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Abstract

Answer Set Programming (ASP) is a paradigm for modeling and solv-
ing problems for knowledge representation and reasoning. There are
plenty of results dedicated to studying the hardness of (fragments of)
ASP. So far, these studies resulted in characterizations in terms of com-
putational complexity as well as in fine-grained insights presented in form
of dichotomy-style results, lower bounds when translating to other for-
malisms like propositional satisfiability (SAT), and even detailed param-
eterized complexity landscapes. A generic parameter in parameterized
complexity originating from graph theory is the so-called treewidth, which
in a sense captures structural density of a program. Recently, there was an
increase in the number of treewidth-based solvers related to SAT. While
there are translations from (normal) ASP to SAT, no reduction that pre-
serves treewidth or at least keeps track of the treewidth increase is known.
In this paper we propose a novel reduction from normal ASP to SAT
that is aware of the treewidth, and guarantees that a slight increase of
treewidth is indeed sufficient. Further, we show a new result establishing
that, when considering treewidth, already the fragment of normal ASP is
slightly harder than SAT (under reasonable assumptions in computational
complexity). This also confirms that our reduction probably cannot be
significantly improved and that the slight increase of treewidth is unavoid-
able. Finally, we present an empirical study of our novel reduction from
normal ASP to SAT, where we compare treewidth upper bounds that
are obtained via known decomposition heuristics. Overall, our reduction
works better with these heuristics than existing translations.

1 Introduction

Answer Set Programming (ASP) [20] is an active research area of knowledge
representation and reasoning. ASP provides a declarative modeling language
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and problem solving framework [54] for hard computational problems, which
has been widely applied [7, 81, 82, 59, 86, 1]. There are very efficient ASP
solvers [54, 3, 21] as well as several recent (language) extensions [21, 22, 24, 23].
In ASP, questions are encoded into rules and constraints that form a program
(over atoms), whose solutions are called answer sets.

In terms of computational complexity, the consistency problem of decid-
ing the existence of an answer set is well-studied, i.e., the problem is ΣP2 -
complete [35]. Some fragments of ASP have lower complexity though. A
prominent example is the class of head-cycle-free (HCF) programs [9], which
is a generalization of the class of normal programs and requires the absence of
cycles in a dependency graph representation of the program. Deciding whether
such a program has an answer set is NP-complete.

There is also a wide range of more fine-grained studies [88] for ASP, also
in parameterized complexity [27, 80, 31, 52], where certain (combinations of)
parameters [50, 71] are taken into account. In parameterized complexity, the
“hardness” of a problem is classified according to the impact of a parameter for
solving the problem. There, one often distinguishes the runtime dependency
of the parameter, e.g., levels of exponentiality [76, 79] in the parameter, re-
quired for problem solving. Concretely, under the reasonable Exponential Time
Hypothesis (ETH) [63], propositional satisfiability (SAT) is single exponential
in the structural parameter treewidth, whereas evaluating Quantified Boolean
formulas (QBFs) of quantifier depth two is [72] double exponential1 in the
treewidth k.

For ASP there is growing research on treewidth [64, 44, 41], which even
involves grounding [11, 14]. Algorithms of these works exploit structural re-
strictions (in form of treewidth) of a given program, and often run in polyno-
mial time in the program size, while being exponential only in the treewidth.
Intuitively, treewidth gives rise to a tree decomposition, which allows solving nu-
merous NP-hard problems in parts (via dynamic programming) and indicates
the maximum number of variables one has to investigate in such parts during
evaluation. There were also dedicated competitions [28] and notable progresses
in SAT [49, 25] and other areas [8].

Naturally, there are numerous reductions of ASP [26, 9, 74, 65, 4] and ex-
tensions thereof [19, 17] to SAT. These reductions have been investigated in the
context of resulting formula size and number of auxiliary variables. However,
structural dependency in form of, e.g., treewidth, has not been considered yet.
Notably, there are existing reductions causing a sub-quadratic blow-up in the
number of variables (auxiliary variables), which is unavoidable [73] if the answer
sets should be preserved (bijectively). However, if one considers the structural
dependency in form of treewidth, existing reductions could cause quadratic or
even unbounded overhead in the treewidth.

On the contrary, we present a novel reduction for HCF programs that in-
creases the treewidth k at most sub-quadratically (k·log(k)). This is indeed inter-
esting as there is a close connection [6] between resolution-width and treewidth,

1Double exponentiality refers to runtimes of the form 22O(k) · n.
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resulting in efficient SAT solver runs on instances of small treewidth. As a
result, our reduction could be of use for solving approaches based on SAT
solvers [75, 65]. Then, we establish lower bounds, under ETH, for exploit-
ing treewidth for consistency of normal programs. This renders normal ASP
“harder” than SAT. At the same time we prove that one cannot significantly
improve the reduction, i.e., avoid the sub-quadratic increase of treewidth.

Contributions. Concretely, we provide the following.

1. First, we present a novel reduction from HCF programs to SAT, which
only requires linearly many auxiliary variables plus a number of auxiliary
variables that is linear in the instance size and slightly superexponential in
the treewidth of the SAT instance. This is achieved by guiding the whole
reduction along a tree decomposition of the program. Thereby the re-
duction only increases the treewidth sub-quadratically, i.e., the treewidth
of the resulting SAT formula is slightly larger than the treewidth of the
given program.

2. Then, we develop and discuss a slightly different reduction from HCF pro-
grams to SAT, where we show a bijective correspondence between answer
sets of the program and models of the propositional formula for a certain
sub-class of programs. This reduction, while preserving bijectivity for
certain programs, comes at the cost of a quadratic increase of treewidth.

3. We show that avoiding a sub-quadratic increase in the treewidth is very
unlikely. Concretely, we establish that under the widely believed Exponen-
tial Time Hypothesis (ETH), one cannot decide ASP in time 2o(k·log(k)) ·n,
with treewidth k and program size n. This is in contrast to the runtime
for deciding SAT: 2O(k) · n with treewidth k and size n of the formula.
As a result, this establishes that the consistency of normal ASP programs
is already harder than SAT using treewidth. Note that this is surprising
as both problems are of similar hardness according to classical complexity
(NP-complete).

4. Finally, we present an empirical study of the first contribution, where we
compare treewidth upper bounds that are obtained via existing decom-
position heuristics. Interestingly, compared with existing translations, in
both acyclic and cyclic scenarios, our reduction overall works better with
these heuristics than existing translations.

This is an extended version of a paper [60] at the 17th International Conference
on Principles of Knowledge Representation and Reasoning (KR 2020). In addi-
tion to the conference version, this work contains additional examples and more
detailed explanations. Further, we added the second contribution and worked
out details in terms of bijective preservation of answer sets. We were also able
to simplify the reduction of the third contribution and discuss relations to other
works in detail. Further, we added an empirical study of treewidth, where we
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compare treewidth upper bounds of our reduction and an exisiting translation
via an efficient decomposer based on heuristics.

Related Work. For disjunctive ASP and extensions thereof, algorithms have
been proposed [64, 83, 44] running in time linear in the instance size, but double
exponential in the treewidth. Under ETH, one cannot significantly improve this
runtime, using a result [72] for QBFs with quantifier depth two and a standard
reduction [35] from this QBF fragment to disjunctive ASP. Unsurprisingly, SAT
only requires single exponential runtime [85] in the treewidth. However, for
normal and HCF programs only a slightly superexponential algorithm [41] for
solving consistency is known so far. Still, the question whether the slightly
superexponentiality can be avoided was left open. The proposed algorithm was
used for counting answer sets involving projection [57], which is at least double
exponential [45] in the treewidth.
There are also further studies on certain classes of programs and their rela-
tionships in the form of whether there exist certain reductions between these
classes, thereby bijectively preserving the answer sets. These studies result in
an expressive power hierarchy among program classes [65]. Note that while
existing results [73] and the expressive power hierarchy weakly indicate that
normal ASP might be slightly harder than SAT, these results mostly deal with
bijectively preserving all answer sets. However, our work considers the plain
consistency problem, where ASP and SAT are both NP-complete.

2 Preliminaries

Before we discuss our reductions, we briefly recall some basics.

Answer Set Programming (ASP). We assume familiarity with propositional
satisfiability (SAT) [13, 67], and follow standard definitions of propositional
ASP [20, 66]. Let `, m, n be non-negative integers such that ` ≤ m ≤ n,
a1, . . ., an be distinct propositional atoms. Moreover, we refer by literal to a
propositional variable (atom) or the negation thereof. A program Π is a set of
rules of the form

a1 ∨ · · · ∨ a` ← a`+1, . . . , am,¬am+1, . . . ,¬an.

For a rule r, we let Hr := {a1, . . . , a`}, B+
r := {a`+1, . . . , am}, and B−r :=

{am+1, . . . , an}. We denote the sets of atoms occurring in a rule r or in a
program Π by at(r) := Hr ∪ B+

r ∪ B−r and at(Π) :=
⋃
r∈Π at(r). A rule r

is normal if |Hr| ≤ 1 and unary if |B+
r | ≤ 1. Then, a program Π is normal

or unary if all its rules r ∈ Π are normal or unary, respectively. The positive
dependency digraph DΠ of Π is the directed graph defined on the set of atoms
from

⋃
r∈ΠHr ∪B+

r , where for every rule r ∈ Π two atoms a ∈ B+
r and b ∈ Hr

are joined by an edge (a, b). A head-cycle of DΠ is an {a, b}-cycle2 for two
distinct atoms a, b ∈ Hr for some rule r ∈ Π. Program Π is head-cycle-free

2Let G = (V,E) be a digraph and W ⊆ V . Then, a (directed) cycle in G is a W -cycle if it
contains all vertices from W .

4



e a

d bc

Figure 1: Dependency graph DΠ of Π (cf., Example 1).

(HCF) if DΠ contains no head-cycle [9] and we say Π is tight if there is no
directed cycle in DΠ [38].

An interpretation I is a set of atoms. I satisfies a rule r if (Hr ∪B−r ) ∩ I 6= ∅
or B+

r \ I 6= ∅. I is a model of Π if it satisfies all rules of Π, in symbols I |= Π.
For brevity, we view propositional formulas as sets of formulas (e.g., clauses)
that need to be satisfied, and use the notion of interpretations, models, and
satisfiability analogously. The Gelfond-Lifschitz (GL) reduct of Π under I is
the program ΠI obtained from Π by first removing all rules r with B−r ∩ I 6= ∅
and then removing all ¬z where z ∈ B−r from the remaining rules r [58]. I is an
answer set of a program Π if I is a minimal model of ΠI . The problem of decid-
ing whether an ASP program has an answer set is called consistency, which is
ΣP

2 -complete [35]. If the input is restricted to normal programs, the complexity
drops to NP-complete [12, 78]. A head-cycle-free program Π can be translated
into a normal program in polynomial time [9]. Further, the answer sets of a tight
program can be represented by means of the models of a propositional formula,
obtainable in linear time via, e.g., Clark’s completion [26]. The following charac-
terization of answer sets is often applied when considering normal programs [74].
For a given set A ⊆ at(Π) of atoms, a function ϕ : A → {0, . . . , |A| − 1} is an
ordering over A. Let I be a model of a normal program Π, and ϕ be an order-
ing over I. We say a rule r ∈ Π is suitable for proving a ∈ I if (i) a ∈ Hr, (ii)
B+
r ⊆ I, (iii) I ∩ B−r = ∅, as well as (iv) I ∩ (Hr \ {a}]) = ∅. An atom a ∈ I

is proven if there is a rule r ∈ Π proving a, which is the case if r is suitable for
proving a and ϕ(b) < ϕ(a) for every b ∈ B+

r . Then, I is an answer set of Π
if (i) I is a model of Π, and (ii) I is proven, i.e., every a ∈ I is proven. This
characterization vacuously holds also for head-cycle-free programs [9], since in
HCF programs, vaguely speaking, all but one atom of the head of any rule can
be “shifted” to the negative body [30].

Example 1. Consider the given program Π := {
r1︷ ︸︸ ︷

a ∨ b← ;

r2︷ ︸︸ ︷
c ∨ e← d;

r3︷ ︸︸ ︷
d← b,¬e;

r4︷ ︸︸ ︷
e← b,¬d;

r5︷ ︸︸ ︷
b← e,¬d;

r6︷ ︸︸ ︷
d← ¬b}. Observe that Π is not tight, since the depen-

dency graph DΠ of Figure 1 contains the cycle b, d, e. However, the program Π
is head-cycle-free since there is neither an {a, b}-cycle, nor a {c, e}-cycle in DΠ.
Therefore, rule r1 allows shifting [30] and actually corresponds to the two rules
a ← ¬b and b ← ¬a. Analogously, rule r2 can be seen as the rules c ← d,¬e
and e← d,¬c. Then, I := {b, c, d} is an answer set of Π, since I |= Π, and we
can prove with ordering ϕ := {b 7→ 0, d 7→ 1, c 7→ 2} atom b by rule r1, atom d
by rule r3, and atom c by rule r2. Further answer sets of Π are {b, e}, {a, c, d},
and {a, d, e}.

The characterization above already fails for simple programs that are not
HCF. Consider for example program Π′ := {a ∨ b ←; a ← b; b ← a}, which

5



has only one answer set I ′ = {a, b}. However, I ′ cannot be proven. If the
first rule a ∨ b ← shall prove a, we require b /∈ I ′ (and vice versa). Then, the
remaining two rules of Π′ can only prove either a or b, but fail to prove I ′,
since both rules proving I ′ (together) prohibit every ordering due to the cyclic
dependency.

