definition 2, computing the fR-scores is a polynomial-time task).

Finally, we output St. By our arguments, we have that St ∈ R(E, k). Clearly, our procedure
runs in polynomial time.

Theorem 6 generalizes to the case of r-robust rules for constant r; our algorithm simply has to
try more (but still polynomially many) committees S′′.

Corollary 2. Let r be a fixed positive integer and let R be an r-robust scoring-efficient multiwin-
ner rule. Then there is a polynomial-time computable rule R′ such that for each election E and
committee size k we have R′(E, k) ⊆ R(E, k).

Note how Theorem 6 relates to single-winner rules, which can be seen as multiwinner rules for
k = 1. All such rules are 1-robust, but for those with NP-hard winner determination problems,
even computing the candidates’ scores is NP-hard (see, e.g., the survey of Caragiannis et al. [8]), so
Theorem 6 does not apply. Indeed, the fact that committee scores are polynomial-time computable
for many typical NP-hard multiwinner rules is a significant difference between them and NP-hard
single-winner rules.
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5 Complexity of Computing the Robustness Radius

In the Robustness Radius problem we are given an election and we ask whether it is possible to
change its result by performing a given number of swaps of adjacent candidates. Intuitively, the
more swaps are necessary, the more robust a particular election is.

Definition 4. Let R be a multiwinner rule. In the R Robustness Radius problem we are
given an election E = (C, V ), a committee size k, and an integer B. We ask if it is possible to
obtain an election E′ by making at most B swaps of adjacent candidates to the votes in E so that
R(E′, k) 6= R(E, k).

The Robustness Radius problem is strongly connected to some other problems studied in
the literature. Specifically, in the Destructive Swap Bribery problem (DSB for short) we
ask if it is possible to preclude a particular candidate from winning by making a given number of
swaps [21, 51, 35]. DSB was already used to study robustness of single-winner election rules by
Shiryaev et al. [51]. We decided to give our problem a different name, and not to refer to it as
a multiwinner variant of DSB, because we feel that in the latter the goal should be to preclude
a given candidate from being a member of any of the winning committees, instead of changing
the outcome in any arbitrary way. In this sense, our problem is very similar to the Margin of

Victory problem [43, 9, 55, 4], which is also related to the notions of approximation for sublinear
winner determination algorithms and sampling of elections [15, 26]; the Margin of Victory

problem has the same goal, but instead of counting single swaps, it counts how many votes are
changed.

We find that Robustness Radius tends to be computationally challenging. Indeed, we find
polynomial-time algorithms only for the simplest of our rules, SNTV, Bloc, and k-Borda.

Theorem 7. Robustness Radius is solvable in polynomial time for SNTV, Bloc, and k-Borda.

Proof. Each of our rules proceeds by computing an individual score for each of the candidates
(based on this candidate’s positions in the preference orders of the voters) and by letting the
winning committees consist of the candidates with the highest scores. We first describe a general
strategy for dealing with rules of this form and then show how to implement this strategy for
SNTV, Bloc, and k-Borda.

Let R be one of our rules, let E = (C, V ) be an election with C = {c1, . . . , cm} and V =
(v1, . . . , vn), and let k be the committee size. Let s(c1), . . . , s(cm) be the individual scores of
the candidates c1, . . . , cm. Without loss of generality, assume that s(c1) ≥ · · · ≥ s(cm). We
are interested in computing a shortest sequence of swaps of adjacent candidates that transforms
election E into some election E′ such that R(E, k) 6= R(E′, k). We consider two cases:

1. There is a unique winning committee in election E.

2. There are several tied winning committees in election E.

We focus on the case with a unique winning committee first. The winning committee is W =
{c1, . . . , ck} and we have that s(ck) > s(ck+1). Consider some arbitrary sequence of swaps that
transforms E into some election E′ such that R(E, k) 6= R(E′, k), and consider the first swap after
performing which the set of winning committees changes. Prior to executing this swap, each of the
candidates c1, . . . , ck had his or her individual score higher than each of the candidates ck+1, . . . , cm,
whereas afterward some candidate from the latter group had his or her individual score at least as
high as one of the members of the former group. Thus to find the shortest sequence of swaps that
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changes the result of election E, it suffices to find the shortest sequence of swaps that ensures that
some candidate from the set C \W has at least as high score as some candidate from committee W .

Now let us consider the case where there are several winning committees. It must be the case
that s(ck) = s(ck+1) and we can partition the set of candidates into three sets, depending on the
relation of their score to that of ck:

Cabove = {ci | s(ci) > s(ck)}, Cequal = {ci | s(ci) = s(ck)}, Cbelow = {ci | s(ci) < s(ck)}.

Each R-winning committee for election E consists of all the candidates from the set Cabove and an
arbitrary subset of k − |Cabove| candidates from Cequal. As in the previous case, let us consider a
sequence of swaps that transforms election E into one with a different set of winning committees,
and consider the first swap after which the set of winning committees changes. The effect of this
swap must be that one of the following situations happens:

1. Not all candidates in Cequal have the same score.

2. All candidates in Cequal have the same score, but some candidate in Cabove obtains score at
most the one of the candidates in Cequal.

3. All candidates in Cequal have the same score, but some candidate in Cbelow obtains score at
least the one of the candidates in Cequal.

So, to be able to find the shortest sequence of swaps that changes the result of election E, it suffices
to be able to find the shortest sequence of swaps that ensures that one given candidate has score
higher (or equal) than some other given candidate. For example, to deal with the possibility that
the shortest sequence of swaps that changes the election result leads to some members of Cequal

having different scores, it suffices to try each pair p, d of distinct candidates from Cequal and find the
shortest sequence of swaps that ensures that the score of p is greater than that of d. We consider
other possible scenarios listed above analogously.

As a consequence of the above reasoning (for both the case of a unique winning committee
and the case of several winning committees), to prove our theorem it remains to show for each of
our three rules a polynomial-time procedure that given two candidates, p and d, finds the shortest
sequence of swaps that ensures that the score of p is greater than (or, at least) the score of d.
We provide such procedures below (we focus on the case of ensuring that p’s score is at least that
of d; adapting our reasoning to the case of ensuring that p has strictly greater score than d is
straightforward):

SNTV. For the case of SNTV, our procedure works as follows. We guess three nonnegative
numbers, B1, B2, and B3. We find B1 votes where d is ranked first and p is ranked as high as
possible, and we shift p to the top position (so d loses his or her Plurality point and p gains
it). Then we find B2 votes where p is ranked as high as possible (but not on the first position),
and we shift p to the top position. Finally, we find B3 votes where d is ranked first, and we
shift him or her down by one position in each of these votes. (If at any point of this algorithm
we do not find sufficiently many voters with a given property, we drop this guess of B1, B2,
and B3.) We check if as a consequence of our swaps p’s score is at least the same as that of d
and, if so, we record the number of swaps performed. Finally, after considering all possible
O(n3) guesses of B1, B2, and B3, we output the lowest number of swaps recorded (note that
for at least one guess our procedure must have succeeded; e.g., when it ensured that all voters
rank p on top).
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Bloc. We proceed in the same way as in the case of SNTV, but our guesses are a bit more involved.
First, we partition the voters into four groups:

1. Voters who neither give a point to p nor to d.

2. Voters who give a point to p but not to d.

3. Voters who give a point to d but not to p.

4. Voters who give points to both p and d.

We guess numbers B1, B
′
3, B

′′
3 , and B4 of voters, whose preference orders we will modify

(note that there is no point in affecting the voters in the second group, but there are two
ways of modifying the preference orders of the voters in the third group). For the first group,
we execute the smallest number of swaps that ensures that B1 voters give a point to p. For
the third group, we execute the smallest number of swaps that ensures that B′

3 voters give
a point to p and that B′′

3 voters do not give a point to d (note that these operations are, in
essence, independent). For the fourth group, we execute the smallest number of swaps that
ensures that B4 voters do not give a point to d.

k-Borda. We perform the following operation until the score of p is at least the same as that
of d: We find a vote where p is ranked below d, but the difference between their positions
is smallest, and we shift p one position higher (possibly passing d, if in this vote p is ranked
just below d). Note that if the score of p is lower than that of d, then there must be a vote
where p is ranked below d, each swap decreases the difference between the scores of p and d
by one point or by two points (if p passes d), and our strategy of choosing swaps ensures the
highest number of swaps of value two.

This completes the proof.

