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Abstract

Causality is important for designing interpretable and robust meth-
ods in artificial intelligence research. We propose a local approach
to identify whether a variable is a cause of a given target under the
framework of causal graphical models of directed acyclic graphs (DAGs).
In general, the causal relation between two variables may not be identi-
fiable from observational data as many causal DAGs encoding different
causal relations are Markov equivalent. In this paper, we first introduce
a sufficient and necessary graphical condition to check the existence of a
causal path from a variable to a target in every Markov equivalent DAG.
Next, we provide local criteria for identifying whether a variable is a
cause/non-cause of a target based only on the local structure instead of
the entire graph. Finally, we propose a local learning algorithm for this
causal query via learning the local structure of the variable and some
additional statistical independence tests related to the target. Simu-
lation studies show that our local algorithm is efficient and effective,
compared with other state-of-art methods.

arXiv:2102.12685v2 [stat.ML] 5 Mar 2022

1 Introduction

Causality is important for designing interpretable and robust methods in
artificial intelligence research (Miller, |2019)), and has been used in many fields
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of artificial intelligence, such as causal transfer learning (Zhang et al., |2020;
Bengio et al., [2020) and causality-based algorithmic fairness (Kusner et al.,
2017; [Wu et al., 2019). One of the main problems in many of these studies
is to infer whether a treatment variable is a cause of a target variable, or to
further identify the causes/non-causes of a specified target variable or the
effects/non-effects of a given treatment. For example, in a telecommunication
network, a single fault (or alarm) in the network can trigger a flood of alarms,
and conversely, a recovery of a single fault may clear many alarms. Therefore,
knowing the causal relations among the alarms (or faults) is helpful to localize
the key failure points for fault recovery in practice.

Directed acyclic graphs (DAGs) can be used to represent causal relation-
ships among variables (Pearl, [2009). Following Pearl’s definition of inferred
causation (Pearl, 2009, Definition 2.3.1), we call X a cause of Y and Y an
effect of X if X has a directed path to Y in the true DAG. From observational
data, however, instead of an exact causal DAGP_-] we generally learn a Markov
equivalence class of DAGs represented by a completed partially directed
acyclic graph (CPDAG). The undirected edges in a CPDAG imply that some
causal relations among variables can not be read from the graph directly.
Therefore, given a Markov equivalence class of DAGs, a variable X is a
definite cause of a target Y if X is always a cause of Y in every equivalent
DAG, and a variable X is a definite non-cause of Y if X is never a cause of
Y in any DAG in the class. If X is neither a definite cause nor a definite
non-cause of Y, X is called a possible cause of Y.

Some approaches can be used to identify the type of causal relation
between a treatment and a target. An intuitive approach is first to learn a
Markov equivalence class from observational data, and then enumerate all
DAGs in the class to check whether the treatment is definitely or definitely
not a cause of the target in all of these equivalent DAGs. However, the
intuitive approach is inefficient when the number of DAGs in the learned
Markov equivalence class is large (He et al., [2015).

Another way is to check the paths from the treatment to the target in
a CPDAG. It has been shown that a treatment is a definite non-cause of a
target if and only if there is no partially directed path from the treatment to
the target (see, e.g. Zhang), 2006} Perkovi¢ et al. 2017)). Given a CPDAG,
Roumpelaki et al.| (2016) also introduced a sufficient condition for identifying
definite causes. However, the necessity of this condition remains a conjecture

1'We note that, the recent progresses in identifying the causal relation between two
variables indeed provide an opportunity to learn an exact DAG. However, such methods
need to pose additional distributional conditions (Shimizu et al.| {2006} |Zhang and Hyvérinen,
2009; |Shimizu et al.| |2011}; |[Peters and Buhlmann| 2013} |Peters et al., |2014)



(Zhang, 2006}, Mooij and Claassen, 2020) and the corresponding approach
could be inefficient since it needs to learn an entire CPDAG first.

The third approach is to estimate all possible causal effects of the treat-
ment on the target (Maathuis et al., 2009; |[Perkovi¢ et al., [2017; Nandy et al.,
2017; [Fang and He|, 2020} [Liu et al.| [2020alb; Witte et al. 2020} |Guo and
Perkovic¢, 2020). This approach, which we call the causal-effect-based method,
determines whether a treatment is a cause of a target by judging whether
all possible causal effects are zeros/non-zeros based on a certain criterion or
method, such as hypothesis testing. However, the causal-effect-based method
requires additional assumptionsﬂ and it could be time-consuming as the
number of possible effects grows exponentially in the worst case.

In this paper, we study the problem of locally identifying causal relations
under Markov equivalence with the assumption that there is no hidden
variable or selection bias. That is, given a pair of treatment and target
variables, we intend to decide whether the treatment is a definite cause, a
possible cause or a definite non-cause of the target only based on a local
induced subgraph and a few independence tests related to the treatment
without learning an entire CPDAG. This local approach is usually more
efficient than the global ones that need an entire CPDAG, especially when
the underlying causal graph is large.

To this end, we first discuss the existence of a causal path from one
variable to another given a CPDAG, and prove the necessity of the condition
in Roumpelaki et al. (2016) for CPDAGs in Section [3] This yields a sufficient
and necessary graphical condition to check the existence of a causal path.
Next, in Section [4] we propose local identification criteria for definite causes,
possible causes and definite non-causes separately. These criteria depend
only on the induced subgraph of the true CPDAG over the adjacent variables
of the treatment as well as some queries about d-separations, thus directly
lead to a local learning algorithm given in Section [5| For the completeness
of the paper, a global algorithm and several causal-effect-based methods for
learning types of causal relations are also provided in Section [5| In Section
[6], we compare experimentally the proposed local learning method with the
global and the causal-effect-based methods, and show the efficiency and
efficacy of the proposed method. Finally, we discuss some applications and
possible extensions of our work in Section[7] and give some graph terminology,
additional algorithms, proofs and additional experimental results in Appendix

2We remark that, X has a zero-valued causal effect on Y does not necessarily mean that
there is no directed path from X to Y (Seefor an example). Nevertheless, with the causal
faithfulness assumption as well as some model assumptions such as linear-Gaussianity, the
former implies the latter.



A, B, C and D, respectively.

2 Preliminaries and Related Work

In this paper, we use pa(S,G), ch(S,G), sib(S,G), adj(S,G), an(S,G) and
de(S,G) to denote the union of the parents, children, siblings (or undirected
neighbors), adjacent vertices, ancestors, and descendants of each variable in
set S in G, respectively, where G = (V, E) can be a directed, an undirected,
or a partially directed graph. The basic graph terminology can be found
in [A] As a convention, we regard a vertex as an ancestor and a descendant
of itself. If S = {X} is a singleton set, we will replace S by X for ease of
presentation. Let G be a causal directed acyclic graph (causal DAG) and
X be a vertex in G, the vertices in an(X,G) \ X are causes of X, and the
vertices in pa(X,G) are direct causes of X. If X is a cause of Y, then the
directed paths from X to Y are called causal paths.

