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Complexity Results for Preference Aggregation over (m)CP-nets:
Max and Rank Voting∗

Thomas Lukasiewicza and Enrico Maliziab

aDepartment of Computer Science, University of Oxford, UK
bDISI, University of Bologna, Italy

Abstract

Aggregating preferences over combinatorial domains has a plethora of applications in AI. Due to the
exponential nature of combinatorial preferences, compact representations are needed, and conditional ceteris
paribus preference networks (CP-nets) are among the most studied compact representation formalisms. Unlike
the problem of outcome dominance over individual CP-nets, which received an extensive complexity analysis
in the literature, mCP-nets (and global voting/preference aggregation over CP-nets) lacked such a thorough
complexity characterization, despite this being reported multiple times in the literature as an open problem.
An initial complexity analysis for mCP-nets was carried out only recently, where Pareto and majority
dominance semantics were studied. In this paper, we further explore the complexity of mCP-nets, giving a
precise complexity analysis of the dominance semantics in mCP-nets when the max and rank voting schemes
are considered. In particular, we show that deciding dominance under max voting is ΘP

2 -complete, while
deciding optimal outcomes and their existence under max voting is complete for ΠP

2 and ΣP
3 , respectively. We

also show that, under max voting, deciding optimum outcomes is ΠP
2 -complete, and deciding their existence is

ΠP
2 -hard and in ΣP

3 . As for rank voting, apart from deciding whether mCP-nets have rank optimal outcomes,
which is a trivial problem, as all mCP-nets have rank optimal outcomes, all the other rank voting tasks
considered are tractable and in P. Interestingly, we show here that these problems are not only in P, but
also P-hard (and hence P-complete). Furthermore, we show that deciding whether mCP-nets have Pareto
optimum outcomes, which was known to be feasible in polynomial time, is actually P-complete, as well as
that various tasks for CP-nets are P-complete. These results provide interesting insights, as P-complete
problems are (currently believed to be) inherently sequential, and hence they cannot benefit from highly
parallel computations.

1 Introduction
The problem of managing and aggregating agent preferences has attracted extensive interest in the computer
science community (see, e.g., the comprehensive survey by Brandt et al. [16]), because methods for representing
and reasoning about preferences are very important in AI applications, such as recommender systems [52],
(group) product configuration [11, 23, 60], (group) planning [10, 55, 57, 59], (group) preference-based constraint
satisfaction [6, 9, 12], and (group) preference-based query answering/information retrieval [7, 20, 46, 47].

Social choice theory, which is the branch of economics studying methods for collective decision making [3, 4],
has often been employed in the computer science literature to have a solid theoretical ground upon which to
properly build the study of agent preference aggregation. For this reason, social choice has received extensive
investigation from its computational perspective. However, the sets of candidates considered in social choice
theory are usually (although not always) small in size, and hence in this theory, not much attention has been
devoted to the actual ways to represent agent preferences, which has an important impact from a computational
perspective. The underlying assumption has often been that agent preferences are extensively represented (see the
survey by Brandt et al. [16] and the references therein), and hence most of the results achieved in computational
social choice hold for this kind of representations. Extensively representing preferences is completely reasonable
when we deal with small sets of candidates, like, e.g., in political elections. However, it is not feasible when the
voting domain (i.e., the set of candidates) has a combinatorial structure [17, 34, 37], which means that the set
of candidates (or outcomes) is the Cartesian product of finite value domains for each of a set of features (also

© 2022. This manuscript version is made available under the CC BY-NC-ND 4.0 license. The formal publication of this
manuscript is available via the DOI: 10.1016/j.artint.2021.103636.

∗Preliminary results of this paper have appeared in Proc. of AAAI [43] and in Proc. of AAMAS [48].

1

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://doi.org/10.1016/j.artint.2021.103636


called variables, or issues, or attributes). The problem of aggregating agents’ preferences over combinatorial
domains (or multi-issue domains) is called a combinatorial vote [33, 34].

Interestingly, votes over domains exhibiting a combinatorial structure are rather common. For example,
on the day of the 2012 US presidential election, voters in California expressed their preferences also for 11
referenda [37]. Making a joint decision regarding different related issues in a community, like whether and where
to build a new swimming pool or library, is another example of a combinatorial vote. Other names given to
these voting scenarios are multiple elections or multiple referenda [13, 17, 36, 37, 65, 66]. Another example is
the following group planning scenario. During the exploration of a remote area/planet, a set of autonomous
robots, each of which has a specific task to accomplish, coordinate to achieve a common goal. To complete their
individual tasks, the robots have their own specific preferences over a vast amount of variables/features emerging
from the contingency of the situation, and their individual preferences have to be blended in all together. Only
in this way, the overall mission can be successful. These examples show that combinatorial votes are rather
important, and hence there is the need of finding ways to represent the combinatorial preferences of agents and
algorithms to aggregate them.

By definition, the number of outcomes in a combinatorial domain is exponential in the number of features. For
this reason, we need compact representations for combinatorial preferences [34, 37]. CP-nets [8] are a graphical
model for representing combinatorial preferences, and they are one of the most studied compact representations
for combinatorial preferences, as a vast literature on them demonstrates. In CP-nets, features are represented via
vertices of a graph, and an edge from vertex A to vertex B indicates that feature A’s value influences the choice
of feature B’s value. Intuitively, the preferences represented via CP-nets are of the kind “keeping everything else
equal, if I am having fish for dinner, then I would rather pair it with a white wine than with a red wine”. In
this scenario, A is the type of dinner, and B (depending on A) is the type of wine. This kind of preferences are
called conditional ceteris paribus preferences.

Rossi et al. [53] introduced mCP-nets as an extension of CP-nets to groups of agents. An mCP-net is
essentially a profile of CP-nets, one for each agent. Voting procedures are at the base of the group dominance
semantics of mCP-nets: every agent, with its own CP-net, expresses its preferences for an outcome over another.
Various voting schemes were proposed for mCP-nets [42, 53], and different voting schemes give rise to different
group dominance semantics for mCP-nets. The specific way in which votes are collected from the agents in order
to implement a voting rule is called voting protocol [18]. The voting protocol implementing mCP-nets’ group
dominance semantics is global voting [35, 37], which assumes that the whole CP-nets are available during the
process of preference aggregation—as the dominance semantics for mCP-nets is global voting over CP-nets, in the
following, we use “global voting over CP-nets” and “(group) dominance semantics for mCP-nets” interchangeably.
Sequential voting is a different voting protocol for CP-nets, in which preference aggregation is carried out
feature-by-feature. A comparison between sequential voting and global voting over CP-nets was explicitly asked
for in the literature and stated to be highly promising [35]. However, global voting over CP-nets has not received
as much attention as sequential voting. A precise complexity analysis of global voting was missing for a long
time, as explicitly mentioned several times in the literature [35, 38, 39, 40, 42, 58]. Only recently, a thorough
complexity analysis of Pareto and majority global voting over CP-nets was carried out in [45].

In this paper, we continue our thorough complexity investigation started in [45] by considering max and
rank voting as defined by Rossi et al. [53]. We expand our previous work and further explore the complexity
of mCP-nets (and hence of global voting over CP-nets). As in our previous work, we study acyclic binary
mCP-nets, whose constituent CP-nets are the standard ones (and not partial CP-nets, which instead were
allowed in the original definition of mCP-nets [53]). Many works in the literature assume the CP-net profiles to
be O-legal, which imposes a common topological order to all the CP-nets of the profile. O-legality is required
when sequential voting is considered. Otherwise, voting paradoxes (i.e., the selection in the aggregation process
of suboptimal outcomes) can happen. O-legality is a quite stringent constraint, which we can avoid to assume in
this work, as it was also not assumed in [45], because we consider global voting. Our main goal in this paper is
to carry out a precise complexity analysis of the dominance semantics in mCP-nets when the max and rank
voting schemes [53] are considered. For each of these voting schemes, we investigate the complexity of deciding
the dominance relation, the complexity of deciding whether a given outcome is optimal or optimum, and the
complexity of deciding whether the mCP-net admits optimal or optimum outcomes. In the course of this, we
also prove that various tasks for CP-nets are P-complete and that deciding whether mCP-nets have Pareto
optimum outcomes, which was known to be feasible in polynomial time, is actually P-complete as well.

The rest of this paper is organized as follows. We provide some preliminaries in the next section, and
an overview of the complexity results obtained in this paper in Section 3. Studying the rank semantics over
mCP-nets requires that various problems regarding the evaluation of optimal outcomes and outcomes’ rank
in (individual) CP-nets have been addressed first, and this is carried out in Section 4. We are then ready to
investigate the complexity of rank voting over mCP-nets in Section 5. In Section 6, we analyze the complexity
of max voting over mCP-nets. In Section 7, we discuss related works, and Section 8 summarizes the main results
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and gives an outlook on future research. The proofs of two results in Section 6 require several pages and are
provided in full detail in the appendix.

2 Preliminaries
In this section, we give some preliminaries on conditional preference nets (CP-nets), CP-nets for groups of m
agents (mCP-nets), and the complexity classes that we will encounter in our complexity results.

In this paper, a preference relation R over a set of outcomes O is a strict order over O, i.e., R is a binary
relation over O that is irreflexive (i.e., ⟨α, α⟩ /∈ R), asymmetric (i.e., if ⟨α, β⟩ ∈ R, then ⟨β, α⟩ /∈ R), and
transitive (i.e., if ⟨α, β⟩ ∈ R and ⟨β, γ⟩ ∈ R, then ⟨α, γ⟩ ∈ R). A preference ranking R is a preference relation
that is total (i.e., either ⟨α, β⟩ ∈ R or ⟨β, α⟩ ∈ R for any two different outcomes α and β).

2.1 CP-nets
CP-nets are a formalism to encode conditional ceteris paribus preferences over combinatorial domains.

Definition 2.1. A CP-net N = ⟨GN , DomN , (CPTF
N )F ∈FN

⟩ consists of a directed graph GN = ⟨FN , EN ⟩ whose
vertices FN represent the features of a combinatorial domain, a function DomN , and a family of functions
(CPTF

N )F ∈FN
, where DomN associates a (value) domain DomN (F ) with every feature F , while every function

CPTF
N is the CP table for F , defined below.

The value domain of a feature F is the set of all values that F may assume in the possible outcomes. In
this paper, features are binary, i.e., the domain of each feature F contains exactly two values, usually denoted
f and f , which we call the overlined and the non-overlined value (of F ), respectively. For a set of features
S, DomN (S) = ×F ∈SDomN (F ) denotes the Cartesian product of the domains of the features in S. Thus, an
outcome is an element of ON = DomN (FN ). Given a feature F and an outcome α, we denote by α[F ] the value
of F in α, while, given a set of features F , α[F ] is the projection of α to F , i.e., the sub-outcome obtained from
α in which only values of features in F are retained. For two outcomes α and β, and a set of features F , we
denote by α[F ] = β[F ] that α[F ] = β[F ] for all F ∈ F ; we write α[F ] ̸= β[F ], otherwise, i.e., when there is at
least one feature F ∈ F such that α[F ] ̸= β[F ].

The CP tables encode preferences over feature values. Intuitively, the CP table of a feature F specifies
how the values of the parent features of F influence the preferences over the values of F . More formally, for
a feature F , we denote by ParN (F ) = {G ∈ FN | ⟨G, F ⟩ ∈ EN } the set of all features in GN from which there
is an edge to F . We call ParN (F ) the set of the parents of F (in N ). We denote by OrdN (F ) the set of all
the preference rankings over the elements of DomN (F ). Each function CPTF

N : DomN (ParN (F )) → OrdN (F )
maps every element of DomN (ParN (F )) to a preference ranking over the domain of F . If ParN (F ) = ∅, then
CPTF

N is a single preference ranking over DomN (F ). Note that indifferences between feature values are not
admitted in (classical) CP-nets. Each function CPTF

N is represented via a two-column table, in which, given a
row, the element in the first column is the input value of the function CPTF

N , and the element in the second
column is the associated preference ranking over DomN (F ). Since CPTF

N is total, in the table representing its
function there is a row for any combination of values of the parent features, i.e., for every feature F , there are
2|DomN (ParN (F ))| rows in the CP table of F .

In the following, when we define CP tables, we often use a logical notation to identify for which specific
values of the parent features a particular row in the CP table has to be considered. Although this is an idea on
which generalized propositional CP-nets [24] are based on, here it is used only for notational convenience. In
this paper, we always assume that CP tables are explicitly represented in the input instances. In the second
column of CP tables, f ≻ f denotes f being preferred to f . In particular, the logical notation a ⊕ b in the first
column of CP tables is verified when exactly one feature among A and B has an overlined value (recall that
our features are always binary). If A, B, and C are three features, with A and B parents of C, when we say
that the CP table of C contains “(a ∧ b) → c ≻ c”, we mean that in the CP table of C there is a row in which
the element in first column is “a ∧ b” and the element in second column is “c ≻ c” (see the second row of the
CP table of C in Figure 1a); and when we add that the CP table of C is “c ≻ c otherwise”, we mean that in all
the remaining rows the element in the second column is “c ≻ c”. For a feature without parents, like feature A in
the CP-net in Figure 1a, we say that its CP table is “a ≻ a”, meaning that its CP table is constituted by this
single preference ranking (see above).

The preference semantics of CP-nets can be defined in several different but equivalent ways [8]. Here, we
adopt the concept of improving (or alternatively worsening) flip [8, Definition 4]: let F be a feature, and let α be
an outcome. Intuitively, flipping the value of F in α from α[F ] to a different one is an improving flip, if the new
value of F is preferred, given the values in α of the parent features of F . More formally, flipping F from α[F ] to
a different value f ′ is an improving flip, if f ′ ≻ α[F ] holds in CPTF

N (α[ParN (F )]). Given two outcomes α and β
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(a) A CP-net N with three features.
(b) The CP-net’s induced preference graph GN .

Figure 1: A CP-net and its induced preference graph.

differing only on the value of a feature F , there is an improving flip from α to β, denoted α
F−→N β, if flipping

the value of F from α[F ] to β[F ] is an improving flip. In the following, we often omit the feature F and simply
write α −→N β; and when we say that we flip a feature, then we often mean that the flipping is improving. The
induced preference graph of N is the graph GN = ⟨VN , EN ⟩, where the nodes VN are all the possible outcomes
of N , and, given two outcomes α, β ∈ VN , a directed edge from α to β belongs to EN iff α −→N β.

For an agent whose preferences are encoded through a CP-net N , we say that the agent prefers β to α,
or that β dominates α (in N), denoted β ≻N α, if there is an improving flipping sequence from α to β, or,
equivalently, there is a path in the induced preference graph GN from the vertex associated with α to the vertex
associated with β. If for two outcomes α and β, neither α ≻N β nor β ≻N α, then α and β are incomparable
(in N ), which is denoted by α ▷◁N β. Note here that, as there are no indifferences between feature values in
(classical) CP-nets, in the standard dominance semantics, for any two distinct outcomes, either one dominates
the other, or they are incomparable.

In a CP-net, an outcome is optimal if it is not dominated by any other outcome; while an outcome is optimum
if it dominates all other outcomes (in which case, it is also optimal).

Example 2.2. Consider the CP-net N and its induced preference graph shown in Figure 1. For the outcomes
α = abc and β = abc, it holds that β ≻N α, because α

A−→N β. For the outcomes α = abc and γ = abc, it holds
that γ ̸≻N α, because there is no path from α to γ in GN . On the other hand, α ≻N γ, because γ

C−→N α, and
hence it is not the case that α ▷◁N γ. Consider now the outcomes α = abc and δ = abc. Then, δ ≻N α by
the improving flipping sequence abc −→ abc −→ abc −→ abc. By looking at the induced preference graph, we can
recognize the outcome abc as optimal, because there are no outgoing edges from the associated vertex, and it is
also optimum, because there is a path from any vertex to abc. ◁

A CP-net is binary, if all its features are binary. The in-degree of a CP-net N is the maximum number of
edges entering into a node of the graph GN . A CP-net N is singly connected, if, for any two distinct features G
and F , there is at most one path from G to F in GN . A class C of CP-nets is polynomially connected, if there
exists a polynomial p such that, for any CP-net N ∈ C and for any two features G and F of N , there are at most
p(∥N∥) distinct paths from G to F in GN , where ∥N∥ denotes the size of a CP-net N , i.e., the space in terms of
bits required to represent the whole net N (which includes features, edges, feature domains, and CP tables).
A CP-net N is acyclic, if GN is acyclic. It is well known that, for acyclic CP-nets N , their induced preference
graph GN is acyclic, the preferences encoded by N are consistent (i.e., there is no outcome α such that α ≻N α),
and there is a unique optimal outcome oN , which is also optimum, that can be computed in polynomial time [8].

Based on the definition of optimal outcome of an acyclic CP-net, the notion of a rank of an outcome can be
defined. The term rank is used in the literature to name also different concepts (see Section 7 for more details).
However, in this paper, we refer to the definition of Rossi et al. [53]. Intuitively, the rank of an outcome in an
acyclic CP-net is a measure of how much worse the outcome is compared to the optimum one. More formally,
the rank of an outcome α in an acylic CP-net N , denoted RankN (α), is the length of the shortest path from α
to the optimum outcome oN in the induced preference graph of N , which is also the least number of improving
flips necessary to transform α into oN . For example, in the CP-net of Example 2.2, the rank of abc is 1, while
the rank of abc is 2.

If we compare outcomes according to their rank, we can define a dominance semantics between outcomes
in CP-nets that is different from the standard dominance semantics of CP-nets described above. It is easy to
exhibit small examples in which the two dominance semantics differ. An interesting difference between the
standard dominance semantics and the dominance semantics based on rank comparisons is that, in the latter,
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outcomes cannot be incomparable, as they are indifferent when they have the same rank [53].
It is known that dominance testing, i.e., deciding, for any two given outcomes α and β, whether β ≻ α,

is in NP over polynomially connected classes of acyclic binary CP-nets [8]. However, it is unknown whether
dominance testing is in NP over non-polynomially-connected classes of acyclic binary CP-nets. In this respect,
Allen’s conjecture [1, 2] states that, in general (non-polynomially-connected) acyclic binary CP-nets, if an
outcome α dominates an outcome β, then the length of the shortest flipping sequence from β to α is O(n2),
where n is the number of features in the CP-net. This would imply the membership in NP of the problem also
for this class of CP-nets. Also, the complexity of dominance testing for non-binary CP-nets is currently unknown.
Regarding the tractable cases, it is known that dominance testing can be carried out in polynomial time on
acyclic binary CP-nets whose graph is a tree or a polytree (which means that the graph obtained by making
undirected the edges of the graph of the CP-net is acyclic) [8]. Regarding the hardness of the dominance test, it is
known that the problem is NP-hard already for the quite simple class of acyclic binary singly connected CP-nets
whose in-degree is at most three [45]. For an extension of CP-nets, called generalized CP-nets, dominance testing
is PSPACE-complete [24].

Given that the dominance semantics based on rank comparisons and the standard dominance semantics
are different, one may wonder why use the rank dominance rather than the standard one. As we show later in
Section 4, a non-negligible advantage of rank comparison over the standard dominance semantics is that the
evaluation of the former can be carried out in polynomial time over any acyclic CP-net, whereas the latter is in
general NP-hard over acyclic CP-nets (see above).

In the rest of this paper, we consider only acyclic binary classes of CP-nets. We specify when the class
considered is also polynomially connected. When the CP-net N is clear from the context, we often omit the
subscript “N” from the notations introduced above.

2.2 mCP-nets
mCP-nets [53] are a formalism to reason about conditional ceteris paribus preferences when a group of multiple
agents is considered. Intuitively, an mCP-net is a profile of m (individual) CP-nets, one for each agent of the
group. The original definition of mCP-nets also allows for partial CP-nets. Here, we consider only mCP-nets
consisting of a collection of standard CP-nets. The difference is that we do not allow for non-ranked features in
agents’ CP-nets, and hence there is no distinction between private, shared, and visible features (see the work by
Rossi et al. [53] for definitions), i.e., all features are ranked in all the individual CP-nets of an mCP-net.

As underlined by Rossi et al. [53], the “m” of an mCP-net stands for multiple agents and also indicates that
the preferences of m agents are modeled, so a 3CP-net is an mCP-net with m = 3. Formally, in this paper,
an mCP-net M = ⟨N1, . . . , Nm⟩ consists of m CP-nets N1, . . . , Nm, all of them defined over the same set of
features, which, in turn, have the same domains. If M is an mCP-net, we denote by FM the set of all features
of M, and by DomM(F ) the domain of feature F in M. Given this notation, FNi

= FM, for all 1 ≤ i ≤ m, and
DomNi (F ) = DomM(F ), for all features F ∈ FM and all 1 ≤ i ≤ m. Although the features of the individual
CP-nets are the same, their graphical structures may be different, i.e., the edges between the features in the
various individual CP-nets may vary. We underline here that, unlike other papers in the literature, we do not
impose that the individual CP-nets of the agents share a common topological order (i.e., we do not restrict the
profiles of CP-nets to be O-legal).

An outcome for an mCP-net is an assignment to all the features of the CP-nets, and given an mCP-net M,
we denote by OM the set of all the outcomes in M. The preference semantics of mCP-nets is defined through
global voting over CP-nets. In particular, via their own individual CP-net, each agent votes whether an outcome
dominates another, and hence different ways of considering votes (i.e., different voting schemes) give rise to
different group dominance semantics for an mCP-net [42, 53].

Let M = ⟨N1, . . . , Nm⟩ be an mCP-net, and let α and β be two outcomes. The sets S≻
M(α, β) = {i | α ≻Ni

β},
S≺

M(α, β) = {i | α ≺Ni
β}, and S▷◁

M(α, β) = {i | α ▷◁Ni
β} are the sets of the agents of M preferring α to β,

preferring β to α, and for which α and β are incomparable, respectively. The notion of rank of an outcome can
be extended to mCP-nets. In particular, we denote by RankM(α) =

∑
1≤i≤m RankNi (α) the rank of α in M [53].

Consider an mCP-net M = ⟨N1 , . . . , Nm⟩, and let α and β be two outcomes. The Pareto, max, and rank
(and for comparison, also majority) dominance semantics are defined by Rossi et al. [53] as follows:

Pareto: β Pareto dominates α, denoted β ≻p
M α, if all the agents of M prefer β to α, i.e., |S≻

M(β, α)| = m.1

Majority: β majority dominates α, denoted β ≻m
M α, if the majority of the agents of M prefers β to α, i.e.,

|S≻
M(β, α)| > |S≺

M(β, α)| + |S▷◁
M(β, α)|.

Max: β max dominates α, denoted β ≻x
M α, if the group of the agents of M preferring β to α is the biggest,

i.e., |S≻
M(β, α)| > max(|S≺

M(β, α)|, |S▷◁
M(β, α)|).

1In the literature, this form of Pareto dominance is often also called strong Pareto dominance [54].
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Figure 2: Dinner preferences of Alice, Bob, Chuck, and Deborah (in this order) modeled via CP-nets (above)
and their induced preference graphs (below).