The rules in Theorem 7 are all 1-robust, but not all 1-robust rules have efficient Robust-

ness Radius algorithms. In particular, a simple modification of a proof of Kaczmarczyk and
Faliszewski [35, Theorem 6] shows that for k-Copelandα rules (which are 1-robust) we obtain NP-
hardness. We also obtain a general NP-hardness result for all Gehrlein weakly-stable rules.

Corollary 3. k-Copeland Robustness Radius is NP-hard.

Theorem 8. Robustness Radius is NP-hard for each Gehrlein weakly-stable rule.

Proof. We reduce from the NP-hard Exact 3-Set Cover problem [29] where we are given a
set X = {x1, . . . , x3h} of elements and a set S = {S1, . . . , Sm} of triplets of elements of X. We ask
for h triplets that, together, contain all elements of X. In the following reduction we assume that
every element occurs in exactly three triplets; this variant of the problem remains NP-hard [32].

Our reduction proceeds as follows. For each element x ∈ X, we have an element candidate c(x)
(for a given set X ′ of the elements, X ′ ⊆ X, we write c(X ′) to denote the set of element candidates
that correspond to the members of X ′; in particular, C(X) means the set of all element candidates).
We will have 2m+8h voters and for each of them we introduce 4h+1 distinct dummy candidates.
We write D to denote the set of all these dummy candidates, and for each voter v we write D(v) to
denote the set of dummy candidates associated with v. Further, we also have two special candidates,
p and d. Altogether, we have 2 + 3h+ (4h + 1)(2m+ 8h) distinct candidates, collected in the set:

C = {p, d} ∪ c(X) ∪ D.
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Figure 1: A (simplified) majority graph of the election constructed by the reduction in the proof
of Theorem 8. All dummy candidates D and all element candidates c(X) are contracted to a single
vertex. All arcs within the contracted vertices are neglected.

Using the notation introduced in Remark 1, we form the following 2m+8h voters (in each preference
order, ellipses represent all the candidates not mentioned explicitly, ordered in an arbitrary way):

1. For each triplet S ∈ S, there are two voters:

vS : d ≻ c(S) ≻ p ≻ D(vS) ≻ . . . ,

v̄S : c(X) \ c(S) ≻ D(v̄S) ≻ p ≻ d ≻ . . . .

2. For each i ∈ [h− 1], there is a voter with the following preference order:

vi : d ≻ D(vi) ≻ p ≻ c(X) ≻ . . . .

3. For each i ∈ [h+ 1], there is a voter with the following preference order:

v′i : d ≻ c(X) ≻ D(v′i) ≻ p ≻ . . . .

4. For each i ∈ [3h], there are two special voters:

v∗i : d ≻ c(X) ≻ D(v∗i ) ≻ p ≻ . . . ,

v̄∗i : p ≻ d ≻ D(v̄∗i ) ≻ c(X) ≻ . . . .

We form an instance of the Robustness Radius that contains an election with the candidates
and voters described above, committee size k = 1, and the number of swaps set to B = 4h.

We present the constructed election visually as a (slightly simplified) weighted majority graph
in Figure 1. In this graph, each vertex corresponds either to a single candidate or to a set of
candidates. If we have an edge from a vertex associated with candidate c to a vertex associated
with candidate c′, with weight w, then it means that w more voters prefer c to c′ than the other
way round. For example, there is an arc with weight 6 + 8h pointing from candidate d to a vertex
associated with c(X). This arc indicates that for every element candidate c(x), the set of voters
that prefer d to c(x) contains 6 + 8h more voters than the set of voters who prefer c(x) to d. To
see that this indeed is the case, note that every voter in groups 2, 3, and 4 prefers d to c(x); hence
we have 8h voters who prefer d to c(x). In group 1 (of 2m voters), d is preferred to x by exactly
m+ 3 voters. Thus, in this group, six more voters prefer c(x) to d than the other way round. The
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computation is analogous for all other element candidates and, thus, candidate d’s winning margin
over each of them is 6 + 8h.

Let us now show that the reduction is correct. Note that as the committee size is one, if some
candidate is a Condorcet winner, then every Gehrlein weakly-stable rule outputs a single winning
committee, containing exactly this candidate. Similarly, if there are weak Condorcet winners in
the election, then the winning committees are exactly those singletons that contain them. In our
election, d is a Condorcet winner (indeed, in Figure 1 there are arcs from d to every other vertex)
and, so, committee {d} wins uniquely.

Let us assume that there is an exact cover of X with h triplets from S, and let I = {i1, . . . , ih}
be the set of indices of these triplets (formally, we have that

⋃

i∈I Si = X). If for each i ∈ I we shift
candidate p to the top of the preference order of voter vSi

, then altogether we make 4h swaps and
p becomes a weak Condorcet winner. This is so because (i) p is ranked on the fifth place in each
of these votes, (ii) the swaps cause p to pass d in h votes (so p ties with d in their head-to-head
contest), and (iii) the swaps cause p to pass each element candidate exactly once (so p ties in a
head-to-head contest with each element candidate). As a consequence, {p} and {d} are two winning
committees and we see that election result has changed.

Let us now consider the opposite direction. We first note that if we perform up to 4h swaps,
then we can change the winning margins indicated in Figure 1 by at most 8h. As a consequence
(and assuming that m ≥ 2), after 4h swaps candidate d certainly is still preferred to each candidate
other than p by a majority of the voters. Further, after 4h swaps still at least half of the voters
prefer d to p. This is so because in each vote either p already is preferred to d or it takes at
least four swaps to move p ahead of d; this means that with 4h swaps, we can change at most
h voters to prefer p over d and this just enough to ensure that p and d tie in their head-to-head
contest. As a consequence, after 4h swaps d certainly is a (weak) Condorcet winner and {d} is
among the winning committees.

To ensure that {d} is not the only winning committee, it is necessary to guarantee that some
other candidate is a weak Condorcet winner. Based on Figure 1, it is clear that after 4h swaps all
element candidates and dummy candidates loose at least one head-to-head contest (assuming m >
1) and, so, only p may become a weak Condorcet winner. For this to happen, (i) p needs to pass d
in h votes, and (ii) p needs to pass each element candidate in at least one vote. A simple counting
argument shows that this is possible only by shifting p to the top position in h votes from the first
group that correspond to an exact cover of X with h triplets from S.

We conclude by noting that the reduction works in polynomial time.

Without much surprise, we find that Robustness Radius is also NP-hard for β-CC and STV.
For these rules, however, the hardness results are, in fact, significantly stronger. In both cases it is
already NP-hard to decide whether the outcome of the given election changes after a single swap,
and for STV the result holds even for committees of size one (β-CC with committees of size one is
equivalent to the single-winner Borda rule, for which the problem is polynomial-time solvable [51];
this also follows directly from Theorem 7).

Theorem 9. β-CC Robustness Radius is NP-hard and W[1]-hard with respect to the size of the
committee even if the robustness radius is one.

Proof. We show the result by giving a reduction from theRegular Multicolored Independent

Set problem. In this problem we are given a regular graph G, where each vertex has degree d
and has one of h colors, and we ask if there is an h-colored independent set, that is, a size-h set of
pairwise non-adjacent vertices containing one vertex from each color class. This problem is known
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to be both NP-complete and W[1]-hard for the parameter h [14, Corollary 13.8]. To obtain our
W[1]-hardness result, we will ensure that the reduction uses committees of size that is a function of
h only (indeed, we will use committee size h+2; aside from this one restriction, we give a standard
many-one reduction.

Input Instance. Let (G,h, d) be an instance of Regular Multicolored Independent Set.
We let s := |V (G)| be the number of vertices in the input graph and r := |E(G)| be the number of
its edges. We assume, without loss of generality, that s ≥ 2h (indeed, in a graph with no isolated
vertices there is no independent set that contains more than half of the vertices). Below we describe
the election that we use in our β-CC Robustness Radius instance.

Candidates and Committee Size. The set of candidates consists of the vertex set V (G) of the
graph G, the set Z := {z0, z1, z2} of special candidates, the set X := {x1, . . . , xh} of safe candidates,
and the set D of dummy candidates (the number of dummy candidates and the fact that there are
polynomially many of them with respect to r + s will become clear later). We set the committee
size k := h+ 2.

High-Level Idea. The idea of the construction is to ensure that for our election the following
holds:

1. The safe committee {z0, z1, x1, . . . , xh} is always winning (possibly uniquely).

2. For each V ′ ⊆ V , if V ′ is an h-colored independent set, then {z0, z2} ∪ V ′ is a winning
committee.

3. There are no other winning committees.

4. Using a single swap of adjacent candidates—which gives the robustness radius of one—it is
possible to ensure that the safe committee is the only winning committee (in other words, a
single swap suffices to change the set of winning committees if and only if there is an h-colored
independent set for G).