2.1 Causal DAG Models

The notion of d-separation induces a set of conditional independence rela-
tions encoded in a DAG (Pearl, |1988)). Let G be a DAG and 7 = (X =
Xo,X1,..., X, =Y) be a path from X to Y in G. An intermediate vertex
X is a collider on 7 if X;_1 — X; and X; < X, 1, otherwise, X; is a non-
collider on . For three distinct vertices X;, X; and Xy, if X; — X; «+ X,
and X; is not adjacent to X}, in G, then the triple (X;, X;, Xj) is called a
v-structure collided on X; in G. Given Z C V, we say 7 is d-connected (or
active) given Z if Z does not contain any endpoint or non-collider on the path
and every collider on the path has a descendant in Z. If 7 is not d-connected
given Z, then m is blocked by Z. For pairwise disjoint sets X, Y,Z C V, X
and Y are d-separated by Z (denoted by X 1L Y | Z) if and only if every
path between some X € X and Y € Y is blocked by Z.

Let Jg be the set of d-separation relations read off from a DAG G. Two
DAGs G; and Gz are Markov equivalent if Jg, = Jg,. Pearl et al.| (1989)
have shown that two DAGs are equivalent if and only if they have the same
skeleton and the same v-structures. A Markov equivalence class or simply
equivalence class, denoted by [G], contains all DAGs equivalent to G. A
Markov equivalence class [G] can be uniquely represented by a partially
directed graph called completed partially directed acyclic graph (CPDAG)
g*. Two vertices are adjacent in G* if and only if they are adjacent in G
and a directed edge occurs in G* if and only if it appears in every DAG in
[G] (Pearl et al., 1989). For the ease of presentation, we will also use [G*] to



represent the Markov equivalence class represented by G*. Given a CPDAG
G*, we use G,, and G, which consist of all undirected edges and all directed
edges in G*, to denote the undirected subgraph and the directed subgraph
of G*, respectively. |Andersson et al.| (1997) proved that (1) the undirected
subgraph G} of G* is the union of disjoint connected chordal graphs (the
definition of chordal graph is provided in[A)), and (2) every partially directed
cycle in G* is an undirected cycle, that is, none of the partially directed
cycles in G* contains a directed edge. Each isolated connected undirected
subgraph of G is called a chain component of G* (Andersson et al. 1997}
Lauritzen and Richardson), 2002]).

For a given distribution P, we use X 1Lp Y | Z to denote that X is
independent of Y given Z with respect to P, where X,Y,Z C V are pairwise
disjoint. If both X = {X} and Y = {Y'} are singleton sets, we allow that
X orY € Z, and assume that X 1L Y | Z trivially holds in this case. Let
Jp be the set of all (conditional) independencies that hold with respect to
P. The main results of this paper are based on the following assumptions:
the causal Markov assumption, which states that X 1L Y | Z in Jg implies
X UpY |Zin Jp; the causal faithfulness assumption, which states that
X 1UpY|Zin Jp implies X L Y | Z in Jg; and the assumption that there
is no hidden variable or selection bias. A distribution P is called Markovian
and faithful to a DAG G if P and G satisfy the causal Markov assumption
and the causal faithfulness assumption. A causal DAG model consists of a
DAG G and a joint distribution P over a common vertex set V such that
P satisfies the causal Markov assumption with respect to G. G is called the
causal structure of the model and P is called the observational distribution
(or simply distribution) (Hauser and Bihlmann, 2012).

2.2 Global and Local Causal Structure Learning

Causal structure learning methods try to recover the causal structure from
data. Global causal structure learning focuses on learning an entire causal
structure over all variables while local causal structure learning aims to
recover only a part of the underlying causal structure.

Existing approaches for learning global causal structures roughly fall
into two classes: constraint-based and score-based methods. Constraint-
based methods, such as the PC algorithm (Spirtes and Glymour, [1991)) and
the stable PC algorithm (Colombo and Maathuis, 2014), use conditional
independence tests to find causal skeleton and then determine the edge
directions according to a series of orientation rules (Meekl 1995). Under the
causal Markov and causal faithfulness assumptions, constraint-based methods



can identify causal graphs up to a Markov equivalence class. On the other
hand, score-based methods, such as exact search algorithms like dynamic
programming (Koivisto and Sood, 2004; Singh and Moore, 2005) and A*
Yuan et al [2011}; [Xiang and Kim [2013), greedy search algorithms like GES
Chickering), 2002b)), and gradient-based methods like NOTEARS
et al.l 2018)), evaluate candidate graphs with a predefined score function and
search for the optimal DAGs or CPDAGs.

Local learning algorithms usually learn the Markov blanket (see, e.g.
Tsamardinos et al., 2003} [Tsamardinos and Aliferis, 2003} [Fu and Desmarais),
2010) or the parent and child set of a given target (see, e.g.[Wang et all, 2014}
Gao and Ji, 2015; Liu et al.,|2019). Recently, Liu et al, (2020b, Algorithm 3)
extended the MB-by-MB algorithm (Wang et al. |2014) to learn the chain
component containing a given target and the directed edges surrounding the
chain component. This variant of MB-by-MB can thus learn the induced
subgraph of the true CPDAG over the target and its neighbors, that is, the
parents, siblings and children of the target in the CPDAG.

2.3 Related Work

As discussed in Section[I} when a learned CPDAG is provided, one can either
enumerate all equivalent DAGs, or check the paths in the CPDAG
2006; Roumpelaki et al., 2016; Perkovi¢ et al., [2017)), or use the causal-effect-
based method to identify types of causal relations (Maathuis et al., 2009}
[Perkovi¢ et al., 2017)).

Many sufficient conditions are also available to identify some of causal
relations without estimating a global causal structure (Cooper} 1997 [Spirtes
ket al.l 2000} Mani et all [2006; Pearl, 2009; [Claassen and Heskes, 2011}
\Colombo and Maathuis, [2014; Magliacane et al. 2016). For example, if
X LY |WUZ while X I Y | W, then Z is a definite non-cause of every
variable in X UY U W (Claassen and Heskes|, 2011)). Since these rules are
sound but not complete, they may fail to identify the causal relation of a
given pair of treatment and target.

Recently, a related work from |[Entner et al| (2013) proposed sound
and complete rules for inferring whether a given variable X has a causal
effect on another variable Y. Compared with our work, their criteria allow
the existence of unmeasured confounders, but also require two additional
assumptions: Y is not a cause of X, and neither X nor Y is a cause of other
observed variables.




3 An Anatomy of Causal Relations

In this section, we provide a sufficient and necessary condition to identify
definite causal relations, and show that definite causal relations can be
divided into two subtypes: explicit and implicit causal relations.

3.1 Graphical Criteria for Identifying Types of Causal Rela-
tions

As mentioned in Section [I} given a CPDAG, a variable X is a definite non-
cause of another variable Y if and only if there is no partially directed path
from X to Y (Zhang, [2006; Perkovi¢ et al., 2017)). Roumpelaki et al.| (2016,
Theorem 3.1) proved that a treatment is a definite cause of a target if there
is a directed path from the treatment to the target or the treatment has
two chordless partially directed paths to the target on which two vertices
adjacent to the treatment are distinct and non-adjacent. In the section, we
will show that this condition is also necessary, and before that, a concept of
critical set is introduced as follows.