Rank: β rank dominates α (in M), denoted β ≻r
M α, if the rank of β in M is lower than the rank of α, i.e.,

RankM(β) < RankM(α).
Observe the difference between the majority and the max dominance semantics. Max dominance is closer to

a relative majority dominance semantics. In this semantics, an outcome β dominates an outcome α if the group
of agents expressing the preference of β over α is the biggest group, irrespective of the fact that these agents
are more than half of the whole voting population. For an analysis of the relationships between these voting
schemes, see the work by Rossi et al. [53].

Similarly to what happens for the rank dominance semantics on CP-nets, also for the rank group dominance
semantics over mCP-nets outcomes are indifferent when their overall rank is the same. For this reason, any
two outcomes are never rank-incomparable in an mCP-net. For the other semantics (i.e., Pareto, majority, and
max), outcomes can be incomparable when there is no dominance between them.

For an mCP-net M and a voting scheme s, an outcome α is s-optimal (in M), if there is no outcome β such
that β ≻s

M α, while α is s-optimum (in M), if, for all outcomes β ̸= α, α ≻s
M β.

An mCP-net is acyclic, binary, and singly connected, if all its CP-nets are acyclic, binary, and singly connected,
respectively. A class C of mCP-nets is polynomially connected, if the set of CP-nets constituting the mCP-nets
in C is a polynomially connected class of CP-nets. The in-degree of an mCP-net is the maximum in-degree of its
constituent individual CP-nets. Unless stated otherwise, we consider only acyclic binary mCP-nets. We specify
when the class considered is also polynomially connected. When the mCP-net M is clear from the context, we
often omit the subscript “M” from the above notations.
Example 2.3. Consider a multi-agent dinner scenario, with agents Alice, Bob, Chuck, and Deborah, expressing
their preferences via CP-nets (see Figure 2). The features considered in these CP-nets are the Main and the
Wine for the dinner, where the possible values for Main are m and f , denoting “meat” and “f ish”, respectively,
and the possible values for Wine are r and w, denoting “red (wine)” and “white (wine)”, respectively. Observe
that the CP-nets in this example are not O-legal, i.e., they do not share a common topological order.

No outcome is Pareto dominated by another, which implies that all outcomes are Pareto optimal. If we
consider majority voting, mr majority dominates fr, because Alice, Bob, and Chuck prefer mr to fr. For this
reason, fr is not majority optimal. On the other hand, mr does not majority dominates fw, because only Alice
and Chuck prefer mr to fw. It is not difficult to verify that no outcome majority dominates fw, and hence fw
is majority optimal. If we consider max voting, mr max dominates fw, because Alice and Chuck prefer mr to
fw, Bob prefers fw to mr, while mr and fw are incomparable for Deborah. Hence, fw is not max optimal,
although it is majority optimal (see above). It is not hard to see that mr is both majority and max optimal.
Furthermore, mr is even a max optimum, because it max dominates all other outcomes. Outcomes mw and fr
are neither majority optimal nor max optimal. If we consider rank voting, mr rank dominates mw, because
mr’s total rank is 3, and mw’s total rank is 5. For this reason, mw is not rank optimal. Outcomes mr and fr
are rank optimal, because there is no other outcome having a lower total rank. ◁

2.3 Complexity classes
We assume that the reader has some background in computational complexity theory, including the notions
of Boolean formulas and quantified Boolean formulas, Turing machines, and hardness and completeness of a
problem for a complexity class, as can be found, e.g., in the works of Johnson [29] and Papadimitriou [50].
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We only briefly recall the complexity classes (and some closely related ones) that we encounter in this
paper. P (resp., LOGSPACE, PSPACE, EXPTIME) is the class of all decision problems that can be decided
in polynomial time (resp., logarithmic space, polynomial space, exponential time) by a deterministic Turing
machine. NP is the class of all decision problems that are decidable in polynomial time by a nondeterministic
Turing machine, and co-NP is its complementary class, where ‘yes’ and ‘no’ instances are interchanged; NP
and co-NP are (currently believed to be) distinct. LOGSPACE, P, PSPACE, and EXPTIME (as they are
classes characterized by deterministic machines) are closed under complement, which means that the complement
problems reside in the very same classes. The class ΘP

2 is the class of all decision problems that can be decided
in polynomial time by a deterministic Turing machine using a logarithmic number of calls to an NP oracle; ΘP

2
is closed under complement, because the machine calling the NP oracle is deterministic. The class ΣP

2 (resp.,
ΣP

3 ) is the class of all decision problems that can be decided in polynomial time by a nondeterministic Turing
machine using an NP (resp., ΣP

2 ) oracle, and ΠP
2 (resp., ΠP

3 ) is the complement of ΣP
2 (resp., ΣP

3 ). ΣP
2 and ΠP

2
(resp., ΣP

3 and ΠP
3 ) are (currently believed to be) distinct classes. The class DP (resp., DP

2 ) is the class of all
problems that are the intersection of a problem in NP (resp., ΣP

2 ) and a problem in co-NP (resp., ΠP
2 ), more

formally, DP = {L | L = L′ ∩ L′′, L′ ∈ NP, L′′ ∈ co-NP} (resp., DP
2 = {L | L = L′ ∩ L′′, L′ ∈ ΣP

2 , L′′ ∈ ΠP
2 }).

The inclusion relationships (which are all currently believed to be strict) for the above-mentioned complexity
classes are: LOGSPACE ⊆ P ⊆ NP, co-NP ⊆ DP ⊆ ΘP

2 ⊆ ΣP
2 , ΠP

2 ⊆ DP
2 ⊆ ΣP

3 , ΠP
3 ⊆ PSPACE ⊆ EXPTIME.2

A problem is C-complete for a complexity class C, if the problem belongs to C and is moreover C-hard.
A problem L is C-hard for a complexity class C ⊇ NP, if all problems in C can be reduced to L in polynomial
time. A problem L is P-hard, if all problems in P can be reduced to L in logarithmic space.

3 Overview of complexity results
We now give an overview of the complexity results obtained in this paper, namely, P-completeness results for
CP-nets, and complexity results for the rank and the max dominance semantics in mCP-nets. We recall that, in
this paper, we analyze mCP-nets whose constituent CP-nets are standard CP-nets and not partial CP-nets, as
in the definition by Rossi et al. [53]; moreover, the (m)CP-nets considered here are always binary and acyclic.

3.1 Rank dominance in CP-nets
To subsequently analyze the complexity of rank voting in mCP-nets, we first explore the complexity of the
several problems over CP-nets, namely, deciding whether a feature has a specific value in the optimum outcome
of a CP-net (Feat-Value-Opt), deciding whether two CP-nets have the same optimum outcomes (Same-Opt),
deciding whether the rank of an outcome does not exceed a given threshold (Rank-Bound), and deciding
whether the rank of an outcome is smaller than the rank of another outcome (Compare-Rank), which are here
all shown to be P-complete; see Figure 3.

These tractability results (memberships in P) are quite important. Recall from the preliminaries that the
concept of outcome rank induces a total non-strict order over the outcomes of a CP-net, as outcomes can be
ordered according to their ranks, and that the preference orders induced by the rank semantics and the standard
dominance semantics are different. Hence, one may wonder which semantics should be preferred over the other,
especially because, up to now, it was believed that the computational effort needed to evaluate the two semantics
was similar. Indeed, standard dominance for CP-nets is known to be NP-hard [8], and the algorithm known until
now to compute the rank of outcomes over acyclic CP-nets [53], which is necessary to decide rank dominance,
requires exponential time. This latter algorithm requires exponential time, as it exhaustively explores the whole
space of all outcomes to incrementally compute their ranks [53]. More precisely, the actual algorithm proposed
by Rossi et al. [53] to compute the rank of outcomes is thought to work over partial acyclic CP-nets. However,
their algorithm deals with the part of the net making the CP-net “partial” in a first phase, while in a second
phase the algorithm processes the rest of the partial CP-net as it were a standard CP-net, i.e., the fact of actually
being a partial CP-net does not matter here. This means that the algorithm proposed by Rossi et al. [53] can
be run on standard CP-nets with only simple adaptations. More specifically, its “second phase” can be run on
standard CP-nets without any modification after an initial quick computation that replaces the “first phase”.
In particular, this initial amendment simply requires to compute (in polynomial time) the optimal outcome of
the standard CP-net. The execution time of the “second phase” remains exponential, irrespective of the actual
computation carried out before as “first phase”.

Interestingly, we show here that, over acyclic binary CP-nets, outcome ranks can be computed in polynomial
time, which is a big leap from exponential time. We obtain this by highlighting an interesting property of
outcome ranks in acyclic binary CP-nets that has remained unnoticed up to now. In particular, we prove

2For these inclusion relationships, the notation “A ⊆ B, C ⊆ D” is a shorthand for A ⊆ B, A ⊆ C, B ⊆ D, C ⊆ D, B ̸⊆ C, and
C ̸⊆ B.

7



Problem Complexity
Feat-Value-Opt: Given a CP-net N , a feature F ∈ FN , and a value v ∈ DomN (F ) for F , P-complete

decide whether oN [F ] = v.
Same-Opt: Given two CP-nets N1 and N2 (defined over the same set of features, P-complete

having the same domain in the two nets), decide whether oN1 = oN2 .
Rank-Bound: Given a CP-net N , an outcome α ∈ ON , and an integer k, P-complete

decide whether RankN (α) ≤ k.
Compare-Rank: Given a CP-net N and two outcomes α, β ∈ ON , P-complete

decide whether RankN (β) < RankN (α).

Figure 3: Complexity results obtained in this paper for tasks over CP-nets.

that, in acyclic binary CP-nets, the rank of an outcome α is equal to the number of feature values in α that
differ from the respective feature values in the optimum outcome. This property allows to avoid the exhaustive
exploration of the space of the outcomes to compute their ranks. Being capable of computing ranks in polynomial
time makes it possible to compare outcomes according to their ranks in polynomial time. Therefore, with
this result, we now know that an advantage of the rank dominance semantics over the standard dominance
semantics in acyclic binary CP-nets is that the former can be evaluated in polynomial time over any class of
acyclic binary CP-nets, polynomially connected or not, whereas the latter is NP-hard already for classes of quite
simple acyclic binary singly connected CP-nets of in-degree at most three [45].

Furthermore, also the hardness results (the P-hardnesses) are quite interesting. In fact, even if polynomial-
time voting schemes are adopted in real systems, autonomous agents often interact with a huge number of peers,
and they coordinate and aggregate preferences over even larger domains. This may be tackled by using parallel
algorithms on parallel hardware. However, some problems, although solvable in polynomial time, are inherently
sequential, and so do not benefit from highly parallel processing [27]. Saying that a problem L does not benefit
from highly parallel processing does not mean that L does not admit parallel algorithms for its solution, but it
means that parallel algorithms for L would not provide a speedup comparable with the increase in the amount of
processing hardware available [27] (to give a rough example, having two processors, instead of just one, would not
halve the algorithm’s execution time). Intuitively, this is due to the fact that, in such problems, the intermediate
steps needed to compute the final answer essentially have to be performed in sequence, because a step needs the
results of the previous ones, before it can be actually executed. P-hard problems are the ones currently believed
to be non-parallelizable, as the complexity class P is currently believed to be distinct from NC, which is the class
of the highly parallelizable problems [27]. For this reason, P-complete problems are quite interesting, because
they are in P, and hence they are regarded as “easy”, but they are not parallelizable, which could be an issue
when the input is big.

The complexity results of these problems on CP-nets allow us also to show that deciding whether an mCP-net
has a Pareto optimum outcome is P-hard (see Figure 4), which is known to be in P, but its hardness was left
open [45].

To obtain the P-hardness results, we define and analyze the complexity of the problem Th-CVP: given a
Boolean circuit C , a Boolean vector x, and an integer k, decide whether the number of gates of C evaluating to
true when x is given in the input to C is at most (resp., at least) k. Th-CVP is shown to be P-complete, and
so it can be very useful in reductions showing P-hardness of problems involving counting tasks.

3.2 Rank voting in mCP-nets
The rank semantics in CP-nets can be extended to mCP-nets, and in fact the former was introduced for the
purpose of defining the rank group dominance semantics in mCP-nets by Rossi et al. [53]. Hence, based on the
above P-completeness results for CP-nets, we then explore the complexity of the rank dominance semantics
in mCP-nets, namely, the complexity of the problems of deciding rank dominance (Rank-Dominance), of
deciding whether an outcome is rank optimal (Is-Rank-Optimal) and whether an mCP-net has a rank optimal
outcome (Exists-Rank-Optimal), and of deciding whether an outcome is rank optimum (Is-Rank-Optimum)
and whether an mCP-net has a rank optimum outcome (Exists-Rank-Optimum), which are here all shown to
be P-complete as well, except for Exists-Rank-Optimal, which is trivial; see Figure 4.

Apart from the problem of deciding whether mCP-nets have rank optimal outcomes, which is shown to be a
trivial problem as all mCP-nets have a rank optimal outcome, the tractability of ranks’ computation in acyclic
CP-nets is a stepping stone for us to show also the tractability of the other tasks for rank voting over mCP-nets,
for which only exponential time algorithms were known up to now [53]. Note that also these algorithms by Rossi
et al. [53] are tailored for mCP-nets made by partial CP-nets, but these algorithms, again, do not heavily rely on
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Problem Complexity
Exists-Pareto-Optimum: Given an mCP-net M, P-complete+

decide whether M has a Pareto optimum outcome.

R
an

k

Rank-Dominance: Given an mCP-net M and two outcomes α, β ∈ OM, P-complete
decide whether β ≻r

M α.
Is-Rank-Optimal: Given an mCP-net M and an outcome α ∈ OM, P-complete

decide whether α is a rank optimal outcome in M.
Exists-Rank-Optimal: Given an mCP-net M, Θ(1)*

decide whether M has a rank optimal outcome.
Is-Rank-Optimum: Given an mCP-net M and an outcome α ∈ OM, P-complete

decide whether α is rank optimum in M.
Exists-Rank-Optimum: Given an mCP-net M, P-complete

decide whether M has a rank optimum outcome.

M
ax

Max-Dominance: Given an mCP-net M and two outcomes α, β ∈ OM, ΘP
2 -complete

decide whether β ≻x
M α.

Is-Max-Optimal: Given an mCP-net M and an outcome α ∈ OM, ΠP
2 -complete

decide whether α is max optimal in M.
Exists-Max-Optimal: Given an mCP-net M, ΣP

3 -complete
decide whether M has a max optimal outcome.

Is-Max-Optimum: Given an mCP-net M and an outcome α ∈ OM, ΠP
2 -complete

decide whether α is max optimum in M.
Exists-Max-Optimum: Given an mCP-net M, ΠP

2 -hard, in ΣP
3

decide whether M has a max optimum outcome.

Figure 4: Complexity results obtained in this paper for global voting over CP-nets. The memberships to complexity
classes above P are valid for polynomially connected classes of acyclic binary mCP-nets. +Membership result
in [45]. *A different proof is provided in [53].

the fact that the input CP-nets are partial (see above). We prove the tractability of these problems by showing
another interesting property, in this case for rank optimal outcomes. In particular, we prove that a rank optimal
outcome α for an acyclic binary mCP-net can be computed feature by feature in polynomial time, and the value
of each feature F in α is the one appearing most frequently in the optimum outcomes of the individual CP-nets
constituting the mCP-net.

By these results, rank voting is easier to compute than majority, max, and Pareto (in most cases). Interestingly,
also for these problems, we show here that these problems are not only in P, but they are also P-hard (and
hence P-complete).

3.3 Max voting in mCP-nets
We finally explore the complexity of the max dominance semantics in mCP-nets, namely, the complexity of
deciding max dominance in mCP-nets (Max-Dominance), of deciding whether an outcome is max optimal
(Is-Max-Optimal) and whether an mCP-net has a max optimal outcome (Exists-Max-Optimal); and of
deciding whether an outcome is max optimum (Is-Max-Optimum) and whether an mCP-net has a max optimum
outcome (Exists-Max-Optimum). The precise complexity of these problems is shown to range from ΘP

2 (Max-
Dominance) over ΠP

2 (Is-Max-Optimal and Is-Max-Optimum) to ΣP
3 (Exists-Max-Optimal), and the

problem Exists-Max-Optimal is shown to be ΠP
2 -hard and to belong to ΣP

3 ; see Figure 4. The membership
parts of these complexity results hold for polynomially connected classes of (acyclic binary) mCP-nets, whereas
the above memberships in P of the rank voting tasks over mCP-nets hold also for non-polynomially connected
classes of (acyclic binary) mCP-nets.

The ΘP
2 -completeness of Max-Dominance is an interesting result, given that majority dominance is

NP-complete [45] (this and also the other complexity results of [45] about majority voting mentioned in the
following hold for polynomially connected classes of acyclic binary mCP-nets). This increase in complexity
is due to the need in max dominance of precisely counting the number of agents preferring an outcome to
another, as this is needed to evaluate the size of the biggest group, while this precision is not required in majority
voting. Observe that, if on the one hand, majority dominance is co-NP-hard even over classes of mCP-nets
having a bounded number of agents [45], on the other hand, max dominance cannot be ΘP

2 -hard over classes of
mCP-nets having a bounded number of agents. In fact, the most difficult problems of the complexity class ΘP

2
need for their solution logarithmically-many calls to the NP oracle, and an essential part of the hardness of max
dominance is counting the exact number of agents preferring an outcome to another. If we considered a class of
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mCP-nets with a bounded number of agents, then it would be possible to count the agents’ preferences through
a constant number of calls to a suitable NP oracle, which would imply that, over this specific class of instances,
max dominance would not be among the most difficult problems of ΘP

2 . This increased complexity of max
dominance carries over to the complexity of deciding max optimality and deciding the existence of max optimal
outcomes. Indeed, these two problems are complete for ΠP

2 and ΣP
3 , respectively, while the corresponding ones

for majority voting are complete for co-NP and ΣP
2 , respectively. Deciding whether an outcome is max optimum

is ΠP
2 -complete, which is the same complexity of deciding majority optimum outcomes.
One may wonder why deciding majority optimum outcomes is more complex than deciding majority optimality

(complete for ΠP
2 and co-NP, respectively), whereas the complexity of recognizing max optimum and optimal

outcomes is the same (ΠP
2 -complete). To explain this, observe first that for both majority and max voting,

to disprove an outcome α to be (1) optimal or (2) optimum, it is sufficient to find a different outcome β that
either dominates α (to disprove α being optimal), or that is not dominated by α (to disprove α being optimum).
The key point here is the complexity of the dominance test, and more specifically whether checking dominance
(needed for task (1)) and checking non-dominance (needed for task (2)) can be carried out in the same complexity
class or not. For majority voting, checking dominance is NP-complete. This is a non-deterministic class, and
hence there is an asymmetry between the complexity of checking dominance and the complexity of checking
non-dominance (complete for NP and co-NP, respectively). When we have to decide whether an outcome α is
(not) majority optimal, we can find a disprover outcome β majority dominating α. This can be carried out by an
NP machine that guesses β along with a witness for β majority dominating α, and then checks the correctness
of the guess. When we have to decide whether an outcome α is (not) majority optimum, we need to find a
disprover outcome β that is not majority dominated by α. Also in this case, we can guess β via an NP machine,
however, now checking that α does not majority dominate β requires a co-NP test, and since NP and co-NP are
(believed to be) distinct classes, this check cannot be carried out by the same NP machine guessing β, but this
check has to be delegated to a co-NP oracle. From this, it follows that the problem is in ΠP

2 . On the other hand,
there is no complexity asymmetry between checking max dominance and checking max non-dominance, because
ΘP

2 is closed under complement. For this reason, to decide both max optimal and max optimum outcomes, after
guessing (in NP) the disprover outcome β, there is the need to carry out a check in ΘP

2 = PNP[O(log n)] in both
cases. The P part of PNP[O(log n)] can be performed by the very same machine having guessed β, while the NP
part of PNP[O(log n)] can be performed by an NP oracle. Thus, deciding max optimal and max optimum outcomes
are both in ΠP

2 . To conclude the overview of our results for max voting, we show in the paper that deciding
whether an mCP-net has a max optimum outcome is between ΠP

2 and ΣP
3 , whereas for majority voting, deciding

the existence of optimums is between ΠP
2 and DP

2 . The above results support that adopting the relative majority
flavor of the max semantics requires an increased computational complexity compared to the complexity of the
majority semantics. As evidenced in our work, the harder computational complexity of the max semantics is due
to the necessity of evaluating the precise size of the biggest group of agents expressing the same preference over
a pair of outcomes.

4 Optimal outcomes and rank dominance in CP-nets
This section focuses on optimal outcomes and the rank dominance semantics in CP-nets. As for the former,
we are interested in analyzing the complexity of decision problems related to the computation of the optimum
outcome in CP-nets, like, for example, deciding whether a feature has a specific value in the optimum outcome
(Feat-Value-Opt), or decide whether two CP-nets have the same optimum outcome (Same-Opt). As for the
rank dominance semantics, we investigate the complexity of computing the rank of outcomes (Rank-Bound),
which sheds light also on the complexity of comparing outcomes according to their rank (Compare-Rank).

4.1 Preliminaries
To prove the P-completeness results of this section, we will exploit the P-completeness of the classical circuit
value problem (CVP) [30]: given a Boolean circuit C and a Boolean vector x, decide whether C ’s output is
true when receiving the Boolean vector x as input. In the literature, different ways to represent circuits were
illustrated. Here, we use a representation that is a mix of those adopted by Ladner [30], Serna [56], and Miyano
et al. [49]. A circuit C = (C1, . . . , Cm) is a sequence of logic gates Ci, which are represented through formulas:

• if the formula is ‘Ci = xj ’, then Ci is an input gate fed with the jth input bit;
• if the formula is ‘Ci = Cj ∧Ck’, then Ci is an AND gate, whose inputs are the outputs of the (non-necessarily

distinct) gates Cj and Ck (with j, k < i);
• if the formula is ‘Ci = Cj ∨Ck’, then Ci is an OR gate, whose inputs are the outputs of the (non-necessarily

distinct) gates Cj and Ck (with j, k < i); and
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(a) An instance of the problem CVP, con-
sisting of a circuit C and an input vector x.

(b) The CP-net N (C , x) for the circuit C
and the input vector x of Figure (a).

Figure 5: An instance of the problem CVP (a) and its transformation into a CP-net (b).

• if the formula is ‘Ci = ¬Cj ’, then Ci is a NOT gate, whose input is the output of Cj (with j < i).

The Boolean values of gates Ci when x is given in input to C , denoted vC (Ci, x), are defined as usual.
In this paper, we assume that the problem CVP is defined as in [27]: a CVP instance I = ⟨C , x, Cout⟩,

where C = (C1, . . . , Cm) is a circuit, x = (x1, . . . , xn) is a vector of Boolean values, and Cout ∈ C is the output
gate, is a “yes”-instance iff vC (Cout , x) = true, or iff vC (Cout , x) = false, since CVP ∈ P, and P is closed
under complement. We consider the task of checking the circuit’s output to be either true or false depending
on which is the most suitable for our aims. CVP is known to be P-complete, and its hardness holds even if
various restrictions are issued over the circuit structure, among which the acyclicity of the circuit and that gates
have fan-in 2, and even if the output is fixed to be Cm [27, 30, 49].