In particular, we will ensure that if there is no h-colored independent set, then the safe committee
will have dissatisfaction score lower by at least four points than the next best committee (so a single
swap would not suffice to change the set of winning committees); for the notion of the dissatisfaction
score, recall Remark 2.

Dummy Candidates and the ∆ Value. We will ensure that the safe committee will have
dissatisfaction score:

∆ := 8r + hs2,

and that, indeed, this will be the lowest possible dissatisfaction score (prior to performing swaps).
To simplify our construction, we use a number of dummy candidates and we adopt the following
convention: Whenever we put some dummy candidate among the top ∆ positions in a vote, we put
this candidate beyond position ∆ in all other votes (on its own, this is not enough to guarantee
that no dummy candidate belongs to a winning committee, but we will later show that this indeed
is the case). As a consequence, for n voters we need at most O(n∆) dummy candidates. Since
we will form only polynomially many voters, we will also need only polynomially many dummy
candidates.

Voters. In the following, we describe the voters of our election in four groups, each playing a
specific role in the construction. We briefly mention the voters’ respective roles and formally prove
them later. Whenever we put the symbol ≫ in a preference order, we mean listing ∆ “fresh”
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dummy candidates (i.e., ones that are not ranked among the top ∆ positions by the other voters),
followed by all the remaining candidates in some arbitrary order.

Special Candidate Voters. This group consists of h + 3 voters with preference orders of the
form z0 ≻ ≫ . These voters ensure that every winning committee includes candidate z0.

Safe Committee Voters. For each color i ∈ [h], we form (s+1) ·s/2+6d voters with preference
order xi ≻ z2 ≻ ≫ . These voters ensure that the safe committee {z0, z1, x1, . . . , xh} is
indeed winning.

Vertex Selection Voters. For each color i ∈ [h], we form s voters, where each vertex candidate
of color i appears exactly once on each of the first s positions, candidate z1 is ranked on
the (s + 1)-th position, and all other top ∆ positions are taken by the dummy candidates.
Formally, we form these voters as follows. We start with s voters with preference orders:

v1 ≻ v2 ≻ · · · ≻ vs−1 ≻ vs ≻ z1 ≻ ≫ ,
v2 ≻ v3 ≻ · · · ≻ vs ≻ v1 ≻ z1 ≻ ≫ ,

...
...

vs ≻ v1 ≻ · · · ≻ vs−2 ≻ vs−1 ≻ z1 ≻ ≫ .

Then we replace each vertex candidate that is not of color i with a fresh dummy candidate.
The role of this group is to ensure that except for the safe committee, every other winning
committee (if it exists) must contain exactly one vertex of each color.

Independent set voters. For every edge {u, v} we introduce two pairs of voters, with preference
orders of the form:

u ≻ v ≻ z0 ≻ ≫ , and

v ≻ u ≻ z0 ≻ ≫ .

The role of this group is to ensure that if there is a winning committe that contains h vertex
candidates, then these vertices form an independent set.

This completes the construction. We note that it is computable in polynomial time. Before we
formally prove the correctness of our construction, we discuss several important facts about possible
winning committees for the constructed election.

Safe Committee. First, observe that the safe committee {z0, z1, x1, . . . , xh} provides total
dissatisfaction score equal to ∆. To see this, note that the special candidate voters and the safe
committee voters have dissatisfaction score zero for it. For every color, the respective vertex
selection voters together have dissatisfaction score equal to s2. Thus, the dissatisfaction score of all
vertex selection voters of all colors is hs2. The independent set voters generate dissatisfaction score
equal to 8r (for each edge, the two pairs of voters in total have dissatisfaction score 8). Altogether,
the safe committee has dissatisfaction score ∆ = 8r + hs2.

Independent Set Committees. Second, observe that every committee {z0, z2} ∪ V ′, where
V ′ ⊆ V (G) is an h-colored independent set, causes total dissatisfaction exactly ∆. Indeed, for such
a committee the following holds (we provide additional explanations for the last two voter groups
below):
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1. Special candidate voters have dissatisfaction score equal to zero.

2. Each safe committee voter has dissatisfaction score equal to one (due to candidate z2), so
altogether their dissatisfaction score is h((s + 1) · s/2 + 6d) = (s+ 1) · hs/2 + 6hd.

3. Vertex selection voters have total dissatisfaction score h(s − 1) · s/2. To see this, consider a
group of vertex selection voters for some color i. As V ′ is h-colored, it contains exactly one
vertex of color i, which these voters rank on all positions between 1 and s (and they rank
all other committee members below these positions). This means that their dissatisfaction is
0+ 1+ · · ·+(s− 1) = (s− 1) · s/2. As there are h colors, after multiplying this number by h,
we get our total dissatisfaction value.

4. Independent set voters have total dissatisfaction score 8r − 6hd. To see why this is the case,
we first note that the voters in this group have dissatisfaction at most 8r due to candidate z0.
However, for each edge {u, v} such that V ′ contains exactly one of the vertex candidates u,
v, this dissatisfaction is decreased by 6 (if our committee contained both u and v, then the
dissatisfaction would be decreased by 8, but this does not happen as we assumed V ′ to be an
independent set). Since our committee contains exactly h vertices and each vertex touches
exactly d unique edges (because V ′ is an independent set), we have total dissatisfaction 8r−
6hd.

One can verify (and we will show this formally later) that if we replace V ′ with a set of h vertices
of different colors that do not form an independent set, then the dissatisfaction would be higher
by at least four points (intuitively, for every two points that we gain by “covering” some edge with
two vertices rather than one, we lose six points for being able to cover one edge less).

Losing Committees. Next, we show that every other committee causes total dissatisfaction at
least ∆ + 4. To this end, we distinguish between five cases for possible committees.

Case 1 (committees that do not contain z0). Every committee C ′ that does not contain can-
didate z0 causes total dissatisfaction at least ∆ + h. When z0 is not part of the committee,
then up to k = h + 2 voters from the special candidate voters group have dissatisfaction at
least one (in best case, they are represented by their second-best choice), and the last one
has dissatisfaction at least ∆. Thus z0 must belong to all winning committees.

Case 2 (committees that contain z0, z1, and z2). Every committee C ′ that contains z0, z1,
and z2 causes total dissatisfaction at least ∆+ 4. To see this, let us first consider the dissat-
isfaction of the voters when they are represented by {z0, z1, z2} only. In this case, the special
candidate voters have zero dissatisfaction score, the safe committee voters have dissatisfaction
score of h((s + 1) · s/2 + 6d), the vertex selection voters have dissatisfaction score hs2, and
the independent set voters have dissatisfaction score 8r. Thus the total dissatisfaction is:

(

h((s + 1) · s/2 + 6d)
)

+
(

hs2
)

+
(

8r
)

= ∆+ h((s + 1) · s/2 + 6d).

Let us now consider the remaining h−1 candidates. Each of the safe candidates can decrease
the dissatisfaction by exactly (s + 1) · s/2 + 6d. Each of the vertex candidates can decrease
the dissatisfaction by at most (s+1) · s/2+6d (the first part comes from the vertex selection
voters, who for a given vertex decrease the dissatisfaction by at most 1 + 2+ · · ·+ s, and the
second one comes from the independent set voters6). We have that h((s + 1) · s/2 + 6d) −

6If an edge is covered by a single vertex candidate, the satisfaction decreases by 6. If it is covered by two vertex
candidates, it decreases by 8, but we “split” it over two candidates, so each of them decreases the dissatisfaction by 4.
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(h − 1)((s + 1) · s/2 + 6d) = (s + 1) · s/2 + 6d > 4. That is, altogether the remaining h − 1
candidates cannot cause the dissatisfaction to be lower than ∆ + 4.

Case 3 (committees that contain z0 but not z2). Consider a committee C ′ that contains z0
and does not contain z2. If it does not contain all candidates from {x1, . . . , xh}, then its
dissatisfaction must be (much) larger than 2∆. For example, if it does not contain some
given candidate xi, then at least (s + 1) · s/2 + 6d − (h + 1) > 2 voters with preference
order of the form xi ≻ z2 ≻ ≫ are dissatisfied by at least ∆. Thus let us assume that
C ′ contains z0 and all candidates from {x1, . . . , xh}. If it does not contain z1, then—using
similar reasoning as before—the vertex selection voters cause dissatisfaction (much) greater
than 2∆. In summary, the safe committee is the only committee that contains z0, does
not contain z2, and has dissatisfaction lower than ∆ + 4 (indeed, as we have seen, it has
dissatisfaction exactly ∆).