Definition 1 (Critical Set). (Fang and Hel 2020, Definition 2) Let G* be a
CPDAG, and X and Y be two distinct vertices in G*. The critical set of X
with respect to 'Y in G* consists of all adjacent vertices of X lying on at least
one chordless partially directed path from X to Y.

The definition of chordless partially directed path can be found in [A]
With Definition [I, we have the following lemma.

Lemma 1. Let G* be a CPDAG. For any two distinct vertices X and Y
in G*, X is a definite cause of Y in the underlying DAG if and only if the
critical set of X with respect to'Y in G* contains a child of X in every DAG
g € [G"].

Lemma (1] follows from Lemma 2 in Fang and He (2020)). It gives a
sufficient and necessary condition to decide whether X is a definite cause
of Y. However, checking the condition given in Lemma [I] also requires to
enumerate all equivalent DAGs. To mitigate this problem, we discuss a
graphical characteristic of critical set in the corresponding CPDAG.

Lemma 2. Let G* be a CPDAG and X,Y be two distinct vertices in G*.
Denote by C the critical set of X with respect to'Y in G*, then CNch(X,G) =
0 for some G € [G*] if and only if C =, or C induces a complete subgraph
of G* but CNch(X,G*) =0.



Based on Lemmas [I] and [2], we have the desired sufficient and necessary
graphical criterion.

Theorem 1. Suppose that G* is a CPDAG, X,Y are two distinct vertices
i G*, and C is the critical set of X with respect to'Y in G*. Then, X is a
definite cause of Y if and only if C N ch(X,G*) # 0, or C is non-empty and
induces an incomplete subgraph of G*.

The sufficiency of the condition in Theorem |[I| has been extended to
other types of causal graphs by Roumpelaki et al.| (2016) and Mooij and
Claassen (2020)E| With the help of Theorem |l we can identify the type
of causal relation based on a learned CPDAG by enumerating paths and
finding critical sets. Below, we give an example to illustrate this idea.

Example 1. Consider the respiratory disease network shown in Figure[]
The meanings of the node labels are given in the caption. Let smoking be
the treatment and dyspnoea be the target. From Figure we can see that
the partially directed paths from smoking to dyspnoea are Smok — Lung —
Either — Dysp and Smok — Bronc — Dysp. Therefore, the critical set of
smoking with respect to dyspnoea is {Lung, Bronc}. As Lung and Bronc are
not adjacent, by Theorem[1] smoking is a definite cause of dyspnoea. Similarly,
the critical set of lung cancer with respect to dyspnoea is {Smok, Either}.
Since Either is a child of Lung, lung cancer is also a definite cause of
dyspnoea.

3.2 Explicit and Implicit Causal Relations

We now study the properties of definite causal relations, and show that
definite causal relations can be divided into two subtypes based on the
existence of causal paths in a CPDAG. The results in this section are of key
importance to build local characterizations in Section [d] and are also useful
for developing an efficient global learning algorithm.

Proposition 1. For two distinct vertices X and Y, if X is a definite cause
of Y, then X and Y are not in the same chain component.

Given a target variable Y, Proposition [I| shows that Y and its definite
causes do not appear in the same chain component. Thus, if a treatment X

3We note that, although [Roumpelaki et al. (2016, Theorem 3.1) also claimed that they
have proved the necessity, their proof is flawed. As mentioned by [Mooij and Claassen
(2020), the last part of the proof appears to be incomplete. How to prove the necessity for
more general types of causal graphs remains an open problem (Zhang, 2006]).
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Figure 1: This example is adapted from the ASIA network. The original
network structure and related parameters can be found in [Lauritzen and
Spiegelhalter| (1988). Figure shows the true underlying causal DAG, and
Figure shows the corresponding CPDAG. Figure enumerates all
equivalent DAGs in the Markov equivalence class. The meanings of the node
labels are: recently have been to the Hospital, test positive for Tuberculosis,
Smoking, test positive for Lung cancer, Bronchitis, Either have lung
cancer or have tuberculosis, test positive for X-ray, and test positive for
Dyspnoea.

is a definite cause of a target Y, then in G* there must be a partially directed
path from X to Y which contains a directed edge. On the other hand, for
two distinct vertices lying in the same chain component, we have,

Proposition 2. Two distinct vertices X and Y are possible causes of each
other if and only if they are in the same chain component.

Recall that in Figure both Smok and Lung are definite causes of
Dysp. However, in the CPDAG there exists a directed path from Lung
to Dysp while no directed path exists from Smok to Dysp. That is, the
cause Lung of Dysp is explicit and the cause Smok of Dysp is implicit in the
CPDAG. This difference motivates the following two concepts.

Definition 2 (Explicit Cause). A wvariable X is an explicit cause of Y if
there is a common causal path from X to Y in every DAG in the Markov
equivalence class represented by a CPDAG G*.

As there is a common causal path from an explicit cause X to the target
Y in every DAG in the Markov equivalence class represented by G*, there is
a directed path from X to Y in G*, and thus X is a definite cause of Y.
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Figure 2: An example for identifying the types of causal relations

Definition 3 (Implicit Cause). A variable X is an implicit cause of Y if X
is a definite cause of Y and there is no common causal path from X to'Y in
all DAGs in the Markov equivalence class represented by a CPDAG G*.

We notice that X is a definite cause of Y if only if it satisfies one of the
two conditions given in Theorem [1. The first condition, C N ch(X,G*) # 0,
is the sufficient and necessary condition for identifying explicit causes, while
the second condition corresponds to implicit causes. In Section [4, we will
exploit this difference between explicit and implicit causes to develop local
characterizations for both of them. Below, we give an illustrative example.

Example 2. Consider the causes of the target variable Y based on the
CPDAG G* in Figure @ It is clear that all the variables other than'Y are
definite or possible causes of Y. Obviously, {E, D, F} are explicit causes
of Y. For B, sincce B—E —-Y, B—D —>Y and B—-G—-F —Y are
chordless partially directed paths, the critical set of B with respect to Y is
{E,D,G}. As the induced subgraph of G* over {E,D,G} is not complete,
B is a definite cause of Y, and B is also implicit. Similarly, G is another
implicit cause of Y. For X and A, the critical set of X and A with respect to
Y are {B,D,G} and {X, G}, respectively. Since the corresponding induced
subgraphs are complete, by Theorem[l, X and A are not implicit causes of
Y. Thus, they are possible causes of Y.

Despite the difference, explicit and implicit causes also have some inter-
esting connections. The following Proposition [3] proves that the existence of
an implicit cause implies the existence of at least two explicit causes.

Proposition 3. Let G* be a CPDAG and X and Y be two vertices of it in
different chain components. If X is the only explicit cause of Y in the chain
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component to which X belongs, then every vertexr in this chain component,
except X, is a possible cause of Y.