Tree Decompositions (TDs). We assume familiarity with graph terminol-
ogy, cf., [29]. A tree decomposition (TD) [84] of a given graph G=(V,E) is
a pair T =(T, χ) where T is a tree rooted at root(T ) and χ assigns to each
node t of T a set χ(t) ⊆ V , called bag, such that (i) V =

⋃
t of T χ(t), (ii)

E ⊆ {{u, v} | t in T, {u, v} ⊆ χ(t)}, and (iii) for each r, s, t of T , such that s
lies on the path from r to t, we have χ(r) ∩ χ(t) ⊆ χ(s). For every node t
of T , we denote by chldr(t) the set of child nodes of t in T . The bags χ≤t be-
low t consists of the union of all bags of nodes below t in T , including t. We
let width(T ) := maxt of T |χ(t)| − 1. The treewidth tw(G) of G is the minimum
width(T ) over all TDs T ofG. For a graphG, one can compute a TD ofG, whose
width is at most 5 · tw(G), in single exponential time [16] in the treewidth (5-
approximation). The so-called pathwidth of G refers to the minimum width(T )
over all TDs T of G, whose trees are just paths. For a node t of T , we say that
type(t) is leaf if t has no children and χ(t) = ∅; join if t has children t′ and t′′

with t′ 6= t′′ and χ(t) = χ(t′) = χ(t′′); int (“introduce”) if t has a single child t′,
χ(t′) ⊆ χ(t) and |χ(t)| = |χ(t′)|+ 1; forget if t has a single child t′, χ(t′) ⊇ χ(t)
and |χ(t′)| = |χ(t)|+1. If for every node t of T , type(t) ∈ {leaf, join, int, forget},
the TD is called nice. A TD can be turned into a nice TD [68][Lem. 13.1.3]
without increasing the width in linear time.

Example 2. Figure 2 illustrates a graph G and a TD T of G of width 2, which
is also the treewidth of G, since G contains a complete graph on vertices e,b,d. In
general, if a graph contains a complete graph among k+ 1 vertices, the treewith
of the graph is at least k, cf., [68].

Dynamic Programming on TDs. Solvers based on dynamic programming
(DP) evaluate a given input instance I in parts along a TD of a graph repre-
sentation G of the instance. Thereby, for each node t of the TD, intermediate
results are stored in a table τt. This is achieved by running a table algorithm,
which is designed for G, and stores in τt results of problem parts of I, thereby
considering tables τt′ for child nodes t′ of t. DP works for many problems as
follows.

1. Construct a graph representation G of I.

2. Compute a TD T = (T, χ) of G, which is obtainable via heuristics, e.g., [2].

3. Traverse the nodes of T in post-order (bottom-up tree traversal of T ). At
every node t of T during post-order traversal, execute a table algorithm
that takes as input a bag χ(t), a certain bag instance It depending on
the problem, as well as previously computed child tables of t. Then, the
results of this execution is stored in table τt.

6
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d bc {c, d, e}t1 {a, b} t2

{b, d, e}t3

Figure 2: Graph G (left) and a tree decomposition T of G (right).

4. Finally, interpret table τn for the root node n of T in order to output the
solution to the problem for instance I.

In order to use TDs for ASP, we need dedicated graph representations of pro-
grams [64]. The primal graph3 GΠ of program Π has the atoms of Π as ver-
tices and an edge {a, b} if there exists a rule r ∈ Π and a, b ∈ at(r). Let
T = (T, χ) be a TD of primal graph GΠ of a program Π, and let t be a node
of T . The bag program Πt contains rules entirely covered by the bag χ(t).
Formally, Πt := {r | r ∈ Π, at(r) ⊆ χ(t)}.

Example 3. Recall program Π from Example 1. Observe that graph G of Fig-
ure 2 is the primal graph of Π. Further, we have Πt1 = {r2}, Πt2 = {r1}, and
Πt3 = {r3, r4, r5, r6}. Note that in general a rule might appear in several bag
programs.

Now, the missing ingredient for solving problems via dynamic programming
along a given TD, is a suitable table algorithm. Such table algorithms have been
already presented for SAT [85] and ASP [64, 44, 41]. We only briefly sketch
the ideas of a table algorithm using the primal graph that computes models of
a given program Π. Each table τt consists of rows storing interpretations over
atoms in the bag χ(t). Then, the table τt for a leaf node t consists of the empty
interpretation. For a node t with introduced variable a ∈ χ(t), we store in τt
interpretations of the child table, but for each such interpretation we decide
whether a is in the interpretation or not, and ensure that Πt is satisfied. When
an atom b is forgotten in a forget node t, we store interpretations of the child
table, but projected to χ(t). By the properties of a TD, it is then guaranteed
that all rules containing b have been processed so far. For a join node t, we
store in τt interpretations that are in both child tables of t.

3 Treewidth-Aware Reductions to SAT

Having the basic concept of dynamic programming in mind, we use this idea
to design a reduction of an HCF program Π to a SAT formula F , which is
treewidth-aware. The reduction is inspired by ideas of a DP algorithm for
consistency of HCF programs [41] and the idea of level mappings [65]. Intu-
itively, global orderings can cause already huge blow-up in the treewidth, e.g.,
reductions, where all atoms are ordered at once, often cause long rules, whose
number of atoms vastly exceeds treewidth. This is indeed not surprising, since

3Analogously, the primal graph GF of a propositional Formula F (in CNF) uses variables
of F as vertices and adjoins two vertices a, b by an edge, if there is a clause in F containing a, b.
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χ(t3)t3

χ(t1)t1 χ(t2) t2

χ(t4)

t4
χ(t5)t5T :

f(t3, χ(t3), {χ′(t1), χ′(t2)})

f(t1, χ(t1), ∅) f(t2, χ(t2), ∅)

f(t4, χ(t4), ∅)

T ′: f(t5, χ(t5), {χ′(t3), χ′(t4)})

Figure 3: High-level illustration of the treewidth-awareness of our reduction from ASP
to SAT. We assume a given program Π and a tree decomposition T = (T, χ) of GΠ.
Then, our reduction is constructed for each node t of T and it immediately gives rise
to a tree decomposition T ′ = (T, χ′) of the resulting SAT formula. Thereby, each
resulting bag χ′(t) functionally depends on χ(t) (as well as on child or parent bags).

for a given program with n many atoms, we have that global level mappings
use O(log(n)) additional auxiliary atoms. Consequently, already one rule that
actually utilizes these mappings causes a treewidth blow-up factor O(log(n)),
which obviously is unbounded by the treewidth of the given program.

As a result, we apply these orderings only locally within the bags of a TD.
Note that while this approach might look similar to existing techniques that
are applied on a component-by-component basis [65, 53, 18], the approach is
slightly different, as different components of the positive dependency graph DΠ

might be spread among different bags of a TD and a bag might only contain
parts of components. If components are required to be spread across any TD
of primal graph GΠ whose width coincides with the treewidth, only parts of
cycles of DΠ can be analyzed by a table algorithm in a bag. This is the reason
why already the consistency problem of ASP remains slightly harder than the
decision problem SAT (under ETH). Consequently, instead of global orderings
or orderings per component, we use local orderings, which only order within
bags. However, these orderings need to be “synchronized” between bags and
come at the price of loosing bijective preservation of answer sets in general. The
reason for that will be discussed in Section B.

More concretely, our reduction is guided by a TD T = (T, χ) of primal
graph GΠ and uses core ideas of dynamic programming along TD T to en-
sure only a slight increase in treewidth of the resulting SAT formula. This
increase of treewidth is by construction, since our reduction essentially yields
a tree decomposition of the primal graph of the resulting SAT formula, which
functionally depends on T , as sketched in Figure 3. Intuitively, thereby the
aforementioned reduction takes care to keep the increase of width local, i.e.,
the increase of width happens within the bags of T . Concretely, if width(T )
is bounded by some value O(k), the treewidth of the resulting formula F is at
most O(k · log(k)).

For encoding orderings along a TD, we need the following notation. Let us
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consider a TD T = (T, χ) of GΠ, and a node t of T . We refer to an ordering
over χ(t) by t-local ordering.

Definition 1. A T -local ordering is a set containing one t-local ordering ϕt for
every t of T such that there is an interpretation I with (1) satisfiability: I |= Πt

for every node t of T , (2) provability: for every a ∈ I, there is a node t of T
and a rule r ∈ Πt proving a, and (3) compatibility: for every nodes t, t′ of T
and every a, b ∈ χ(t) ∩ χ(t′), whenever ϕt(a) < ϕt(b) then ϕt′(a) < ϕt′(b).

For an ordering ϕ, we use the canonical t-local ordering ϕ̂t for each t of T
as follows. Intuitively, atoms a ∈ χ(t) with smallest ordering position ϕ(a)
among all atoms in χ(t) get ϕ̂t(a) = 0, second-smallest get value 1, and so on.
Formally, we define ϕ̂t(a) := ordt(a, ϕ) − 1 for each a ∈ χ(t), where ordt(a, ϕ)
is the ordinal number (rank) of a according to smallest ordering position ϕ(a)
among χ(t).

Example 4. Consider program Π, answer set I = {b, c, d}, and ordering ϕ =
{b 7→ 0, d 7→ 1, c 7→ 2} of Example 1. Ordering ϕ can easily be extended to
ordering ϕ′ := {a 7→ 0, e 7→ 0, b 7→ 0, d 7→ 1, c 7→ 2} over at(Π). Then,
using TD T of GΠ, we can construct T -local ordering M := {ϕ̂t1 , ϕ̂t2 , ϕ̂t3}
of ϕ′, where ϕ̂t1 = {e 7→ 0, d 7→ 1, c 7→ 2}, ϕ̂t2 = {a 7→ 0, b 7→ 0}, and
ϕ̂t3 = {e 7→ 0, b 7→ 0, d 7→ 1}. Consider a TD T ′ of GΠ, which is similar
to T , but t1 has a child node t′, whose bag is {c, e}. Then, M ∪ {ϕ̂t′} with
ϕ̂t′ = {e 7→ 0, c 7→ 1} is a T ′-local ordering.

In our reduction, we use the following propositional variables. For each
atom x ∈ at(Π), we use x also as propositional variable. For each atom x ∈ χ(t)
of each node t of T , we use dlog(|χ(t)|)e many variables of the form bixt

forming
the i-th bit of the t-local ordering position (in binary) of x. By the shortcut
notation [[x]]t,j , we refer to the conjunction of literals over bits bixt

for 1 ≤ i ≤
dlog(|χ(t)|)e according to the representation of the number j in binary. For
atoms x, x′ ∈ χ(t) of node t of T , we use the following notation to indicate that
atom x is ordered before atom x′:

x ≺t x′ :=
∨

1≤i≤dlog(|χ(t)|)e

(bix′t ∧ ¬b
i
xt
∧

∧
i<j≤dlog(|χ(t)|)e

(bjxt
−→ bjx′t

)).

Example 5. Consider Example 4 and the T -local orderingM = {ϕt1 , ϕt2 , ϕt3}.
One could encode ordering position ϕt1(e) = 0 using two bit variables b1et1 , b

2
et1

and forcing it to false. This results in formula [[e]]t1,0 = ¬b1et1 ∧ ¬b
0
et1

. Then,

we formulate ϕt1(d) = 1 by [[d]]t1,1 = ¬b1dt1 ∧ b
0
dt1

, and ϕt1(c) = 2 by [[c]]t1,2 =

b1ct1 ∧ ¬b
0
ct1

. For the whole resulting formula, (e ≺t1 d), (d ≺t1 c) as well as

(e ≺t1 c) hold.

3.1 TD-guided Reduction to SAT

For solving consistency, we require to construct the following Formulas (1)–
(6) below for each TD node t of T having child nodes chldr(t) = {t1, . . . , t`}.

9



Thereby, these formulas aim at constructing T -local orderings along the TD T ,
where Formulas (1) ensure satisfiability, Formulas (2) take care of compatibility
along the TD, and Formulas (6) enforce provability within a node, which is then
guided along the TD by Formulas (3)–(5).
Concretely, Formulas (1) ensure that the variables of the constructed SAT for-
mula F are such that all (bag) rules are satisfied. Then, whenever in node t an
atom x has a smaller ordering position than an atom y (using ≺t), this must
hold also for the parent node of t and vice versa, cf., Formulas (2). Formulas (3)
guarantee, for nodes t removing bag atom x, i.e., x ∈ χ(t) \ χ(t′), that x is
proven if x is set to true. Similarly, this is required for atoms x ∈ χ(n) that are
in the root node n = root(T ) and therefore never forgotten, cf., Formulas (4).
At the same time we ensure by Formulas (5) that an atom x is proven up to
node t if and only if it is proven up to some child node of t or freshly proven
in node t. Finally, Formulas (6) make sure that an atom x is freshly proven in
node t if and only if there is at least one rule r ∈ Πt proving x.∨
b∈B+

r

¬b ∨
∨

a∈B−r ∪Hr

a for each r ∈ Πt (1)

(x ≺t′ y)←→ (x ≺t y) for each t′ ∈ chldr(t) and x, y ∈ χ(t) ∩ χ(t′)
with x 6= y (2)

x −→ px<t′ for each t′ ∈ chldr(t) and x ∈ χ(t′) \ χ(t) (3)

x −→ px<n for each x ∈ χ(n) with n = root(T ) (4)

px<t ←→ pxt ∨ (
∨

t′∈chldr(t),x∈χ(t′)

px<t′) for each x ∈ χ(t) (5)

pxt ←→
∨

r∈Πt,x∈Hr

(
∧
b∈B+

r

b ∧ x∧ for each x ∈ χ(t) (6)

(b ≺t x) ∧
∧

a∈B−r ∪(Hr\{x})

¬a)

Example 6. Recall program Π from Example 1, and TD T of GΠ given in
Figure 2. We briefly show Formula F for node t3.