Case 4 (committees that contain z0 but not z1). Consider a committee C ′ that contains z0
and does not contain z1. If this committee does not contain at least a single vertex candidate
for each color, then its dissatisfaction is (much) larger than 2∆. For example, let us assume
that C ′ does not contain vertex candidate of color i. Then, s − (h + 1) > 1 of the vertex
selection voters corresponding to color i are dissatisfied by at least ∆. Thus let us assume that
C ′ contains at least one vertex candidate for each color. Then, if C ′ does not contain z2, then
it has dissatisfaction (much) greater than 2∆ due to the safe committee voters. In summary,
if a committee contains z0, does not contain z1, and causes dissatisfaction lower than ∆ + 4,
then it must contain z2 and a vertex candidate of each color.

Case 5 (non-independent set committees). Finally, let C ′ be a committee of the form
{z0, z2} ∪ V ′, where V ′ contains vertices for each color, but these vertices do not form
an independent set. Such a committee causes dissatisfaction at least ∆ + 4. The special
candidate voters have dissatisfaction zero, the safe committee voters have dissatisfaction
h((s + 1) · s/2 + 6d), the vertex selection voters have dissatisfaction h(s − 1) · s/2, and the
independent set voters have dissatisfaction at least least 8r − 6hd + 4. We have analyzed
the dissatisfactions of the first three groups of voters when considering the independent set
committees; the calculations are the same. Let us, thus, consider the final group of voters.
Let q be the number of edges between vertices from V ′. There are q edges that are covered
twice (i.e., by two vertices from V ′), hd − 2q edges that are covered once, and all remain-
ing edges are uncovered. The total dissatisfaction of the independent set voters is at least
8r− 6(hd− 2q)− 8q = 8r− 6hd+4q. Since V ′ is not an independent set, we have q ≥ 1 and
the claim follows.

Correctness of the Reduction. The correctness easily follows from the above discussion. On
the one hand, if graph G does not contain an h-colored independent set, then the safe committee
is the only winning committee with total dissatisfaction ∆ and every other committee has dissat-
isfaction at least ∆+ 4. Thus, a single swap cannot change the set of winning committees. On the
other hand, if graph G does contain an h-colored independent set, then the safe committee is not a
unique winning committee. It is easy to verify that then the safe committee does not win anymore
if one swaps candidate z2 with some candidate xi in some vote from the safe committee group.

In fact, the proof of Theorem 9 implies much more than stated in the theorem. In particular,
our construction shows that the problem remains NP-hard even if we are given the current winning
committee as part of the input. Furthermore, the same construction implies that deciding whether
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a given candidate belongs to some β-CC winning committee is both NP-hard and coNP-hard (the
NP-hardness result is sometimes taken for granted in the literature, but has not been shown formally
yet; see, e.g., Footnote 4 in the work of Bredereck et al. [7]). Formally, we consider the following
problem.

Definition 5. In the β-CC Member problem we are given an election E = (C, V ), a committee
size k, and a distinguished candidate c∗ ∈ C. We ask whether candidate c∗ belongs to some β-CC
winning committee for election E and committee size k.

Regarding the β-CC Member problem, we obtain an even stronger result than implied by
Theorem 9 and we show that it is θp2-complete (the proof of this result is deferred to the appendix).
Inuitively, the class θp2 contains those problems that can be solved in polynomial time, provided
that one can ask polynomially-many non-adaptive queries to an NP oracle (by asking non-adaptive
queries, we mean that the algorithm first computes all the instances of the NP problems that it
wants to have solved, and then receives answers for all of them at the same time). Problems that are
θp2-complete are—seemingly—harder than the NP-complete ones, but easier than NPNP-complete
or coNPNP-complete ones. For more details on θp2 and many other complexity classes, see, e.g., the
textbook of Hemaspaandra and Ogihara [34].

Theorem 10. β-CC Member θp2-complete.

We conclude this section by showing that the Robustness Radius problem is NP-hard for
STV, even if we consider its single-winner variant (i.e., if we fix the committee size to be 1) and
consider exactly one swap.

Theorem 11. STV Robustness Radius is NP-hard even for k = 1 and B = 1.

Proof. We give a reduction from STV Winner Determination—the problem of deciding whether
a given candidate is an STV winner in a given election. This problem is known to be NP-hard [12,
Theorem 4] for the committee size k = 1. Let I be an instance of the STV Winner Determi-

nation problem. In I we are given an election E = (C, V ) with n voters, and a distinguished
candidate c ∈ C; we ask if there exists a valid run of STV such that c becomes a winner in E.
Without loss of generality, we can assume that c is ranked first by some voter.

Based on I, we construct an instance I ′ of the STV Robustness Radius problem as follows.
We fix the new set of candidates to be C ′ = C ∪ {d}; here d is a dummy candidate needed by
our construction. For each voter v ∈ V , we put d in v’s preference ranking right behind c, and
add two copies of such a modified vote to I ′; we call such votes non-dummy. Additionally, we add
2n+ 1 dummy voters who rank d first, c second, and all remaining candidates next (in some fixed
arbitrary order). Candidate d is the unique winner in this election as he or she is ranked first by the
majority of the voters. If we want to change the outcome of the election with a single swap, then
we definitely need to swap c and d in the preference order of one of the dummy voters (otherwise
d would still have the majority of first-place votes). Let us consider such a modified election and
call it E′′.

Observe that if c is a possible winner in I, then c is also a possible winner in E′′. Indeed, STV
may first eliminate all the candidates except for c and d. In such a truncated profile, there would
be 2n+1 voters who prefer c to d and 2n voters who prefer d to c; hence c would become a winner.

If c is not a possible winner in I, then c will be eliminated before some other candidate from
C ∪{d} in every possible run of STV on E′′. Indeed, in each sequence of eliminations performed by
STV, either there will be a moment where c is eliminated as one of several candidates with a given
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(lowest) number of first-place votes or there will be a moment when there are still some remaining
candidates in C \ {c} and each such candidate is ranked first by at least two more non-dummy
voters than c; as a result each such candidate will be ranked first by more (dummy and non-dummy)
voters than c. In particular, c will be removed from the election before some candidate from C \{c},
and, so, also before d. After c is removed from E′′, there will be at least 2n + 1 voters who rank
d first (recall that there is at least one voter in E who ranks c first and, so, there are at least two
non-dummy voters who rank c first and d second) and, so, d is the unique winner of the election.
Consequently, we have shown that the outcome of election E′ can change with a single swap if and
only if the answer to the original instance I is “yes.” This completes the proof.

6 Parameterized Algorithms for the Robustness Radius Problem

We complement our discussion of the complexity of the Robustness Radius problem by providing
several FPT algorithms for it. Recall that an FPT algorithm for a given parameter (e.g., the number
of candidates or the number of voters) is an algorithm whose running time is of the form f(ρ)|I|O(1),
where ρ is the value of the parameter and |I| is the length of the encoding of the input instance.

First, using the standard approach of formulating integer linear programs and invoking the
algorithm of Lenstra [41], we find that Robustness Radius is in FPT when parameterized by the
number of candidates (the proof is implicit, e.g., in the works of Dorn and Schlotter [16] and Knop
et al. [39]).

Proposition 12. Robustness Radius for k-Copeland, NED, STV, and β-CC is in FPT when
parameterized by the number of candidates.

For STV and β-CC we have fixed-parameter tractability not only with respect to the number m
of the candidates, as mentioned above, but also with respect to the number n of the voters. For
the case of STV, we assume that the committee size k is such that we never need to “delete non-
existent voters” and we refer to committee sizes where such deleting is not necessary as normal.
For example, committee size k is not normal if k > n (where n is the number of voters). Another
example is to take n = 12 and k = 5: We would need to delete q = ⌊ 12

5+1⌋ + 1 = 3 voters for each
committee member, which would require deleting “15 voters out of 12.”

Theorem 13. For normal committee sizes, STV Robustness Radius is in FPT when parame-
terized by the number n of the voters.

Proof. Let E = (C, V ) be the input election and let k be the size of the desired committee.
Let n = |V | be the number of voters. Since k is normal, we have that k ≤ n. For each candidate c,
we define rank(c) := minv∈V (posv(c)), which we refer to as the rank of c (intuitively, the rank of
candidate c is the highest position on which c appears in the profile).