4 Local Characterizations of Types of Causal Re-
lations

In this section, we introduce the theoretical results on locally characterizing
different types of causal relations. Our local characterizations depend on
the induced subgraph of the true CPDAG over the treatment’s neighbors as
well as some queries about d-separation relations. The first result is about
definite non-causal relations, as given in Theorem

Theorem 2. Let G* be a CPDAG. For any two distinct vertices X and' Y
in G*, X is a definite non-cause of Y if and only if X LY | pa(X,G*) holds.

Theorem [ introduces a local characterization for definite non-causal
relations, which is based on the local structure around the treatment X and
a single d-separation claim. The d-separation claim X I Y | pa(X,G*) is
similar to the following well-known result called local Markov property of a
causal DAG model: any variable is d-separated from its non-descendants
given its parents. The difference is that in our local characterization, only
the parents of X in the CPDAG are included in the separation set, and we
rule out the siblings of X even if they may be the parents of X in the true
causal DAG. Since in a causal DAG, the non-descendants of a variable are
those which are definitely not caused by the variable, Theorem [2] can be
regarded as an extension of the local Markov property to CPDAGs.

Following Theorem [2| we can distinguish definite and possible causes from
definite non-causes with a local causal structure query and a d-separation
query. Next, we characterize explicit and implicit causal relations locally in
Theorem [3] and Theorem [} respectively, which together characterize definite
causal relations.

Theorem 3. Let G* be a CPDAG. For any two distinct vertices X and'Y in
G*, X is an explicit cause of Y if and only if X LY | pa(X,G*) U sib(X,G*)
holds.

The local characterization in Theorem |3| includes a single d-separation
claim, X LY | pa(X,G*) U sib(X,G*), which means the set pa(X,G*) U
sib(X, G*) cannot block all paths from X to Y. In the proof of this theorem,
we show that this claim is equivalent to that there exists at least one path
from X to Y in G* on which the node adjacent to X is a child of X. Based

11



on Maathuis and Colombo| (2015, Lemma 7.2) and Perkovi¢ et al.| (2017,
Lemma B.1), this implies that there is a directed path from X to Y in G*.
We remark that the sufficiency of Theorem [3]is related to the LWEF local
Markov property (Frydenberg, [1990). Given a chain graph C over a vertex
set V and a distribution P over the same vertex set, P is called LWF local
Markovian (or local G-Markovian) to C if X 1L p V' \ (de(X,C) Upa(X,C) U
sib(X,C)) | pa(X,C) U sib(X,C) for any X € V (Frydenberg, 1990)). Since
Andersson et al.| (1997) proved that a CPDAG G* is a chain graph, if a
distribution P is LWF local Markovian to G*, then X L p Y | pa(X,G*) U
sib(X,G*) for Y ¢ pa(X,G*) U sib(X,G*) implies that YV € de(X,G*). That
is, X is an explicit cause of Y. In we show the sketch of proving the
sufficiency of Theorem [3] based on the theories of chain graph models.

Theorem 4. Suppose that G* is a CPDAG and M is the set of maximal
cliques of the induced subgraph of G* over sib(X,G*). Then, X is an implicit
cause of Y if and only if X 1LY | pa(X,G*) U sib(X,G*) and X LY |
pa(X,G*) UM for any M € M.

The definition of maximal clique is given in [A] In Theorem [4] the first
condition X 1LY | pa(X, G*)Usib(X, G*) makes sure that X is not an explicit
cause of Y and the second condition, which is X Y | pa(X,G*) UM for
any M € M, guarantees that X is not a possible cause of Y. These two
conditions in Theorem (4| are local in the sense that both sib(X,G*) and
pa(X,G*) are subsets of X’s neighbors in G*, and a maximal clique M is
also a subset of sib(X,G*). Once we obtain the induced subgraph of G*
over adj(X,G*), we can know sib(X,G*) and M, and thus the conditional
independence queries can be answered accordingly if we have the oracles.

As mentioned in Section [3.2] definite causes include both explicit and
implicit causes. Therefore, Theorems [3] and [4] give a sound and complete
local characterization of definite causal relations as follows.

Corollary 1. Suppose that G* is a CPDAG and M is the set of mazximal
cliques of the induced subgraph of G* over sib(X,G*). Then, X is a definite
cause of Y if and only if X LY | pa(X,G*) U sib(X,G*) or X LY |
pa(X,G*) UM for any M € M.

Together with Theorem [2] Corollary [I] can be used to identify definite
causal relations and definite non-causal relations. This result is local in
the sense that it only depends on the local structure around the treatment
X and a limited number of d-separation queries. When data is available
in practice, d-separation queries can be answered by performing statistical

12



Algorithm 1 A local algorithm for identifying the type of causal relation
(local ITC)
Require: A treatment X, a target Y, pa(X,G*), the induced subgraph of
G* over sib(X,G*), and independence oracles.
Ensure: The type of causal relation between X and Y.
if X 1Y |pa(X,G*) then
return X is a definite non-cause of Y,
end if
if X LY |pa(X,G*)Usib(X,G*) then
return X is an explicit cause of Y,
end if
M = the set of maximal cliques of sib(X, G*),
if exists M € M such that X 1 Y | pa(X,G*) UM, then
return X is a possible cause of Y,
end if
: return X is an implicit cause of Y.

— =
—= o

independence tests. Thus, local characterizations are particularly meaningful
for identifying types of causal relations from observational data.

5 Algorithms

In this section, we discuss how to learn the types of causal relations from
observational data. A local algorithm, which exploits the local characteriza-
tions in Section [ directly, is provided in Section For the completeness of
the paper, we also provide an efficient global learning method in Section
and causal-effect-based methods in Section (.3

5.1 A Local Learning Algorithm

The main procedure of our local algorithm is summarized in Algorithm
The input of Algorithm (1| consists of pa(X,G*), the induced subgraph of G*
over sib(X,G*), and some independence oracles. The first two arguments,
pa(X,G*) and the induced subgraph over sib(X,G*), can be learned locally
by using the variant of the MB-by-MB algorithm proposed by |Liu et al.
(2020b}, Algorithm 3), which is designed for learning the chain component
containing a given target variable and the directed edges connected to the
variables in the chain component. The third argument (the independence
oracles), as discussed in Section 4] can be replaced by statistical independence

13



tests in practice. Overall, the procedure given in Algorithm [I] is a direct
application of the local characterizations in Theorems and {4, and thus
we have,

Theorem 5. Given a CPDAG G* over V and the independence oracles
faithful to a DAG in [G*], the local ITC (Algorithm[1)) is sound and complete
for identifying explicit causes, implicit causes, possible causes and definite
non-causes of any variable Y in G*.

Here, the soundness and completeness mean that the identified causes
of each type are all and only those variables satisfying the definition of the
corresponding type of cause. For example, the learned explicit causes of Y
are all and only the variables in V\ {Y'} each of which has at least a common
directed path to Y in all equivalent DAGs.