Formulas Formula F
(1) ¬b ∨ e ∨ d; ¬b ∨ d ∨ e; ¬e ∨ d ∨ b; b ∨ d
(2) (d ≺t1 e)↔ (d ≺t3 e); (e ≺t1 d)↔ (e ≺t3 d)
(3) c→ pc<t1 ; a→ pa<t2
(4) b→ pb<t3 ; d→ pd<t3 ; e→ pe<t3
(5) pb<t3 ↔ (pbt3 ∨ pb<t2); pd<t3 ↔ (pdt3 ∨ pd<t1); pe<t3 ↔ (pet3 ∨ pe<t1)
(6) pbt3 ↔ [e ∧ b ∧ (e ≺t3 b) ∧ ¬d]; pet3 ↔ [b ∧ e ∧ (b ≺t3 e) ∧ ¬d];

pdt3 ↔ [(b ∧ d ∧ (b ≺t3 d) ∧ ¬e) ∨ (d ∧ ¬b)]

Next, we show that the reduction is indeed aware of the treewidth and that
the treewidth is slightly increased.
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Theorem 1 (Treewidth-awareness). The reduction from an HCF program Π
and a nice TD T = (T, χ) of GΠ to SAT formula F consisting of Formulas (1)–
(6) ensures that if k is the width of T , then the treewidth of GF is at most O(k ·
log(k)).

Proof. We construct a TD T ′ = (T, χ′) of GF to show that the width of T ′ in-
creases from k to O(k · log(k)). To this end, let t be a node of T with chldr(t) =
〈t1, . . . , t`〉 and let t̂ be the parent of t (if exists). We define B(t, x) := {bjxt

|
x ∈ χ(t), 1 ≤ j ≤ dlog(|χ(t)|)e}. We inductively define χ′(t) := χ(t) ∪
(
⋃
x∈χ(t)B(t, x) ∪ B(t̂, x)) ∪ {py<t′ , pxt | t′ ∈ {t, t1, . . . , t`}, x ∈ χ(t), y ∈ χ(t′)}.

Observe that indeed T ′ is a TD of GF . Further, |χ′(t)| ≤ k + k · dlog(k)e · 2 +
k · (`+ 2). Thus, the width of TD T ′ is in O(k · log(k)), since for nice TDs we
have ` = 2.

Note that the result above can be also lifted to non-nice TDs, as long as the
number of child nodes is limited by O(log(k)).

Later we will see the lower bound for consistency of normal ASP, which indi-
cates that one cannot expect to significantly improve this increase of treewidth.
Next, we present consequences for auxiliary variables and runtime.

Corollary 1 (Runtime). The reduction from an HCF program Π and a nice
TD T of GΠ to SAT formula F consisting of Formulas (1)–(6) uses at most O(k·
log(k) · h) many variables and runs in time O(k2 · log(k) · h+ |Π|), where k and
h are the width and the number of nodes of T , respectively.

Proof. The result follows from Theorem 1. Linear time in the size of Π can be
obtained by slightly modifying Formulas (1) and (6) such that each rule r ∈ Π is
used in only one node t, where r ∈ Πt′ , but r /∈ Πt, for some t′ ∈ chldr(t). Run-
time O(k2 log(k)) in k is due to the definition of (x ≺t y) as used in Formulas (2)
and (6).

Note that a nice TD of GΠ of width k = tw(GΠ), having only h = O(|at(Π)|)
many nodes [68][Lem. 13.1.2] always exists. Further, since k · log(k) might
be much smaller than log(|at(Π)|), for some programs this reduction could be
a benefit compared to global or component-based orderings used in tools like
lp2sat [65, 53, 18]. An empirical study addressing this is given in Section 5.

Correctness of the Reduction. Now, we discuss the correctness of our
reduction, which establishes that T -local orderings encoded by Formulas (1)–
(6) follow ideas of the characterization of answer sets for HCF programs.

Theorem 2 (Correctness). The reduction from an HCF program Π and a
TD T = (T, χ) of GΠ to SAT formula F consisting of Formulas (1)–(6) is
correct. Precisely, for each answer set of Π there is a model of F and vice
versa.

Proof. The proof is given in A.

11



The statement above can be strengthened to derive the following corollary,
which concludes that the reduction above only weakly preserves answer sets
(and not bijectively).

Corollary 2 (Preservation of Answer Sets). The reduction from an HCF pro-
gram Π and a TD T = (T, χ) of GΠ to SAT formula F consisting of Formu-
las (1)–(6) preserves answer sets with respect to at(Π). Concretely, for each
answer set M of Π there is exactly one model of F that when restricted to the
variables in at(Π), coincides with M . Conversely, for each model of F there is
exactly one answer set of Π.

However, in general we have that for an answer set of Π, there might be
several models of the propositional formula obtained by the reduction above.
Overall, one can strenghten the reduction in order to remove some models, which
is presented in B.

In the next subsection, we present another reduction from HCF ASP to
SAT that bijectively preserves all the answer sets at least for uniquely provable
programs, at the cost of a higher increase of the treewidth from k to k2. The
difference to the reduction above is that the increase from k to k2 explicitly
allows us to verify whether the (up to k2 many) relations per tree decomposition
node in terms of provability are applicable when proving an answer set.

3.2 Bijective and Treewidth-Aware Reduction to SAT

This section deals with a different approach that is inspired by an early at-
tempt [74], combined with the ideas of Clark’s completion [26] that is guided
along a tree decomposition. To this end, consider an HCF program Π and a
TD T = (T, χ) of GΠ. Then, instead of orderings, we use fresh auxiliary vari-
ables of the form (x ≺ y) (and (y ≺ x)) to indicate that an atom x has to
precede an other atom y (and vice versa). This is done locally for each tree de-
composition bag and consequently results in a quadratic number of additional
auxiliary variables per bag and causes a quadratic increase of the treewidth in
the worst-case. Further, we also require auxiliary variables pxt , px≺yt , and py≺xt

for a node t of T and x, y ∈ χ(t) in order to indicate whether there is a rule
proving atom x, auxiliary variable (x ≺ y), and auxiliary variable (y ≺ x),
respectively. Finally, this approach also uses auxiliary variable pxt,r to indicate
that an atom x ∈ χ(t) is proven by a rule r ∈ Πt in a node t of T .

The reduction constructs a formula F ′ that consists of Formulas (1), (3)–(5)
as well as Formulas (7)–(15), as given below, for each node t of T . As before,
Formulas (1) ensure that each rule r ∈ Π is satisfied. Then, Formulas (7)
guarantee that we have provability pxt,r for an atom x ∈ χ(t) using a rule r ∈ Πt,
if r proves x with any ordering, i.e., if x does not precede any atom of positive
body B+

r . Formulas (8) make sure that if we have pxt,r, indeed all positive body
atoms b ∈ B+

r precede x, i.e., whenever a rule is suitable for proving an atom, it
actually has to be applied (greedy application). We also ensure by Formulas (9)
that the precedence is transitive. Formulas (10) take care of not allowing cycles
over ≺, i.e., we cannot have both (x ≺ y) and (y ≺ x) at the same time.

12



∨
b∈B+

r

¬b ∨
∨

a∈B−r ∪Hr

a for each r ∈ Πt (1)

pxt,r ←→ (
∧
b∈B+

r

b ∧ x ∧ ¬(x ≺ b) for each r ∈ Πt and x ∈ Hr (7)

∧
∧

a∈B−r ∪(Hr\{x})

¬a)

pxt,r −→ (b ≺ x) for each r ∈ Πt, x ∈ Hr, and b ∈ B+
r (8)

(x ≺ y) ∧ (y ≺ z) −→ (x ≺ z) for each x, y, z ∈ χ(t) with
x 6= y, x 6= z, and y 6= z (9)

¬(x ≺ y) ∨ ¬(y ≺ x) for each x, y ∈ χ(t) with x 6= y (10)

pxt ←→
∨

r∈Πt,x∈Hr

pxt,r for each x ∈ χ(t) (11)

py≺xt ←→
∨

r∈Πt,x∈Hr,y∈B+
r

pxt,r ∨ for each x, y ∈ χ(t) with x 6= y∨
z∈χ(t),z 6=x,z 6=y

[(y ≺ z) ∧ (z ≺ x)] (12)

x −→ px<t′ for each t′ ∈ chldr(t), x ∈ χ(t′) \ χ(t) (3)

x −→ px<n for each x ∈ χ(n) with n = root(T ) (4)

px<t ←→ pxt ∨ (
∨

t′∈chldr(t),x∈χ(t′)

px<t′) for each x ∈ χ(t) (5)

(x ≺ y) −→ px≺y<t′ for each t′ ∈ chldr(t) and x, y ∈ χ(t′) with
x 6= y and {x, y} ∩ (χ(t′) \ χ(t)) 6= ∅ (13)

(x ≺ y) −→ px≺y<n for each x, y ∈ χ(n) with x 6= y and
n = root(T ) (14)

px≺y<t ←→ px≺yt ∨ (
∨

t′∈chldr(t),x,y∈χ(t′)

px≺y<t′ ) for each x, y ∈ χ(t) with x 6= y (15)

We define pxt by Formulas (11), similarly to Formulas (6), but here we are
able to use auxiliary variables pxt,r for every r ∈ Πt. Further, we also define

provability py≺xt for auxiliary variables (y ≺ x) in node t, which is the case if
we either derive (y ≺ x) due to Formulas (8), where we also need pxt,r, or we
obtain (y ≺ x) due to Formulas (9), where we require (y ≺ z) and (z ≺ x)
for some z ∈ χ(t). For ensuring provability for an atom x ∈ χ(t) and guiding
it along the TD, we use Formulas (3), (4), and (5) as before. Analogously,
we require Formulas (13), (14), and (15) for guiding provability of an auxiliary
variable (x ≺ y) along the TD.

Example 7. Recall program Π from Example 1, TD T = (T, χ) of GΠ given in
Figure 2, as well as Formulas (1) and (3)–(5) from Example 6. Next, we briefly
show Formulas (7)–(15) for node t3 of T .
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Formulas Formula F ′

(7) pdt3,r3 ↔ b ∧ ¬(d ≺ b) ∧ ¬e; pet3,r4 ↔ b ∧ ¬(e ≺ b) ∧ ¬d;
pbt3,r5 ↔ e ∧ ¬(b ≺ e) ∧ ¬d; pdt3,r6 ↔ ¬b

(8) pdt3,r3 → (b ≺ d); pet3,r4 → (b ≺ e); pbt3,r5 → (e ≺ b)
(9) (e ≺ b) ∧ (b ≺ d)→ (e ≺ d); (d ≺ b) ∧ (b ≺ e)→ (d ≺ e);

(d ≺ e) ∧ (e ≺ b)→ (d ≺ b); (b ≺ d) ∧ (d ≺ e)→ (b ≺ e)
(10) ¬(b ≺ d) ∨ ¬(d ≺ b); ¬(b ≺ e) ∨ ¬(e ≺ b); ¬(d ≺ e) ∨ ¬(e ≺ d)
(11) pdt3 ↔ pdt3,r3 ∨ pdt3,r6 ; pet3 ↔ pet3,r4 ; pbt3 ↔ pbt3,r5
(12) pb≺dt3 ↔ pdt3,r3 ; pd≺bt3 ↔ pbt3,r5 ∨ [(d ≺ e) ∧ (e ≺ b)];

pe≺bt3 ↔ pbt3,r5 ; pb≺et3 ↔ pet3,r4 ∨ [(b ≺ d) ∧ (d ≺ e)];
pd≺et3 ↔ pet3,r4 ∨ [(d ≺ b) ∧ (b ≺ e)]; pe≺dt3 ↔ pdt3,r3 ∨ [(e ≺ b) ∧ (b ≺ d)]

(13) (c ≺ d)→ pc≺d<t1 ; (d ≺ c)→ pd≺c<t1 ; (c ≺ e)→ pc≺e<t1 ; (e ≺ c)→ pe≺c<t1 ;
(a ≺ b)→ pa≺b<t2 ; (b ≺ a)→ pb≺a<t2

(14) (b ≺ d)→ pb≺d<t3 ; (d ≺ b)→ pd≺b<t3 ; (b ≺ e)→ pb≺e<t3 ; (e ≺ b)→ pe≺b<t3 ;
(d ≺ e)→ pd≺e<t3 ; (e ≺ d)→ pe≺d<t3

(15) pb≺d<t3 ↔ pb≺dt3 ; pd≺b<t3 ↔ pd≺bt3 ; pb≺e<t3 ↔ pb≺et3 ; pe≺b<t3 ↔ pe≺bt3

pd≺e<t3 ↔ pd≺et3 ∨ pd≺e<t1 ; pe≺d<t3 ↔ pe≺dt3 ∨ pe≺d<t1

Note that for practical implementations there is, of course, potential for opti-
mizations. To demonstrate this, the table above does not contain every useless
instance of Formulas (9). As an example, (b ≺ e) ∧ (e ≺ d) → (b ≺ d) is
not needed since the only way to prove (e ≺ d) is via the first instance of For-
mulas (9) in the table, which requires (e ≺ b). However, having both (b ≺ e)
and (e ≺ b) is not possible anyway due to Formulas (10).