First, we prove that a candidate with a rank higher than n cannot be a member of a winning
committee. For the sake of contradiction, let us assume that there exists a candidate c with
rank(c) > n who is a member of some winning committee W . When STV adds some candidate to
the committee (this happens when the number of voters who rank such a candidate first matches
or exceeds the quota ⌊ n

k+1⌋+1), it removes this candidate and at least one voter from the election.
Thus, before c were included in W , STV must have removed some candidate c′ from the election
without adding it toW (this is so because c had to be ranked first by some voter to be included in the
committee; for c to be ranked first, STV had to delete at least n candidates, so by the assumption
that the committee size is normal, not all of them could have been included in the committee).
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Whenever STV eliminates a candidate, it always chooses one with the lowest Plurality score. Since
at the moment when c′ was removed the Plurality score of c was equal to zero, we have that
the Plurality score of c′ also must have been zero. Consequently, removing c′ from the election
did not affect the top preferences of the voters and, so, right after removing c′, STV removed
another candidate with zero Plurality score. By repeating this argument sufficiently many times,
we conclude that c must have been eventually eliminated, and, so, could not have been added to W .
This gives a contradiction and proves our claim.

Second, by analogous reasoning, we also conclude that the number of committees winning
according to STV is bounded by a function of n: Let us analyze the first step of STV. Either there
will be some candidate that meets the quota and STV will include him or her in the committee
and it will remove at least one of the voters while doing so, or none of the candidates will meet
the quota. In the latter case, in the following steps STV will remove all candidates that are not
ranked first by any voter. In the former case, it will repeat an analogous step. Eventually, after at
most n steps, it will either complete, or it will remove all but at most n candidates. Then it will
certainly finish within the next at most n steps. As a consequence of this reasoning, one can also
verify that there is an FPT algorithm (parameterized by the number of voters) that outputs all
winning committees for a given STV election. Thus we can test in FPT time if a given sequence
of swaps has led to changing the result of our election or not.

Third, we observe that the robustness radius for our election is at most n2. Indeed, we can
take a member of a winning committee and with at most n2 swaps we can push him or her to have
rank n + 1 or higher. Such a candidate no longer belongs to any winning committee and, so, the
outcome of the election is changed. From now on we focus on sequences of at most n2 swaps.

Fourth, we observe that in order to change the outcome of an election, we should only swap
such pairs of candidates that at least one candidate in the pair has rank at most n2 + n. Indeed,
consider a candidate c with rank(c) > n2 + n. After n2 swaps, the rank of this candidate would
still be above n, so he or she still would not belong to any winning committee (indeed, as without
the shifts, the candidate would be eliminated in the initial set of rounds, when the candidates with
no first-place votes are eliminated). Thus, a swap of two candidates with ranks higher than n2 +n
does not affect the set of winning committees (the exact positions of these two candidates have no
influence on the STV outcome).

As a result, it suffices to focus on the candidates with ranks at most n2 + n. There are at most
n(n2+n) of them and, consequently, there are at most (2n3 +2n2)n

2

possible n2-long sequences of
swaps which we need to check in order to find the shortest one that guarantees the result change.
For each sequence of swaps, we test in FPT time whether the election outcome changes. This
completes the proof.

The algorithm for the case of β-CC is more involved. Briefly put, it relies on finding in FPT
time (with respect to the number of voters) either the unique winning committee or two committees
tied for victory. In the former case, it combines brute-force search with dynamic programming,
and in the latter case, either a single swap or a greedy algorithm suffice. For clarity, we start with
presenting the first phase, that is, finding the unique winning committee or two tied committees,
as a separate proposition.

Proposition 14. There is an algorithm that runs in FPT-time with respect to the number of voters
and, given an election E = (C, V ) and a committee size k, checks whether the election has a unique
β-CC winning committee (in which case it outputs this committee) or whether there is more than
one β-CC winning committee (in which case it outputs some two winning committees).
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Proof. Let E = (C, V ) be the input election and let k be the committee size. Let n = |V | be the
number of voters. If k ≥ n, then every winning committee consists of each voter’s most preferred
candidate and sufficiently many other candidates to form a committee of size exactly k. In this
case the algorithm can easily provide the required output, so we assume that k < n. To avoid
trivial cases, without loss of generality, we also assume that there are more than k candidates.

Our algorithm proceeds by considering all partitions of V into k disjoint sets (there are at most
kn ≤ nn such partitions). For a partition V1, . . . , Vk the algorithm proceeds as follows (intuitively,
the voters in each group Vi are to be represented by the Borda winner of the election (C, Vi)):

1. For each election Ei = (C, Vi) we compute the set Bi of candidates that are Borda winners
of Ei.

2. If each Bi is a singleton and all Bi’s are distinct, then we store a single committee W =
B1 ∪ · · · ∪ Bk. Otherwise, it is possible to form two distinct committees, W1 and W2, such
that for each Bi, W1 ∩Bi 6= ∅ and W2 ∩Bi 6= ∅;7 we store both W1 and W2.

We check if among the stored committees there is a unique committee W such that every other
stored committee has lower β-CC score. If such a committee exists, then we output it as the
unique winning committee. Otherwise, there are two stored committees, WA and WB , that both
have β-CC score greater than or equal to that of every other stored committee. We output WA

and WB as two committees tied for winning (if there is more than one choice for WA and WB, then
we pick one pair arbitrarily).

Before we move on to the proof of the fixed-parameter tractability of β-CC Robustness Ra-

dius, we introduce some additional notation. Let E = (C, V ) be some election and let v be some
voter in V . By top(v) we mean the candidate ranked first by v. By top(E) we mean the set
{top(v) | v ∈ V }, that is, the set of candidates that are ever ranked first in election E. For a
committee W , the representative of some voter v is the member of W that v ranks highest. Finally,
for committee W and voter v, we define repposv(W ) to be the position of v’s representative from
W in v’s vote.

Theorem 15. β-CC Robustness Radius is in FPT when parameterized by the number of voters.

Proof. Let E = (C, V ) be the input election and let k be the committee size. Let m = |C| be the
number of candidates. Using Proposition 14, we check whether there is a unique β-CC winning
committee in E. Depending on the result, we proceed by distinguishing whether there is a unique
winning committee or nor.

There is a unique winning committee W . We first describe a function that encapsulates the
effect of shifting forward a particular candidate within a given set of votes. For each voter v, each

7We can form W1 and W2 as follows. First, we form set W0 by taking the union of all singletons among B1, . . . , Bk;
we know that |W0| < k because otherwise we would not enter this part of the algorithm. Then we form a new sequence
of sets B′

1, . . . , B
′
t by removing from sequence B1, . . . , Bk all those sets that have a nonempty intersection with W0. If

the new sequence turns out to be empty, then we form W1 and W2 by extending W0 by adding arbitrary candidates,
but so that W1 and W2 are distinct (it is possible because there are more than k candidates in the election). If
the new sequence is not empty, then we form W1 and W2 as follows: We include all members of W0 in both sets
and, then, for each B′

i we include the lexicographically first member of B′
i in W1 and the lexicographically last one

in W2. This ensures that W1 and W2 are distinct. If they still contain fewer than k candidates, then we extend them
by including arbitrary candidates (but so that they remain distinct; again this is possible because there are more
than k candidates in the election).
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candidate c, and each nonnegative integer b, we define shift(v, c, b) to be the vote obtained from
that of v by shifting c by b positions forward, and we define:

g(v, c, b) = βm(posshift(v,c,b)(c)) − βm(repposshift(v,c,b)(W )).

In other words, g(v, c, b) is the difference between the Borda scores of c and the highest-ranked
member of W in vote v with c shifted b positions forward.

Let V ′ be some subset of voters, and let us rename the voters so that V ′ = {v1, . . . , vn′}. For
each candidate c and each nonnegative integer b, we define:

g(V ′, c, b) = max

{ n′
∑

i=1

g(vi, c, bi)

∣

∣

∣

∣

b1, . . . , bn′ ≥ 0 and b1 + · · ·+ bn′ = b

}

.

Intuitively, g(V ′, c, b) specifies how many points more c would receive from the voters in V ′ as their
representative than these voters would assign to their representatives from W , if we shifted c by
b positions forward in an optimal way.

We assume that g(∅, c, b) = 0 for each choice of c and b. We can compute g(V ′, c, b) in polynomial
time using dynamic programming and the following formula (for each 1 ≤ t < n′):8

g({v1, . . . , vt}, c, b) = max
0≤bt≤b

g({v1, . . . , vt−1}, c, b− bt) + g(vt, c, bt).