The complexity of Algorithm [I]can be measured by the maximum number
of conditional independence tests (or d-separation queries). Clearly, the max-
imum number of conditional independence tests performed by Algorithm [1] is
m + 2, where m is the number of maximal cliques of sib(X,G*). Fortunately,
there are only linearly many maximal cliques (with respect to the number
of vertices) in a chordal graph (Rose and Tarjan|, [1975; Blair and Peyton,
1993), so the number of conditional independence tests needed in Algorithm
[1]is at most O(|sib(X, G*)]).

5.2 A Global Learning Algorithm

Given a CPDAG, identifying definite non-causal and explicit causal relations
is straightforward. To discriminate implicit causal relations from possi-
ble causal relations, we need an approach to find critical sets. The next
proposition is particularly useful.

Proposition 4. For any two distinct vertices X,Y in a CPDAG G* such
that X is not an explicit cause of Y, it holds that Cxy = UzczCxz, where
Cyv denotes the critical set of U with respect to V', and Z is the set of
ancestors of Y in G* which are also in the chain component containing X .

Proposition [ provides a factorization of the critical set of X with respect
to Y. For simplicity, we call UzczCxz the critical set of X with respect to
Z. Algorithm [2 shows how to find UzeczCx 7 efficiently. Algorithm [2] runs a
breadth-first-search and returns the critical set of X with respect to Z in G.
In Algorithm [2] we start from the siblings of X, then search chordless paths
from the siblings until reaching some Z; € Z. Every chordless path starting
from a sibling of X is recorded in a queue S as a triple like («, 1, 7), where
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Algorithm 2 Finding the critical set of a given X with respect to a set Z

Require: A chordal graph G, a variable X in G, and a variable set Z # ()
such that X ¢ Z.
Ensure: C, which is the critical set of X with respect to Z in G.
1: Initialize C = (), a waiting queue S =[], and a set H = (),

2: for o € adj(X) do

3:  add (o, X, a) to the end of S,

4: end for

5. while S is not empty do

6:  take the first element («, 1, 7) out of S and add it to H,
7. if 7 € Z then

8: add a to C, remove from S all triples where the first element is «,
9: else

10: for 8 € adj(t) and 5 ¢ adj(y) U{y} do

11: if (a,7,08) ¢ H and (o, 7,3) ¢ S then

12: add (a, 7, ) to the end of S,

13: end if

14: end for

15:  end if

16: end while
17: return C

«a and 7 are the start and the end points of the path, respectively, and 1 is
the sibling of 7 on the path. If 7 is a member of Z, we add « to the critical
set C and remove from S all triples where the first element is «, that is, we
stop enumerating chordless paths starting with . Otherwise, we extend the
chordless path to the siblings of 7 that are neither v nor siblings of ¢ and
add the corresponding triples to the queue S. In this algorithm, a set of
visited triples, H, is introduced to speed up the search by avoiding visiting
the same triple twice.

Finally, we present a global learning approach for identifying types of
causal relations in Algorithm [3] Algorithm [3]is global in the sense that it
takes an entire CPDAG as input. In Algorithm [3] we first check whether X
and Y are in the same chain component. If they are, X is a possible cause
of Y based on Proposition [2| Otherwise, we find the set of explicit causes
of Y and denote it by Z. This can be done by searching for the vertices
that are connected to Y in the directed subgraph of G*. If X € Z, X is an
explicit cause of Y, otherwise, we find the critical set C of X with respect to
Z. When C = (), we have that there are no explicit causes of Y in the chain
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Algorithm 3 A global algorithm for identifying the type of causal relation
(global ITC).

Require: A CPDAG G*, a variable X and a target Y in G*.

Ensure: The type of causal relation between X and Y.

1: if X and Y are connected by a path in G; then
2:  return X is a possible cause of Y,

3: end if

4: let Z = an(Y,G"),

5. if X € Z then

6: return X is an explicit cause of Y,

7. end if

8: use Algorithm 2| to find the critical set C of X with respect to Z in G,
9: if |C| =0 then

10: return X is a definite non-cause of Y,

11: end if

12: if C induces a complete subgraph of G, then
13: return X is a possible cause of Y,

14: end if

15: return X is an implicit cause of Y.

component containing X, so X is not a cause of Y. Finally, using Theorem
[ Algorithm [3] distinguishes between possible causes and implicit causes.
Since Algorithm [2| does not visit the same triple like («a, %, 7) twice, where
« is a sibling of X and 7 is a sibling of ¢ in G, the complexity of Algorithm
in the worst case is O(]sib(X,G*)| - |E(G;)|), where |E(G)| is the number
of edges in G;;. Now we consider the computational complexity of global
ITC (Algorithm . We know that the complexity to check the undirected
connectivity of X and Y or to find an(Y,G*) is O(|E(G*)|?), where |E(G*)|
is the number of vertices in G*. Consequently, the complexity of global ITC
is O(|E(G*)|? + |sib(X,G*)| - |E(G?)|). Clearly, the worst case is O(|E(G*)[?).

5.3 Causal-Effect-Based Methods

We now discuss the causal-effect-based methods, which are modifications
of the IDA-type algorithms. For simplicity, we assume that the observed
variables follow a linear-Gaussian structural equation model and that the
observational distribution is faithful to the underlying DAG. With these
assumptions, X has a non-zero total causal effect on Y if and only if there
is a directed path from X to Y in the underlying DAG. Following the work
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Algorithm 4 The framework of causal effect testing based algorithms.
Require: A treatment X, a target Y, a CPDAG G* over a vertex set V,
and a significance level .
Ensure: The type of causal relation between X and Y.
1: set © =[] and Py =[],
2: for each S C V such that S is an adjustment set for (X,Y") in some
DAG in [G*] do
3:  estimate the causal effect 8 of X on Y by adjusting for S, and add the
causal effect to ©,
4:  test the null hypothesis # = 0 and add the corresponding p-value to
Pyal,
end for
if every p-value in Py, is less than or equal to o then
return X is a definite cause of Y,
end if
if every p-value in Py, is greater than o then
10: return X is a definite non-cause of Y,
11: end if
12: return X is a possible cause of Y.

of Maathuis et al.| (2009), we use

ACE(Y | do(X = 2)) = 2EX | CéO:EX =),

to measure the (average) total causal effect of X on YE] As mentioned in
the introduction, the idea of the causal-effect-based methods is to estimate
all possible causal effects of the treatment on the target first, and then check
whether the possible effects are all zeros or non-zeros. If all of the possible
effects are evaluated as zeros (non-zeros), then the treatment is a definite
non-cause (definite cause) of the target.

However, due to estimation error, an estimated effect may not be exactly
zero. In the work of |Maathuis et al.| (2010), the authors first estimated all
possible effects for all pairs of treatment and target, and then summarized

“Here, do(X = ) is the do-operator proposed by [Pearl (2009) to denote the intervention
on X by forcing X to be x. [Pearl| (2009) defined that X has a causal effect on Y if there
exists an x # ' such that P(Y | do(X = z)) # P(Y | do(X = z')), where P(Y | do(X = z))
is the post-intervention distribution of Y. On the other hand, it is common to summarize
P(Y | do(X = z)) by its mean (Pearl, |2009; Maathuis et al., [2009), i.e., the mean of Y
w.r.t. P(Y | do(X = z)), which is denoted by E(Y | do(X = x)).
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each set of possible causal effects by its minimum absolute value. Finally,
the minimum values were sorted in descending order. The top ones were
evaluated as relatively strong effects. Though this method has been widely
applied to real-world problems, it requires to estimate all possible effects for
all pairs of variables, which may bring unnecessary costs if someone only
wants to know the causal relation between one pair of treatment and target.
Moreover, in this method, the order of an effect depends on the other effects.
Thus, this method is suitable for comparing the magnitude of causal effects,
rather than identifying the causal relation of a given pair.