For the following results, we need CP-nets mimicking the behavior of Boolean circuits when specific vectors
are in the input. Let C = (C1, . . . , Cm) be a circuit and x = (x1, . . . , xn) be an input vector. The CP-net
N (C , x), defined from C and x, is as follows. For each gate Ci ∈ C , there is a feature Di ∈ FN(C ,x), and Di’s
domain is {di, di}. The transformation’s intuition is that values di and di of Di have the meaning “feature ‘active’
when the value is overlined”, and are hence associated with gate Ci evaluating to true and false, respectively.

The edges between the features and the CP tables of the features are the following.

• If Ci is an input gate with ‘Ci = xj ’, then there is no edge entering in Di. If xj = true, then Di’s CP table
is di ≻ di; and if xj = false, then Di’s CP table is di ≻ di.

• If Ci is an AND gate, with ‘Ci = Cj ∧ Ck’, then, if Cj ̸= Ck, there are two edges entering in Di, one from
Dj and one from Dk; if Cj = Ck, there is one edge from Dj to Di. If Cj ̸= Ck, then the CP table of Di

contains (dj ∧ dk) → di ≻ di, and is di ≻ di, otherwise. If Cj = Ck, then the CP table of Di contains
(dj) → di ≻ di, and (dj) → di ≻ di.

• If Ci is an OR gate, with ‘Ci = Cj ∨ Ck’, then, if Cj ̸= Ck, there are two edges entering in Di, one from Dj

and one from Dk; if Cj = Ck, there is one edge from Dj to Di. If Cj ̸= Ck, the CP table of Di contains
(dj ∨ dk) → di ≻ di, and is di ≻ di, otherwise. If Cj = Ck, then the CP table of Di contains (dj) → di ≻ di

and (dj) → di ≻ di.
• If Ci is a NOT gate with ‘Ci = ¬Cj ’, then there is an edge from Dj to Di. The CP table of Di contains

(dj) → di ≻ di and (dj) → di ≻ di.

Observe that N (C , x) is binary, acyclic, its in-degree is two, and can be computed in logarithmic space
from C and x (because the in-degree of each feature is at most 2, i.e., it is bounded by a constant, and hence
the number of rows in the CP tables of N (C , x) is bounded by a constant as well).

Example 4.1. Consider the Boolean function ¬(x1 ∧ x2) ∨ x3. The circuit C encoding this function is shown in
Figure 5a, where also the input vector x = (1, 0, 0) is evidenced at the top. For this specific instance of CVP,
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made by the circuit C and the input vector x, the corresponding CP-net N (C , x) is shown in Figure 5b. Recall
that the CP-net N (C , x) is obtained starting from a circuit and an input vector for the circuit. The input vector
is necessary to define the CP tables of the features without parents in the CP-net. ◁

The CP-nets N (·, ·) faithfully replicate the behavior of Boolean circuits. In particular, in N (C , x), every
feature Di has the value di in the optimum outcome iff vC (Ci, x) = true, as expressed by the following result.

Lemma 4.2. Let C = (C1, . . . , Cm) be a circuit, and x be an input vector. For any gate Ci, vC (Ci, x) = true
iff oN(C ,x)[Di] = di.

Proof. We perform an induction on the gates’ levels in C . We partition C ’s gates into levels as follows. The
input gates of C are at level 0. The non-input gates Ci of C are at level ℓ + 1 iff the gates from which Ci

receives its input are at most at level ℓ, and at least one of them is at level ℓ. Since there is a one-to-one
correspondence between gates in C and features in N (C , x), we can speak about levels of features in N (C , x) as
well. In particular, a feature Di in N (C , x) is at level ℓ iff the gate Ci is at level ℓ in C .

Base of induction: Consider level 0, which is the level of input gates in C , and let Ci be any input gate of C .
By definition of N (C , x), the feature Di has the value di in the optimum outcome iff vC (Ci, x) = true.

Inductive hypothesis: Assume that for any gate Ci at level at most ℓ − 1, the feature Di has the value di in the
optimum outcome iff vC (Ci, x) = true.

Inductive step: Consider any gate Ci at level ℓ. We show that the feature Di has the value di in the optimum
outcome iff vC (Ci, x) = true. Assume that Ci is an AND gate, and denote by Cj and Ck the gates whose output
are wired to the input of Ci. By the definition of the CP table of Di, feature Di has value di in the optimum
outcome iff both Dj and Dk have overlined values in the optimum outcome. Since Dj and Dk are at most at
level ℓ − 1, by the inductive hypothesis, they have an overlined value in the optimum outcome iff the values of the
associated gates are true. Thus, the feature Di has the value di in the optimum outcome iff vC (Ci, x) = true.
Similarly, it can be shown that this property holds also for the OR and NOT gates at level ℓ.

We now focus on the problem of counting the number of a circuit’s gates evaluating to true when a vector is
given in the input to the circuit (this is the problem ϵ-CTGP by Serna [56]), and in particular we analyze its
decision variant. Let TG(C , x) denote the number of C ’s gates evaluating to true when x is given in input to C ,
i.e., TG(C , x) = |{Ci ∈ C | vC (Ci, x) = true}|. Consider the following problem Threshold-CVP (Th-CVP):

Problem: Th-CVP
Instance: A Boolean circuit C , an input vector x, and an integer k.
Question: Does TG(C , x) ≤ k hold?

The following result shows in particular that the problem Th-CVP is P-complete. Observe that, since P is
closed under complement, also deciding whether TG(C , x) > k is P-complete.

Theorem 4.3. Given a Boolean circuit C , an input vector x, and an integer k, deciding whether TG(C , x) ≤ k
is P-complete.

Proof. Th-CVP is in P, because gates’ values can be evaluated in polynomial time [27, 30], and then we can
count those evaluating to true and compare the count with k (in polynomial time).

P-hardness is shown via a reduction from CVP, similar to the one used to prove the P-hardness of ϵ-CTGP.
Consider the following transformation of an instance ⟨C , x, Cout⟩ of CVP into an instance ⟨C ′, x′, k⟩ of Th-CVP.
Assume that C = (C1, . . . , Cm). The circuit C ′ = (C ′

1, . . . , C ′
2m) consists of 2m gates, whose first m gates are

identical (for function and wiring) to those of C . The remaining m gates of C ′ replicate the value of C ′
out = Cout .

More formally, C ′
m+1 = C ′

out ∧ C ′
out, and, for all 2 ≤ i ≤ m, C ′

m+i = C ′
m+i−1 ∧ C ′

m+i−1. The input vector x′

equals x, and k = m − 1. The reduction can be computed in logarithmic space. Given that P is closed under
complement, in this case, we assume that “yes”-instances of CVP are those in which the output of the circuit is
false.

(⇒) If ⟨C , x, Cout⟩ is a “yes”-instance of CVP, i.e., vC (Cout , x) = false, then vC ′(C ′
out , x′) = vC ′(C ′

m+1, x′) =
· · · = vC ′(C ′

2m, x′) = false. Hence, TG(C′, x′) ≤ |C ′| − (m + 1) = m − 1 = k, and thus ⟨C ′, x′, k⟩ is a
“yes”-instance of Th-CVP as well.

(⇐) On the other hand, if ⟨C , x, Cout⟩ is a “no”-instance of CVP, i.e., vC (Cout , x) = true, then vC ′(C ′
out , x′) =

vC ′(C ′
m+1, x′) = · · · = vC ′(C ′

2m, x′) = true. Hence, TG(C′, x′) ≥ m + 1 > m − 1 = k, and thus ⟨C ′, x′, k⟩ is a
“no”-instance of Th-CVP as well.
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4.2 Complexity of optimum outcomes in CP-nets
In this section, we analyze the complexity of tasks on CP-nets that are associated with the computation of the
optimum outcomes. We start by looking at the problem of computing the optimum outcome in a CP-net, and in
particular on its decision variant Feat-Value-Opt. The following result shows that it is P-complete.

Theorem 4.4. Given an acyclic binary CP-net N , an outcome α ∈ ON , a feature F ∈ FN , and a value
v ∈ DomN (F ), deciding whether oN [F ] = v is P-complete. Hardness holds even on CP-nets with in-degree two.

Proof. As for membership in P, observe that oN can be computed in polynomial time in acyclic binary CP-nets [8],
and then we can verify whether oN [F ] = v.

Hardness for P holds by a reduction from CVP. Let ⟨C , x, Cout⟩ be an instance of CVP, and consider the
instance ⟨N , F̃ , val⟩ of Feat-Value-Opt, where N = N (C , x), F̃ = Dout , and val = dout . The transformation
can be computed in logarithmic space. By Lemma 4.2, vC (Cout , x) = true iff oN [Dout ] = dout = val.

We next focus on the problem of deciding whether two CP-nets have the same optimum outcomes, namely,
the problem Same-Opt. We will use the complexity of this problem to show the complexity of deciding whether
an mCP-net has a Pareto optimum outcome.

We show that Same-Opt is P-complete. In particular, the P-hardness holds by a reduction from CVP,
encoding the same circuit in N1 and N2 with an additional feature O. In N1, O is attached to the feature
corresponding to the output gate and replicates its value, whereas in N2, O has a specific preferred value, say o.
In this case, oN1 = oN2 iff the circuit outputs true.

Theorem 4.5. Given two acyclic binary CP-nets N1 and N2 defined over the same set of features, having the
same domain in the two nets, deciding whether oN1 = oN2 is P-complete. Hardness holds even on CP-nets with
in-degree two.

Proof. Membership in P is again obtained by the fact that computing the optimum outcome of an acyclic binary
CP-net is feasible in polynomial time [8], and then we can compare the computed outcomes.

The P-hardness follows from a reduction from CVP. Let ⟨C , x, Cout⟩ be an instance of CVP, and consider
the instance ⟨N1, N2⟩ of Same-Opt computed as follows. The nets N1 and N2 are very similar: N1 contains
within itself a net N (C , x), plus a fresh feature O. The feature O has an entering edge from the feature Dout,
and the CP table of O contains (dout) → o ≻ o and (dout) → o ≻ o. Also N2 contains within itself a net N (C , x),
plus feature O. However, in N2, the feature O is not linked to any other feature, and its CP table is o ≻ o.
Observe that N1 and N2 can be computed in logarithmic space, and they are defined over the same set of
features, which, in turn, have the same domain in the two nets. By the definition of N1 and N2, for any feature
F ̸= O, oN1 [F ] = oN2 [F ], which implies that oN1 = oN2 iff oN1 [O] = oN2 [O]. By the definition of N2, oN2 [O] = o.
It is not difficult to see that, by construction, oN1 [O] = o iff oN1 [Dout ] = dout iff ⟨C , x, Cout⟩ is a “yes”-instance
of CVP.

4.3 Complexity of outcomes’ rank in CP-nets
In this section, we study the problems on CP-nets relative to the rank of outcomes. We first focus on the problem
of, given a CP-net and an outcome, deciding whether the rank of the outcome does not exceed a given threshold
(Rank-Bound).

To show that this problem is in P, we first prove the following characterization of the rank of an outcome:
the rank of an outcome α in an acyclic binary net N is equal to the number of features F having in α a value
that is different from the one that F has in the optimum outcome of N .

Lemma 4.6. Let N be an acyclic binary CP-net, and let α ∈ ON be an outcome. Then,

RankN (α) = |{F ∈ FN | α[F ] ̸= oN [F ]}|. (1)

Proof. First, in any flipping sequence from α to oN in GN , the features F for which α[F ] ̸= oN [F ] have to be
flipped at least once. Therefore, a flipping sequence from α to oN in which, (1) features F such that α[F ] ̸= oN [F ]
are flipped exactly once, and (2) features F such that α[F ] = oN [F ] are never flipped, is one of the shortest.

We now show that flipping sequences in GN from α to oN satisfying the above two conditions actually exist.
Since N is acyclic, there exist topological orders of its features. Let (F1, . . . , Fn) be any topological order of the
features of N . Consider the following sequence of flips, which we show next to be actually improving in N . Each
feature Fi is processed in turn according to the topological order given, and if α[Fi] ̸= oN [Fi], then Fi is flipped,
otherwise Fi is left as it is. This procedure flips exactly once features F such that α[F ] ̸= oN [F ], and it never
flips features F such that α[F ] = oN [F ]. Therefore, this sequence of flips, if it is actually improving in N , must
be one of the shortest improving flipping sequences from α to oN in N (see above).
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Assume that the proposed flipping sequence is π : δ0 −→ . . . −→ δk, where δ0 = α and δk = oN , and assume by
contradiction that π is not improving in N . This implies that there is a feature’s flip that is not improving. Let
i be the first step in π characterized by a non-improving flip, and let Fj (with j not necessarily equal to i) be
the feature flipped in the i-th step. Since features are considered according to a topological order, if a parent
of Fj is flipped in π, then it is flipped before Fj , and it is flipped to match its value in oN . This means that
δi[Par(Fj)] = oN [Par(Fj)]. However, if flipping Fj in δi from δi[Fj ] to oN [Fj ] is not improving, then the value
δi[Fj ] is better than oN [Fj ]. Because δi[Par(Fj)] = oN [Par(Fj)], the value of Fj can be improved in oN as well,
which means that oN is not optimal: a contradiction. Thus, π is actually an improving flipping sequence in GN ,
and, since it fulfills the mentioned two conditions, it is one of the shortest improving flipping sequences from α
to oN , which proves the statement.

We next show that Rank-Bound is P-complete. The membership in P follows from the characterization of
the rank of an outcome via Equation (1) and the P-hardness from the P-hardness of Th-CVP, from Lemma 4.2,
and Equation (1), by which the number of overlined values in the optimum outcome of N (C , x) equals TG(C , x).

Theorem 4.7. Given an acyclic binary CP-net N , an outcome α ∈ ON , and an integer k, deciding whether
RankN (α) ≤ k is P-complete. Hardness holds even on CP-nets with in-degree two.

Proof. Membership in P follows from the fact that computing RankN (α) in acyclic binary CP-nets is feasible in
polynomial time (by Lemma 4.6), and then we can compare it with k.

We show the P-hardness via a reduction from Th-CVP. Consider the reduction transforming an instance
⟨C , x, k⟩ of Th-CVP into the instance ⟨N , α, k′⟩ of Rank-Bound as follows: N = N (C , x), α is the outcome
assigning non-overlined values to all features, and k′ = k. The reduction is computable in logarithmic space.

By Lemma 4.2, the number of features having overlined values in oN equals TG(C , x). By Equation (1),
RankN (α) is precisely the number of features having overlined values in oN , and hence RankN (α) = TG(C , x).
Thus, since k′ = k, TG(C , x) ≤ k iff RankN (α) ≤ k′.

We finally look at the problem of comparing the rank of two outcomes (Compare-Rank). This analysis will
allow us to characterize the complexity of rank dominance over mCP-nets.

We now prove that Compare-Rank is P-complete. In particular, the P-hardness can be shown via a
reduction from Feat-Value-Opt. Indeed, by Equation (1), for a CP-net N , two outcomes α and β differing
only on the value of a feature F are such that RankN (β) < RankN (α) iff β[F ] is oN [F ].

Theorem 4.8. Given an acyclic binary CP-net N and two outcomes α, β ∈ ON , deciding whether RankN (β) <
RankN (α) is P-complete. Hardness holds even on CP-nets with in-degree two.

Proof. Membership in P follows from the fact that computing outcome ranks in acyclic binary CP-nets is feasible
in polynomial time (by Lemma 4.6), and then we can compare them.

We show the P-hardness of Rank-Bound via a reduction from Feat-Value-Opt. Consider the reduction
transforming an instance ⟨N , F, v⟩ of Feat-Value-Opt into the instance ⟨N ′, α, β⟩ of Compare-Rank as
follows (assume w.l.o.g. that v = f): N ′ = N , α and β are the outcomes assigning non-overlined values to
all features but F , and α[F ] = f , while β[F ] = f . By Equation (1), and since α and β differ only on the
value assigned to feature F , there is a difference of exactly 1 between the rank of the two outcomes, i.e.,
|RankN ′(β) − RankN ′(α)| = 1. It is not difficult to see that RankN ′(β) < RankN ′(α) iff oN [F ] = f = v iff
⟨N , F, v⟩ is a “yes”-instance of Feat-Value-Opt.

4.4 Complexity of the existence of Pareto optimum outcomes in mCP-nets
We now look at the complexity of deciding the existence of Pareto optimum outcomes in mCP-nets (Exists-
Pareto-Optimum).

We know that an acyclic binary mCP-net M has a Pareto optimum outcome iff all the individual CP-nets
of M have the very same individual optimum outcome [45, Lemma 4.9]. By this, the P-hardness of Exists-
Pareto-Optimum follows from the P-hardness of Same-Opt.

Theorem 4.9. Given an acyclic binary mCP-net M, deciding whether there is a Pareto optimum outcome in
M is P-complete. Hardness holds even on mCP-nets with in-degree at most two and at most two agents.

The non-parallelizability of Exists-Pareto-Optimum tightly depends on the non-parallelizability of the
task of computing the optimum of a CP-net (see Theorem 4.4). That difficulty is linked to the intricacy of
the net and the number of features. In complex environments, where agents have to deal with many features,
computing the optimum of a CP-nets could manifest challenges, as parallel algorithms cannot be exploited.

14



5 Rank voting
In this section, we analyze the complexity of rank voting tasks over mCP-nets. First, we focus on deciding
rank dominance (Rank-Dominance). Next, we characterize the complexity of rank optimality, namely, the
problems of deciding whether an outcome is rank optimal (Is-Rank-Optimal), and whether an mCP-net has a
rank optimal outcome (Exists-Rank-Optimal). Finally, we focus on rank optimums, namely, the problems
of deciding whether an outcome is rank optimum (Is-Rank-Optimum) and whether an mCP-net has a rank
optimum outcome (Exists-Rank-Optimum).

Recall that, given an mCP-net M = ⟨N1, . . . , Nm⟩ and two outcomes α, β ∈ OM, β ≻r
M α iff RankM(β) <

RankM(α), where, for any outcome γ, RankM(γ) =
∑

1≤i≤m RankNi (γ).

5.1 Complexity of rank dominance in mCP-nets
From the tractability of computing the rank of outcomes (Lemma 4.6) and the P-hardness of comparing the
rank of outcomes on (individual) CP-nets (Theorem 4.8), we obtain that Rank-Dominance is P-complete.

Theorem 5.1. Given an acyclic binary mCP-net M and two outcomes α, β ∈ OM, deciding whether β ≻r
M α is

P-complete. Hardness holds even on acyclic binary mCP-nets with in-degree at most two and at most one agent.

5.2 Complexity of rank optimality in mCP-nets
To show the complexity of Is-Rank-Optimal, we first consider the task of actually computing a rank optimal
outcome in an mCP-net. We show that this task is feasible in polynomial time over acyclic binary mCP-nets.
To achieve this, we start by providing a characterization for rank optimal outcomes for acyclic binary mCP-nets.

Given an acyclic binary mCP-net M = ⟨N1, . . . , Nm⟩ and an outcome α ∈ OM, we have that:

RankM(α) =
∑

1≤i≤m

RankNi (α)

=
∑

1≤i≤m

|{F ∈ FM | α[F ] ̸= oNi [F ]}|

=
∑

F ∈FM

|{i | 1 ≤ i ≤ m ∧ α[F ] ̸= oNi
[F ]}|.

(2)

The last expression in Equation (2) suggests a way to characterize rank optimal outcomes. Indeed, any outcome α
minimizing the value of the last expression of Equation (2) is clearly rank optimal. An outcome α is average
optimal, if, for each feature F ∈ FM,

α[F ] ∈ arg min
v∈DomM(F )

|{i | 1 ≤ i ≤ m ∧ v ̸= oNi
[F ]}| = arg max

v∈DomM(F )
|{i | 1 ≤ i ≤ m ∧ v = oNi

[F ]}|.

Intuitively, an outcome α is average optimal, if in α the value of each feature F is the most frequent among the
values of F in the optimum outcomes of the individual CP-nets of the mCP-net. For a feature F , the average
optimal values of F are the values of F maximizing |{i | 1 ≤ i ≤ m ∧ v = oNi [F ]}|.

We now prove that an outcome is rank optimal iff it is average optimal.

Lemma 5.2. Let M be an acyclic binary mCP-net, and let α ∈ OM be an outcome. Then, α is rank optimal
in M iff α satisfies the average optimality condition.

Proof. (⇒) Assume that α is a rank optimal outcome. We now show that α is average optimal as well. Assume by
contradiction that α does not satisfy the average optimality condition, which means that there is a feature F such
that α[F ] /∈ arg minv∈DomM(F ) |{i | 1 ≤ i ≤ m ∧ v ≠ oNi

[F ]}|. Consider the outcome α′ such that α′[G] = α[G],
for all features G ̸= F , and α′[F ] ∈ arg minv∈DomM(F ) |{i | 1 ≤ i ≤ m ∧ v ̸= oNi

[F ]}|. By Equation (2),
RankM(α′) < RankM(α), and hence α′ ≻r

M α, which implies that α is not rank optimal in M, which is a
contradiction. Therefore, α is an average optimal outcome.

(⇐) Assume that α is an average optimal outcome. We now show that α is rank optimal. Assume by contradiction
that α is not rank optimal. This means that there is an outcome β ̸= α such that β ≻r

M α, and hence that
RankM(β) < RankM(α). By Equation (2), we know that RankM(α) =

∑
F ∈FM

|{i | 1 ≤ i ≤ m∧α[F ] ̸= oNi [F ]}|
and RankM(β) =

∑
F ∈FM

|{i | 1 ≤ i ≤ m ∧ β[F ] ̸= oNi [F ]}|. Since RankM(β) < RankM(α), there must exist a
feature F such that |{i | 1 ≤ i ≤ m ∧ β[F ] ̸= oNi

[F ]}| < |{i | 1 ≤ i ≤ m ∧ α[F ] ̸= oNi
[F ]}|, which contradicts

that α is an average optimal outcome. Therefore, α is rank optimal.
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Given the strong characterization of rank optimal outcomes as average optimal, we are now ready to derive
the complexity of the problems on rank optimality. In the coming proofs, we need the definition of direct nets
D(α), which are acyclic binary CP-nets having α as their optimum outcome (see Section 5.1 in [45]).

The following result shows that Is-Rank-Optimal is P-complete. In particular, the P-hardness is shown by
reduction from Feat-Value-Opt. In fact, in an mCP-net ⟨N , N ′, N ′′⟩, where N ′ and N ′′ are designed to have
optimum outcomes differing only on the value of a feature F , oN ′ is average optimal iff oN [F ] is a specific value.

Theorem 5.3. Given an acyclic binary mCP-net M and an outcome α ∈ OM , deciding whether α is rank
optimal in M is P-complete. Hardness holds even on mCP-nets with in-degree at most two and at most three
agents.

Proof. As for membership in P, by Lemma 5.2, deciding whether α is rank optimal is tantamount to checking
whether α is average optimal. Therefore, for each feature F , we verify whether α[F ] ∈ arg maxv∈DomM(F ) |{i | 1 ≤
i ≤ m ∧ v = oNi

[F ]}|. To verify this condition, we simply need to compute all the individual optimum outcomes
(feasible in polynomial time [8]) and perform some counting operations. This is feasible in polynomial time.