With the function g in hand, we are ready to describe the algorithm. We consider every partition
of V into k disjoint subsets V1, . . . , Vk; let us fix one such partition. Our goal is to compute the
smallest nonnegative integer b such that there is a sequence of nonnegative integers b1, . . . , bk that
adds up to b, and a sequence c1, . . . , ck of (not necessarily distinct) candidates so that:

(a) g(V1, c1, b1) + · · · + g(Vk, ck, bk) ≥ 0,

(b) there is a committee W ′ such that {c1, . . . , ck} ⊆ W ′ and W ′ 6= W .

Intuitively, the role of candidates c1, . . . , ck is to be the representatives of the voters from the
sets V1, . . . , Vk, respectively, in a new committee W ′, distinct from W , that either defeats W or ties
with it. More formally, condition (a) ensures that there is a way to perform b = b1+ · · ·+ bk swaps
so that the score of committee W ′ is at least as large as that of W , and condition (b) requires that
W ′ 6= W and deals with the possibility that candidates in c1, . . . , ck are not distinct.

To compute b, we will need the following function (C ′ is a subset of candidates—we will end up
using only polynomially many different ones—i is an integer in [k], and b is a nonnegative integer):

f(C ′, i, b) = max

{ i
∑

j=1

g(Vj , cj , bj)

∣

∣

∣

∣

c1, . . . , ci ∈ C ′, b1, . . . , bi ≥ 0, b1 + · · ·+ bi = b

}

.

We have that the smallest value of b such that f(C ′, k, b) ≥ 0 is associated with candidates c1, . . . , ck
and values b1, . . . , bk that satisfy condition (a) above, under the condition that c1, . . . ck belong to C

′.
To obtain the smallest value of b that is associated with values b1, . . . , bk and c1, . . . , ck that satisfy
both conditions (a) and (b) above, it suffices to compute:

bV1,...,Vk
= min{b ∈ N | w ∈ W ∧ f(C − {w}, k, b) ≥ 0}.

8In fact, it is possible to compute g(V ′, c, b) using a greedy algorithm, but the dynamic programming formulation
is far easier and allows us to sidestep many special cases, such as what happens if c is him or herself a member of W .
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The fact that we use sets of the form C − {w} in the invocation of function f ensures that we
obtain committees distinct from W . The fact that we try all w ∈ W guarantees that we try all
possibilities. The smallest value bV1,...,Vk

over all the partitions of V is the smallest number of swaps
necessary to change the outcome of the election.

It remains to show that we can compute function f in polynomial time. This follows by assuming
that f(C ′, 0, b) = 0 (for each C ′ and b) and applying dynamic programming techniques on top of
the following formula (which holds for each i ∈ [k]):

f(C ′, i, b) = max
0≤bi≤b, ci∈C′

f(C ′, i− 1, b− bi) + g(Vi, ci, bi).

The part of the proof where there is a unique β-CC winning committee for E is complete.

There are at least two committees that tie for victory. Let WA and WB be two β-CC
winning committees for E (the algorithm from Proposition 14 provides them readily). We check
if there is some voter v whose representatives under WA and WB are distinct. If such a voter
exists, then a single swap is sufficient to prevent one of the committees from winning: Let a be
the representative of v under WA, and let b be the representative of v under WB. Without loss
of generality, we assume that a is ranked higher than b. It suffices to shift b one position higher.
It certainly is possible (since b was ranked below a, he or she certainly is not ranked first) and
it increases the β-CC score of WB, while the score of WA either stays the same or decreases
(the score of WA would stay the same, e.g., if b were ranked just below a and b also belonged
to WA; candidate a certainly does not belong to WB because v does not have a as a representative
under WB). In consequence, WA certainly is not a winning committee after the swap and, thus,
the set of winning committees changes.

Let us now consider the case where each voter has the same representative under both WA

and WB, and let R be the set of voters’ representatives (R ⊆ WA ∩WB). Since WA and WB are
distinct, there are candidates a ∈ WA \WB and b ∈ WB \WA and, in consequence, we know that
|R| < k. We claim that R = top(E), that is, that each representative is ranked first by some voter.
For the sake of contradiction, let us assume that there is a voter v that is not represented by his or her
top-preferred candidate. In this case, committee WC obtained from WA by replacing candidate a
with candidate top(v) has a higher score than WA (voter v has a higher-ranked representative
and all other voters have the same or higher-ranked representatives), which contradicts the fact
that WA is a winning committee. Thus our claim holds.

As a consequence, the β-CC winning committees for election E are exactly those that contain
all candidates from R. To change the election outcome, we have to transform E to an election E′

such that top(E) 6= top(E′). We consider two types of actions that achieve this effect:

1. Shift some candidate c ∈ C \ R to the top position of some voter v, thus ensuring that for
the resulting election E′ we have c ∈ top(E′) (and, by assumption, c /∈ top(E)).

2. For some candidate d ∈ R and each voter v that ranks d on top, shift the top-ranked member
of R \ {d} to be ranked first. This creates election E′ such that top(E′) is strictly contained
in top(E).

Actions of the first type include the cheapest one that creates an election E′ such that top(E′) \
top(E) 6= ∅, and actions of the second type include the cheapest one that creates an election E′

such that top(E) \ top(E′) 6= ∅. Thus it suffices to compute the cheapest action of each type (there
are only polynomially many actions to consider) and output its cost as the smallest number of
swaps necessary to change the outcome of the election.
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It is natural to ask whether the above theorem holds for other variants of the Chamberlin–
Courant rule (i.e., for variants based on scoring functions other than the Borda one). This issue is
quite intriguing. While the first part of the proof—where we deal with the case of a unique winning
committee—is general and works for any scoring function (indeed, it suffices to replace the Borda
scoring function β in the definition of function g with any other scoring rule), the situation of the
second part is harder to deal with. Indeed, in the second part of the proof, when we consider the
case where not all voters have the same representative, we rely on the fact that a single swap of a
representative will increase the score of a committee. This is crucial for our argument, and due to
this assumption it does not matter which two specific winning committees WA and WB we obtained
from Proposition 14. Without it, we would have to be more careful in choosing them.

We conclude this section by noting that the Robustness Radius problem for k-Copeland
and NED is W[1]-hard for the parameterization by the number of voters. This follows by a simple
adaptation of aW[1]-hardness proof of Kaczmarczyk and Faliszewski [35, Theorem 7] for Copelandα

Destructive Shift Bribery (the idea of the adaptation is to insert sufficiently many dummy
candidates between the non-dummy ones, so that the only reasonable swaps are those that shift
the designated candidate backward). Since the proof uses an odd number of voters, it applies to
NED as well.

Corollary 4. Robustness Radius for k-Copeland and NED is W[1]-hard when parameterized by
the number of voters.

7 Beyond the Worst Case: An Experimental Evaluation

In this section we present results of experiments in which we measure how many randomly-selected
swaps are necessary to change election results under our rules.9

We performed a series of experiments using five distributions of rankings—three synthetic ones
and two based on real-life datasets obtained from the PrefLib [44] library of real-life preference
data. Regarding the real-life data, we used the dataset of preferences over sushi sets [36] and the
dataset with preferences over university courses (treating them as distributions by selecting votes
from them uniformly at random). Regarding the synthetic distributions, we used the following
ones (see the description below or, for a more detailed discussion and literature overview, a book
chapter by Boutilier and Rosenschein [5]):

(i) Impartial Culture (IC),

(ii) Mallows model with parameter φ between 0 and 1 drawn uniformly at random, and

(iii) a mixture of two Mallows models with two separate values of parameters φ1 and φ2 drawn
uniformly and independently at random.

In the Impartial Culture model, each preference order is drawn uniformly at random. In con-
trast, the intuition behind the Mallows model is that there is a given central preference order and
the more swaps are necessary to modify some preference order r to become this central one, the less
probable it is to draw r (in particular, the central order is the most probable one to be generated).
Formally, the Mallows model consists of a central order r0 of m elements and a dispersion param-
eter φ ∈ (0, 1] which quantifies the concentration of the rankings around the peak r0 with respect

9We omit NED because we found it to be computationally too expensive. However, we expect the results to be
similar to the results that we have for k-Copelandα.
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to some distance measure; we use the Kendall tau distance [38]. In particular, the probability of
generating a given ranking r is:

Pr0,φ(r) =
φd(r,r0)

Z
where Z = 1 · (1 + φ) · (1 + φ+ φ2) · · · (1 + · · ·+ φm−1),

and where d(r, r0) is Kendall tau distance between r and r0, that is, the number of swaps of adjacent
candidates that are necessary to transform r into r0. Note that the normalization constant Z is
independent of r0. For φ = 1, the Mallows model becomes equivalent to the Impartial Culture
model; for φ = 0 it draws the central ranking r0 only. In the mixture of two Mallows models,
we use models with different central orders and different values of the dispersion parameter (both
drawn independently and uniformly at random). Additionally, we draw uniformly at random a
value p ∈ [0, 1] and for each vote that we are to generate, we use the first model with probability
p, and the second model with probability 1− p.