Treewidth-Awareness and Runtime. Next, we discuss consequences of the
reduction consisting of Formulas (1), (3)–(5) as well as Formulas (7)–(15) for
each node t of T . Thereby, we show results for treewidth-awareness and runtime.

Theorem 3 (Treewidth-awareness). The reduction from an HCF program Π
and a nice TD T = (T, χ) of GΠ to SAT formula F ′ consisting of Formulas (1),
(3)–(5) as well as Formulas (7)–(15) ensure that if k is the width of T , then
the treewidth of GF ′ is at most O(k2).

Proof. We construct a TD T ′ = (T, χ′) of GF ′ to show that the width of T ′
increases from k to O(k2). To this end, let t be a node of T with chldr(t) =
〈t1, . . . , t`〉 and let t̂ be the parent node of t (if it exists). Note that the num-
ber |Πt| of rules might be larger than O(k2). However, one can easily modify
TD T by adding intermediate nodes t1, . . . , to between t and t̂, where for each
node ti with 1 ≤ i ≤ o, we have χ(ti) = χ(t). Then, instead of the actual
bag program Πti = Πt we only apply a small subset Π′ti ⊆ Πt of ti such
that

⋃
1≤i≤o Π′ti = Πt. So, intuitively instead of applying Πt in one node t,

this allows us to partition Πt and apply the parts separately by using inter-
mediate nodes. Therefore, in the following we assume for the ease of notation
and without loss of generality that |Πt| is bounded by a constant c, i.e., we
sloppily refer to Π′t by Πt. We inductively define χ′(t) := χ(t) ∪ {(x ≺ y) |
{x, y} ⊆ χ(t), x 6= y} ∪ {py<t′ , pxt | t′ ∈ {t, t1, . . . , t`}, x ∈ χ(t), y ∈ χ(t′)} ∪ {pxt,r |
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x ∈ χ(t), r ∈ Πt} ∪ {py≺y
′

<t′ , p
x≺x′
t | t′ ∈ {t, t1, . . . , t`}, {x, x′} ⊆ χ(t), {y, y′} ⊆

χ(t′), x 6= x′, y 6= y′}. Observe that indeed T ′ is a TD of GF ′ . Further,
|χ′(t)| ≤ k + k2 + 2k · (` + 1) + ck + 2k2 · (` + 1). Thus, since ` ≤ 2 for
nice TDs, the width of T ′ is in O(k2).

This increase of treewidth is also reflected in the runtime of the reduction.

Corollary 3 (Runtime). The reduction from an HCF program Π and a nice
TD T of GΠ to SAT formula F ′ consisting of Formulas (1), (3)–(5) as well
as Formulas (7)–(15) uses at most O(k2 · h + |Π|) many variables and runs in
time O(k3 ·h+ |Π|), where k and h are the width and the number of nodes of T ,
respectively.

Proof. The result follows from Theorem 3. Linear time in the size of Π can
be obtained by slightly modifying Formulas (1), (7), (8), (11), and (12) such
that each rule r ∈ Π is used in only one node t, where r ∈ Πt′ , but r /∈ Πt, for
some t′ ∈ chldr(t). The cubic runtime in k is due to transitivity by Formulas (9)
and (12).

For detailed discussions on correctness and further consequences, we refer
to C.

Compared to the reduction of Section 3.1, the worst-case increase of treewidth
from k to k2 explicitly allows us to verify whether every single ≺-relation per
tree decomposition node is indeed applicable when proving an answer set. How-
ever, this reduction does not bijectively preserve answer sets for HCF programs
in general, and we believe that a different approach is needed in order to design
a reduction that is both treewidth-aware and bijective at the same time.

Next, we show that indeed already deciding the consistency of a normal
(uniquely provable) program is expected to be slightly harder than deciding the
satisfiability of a propositional formula.

4 Why ASP Consistency is Harder than SAT

This section concerns the hardness of ASP consistency when considering treewidth.
The high-level reason for ASP being harder than SAT when assuming bounded
treewidth, lies in the issue that a TD, while capturing the structural depen-
dencies of a program, might force an evaluation that is completely different
from the orderings proving answer sets. Consequently, during dynamic pro-
gramming for ASP, one needs to store in each table τt for each node t during
post-order traversal, in addition to an interpretation (candidate answer set),
also an ordering among the atoms in those interpretations. We show that under
reasonable assumptions in complexity theory, this worst-case cannot be avoided.
Then, the resulting runtime consequences cause ASP to be slightly harder than
SAT, where in contrast to ASP storing a table τt of only assignments for each
node t suffices.
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s1 s2 s3

d1 d2 d3

x y
z

{s1, x}t1 {s2, x, y}
t3{d2, y}t2

{y, d3, z}
t5

{s3, z} t4

{x, y, d1}t6

Figure 4: An instance I = (G,P ) (left) of the Disjoint Paths Problem and a TD
of G (right).

We show our novel hardness result by reducing from the (directed) Dis-
joint Paths Problem, which is a graph problem defined as follows. Let us
consider a directed graph G = (V,E), and a set P ⊆ V × V of disjoint pairs
of the form (si, di) consisting of source si and destination di, where si, di ∈ V
such that each vertex occurs at most once in P , i.e.,

∣∣∣⋃(si,di)∈P {si, di}
∣∣∣ = 2 · |P |.

Then, (G,P ) is an instance of the Disjoint Paths Problem, asking whether
there exist |P | many (vertex-disjoint) paths from si to di for 1 ≤ i ≤ |P |. Con-
cretely, each vertex of G is allowed to appear in at most one of these paths. For
the ease of presentation, we assume without loss of generality [76] that sources si
have no incoming edge (x, si), and destinations di have no outgoing edge (di, x).

Example 8. Figure 4 (left) shows an instance I = (G,P ) of the Disjoint
Paths Problem, where P consists of pairs of the form (si, di). The only
solution to I is both emphasized and colored in red. Figure 4 (right) depicts a
TD of G.

While under ETH, SAT cannot be solved in time 2o(k)·poly(|at(F )|), where k
is the treewidth of the primal graph of a given propositional formula F , the Dis-
joint Paths Problem is considered to be even harder. Concretely, the prob-
lem has been shown to be slightly superexponential as stated in the following
proposition.

Proposition 1 ([76]). Under ETH, there is no algorithm solving the Disjoint
Paths Problem in time 2o(k·log(k)) · poly(|V |), where (G,P ) is any instance
with k = tw(G).

It turns out that the Disjoint Paths Problem is a suitable problem can-
didate for showing the hardness of ASP. In our reduction, we use the following
notation of open pairs, which leads to the result below. Let (G,P ) be an in-
stance of the Disjoint Paths Problem, T = (T, χ) be a TD of G, and t be
a node of T . Then, a pair (s, d) ∈ P is open in node t, if either s ∈ χ≤t (“open
due to source s’ ’) or d ∈ χ≤t (“open due to destination d”), but not both.

Proposition 2 ([87]). An instance (G,P ) of the Disjoint Paths Problem
does not have a solution if there is a TD T = (T, χ) of G and a bag χ(t) with
more than |χ(t)| many pairs in P that are open in a node t of T .

Proof. The result, cf., [87], boils down to the fact that each bag χ(t), when
removed from G, results in a disconnected graph consisting of two components.
Between these components can be at most |χ(t)| different paths.
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{s2, x, y}t2

{s2, d2, y}t1

{y, d3, z}
t4

{s3, d3, z} t3

{s1, d1, x, y}t5

{s3, d3, y, z} t1

{s3, d3, y} t2

{s1, d1, s2, d2, s3, d3, x, y}
t3

Figure 5: A pair-respecting TD (left), and a pair-connected TD T (right) of (G,P ) of
Figure 4.

Preparing pair-connected TDs. Before we present the actual reduction,
we need to define a pair-respecting tree decomposition of an instance (G,P )
of the Disjoint Paths Problem. Intuitively, such a TD of G additionally
ensures that each pair in P is encountered together in some TD bag.

Definition 2. A TD T = (T, χ) of G is a pair-respecting TD of (G,P ) if for
every pair p = (s, d) with p ∈ P , (1) whenever p is open in a node t due to s,
or due to d, then s ∈ χ(t), or d ∈ χ(t), respectively. Further, (2) whenever
p is open in a node t, but not open in the parent t′ of t (“p is closed in t′”),
both s, d ∈ χ(t′).

We observe that such a pair-respecting TD can be computed with only a
linear increase in the (tree)width in the worst-case. Concretely, we can turn
any TD T = (T, χ) of G into a pair-respecting TD T ′ = (T, χ′) of (G,P ).
Thereby, the tree T is traversed for each t of T in post-order, and vertices of P
are added to χ(t) accordingly, resulting in χ′(t), such that conditions (1) and
(2) of pair-respecting TDs are met. Observe that this doubles the sizes of the
bags in the worst-case, since by Proposition 2 there can be at most bag-size
many open pairs.

Example 9. Figure 5 (left) shows a pair-respecting TD of (G,P ) of Figure 4,
which can be obtained by transforming the TD of Figure 4 (right), followed by
simplifications.

For a given sequence σ of pairs of P in the order of closure with respect
to the post-order of T , we refer to σ by the closure sequence of T . We denote
by p ∈i σ that pair p is the pair closed i-th in the order of σ. Intuitively, e.g.,
the first pair p ∈1 σ indicates that pair p ∈ P is the first to be closed when
traversing T in post-order.

Definition 3. A pair-connected TD T =(T, χ) of (G,P ) is a pair-respecting TD
of (G,P ), if, whenever a pair p ∈i σ with i>1 is closed in a node t of T , also
for the pair (s, d) ∈i−1 σ closed directly before p in σ, both s, d ∈ χ(t).

We can turn any pair-respecting, nice TD T ′=(T, χ′) of width k into a pair-
connected TD T ′′=(T, χ′′) with constant increase in the width. Let therefore
pair p ∈i σ be closed (i>1) in a node t, and pair (s, d) ∈i−1 be closed before p
in node t′. Intuitively, we need to add s, d to all bags χ′(t′), . . . , χ′(t) of nodes
encountered after node t′ and before node t of the post-order tree traversal,
resulting in χ′′. However, the width of T ′′ is at most k + 3 · |{s, d}| = k + 6,
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since in the tree traversal each node of T is passed at most 3 times, namely
when traversing down, when going from the left branch to the right branch, and
then also when going upwards. Indeed, to ensure T ′′ is a TD (connectedness
condition), we add at most 6 additional atoms to every bag.

Example 10. Figure 5 (right) depicts a pair-connected TD of (G,P ) of Fig-
ure 4, obtainable by transforming the pair-respecting TD of Figure 5 (left), fol-
lowed by simplifications.

Reducing from Disjoint Paths to ASP

In this section, we show the main reduction R of this work, assuming any
instance I = (G,P ) of the Disjoint Paths Problem. Before we construct our
program Π, we require a nice, pair-connected TD T = (T, χ) of G, whose width
is k and a corresponding closure sequence σ. By Proposition 2, for each node t
of T , there can be at most k many open pairs of P , which we assume in the
following. If this was not the case, we can immediately output, e.g., {a← ¬a}.

Then, we use the following atoms in our reduction. Atoms eu,v, or neu,v
indicate that edge (u, v) ∈ E is used, or unused, respectively. Further, atom ru
for any vertex u ∈ V indicates that u is reached via used edges. Finally, we also
need atom fut for a node t of T , and vertex u ∈ χ(t), to indicate that vertex u is
already finished in node t, i.e., u has one used, outgoing edge. The presence of
this atom fut in an answer set prohibits to take additional edges of u in parent
nodes of t, which is needed due to the need of disjoint paths of the Disjoint
Paths Problem.

The instance Π = R(I, T ) constructed by reduction R consists of three
program parts, namely reachability ΠR, linking ΠL of two pairs in P , as well
as checking ΠC of disjointness of constructed paths. Consequently, Π = ΠR ∪
ΠL ∪ ΠC . All three programs ΠR, ΠL, and ΠC are guided along TD T , which
ensures that the width of Π is only linearly increased. Note that this has to
be carried out carefully, since, e.g., the number of atoms of the form eu,v using
only vertices u, v that appear in one bag, can be already quadratic in the bag
size. The goal of this reduction, however, admits only a linear overhead in the
bag size. Consequently, we are, e.g., not allowed to construct rules in Π that
require more than O(k) edges in one bag of a TD of GΠ.

To this end, let the ready edges Ere
t in node t be the set of edges (u, v) ∈ E

not present in t anymore, i.e., {u, v} ⊆ χ(t′)\χ(t) for any child node t′ ∈ chldr(t).
Further, let Ere

n for the root node n = root(T ) additionally contain also all edges
of n, i.e., E ∩ (χ(n) × χ(n)). Intuitively, ready edges for t will be processed in
node t. Note that each edge occurs in exactly one set of ready edges. Further,
for nice TDs T , we always have |Ere

t | ≤ k, i.e., ready edges are linear in k.