Hardness for P is shown via a reduction from Feat-Value-Opt. Consider the reduction transforming
an instance ⟨N , F, v⟩ of Feat-Value-Opt into the instance ⟨M, α⟩ of Is-Rank-Optimal as follows (assume
w.l.o.g. that v = f): M = ⟨N1, N2, N3⟩ is a 3CP-net, α is the outcome defined over the features in N and
assigning non-overlined values to all features, N1 = N , N2 = D(α), and N3 = D(β), with β being almost equal to
α, except for β[F ] = f . Observe that the value α[G] is the average optimal value for all features G ̸= F , because,
for all features G ̸= F , α[G] = β[G], and α and β are the optimum outcomes of D(α) and D(β), respectively.
Since α[F ] = f and β[F ] = f , α is rank optimal in M iff oN1 [F ] = oN [F ] = f = v.

We next focus on the problem Exists-Rank-Optimal, which is trivial, because every acyclic binary mCP-net
has an average optimal outcome that is also rank optimal. This is a different proof from the one in [53].

Lemma 5.4. Let M be an acyclic binary mCP-net. Then, M has (always) a rank optimal outcome.

5.3 Complexity of rank optimums in mCP-nets
We now analyze the complexity of rank optimums in mCP-nets. To this end, we first observe the following fact.
Since, by Lemma 5.2, all and only the average optimal outcomes are rank optimal, if in an mCP-net there were
more than one average optimal outcome, then there would be no rank optimum outcome, because different rank
optimal outcomes would not rank dominate each other (which is required to be rank optimum).

The following result states that Is-Rank-Optimum is P-complete. In particular, hardness for P is shown via
the same reduction used to prove the P-hardness of Is-Rank-Optimal with the additional observation that in
mCP-nets with an odd number of agents, there is always a unique average optimal outcome, and hence there is
a unique rank optimal outcome that is also rank optimum.

Theorem 5.5. Given an acyclic binary mCP-net M and an outcome α ∈ OM, deciding whether α is rank
optimum in M is P-complete. Hardness holds even on mCP-nets with in-degree at most two and at most three
agents.

Proof. As for membership in P, the following procedure deciding in polynomial time whether α is rank optimum
uses the fact that there is a rank optimum outcome iff there is a unique average optimal outcome. First, we
compute all the individual optimum outcomes for all agents of M (feasible in polynomial time [8]). Next, for
every feature F , we check that there is only one value of F in DomM(F ) such that |{i | 1 ≤ i ≤ m ∧ v = oNi

[F ]}|
is maximized (feasible in polynomial time). Then, we check that α is average optimal (feasible in polynomial
time).

Hardness for P is shown via the same reduction from Feat-Value-Opt used in the proof of Theorem 5.3. In
particular, since the mCP-net M in that reduction contains an odd number of CP-nets, M has only one average
optimal outcome, which is also rank optimum. Hence, α is rank optimal in M iff α is rank optimum in M.

We finally focus on the problem Exists-Rank-Optimum. The following result states that it is P-complete.
Its proof is based on the observation that mCP-nets with unique average optimal outcomes have a rank optimum
outcome (see above). The P-hardness is again shown via a reduction from Feat-Value-Opt by exploiting
direct nets.

Theorem 5.6. Given an acyclic binary mCP-net M, deciding whether M has a rank optimum outcome is
P-complete. Hardness holds even on mCP-nets with in-degree at most two and at most four agents.
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Proof. As for membership, the following procedure deciding in polynomial time whether M has rank optimum
outcome is based on the observation that there is a rank optimum outcome iff there is a unique average
optimal outcome. First, we compute all the individual optimum outcomes for all agents of M (feasible in
polynomial time). Next, for every feature F , we check that there is only one value of F in DomM(F ) such
that |{i | 1 ≤ i ≤ m ∧ v = oNi [F ]}| is maximized (feasible in polynomial time).

Hardness for P is shown via a reduction from Feat-Value-Opt. Consider the reduction transforming an
instance ⟨N , F, v⟩ of Feat-Value-Opt into the instance ⟨M⟩ of Exists-Rank-Optimum as follows (assume
w.l.o.g. that v = f): M = ⟨N1, N2, N3, N4⟩ is a 4CP-net, where N1 = N2 = N , N3 = D(α), with α being an
outcome defined over the features in N and assigning non-overlined values to all features, and N4 = D(β), with β
assigning overlined values to all features but F , for which β[F ] = f . We know that M has a rank optimum
outcome iff M has a unique average optimal outcome (see above). For any feature G ̸= F , since N1[G] = N2[G],
N3[G] = g, and N4[G] = g, the average optimal value is unique, and it is oN [G] = oN1 [G] = oN2 [G]. Therefore,
M has a unique average optimal outcome iff the average optimal value for feature F is unique in M.

(⇒) If ⟨N , F, v⟩ is a “yes”-instance of Feat-Value-Opt, oN [F ] = f = v. Hence, oN1 [F ] = oN2 [F ] = oN3 [F ] =
oN4 [F ] = f , and f is the unique average optimal value for F in M. This implies that M has a unique average
optimal outcome which is rank optimal and optimum, and thus M has a rank optimum outcome.

(⇐) If ⟨N , F, v⟩ is a “no”-instance of Feat-Value-Opt, oN [F ] = f ̸= v. Hence, oN1 [F ] = oN2 [F ] = f and
oN3 [F ] = oN4 [F ] = f , and both f and f are average optimal values for F in M. This implies that M has two
distinct average optimal outcomes, which are rank optimal, and thus M has no rank optimum outcome.

6 Max voting
In this section, we characterize the complexity of max voting tasks on mCP-nets. First, we show that there are
mCP-nets without max optimal and optimum outcomes, which implies that deciding the existence of max optimal
and optimum outcomes is not a trivial problem. Then, we analyze the complexity of deciding max dominance in
mCP-nets (Max-Dominance). Next, we devote our analysis to the problems related to max optimal outcomes,
namely, deciding whether an outcome is max optimal (Is-Max-Optimal), and deciding whether an mCP-net
has a max optimal outcome (Exists-Max-Optimal). To conclude, we study the complexity of problems on max
optimum outcomes, namely, deciding whether an outcome is max optimum (Is-Max-Optimum), and deciding
whether an mCP-net has a max optimum outcome (Exists-Max-Optimum).

Recall that, given an mCP-net M and two outcomes α, β ∈ OM, β ≻x
M α if the set of agents preferring β to

α is the biggest, i.e., |S≻
M(β, α)| > max(|S≺

M(β, α)|, |S▷◁
M(β, α)|).

We start by noticing that there are mCP-nets without max optimal and optimum outcomes. This follows
from the fact that there are CP-nets without majority optimal outcomes [45, Theorem 5.1].

Theorem 6.1. There are acyclic binary singly connected mCP-nets with no max optimal and optimum outcomes.

Proof. There exists an acyclic binary singly connected 4CP-net MNoWin that does not have majority optimal
outcomes [45, Theorem 5.1]. Consider any outcome α ∈ OMNoWin . Since α is not majority optimal in MNoWin,
there is an outcome β such that β ≻m

MNoWin
α. This implies that β ≻x

MNoWin
α as well, and hence α is not a max

optimal outcome in MNoWin. Because there is no max optimal outcome in MNoWin, there is no max optimum
outcome in MNoWin either.

6.1 Complexity of max dominance in mCP-nets
We first focus on the problem Max-Dominance. The following result shows that it is ΘP

2 -complete.

Theorem 6.2. Given an acyclic binary mCP-net M belonging to a polynomially connected class of mCP-nets,
and two outcomes α, β ∈ OM, deciding whether β ≻x

M α is ΘP
2 -complete. Hardness holds even if M is singly

connected, and its in-degree is at most three.

Proof. To show that the problem belongs to ΘP
2 , we show that answering this question is feasible in deterministic

polynomial time with a logarithmic number of calls to an NP oracle.
Let M = ⟨N1, . . . , Nm⟩. Since |S≻

M(β, α)| + |S≺
M(β, α)| + |S▷◁

M(β, α)| = m, in order to decide whether
|S≻

M(β, α)| > max(|S≺
M(β, α)|, |S▷◁

M(β, α)|), it suffices to compute |S≻
M(β, α)| and |S≺

M(β, α)|, as we can then
derive the conclusion by checking that |S≻

M(β, α)| > |S≺
M(β, α)| and that 2|S≻

M(β, α)| > m − |S≺
M(β, α)|.

We can compute the exact value |S≻
M(β, α)| as follows. First, observe that, for an integer k, deciding whether

there are at least k different agents of M preferring β to α is in NP. Indeed, we can guess k CP-nets in which β
is preferred to α, and, since M is assumed to be binary, acyclic, and belonging to a polynomially connected
class of mCP-nets, there are polynomial witnesses for β being preferred to α in each CP-net [8, Theorem 16].

17



Therefore, the overall guess requires only polynomial space and can be checked in polynomial time. Having
this oracle, computing |S≻

M(β, α)| can be done through a binary search in the range [0, m] by calling the above
described oracle. Observe that we need only a logarithmic number of calls to the oracle. In a similar way, we
can compute the exact value |S≺

M(β, α)|. In this case, the query for the oracle is whether there are at least k
distinct agents preferring α to β. Once we have computed the required values, we can carry out the final check,
which can be done in deterministic polynomial time, and return the answer.

The ΘP
2 -hardness of the problem is shown via a reduction from the ΘP

2 -complete problem Comp-Sat [44]:
given two sets A and B of 3CNF Boolean formulas, decide whether the number of satisfiable formulas in A is
greater than the number of satisfiable formulas in B. The ΘP

2 -hardness of Comp-Sat holds even if all formulas
in A and B are defined over the same set of variables and have the same number of clauses [44].

In the reduction, we use CP-nets that are capable of encoding the problem of satisfiability of Boolean formulas.
In particular, for a Boolean formula ϕ, the formula net F(ϕ) [45, Section 3.1] is a CP-net whose features are
associated with variables, literals, and clauses of ϕ. It was shown [45, Corollary 3.2] that, if α and β are two
outcomes of F(ϕ) assigning non-overlined values to all features and overlined values to all and only variable and
clause features, respectively, then ϕ is satisfiable iff β ≻Fϕ α, and ϕ is unsatisfiable iff β ▷◁Fϕ α.

Here, we introduce the additional formula net F(ϕ), which is symmetric to F(ϕ) and was not present in [45].
In particular, features and edges in F(ϕ) are the very same of those in F(ϕ), while all CP tables of F(ϕ) are
similar to those of F(ϕ) with the only difference that, for all variable and clause features (but not for literal
features), non-overlined values are exchanged with overlined values, and vice-versa. Observe that F(ϕ) and F(ϕ)
have the same outcomes. By an adaptation of Corollary 3.2 of [45], it is possible to show that, if α and β are
two outcomes of F(ϕ) assigning non-overlined values to all features, and overlined values to all and only variable
and clause features, respectively, then ϕ is satisfiable iff α ≻F(ϕ) β, and ϕ is unsatisfiable iff α ▷◁F(ϕ) β.

Let ⟨A, B⟩ be a pair of sets of Boolean formulas in 3CNF, with |A| = a and |B| = b, where all formulas of
A and B are defined over the same set of variables X = {x1, . . . , xn}, and have the same number of clauses
C = {c1, . . . , cm}. From ⟨A, B⟩, we build the 3(a + b)CP-net Mmd(⟨A, B⟩) in the following way. Since all
the formulas of A and B are 3CNFs having the same variables and the same number of clauses, the set of
features of each CP-net of Mmd(⟨A, B⟩) is V ∪ P ∪ D, where V = {V T

i , V F
i | xi ∈ X} (which are the variable

features of formula nets), P = {Pj,1, Pj,2, Pj,3 | 1 ≤ j ≤ m} (which are the literal features of formula nets), and
D = {Dj | cj ∈ C} (which are the clause features of formula nets). The agents of Mmd(⟨A, B⟩) are:

• for each formula ϕi ∈ A, there is an agent whose CP-net is NA,i = F(ϕi);
• for each formula φj ∈ B, there is an agent whose CP-net is NB,j = F(φj);
• there are a+b agents whose preferences are encoded by the (same) direct net (mentioned before Theorem 5.3)

D(α), with α being the outcome assigning non-overlined values to all features; and
• there are a + b agents whose preferences are encoded by the (same) direct net D(β), with β being the

outcome assigning overlined values to all and only variable and clause features.

Observe that Mmd(⟨A, B⟩) is binary, acyclic, singly connected, and its in-degree is three. To conclude the
construction, consider the outcomes α, β ∈ OMmd(⟨A,B⟩) such that in α the values of all features are non-overlined,
while in β the values of all and only variable and clause features are overlined. The construction is computable
in polynomial time. We now show that by the above construction, Comp-Sat reduces to Max-Dominance.

Let SA ⊆ A be the set of the satisfiable formulas of A, and let SB ⊆ B be the set of the satisfiable formulas
of B. By the discussion above, for each formula ϕi ∈ SA, β ≻NA,i

α; for each formula ϕi ∈ (A \ SA), α ▷◁NA,i
β;

for each formula φj ∈ SB, α ≻NB,j
β; and, for each formula φj ∈ (B \ SB), α ▷◁NB,j

β. Since for the CP-nets
D(α) (resp., D(β)) the outcome α (resp., β) is preferred to all other outcomes, |S≻

Mmd(⟨A,B⟩)(β, α)| = |SA| + a + b,
|S≺

Mmd(⟨A,B⟩)(β, α)| = |SB | + a + b, and |S▷◁
Mmd(⟨A,B⟩)(β, α)| = |A \ SA| + |B \ SB | ≤ a + b. We now show that

⟨A, B⟩ is a “yes”-instance of Comp-Sat iff β ≻x
Mmd(⟨A,B⟩) α.

(⇒) If ⟨A, B⟩ is a “yes”-instance of Comp-Sat, then |SA| > |SB |, and hence |S≻
Mmd(⟨A,B⟩)(β, α)| = |SA|+a+ b >

|SB | + a + b = |S≺
Mmd(⟨A,B⟩)(β, α)|. Moreover, since |SA| > |SB | ≥ 0, it must be the case that |SA| ≥ 1.

Therefore, |S≻
Mmd(⟨A,B⟩)(β, α)| = |SA| + a + b > a + b ≥ |S▷◁

Mmd(⟨A,B⟩)(β, α)|. Thus, |S≻
Mmd(⟨A,B⟩)(β, α)| >

max(|S≺
Mmd(⟨A,B⟩)(β, α)|, |S▷◁

Mmd(⟨A,B⟩)(β, α)|), and hence β ≻x
Mmd(⟨A,B⟩) α.

(⇐) If ⟨A, B⟩ is a “no”-instance of Comp-Sat, then |SA| ≤ |SB |, and hence |S≻
Mmd(⟨A,B⟩)(β, α)| = |SA| + a + b ≤

|SB | + a + b = |S≺
Mmd(⟨A,B⟩)(β, α)|. Therefore, it holds that |S≻

Mmd(⟨A,B⟩)(β, α)| ≤ max(|S≺
Mmd(⟨A,B⟩)(β, α)|,

|S▷◁
Mmd(⟨A,B⟩)(β, α)|), and hence β ̸≻x

Mmd(⟨A,B⟩) α.

Observe that Max-Dominance, unlike Pareto-Dominance and Majority-Dominance [45], cannot be
hard for its complexity class over classes of mCP-nets having a bounded number of agents, because an essential
part of its hardness is counting the exact number of agents preferring β to α, or α to β. If we considered a class
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of Max-Dominance instances with a bounded number of agents, then it would be possible to count the agents’
preferences through a constant number of calls to the NP oracle. This would imply that, over that specific class
of instances, Max-Dominance would not be among the most difficult problems of ΘP

2 ,3 and thus none of those
instances with a bounded number of agents can be used to show the ΘP

2 -hardness of Max-Dominance.

6.2 Complexity of max optimality in mCP-nets
In this section, we analyze the complexity of the problems on max optimal outcomes. We first focus on deciding
max optimality of outcomes in mCP-nets (Is-Max-Optimal).

To characterize the precise complexity of the problem, we use the following property, whose detailed proof is
provided in the appendix.

Lemma 6.3. There exists a polynomial-time reduction from the problem of deciding the validity of quantified
Boolean formulas Φ = (∀X)(∃Y )ϕ(X, Y ), where ϕ(X, Y ) is in 3CNF, to the problem of deciding whether an
outcome is max optimal in mCP-nets. The mCP-nets obtained in the reduction are binary, acyclic, formed by
four agents, they have in-degree three, and they constitute a polynomially connected class of mCP-nets.

The following result shows that the problem Is-Max-Optimal is ΠP
2 -complete.

Theorem 6.4. Given an acyclic binary mCP-net M belonging to a polynomially connected class of mCP-nets
and an outcome α ∈ OM, deciding whether α is max optimal in M is ΠP

2 -complete. Hardness holds even on
mCP-nets with in-degree at most three and at most four agents.

Proof. As for membership in ΠP
2 , we show that the complementary problem of deciding whether α is not a max

optimal outcome in M is in ΣP
2 . If α is not max optimal, then there is an outcome β such that β ≻x

M α. So, to
show that α is not max optimal, it suffices to guess β and then check that β ≻x

M α. Observe that guessing β
requires an NP machine, and then checking β ≻x

M α is in ΘP
2 (see Theorem 6.2). Hence, the very same NP

machine having guessed β can also check the max dominance condition by querying logarithmically-many times
an NP oracle. Therefore, the overall procedure is in ΣP

2 .
Hardness for ΠP

2 follows from Lemma 6.3 and the ΠP
2 -hardness of the problem of deciding the validity of

quantified Boolean formulas Φ = (∀X)(∃Y )ϕ(X, Y ), where ϕ(X, Y ) is in 3CNF [61, 64].

Note that, relative to the number of agents, the above result is optimal. Indeed, the max dominance semantics
and the majority dominance semantics are equivalent on mCP-nets with m ≤ 3, and checking majority optimality
is co-NP-complete [45]. Thus, it is not possible to show the ΠP

2 -hardness of Is-Max-Optimal on mCP-nets with
m ≤ 3. Unlike Max-Dominance, the hardness of Is-Max-Optimal holds even on mCP-nets with a bounded
number of agents. One may wonder why this is the case, and there is no need to have an “unpredictable” number
of agents to count as for Max-Dominance. After all, also in this case, after guessing an outcome β, to disprove
the max optimality of α, we have to count the number of agents preferring β to α, or α to β. The reason is subtle.
We observed already that, if the number of agents were bounded, then it would be possible to carry out the
counting required to decide max dominance through a constant number of calls to an NP oracle. However, this
is not relevant in this case, because the class NPNP[O(1)], which is the class of the languages recognizable by a
nondeterministic polynomial-time Turing machine querying at most a constant number of times an NP oracle, is
equal to the class NPNP, which is the class of the languages recognizable by a nondeterministic polynomial-time
Turing machine querying (at most polynomially-many times) an NP oracle [63].

We next analyze the complexity of the problem of deciding the existence of max optimal outcomes in
mCP-nets (Exists-Max-Optimal). To characterize the precise complexity of the problem, we use the following
property, whose detailed proof is provided in the appendix.

Lemma 6.5. There exists a polynomial-time reduction from the problem of deciding the validity of quantified
Boolean formulas Φ = (∃X)(∀Y )(∃Z)ϕ(X, Y, Z), where ϕ(X, Y, Z) is in 3CNF, to the problem of deciding whether
mCP-nets admit a max optimal outcome. The mCP-nets obtained in the reduction are binary, acyclic, formed
by eight agents, they have in-degree three, and they constitute a polynomially connected class of mCP-nets.

The following result shows that the problem Exists-Max-Optimal is ΣP
3 -complete.

Theorem 6.6. Given an acyclic binary mCP-net M belonging to a polynomially connected class of mCP-nets,
deciding whether M has a max optimal outcome is ΣP

3 -complete. Hardness holds even on mCP-nets with
in-degree at most three and at most eight agents.

3In fact, on such restricted instances, Max-Dominance belongs to PNP[O(1)], which is the class of languages recognizable by a
deterministic Turing machine in polynomial time performing at most a constant number of calls to an NP oracle. It is known that
PNP[O(1)] ⊆ PNP[O(log n)] = ΘP

2 [62, 63].
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Proof. As for membership in ΣP
3 , to prove that M has a max optimal outcome, it suffices to guess an outcome α

and then check that α is actually max optimal. Observe that guessing α requires an NP machine, and the final
check can be carried out by an oracle in ΠP

2 (see Theorem 6.4). Therefore, the overall procedure is in ΣP
3 .

Hardness for ΣP
3 follows from Lemma 6.5 and the ΣP

3 -hardness of the problem of deciding the validity of
quantified Boolean formulas Φ = (∃X)(∀Y )(∃Z)ϕ(X, Y, Z), where ϕ(X, Y, Z) is in 3CNF [61, 64].

6.3 Complexity of max optimums in mCP-nets
We now focus on max optimum outcomes. We first consider the problem of deciding whether an outcome is max
optimum in an mCP-net (Is-Max-Optimum). The following result shows that it is ΠP

2 -complete.

Theorem 6.7. Given an acyclic binary mCP-net M belonging to a polynomially connected class of mCP-nets
and an outcome α ∈ OM, deciding whether α is max optimum in M is ΠP

2 -complete. Hardness holds even on
mCP-nets with in-degree at most three and at most three agents.

Proof. We prove the membership in ΠP
2 by showing that deciding whether α is not max optimum in M is in ΣP

2 .
If α is not max optimum, then there is an outcome β such that α ̸≻x

M β. So, in order to prove that α is not
max optimum, it suffices to guess β and then check that α ̸≻x

M β. Observe that guessing β requires an NP
machine, and then checking α ̸≻x

M β is in ΘP
2 (see Theorem 6.2, and recall that ΘP

2 is closed under complement).
Hence, the very same NP machine having guessed β can also check the max dominance condition by querying
logarithmically-many times an NP oracle. Therefore, the overall procedure is in ΣP

2 .
As for hardness, observe that the max dominance semantics and the majority dominance semantics are equiv-

alent on 3CP-nets. Therefore, the ΠP
2 -hardness of the problem can be stated as a consequence of the ΠP

2 -hardness
of deciding majority optimum outcomes over 3CP-nets [45, Theorem 5.16].

Note that, as for the number of agents, the above result is optimal. Indeed, the max and the Pareto
dominance semantics are equivalent on mCP-nets with m ≤ 2, and checking Pareto optimum outcomes is in
LOGSPACE [45]. Thus, it is not possible to show the ΠP

2 -hardness of Is-Max-Optimum on mCP-nets with
m ≤ 2.

To conclude, the following result shows that the problem Exists-Max-Optimum is ΠP
2 -hard and in ΣP

3 .

Theorem 6.8. Given an acyclic binary mCP-net M belonging to a polynomially connected class of mCP-nets,
deciding whether M has a max optimum outcome is in ΣP

3 and is ΠP
2 -hard. Hardness holds even on mCP-nets

with in-degree at most three and at most three agents.

Proof. As for membership, to show that M has a max optimum outcome, it suffices to guess an outcome α and
then check that α is actually max optimum. Observe that guessing α requires an NP machine, and the final
check is in ΠP

2 (see Theorem 6.7), which can be carried out by an oracle. Hence, the overall procedure is in ΣP
3 .

As for hardness, again, by the fact that the max dominance semantics and the majority dominance semantics
are equivalent on 3CP-nets, the ΠP

2 -hardness of the problem can be stated as a consequence of the ΠP
2 -hardness

of deciding the existence of majority optimum outcomes over 3CP-nets [45, Theorem 5.20].