For each of our five distributions, and for each of the voting rules that we consider,10 we
performed 2000 simulations. In each simulation we had drawn an election containing 10 candidates
and 30 voters from the given distribution. Then we were repeatedly drawing a pair of adjacent
candidates uniformly at random and performing a swap, until the outcome of the election changed
(in fact, we never did more than 5000 swaps in order to change the outcome). The average number of
swaps required to change the outcome of an election for different rules and for different distributions
is depicted in Figure 2. We present the results for committee size k = 3. We have also performed
simulations for k = 5 that led to analogous conclusions. We note that the standard deviations in
our experiments were fairly high (usually close to the value of the reported averages, but sometimes
almost twice as large as the value of the reported average). This means that in many elections the
required number of random swaps was, in fact, notably smaller than the provided average, and in
some elections this number was significantly above the average.

As expected, the robustness radius decreases with the increase of randomness in the voters’
preferences. Indeed, one needs relatively few swaps to change the results of elections generated using
the Impartial Culture distribution, but changing the results of elections generated according to the
Mallows model requires many more (random) swaps. It is interesting that the results regarding the
Mallows model are somewhat different from those for the Sushi dataset, as it is often believed that
the Mallows model captures the preference orders from the Sushi dataset well [36]. Our results give
some circumstantial evidence that there is some nontrivial difference between the Sushi dataset
and the Mallows model (which, after all, is to be expected—it is unlikely that a simple synthetic
model would capture real-life data perfectly). In particular, based on the fairly small radiuses of
the elections generated using the Sushi distribution, we conclude that the preferences there are
rather diverse.

Among our rules, k-Borda is the most robust one (k-Copelandα, for α = 0.5, holds the second
place), whereas rules that achieve either diversity (β-CC and, to some extent, SNTV) or propor-
tionality (STV) are usually more vulnerable to small changes in the input. This is aligned with
what we have seen in the theoretical part of the paper (with a minor exception of SNTV). For the
case of k-Borda, indeed, we would expect that many swaps would cancel each other out (in terms
of the effect on the Borda scores of the candidates), which explains the rule’s large robustness. The
performance of Borda can also be explained by noting that it is a maximum likelihood estimator
for a noise model that is somewhat similar to ours (see, e.g., the overview provided by Elkind and
Slinko [22]).

10For k-Copelandα we took α = 0.5.
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Figure 2: Experimental results showing the average number of swaps needed to change the outcome
of random elections obtained according to the description in Section 7. The standard deviations
are quite high, on the same order as the averages themselves (and often a bit larger).

The results for STV call for some additional discussion. Indeed, the robustness radius of STV
turned out to be close to 10 in the Sushi, University Courses, and Impartial Culture distributions,
whereas for the Mallows model it was over 60, and for the mixture of two Mallows models it was
just below 40. The results for SNTV were qualitatively similar, wheres β-CC typically achieve
much higher robustness radiuses (e.g., in the Sushi dataset its average robustness radius was more
than four times larger than that of STV; for the other datasets—except for the University Courses
dataset—it was over two times larger). This is not completely surprising as STV cannot be easily
interpreted as a maximum likelihood estimator [13, 12] and, as per our Example 1, we should expect
lower robustness radiuses from rules focused on diversity and proportional representation. Yet, the
the fact that, on average, to change the result of an election with 30 voters and 10 candidates
(committee size 3) we may need only about 10 random swaps of adjacent candidates is worrisome.
In many elections—especially in the low-stake and medium-stake ones—we would expect many
voters to make small mistakes, where they rank two adjacent candidates in an opposite order (e.g.,
because these voters would be tired of the ranking process, or because they would view these two
candidates as similar etc.). As a consequence, for small STV elections there is a danger that the
outcome is affected by very minor, hard to predict, and hard to observe issues. Since relatively
small STV elections are common in practice (e.g., the rule is used by various universities and their
departments for internal elections), this result is quite meaningful. In particular, the organizers of
such elections may wish to check if small numbers of random swaps can change the results of their
elections and, if so and if this is feasible, they might wish to return to discussions on the voted
issues (this would, of course, require some agreement of the voters that if the outcome is not “clear”
in the sense of the robustness radius, then the discussions are resumed; this would be impossible
in some settings, but would be quite acceptable in others).

The above discussion is equally applicable to the case of SNTV, but usually when SNTV elec-
tions are conducated, the voters only submit their top preferences and, so, computing the robust-
ness radius in the sense of this section would be difficult. For the case of β-CC, the test could be
executed—and might be meaningful and reasonable—but the danger of non-robust results seems
to be smaller than in the case of STV (yet, note that for the University Courses dataset the results
of β-CC are as non-robust as those of STV).

8 Conclusions

We formalized the notion of robustness of multiwinner rules and studied the complexity of assessing
the robustness/confidence of collective multiwinner decisions. Our theoretical and experimental
analysis indicates that k-Borda is the most robust among our rules, and that proportional rules,
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such as STV and the Chamberlin–Courant rule, are on the other end of the spectrum. Indeed,
for these rules we suggest that organizers of small-scale elections run tests of the robustness of the
obtained results.

Our notions of robustness have already attracted attention of other researchers, who have, for
example, studied the complexity of the Robustness Radius problem for the Chamberlin–Courant
rule in more detail [46] (e.g., by considering structured preference profiles) or who have considered
the approval setting [46, 30]. Other interesting research directions involve analyzing the robustness
levels of multiwinner rules in the restricted preference domains (e.g., single-peaked preferences or
single-crossing preferences), considering counting variants of our problems to assess the probability
that a given number of random swaps can change the results (see the initial results of Gawron and
Faliszewski [30]), and finding natural voting rules with robustness levels strictly between 1 and k.
A more open-ended research direction is to seek further notions of robustness, both for the single-
and multi-winner voting settings.
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A θ
p
2-Hardness of Testing Membership in a Winning β-CC Com-

mittee

In this section we show that the β-CC Member problem is θp2-complete. To show θp2-membership,
we define two auxiliary NP-problems, Q1 and Q2:

Problem Q1: Given an election (C, V ) and an integer r, in Q1 we ask if there is a committee that
has β-CC-score greater than r.

Problem Q2: Given an election (C, V ), a distinguished candidate c∗, and an integer r, in Q2 we
ask if there is a committee that contains candidate c∗ and has β-CC-score at least r.

Note that Q1 is in NP because a committee with β-CC-score at least r + 1 is a polynomial-size
certificate for a “yes”-instance. Analogously, a committee containing c∗, with β-CC-score at least r
is a polynomial-size certificate for a “yes”-instance of Q2.

A given candidate c∗ belongs to some β-CC winning committee for some election (C, V ) if
and only if there is some r ∈ [0, |V | · (|C| − 1)] such that ((C, V ), r) is a “no”-instance of Q1

and ((C, V ), c∗, r) is a “yes”-instance of Q2. This can be checked by a deterministic Turing machine
that asks 2 · (|V | · (|C| − 1)+ 1) non-adaptive queries to an NP-oracle (as required by the definition
of θp2; see, e.g., the textbook of Hemaspaandra and Ogihara [34]). Thus, β-CC Member is in θp2.

Inspired by the work of Fitzsimmons et al. [27], we establish θp2-hardness using the polynomial-
time many-one reduction from Vertex Cover Member [33]. In this problem we are given
an undirected graph G = (V (G), E(G)) and a distinguished vertex v∗, and we ask if there is a
minimum-size vertex cover V ′ ⊆ V (G) that contains v∗. Hemaspaandra et al. [33] showed that
Vertex Cover Member is θp2-hard.

To simplify our proof, we show that θp2-hardness holds even if the input graph is regular.

Lemma 16. Vertex Cover Member is θp2-complete, even if the input graph is regular.

Proof. Given a graph G = (V (G), E(G)) and a distinguished vertex v∗ ∈ V (G), we extend it to
a new graph G′ such that every vertex in G′ has the same degree and vertex v∗ is part of some
minimum-size vertex cover in G′ if and only if it is also part of some minimum-size vertex cover
in G.