Example 11. Recall instance I=(G,P ) with G=(V,E) of Figure 4, and pair-
connected TD T =(T, χ) of I of Figure 5 (right). Then, Ere

t1 =∅, Ere
t2 ={(y, z), (z,

y), (z, d3), (s3, z)}, since z /∈ χ(t2), and Ere
t3 =E \ Ere

t2 for root t3 of T .

Reachability ΠR. Program ΠR is constructed as follows.
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eu,v ← ru,¬neu,v for each (u, v) ∈ Ere
t (16)

neu,v ← ¬eu,v for each (u, v) ∈ Ere
t (17)

rv ← eu,v for each (u, v) ∈ Ere
t (18)

Rules (16) and (17) ensure that there is a partition of edges in used edges eu,v
and unused edges neu,v. Additionally, Rules (16) make sure that only edges of
adjacent, reachable vertices are used. Naturally, this requires that initially at
least one vertex is reachable (constructed below). Rules (18) ensure reachabil-
ity rv over used edges eu,v for a vertex v.

Linking of pairs ΠL. Program ΠL is constructed as follows.

← ¬rd for each (s, d) ∈ P (19)

rs1 ← for (s1, d) ∈1 σ (20)

rsi ← rsi−1
, rdi−1

for each (si, d) ∈i σ, (s, di−1)∈i−1 σ (21)

Rules (19) make sure that, ultimately, destination vertices of all pairs are
reached. As an initial, reachable vertex, Rule (20) sets the source vertex s
reachable, whose pair is closed first. Then, the linking of pairs is carried out
along the TD in the order of closure, as given by σ. Thereby, Rules (21) con-
ceptually construct auxiliary links (similar to edges) between different pairs, in
the order of σ, which is guided along the TD to ensure only a linear increase
in treewidth of GΠ of the resulting program Π. Interestingly, these additional
dependencies, since guided along the TD, do not increase the treewidth by much
as we will see in the next subsection.

Then, it is crucial that we prevent a source vertex si of a pair (si, di) ∈i σ
from reaching a destination vertex dj of a pair (sj , dj) ∈j σ preceding (si, di)
in σ, i.e., j < i. To this end, we need to construct parts of cycles that prevent
this. Concretely, if some source si reaches dj , i.e., dj is reachable via si, the
goal is to have a cyclic reachability from dj to si, with no provability for cor-
responding reachability atoms of the cycle. Actually, Rules (21) also have the
purpose of aiding in the construction of these potential positive cycles. Thereby
we achieve that if dj is reachable, this cannot be due to si, since reachability
of dj , sj+1, . . . , si (therefore si itself) is required for reachability of si. Conse-
quently, assuming that there is no further rule proving any of these reachability
atoms, which we will ensure in the construction of program ΠC below, we end
up with cyclic reachability if si is reached by dj , such that none of the atoms
of the cycle are proven. Figure 6 shows the positive dependency graph DRL of
Rules (21), where pairs (si, di) ∈i σ, as discussed in the following example.

Example 12. Consider the dependency graph DRL of Rules (21), as depicted
in Figure 6. Observe that whenever si reaches some dj with j < i, this causes a
cycle C=rsi , . . . , rdj , rsj+1

, . . . , rsi−1
, rsi over reachability atoms in DRL (cyclic

dependency).
If each vertex u of G can have at most one outgoing edge, i.e., only one

atom eu,v in an answer set of Π = R(I, T ), no atom of C can be proven (no
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rs1 rs2 rs3 . . .rs|P |−1
rs|P |

rd1 rd2 rd3 . . .rd|P |−1
rd|P |

Figure 6: Positive dependency graph DRL (indicated by solid red edges) of Rules (21)
constructed for any closure sequence σ such that (si, di) ∈i σ. If a source si reaches a
destination dj of a preceding pair, i.e., j < i, (depicted via the dashed red edge), this
results in a cycle (consisting of all bold-faced edges) such that none of the atoms of
the cycle can be proven.

further rule allows provability). Note that C could also be constructed by causing

in the positive dependency graph O(|P |2) many edges from rdj to rsi for j < i.
This could be achieved, e.g., by constructing large rules, where reachability rdj
of every preceding destination vertex is required in the positive body in order
to reach a certain source vertex si, i.e., in order to obtain reachability rsi .
However, this would cause an increase of structural dependency, and in fact,
the treewidth increase would be beyond linear.

Checking of disjointness ΠC. Finally, we create rules in Π that enforce
at most one outgoing, used edge per vertex. This is required to ensure that
we do not use a vertex twice, as required by the Disjoint Paths Problem.
We do this by guiding the information, whether the corresponding outgoing
edge was used, via atoms fut along the TD to ensure that the treewidth is not
increased significantly. Having at most one outgoing, used edge per vertex of G
further ensures that when a source of a pair p reaches a destination of a pair
preceding p in σ, then no atom of the resulting cycle as constructed in ΠL will be
provable. Consequently, in the end every source of p has to reach the destination
of p by the pigeon hole principle. Program ΠC is constructed for every node t
with t′, t′′∈ chldr(t), if t has child nodes, as follows.

fut ← eu,v for each (u, v) ∈ Ere
t , u ∈ χ(t) (22)

fut ← fut′ for each u ∈ χ(t) ∩ χ(t′) (23)

← fut′ , f
u
t′′ for each u ∈ χ(t′) ∩ χ(t′′), t′ 6= t′′ (24)

← fut′ , eu,v for each (u, v) ∈ Ere
t , u ∈ χ(t′) (25)

← eu,v, eu,w for each (u, v), (u,w) ∈ Ere
t , v 6=w (26)

Rules (22) ensure that the finished flag fut is set for used edges eu,v. Then,
this information of fut′ is guided along the TD from child node t′ to parent
node t by Rules (23). If for a vertex u ∈ V we have fut′ and fut′′ for two
different child nodes t′, t′′ ∈ chldr(t), this indicates that two different edges
were encountered both below t′ and below t′′. Consequently, this situation is
avoided by Rules (24). Rules (25) make sure to disallow additional edges for
vertex u in a TD node t, if the flag fut′ of child node t′ is set. Finally, Rules (26)
prohibit two different edges for the same vertex u within a TD node.
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Example 13. Recall instance I = (G,P ) with G = (V,E) of Figure 4, pair-
connected TD T = (T, χ) of I of Figure 5 (right), and Ere

t2 = {(y, z), (z, y), (z, d3),
(s3, z)}. We briefly present the construction of ΠC for node t2.
Rules ΠL
(22) fyt2 ← ey,z; fs3t2 ← es3,z
(23) fs3t2 ← fs3t1 ; fd3t2 ← fd3t1 ; fyt2 ← fyt1
(25) ← fyt1 , ey,z; ← fzt1 , ez,y; ← fzt1 , ez,d3 ; ← fs3t1 , es3,z
(26) ← ez,y, ez,d3

Correctness and Runtime Analysis. First, we show that the reduction is
correct, followed by a result stating that the treewidth of the reduction is at
most linearly worsened, which is crucial for the runtime lower bound to hold.
Then, we present the runtime and the (combined) main result of this work.

Theorem 4 (Correctness). Reduction R as proposed in this section is correct.
Let us consider an instance I = (G,P ) of the Disjoint Paths Problem, and
a pair-connected TD T = (T, χ) of G. Then, I has a solution if and only if the
program R(I, T ) admits an answer set.

Proof. The proof is given in D.

Lemma 1 (Treewidth-awareness). Let I = (G,P ) be any instance of the Dis-
joint Paths Problem, and T be a nice, pair-connected TD of I of width k.
Then, the treewidth of GΠ, where Π = R(I, T ) is obtained by R, is at most O(k).

Proof. Assume any pair-connected, nice TD T = (T, χ) of I = (G,P ). Since T
is nice, a node in T has at most ` = 2 many child nodes. From T we construct
a TD T ′ = (T, χ′) of GΠ. Thereby we set for every node t of T , χ′(t) :=
{ru, fut | u ∈ χ(t)} ∪ {eu,v, neu,v, ru, rv, fut′ | (u, v) ∈ Ere

t , t
′ ∈ chldr(t), u ∈

χ(t′)} ∪ {fut′ , fut | t′ ∈ chldr(t), u ∈ χ(t) ∩ χ(t′)}. Observe that T ′ is a valid TD
of GΠ. Further, by construction we have |χ′(t)| ≤ 2·|χ(t)|+(4+`)·k+(`+1)·|χ(t)|,
since |Ere

t | ≤ k. The claim sustains for nice TDs (` = 2).

Corollary 4 (Runtime). Reduction R as proposed in this section runs for a
given instance I = (G,P ) of the Disjoint Paths Problem with G = (V,E),
and a pair-connected, nice TD T of I of width k and h many nodes, in time
O(k · h).

Next, we are in the position of showing the main result, namely the normal
ASP lower bound.

Theorem 5 (Lower bound). Consider an arbitrary normal or HCF program Π,
where k is the treewidth of the primal graph of Π. Then, unless ETH fails, the
consistency problem for Π cannot be solved in time 2o(k·log(k)) · poly(|at(Π)|).

Proof. Let (G,P ) be an instance of the Disjoint Paths Problem. First, we
construct [16] a nice TD T of G = (V,E) of treewidth k in time ck · |V | for some
constant c such that the width of T is at most 5k+ 4. Then, we turn the result
into a pair-connected TD T ′ = (T ′, χ′), thereby having width at most k′ =
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2 · (5k + 4) + 6. Then, we construct program Π = R(I, T ′). By Lemma 1, the
treewidth of GΠ is in O(k′), which is in O(k). Assume towards a contradiction
that consistency of Π can be decided in time 2o(k·log(k)) · poly(|at(Π)|). By
correctness of R (Theorem 4), this solves (G,P ), contradicting Proposition 1.

Our reduction works by construction for any pair-connected TD. Conse-
quently, this immediately yields a lower bound for the larger parameter path-
width, which is similar to treewidth, as defined in the preliminaries.

Corollary 5 (Pathwidth lower bound). Consider any normal or HCF pro-
gram Π, where k is the pathwidth of the primal graph of Π. Then, unless
ETH fails, the consistency problem for Π cannot be solved in time 2o(k·log(k)) ·
poly(|at(Π)|).

From Theorem 5, we infer that a general reduction from normal or HCF
programs to SAT formulas cannot (uner ETH) avoid the treewidth (pathwidth)
overhead, which renders our reduction from the previous section ETH-tight.

Corollary 6 (ETH-tightness of the Reduction to SAT). Under ETH, the in-
crease of treewidth of the reduction using Formulas (1)–(6) cannot be signifi-
cantly improved.

Proof. Assume towards a contradiction that one can reduce from an arbitrary
normal ASP program Π, where k is the treewidth of GΠ to a SAT formula,
whose treewidth is in o(k · log(k)). Then, this contradicts Theorem 5, as we
can use an algorithm [85, 49] for SAT being single exponential in the treewidth,
thereby deciding consistency of Π in time 2o(k·log(k)) · poly(|at(Π)|).

Further consequences of our construction are discussed in E.

5 An Empirical Study of Treewidth-Aware Re-
ductions

Despite the lower bound of the previous section, we show that the reductions
of this work could still have practical impact. Recall the formalization of our
treewidth-aware reduction of Section 3.1, which is guided along a tree decompo-
sition. We implemented this translation in Python, resulting in the prototypical
tool asp2sat4, in order to compare and study the effect on the (tree)width in
practice.

So the overall goal of this section is to provide a neutral comparison, without
explicitly focusing on beating existing ASP solvers. The reason for this goal
lies in two reasons. First of all, there is a recent observation that modern
(SAT) solvers have been highly optimized for current hardware for many years,

4Our translator asp2sat is open source and readily available at
github.com/hmarkus/asp2sat translator.
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cf., [47], which also takes time for treewidth-based solvers. Further, finding
ways to efficiently utilize treewidth seems to be still an ongoing process. While
over the last couple of years, efficient solvers emerged, a clear set of techniques
has not yet been fully settled. This can be witnessed by a couple of solvers
that adhere to parameterized complexity and in particular to treewidth. Some
techniques for solvers on Boolean formulas at least seem to be particular well-
suited for counting problems, e.g., based on dynamic programming [49, 48],
hybrid solving [62, 10], which also includes the winner [69, 70, 42] of two tracks of
the most recent model counting competition [43], as well as compact knowledge
compilation [32, 33]. However, treewidth also allows to improve solving hard
decision problems with the help of knowledge compilation [25].

Despite this still incomplete picture on potential applications for treewidth,
we present the usefulness and potential impact of our reduction in the form of
a neutral comparison based on treewidth upper bounds. Note that computing
treewidth itself is NP-complete in general [5], so in this section we only focus
on approximating treewidth upper bounds. So, in order to show that the reduc-
tion of Section 3.1 indeed bounds the treewidth, we compare treewidth upper
bounds on our reduction with treewidth upper bounds on an established tool of
the literature [65]. These upper bounds are obtained with an efficient decom-
poser, called htd, which aims at obtaining decent tree decompositions fast [2].
However, especially if the instances are of high (tree)widths, the obtained up-
per bounds via the heuristics are oftentimes imprecise, cf. [28, 51]. Note that
compared to treewidth, htd only provides upper bounds, where sometimes caus-
ing additional edges in the graph representation might strangely yield smaller
widths. Nevertheless, for initial estimations and for studying trends, such de-
composers still proved valueable in many treewidth-based solvers.