7 Related work
The present work continues our previous one [45] in the complexity analysis of global voting over CP-nets, which
has been lacking compared to the abundance of works considering sequential voting over CP-nets. An in-depth
analysis of related works considering sequential voting can be found in our preceding paper [45]. Here, we focus
on works more closely related to the specificities of the present paper.

Recently, a work by Haret et al. [28] considered global voting over a variant of CP-nets, called generalized
CP-nets (or gCP-nets) [24]. In gCP-nets, logical expressions, which we used here only for notational convenience,
are the distinctive characteristic, and intuitively are used to define the rows of CP tables (which are called CP
statements). This representation allows to avoid the complete specification of CP tables, and it can hence be
more compact. The gCP-nets considered in the mentioned works can be cyclic, and this adds complexity to the
semantics of the model, as the dominance test is PSPACE-complete.

Haret et al. [28] introduced mgCP-nets, which are a generalization of gCP-nets to the multi-agent case.
They studied the generalization of the Pareto, majority, max, and rank semantics over the new model. There
is a difference for the rank semantics studied by them; indeed, they consider the rank of an outcome as the
longest flipping sequence from an outcome to a non-dominated class (they have equivalence classes of outcomes),
instead of the shortest flipping sequence. They also consider a richer setting for the dominance relationship;
in particular, they study weak and strong dominance, and they carry out a thorough complexity analysis of
many tasks for the voting schemes and the dominance variants considered. Interestingly, almost all their results
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are of PSPACE-completeness/hardness. This is due to the fact that already the dominance test in gCP-nets is
PSPACE-complete. Hence, in many cases, the complexity of the dominance test in gCP-nets masks out the
complexity of preference aggregation in mgCP-nets. In this respect, our work can be seen as characterizing the
complexity of voting tasks when the complexity of the dominance test (which in our case is “only” NP-complete)
is not the one dominating the entire preference aggregation tasks. For this reason, the specific complexity of the
different voting schemes can stand out, as it is not masked by the intricacy of the dominance test.

The work of Laing et al. [32] focuses on a different concept of rank. In their paper, the rank is defined so to
weigh the importance of the features, and features higher up in the topological order of the CP-net are weighed
more, and hence a change in their value impacts more on the rank of an outcome. Their definition of rank is such
that, for any CP-net N and for any two outcomes α, β ∈ ON , if α ≻N β, then the rank of α is strictly greater
than the rank of β. This property can be used to generate consistent orderings of outcomes, i.e., orderings of
outcomes in which it never happens that an outcome α preceding another outcome β in the ordering according
to the rank is such that β is preferred to α according to the standard dominance semantics of CP-nets. This
does not hold for the definition of rank by Rossi et al. [53]. Moreover, in the same work, this new definition of
rank is used as a heuristic to speed-up the decision of the dominance relationship. Similar proposals of rank
functions to generate consistent orderings can be found in the works of Domshlak et al. [21] and of Li et al. [41]
(see also the thorough discussion by Laing [31]). Interestingly, Laing et al. [32] extend their definition of rank
also to CP-nets with indifferent values.

Polynomial-time voting has attracted extensive consideration in the literature, precisely for its efficiency.
However, to our knowledge, P-hardness has not carefully been investigated so far in the computational social
choice literature. In fact, we are aware of only two other P-completeness results in the literature, namely, the
complexity of checking the essential set, which is a solution concept, over weak tournaments [14, 15], and the
complexity of deciding, for a profile of preference rankings, whether a given outcome/candidate is the winner
according to the single transferable vote rule [19].

In fact, it may very well be the case that polynomial-time voting schemes are actually P-hard, which would
be a clear sign that these voting procedures would not scale up over huge input instances. In this paper, we show
that this is indeed the case for some voting tasks over mCP-nets. Hence, the P-completeness results reported
here not only characterize more precisely the complexity of voting over mCP-nets, but they also point out a
significant issue, that, in our opinion, has not been investigated enough so far, which is whether polynomial-time
voting schemes are highly parallelizable, so that tailored parallel algorithms can scale up over big input instances.

Regarding the first result mentioned, weak tournaments are graphs representing incomplete preference, and
they directly encode a dominance relation (after vote aggregation). Intuitively, the data structure in the input
(i.e., the weak tournament) reports whether an alternative is preferred to another via some voting procedure
(e.g., majority), but the preferences of the individual agents are not explicitly represented in the input. This
means that the aggregation of the preferences is assumed to be pre-computed and provided in the input. In this
respect, our work is different, because we assume that the input contains the preferences of the individual agents.

For the second result mentioned, an interesting property shown is that if the number of agents is fixed, then
the problem can be solved in LOGSPACE, and hence it becomes highly parallelizable [19].

Not all the voting schemes known in the literature to be feasible in polynomial time are actually P-complete.
Nonetheless, for the vast majority of these polynomial-time voting schemes, it was not investigated either whether
they were actually P-complete, or whether they can be decided in subclasses of P. Again, to our knowledge, only
Brandt and Fischer [14] and Csar et al. [19] have carried out such a refined analysis.

8 Conclusion
In this work, we have continued the complexity analysis of global voting over acyclic binary CP-nets started
in our previous work [45]. In particular, we have investigated the complexity of max and rank semantics in
mCP-nets. The problems analyzed for the two mCP-nets semantics are the classic ones in voting scenarios,
namely, deciding dominance, deciding optimal and optimum outcomes, and deciding whether optimal and
optimum outcomes exist. For almost all of them, we have shown completeness results, and in fact we give tight
lower bound for problems that (up to now) did not have any explicit lower bound transcending the obvious
hardness due to the dominance test over the underlying CP-nets. The obtained results situate the complexity
of the max voting tasks at various levels of the polynomial hierarchy, which is quite interesting, as for most
of these tasks, only EXPTIME upper bounds were known to date [53]. For the rank voting scheme, we have
provided various P-completeness results. Memberships in P for these problems are quite a big improvement over
the previously known algorithms, requiring exponential time. Hardness results for P show that these tasks are
inherently sequential and hence not highly parallelizable. This points out a significant issue, which is whether
polynomial-time voting schemes are highly parallelizable to tackle big instances.

As our hardness results are obtained over mCP-nets with standard acyclic binary CP-nets, they extend to
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more general mCP-nets with partial CP-nets and/or multi-valued features. Our hardness results for the max
voting semantics can be extended to any representation scheme as succinct and expressive as the class of CP-nets
considered here (see [45, Section 2.5] for the definition of the relationship “as succinct and expressive” between
representations schemes for preferences). Our membership results for the max voting semantics can be extended
to any NP representation scheme (see [45, Section 2.5] for the definition).

Note also that the hardness results shown here for deciding the existence of optimal and optimum outcomes
are also lower bounds for the corresponding computational problems. Indeed, computing optimal or optimum
outcomes cannot be easier than the lower bounds shown here for deciding whether such outcomes exist, as
otherwise there would be a more efficient way to decide their existence. In this paper, we did not assume the
quite stringent constraint of O-legality, which was assumed in multiple research papers in the literature; this
also makes our results more general.

Individuating the precise computational complexity of the above-mentioned problems not only provides the
analysis that was requested in the literature [35], but also highlights what are the sources of complexity in
the problems. With this information, it is hence possible to design algorithms to solve the problems and to
characterize subclasses of instances over which the problems are tractable, because the sources of intractability
are individuated. For example, problems/languages L that are ΣP

2 -complete are characterized by two independent
sources of complexity. As a practical consequence of this, with our current state of knowledge, any correct
algorithm for L running on a standard deterministic machine requires two nested backtracking procedures to
explore the space of the possible solutions. Intuitively, an outer backtracking procedure is used to generate
the candidate solutions, and an inner backtracking procedure must be used (unless P = NP) to verify that the
candidate solution is actually a correct one. That is, checking the correctness of the candidate solution is an
intractable problem on its own. As an example, it has been shown in this paper that deciding the existence of
max optimal outcomes in an mCP-net is ΣP

3 -complete. Having this precise information, and not, for example,
only a more loose NP-hardness result, tells us important insights of practical relevance. First, unless P = NP
(or unless there are collapses in the polynomial hierarchy impacting on the first three layers), to solve this
problem we need an algorithm that, if implemented on standard deterministic machines, requires three nested
exponential backtracking procedures. No approach using less than three nested exponential searches will ever
be able to correctly solve the problem on general instances. Second, it is not possible to encode this problem
into a Boolean formula to be solved by a SAT solver (as it was done in the literature for other dominance
semantics [38, 39, 40, 42]) without having a double exponential growth in the size of the resulting formula. Or,
similarly, if we want to avoid the exponential explosion in the translation, the problem cannot be encoded into a
plain Boolean formula, but the problem can be encoded into a quantified Boolean formula with three alternating
quantifiers, and the use of heavier QBF solvers to obtain the solution is required.

There are various possibilities for future research. First, the exact complexity of deciding the existence of
max optimum outcomes is still not known. The complexity lies between ΠP

2 and ΣP
3 , and it would be interesting

to find a lower bound and a matching upper bound. In fact, the complexity of deciding the existence of majority
optimum outcomes lies between ΠP

2 and DP
2 , and therefore finding the exact complexities of these problems will

allow to understand whether one task is actually more intricate than the other.
The various tasks analyzed have in general a high computational complexity. Hence, investigating structural

restrictions on the structure of CP-nets to identify broader classes of CP-nets where the dominance test is
tractable can manifest itself as a quite fruitful direction of research. Another possibility is studying other voting
schemes based over majority voting, like Dodgson, Young, and Kemeny (see, e.g., the survey by Brandt et al.
[16]) on profiles of CP-nets. Note that the latter three can be seen as variations/generalizations of the majority
rule; in some way, they use a measure of how distant an outcome is from the majority optimal outcome, and
hence these rules can be used to compute an optimal outcome with a majority flavor even in situations where
the standard majority optimal outcome is not available [5]. Kemeny voting has also been used to aggregate
website rankings of various search engines [22].

The formalism of mCP-nets in their original definition allows the presence of “non-ranked” features in
CP-nets [53]. The authors called this kind of CP-nets partial CP-nets, and they can model a form of indifference
between preferences. Completing the analysis of voting complexity over profiles of partial CP-nets would give a
clearer picture of the complexity of voting over (m)CP-nets.

Another aspect to investigate more deeply is related to the modeling capabilities of CP-nets, which assume
that all outcomes in a domain are attainable. However, this is not always the case, and hence we should take
into account what outcomes are feasible in the definition of preference aggregation. To give an example, when
majority voting is considered, to decide whether an outcome is dominated by another, we should check whether
the latter is feasible. A non-feasible outcome should not be allowed to dominate another outcome. Constraints
issued over the outcome domain can be considered prior to the aggregation process or after it, similarly to what
was done for NTU cooperative games defined via constraints [25, 26]. NTU games (i.e., non-transferable utility
games) are cooperative games in which players do not have complete freedom in sharing the worth that they get
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by forming a coalition. Constraints were used to compactly define the allowed worth distributions available to
the players of coalitions. This approach could be merged with the definition of constrained CP-nets [9, 51].
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k+1-hardness of the problem Comp-Validk [44].

A Proofs for Section 6
To prove Lemma 6.3, we need to show a transformation for the mentioned problems. This transformation uses the
summarized formula nets Fs(ϕ) (see Section 5.1 in [45] for the details of the definition and see Section 3.1 in [45]
for the encoding of the Boolean assignments in these nets), which are CP-nets linking the satisfiability of 3CNF
Boolean formulas ϕ with the dominance relationship of two outcomes differing on the value of only two features.
This advantage comes at the cost of losing the single connectedness property of the (non-summarized) formula
nets (used to show the hardness of the max dominance problem in Section 6.1). We also use direct nets, which are
CP-nets designed to have specific optimum outcomes (see Section 5.1 in [45]); and also conjunctive/disjunctive
interconnecting nets, which are nets designed to “check” whether all features or at least one feature of a set,
respectively, have overlined values (see Section 4.1 in [45]).

Construction A.1. Let Φ = (∀X)(∃Y )ϕ(X, Y ) be a quantified formula where ϕ(X, Y ) is a 3CNF Boolean
formula defined over two disjoint sets X = {x1, . . . , xnX

} and Y = {y1, . . . , ynY
} of Boolean variables, and whose

set of clauses is C = {c1, . . . , cm}. From Φ, we define the 4CP-net Mixl(ϕ) = ⟨N ixl
1 , . . . , N ixl

4 ⟩ in the following
way.
The features of Mixl(ϕ) are:

• all the features of a net Fs(ϕ) in which, in this case, we distinguish two variable feature sets V = {V T
i , V F

i |
xi ∈ X} and W = {W T

i , W F
i | yi ∈ Y } (recall that P and D are the sets of literal and clause features,

respectively, and A is the set of features of the conjunctive interconnecting net embedded in Fs(ϕ));
• all the features of sets V ′ = {V ′

i | xi ∈ X}, V ′′ = {V ′′
i | xi ∈ X}, and V ′′′ = {V ′′′

i | xi ∈ X};
• all the features of the set B, which are the features Bi of a conjunctive/disjunctive interconnecting net

HC(|V ′|) (once these features will be used in a conjunctive interconnecting net, and once in a disjunctive
interconnecting net), and its apex is feature B (features Bi are distinct from features Ai of the conjunctive
interconnecting net HC(m) embedded in Fs(ϕ)).

To summarize, all the features of Mixl(ϕ) are V ∪ V ′ ∪ V ′′ ∪ V ′′′ ∪ W ∪ P ∪ D ∪ A ∪ B ∪ {U1, U2}.
The CP-nets of Mixl(ϕ) are:

• N ixl
1 = ⟨FNexl

1
, ENexl

1
⟩ embeds a net Fs(ϕ) with its features, links, and CP tables (but the CP table of U2,

which is defined below).
The other links of N ixl

1 are:
– for each xi ∈ X, {(V ′

i , V ′′′
i ), (V ′′

i , V ′′′
i )} ⊆ EN ixl

1
;

– a disjunctive interconnecting net HD(|V ′′′|) over the set of features B, which is connected to the set of
features V ′′′;

– (B, U2) ∈ EN ixl
1

.

Besides the usual CP tables for features of Fs(ϕ), the other CP tables of N ixl
1 are:

– the CP table of features F ∈ (V ′ ∪ V ′′) is f ≻ f ;
– the CP table of features V ′′′

i ∈ V ′′′ contains (v′
i ∨ v′′

i ) → v′′′
i ≻ v′′′

i , and is v′′′
i ≻ v′′′

i , otherwise;
– the CP tables for features in B of the interconnecting net are the usual ones;
– the CP table of feature U2 contains (a ∨ b) → u2 ≻ u2, and is u2 ≻ u2, otherwise.

• N ixl
2 is a direct net, in particular N ixl

2 = D(α), with α defined over all features of Mixl(ϕ), and having
overlined values only for features U1 and U2.

• N ixl
3 = ⟨FN ixl

3
, EN ixl

3
⟩ is as follows (see Figure 6 for a schematic illustration).

Links of N ixl
3 are the following:
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Figure 6: A schematic illustration of part of net N ixl
3 of Mixl(ϕ). Not all features are represented.

– for each xi ∈ X, {(U1, V T
i ), (U1, V F

i ), (V T
i , V ′

i ), (V F
i , V ′

i ), (V T
i , V ′′

i ), (V F
i , V ′′

i ), (V ′′
i , V ′

i )} ⊆ EN ixl
3

;
– a conjunctive interconnecting net HC(|V ′|) over the feature set B, which is connected to the features

in V ′;
– {(B, U2), (U1, U2)} ⊆ EN ixl

3
.

The CP tables of N ixl
3 are the following:

– the CP table of feature U1 is u1 ≻ u1;
– the CP table of features F ∈ V contains (u1) → f ≻ f and (u1) → f ≻ f ;
– the CP table of features V ′′

i ∈ V ′′ contains (vT
i ∧ vF

i ) → v′′
i ≻ v′′

i , and is v′′
i ≻ v′′

i , otherwise;
– the CP table of features V ′

i ∈ V ′ contains (v′′
i ∧ (vT

i ⊕ vF
i )) → v′

i ≻ v′
i, and is v′

i ≻ v′
i, otherwise;

– the CP tables of features in B of the interconnecting net are the usual ones;
– the CP table of U2 contains (u1 ∧ b) → u2 ≻ u2, and is u2 ≻ u2, otherwise;
– there is a direct net D(γ) , with γ defined over the features V ′′′ ∪ W ∪ P ∪ D ∪ A and assigning

non-overlined values to all the features.

• N ixl
4 is similar to the net N ixl

3 , with the only differences that the features U1 and U2 are exchanged, and
the CP tables of N ixl

4 are adjusted to reflect this change.

Observe that Mixl(Φ) is acyclic, binary, its in-degree is three, and can be computed in polynomial time from Φ.
Moreover, the class of mCP-nets {Mixl(Φ)}Φ derived from formulas Φ of the specified kind and according to the
reduction shown above is polynomially connected. ◁

We report here an important property of summarized formula nets.

Lemma A.2 ([45, Lemma 5.2]). Let ϕ(X) be a Boolean formula in 3CNF defined over a set X of Boolean
variables, and let σX be an assignment on X. Let ασX

be the outcome of Fs(ϕ) encoding σX on the feature set V,
and assigning non-overlined values to all other features. Let β be an outcome of Fs(ϕ) such that β[U1U2] = u1u2,
assigning any value to the features of V, and assigning non-overlined values to all other features. Then:

(1) There is an extension of σX to X satisfying ϕ(X) iff β ≻Fs(ϕ) ασX
;

(2) There is no extension of σX to X satisfying ϕ(X) iff β ▷◁Fs(ϕ) ασX
.

We can now prove Lemma 6.3.

Lemma 6.3. There exists a polynomial-time reduction from the problem of deciding the validity of quantified
Boolean formulas Φ = (∀X)(∃Y )ϕ(X, Y ), where ϕ(X, Y ) is in 3CNF, to the problem of deciding whether an
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outcome is max optimal in mCP-nets. The mCP-nets obtained in the reduction are binary, acyclic, formed by
four agents, they have in-degree three, and they constitute a polynomially connected class of mCP-nets.

Proof of Lemma 6.3. Let Φ = (∀X)(∃Y )ϕ(X, Y ) be a quantified Boolean formula, where ϕ(X, Y ) is in 3CNF.
Consider the reduction defined in Construction A.1, which builds the mCP-net Mixl(Φ), and the outcome α
assigning overlined values only to U1 and U2. We show that Φ is valid iff α is a max optimal outcome in Mixl(Φ).

To prove this, we have to analyze the max dominance relationship between α and all the other outcomes.
Remember that in α features U1 and U2 are overlined. To analyze the max dominance relationships, we partition
the set of all possible outcomes into two sets Od and Oc. In Oc, there are outcomes encoding (partial or complete)
truth assignments for the variables X. In particular, any outcome β in Oc assigns non-overlined values to features
V ′ ∪ V ′′ ∪ V ′′′ ∪ W ∪ P ∪ D ∪ A ∪ B, and β encodes a (partial or complete) Boolean assignment σX for variables
X over features V . Since there is a one-to-one relationship between outcomes in Oc and Boolean assignments σX

for variables X, we can also denote the outcomes belonging to Oc as βσX
, where σX is the assignment encoded

in the outcome.
Intuitively, Oc is the set of outcomes “candidate” to max dominate α, and for this reason, we use the subscript

“c” in Oc, whereas Od contains outcomes that cannot max dominate α. The aims of this proof are: showing
that all outcomes in Od cannot max dominate α; and showing that only outcomes of a subset S (whose precise
characterization is given towards the end of the proof) of Oc may max dominate α. In particular, we show that
all outcomes in (Od ∪ Oc) \ S do not max dominate α. Then, we prove that outcomes in S, which may be empty,
max dominate α. Hence, α is max optimal iff S is empty. We now formally define the two sets Od and Oc:

• Od = Od
′ ∪ Od

′′ ∪ Od
′′′ ∪ Od

′′′′, where

– Od
′ = {β ∈ OMixl(Φ) | (∃F )(F ∈ (W ∪ P ∪ D ∪ A) ∧ β[F ] = f)};

– Od
′′ = {β ∈ OMixl(Φ) | β[U1U2] ̸= u1u2};

– Od
′′′ = {β ∈ OMixl(Φ) | (∃F )(F ∈ (V ′ ∪ V ′′ ∪ V ′′′ ∪ B) ∧ β[F ] = f)};

– Od
′′′′ = {β ∈ OMixl(Φ) | (∃i)(β[V T

i V F
i ] = vT

i vF
i )}.

• Oc = {β ∈ OMixl(Φ) | β /∈ Od}.

Observe that the sets Od
′, Od

′′, Od
′′′, and Od

′′′′, do not constitute a partition of Od, because they are not
disjoint.

Note that, since Mixl(Φ) is a 4CP-net, |S≻
Mixl(Φ)(β, α)| ≤ 1 implies that β ̸≻x

Mixl(Φ) α. The next four
properties show that no outcome β ∈ Od max dominates α.

Property 6.3.(1). Let β′ ∈ Od
′ be an outcome. Then, β′ ̸≻x

Mixl(Φ) α.
Proof. Since β′ ∈ Od

′, there is a feature F ∈ (W ∪ P ∪ D ∪ A) such that β[F ] = f . By the definition of
the CP-nets of Mixl(Φ), β′ ̸≻N ixl

2
α, β′ ̸≻N ixl

3
α, and β′ ̸≻N ixl

4
α. Therefore, |S≻

Mixl(Φ)(β′, α)| ≤ 1, and hence
β′ ̸≻x

Mixl(Φ) α.

Property 6.3.(2). Let β′′ ∈ Od
′′ be an outcome. Then, β′′ ̸≻x

Mixl(Φ) α.
Proof. Observe that α ∈ Od

′′, and if β′′ = α, then β′′ ̸≻x
Mixl(Φ) α. So, let us assume that β′′ ≠ α for the rest

of the proof of this property. There are three cases: (1) β′′[U1U2] = u1u2, or (2) β′′[U1U2] = u1u2, or (3)
β′′[U1U2] = u1u2.

Let us consider Case (1). Let α′ be the outcome assigning an overlined value only to feature U1. There
are two cases: either (a) β′′ = α′, or (b) β′′ ̸= α′. Consider Case (a). By the definition of the CP-nets of
Mixl(Φ), β′′ = α′ ≻N ixl

1
α (because β′′ = α′, and hence β′′[AB] = ab), α ≻N ixl

2
α′ = β′′, α ≻N ixl

3
α′ = β′′

(because β′′ = α′, and hence β′′[U1] = u1), and β′′ = α′ ≻N ixl
4

α. Therefore |S≻
Mixl(Φ)(β′′, α)| = 2 and

|S≺
Mixl(Φ)(β′′, α)| = 2, which implies that β′′ ̸≻x

Mixl(Φ) α.
Consider now Case (b). By definition of N ixl

2 , α ≻N ixl
2

β′′. Let us now focus on net N ixl
3 . Since U1

has no parents in N ixl
3 , in any improving flipping sequence in N ixl

3 , once U1 is flipped from u1 to u1, U1
cannot be flipped back. Hence, in any improving flipping sequence of N ixl

3 from α to β′′ (if it exists), since
α[U1] = u1 = β′′[U1] (we are in Case (1)), feature U1 cannot be flipped at all. However this implies that, by
the definition of the CP table of U2 in N ixl

3 , U2 cannot be flipped from u2 to u2, which is required to reach
β′′ (we are in Case (1)). Therefore, in N ixl

3 , there is no improving flipping sequence from α to β′′, which
implies that β′′ ̸≻N ixl

3
α.