Let d = |E(G)| denote the desired, common degree of the vertices in G′ (without loss of
generality we assume that G is connected and is not a tree, so |E(G)| ≥ |V (G)|; we also assume
that d > 6). We note that prior to adding vertices and edges to G (to form G′), each vertex of
G has degree at most d. We will form G′ by introducing some number of new vertices and some
edges; each new edge will either connect two new vertices or one new vertex and one original vertex.
The sum of the degrees of the vertices in G is 2|E(G)|, but if each of these vertices were to have
degree d, then this sum would be d · |V (G)|. As a consequence, we need to add:

d · |V (G)| − 2|E(G)| = d · (V (G)− 2)

34



edges that connect original vertices with the new ones. We set t = |V (G)|−2 and we form t degree-
filling gadgets such that each gadget provides d edges between the old and the new vertices. Each
degree-filling gadget is constructed as follows: We have two sets of new vertices, A and B, with
A := {a1, . . . , ad} and B := {b1, . . . , bd−3}. Every vertex from B is connected with every vertex
from A (these are the only edges that touch vertices from B in the gadget). Vertices from A are
connected in a cyclic way, so that there is an edge between a1 and a2, between a2 and a3, and so on,
until the edge between ad and a1. Moreover, each vertex from A is connected to a single original
vertex (in an arbitrary way, but ensuring that, after considering all the degree-filling gadgets, every
original vertex has degree d). Note that graph G′ indeed contains only vertices of degree exactly d.

Let us now consider some degree-filling gadget and its minimum-size vertex cover. We claim
that this vertex cover contains exactly d vertices. Indeed, to cover the cycle between the vertices
from A, the cover needs to include at least d/2 vertices from A. Further, the cover either needs to
include all vertices from A or all vertices from B (otherwise some edge connecting a vertex from
A with a vertex from B would not be covered). By including all vertices from A we get a cover of
size d, whereas by including all vertices from B we get a cover of size at least d/2 + d − 3 (which
is greater than d, provided that d > 6, as assumed). Thus, without loss of generality, we can
assume that each minimum-size vertex cover of G′ uses exactly d vertices (of type A) from each
degree-filling gadget.

Consequently, there is a minimum-size vertex cover, say S, for G′ that contains all vertices of
type A from all degree-filling gadgets. These vertices cover all edges that were not originally in G.
Hence, the remaining vertices in S come from V (G) and form a minimum vertex cover of G.

Now we are ready to show θp2-hardness of β-CC Member, that is, we provide Theorem 10.

Construction Idea and Candidates. We give a reduction from the Vertex Cover Member

problem for regular graphs to the β-CC Member problem. Let G = (V (G), E(G)) be our input
graph, where every vertex has degree d, and let v∗ ∈ V (G) be the distinguished vertex. We denote
by q := |V (G)| the number of vertices in G and by r := |E(G)| = qd/2 the number of edges in G.
In our construction, we use the following four types of candidates:

1. The special bar candidate b. We form the voters in such a way that b belongs to every winning
committee.

2. For every vertex v ∈ V (G) we introduce a vertex candidate c(v). The intention is that
c(v) belongs to some winning committee if and only if v belongs to some minimum-size
vertex cover. For a set Y of vertices, we write c(Y ) to mean the set of corresponding vertex
candidates.

3. For every edge e ∈ E(G), we introduce a set D(e) of (2qr)4 edge-e candidates. The intention
is that these candidates never belong to a winning committee, but their presence ensures that
a winning committee must include candidates corresponding to a vertex cover.

4. We introduce q filler candidates f1, . . . , fq. The intention is that these candidates fill-in the
places in the winning committee that are not taken by the vertex candidates, in such a way
that the more filler candidates a committee includes, the lower is its dissatisfaction score.

We set the committee size to be q + 1. The main idea of the construction is that every winning
committee has to contain the bar candidate, as few of the vertex candidates as possible (but so that
they form a vertex cover), and arbitrary filler candidates to reach the committee size. Let c(v∗) be
the distinguished candidate.
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Voters. Following Remark 2 we focus on the dissatisfaction score instead of the β-CC-score of
a committee. A decisive construction property will be that the dissatisfaction score of a winning
committee will be at most X := 2qr. We form the following voter groups:

1. The bar group contains X + 1 bar voters, each with preference order:

b ≻ C \ {b}.

That is, every bar voter prefers b over all other candidates.

2. The edge group contains two voters for each edge e = {x, y} with the following preference
orders:

c(x) ≻ c(y) ≻ D(e) ≻ b ≻ . . . ,

c(y) ≻ c(x) ≻ D(e) ≻ b ≻ . . . ,

where the candidates behind b are ranked arbitrarily.

3. The filler group contains 2r voters for each filler candidate fi. The voters associated with
candidate fi have the following preference orders:

fi ≻ b ≻ . . . ,

where the candidates behind b are ranked arbitrarily. Altogether, there are X = 2qr voters
in the filler group.

This completes the construction. We see that it can be computed in polynomial time.

Correctness. Let us now analyze the properties of the constructed election. First, we note
that every winning committee must contain candidate b. In particular, if a committee does not
contain b, then its dissatisfaction score is at least X + 1 due to the bar voters. Second, the
committee {b} ∪ c(V (G)) has score X (the bar voters and the edge voters provide dissatisfaction
score 0, and each of the X filler voters provides dissatisfaction score 1). Thus no committee with
score greater than X is winning (and this includes all the committees that do not include b).

We are now ready to show the correctness of the reduction which is done via the following claim.

Claim 1. Let S be a β-CC-winning committee for the above-described election. Then S must be
of the form {b} ∪ c(V ′) ∪ F ′, where V ′ is a minimum size vertex cover for G and F ′ is a set of
q − |V ′| arbitrary filler candidates. Moreover, S has a dissatisfaction score of 2r + |V ′| · (2r − d).

To prove the claim, let S be some β-CC-winning committee. Let us consider some edge e =
{v, u}; we note that S does not contain any of the edge candidates from D(e). On the one hand, if
S already contained contains c(v) or c(u), then replacing one of the edge-e candidates with some
arbitrary filler candidate would give a committee with a smaller dissatisfaction score. On the other
hand, if S did not contain either of c(v) or c(u), then replacing an e-edge candidate with c(v) or
with c(u) would give a committee with a smaller dissatisfaction score.

Further, we note that S must include some set c(V ′) of candidates, where V ′ is a vertex cover
of G. Otherwise there would be some edge e = {u, v}, whose associated voters would provide
dissatisfaction score at least (2qr)4 > X (c(u) and c(v) would not be in the committee because it
did not contain a vertex cover and the edge candidates would not be included by the reasoning
from the previous paragraph).
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As a consequence of the above reasoning (and of the fact that b belongs to every winning
committee), we see that S is of the form {b} ∪ c(V ′) ∪ F ′, V ′ is a vertex cover, and F ′ is an
arbitrary subset of q − |V ′| filler candidates (note that the dissatisfaction score of the committee
depends on the number of the filler candidates, but not on their identities). Let us now compute
the dissatisfaction score of such an S.

First, there is no dissatisfaction from the voters in the bar group. To see the dissatisfaction
from the voters in the edge group, note that for each edge e the two corresponding voters either
contribute dissatisfaction score 1 (when exactly one endpoint of e is in V ′) or they contribute
dissatisfaction score 0 (when both endpoints of e are in V ′). A vertex cover of size |V ′| is incident
to edges exactly |V ′| · d times. Since a vertex cover is incident to each of the r edges at least once,
it holds that it is incident to |V ′| · d− r distinct edges exactly two times. Thus, |V ′| · d− r distinct
edges have both endpoints in V ′ and r − (|V ′| · d− r) = 2r − |V ′| · d edges have only one endpoint
in V ′. Thus the voters in the edge voter group contribute dissatisfaction score 2r − |V ′| · d. The
voters in the filler group, by definition, contribute (q − |F ′|) · 2r = |V ′| · 2r to the dissatisfaction
score. In total, the dissatisfaction score of our winning committee S is:

2r − |V ′| · d+ |V ′| · 2r = 2r + |V ′| · (2r − d).

Based on this formula, we see that the vertex cover V ′ induced by committee S must have the
smallest cardinality, because this leads to the lowest dissatisfaction score of S (as 2r > d). This
completes the proof of the claim.

By a reasoning analogous to that from the proof of Claim 1, we see that if V ′ is a minimum-size
vertex cover for G, then every committee of the form {b} ∪ c(V ′) ∪ F ′, where F ′ includes q − |V ′|
arbitrary filler candidates, is winning in our election. This completes the proof of Theorem 10.
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