Our implementation asp2sat works as follows:

1. First, we parse the input program Π, using the Python API of clingo [55].

2. Then, we compute an initial treewidth upper bound for the primal graph
of Π using htd [2], which heuristically provides us a tree decomposition.

3. Next, we perform our TD-guided reduction of Section 3.1 along the lines
of the TD of the previous step.

4. Finally, we use again htd in order to obtain a treewidth upper bound on
the result.

Compared Translations In our experiments, we mainly compare treewidth
upper bounds of the following translations.

• asp2sat: we use version 1.2 of htd as well as version 4.5 of clingo in order
to translate from ASP to SAT.

• lp2sat: instances are translated [17] to CNFs by lp2normal 2.18 in combi-
nation with lp2atomic 1.17 and lp2sat 1.24. This allows us to compare the
effect of global level mappings with the local level mappings of asp2sat.
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Benchmark Scenarios In order to evaluate asp2sat, we considered the fol-
lowing scenarios.

S1 Acyclic Instances: Comparing treewidth overhead on instances, whose
positive dependency graph is acyclic. For asp2sat this still leaves the
guidance of proofs along a tree decomposition.

S2 Cyclic Instances: Evaluating the treewidth overhead on instances with
cycles, which means for asp2sat that local level mappings are used.

S2b Cyclic Instances: Studying the treewidth overhead on cyclic instances as
in S2, but here we use global level mappings for asp2sat and still guide
proofs along decompositions.

For Scenarios S1 and S2, asp2sat uses local level mappings as defined in
Section 3.1, whereas for S2b the proofs are still guided along decompositions,
which is then, however, mixed with global level mappings similar as in lp2sat.

Benchmark Instances For Scenario S1, we used instances from recent appli-
cations that where heavily trained in competitions. In fact there are still active
competitions that utilize answer set programming, which is in contrast to the
ASP competition (ASPCOMP), whose last edition dates back to 2017. One such
active competitition is the international competition on computational models
of argumentation [77], which has a long tradition of applying ASP. So, for Sce-
nario S1 our instances stem from the abstract argumentation competition [77]
from 2019, since at the time of writing the instances for 2021 were not avail-
able. Then, on top we used ASP encodings for three canonical problems in that
area [77]: Computing admissible, complete, and stable extensions, whose ASP
encodings were taken from the ASPARTIX suite [34]. The obtained programs
of those instances with the resulting encodings are acyclic.

For Scenario S2 (S2b) we use real-world graphs, more specifically, public
transport networks of several transport agencies over the world [40] as instances.
They also have been used in the so-called PACE challenge competitions 2016
and 2017 [28]. In total these instances amount to 561 graph networks and
2553 subgraphs with a focus on different transportation modes. On top of
these networks, we encoded reachability, where for each instances we assume
the station with the smallest and largest index to be the start and end stations,
respectively.

Note that all our instances including the corresponding ASP encoding and
raw data of our benchmark runs are open source and are publicly available on
github at github.com/hmarkus/asp2sat translator/tree/benchmarks/results.

Benchmark Hardware All our solvers ran on a cluster consisting of 12
nodes. Each node of the cluster is equipped with two Intel Xeon E5-2650 CPUs,
where each of these 12 physical cores runs at 2.2 GHz clock speed and has access
to 256 GB shared RAM. Results are gathered on Ubuntu 16.04.1 LTS powered
on kernel 4.4.0-139 with hyperthreading disabled using version 3.7.6 of Python3.
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Figure 7: Scatter plot of asp2sat and lp2sat for Scenario S1, which compares the ob-
tained treewidth upper bounds after translation. Observe that dots above the diagonal
indicate instances, where asp2sat yields better treewidth upper bounds.

Since we consider these translation to be used in a preprocessing step, we allow
for each instance and translation up to 200 seconds (timeout) and 8 GB of main
memory. We compare the quality of the obtained treewidth upper bounds in the
range from 0 to 80, which is backed up by the maximal width that is reasonable
for being utilized by state-of-the-art solvers, e.g., [8, 25, 49, 32, 33, 62].

Benchmark Results First, we discuss Scenario S1, for which we present in
Figure 7 a scatter plot of the treewidth upper bounds of asp2sat in comparison
with lp2sat. It is easy to see that, despite the need for level mappings in S1, the
usage of asp2sat yields better upper bounds in almost all the cases. Of course
there are some outliers in Figure 7 below the diagonal, which could, however,
also be due to the heuristical decomposer. Detailed statistical measures are given
in Table 1, which confirms our observations that asp2sat slightly decreases also
treewidth upper bounds on acyclic instances like the ones used in Scenario S1.
Indeed, the overall increase compared to the initial treewidth upper bounds is
not large for S1.

For Scenario S2, we first observe in Figure 8 that asp2sat yields significantly
smaller treewidth upper bounds compared to lpsat in the range from 0 to 35.
Then, up to values of 50, asp2sat still delivers good performance. Finally for
larger bounds of asp2sat, the heuristics of htd probably suffer from larger primal
graphs due to auxiliary variables, revealing that the treewidth approximation
does not scale. Table 1 shows that compared to lp2sat, our translation asp2sat
significantly decreases the mean and median among treewidth upper bounds for
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Scenario
∑

Translation
Treewidth upper bounds

min max mean median stddev

S1 478
- 2 82 19.7 14 18.5
asp2sat 3 79 24.5 17 19.9
lp2sat 4 80 25.5 18 19.9

S2 861
- 1 8 3.7 4 1.5
asp2sat 3 80 25.6 19 19.2
lp2sat 3 79 32.4 29 17.6

S2b 1053
- 1 35 5.0 4 3.9
asp2sat 3 80 32.0 29 17.0
lp2sat 3 80 39.1 37 21.7

Table 1: Detailed results over Scenarios S1, S2, and S2b, where we depict statistical
data (min, max, mean, median, stddev) among the number of instances (

∑
) solved

by both lp2sat and asp2sat such that the treewith upper bound is below 80. Note that
translation “-” refers to initial treewidth upper bounds, i.e., bounds obtained by using
no translation. Overall, asp2sat yields significantly lower bounds than lp2sat.

Translation
Measures

Number of Clauses Number of Atoms Treewidth Program Size Runtime

- m n k s ∈ O(nm) -
asp2sat O(k2 log(k) · (n+m)) O(k log(k) · (n+m)) O(k log(k)) O(k2 log(k) · (n+m)) O(k2 log(k) · (n+m))
lp2sat [65] O(s log(n)) O(n log(n)) O(k log(n)) O(s log(n)) O(s log(n))

Table 2: Comparison of worst-case measures in terms of number of clauses (atoms),
treewidth, program size, and runtime for both asp2sat and lp2sat. Note that transla-
tion “-” refers to initial values of the given input program. Overall, there are cases,
where asp2sat yields smaller values than lp2sat, which however is not true in general.

a majority of the benchmark instances.
To mitigate this disadvantage of estimating treewidth in case of many aux-

iliary variables, we slightly adapted asp2sat such that it uses global level map-
pings as in lp2sat. Comparing the scatter plots of Figure 9 with Figure 8 reveals
that for treewidth bounds up to about 30 local level mappings pay off. Con-
sequently, in these cases the heuristics of htd still efficiently utilize local level
mappings. However, these heuristics are still rather limited: Beyond treewidth
upper bounds of 30, Figure 9 reveals that global level mappings work better
with state-of-the-art decomposers. This still leaves room for improvement for
future decomposition heuristics that improve on large instances. In any case,
the treewidth upper bound improvement of asp2sat compared to lp2sat is still
significat in Scenario S2b, as indicated by statistical measures of Table 1.

To provide some basic decision guideline, whether for some specific setting
asp2sat or lp2sat might be more appropriate, we briefly summarize the hard
facts of both approaches in Table 2. Note that there are also further flavors and
extensions of both approaches, cf. , e.g., [53, 18, 39].
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Figure 8: Scatter plot of asp2sat and lp2sat for Scenario S2, comparing treewidth upper
bounds, similar to Figure 7. Observe that asp2sat performs best up to about 50.

6 Discussion, Conclusion, and Future Work

Understanding the hardness of ASP and the underlying reasons has attracted
the attention of the KR community for a long time. This paper discusses this
question from a different angle, which hopefully will provide new insights into
the hardness of ASP and foster follow-up work. The results in this paper indi-
cate that, at least from a structural point of view, deciding the consistency of
ASP is already harder than SAT, since ASP programs might compactly repre-
sent structural dependencies within the formalism. More concretely, compiling
the hidden structural dependencies of a program to a SAT formula, measured in
terms of the well-studied parameter treewidth, causes a blow-up of the treewidth
of the resulting formula. In the light of a known result [6] on the correspon-
dence of treewidth and the resolution width applied in SAT solving, this reveals
that ASP consistency might be indeed harder than solving SAT. We further
presented a reduction from ASP to SAT that is aware of the treewidth in
the sense that the reduction causes not more than this inevitable blow-up of
the treewidth in the worst-case. Finally, we present an empirical evaluation of
treewidth upper bounds obtained via standard heuristics for treewidth, where
we compare our reduction against existing translations. In both cyclic as well as
acyclic scenarios, our reduction and adaptions thereof seems promising and one
might consider treewidth-aware reductions as a preprocessing tool in a portfo-
lio setting. Interestingly, the reduction developed in this work already lead to
follow-up studies [39] and treewidth-aware cycle breaking [36].

Our paper raises several questions for future work. While in this work, we

27



0 10 20 30 40 50 60 70 80
asp2sat

0

10

20

30

40

50

60

70

80

lp
2s

at

Figure 9: Scatter plot of asp2sat and lp2sat for Scenario S2b, which is similar to S2, but
without local level mappings. Observe that compared to Figure 8, asp2sat improves
the result in almost all the cases.

consider treewidth-aware reductions for head-cycle-free programs, the construc-
tion can be also extended to cover the SModels intermediate format [37], which
can be obtained via typical grounders that are capable of the ASP-Core-2 for-
mat [24] including, e.g., aggregates and choice rules. Intuitively, the treatment
of choice rules is rather similar to existing approaches for treewidth [44] and the
SModels format does not allow aggregates (so it needs to be removed during
grounding). Still, we think it is an interesting question for future work, how
more advanced formats like aspif [56] that also considers hybrid solving can be
treated for treewidth. However, for weight rules, treewidth alone is intractable,
i.e., it is not expected that such a reduction exists [83]. Further, for disjunctive
rules one might expect a double exponential runtime, cf. [64, 41]. In terms of
lower bounds, our results naturally carry over for more expressive fragments
of logic programs. It might be still interesting to generalize our results to ex-
tended formalisms like epistemic logic programs, for which only certain lower
bound results are known [46, 61].

Currently, we are working on different treewidth-aware reductions to SAT
and further variants thereof, and how these variants perform in different settings
(consistency vs. counting). Moreover, we are curious about treewidth-aware re-
ductions to SAT, which preserve answer sets bijectively or are modular [65]. We
hope this work might reopen the quest to study the correspondence of treewidth
and ASP solving similarly to [6] for SAT. Also investigating further structural
parameters “between” treewidth and directed variants of treewidth could lead
to new insights, since for ASP, directed measures [15] often do not yield ef-
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ficient algorithms. Given the fine-grained expressiveness results for different
(sub-)classes of normal programs and the resulting expressive power hierar-
chy [65], we are curious to see also studies in this direction and to which extent
results might differ, when further restricting to treewidth-aware reductions. Of
particular interest might be the question of whether one can devise a different
hardness proof for normal ASP and treewidth (cf., Section 4), such that only
unary rules are used.
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[67] H. Kleine Büning and T. Lettman. Propositional logic: deduction and
algorithms. Cambridge University Press, 1999.

[68] T. Kloks. Treewidth. Computations and Approximations, volume 842 of
LNCS. Springer, 1994.

[69] T. Korhonen. Github repository of sharpsat-td, 2021. Available at: https:
//github.com/Laakeri/sharpsat-td.

[70] T. Korhonen and M. Järvisalo. Integrating Tree Decompositions into De-
cision Heuristics of Propositional Model Counters. In CP’21, volume 210
of LIPIcs, pages 8:1–8:11. Dagstuhl Publishing.

[71] M. Lackner and A. Pfandler. Fixed-parameter algorithms for finding min-
imal models. In KR’12. AAAI Press, 2012.

[72] M. Lampis and V. Mitsou. Treewidth with a quantifier alternation revisited.
In IPEC’17, volume 89, pages 26:1–26:12. Dagstuhl Publishing, 2017.

[73] V. Lifschitz and A. A. Razborov. Why are there so many loop formulas?
ACM Trans. Comput. Log., 7(2):261–268, 2006.

[74] F. Lin and J. Zhao. On tight logic programs and yet another translation
from normal logic programs to propositional logic. In IJCAI’03, pages
853–858. Morgan Kaufmann, August 2003.

[75] F. Lin and Y. Zhao. ASSAT: computing answer sets of a logic program by
SAT solvers. Artif. Intell., 157(1-2):115–137, 2004.

[76] D. Lokshtanov, D. Marx, and S. Saurabh. Slightly superexponential pa-
rameterized problems. In SODA’11, pages 760–776. SIAM, 2011.