Consider now net N ixl
1 . Recall that α′ is the outcome assigning an overlined value only to feature U1. By

the definition of this net, the only outcome dominating α in N ixl
1 is α′. Because we are assuming β′′ ̸= α′,

β′′ ̸≻N ixl
1

α.
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Therefore, |S≻
Mixl(Φ)(β′′, α)| ≤ 1, and hence β′′ ̸≻x

Mixl(Φ) α.
Let us now consider Case (2). Again, let α′ be the outcome assigning an overlined value only to feature

U1. By the definition of N ixl
1 , the only outcome dominating α in N ixl

1 is α′. Also in this case β′′ ̸= α′, because
β′′[U1U2] = u1u2 ̸= u1u2 = α′[U1U2], and hence β′′ ̸≻N ixl

1
α. With a similar argument to the one used in

Case (1)(b) for N ixl
3 , we can show that in N ixl

4 there is no improving flipping sequence from α to β′′ (simply
focus on U2 instead of U1), which implies that β′′ ̸≻N ixl

4
α. Moreover, we know that β′′ ̸≻N ixl

2
α. Therefore,

|S≻
Mixl(Φ)(β′′, α)| ≤ 1, and hence β′′ ̸≻x

Mixl(Φ) α.
Let us consider Case (3). First we remind the reader that we are assuming that β′′ ̸= α. The following is

an improving flipping sequence from β′′ to α in N ixl
1 . We can flip, in the proper order, to their non-overlined

values all the features of the following sets in the specified sequence: V ′, V ′′, V ′′′, B, V, W, P, D, and A.
Observe that the obtained outcome is precisely α, and hence α ≻N ixl

1
β′′. Remember that by definition

of N ixl
2 , α ≻N ixl

2
β′′. Therefore, |S≺

Mixl(Φ)(β′′, α)| ≥ 2, and hence |S≻
Mixl(Φ)(β′′, α)| ≤ 2, which implies that

β′′ ̸≻x
Mixl(Φ) α.

Property 6.3.(3). Let β′′′ ∈ Od
′′′ be an outcome. Then, β′′′ ̸≻x

Mixl(Φ) α.
Proof. By Property 6.3.(2), we can assume that β′′′[U1U2] = u1u2. We will show that in N ixl

1 there is an
improving flipping sequence from β′′′ to α. Since there is a feature F ∈ V ′ ∪V ′′ ∪V ′′′ ∪B such that β′′′[F ] = f ,
the disjunctive interconnecting net in N ixl

1 allows us to flip the proper features of the interconnecting net
until we can flip also U2 from u2 to u2. Then, in the proper order, we can flip to their non-overlined values all
features in V ′ ∪ V ′′ ∪ V ′′′ ∪ B. Next, we flip U1 from u1 to u1, and after this we can flip to their non-overlined
values all the remaining features having overlined values but U2. Observe that the outcome reached is exactly
α, and hence α ≻N ixl

1
β′′′. By definition of N ixl

2 , α ≻N ixl
2

β′′′ as well.
Therefore, |S≺

Mixl(Φ)(β′′′, α)| ≥ 2, and hence |S≻
Mixl(Φ)(β′′′, α)| ≤ 2, implying that β′′′ ̸≻x

Mixl(Φ) α.

Property 6.3.(4). Let β′′′′ ∈ Od
′′′′ be an outcome. Then, β′′′′ ̸≻x

Mixl(Φ) α.
Proof. By Property 6.3.(2), we can assume that β′′′′[U1U2] = u1u2. Let us focus on N ixl

3 . We will show that
β′′′′ ̸≻N ixl

3
α. Let us assume by contradiction that β′′′′ ≻N ixl

3
α, hence there must be an improving flipping

sequence ρ : δ0 −→ . . . −→ δz from α = δ0 to β′′′′ = δz.
Since δ0[U2] = u2 and δz[U2] = u2 (because we are assuming β′′′′[U2] = u2), there must be an index s

such that δs[U2] = u2, δs+1[U2] = u2, and δs
U2−−→ δs+1. By the CP table of U2 in N ixl

3 , this requires that
δs[U1B] = u1b. Observe that all features in B have non-overlined values in δ0, therefore, in order for δs[B] = b
to be true, by the definition of the conjunctive interconnecting net in N ixl

3 , there is an index r < s such that in
δr all features in V ′ have overlined values. Consider a feature V ′

i ∈ V ′ for which the pair of features {V T
i , V F

i }
is such that β′′′′[V T

i V F
i ] = δz[V T

i V F
i ] = vT

i vF
i . Since δ0[V ′

i ] = v′
i and δr[V ′

i ] = v′
i, there must be an index

q < r such that δq[V ′
i ] = v′

i, δq+1[V ′
i ] = v′

i, and δq
V ′

i−→ δq+1. By the CP table of V ′
i in N ixl

3 , this requires that
δq[V ′′

i ] = v′′
i and that either δq[V T

i V F
i ] = vT

i vF
i or δq[V T

i V F
i ] = vT

i vF
i . Since δ0[V ′′

i ] = v′′
i and δq[V ′′

i ] = v′′
i ,

there must be and index p < q such that δp[V ′′
i ] = v′′

i , δp+1[V ′′
i ] = v′′

i , and δp
V ′′

i−−→ δp+1. By the CP table of
V ′′

i in N ixl
3 , this requires that δp[V T

i V F
i ] = vT

i vF
i . Since δ0[V T

i V F
i ] = vT

i vF
i and δp[V T

i V F
i ] = vT

i vF
i , it must

be the case that V T
i and V F

i are flipped to their overlined values before the p-th step of the sequence.
Observe that U1 is without parents in N ixl

3 , and hence once it is flipped from u1 to u1, it cannot be flipped
back. Moreover, V T

i and V F
i can be flipped from vT

i to vT
i , and from vF

i to vF
i , respectively, iff U1 has value

u1, instead they can be flipped from vT
i to vT

i , and from vF
i to vF

i , respectively, iff U1 has value u1. Since
δp[V T

i V F
i ] = vT

i vF
i and in the q-th step either δq[V T

i V F
i ] = vT

i vF
i or δq[V T

i V F
i ] = vT

i vF
i , it must be the case

that U1 is flipped from u1 to u1 at some p′-th step with p < p′ < q. We know that U1 cannot be flipped back
to u1 after the p′-th step, hence it is not possible to flip the pair of features {V T

i , V F
i } from either vT

i vF
i or

vT
i vF

i to vT
i vF

i after the p′-th step, which contradicts that δz[V T
i V F

i ] = vT
i vF

i .
Therefore, it must be the case that β′′′′ ̸≻N ixl

3
α.

Similarly, it can be shown that β′′′′ ̸≻N ixl
4

α. Thus, N ixl
3 and N ixl

4 do not belong to S≻
Mixl(Φ)(β′′′′, α).

Moreover, by definition of N ixl
2 , α ≻N ixl

2
β′′′, and hence N ixl

2 ∈ S≺
Mixl(Φ)(β′′′′, α). Therefore, |S≻

Mixl(Φ)(β′′′′,

α)| ≤ 1, and thus β′′′′ ̸≻x
Mixl(Φ) α.

Let us now consider the outcomes in Oc. Recall that, by the definition of Oc, each outcome β ∈ Oc is such
that there is a (partial or complete) Boolean assignment for the variables X such that β = βσX

, and there is
a one-to-one relationship between outcomes in Oc and partial/complete Boolean assignments for variables X.
Observe that the variables X are universally quantified in Φ, hence no single assignment σX can be a witness of
the validity of Φ. Single assignments over X can only be witnesses of the non-validity of Φ. Therefore, in this
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context, when we say that an assignment σX is a witness, then it is meant that σX is a witness of the non-validity
of Φ, i.e., σX is such that (∃Y )ϕ(X/σX , Y ) is not valid, which means that ϕ(X/σX , Y ) is not satisfiable. Let us
denote by Witnc the set of all complete assignments σX over X such that (∃Y )ϕ(X/σX , Y ) is valid (i.e., such
that ϕ(X/σX , Y ) is satisfiable). Let Witn be the set of all (partial or complete) assignments σX over X such
that there is an extension of σX to X belonging to Witnc, and let Witn be the set of all (partial or complete)
assignments over X not belonging to Witn. Remember that if σX is a complete assignment over X, then σX

itself is the unique extension of σX to X. Given the above definitions, OWitn
c = {βσX

∈ Oc | σX ∈ Witn}, and
OWitn

c = {βσX
∈ Oc | σX ∈ Witn} constitute a partition of Oc.

We show in the next three properties that only outcomes belonging to OWitn
c can max dominate α in Mixl(Φ).

In this respect, OWitn
c is the set S mentioned earlier. We start by proving a basic property.

Property 6.3.(5). Let βc ∈ Oc be an outcome. Then, βc ≻N ixl
3

α and βc ≻N ixl
4

α.
Proof. Let σX be the assignment over X such that βc = βσX

, and let σ′
X be any extension of σX to X. First

consider net N ixl
3 . The following is an improving flipping sequence from α to βc in N ixl

3 , which proves that
βc ≻N ixl

3
α.

We first flip all features in V to their overlined values (remember that α[U1] = u1). Then, we flip all
features in V ′′ to their overlined values. After this, we flip U1 from u1 to u1. Then, we flip the proper features
in V to their non-overlined values in order to obtain an assignment of values for features in V encoding
σ′

X . Observe that we can now flip to their overlined values all features in V ′ because σ′
X is a complete

assignment (and hence there is no pair of features {V T
i , V F

i } for which vT
i vF

i , or vT
i vF

i ). Next, we can flip
to their overlined values, in the proper order, all features in B of the interconnecting net (and hence also
the apex B). We can now flip U2 from u2 to u2. After this, we can flip features in V to values matching
those in βc. Observe that we can do this because the values for the features in V, just before this point of
the flipping sequence, reflect the assignment σ′

X that is an extension of σX , which, on the other hand, is the
assignment encoded in βc. Therefore, the flips required in this step are from overlined values to non-overlined
ones, and this can be done since the value of feature U1 is u1. To conclude, we flip, in the proper order, to
their non-overlined values all features in V ′′ (observe that none of the pairs {V T

i , V F
i } has overlined values

for both V T
i and V F

i ), V ′, and B. The obtained outcome is precisely βc. Similarly, it can be proven that
βc ≻N ixl

4
α.

For the following two properties it is useful to note that, for any outcome βc ∈ Oc, βc assigns non-overlined
values to all features in V ′ ∪ V ′′ ∪ V ′′′ ∪ B. Moreover, also α assigns non-overlined values to all features in
V ′ ∪ V ′′ ∪ V ′′′ ∪ B. Therefore, the part of net N ixl

1 over feature sets V ′, V ′′, V ′′′ and B, does not play an active role
in any improving flipping sequence (if exists) either from α to βc, or from βc to α, because, in N ixl

1 , features in
V ′ ∪ V ′′ have no parents, and they have already their most preferred values in α and βc. The following property
shows that outcomes βc ∈ OWitn

c cannot max dominate α.

Property 6.3.(6). Let βc ∈ OWitn
c be an outcome. Then, βc ̸≻x

Mixl(Φ) α.
Proof. Let σX ∈ Witn be the (partial or complete) assignment over X such that βc = βσX

.
Let us focus on net N ixl

1 . Consider now the non-quantified formula ϕ(X, Y ). If we consider the set X ∪ Y
of all the Boolean variables in ϕ, the assignment σX is a partial assignment over X ∪ Y . Since σX ∈ Witn,
(∃Y )ϕ(X/σX , Y ) is valid (i.e., ϕ(X/σX , Y ) is satisfiable), and hence there is an extension of σX to X ∪ Y
satisfying ϕ. Therefore, by Lemma A.2, α ≻N ixl

1
βc.

By the definition of N ixl
2 , α ≻N ixl

2
βc, because βc ̸= α. By Property 6.3.(5), N ixl

3 ∈ S≻
Mixl(Φ)(βc, α) and

N ixl
4 ∈ S≻

Mixl(Φ)(βc, α). Therefore, |S≻
Mixl(Φ)(βc, α)| = 2 and |S≺

Mixl(Φ)(βc, α)| = 2, and hence βc ̸≻x
Mixl(Φ)

α.
Next we prove that outcomes βc ∈ OWitn

c max dominate α.
Property 6.3.(7). Let βc ∈ OWitn

c be an outcome. Then, βc ≻x
Mixl(Φ) α.

Proof. Let σX ∈ Witn be the (partial or complete) assignment over X such that βc = βσX
. Since σX ∈ Witn,

there is no extension σ′
X of σX to X such that (∃Y )ϕ(X/σ′

X , Y ) is valid, (i.e., such that ϕ(X/σ′
X , Y ) is

satisfiable).
Let us focus on net N ixl

1 . We claim that βc ▷◁N ixl
1

α. Consider the non-quantified formula ϕ(X, Y ). If
we consider the set X ∪ Y of all the Boolean variables in ϕ, the assignment σX is a partial assignment over
X ∪ Y . Since ϕ(X/σX , Y ) is not satisfiable, there is no extension of σX to X ∪ Y satisfying ϕ. Therefore, by
Lemma A.2, βc ▷◁N ixl

1
α.

To conclude, observe that, by the definition of N ixl
2 , α ≻N ixl

2
βc, because βc ̸= α. By Property 6.3.(5),

N ixl
3 ∈ S≻

Mixl(Φ)(βc, α) and N ixl
4 ∈ S≻

Mixl(Φ)(βc, α). Therefore, |S≻
Mixl(Φ)(βc, α)| = 2, |S≺

Mixl(Φ)(βc, α)| = 1, and
|S▷◁

Mixl(Φ)(βc, α)| = 1, and hence βc ≻x
Mixl(Φ) α.
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We are now ready to prove that Φ = (∀X)(∃Y )ϕ(X, Y ) is valid iff α is max optimal in Mixl(Φ).

(⇒) Assume that Φ is valid, hence there is no assignment in Witn, and hence OWitn
c is empty. Therefore, since

by all the properties above only outcomes in OWitn
c max dominate α, α is max optimal in Mixl(Φ).

(⇐) Assume that Φ is not valid, hence there is an assignment σX for the variables in X such that σX ∈ Witn.
By Property 6.3.(7), βσX

≻x
Mixl(Φ) α, and hence α is not max optimal in Mixl(Φ).

We now focus on the proof of Lemma 6.5. Also the transformation for this proof uses the summarized formula
nets Fs(ϕ) (see Section 5.1 in [45]), the concept of encoding of Boolean assignments in these nets (see Section 3.1
in [45]), direct nets (see Section 5.1 in [45]), and conjunctive/disjunctive interconnecting nets (see Section 4.1
in [45]).

Construction A.3. Let Φ = (∃X)(∀Y )(∃Z)ϕ(X, Y, Z) be a quantified formula, where ϕ(X, Y, Z) is a 3CNF
Boolean formula defined over three disjoint sets X = {x1, . . . , xnX

}, Y = {y1, . . . , ynY
}, and Z = {z1, . . . , znZ

},
of Boolean variables, and whose set of clauses is C = {c1, . . . , cm}. From Φ, we define the 8CP-net Mexl(Φ) =
⟨N exl

1 , . . . , N exl
8 ⟩ as follows (intuitions on the aims of the components of this construction can be found in [48]).

The features of Mexl(Φ) are:
• all the features of a net Fs(ϕ) in which, in this case, we distinguish three variable feature sets V = {V T

i , V F
i |

xi ∈ X}, W = {W T
i , W F

i | yi ∈ Y }, and T = {T T
i , T F

i | zi ∈ Z} (recall that P and D are the sets of
literal and clause features, respectively, and A is the set of features of the conjunctive interconnecting net
embedded in Fs(ϕ)); for further reference, we call A the apex of the interconnecting net;

• all the features of the sets W ′ = {W ′
i | yi ∈ Y } and W ′′ = {W ′′

i | yi ∈ Y };
• all the features of the set B which are the features Bi of a conjunctive interconnecting net HC(|W ′|) and

its apex is feature B (the features Bi are distinct from the features Ai of the conjunctive interconnecting
net HC(m) embedded in Fs(ϕ)).

To summarize, all the features of Mexl(Φ) are V ∪ W ∪ W ′ ∪ W ′′ ∪ T ∪ P ∪ D ∪ A ∪ B ∪ {U1, U2}.
The CP-nets of Mexl(Φ) are:

• N exl
1 is composed by a net Fs(ϕ) with its features, links, and CP tables. There is also a direct net D(γ),

where γ is defined over the set of features W ′ ∪ W ′′ ∪ B and assigns non-overlined values to all of them.

• N exl
2 , for every xi ∈ X, has a link from the feature V T

i to the feature V F
i . The CP table for feature V T

i is
vT

i ≻ vT
i , while the CP table for feature V F

i contains (vT
i ) → vF

i ≻ vF
i and (vT

i ) → vF
i ≻ vF

i .
Then, there is a direct net D(γ), with γ defined over all the features of Mixl(ϕ) but those in V. The
outcome γ has non-overlined values for all its features but U1 and U2, which have overlined values.

• N exl
3 is similar to N exl

2 with the difference that the features V T
i and V F

i are exchanged, and the CP tables
of N exl

3 are adjusted accordingly to reflect this change.

• N exl
4 = ⟨FNexl

4
, ENexl

4
⟩ is as follows (see Figure 6 for a schematic illustration, where features V T

i , V F
i , V ′

i ,
and V ′′

i have to be substituted by W T
i , W F

i , W ′
i , and W ′′

i , respectively).
Links of N exl

4 are the following:
– for each yi ∈ Y , {(U1, W T

i ), (U1, W F
i ), (W T

i , W ′
i ), (W F

i , W ′
i ), (W T

i , W ′′
i ), (W F

i , W ′′
i ), (W ′′

i , W ′
i )} ⊆

ENexl
4

;
– a conjunctive interconnecting net HC(|W ′|) over the feature set B is connected to the features in W ′,

and the apex B is linked to U2;
– (U1, U2) ∈ ENexl

4
.

The CP tables of N exl
4 are the following:

– the CP table of feature U1 is u1 ≻ u1;
– the CP table of features F ∈ W contains (u1) → f ≻ f and (u1) → f ≻ f ;
– the CP table of features W ′′

i ∈ W ′′ contains (wT
i ∧ wF

i ) → w′′
i ≻ w′′

i , and is w′′
i ≻ w′′

i , otherwise;
– the CP table of features W ′

i ∈ W ′ contains (w′′
i ∧ (wT

i ⊕ wF
i )) → w′

i ≻ w′
i, and is w′

i ≻ w′
i, otherwise;

– the CP tables of features in B of the interconnecting net are the usual ones;
– the CP table of U2 contains (u1 ∧ b) → u2 ≻ u2, and is u2 ≻ u2, otherwise;
– there is a direct net D(γ) , with γ defined over the features P ∪ D ∪ A ∪ T ∪ V and assigning overlined

values to the features in V and non-overlined values to all the others.

• N exl
5 is similar to N exl

4 with the difference that the features U1 and U2 are exchanged, and the CP tables
of N exl

5 are adjusted accordingly to reflect this change.

28



• N exl
6 = ⟨FNexl

6
, ENexl

6
⟩ is as follows. The links of N exl

6 are:

– for each xi ∈ X, (V T
i , V F

i ) ∈ ENexl
6

;
– for each yi ∈ Y , {(U1, W T

i ), (U1, W F
i ), (U2, W T

i ), (U2, W F
i )} ⊆ ENexl

6
;

– (U2, U1) ∈ ENexl
6

.

The CP tables of N exl
6 are:

– the CP tables of features V T
i and V F

i are as those in N exl
2 ;

– the CP table of feature U2 is u2 ≻ u2;
– the CP table of feature U1 contains (u2) → u1 ≻ u1 and (u2) → u1 ≻ u1;
– the CP table of features F ∈ W contains (u1 ∧ u2) → f ≻ f , and is f ≻ f , otherwise;
– there is a direct net D(γ), with γ defined over all features but V ∪ W ∪ {U1, U2}, and assigning

non-overlined values to all of them.

• N exl
7 = ⟨FNexl

7
, ENexl

7
⟩ is as follows. The links of N exl

7 are:

– for each xi ∈ X, (V F
i , V T

i ) ∈ ENexl
7

;
– (U2, U1) ∈ ENexl

7
.

The CP tables of N exl
7 are:

– the CP tables of features V T
i and V F

i are as those in N exl
3 ;

– the CP table of feature U2 is u2 ≻ u2;
– the CP table of feature U1 contains (u2) → u1 ≻ u1 and (u2) → u1 ≻ u1;
– there is a direct net D(γ), with γ defined over all features but V ∪{U1, U2}, and assigning non-overlined

values to all of them.

• N exl
8 = ⟨FNexl

8
, ENexl

8
⟩ is as follows. The links of N exl

8 are:

– for each yi ∈ Y , {(U1, W T
i ), (U1, W F

i ), (U2, W T
i ), (U2, W F

i )} ⊆ ENexl
8

;
– (U1, U2) ∈ ENexl

8
.

The CP tables of N exl
8 are:

– the CP table of feature U1 is u1 ≻ u1;
– the CP table of feature U2 contains (u1) → u2 ≻ u2 and (u1) → u2 ≻ u2;
– the CP tables of features F ∈ W contains (u1 ∧ u2) → f ≻ f , and is f ≻ f , otherwise;
– there is a direct net D(γ), with γ defined over all features but W ∪ {U1, U2} and assigning overlined

values to all the features in V and non-overlined values to all the remaining features.

Observe that Mexl(Φ) is acyclic, binary, its in-degree is three, and can be computed in polynomial time
from Φ. Moreover, the class of mCP-nets {Mexl(Φ)}Φ derived from formulas Φ of the specified kind and
according to the reduction shown above is polynomially connected. ◁

We can now prove Lemma 6.5.

Lemma 6.5. There exists a polynomial-time reduction from the problem of deciding the validity of quantified
Boolean formulas Φ = (∃X)(∀Y )(∃Z)ϕ(X, Y, Z), where ϕ(X, Y, Z) is in 3CNF, to the problem of deciding whether
mCP-nets admit a max optimal outcome. The mCP-nets obtained in the reduction are binary, acyclic, formed
by eight agents, they have in-degree three, and they constitute a polynomially connected class of mCP-nets.

Proof of Lemma 6.5. Let Φ = (∃X)(∀Y )(∃Z)ϕ(X, Y, Z) be a quantified Boolean formula, where ϕ(X, Y, Z) is
in 3CNF. Consider the reduction defined in Construction A.3, which builds the mCP-net Mexl(Φ). We show
that Φ is valid iff Mexl(Φ) admits a max optimal outcome.