In this paper, we focus on a testing-based solution, whose framework is
summarized by Algorithm [ After initializing two sequences © and Py,
Algorithm [4] enumerates all possible causal effects of X on Y and tests the null
hypothesis § = 0 for each estimated effect 6. Different modifications adopt
different enumeration and testing strategies. We introduce four modifications
below.

(M1) IDA + testing all enumerated effects. Following the original IDA
framework (Maathuis et al., 2009), this modification enumerates all
possible effects by listing all possible parental sets of the treatment X.
Thus, line 2 of Algorithm [ is replaced by

“for each Q C sib(X,G*) such that orienting Q — X and X —
sib(X,G*) \ Q does not introduce any v-structure collided on X, let
S =QUpa(X,G*) and do ..."

All enumerated effects are then tested according to line 4 of Algorithm [4]
In the linear-Gaussian case, estimating the causal effect of X on Y by
adjusting for S is equivalent to estimating the coefficient of X in the
linear regression of Y on X and S. Hence, a t-test for the coefficient of
X is used to test the significance of the causal effect of X on Y.

(M2) IDA + testing the minimum and maximum absolute enumerated effects.
This modification is inspired by the work of Maathuis et al. (2010).
It first enumerates all possible effects by listing all possible parental
sets of the treatment X. Then, it tests the effects of X on Y with
the minimum and maximum absolute values to obtain two p-values,
Pmin and pmax, respectively. Consequently, if pnin < «, it returns that
X is a definite cause of Y, if ppax > «, it returns that X is a definite
non-cause of Y, and otherwise returns that X is a possible cause of Y.

The details of this modification is provided in [B]
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(M3) IDA + utilizing non-ancestral relations + testing all enumerated effects.
This modification first lists all possible parental sets of the treatment
X. Then, to reduce the number of estimations and significance tests, it
checks whether X is a non-ancestor of Y before estimating the causal
effects of X on Y. More formally, we insert a step between lines 2 and
3 of Algorithm [4] as follows.

“Orient Q — X and X — sib(X,G*) \ Q, complete the orientations
using Meek’s rules (Meek, 1995), and use Lemma 3.2 in|Perkovic¢ et al.
(2017) to check whether X is a b-possible ancestor of Y."

The definition of b-possible ancestor can be found in [Perkovi¢ et al.
(2017, Definition 3.3). We directly set § = 0 and the p-value p = 1
if X is not a b-possible ancestor of Y. Otherwise, we estimate the
causal effect of X on Y by adjusting for S = Q U pa(X,G*), and test
the significance of the estimated effect. The details are provided in [B]

(M4) IDA + utilizing non-ancestral relations + testing the minimum and
maximum absolute enumerated effects. This modification takes the
same enumeration strategy used by the third modification, and uses
the same testing strategy as the second method does.

Except for the second and forth modifications, the other two modifications
usually compute a list of p-values. These p-values are compared with a given
significance level «, as shown in lines 6-12 of Algorithm [4] The adjustment
methods for multiple p-values, such as the Bonferroni correction, may be
used to control the false discovery rate.

The input CPDAG of Algorithm [ can be replaced by the induced
subgraph over pa(X,G*) U sib(X,G*) for the first two modifications. Since
the induced subgraph over pa(X, G*)Usib(X,G*) can be learned locally using
the variant of MB-by-MB (Liu et al., |2020b, Algorithm 3), we can combine
the first two modifications with the variant of MB-by-MB to make them fully
local. However, for the last two modifications, the input CPDAG cannot
be replaced. The reason is that these two modifications need to run Meek’s
rules to extend the local orientations Q — X and X — sib(X,G*) \ Q, and
Meek’s rules require an entire CPDAG.

We remark that, the causal-effect-based methods are not restricted to the
aforementioned four modifications. For example, in the linear-Gaussian case,
one can use the optimal IDA (Witte et all |2020) to replace the original IDA.
For each Q C sib(X, G*) such that orienting Q — X and X — sib(X,G*)\ Q
does not introduce any v-structure collided on X, the optimal IDA first runs

19



Meek’s rules to extend the local orientations Q — X and X — sib(X,G*)\ Q,
and then finds the optimal adjustment set so that the estimation of the
causal effect has the smallest asymptotic variance. Another modification,
which we call the hybrid method, is to infer whether X is a definite non-cause
of Y by checking whether X has a partially directed path to Y in the input
CPDAG (Zhang, 2006; Perkovi¢ et al., [2017)) first, and then call a causal-
effect-based method if X is not a definite non-cause of Y. Compared with
the third and forth modifications, this hybrid method utilizes non-ancestral
relations before listing all possible parental sets of X, and therefore, is
generally more efficient if X is graphically identified as a definite non-cause
of Y.

To end this section, we theoretically compare the proposed local algorithm
to the causal-effect-based methods in terms of computational complexity. In
the worst case, the number of causal effect estimations required by a causal-
effect-based method is 2/5(X:97) since every causal-effect-based method
needs to enumerate the possible causal effects of X on Y. At the same time,
at most 2150597 tests on these estimated causal effects are required in the
worst case. Besides, the modifications that utilize non-ancestral relations
or the optimal IDA have to run 215?97 times Meek’s rules, while the
complexity of Meek’s rules is polynomial to the number of vertices in the
graph. Therefore, the proposed local method (Algorithm |1f) is more efficient
than the current causal-effect-based methods as the former only needs linearly
many hypothesis tests.

6 Experiments

In this section, we illustrate and evaluate the proposed methods experimen-
tally using synthetic data sets generated from linear structural equation
models with Erdés-Rényi random DAGs and the DREAM4 data sets. We
compare the local ITC with the global one as well as the four modifications
of causal-effect-based methods (CE-based for short).

The details of the CE-based methods are provided in Section [5.3] and
Bl In this section, the four modifications of CE-based methods from M1
to M4 are denoted by “IDA + test (all)", “IDA + test (min/max)", “IDA
+ an + test (all)", and ‘IDA + an + test (min/max)", respectively. We
use the Bonferroni correction to adjust p-values for multiple comparisons,
and the corresponding methods are denoted by “multi". In addition, the
CE-based methods with the optimal IDA and the hybrid method mentioned
in Section [5.3] are also studied experimentally in [D.4] and [D.5] respectively.
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In Section [6.1, we assume that the true CPDAG or its local structure
of interest is available. In this case, the synthetic data sets are only used
by the CE-based methods to estimate causal effects, and by the local ITC
method to perform conditional independence tests. In Section [6.2] we further
evaluate the methods based on the structures learned from data. Three
global structure learning algorithms, including the PC algorithm (Spirtes
and Glymour, [1991), the stable PC algorithm (Colombo and Maathuis, [2014])
and the GES algorithm (Chickering, |2002a)), are used to learn CPDAGs, and
the variant of MB-by-MB ([Liu et al., [2020b) is used to learn parents and
siblings of the vertices of interest. In all of these experiments, algorithms like
PC, stable PC, GES and IDA are called from R-package pcalg (Kalisch
et al 2012), and the Bonferroni correction is called from R-package stats.
The significance level « of statistical independence tests is 0.001E| All codes
were run on a computer with an Intel 2.5GHz CPU and 8 GB of memory.