[77] J.-G. Mailly, E. Lonca, J.-M. Lagniez, and J. Rossit. International Com-
petition on Computational Models of Argumentation 2021, 2021. Website:
http://argumentationcompetition.org/2021/rules.html.

34

https://github.com/Laakeri/sharpsat-td
https://github.com/Laakeri/sharpsat-td
http://argumentationcompetition.org/2021/rules.html
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A Correctness of the Reduction of Section 3.1

Theorem 2 (Correctness). The reduction from an HCF program Π and a
TD T = (T, χ) of GΠ to SAT formula F consisting of Formulas (1)–(6) is
correct. Precisely, for each answer set of Π there is a model of F and vice
versa.

Proof. “⇒”: Assume an answer set M of Π. Then, there is an ordering ϕ
over at(Π), where every atom of M is proven. Next, we construct a model I
of F as follows. For each x ∈ at(Π), we let (c1) x ∈ I if x ∈M . For each node t
of T , and x ∈ χ(t): (c2) For every l ∈ [[x]]t,i with i = ϕ̂t(x), we set l ∈ I if l
is a variable. (c3) If there is a rule r ∈ Πt proving x, we let both px<t, p

x
t ∈ I.

Finally, (c4) we set px<t ∈ I, if px<t′ ∈ I for t′ ∈ chldr(t).
It remains to show that I is indeed a model of F . By (c1), Formulas (1)

are satisfied by I. Further, by (c2) of I, the order of ϕ is preserved among χ(t)
for each node t of T , therefore Formulas (2) are satisfied by I. Further, by
definition of TDs, for each rule r ∈ Π there is a node t with r ∈ Πt. Conse-
quently, M is proven with ordering ϕ, for each x ∈ M there is a node t and a
rule r ∈ Πt proving x. Then, Formulas (6) are satisfied by I due to (c3), and
Formulas (5) are satisfied by I due to (c4). Finally, by connectedness of TDs,
also Formulas (3) and (4) are satisfied.

“⇐”: Assume any model I of F . Then, we construct an answer set M of Π
as follows. We set a ∈M if a ∈ I for any a ∈ at(Π). We define for each node t
a t-local ordering ϕt, where we set ϕt(x) to j for each x ∈ χ(t) such that j
is the decimal number of the binary number for x in t given by I. Concretely,
ϕt(x) := j, where j is such I |= [[x]]t,j . Then, we define an ordering ϕ iteratively
as follows. We set ϕ(a) := 0 for each a ∈ at(Π), where there is no node t of T
with ϕt(b) < ϕt(a). Then, we set ϕ(a) := 1 for each a ∈ at(Π), where there is
no node t of T with ϕt(b) < ϕt(a) for some b ∈ χ(t) not already assigned in the
previous iteration, and so on. In turn, we construct ϕ iteratively by assigning
increasing values to ϕ. Observe that ϕ is well-defined, i.e., each atom a ∈ at(Π)
gets a unique value since it cannot be the case for two nodes t, t′ and atoms
x, x′ ∈ χ(t) ∩ χ(t′) that ϕt(x) < ϕt(x

′), but ϕt′(x) ≥ ϕt′(x
′). Indeed, this is

prohibited by Formulas (2) and connectedness of T ensuring that T restricted
to x is still connected.

It remains to show that ϕ is an ordering for Π proving M . Assume towards
a contradiction that there is an atom a ∈ M that is not proven. Observe that
either a is in the bag χ(n) of the root node n of T , or it is forgotten below n.
In both cases we require a node t such that px<t /∈ I by Formulas (4) and (3),
respectively. Consequently, by connectedness of T and Formulas (5) there is a
node t′, where pxt′ ∈ I. But then, since Formulas (6) are satisfied by I, there is
a rule r ∈ Πt′ proving a with ϕt′ . Therefore, since by construction of ϕ, there
cannot be a node t of T with x, x′ ∈ χ(t), ϕt(x) < ϕt(x

′), but ϕ(x) ≥ ϕ(x′), r
is proving a with ϕ.
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Figure 10: Graph GΠ′ (left) and a tree decomposition T ′ of GΠ′ (right), where pro-
gram Π′ is given in Example 14.

B Strengthening the Reduction of Section 3.1

Next, we strengthen the reduction of Section 3.1 to remove some duplicate T -
local orderings for a particular answer set of Π.

In Formulas (27), we ensure that if a variable x ∈ at(Π) is set to false, then
its ordering position is zero. Formulas (28) make sure that if the position of x
is set to i ≥ 1 in node t, there has to be a bag atom y having position i − 1.
Intuitively, if this is not the case we could shift the position of x from i to i− 1.
Finally, Formulas (29) ensure that whenever in a node t there is a rule r ∈ Πt

with x ∈ Hr and x has position i ≥ 1, either there is at least one atom y ∈ B+
r

having position i− 1, or r is not proving x.

¬x −→
∧

1≤j≤dlog(|χ(t)|)e

¬bjxt
for each x ∈ χ(t) (27)

[[x]]t,i −→
∨

y∈χ(t)\{x}

[[y]]t,i−1 for each x ∈ χ(t), 1 ≤ i < |χ(t)| (28)

∧
r∈Πt,x∈Hr,1≤i<|χ(t)|

([[x]]t,i −→
∨
b∈B+

r

¬b ∨ (b 6≺t x)∨

∨
a∈B−r ∪(Hr\{x})

a ∨
∨

y∈B+
r

[[y]]t,i−1) for each x ∈ χ(t) (29)

In general, we do not expect to get rid of all redundant T -local orderings for
an answer set, though. The reason for this expectation lies in the fact that the
different (chains of) rules required for setting the position for an atom a that
is part of cycles of DΠ might be spread across the whole tree decomposition.
Therefore, these local orderings might not provide the same information that
we get from global orderings [65], where we have absolute values. Instead, these
local orderings are insufficient to conclude absolute positions without further
information. This is clarified in the following example.

Example 14. Consider the program Π′ := {b ∨ nb ←; c ← b; a ← c; d ∨ nd ←
; a ← d}. Observe that program Π′ has four answer sets {nb, nd}, {a, d, nb},
{a, b, c, nd}, as well as {a, b, c, d}. Assume the TD T ′ = (T ′, χ′) of Figure 10,
whose width is 1 and equals the treewidth of GΠ. This TD T ′ is such that Πt3 =
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{a ← c} and Πt5 = {a ← d}. The particular issue is that node t3 only con-
siders atoms a, c and node t5 only considers atoms a, d. Now, assume answer
set M = {a, b, c, d}. Then, given only t3-local orderings and t5-local orderings,
we cannot conclude a unique, canonical global ordering for {a, c, d} ⊆ M . In
particular, one could prove a with either a← c or with a← d (or both). From a
global perspective the latter rule would be preferred to prove a, since it allows an
ordering with a smaller position for a. This is witnessed by the corresponding
ordering ϕ := {b 7→ 0, c 7→ 1, d 7→ 0, a 7→ 1} for M . If instead we use the
rule a ← c for proving a, this would require ordering ϕ′ := {b 7→ 0, c 7→ 1, a 7→
2, d 7→ 0}, i.e., ϕ is preferred since ϕ(a) < ϕ′(a). However, this information is
“lost” due to the usage of local orderings, which makes it hard to define canon-
ical orderings. Therefore our constructed SAT formula yields two satisfying
assignments for M in this case, corresponding to proving a either with a ← d
or a← c. In general, a TD similar to T ′ cannot be avoided. In particular, one
can construct programs, where similar situations have to occur in every TD of
smallest width.

One can even devise further cases, where without absolute orders it is hard
to verify whether it is indeed required that an atom precedes an other atom.
This is still the case, if for each answer set M of Π, and every a ∈M , there can
be only one rule r ∈ Π suitable for proving a. From now on, we refer to such
HCF programs Π by uniquely provable. Note that even for uniquely provable
programs, there might be several cycles in its positive dependency graph. In
fact, the program that will be used for the hardness result of normal ASP and
treewidth in Section 4 is uniquely provable. However, even for uniquely provable
programs and any TD of GΠ, there is in general no bijective correspondence
between answer sets of Π and models of Formulas (1)–(29). Consequently, one
could compare different, absolute positions of orderings, cf., [65], instead of the
ordering positions relative to one TD node as presented here, which requires to
store for each atom in the worst-case numbers up to |at(Π)|−1. Obviously, this
number is then not bounded by the treewidth, and one cannot encode it without
increasing the treewidth in general. Observe that even if one uses orderings on
a component-by-component basis, similar to related work [65], this issue still
persists in general since the whole program could be one large component.

C Correctness of the Reduction of Section 3.2

In order to discuss correctness, we rely on the following lemma, which establishes
that the reduction actually ensures and preserves the transitive closure over ≺
for each node of any tree decomposition.

Lemma 2 (Transitive Closure). Let Π be an HCF program, T = (T, χ) be a
TD of GΠ, and let t be any node of T . Further, let F≤t consist of all For-
mulas (9) constructed for node t and every node below t in T , and let χ≤t be
the union of bag χ(t) and all bag contents for every node below t in T . Then,
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for any model M of F≤t the following invariant holds: All transitive conse-
quences of ≺ in F≤t are preserved for t, i.e., we have M ⊇ {(x ≺ y) | {x, y} ⊆
χ(t), there is a path x, p1, . . . , po, y from x to y in GΠ with {p1, . . . , po} ⊆ χ≤t,
{(x ≺ p1), (p1 ≺ p2), . . . , (po ≺ y)} ⊆M}.

Proof. The proof proceeds by induction. Thereby we assume the invariant holds
for every child node of t and show that then it also is ensured for t. For sim-
plicity, we only show the ideas for nice TDs, as for non-nice TDs the following
cases just overlap. Recall that a nice TD of GΠ of width k = tw(GΠ), having
only h = O(|at(Π)|) many nodes [68][Lem. 13.1.2] always exists. We distinguish
the following cases.

Case (type(t) = leaf): The invariant vacuously holds since χ(t) = ∅.
Case (type(t) = forget or type(t) = join): In these cases, we do not encounter

any new auxiliary variable, nor do we add a new formula (that has not been
constructed for a node below t) of the form (9). Therefore, since the invariant
holds for the child node of t, it is also valid for t.

Case (type(t) = int): Let {a} = χ(t) \ χ(t′) with chldr(t) = {t′}. Assume
towards a contradiction that a transitive consequence of F≤t is missing, i.e.,
we have a path x, p1, . . . , po, y from x to y in GΠ with {p1, . . . , po} ⊆ χ≤t,
but (x ≺ y) /∈ M . Then, we have either x = a or y = a since otherwise
the consequence would have been already missing for t′. We continue with the
case x = a since the other case works analogously. Consequently, p1 ∈ χ(t),
since otherwise T would not be a TD of GΠ due to the fact that the edge {x, p1}
would not occur in any TD node of T . Then, by the induction hypothesis, we
have (p1 ≺ y) ∈ M . As a result, we obtain (x ≺ y) ∈ M since x, p1, y ∈ χ(t),
which contradicts our assumption.

Corollary 7 (Acyclicity). Let Π be an HCF program, T = (T, χ) be a TD
of GΠ, and let t be any node of T . Then, the formula F ′≤t consisting of all
Formulas (9) and (10) for t and every node below t, ensures that there cannot
exist a model M of F ′≤t, where the transitive consequences of ≺ in F ′≤t as in
Lemma 2 form a cycle.

Proof. The proof is a direct consequence of Lemma 2 and the observation that
if there is a path x, p1, . . . , po, x from x to x in GΠ with (x ≺ p1), (p1 ≺
p2), . . . , (po ≺ x) ∈ M , one can reverse any (y ≺ y′) ∈ M . More con-
cretely, for any (y ≺ y′) ∈ M with y, y′ ∈ χ(t), by Formulas (9), one can
derive (y′ ≺ y) ∈ M , which is prohibited by Formulas (10). Consequently,
cyclic, transitive consequences over variables in χ≤t cannot occur in any model
of F ′≤t. The claim follows since χ≤n = at(Π) for root n = root(T ).

Theorem 6 (Correctness and Bijectivity). The reduction from a uniquely prov-
able program Π and a TD T = (T, χ) of GΠ to SAT formula F ′ consisting of
Formulas (1), (3)–(5), and (7)–(15) is correct. Concretely, for each answer set
of Π there is exactly one model of F ′ and vice versa.
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Proof. “⇒”: Assume an answer set M of Π. Then, there is a minimal5 order-
ing ϕ over at(Π), where every atom ofM is proven. Next, we construct a model I
of F ′ as follows. For each x ∈ at(Π), we let (c1) x ∈ I if x ∈ M . For each
node t of T , and x, y ∈ χ(t): (c2) We set (x ≺ y) ∈ I if and only if ϕ(x) < ϕ(y).
(c3) If there is a rule r ∈ Πt proving x using ϕ, we let pxt,r, p

x
<t, p

x
t ∈ I as well

as py≺xt , py≺x<t ∈ I for y ∈ B+
r . Further (c4) if there is z ∈ χ(t) with |{x, y, z}| = 3

and (x ≺ y), (y ≺ z) ∈ I, we set px≺zt , px≺z<t ∈ I. Finally, (c5) for t′ ∈ chldr(t),
we set px<t ∈ I if px<t′ ∈ I, as well as py≺x<t ∈ I if py≺x<t′ ∈ I.