To prove this, we have to analyze the max dominance relationship between all the outcome pairs. Again,
to this aim, we partition the set of all possible outcomes into two sets Od and Oc. In Oc, there are outcomes
encoding (in this case) complete truth assignments for the variables X. In particular, any outcome β in Oc

assigns non-overlined values to features W ∪ W ′ ∪ W ′′ ∪ T ∪ P ∪ D ∪ A ∪ B, β assigns overlined values to U1 and
U2, and β encodes a complete Boolean assignment σX for variables X over features V . Also in this case, as there
is a one-to-one relationship between outcomes in Oc and complete Boolean assignments σX for variables X, we
can also denote the outcomes belonging to Oc as βσX

, where σX is the assignment for variables X encoded in
the outcome. In this context, as the outcomes in Oc, unlike those in the proof of Lemma 6.3, assigns overlined
values to the features U1 and U2, we overline the symbol “βσX

” to remind us this fact.
Intuitively, Oc is the set of outcomes “candidate” to be max optimal, and for this reason, we use the subscript

“c” in Oc, while Od contains outcomes that surely are not max optimal. The aims of this proof are: showing
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that all outcomes in Od are not max optimal; and showing that only outcomes of a subset S (whose precise
characterization will be given toward the end of the proof) of Oc may be max optimal. In particular, we obtain
this by proving that all outcomes in (Od ∪ Oc) \ S are max dominated by some other outcome, and hence they
are not max optimal; and then by proving that all outcomes in S, which might be empty, are not max dominated,
and hence they are max optimal. Therefore, Mexl(Φ) has a max optimal outcome iff S is not empty. Let us now
formally define the two sets Od and Oc:

• Od = Od
′ ∪ Od

′′ ∪ Od
′′′ ∪ Od

′′′′, where

– Od
′ = {β ∈ OMexl(Φ) | (∃F )(F ∈ (W ′ ∪ W ′′ ∪ T ∪ P ∪ D ∪ A ∪ B) ∧ β[F ] = f)};

– Od
′′ = {β ∈ OMexl(Φ) | β[U1U2] ̸= u1u2};

– Od
′′′ = {β ∈ OMexl(Φ) | (∃F )(F ∈ W ∧ β[F ] = f)};

– Od
′′′′ = {β ∈ OMexl(Φ) | (∃i)(β[V T

i V F
i ] = vT

i vF
i ∨ β[V T

i V F
i ] = vT

i vF
i )}.

• Oc = {β ∈ OMexl(Φ) | β /∈ Od}.

Observe that Od
′, Od

′′, Od
′′′, and Od

′′′′ do not constitute a partition of Od because they are not disjoint.
The next four properties show that no outcome β ∈ Od can be max optimal in Mexl(Φ), because there

is an outcome max dominating β. Note that, since Mexl(Φ) is an 8CP-net, |S≻
Mexl(Φ)(β, α)| ≥ 5 implies that

β ≻x
Mexl(Φ) α.

Property 6.5.(1). Let β′ ∈ Od
′ be an outcome. Then, there is an outcome γ ∈ OMexl(Φ) such that γ ≻x

Mexl(Φ) β′.
Proof. Let F ∈ (W ′ ∪ W ′′ ∪ T ∪ P ∪ D ∪ A ∪ B) be a feature such that β′[F ] = f , and let γ be the outcome
for which, for all features G ̸= F , γ[G] = β′[G], and γ[F ] = f ̸= f = β′[F ]. We show that γ ≻x

Mexl(Φ) β′.
By the definition of the CP-nets of Mexl(Φ), γ ≻x

Mexl(Φ) β′ because γ ≻Nexl
2

β′, γ ≻Nexl
3

β′, γ ≻Nexl
6

β′,
γ ≻Nexl

7
β′, ad γ ≻Nexl

8
β′. Therefore, |S≻

Mexl(Φ)(γ, β′)| ≥ 5, and hence γ ≻x
Mexl(Φ) β′.

Property 6.5.(2). Let β′′ ∈ Od
′′ be an outcome. Then, there is an outcome γ ∈ OMexl(Φ) such that

γ ≻x
Mexl(Φ) β′′.
Proof. There are three cases: (1) β′′[U1U2] = u1u2; or (2) β′′[U1U2] = u1u2; or (3) β′′[U1U2] = u1u2.

Consider Case (1). Let γ be the outcome such that, for all features F ̸= U1, γ[F ] = β′′[F ], and
γ[U1] = u1 ̸= u1 = β′′[U1]. By the definition of the CP-nets in Mexl(Φ), γ ≻Nexl

1
β′′, γ ≻Nexl

2
β′′, γ ≻Nexl

3
β′′,

and γ ≻Nexl
6

β′′ (because β′′[U2] = u2). Consider now net N exl
5 . By Property 6.5.(1), we can limit our

attention to those outcomes β′′ such that, for all features F ∈ B, β′′[F ] = f . Therefore, we can assume that
feature B, i.e., the apex of the interconnecting net in N exl

5 , has value b in β′′. Hence, by the definition of the
CP table of U1 in N exl

5 , γ ≻Nexl
5

β′′. Therefore, |S≻
Mexl(Φ)(γ, β′′)| ≥ 5, and hence γ ≻x

Mexl(Φ) β′′.
Consider Case (2). Let γ be the outcome such that, for all features F ̸= U2, γ[F ] = β′′[F ], and

γ[U2] = u2 ̸= u2 = β′′[U2]. By the definition of the CP-nets of Mexl(Φ), γ ≻Nexl
2

β′′, γ ≻Nexl
3

β′′,
γ ≻Nexl

4
β′′ (because β′′[U1] = u1), γ ≻Nexl

7
β′′, and γ ≻Nexl

8
β′′ (again, because β′′[U1] = u1). Therefore,

|S≻
Mexl(Φ)(γ, β′′)| ≥ 5, and hence γ ≻x

Mexl(Φ) β′′.
Consider Case (3). Let γ be the outcome such that, for all features F ̸= U1, γ[F ] = β′′[F ], and

γ[U1] = u1 ̸= u1 = β′′[U1]. By the definition of the CP-nets of Mexl(Φ), γ ≻Nexl
1

β′′, γ ≻Nexl
2

β′′,
γ ≻Nexl

3
β′′, γ ≻Nexl

5
β′′ (because β′′[U2] = u2), and γ ≻Nexl

7
β′′ (again, because β′′[U2] = u2). Therefore,

|S≻
Mexl(Φ)(γ, β′′)| ≥ 5, and hence γ ≻x

Mexl(Φ) β′′.

Property 6.5.(3). Let β′′′ ∈ Od
′′′ be an outcome. Then, there is an outcome γ ∈ OMexl(Φ) such that

γ ≻x
Mexl(Φ) β′′′.
Proof. Let F ∈ W be a feature such that β′′′[F ] = f . Let γ be the outcome such that, for all features G ̸= F ,
γ[G] = β′′′[G], and γ[F ] = f ̸= f = β′′′[F ]. By Property 6.5.(2), we can limit our attention to outcomes β′′′

such that β′′′[U1U2] = u1u2. By the definition of the CP-nets of Mexl(Φ), γ ≻Nexl
1

β′′′ (because β′′′[U1] = u1),
γ ≻Nexl

2
β′′′, γ ≻Nexl

3
β′′′, γ ≻Nexl

6
β′′′ (see the CP tables in N exl

6 of features in W, and remember that only
feature F ∈ W changes its value from β′′′ to γ), and γ ≻Nexl

7
β′′′. Therefore, |S≻

Mexl(Φ)(γ, β′′′)| ≥ 5, and
hence γ ≻x

Mexl(Φ) β′′′.

Property 6.5.(4). Let β′′′′ ∈ Od
′′′′ be an outcome. Then, there is an outcome γ ∈ OMexl(Φ) such that

γ ≻x
Mexl(Φ) β′′′′.
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Proof. First, let us consider the case in which {V T
i , V F

i } is a pair of variable features such that β′′′′[V T
i V F

i ] =
vT

i vF
i . Consider the outcome γ such that, for all features F /∈ {V T

i , V F
i }, γ[F ] = β′′′′[F ], and γ[V T

i V F
i ] =

vT
i vF

i ̸= vT
i vF

i = β′′′′[V T
i V F

i ]. By the definition of the CP-nets of Mexl(Φ), γ ≻Nexl
2

β′′′′ (because β′′′′[V T
i ] =

vT
i ), γ ≻Nexl

4
β′′′′, γ ≻Nexl

5
β′′′′, γ ≻Nexl

6
β′′′′ (again, because β′′′′[V T

i ] = vT
i ), and γ ≻Nexl

8
β′′′′. Therefore,

|S≻
Mexl(Φ)(γ, β′′′′)| ≥ 5, and hence γ ≻x

Mexl(Φ) β′′′′.
Let us consider now the case in which there is a pair of features {V T

i , V F
i } such that β′′′′[V T

i V F
i ] = vT

i vF
i .

Let γ be the outcome such that, for all features F /∈ {V T
i , V F

i }, γ[F ] = β′′′′[F ], and γ[V T
i V F

i ] = vT
i vF

i ≠
vT

i vF
i = β′′′′[V T

i V F
i ]. By Property 6.5.(2), we can limit our attention to outcomes β′′′′ such that β′′′′[U1U2] =

u1u2. Since β′′′′[U1] = u1, γ ≻Nexl
1

β′′′′. Let us now consider N exl
2 . If in β′′′′ we flip first V F

i from vF
i to

vF
i , and then V T

i from vT
i to vT

i , we arrive to γ. Hence, γ ≻Nexl
2

β′′′′. The same flipping sequence proves
that γ ≻Nexl

6
β′′′′. Similarly, it can be shown that γ ≻Nexl

3
β′′′′ and γ ≻Nexl

7
β′′′′ (first flip V T

i and then V F
i ).

Therefore, |S≻
Mexl(Φ)(γ, β′′′′)| ≥ 5, and hence γ ≻x

Mexl(Φ) β′′′′.

Recall that we aim at showing that a specific subset S of Oc contains outcomes that are max optimal.
Therefore, we have to prove that the outcomes in Oc \ S are max dominated. In order to achieve this, we show
an interesting property of outcomes in Oc: they can be max dominated only by very specific outcomes.

We recall that outcomes in Oc are in one-to-one relationship with complete truth assignments for variables X,
and we can hence denote them by βσX

. For a pair of assignments ⟨σX , σY ⟩ for variables X and Y , respectively,
let us denote by βσX ,σY

the outcome assigning non-overlined values to all features but those in V ∪ W, and
encoding σX over features V and encoding σY over feature W. In this case, we do not overline the symbol
“βσX ,σY

” to remind us that in βσX ,σY
the features U1 and U2 have non-overlined values. We prove below that

a necessary (but not sufficient) condition for an outcome to max dominate an outcome βσX
of Oc is to be an

outcome of the kind βσX ,σY
described above for which, moreover, the encoding of σX in βσX ,σY

coincides with
the one in βσX

. Essentially, an outcome γ cannot max dominate βσX
if γ is not in a form of an outcome βσ′

X
,σY

and moreover σ′
X = σX .

The next four properties show the just aforementioned property of outcomes in Oc. Note that, since Mexl(Φ)
is an 8CP-net, |S≻

Mexl(Φ)(β, α)| ≤ 3 implies that β ̸≻x
Mexl(Φ) α.

Property 6.5.(5). Let βc ∈ Oc and γ ∈ OMexl(Φ) be two outcomes such that there is a feature F ∈ (W ′ ∪ W ′′ ∪
T ∪ P ∪ D ∪ A ∪ B) for which βc[F ] ̸= γ[F ]. Then, γ ̸≻x

Mexl(Φ) βc.
Proof. Since βc ∈ Oc, βc[F ] = f and γ[F ] = f . By the definition of the CP-nets in Mexl(Φ), γ ̸≻Nexl

2
βc,

γ ̸≻Nexl
3

βc, γ ̸≻Nexl
6

βc, γ ̸≻Nexl
7

βc, γ ̸≻Nexl
8

βc. Hence, |S≻
Mexl(Φ)(γ, βc)| ≤ 3, and thus γ ̸≻x

Mexl(Φ) βc.

Before proving the next property, let us carry out the following considerations about the preferences over
the values of variable features in V in nets N exl

2 , N exl
3 , N exl

6 , and N exl
7 . In these nets, variable features are

connected in pairs {V T
i , V F

i }, in particular either from V T
i to V F

i or from V F
i to V T

i , and each pair is completely
disconnected from the rest of the net. Therefore, in these nets, whether a flip of a feature of the pair {V T

i , V F
i }

is improving or not depends only on the value of the specific features in the pair. This means that, in any
improving flipping sequence for N exl

2 , N exl
3 , N exl

6 , or N exl
7 , flips cannot violate the preferences’ order restricted

over each pair of features {V T
i , V F

i }. To give an example, consider net N exl
2 . If we restrict our focus over the

pair of features {V T
i , V F

i }, preferences of N exl
2 projected over these features are vT

i vF
i ≺ vT

i vF
i ≺ vT

i vF
i ≺ vT

i vF
i .

If ρ : δ0 −→Nexl
2

. . . −→Nexl
2

δz is any improving flipping sequence for N exl
2 , it cannot be the case that there are

two distinct indices i and j such that i < j, for which, for example, δi[V T
i V F

i ] = vT
i vF

i and δj [V T
i V F

i ] = vT
i vF

i ,
because, in order for this to be true, there would be in ρ flips of features {V T

i , V F
i } which would not be improving

according to their CP tables in N exl
2 . For the following discussion, note that for nets N exl

2 and N exl
6 , their

preferences restricted over (V T
i , V F

i ) are vT
i vF

i ≺ vT
i vF

i ≺ vT
i vF

i ≺ vT
i vF

i ; while, for nets N exl
3 and N exl

7 , their
preferences restricted over (V T

i , V F
i ) are vT

i vF
i ≺ vT

i vF
i ≺ vT

i vF
i ≺ vT

i vF
i .

Property 6.5.(6). Let βc ∈ Oc and γ ∈ OMexl(Φ) be two outcomes such that there is a feature F ∈ V for which
βc[F ] ̸= γ[F ]. Then, γ ̸≻x

Mexl(Φ) βc.
Proof. Let Change = {F ∈ V | βc[F ] ̸= γ[F ]} be the set of all variable features in V changing value from βc

to γ. Let Up = {F ∈ V | βc[F ] = f ∧ γ[F ] = f} be the subset of Change containing variable features in V
changing their value from non-overlined in βc to overlined in γ. Let Down = {F ∈ V | βc[F ] = f ∧ γ[F ] = f}
be the subset of Change containing variable features in V changing their value from overlined in βc to
non-overlined in γ. The sets Up and Down constitute a partition of Change, and, since from the statement
of this property we are assuming that Change ̸= ∅, it must be the case that (Up ∪ Down) ̸= ∅. Therefore,
there are three cases: (1) Up ̸= ∅ ∧ Down ̸= ∅, or (2) Up ̸= ∅ ∧ Down = ∅, or (3) Up = ∅ ∧ Down ̸= ∅. In
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the following, remember that, since βc ∈ Oc, for each pair of features {V T
i , V F

i }, either βc[V T
i V F

i ] = vT
i vF

i or
βc[V T

i V F
i ] = vT

i vF
i .

Consider Case (1). Let us consider N exl
1 . Observe that, since βc ∈ Oc, βc[U1] = u1, and, in net N exl

1 ,
u1 is the most preferred value of feature U1 which, moreover, does not have parents in N exl

1 . Therefore, in
any improving flipping sequence of N exl

1 starting from βc, the value of feature U1 cannot be flipped at all.
This implies that, in any improving flipping sequence of N exl

1 starting from βc, the value of features in V
can be flipped only from overlined to non-overlined. Thus, γ ̸≻Nexl

1
βc, because Up ̸= ∅. Moreover, by the

definitions of the CP-nets in Mexl(Φ), because Down ̸= ∅, γ ̸≻Nexl
4

βc, γ ̸≻Nexl
5

βc, and γ ̸≻Nexl
8

βc.
Let F ∈ Up be a feature. First, let us assume that F = V T

i , which implies that βc[V T
i V F

i ] = vT
i vF

i .
Outcome γ is such that either γ[V T

i V F
i ] = vT

i vF
i or γ[V T

i V F
i ] = vT

i vF
i , depending on the fact whether V F

i

belongs to Down or not, respectively. In both cases, if there were an improving flipping sequence from βc to γ, it
would be against the preferences of N exl

2 restricted over (V T
i , V F

i ) (see above). Therefore, |S≻
Mexl(Φ)(γ, βc)| ≤ 3,

and hence γ ̸≻x
Mexl(Φ) βc. On the other hand, if F = V F

i , it follows that βc[V T
i V F

i ] = vT
i vF

i . Outcome γ is
such that either γ[V T

i V F
i ] = vT

i vF
i or γ[V T

i V F
i ] = vT

i vF
i , depending on the fact whether V T

i belongs to Down
or not, respectively. In both cases, if there were an improving flipping sequence from βc to γ, it would be
against the preferences of N exl

3 restricted over (V T
i , V F

i ) (see above). Therefore, |S≻
Mexl(Φ)(γ, βc)| ≤ 3, and

hence γ ̸≻x
Mexl(Φ) βc.

Consider Case (2). We already know that from Up ̸= ∅ follows γ ̸≻Nexl
1

βc (see Case (1)). Let F ∈ Up be a
feature. Irrespective of the fact whether F = V T

i or F = V F
i , from Down = ∅ follows that γ[V T

i V F
i ] = vT

i vF
i .

If there were an improving flipping sequence from βc to γ, it would be against the preferences of N exl
2 ,

N exl
3 , N exl

6 , and N exl
7 restricted over (V T

i , V F
i ) (see above). Therefore, |S≻

Mexl(Φ)(γ, βc)| ≤ 3, and hence
γ ̸≻x

Mexl(Φ) βc.
Consider Case (3). We already know that from Down ̸= ∅ follows γ ̸≻Nexl

4
βc, γ ̸≻Nexl

5
βc, and

γ ̸≻Nexl
8

βc (see Case (1)). Let F ∈ Down be a feature. First, let us assume that F = V T
i , which implies

βc[V T
i V F

i ] = vT
i vF

i , and from Up = ∅ it follows that γ[V T
i V F

i ] = vT
i vF

i . If there were an improving flipping
sequence from βc to γ, it would be against the preferences of N exl

3 , and N exl
7 , restricted over (V T

i , V F
i ) (see

above). Therefore, |S≻
Mexl(Φ)(γ, βc)| ≤ 3, and hence γ ̸≻x

Mexl(Φ) βc. On the other hand, if F = V F
i , it follows

that β[V T
i V F

i ] = vT
i vF

i , and from Up = ∅ it follows that γ[V T
i V F

i ] = vT
i vF

i . If there were an improving
flipping sequence from βc to γ, it would be against the preferences of N exl

2 , and N exl
6 , restricted over (V T

i , V F
i )

(see above). Therefore, |S≻
Mexl(Φ)(γ, βc)| ≤ 3, and hence γ ̸≻x

Mexl(Φ) βc.

Property 6.5.(7). Let βc ∈ Oc and γ ∈ OMexl(Φ) be two outcomes such that γ[U1U2] ̸= u1u2. Then,
γ ̸≻x

Mexl(Φ) βc.
Proof. There are three cases: (1) γ[U1U2] = u1u2, or (2) γ[U1U2] = u1u2, or (3) γ[U1U2] = u1u2.

Let us consider Case (1). Let us assume by contradiction that γ ≻x
Mexl(Φ) βc, which implies that γ ̸= βc.

Since γ[U1U2] = u1u2 = βc[U1U2], by Properties 6.5.(5) and 6.5.(6), it must be the case that the only features
changing value from βc to γ are those in W . Remember that, since βc ∈ Oc, for all features F ∈ W , βc[F ] = f .
Therefore, for all features F ∈ W such that βc[F ] ̸= γ[F ], γ[F ] = f ̸= f = βc[F ]. By this, βc ≻Nexl

1
γ

(because γ[U1] = βc[U1] = u1), βc ≻Nexl
2

γ, βc ≻Nexl
3

γ, and βc ≻Nexl
7

γ. Therefore, |S≺
Mexl(Φ)(γ, βc)| ≥ 4,

which means that |S≻
Mexl(Φ)(γ, βc)| ≤ 4, and thus it cannot be the case that γ ≻x

Mexl(Φ) βc: a contradiction.
Consider Case (2). Since βc[U1U2] = u1u2 and γ[U1U2] = u1u2, by the definition of the CP-nets of

Mexl(Φ), γ ̸≻Nexl
2

βc, γ ̸≻Nexl
3

βc, and γ ̸≻Nexl
7

βc (because, in N exl
7 , u2 is the most preferred value of U2,

which is moreover without parents). Consider now net N exl
4 . In this net, feature U1 is without parents. Hence,

given the CP table of U1 in N exl
4 , in any improving flipping sequence for N exl

4 , once U1 is flipped from u1 to u1,
it cannot be flipped back. Therefore, since γ[U1] = βc[U1] = u1, if there were an improving flipping sequence
from βc to γ in N exl

4 , then feature U1 could not be flipped at all. Given the CP table of feature U2 in N exl
4 ,

this would imply that also feature U2 could not be flipped from u2 to u2, which would contradict the existence
of an improving flipping sequence from βc to γ in N exl

4 . Therefore, γ ̸≻Nexl
4

βc. Similar considerations allow
us to show that γ ̸≻Nexl

8
βc. Thus, |S≻

Mexl(Φ)(γ, βc)| ≤ 3, and hence γ ̸≻x
Mexl(Φ) βc.

Consider now Case (3). Since βc[U1U2] = u1u2 and γ[U1U2] = u1u2, by the definition of the CP-nets
of Mexl(Φ), γ ̸≻Nexl

1
βc (because, in N exl

1 , u1 is the most preferred value of U1, which is moreover without
parents), γ ̸≻Nexl

2
βc, and γ ̸≻Nexl

3
βc. Consider now net N exl

5 . A similar argument to the one for N exl
4 in

Case (2), but with the roles of features U1 and U2 exchanged, shows that γ ̸≻Nexl
5

βc. Similarly, it can be
shown that γ ̸≻Nexl

7
βc. Thus, |S≻

Mexl(Φ)(γ, βc)| ≤ 3, and hence γ ̸≻x
Mexl(Φ) βc.

32



Property 6.5.(8). Let βc ∈ Oc and γ ∈ OMexl(Φ) be two outcomes such that there is a pair of variable features
{W T

i , W F
i } for which γ[W T

i W F
i ] = wT

i wF
i . Then, γ ̸≻x

Mexl(Φ) βc.
Proof. Remember that, since βc ∈ Oc, for all features F ∈ W, βc[F ] = f , and hence, any feature of W
changing its value from βc to γ has an non-overlined value in βc and an overlined value in γ. This implies
that, γ ̸≻Nexl

2
βc, γ ̸≻Nexl

3
βc, and γ ̸≻Nexl

7
βc.

Let us now focus on N exl
4 . We will show that γ ̸≻Nexl

4
βc. Let us assume by contradiction that γ ≻Nexl

4
βc,

hence there must be an improving flipping sequence ρ : δ0 −→ . . . −→ δz from βc = δ0 to γ = δz.
By Property 6.5.(7), we can limit our attention to those outcomes γ such that γ[U1U2] = u1u2. Since

δ0[U2] = u2 and δz[U2] = u2, there must be an index s such that δs[U2] = u2, δs+1[U2] = u2, and δs
U2−−→ δs+1.