Let ER(n,d) denote a random DAG with n vertices and average in-and-
out degree d. In our experiments, n is chosen from {50,100} and d is chosen
from {1.5,2.0,2.5,3.0,3.5,4.0}. For a sampled ER(n,d) graph, we drew
an edge weight f;; from a Uniform([0.8,1.6]) or a Uniform([—1.6,—0.8] U
[0.8,1.6]) distribution for each directed edge X; — X, in the DAG. Then,
we constructed a linear structural equation model as follows,

Xj = Z /Bini+€j ) jzla'--vna (1)
X;€pa(X;)

where €1, ..., €, are independent A(0, 1) noises.

For each combination of n, d and the distribution of edge weights, we
generated 5,000 weighted DAGs. Finally, in Section we drew Nefoct €
{50,100,150} samples from this linear model to estimate causal effects
and perform conditional independence tests, and in Section [6.2] we drew
additional Ngaph € {100,200,500} samples to learn the required causal
structures. In summary, there were totally 2 x 6 x 2 = 24 graph settings
and 2 X 6 x 2 x 3 x 3 = 216 experiment parameter settings, and for each
experiment parameter setting, we repeated the experiment 5,000 times.

Given a sampled DAG, we randomly drew a treatment variable and a
target variable, and compared their causal relation (definite cause, definite
non-cause, or possible cause) learned from data with the true one read from
the corresponding CPDAG of the sampled DAG. The Kappa coefficient (Co~
hen, 1960)) as well as the true positive rate (TPR) and the false positive
rate (FPR) were used to measure the performance of each method. The

SExperiments show different significance levels give similar results.
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Kappa coefficient is an adjustment of accuracy rate. It is the proportion of
agreement after chance agreement is removed from consideration (Cohen,
1960). The formal definition of the Kappa coefficient is given as follows. For
an experiment parameter setting, let M;; be the number of experiments in
which the i¢th causal relation is identified as the jth causal relation. The
Kappa coefficient « is defined as

R = M
1—¢q’
where
Y31 Mij (331 Myj)?

The Kappa coefficient ranges from —1 to +1, and the higher the value of
Kappa, the better the evaluated method. For ease of visualization, we focus
on the kappa coefficients in this section, and the TPRs and FPRs are reported

in [D.3

6.1 Learning with True Graphs

In this section, the true CPDAGs or their local structures are provided
to exclude estimation biases caused by graph structure learning from data.
In this case, the global ITC shown in Algorithm [3] can identify all causal
relations correctly since the input CPDAG is true. Except for the global ITC,
the local ITC and the CE-based methods need to perform hypothesis tests,
which may introduce errors. To assess these methods, we run experiments
on data with positive weights (Uniform([0.8,1.6])) as well as a mixture of
negative and positive weights (Uniform([—1.6, —0.8] U [0.8,1.6])). The results
on the graphs with positive weights are shown in this section and the rests
are in

Figure |3| shows the Kappa coefficients of the proposed local method and
five CE-based methods on random graphs with positive weights. We can
see that the proposed local ITC is significantly better than the CE-based
methods, especially when the sample size is small and the average degree is
high. Increasing the sample size can improve the performance of all methods,
and reduce the difference between the local ITC and the CE-based methods.

In these experiments, probably because the total number of hypothesis
tests is not large, adjusting p-values for multiple comparisons does not
bring much improvement. Besides, testing all enumerated effects usually
performs better than testing the minimum and maximum absolute effects.
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Figure 3: The Kappa coefficients of different methods on random graphs
with positive weights. The true graph structures are provided.

Moreover, utilizing non-ancestral information can improve the performance.
Consequently, the CE-based-method denoted by “IDA + an + test (all)"
performs the best among the five CE-based-methods.

However, utilizing non-ancestral information will significantly increase the
computational time because of the use of Meek’s rules. In our experiments,
the CE-based methods which utilize non-ancestral relations are 50-100 times
slower than the others. To compare the other methods, Figure [4] reports the
CPU time (in seconds) and Figure |5| further shows the ratio of the time used
by each CE-based method to the local ITC. As one can see from the figures,
the CE-based methods without using non-ancestral relations are 2-4 times
slower than the local ITC.

Benefiting from fewer hypothesis tests, the local ITC algorithm is more
stable, more accurate, and more efficient than the CE-based methods. Ad-
ditional evidence also comes from the experiments on models with mixed
edge weights. In these experiments, although all Kappa coefficients drop,
the Kappa coefficients of the local ITC drop less than those of the CE-based
methods. The details can be found in [D.2l
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Figure 4: The CPU time (in seconds) of different methods on random graphs
with positive weights. The true graph structures are provided. The CPU
time of “IDA + an + test (all)" and “IDA + an + test (min/max)" is not
shown, as they are more than 50-100 times slower than the other methods.

6.2 Learning with Estimated Graphs

In this section, we further study experimentally our proposed methods when
the true causal structures are not available. We used the variant of MB-by-
MB (Liu et al., [2020b]) to learn the parents and siblings of the vertices of
interest (denoted by “local +"), and used the PC algorithm, the stable PC
algorithm (denoted by “PCS +") and GES to learn entire CPDAGs. The
learned structures are then passed to the local ITC, the global ITC and
the CE-based methods. For ease of presentation, we mainly report twelve
methods in this section, but the conclusions obtained coincide with all the
experiments.

Figure [6] shows the Kappa coefficients based on 50- and 100-node graphs.
For ease of presentation, we omit the results of the global ITC combined
with PCS and GES as well as the results of the CE-based methods combined
with PCS and GES, since the PCS-based methods perform similarly to PC
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Figure 5: The ratio of the CPU time of different methods to that of the local
ITC on random graphs with positive weights. The true graph structures are
provided. The results of “IDA + an + test (all)" and “IDA + an + test
(min/max)" are not shown, as they are more than 50-100 times slower than
the other methods.

and the GES-based methods do not perform well (see for the detailed
TPRs and FPRs). As one can see, the proposed local ITC outperforms
the other methods in almost all settings, especially when the sample size
is small. The CE-based methods combined with the variant of MB-by-MB
perform slightly worse than the local ITC. The global ITC combined with
PC is also competitive when the sample size is large. When Ngpapn > 200,
the global ITC combined with PC outperforms the corresponding CE-based
methods. Besides, the CE-based methods that use non-ancestral relations are
usually better than the other CE-based methods, as they take the advantage
of the correctly learned global graphical structure. Moreover, testing all
enumerated effects performs similarly to testing the minimum and maximum
absolute effects, rather than outperforms the latter as shown in Section [6.1

We next compare the total computational time of different methods. As
shown in Figure [7], the local ITC and the local versions of the CE-based
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Figure 6: The Kappa coefficients of different methods on random graphs
with positive weights. The graph structures are learned from data. N =
(Ngraph; Nefrect) denotes the sample sizes for learning graphs and estimating
causal effects.

methods are more efficient than the global ones. For the methods using
the same structure learning algorithm, the I'TC methods are more efficient
than the CE-based methods that take much more computational time to
identify non-ancestral relations, and are slightly more efficient than the other
CE-based methods because the structure learning generally dominates the
computational time of these methods.