Observe that I is indeed a model of F ′. By (c1), Formulas (1) are satisfied
by I. Further, by (c2) of I, the order of ϕ is preserved among χ(t) for each node t
of T , therefore Formulas (9) and (10) are satisfied by I. Then, due to (c3),
Formulas (7) and Formulas (8) are satisfied and so are Formulas (11). Further,
due to both (c3) and (c4), Formulas (12) are satisfied. Further, by definition
of TDs, for each rule r ∈ Π there is a node t with r ∈ Πt. Consequently, M
is proven with ordering ϕ, for each x ∈ M there is a node t and a rule r ∈ Πt

proving x. Then, Formulas (5) and (15) satisfied by I due to (c5). Finally, by
connectedness of TDs, also Formulas (3) and (4) as well as (13) and (14) are
satisfied.

It remains to show that there cannot be a model I ′ 6= I of F ′ with I ′∩at(Π) =
M . Assume towards a contradiction that such a model I ′ of F ′ indeed exists.
Then, since Π is uniquely provable, for each atom x ∈ at(Π), there is only one
rule r suitable for proving x. Observe that therefore I ′ agrees with I on variables
of the form pxt,r by Formulas (7). Consequently, I ′ agrees with I on provability
variables of the form pxt , p

x
<t by Formulas (11) and (3)–(5). Analogously I ′ also

sets provability variables of the form px≺yt , px≺y<t as I by Formulas (12) and (13)–
(15). Then, since relation ≺ for I ′ is transitively closed by Lemma 2 and due to
acyclicity of ≺ by Corollary 7, we have that I ′ precisely gives rise to ordering ϕ,
which contradicts the assumption.

“⇐”: Assume any model I of F ′. Then, we construct an answer set M of Π
as follows. We set a ∈ M if a ∈ I for any a ∈ at(Π). Then, we define an
ordering ϕ iteratively as follows. We set ϕ(a) := 0 for each a ∈ at(Π), where
there is no atom b ∈ at(Π) with (b ≺ a) ∈ I. Then, we set ϕ(a) := 1 for
each a ∈ at(Π), where there is no atom b ∈ at(Π) with (b ≺ a) ∈ I such that b
has not been already assigned in the previous notation. In turn, we construct ϕ
iteratively by assigning increasing values to ϕ. Observe that ϕ is well-defined,
i.e., each atom a ∈ at(Π) gets a unique value, since ≺ is transitively closed by
Lemma 2 and by Corollary 7 there cannot be a cycle over relation ≺ for I.

Obviously, M is a model of Π by Formulas (1). It remains to show that ϕ
is an ordering for Π proving M . Assume towards a contradiction that there is
an atom a ∈ M that is not proven. Observe that either a is in the bag χ(n)
of the root node n of T , or it is forgotten below n. In both cases we require a
node t such that px<t /∈ I by Formulas (4) and (3), respectively. Consequently,
by connectedness of T and Formulas (5) there is a node t′, where pxt′ ∈ I. But

5An ordering ϕ over at(Π) is minimal (for M) if there is no atom a ∈ at(Π) such that when
decreasing ϕ(a), interpretation M can still be proved with the resulting (modified) ordering.
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then, since Formulas (12) are satisfied by I, there is a rule r ∈ Πt′ proving a
with ϕ.

Note that the bijectivity result above can be generalized. Let therefore Π be
an HCF program and M be an answer set of Π. Then, we define the dependency
graph DM

Π for M by DM
Π := (M,E) where we have an edge (x, y) ∈ E if and

only if there is a rule r ∈ Π suitable for proving y with x ∈ B+
r . Observe

that Theorem 6 also holds for HCF programs Π, as long as for each answer
set M of Π the graph DM

Π is acyclic. We call such programs Π deterministically
provable and it is easy to see that every uniquely provable program is also
deterministically provable. While for such deterministically provable programs
there might be several rules suitable for proving an atom a of such an answer
set M , a model for M of the SAT formula constructed above is still unique as
it greedily aims to prove a with every applicable rule, cf., Formulas (8).

Corollary 8. The reduction from a deterministically provable program Π and
a TD T = (T, χ) of GΠ to SAT formula F ′ consisting of Formulas (1), (3)–(5),
and (7)–(15) is correct. Concretely, for each answer set of Π there is exactly
one model of F ′ and vice versa.

Proof. “⇒”: Assume an answer set M of Π. Then, there is a greedy-minimal6

ordering ϕ over at(Π), where every atom of M is proven. Next, we construct a
model I of F ′ as in Theorem 6. Observe that I is a model of F ′ by the same
arguments as in Theorem 6.

It remains to show that there cannot be a model I ′ 6= I of F ′ with I ′∩at(Π) =
M . Assume towards a contradiction that such a model I ′ of F ′ exists. Then,
since Π is deterministically provable, i.e., there is no cycle in DM

Π for each
atom x ∈M , every rule suitable for proving x proves x, cf., Formulas (8). Ob-
serve that therefore I ′ agrees with I on variables of the form pxt,r by Formulas (7).
Consequently, I ′ agrees with I on provability variables of the form pxt , p

x
<t by

Formulas (11) and (3)–(5). Analogously I ′ also sets provability variables of the
form px≺yt , px≺y<t as I by Formulas (12) and (13)–(15). Then, since relation ≺
for I ′ is transitively closed by Lemma 2 and due to acyclicity of ≺ by Corol-
lary 7, we have that I ′ precisely gives rise to ordering ϕ, which contradicts the
assumption.

“⇐”: The other direction holds by the same argument as in Theorem 6.

Example 15. Recall program Π from Example 1 and answer sets M1 = {b, c, d},
M2 = {b, e}, M3 = {a, c, d} as well as M4 = {a, d, e} of Π. Observe that the
graph DM

Π is acyclic for any answer set M ∈ {M1,M3,M4}, whereas DM2

Π con-
tains a cycle. Consequently, the formula F ′ constructed by the reduction above
is guaranteed to have exactly one model for each of the answer sets M1,M3,M4,
which is a priori not guaranteed for M2. However, in this case it is easy to

6A greedy-minimal ordering ϕ over at(Π) for M is an ordering that serves in proving every
atom a ∈M with every rule r ∈ Π suitable for proving a, which is not the case anymore when
decreasing ϕ(b) for some b ∈ at(Π).
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see that also for M2 formula F ′ has only one corresponding model since, al-
though DM2

Π is not acyclic, there is no rule suitable for proving e without having b
first.

D Correctness of the Reduction of Section 4

For proving correctness of Theorem 4, we rely on the following key lemma.

Lemma 3 (≤ 1 Outgoing Edge). Let us consider any instance I = (G,P ) of
the Disjoint Paths Problem, and any answer set M of R(I, T ) using any
pair-connected TD T of (G,P ). Then, there cannot be two edges of the form
eu,v, eu,w ∈M .

Proof. Assume towards a contradiction that there are three different vertices u, v,
w ∈ V with eu,v, eu,w ∈ M . Then, by Rules (26) there cannot be a node t
with (u, v), (u,w) ∈ Ere

t . However, by the definition of TDs, there are nodes t′, t′′

with (u, v) ∈ Ere
t′ and (u,w) ∈ Ere

t′′ . By connectedness of TDs, u appears in each
bag of any node of the path X between t′ and t′′. Then, either t′ is an ancestor
of t′′ (or vice versa, symmetrical) or there is a common ancestor t. In the former
case, fut′′ is justified by Rules (22) and so is fu

t̂
on each node t̂ of X by Rules (23)

and therefore ultimately Rules (25) fail due to fut′ , eu,w ∈M . In the latter case,
fut′′ , f

u
t′ is justified by Rules (22) and so is fu

t̂
on each node t̂ of X by Rules (23).

Then, Rules (24) fail due to fut′ , f
u
t′′ ∈M .

Theorem 4 (Correctness). Reduction R as proposed in this section is correct.
Let us consider an instance I = (G,P ) of the Disjoint Paths Problem, and
a pair-connected TD T = (T, χ) of G. Then, I has a solution if and only if the
program R(I, T ) admits an answer set.

Proof. “⇒”: Assume any positive instance I of Disjoint Paths Problem.
Then, there are disjoint paths P1, . . . , Pi, . . . P|P | from s1 to d1, . . . , si to di, . . . ,
s|P | to d|P | for each pair (si, di) ∈ P . Assuming further pair-connected TD T
of I, we construct in the following an answer set M of Π = R(I, T ). To this
end, we collect reachable atoms A := {u | u appears in some Pi, 1 ≤ i ≤ |P |}
and used edges U := {(u, v) | v appears immediately after u in some Pi, 1 ≤
i ≤ |P |}. Then, we construct answer set candidate M := {ru | u ∈ A} ∪ {eu,v |
(u, v) ∈ U} ∪ {neu,v | (u, v) ∈ E \ U} ∪ {fut | (u, v) ∈ U ∩ Ere

t } ∪ {fut |
(u, v) ∈ U ∩ Ere

t′ , u ∈ χ(t), t′ is a descendant of t in T}. It remains to show
that M is an answer set of Π. Observe that M satisfies all the rules of ΠR. In
particular, by construction, we have reachability rv for every vertex v of every
pair in P , and the partition in used edges eu,v and unused edges neu,v is ensured.
Further, ΠL is satisfied, as, again by construction, for each vertex v of every
pair in P , we have rv ∈M . Finally, ΠC is satisfied as by construction fut ∈M iff
eu,v ∈M ∩Ere

t or eu,v ∈M ∩Ere
t′ for any descendant node t′ of t with u ∈ χ(t).

It is easy to see that M is indeed a ⊆-smallest model of the reduct ΠM , since,
atoms for used and unused edges form a partition of E.
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“⇐”: Assume any answer set M of Π. First, we observe that we can only
build paths from sources towards destinations, as sources have only outgoing
edges and destinations allow only incoming edges. Further, by construction,
vertices can only have one used, outgoing edge, cf., Lemma 3. Consequently,
if a vertex had more than one used, incoming edge, one cannot match at least
one pair of P (by combinatorial pigeon hole principle). Hence, in an answer
set M of Π, there is at most one incoming edge per vertex. By construction
of Π, in order to reach each di with (si, di) ∈i σ, si cannot reach some dj′

with j′ < i. Towards a contradiction assume otherwise, i.e., si reaches dj′ . But
then, by construction of the reduction, we also have a reachable path from dj′

to si, consisting of dj′ , dj′+1, . . . , di−1, si. Since every vertex has at most one
incoming edge, dj′ cannot have any other justification for being reachable, nor
does any source on this path. Hence, this forms a cycle such that no atom
of the cycle is proven, which cannot be present in an answer set. Therefore,
si only reaches di, since otherwise there would be at least one vertex sj re-
quired to reach si′ with (si′ , di′) ∈i′ σ, i′ < j. Consequently, we construct a
witnessing path Pi for each pair (s, d) ∈i σ as follows: Pi := s, p1, . . . , pm, d
where {es,p1 , ep1,p2 , . . . , epm−1,pm , epm,d} ⊆ M . Thus, Pi starts with s, follows
used edges in M and reaches d.

E Properties and Consequences of Section 4

The resulting program of the reduction consisting of Rules (16)–(26) is not
unary. However, only Rules (21) as well as (24)–(26) are not unary. Still,
Rules (25) and (26) can be turned unary by replacing the occurrence of eu,v in
these two rules by ¬neu,v. Further, Rules (24) can be replaced by the following
rules, which use an additional auxiliary atom “bad”.

bad← fut , f
u
t′ for each u ∈ χ(t′) ∩ χ(t′′), t′ 6= t′′ (30)

← bad (31)

On the other hand, for Rules (21) the resulting (positive) cycles of the de-
pendency graph are required for the whole construction, cf., Figure 6. More
precisely, it is indeed essential for the whole construction that reachability of
a source si requires both reachability of the preceding source si−1 and desti-
nation di−1. Otherwise we cannot prevent a source from reaching a preceding
destination via cyclic reachability without provability and still linearly preserve
the treewidth. Consequently, Rules (21) are not unary and we expect that
this is crucial. Nevertheless, it was shown that non-unary programs are more
expressive than unary programs [65]. Still, we are convinced that exploiting
cyclic, unproven reachability such that the treewidth is not increased more than
linearly, actually requires the usage of non-unary rules.

Example 16. Consider again Figure 6, depicting the positive dependency graph
DRL of Rules (21), as well as Example 12. More concretely, consider the
same situation of Example 12, where a source si reaches some destination dj
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with j < i, which causes a cycle C=rsi , . . . , rdj , rsj+1 , . . . , rsi over reachability
atoms. Then, it is crucial for the construction that Rules (21) are not unary.
To be more concrete, for the instantiated rule r with rsj+1

∈ Hr, we require
that both rsj , rdj ∈ B+

r . If instead of r we constructed two rules rsj+1
← rsj

and rsj+1
← rdj , every atom of the cycle C could be provable since rsj+1

can
already be proven by the former rule. Further, also for the instantiated rule r′

of Rules (21) with rso ∈ Hr′ for every j + 1 < o ≤ i, we require that the body
is not unary. If instead of such a rule r′, we constructed two rules rdo ← rso−1

and rdo ← rdo−1
, every atom of the cycle C could be provable since rdo is already

proven by the latter rule. Since, in particular the result should hold for any such
cycle C, we rely on non-unary rules for our reduction to work.
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