By the CP table of U2 in N exl
4 , this requires that δs[U1B] = u1b. Observe that all features in B have

non-overlined values in δ0 (because βc ∈ Oc), therefore, in order for δs[B] = b to be true, by the definition
of the conjunctive interconnecting net in N exl

4 , there is an index r < s such that in δr all features in W ′

have overlined values. Consider precisely the feature W ′
i ∈ W ′ for which the pair of features {W T

i , W F
i } is

such that γ[W T
i W F

i ] = δz[W T
i W F

i ] = wT
i wF

i . Since δ0[W ′
i ] = w′

i and δr[W ′
i ] = w′

i, there must be an index
q < r such that δq[W ′

i ] = w′
i, δq+1[W ′

i ] = w′
i, and δq

W ′
i−−→ δq+1. By the CP table of W ′

i in N exl
4 , this requires

that δq[W ′′
i ] = w′′

i and that either δq[W T
i W F

i ] = wT
i wF

i or δq[W T
i W F

i ] = wT
i wF

i . Since δ0[W ′′
i ] = w′′

i and
δq[W ′′

i ] = w′′
i , there must be and index p < q such that δp[W ′′

i ] = w′′
i , δp+1[W ′′

i ] = w′′
i , and δp

W ′′
i−−→ δp+1.

By the CP table of W ′′
i in N exl

4 , this requires that δp[W T
i W F

i ] = wT
i wF

i . Since δ0[W T
i W F

i ] = wT
i wF

i and
δp[W T

i W F
i ] = wT

i wF
i , it must be the case that W T

i and W F
i are flipped to their overlined values before the

p-th step of the sequence.
Observe that U1 is without parents in N exl

4 , and hence once it is flipped from u1 to u1, it cannot be flipped
back. Moreover, W T

i and W F
i can be flipped from wT

i to wT
i and from wF

i to wF
i , respectively, iff U1 has

value u1, instead they can be flipped from wT
i to wT

i and from wF
i to wF

i , respectively, iff U1 has value u1.
Since δp[W T

i W F
i ] = wT

i wF
i and in the q-th step either δq[W T

i W F
i ] = wT

i wF
i or δq[W T

i W F
i ] = wT

i wF
i , it must

be the case that U1 is flipped from u1 to u1 at some p′-th step with p < p′ < q. We know that U1 cannot be
flipped back to u1 after the p′-th step, hence it is not possible to flip the pair of features {W T

i , W F
i } from

either wT
i wF

i or wT
i wF

i to wT
i wF

i after the p′-th step, which contradicts that δz[W T
i W F

i ] = wT
i wF

i .
Therefore, it must be the case that γ ̸≻Nexl

4
βc. Similarly, it can be proven that γ ̸≻Nexl

5
βc. This implies

that |S≻
Mexl(Φ)(γ, βc)| ≤ 3, and hence that γ ̸≻x

Mexl(Φ) βc.

Now that we have identified the outcomes that have the ability to max dominate the outcomes of Oc, we
can characterize precisely the subset S of Oc containing the outcomes that are not max dominated and hence
are max optimal. We will see that the outcomes of S are those encoding specific truth assignments for X.
In particular, we can distinguish Boolean assignments for X into two categories. Since the variables X are
existentially quantified in Φ, a single assignment σX for X can be a witness of the validity of Φ. More precisely,
we say that an assignment σX for variables X is a witness of the validity of Φ if (∀Y )(∃Z)ϕ(X/σX , Y, Z) is
valid. Let Witn be the set of all complete assignments σX for the variables in X for which (∀Y )(∃Z)ϕ(X/σX , Y,
Z) is valid, and let Witn be the set of all complete assignments σX over X not belonging to Witn. Given
the above definitions, OWitn

c = {βσX
∈ Oc | σX ∈ Witn}, and OWitn

c = {βσX
∈ Oc | σX ∈ Witn} constitute

a partition of Oc. We now show that only outcomes belonging to OWitn
c are not max dominated, and hence

they are candidate to be max optimal in Mexl(Φ). In this respect, OWitn
c is the set S mentioned earlier. The

following two properties show that outcomes in OWitn
c are max dominated. The intuition here is that an outcome

βσ̃X
∈ OWitn

c is max dominated by an outcome βσ̃X ,σY
, where σY is the assignment disproving the validity of

(∀Y )(∃Z)ϕ(X/σ̃X , Y, Z) (recall that the variables Y are universally quantified, and hence a single assignment for
Y can be a witness of non-validity for the formula (∀Y )(∃Z)ϕ(X/σ̃X , Y, Z)).

Property 6.5.(9). Let βc ∈ OWitn
c be an outcome, let σX be the complete assignment over X such that

βc = βσX
, and let σY be any complete assignment over Y . Then, βσX ,σY

≻Nexl
4

βσX
, and βσX ,σY

≻Nexl
5

βσX
.

Proof. First, consider net N exl
4 . The following is an improving flipping sequence from βσX

to βσX ,σY
. We

first flip all features in W to their overlined values (we can do this because βσX
[U1] = u1). Then, we flip

all features in W ′′ to their overlined values. After this, we flip U1 from u1 to u1. Then, we flip the proper
features in W to their non-overlined values in order to obtain an assignment of values for features in W
identical to that in βσX ,σY

(i.e., in order to encode σY over W). Observe that we can now flip to their
overlined values all features in W ′ because σY is a complete assignment (and hence there is no pair of features
{W T

i , W F
i } for which βσX ,σY

[W T
i W F

i ] = wT
i wF

i , or βσX ,σY
[W T

i W F
i ] = wT

i wF
i ). Next, we can flip to their

overlined values, in the proper order, all features in B of the interconnecting net (and hence also the apex B).
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We can now flip U2 from u2 to u2. To conclude, we flip, in the proper order, to their non-overlined values all
features in W ′′ (observe that none of the pairs {W T

i , W F
i } has overlined values for both W T

i and W F
i ), W ′,

and B. The obtained outcome is precisely βσX ,σY
. Similarly, it can be shown that βσX ,σY

≻Nexl
5

βσX
.

For the following two properties, observe that, since βσX
∈ Oc, βσX

assigns non-overlined values to all features in
W ′ ∪ W ′′ ∪ B. Moreover, also βσX ,σY

assigns non-overlined values to all features in W ′ ∪ W ′′ ∪ B. Therefore, the
part of net N exl

1 over feature sets W ′, W ′′, and B, does not play an active role in any improving flipping sequence
(if it exists) either from βσX

to βσX ,σY
, or from βσX ,σY

to βσX
, because, in N exl

1 , features in W ′ ∪ W ′′ ∪ B have
no parents, and they have already their most preferred values in βσX

and βσX ,σY
.

We now show that outcomes in OWitn
c are not max optimal in Mexl(Φ).

Property 6.5.(10). Let βc ∈ OWitn
c be an outcome. Then, there is an outcome γ ∈ OMexl(Φ) such that

γ ≻x
Mexl(Φ) βc.
Proof. Let σX ∈ Witn be the complete assignment over X such that βc = βσX

. Since σX ∈ Witn,
there is a complete assignment σY over the variables Y such that (∃Z)ϕ(X/σX , Y/σY , Z) is not valid (i.e.,
ϕ(X/σX , Y/σY , Z) is not satisfiable). We will show that βσX ,σY

≻x
Mexl(⊕) βσX

= βc.
By the definition of the CP-nets of Mexl(Φ), βσX ,σY

≻Nexl
6

βσX
(we first flip U1 from u1 to u1, next we

flip the proper features in W to encode σY , and then we flip U2 from u2 to u2), and βσX ,σY
≻Nexl

8
βσX

(we
first flip the proper features in W to encode σY , next we flip U1 from u1 to u1, and then we flip U2 from u2 to
u2). By Property 6.5.(9), βσX ,σY

≻Nexl
4

βσX
, and βσX ,σY

≻Nexl
5

βσX
. Therefore |S≻

Mexl(Φ)(βσX ,σY
, βσX

)| ≥ 4.
Now consider net N exl

1 . We claim that βσX ,σY
▷◁Nexl

1
βσX

. Consider the non-quantified formula ϕ(X, Y, Z).
If we consider the set X ∪ Y ∪ Z of all the Boolean variables in ϕ, the joint assignment σX ∪ σY is a partial
assignment over X ∪ Y ∪ Z. Since ϕ(X/σX , Y/σY , Z) is not satisfiable, there is no extension of σX ∪ σY to
X ∪ Y ∪ Z satisfying ϕ. Therefore, by Lemma A.2, βσX ,σY

▷◁Nexl
1

βσX
.

By the definition of the CP-nets of Mexl(Φ), βσX
≻Nexl

2
βσX ,σY

, βσX
≻Nexl

3
βσX ,σY

, and βσX
≻Nexl

7
βσX ,σY

.
To summarize, we have shown that |S≻

Mexl(Φ)(βσX ,σY
, βσX

)| = 4, |S▷◁
Mexl(Φ)(βσX ,σY

, βσX
)| = 1, and

|S≺
Mexl(Φ)(βσX ,σY

, βσX
)| = 3. Therefore βσX ,σY

≻x
Mexl(Φ) βσX

= βc.

We now show that outcomes in OWitn
c are not max dominated by any other outcome in Mexl(Φ). The

intuition here is that outcomes βσ̃X
in OWitn

c are associated with assignments σ̃X that are witnesses for
(∃X)(∀Y )(∃Z)ϕ(X, Y, Z), and hence there are no disprovers of the validity of (∀Y )(∃Z)ϕ(X/σ̃X , Y, Z). For this
reason, no outcome βσ̃X ,σX

exists that can max dominate βσ̃X
.

Property 6.5.(11). Let βc ∈ OWitn
c be an outcome. Then, there is no outcome γ ∈ OMexl(Φ) such that

γ ≻x
Mexl(Φ) βσX

.
Proof. Let σX ∈ Witn be the complete assignment over X such that βc = βσX

. We know already that, if
γ is not in the form of an outcome βσX ,σY

, then γ does not max dominate βc. Let γ ∈ OMexl(Φ) be any
outcome candidate to max dominate βσX

, and let σY be the (partial or complete) assignment over Y such
that γ = βσX ,σY

. We will show that γ = βσX ,σY
̸≻x

Mexl(⊕) βσX
= βc.

By Property 6.5.(9), {N exl
4 , N exl

5 , } ⊆ S≻
Mexl(Φ)(βσX ,σY

, βσX
). In the proof of Property 6.5.(10), we showed

that {N exl
6 , N exl

8 } ⊆ S≻
Mexl(Φ)(βσX ,σY

, βσX
) and that {N exl

2 , N exl
3 , N exl

7 } ⊆ S≺
Mexl(Φ)(βσX ,σY

, βσX
).

Let us now focus on net N exl
1 . Consider the non-quantified formula ϕ(X, Y, Z). If we consider the set

X ∪ Y ∪ Z of all the Boolean variables in ϕ, the joint assignment σX ∪ σY is a partial assignment over
X ∪ Y ∪ Z. Since σX ∈ Witn, (∀Y )(∃Z)ϕ(X/σX , Y/σY , Z) is valid, and hence, irrespective of σY being
actually a partial or a complete assignment over Y , there is an extension of σX ∪ σY to X ∪ Y ∪ Z satisfying
ϕ. Therefore, by Lemma A.2, βσX

≻Nexl
1

βσX ,σY
.

Therefore, |S≻
Mexl(Φ)(βσX ,σY

, βσX
)| = 4, and |S≺

Mexl(Φ)(βσX ,σY
, βσX

)| = 4, implying that βσX ,σY
̸≻x

Mexl(Φ)
βσX

. Since, for all outcomes γ candidate to max dominate βσX
, there is a (partial or complete) assignment

σY over variables in Y such that γ = βσX ,σY
, and we showed that βσX ,σY

̸≻x
Mexl(Φ) βσX

, there is no outcome
γ ∈ OMexl(Φ) such that γ ≻x

Mexl(Φ) βσX
.

We are now ready to prove that Φ = (∃X)(∀Y )(∃Z)ϕ(X, Y, Z) is valid iff Mexl(Φ) has a max optimal outcome.

(⇒) If Φ is valid, then there is a complete assignment σX over the variables in X such that σX ∈ Witn. Thus,
by Property 6.5.(11), βσX

is max optimal in Mexl(Φ).

(⇐) If Φ is not valid, then Witn is empty, and hence Oc = OWitn
c . Therefore, by Properties 6.5.(1), 6.5.(2),

6.5.(3), 6.5.(4), and 6.5.(10), Mexl(Φ) has no max optimal outcome.

34



References
[1] T. E. Allen. CP-nets: From Theory to Practice. Phd thesis, Department of Computer Science, University

of Kentucky, 2016.

[2] T. E. Allen, J. Goldsmith, H. E. Justice, N. Mattei, and K. Raines. Uniform random generation and
dominance testing for CP-nets. J. Artif. Intell. Res., 59:771–813, 2017.

[3] K. J. Arrow, A. K. Sen, and K. Suzumura, editors. Handbook of Social Choice and Welfare, Volume 1,
volume 19 of Handbooks in Economics. North Holland/Elsevier, Amsterdam, The Netherlands, 2002.

[4] K. J. Arrow, A. K. Sen, and K. Suzumura, editors. Handbook of Social Choice and Welfare, Volume 2,
volume 19 of Handbooks in Economics. North Holland/Elsevier, Amsterdam, The Netherlands, 2011.

[5] D. Baumeister and J. Rothe. Preference aggregation by voting. In J. Rothe, editor, Economics and
Computation, chapter 4, pages 197–326. Springer-Verlag, Berlin/Heidelberg, Germany, 2016.

[6] J. C. Boerkoel Jr., E. H. Durfee, and K. Purrington. Generalized solution techniques for preference-based
constrained optimization with CP-nets. In Proc. of AAMAS, pages 291–298, 2010.

[7] S. Borgwardt, B. Fazzinga, T. Lukasiewicz, A. Shrivastava, and O. Tifrea-Marciuska. Preferential query
answering over the Semantic Web with possibilistic networks. In Proc. of IJCAI, pages 994–1000, 2016.

[8] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. CP-nets: A tool for representing and
reasoning with conditional ceteris paribus preference statements. J. Artif. Intell. Res., 21:135–191, 2004.

[9] C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. Preference-based constrained
optimization with CP-nets. Comput. Intell., 20(2):137–157, 2004.

[10] R. I. Brafman and Y. Chernyavsky. Planning with goal preferences and constraints. In Proc. of ICAPS,
pages 182–191, 2005.

[11] R. I. Brafman and C. Domshlak. TCP-nets for preference-based product configuration. In Proc. of the
ECAI 2002 Workshop on Configuration, pages 101–106, 2002.

[12] R. I. Brafman, F. Rossi, D. Salvagnin, K. B. Venable, and T. Walsh. Finding the next solution in constraint-
and preference-based knowledge representation formalisms. In Proc. of KR, pages 425–433, 2010.

[13] S. J. Brams, D. M. Kilgour, and W. S. Zwicker. The paradox of multiple elections. Soc. Choice Welfare, 15
(2):211–236, 1998.

[14] F. Brandt and F. Fischer. Computing the minimal covering set. Math. Soc. Sci., 56(2):254–268, 2008.

[15] F. Brandt, M. Brill, and P. Harrenstein. Tournament solutions. In Handbook of Computational Social
Choice, pages 57–84. Cambridge University Press, New York, NY, USA, 2016.

[16] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, editors. Handbook of Computational
Social Choice. Cambridge University Press, New York, NY, USA, 2016.

[17] Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. Preference handling in combinatorial domains: From
AI to social choice. AI Mag., 29(4):37–46, 2008.

[18] V. Conitzer and T. Sandholm. Communication complexity of common voting rules. In Proc. of EC, pages
78–87, 2005.

[19] T. Csar, M. Lackner, R. Pichler, and E. Sallinger. Winner determination in huge elections with mapreduce.
In Proc. of AAAI, pages 451–458, 2017.

[20] T. Di Noia, T. Lukasiewicz, M. V. Martinez, G. I. Simari, and O. Tifrea-Marciuska. Combining existential
rules with the power of CP-theories. In Proc. of IJCAI, pages 2918–2925, 2015.

[21] C. Domshlak, F. Rossi, K. B. Venable, and T. Walsh. Reasoning about soft constraints and conditional
preferences: Complexity results and approximation techniques. In Proc. of IJCAI, pages 215–220, 2003.

[22] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar. Rank aggregation methods for the Web. In Proc. of
WWW, pages 613–622, 2001.

35



[23] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, editors. Knowledge-Based Configuration: From Research
to Business Cases. Morgan Kaufmann/Elsevier, Waltham, MA, USA, 2014.

[24] J. Goldsmith, J. Lang, M. Truszczynski, and N. Wilson. The computational complexity of dominance and
consistency in CP-nets. J. Artif. Intell. Res., 33:403–432, 2008.

[25] G. Greco, E. Malizia, L. Palopoli, and F. Scarcello. Constrained coalitional games: formal framework,
properties, and complexity results. In Proc. of AAMAS, pages 1295–1296, 2009.

[26] G. Greco, E. Malizia, L. Palopoli, and F. Scarcello. Non-transferable utility coalitional games via mixed-
integer linear constraints. J. Artif. Intell. Res., 38:633–685, 2010.

[27] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation: P-Completeness Theory.
Oxford University Press, New York, NY, USA, 1995.

[28] A. Haret, A. Novaro, and U. Grandi. Preference aggregation with incomplete CP-nets. In Proc. of KR,
pages 308–317, 2018.

[29] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science (Vol. A), pages 67–161. Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1990.

[30] R. E. Ladner. The circuit value problem is log space complete for P. ACM SIGACT News, 7(1):18–20, 1975.

[31] K. Laing. Conditional Preference Networks: Efficient Dominance Testing and Learning. PhD Thesis, School
of Mathematics, University of Leeds, 2020.

[32] K. Laing, P. A. Thwaites, and J. P. Gosling. Rank pruning for dominance queries in CP-nets. J. Artif.
Intell. Res., 64:55–107, 2019.

[33] J. Lang. From preference representation to combinatorial vote. In Proc. of KR, pages 277–290, 2002.

[34] J. Lang. Logical preference representation and combinatorial vote. Ann. Math Artif. Intel., 42(1):37–71,
2004.

[35] J. Lang. Vote and aggregation in combinatorial domains with structured preferences. In Proc. of IJCAI,
pages 1366–1371, 2007.

[36] J. Lang and L. Xia. Sequential composition of voting rules in multi-issue domains. Math. Soc. Sci., 57(3):
304–324, 2009.

[37] J. Lang and L. Xia. Voting in combinatorial domains. In F. Brandt, V. Conitzer, U. Endriss, J. Lang, and
A. D. Procaccia, editors, Handbook of Computational Social Choice, pages 197–222. Cambridge University
Press, New York, NY, USA, 2016.

[38] M. Li, Q. B. Vo, and R. Kowalczyk. An efficient majority-rule-based approach for collective decision making
with CP-nets. In Proc. of KR, pages 578–580, 2010.

[39] M. Li, Q. B. Vo, and R. Kowalczyk. An efficient procedure for collective decision-making with CP-nets. In
Proc. of ECAI, pages 375–380, 2010.

[40] M. Li, Q. B. Vo, and R. Kowalczyk. Majority-rule-based preference aggregation on multi-attribute domains
with CP-nets. In Proc. of AAMAS, pages 659–666, 2011.

[41] M. Li, Q. B. Vo, and R. Kowalczyk. Efficient heuristic approach to dominance testing in CP-nets. In Proc.
of AAMAS, pages 353–360, 2011.

[42] M. Li, Q. B. Vo, and R. Kowalczyk. Aggregating multi-valued CP-nets: A CSP-based approach. J.
Heuristics, 21(1):107–140, 2015.

[43] T. Lukasiewicz and E. Malizia. On the complexity of mCP-nets. In Proc. of AAAI, pages 558–564, 2016.

[44] T. Lukasiewicz and E. Malizia. A novel characterization of the complexity class ΘP
k based on counting and

comparison. Theor. Comput. Sci., 694:21–33, 2017.

[45] T. Lukasiewicz and E. Malizia. Complexity results for preference aggregation over (m)CP-nets: Pareto and
majority voting. Artif. Intell., 272:101–142, 2019.

36



[46] T. Lukasiewicz, M. V. Martinez, and G. I. Simari. Preference-based query answering in Datalog+/–
ontologies. In Proc. of IJCAI, pages 1017–1023, 2013.

[47] T. Lukasiewicz, M. V. Martinez, G. I. Simari, and O. Tifrea-Marciuska. Ontology-based query answering
with group preferences. ACM Trans. Internet Technol., 14(4):25:1–25:24, 2014.

[48] E. Malizia. More complexity results about reasoning over (m)CP-nets. In Proc. of AAMAS, pages 1540–1548,
2018.

[49] S. Miyano, S. Shiraishi, and T. Shoudai. A list of P-complete problems. TR-CS 17, RIFIS, Kyushu
University, Japan, 1990.

[50] C. H. Papadimitriou. Computational Complexity. Addison Wesley, Reading, MA, USA, 1994.

[51] S. D. Prestwich, F. Rossi, K. B. Venable, and T. Walsh. Constraint-based preferential optimization. In
Proc. of AAAI, pages 461–466, 2005.

[52] F. Ricci, L. Rokach, and B. Shapira, editors. Recommender Systems Handbook. Springer, New York, NY,
USA, 2nd edition, 2015.

[53] F. Rossi, K. B. Venable, and T. Walsh. mCP Nets: Representing and reasoning with preferences of multiple
agents. In Proc. of AAAI, pages 729–734, 2004.

[54] J. Rothe, editor. Economics and Computation. Springer, Berlin, Germany, 2016.

[55] R. A. Russell. Planning with preferences using maximum satisfiability. UCAM-CL-TR 822, Computing
Laboratory, University of Cambridge, UK, 2012.

[56] M. Serna. Approximating linear programming is log-space complete for P. Inform. Process. Lett., 37(4):
233–236, 1991.

[57] D. Shaparau, M. Pistore, and P. Traverso. Contingent planning with goal preferences. In Proc. of AAAI,
pages 927–935, 2006.

[58] S. Sikdar, S. Adali, and L. Xia. Optimal decision making with CP-nets and PCP-nets. In Proc. of EXPLORE,
pages 32–40, 2017.

[59] T. C. Son and E. Pontelli. Planning with preferences using logic programming. Theor. Pract. Log. Prog., 6
(5):559–607, 2006.

[60] J. Stein, I. Nunes, and E. Cirilo. Preference-based feature model configuration with multiple stakeholders.
In Proc. of SPLC, pages 132–141, 2014.

[61] L. J. Stockmeyer. The polynomial-time hierarchy. Theor. Comput. Sci., 3(1):1–22, 1976.

[62] K. W. Wagner. Bounded query computations. In Proc. of CoCo, pages 260–277, 1988.

[63] K. W. Wagner. Bounded query classes. SIAM J. Comput., 19(5):833–846, 1990.

[64] C. Wrathall. Complete sets and the polynomial-time hierarchy. Theor. Comput. Sci., 3(1):23–33, 1976.

[65] L. Xia, J. Lang, and M. Ying. Sequential voting rules and multiple elections paradoxes. In Proc. of TARK,
pages 279–288, 2007.

[66] L. Xia, V. Conitzer, and J. Lang. Strategic sequential voting in multi-issue domains and multiple-election
paradoxes. In Proc. of EC, pages 179–188, 2011.

37