We also compare the time spend in identifying types of causal relations
(excluding the time for structure learning from the total time), and the results
are similar to those shown in Figure 5] Using non-ancestral information in
CE-based methods usually makes them 40-80 times slower than the local ITC,
while the other CE-based methods without using non-ancestral relations are
almost 2 times slower than the local ITC.

The experiments of the CE-based methods using the optimal IDA and
the hybrid method can be found in[D.4 and in [D.5] respectively. Briefly, these
experiments show that the CE-based methods with the optimal IDA are
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Figure 7: The total CPU time (in seconds) of different methods on ran-
dom graphs with positive weights. The graph structures are learned from
data. N = (Ngraph, Nefrect) denotes the sample sizes for learning graphs and
estimating causal effects.

usually better than the methods with the original IDA, but do not outperform
the global ITC, and the hybrid method is slightly better than the non-hybrid
CE-based methods that use non-ancestral relations.

6.3 An Application to the DREAM4 Data Sets

In this section, we apply our method to the synthetic gene expression data
sets from the DREAM4 in silico challenge, to show the potential of our
method for supporting causal inference. A detailed description of the data
sets can be found at https://dreamchallenges.org/dream-4-in-silico-
network-challenge/. In this study, we focus on 5 data sets provided by
the DREAM4 challenge, each of which contains a gene regulatory network
(possibly cyclic) with 100 genes, observational gene expression data with 310
observations and interventional gene expression data. The used 5 data sets,
including the true network structures, can be obtained from the R-package
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DREAM4E| We normalized each data set such that each gene has a sample
mean 0 and a sample variance 1. The marginal distributions of the variables
are approximately Gaussian. Following [Maathuis et al. (2010), we assume
that the multivariate Gaussianity holds for all variables.

To evaluate the “true" relationship for each pair of X and Y, we first
estimate the causal effect of X on Y using the back-door adjustment, based
on the observational data and the true network structure. Then, we use
the t-test to decide the significance of the estimated causal effect at the
significance level o = 0.001. All pairs of X and Y whose corresponding
p-values of the t-tests are less than or equal to « are regarded as “true"
causal pairs and constitute the target set.

Assuming that the true gene network is unknown, we next use the
following three methods to identify the type of causal relation for each
treatment-target pair (X,Y).

e Method 1. Using the PC algorithm to estimate a CPDAG first, and
then calling the global ITC (Algorithm [3|) to identify the type of causal
relation for each (X,Y).

e Method 2. Using the PC algorithm to estimate a CPDAG first, and
then calling the local ITC (Algorithm |1]) to identify the type of causal
relation for each (X,Y’). The required local structures, i.e. pa(X,G*)

and the induced subgraph over sib(X,G*), are read from the learned
CPDAG.

o Method 3. Using the variant of MB-by-MB to estimate pa(X,G*) and
the induced subgraph over sib(X, G*) for each X, and then identifying
the type of causal relation for each (X,Y’) by using the local ITC

(Algorithm [1)).

For each variable pair (X,Y"), we further use IDA to estimate all possible
causal effects of X on Y. To build a sequence of variable pairs based on the
magnitude of the causal effects, we first rank (in descending order) the pairs
of treatment and target whose corresponding causal relations are definite
causal according to their minimum absolute effects. Then, we rank (in
descending order) the pairs whose corresponding causal relations are definite
non-causal and possible causal according to their maximum absolute effects.
Finally, we append the ordered sequence of definite non-causal and possible

5The 5 data sets are named by “dream4_100_ 01" to “dream4_ 100_ 05" in the R-package
DREAM4.
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Methods dream4_100_01 dream4_100_02 dream4 100_03 dream4_100_04 dream4_100_05

PC + IDA 0.6578 0.6870 0.6894 0.6921 0.6823
0.6439 0.6905 0.6930 0.6808 0.6898

Method 1 + IDA (0.0000) (0.2809) (0.1049) (0.0000) (0.0050)
, 0.6481 0.6972 0.6956 0.6945 0.6916
Method 2 + IDA (0.0000) (0.0000) (0.0000) (0.0151) (0.0000)
local + IDA 0.6624 0.6354 0.7000 0.6750 0.6696
, 0.6672 0.6349 0.7019 0.6769 0.6776
Method 3 + IDA (0.0002) (0.2000) (0.0890) (0.0203) (0.0000)

Table 1: AUC of different methods on DREAM4 data sets. The p-values
of DeLong’s tests are reported in parentheses, which test whether the AUC
of a proposed method is significantly different from the AUC of the “PC +
IDA" or “local 4+ IDA" algorithm.

causal relation pairs to the ordered sequence of definite causal relation pairs,
and select top ¢ pairs as the predicted pairs.

Note that compared to the work of Maathuis et al.| (2010), this method
has two differences. First, we rank definite non-causal and possible causal
pairs by their maximum absolute effects, while Maathuis et al.| (2010]) rank all
pairs by their minimum absolute effects. This is because that the minimum
absolute effect of a definite non-causal or possible causal pair should be zero,
while the maximum absolute effect is more informative since it measures the
upper bound on the true causal effect. Second, we rank the definite causal
pairs before the other pairs regardless of their possible estimated causal
effects.

We compare Methods 1 and 2 to the IDA algorithm combined with PC,
and compare Method 3 to the IDA algorithm combined with the variant of
MB-by-MB. All significance levels used in these methods are set to be 0.001,
aligned with those used in the simulation studies. For each method, we
compare the predicted pairs to the target pairs for different ¢’s and compute
the area under the receiver operating characteristic curve (AUC). Tables
shows the results. For each data set and each method, we also perform
DeLong’s test to test whether the AUC of the method is different from the
AUC of the IDA algorithm (DeLong et al., |1988), using the R function
roc.test implemented in R-package pROC. The null hypothesis is that the
difference in AUC is equal to 0. The p-values of the tests are reported in
parentheses.

Table [1| displays that the modified versions of IDA with Methods 1 to
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3 outperform the original IDA in 3, 4 and 4 data sets, respectively, and 9
of them are significant at the level 0.1. As a result, our proposed methods,
especially the local ITC (Methods 2 and 3), can improve the performance of
the IDA algorithm when predicting the magnitude of a causal effect.

We remark that the above results on the DREAM4 data sets are proof-
of-concept and show that identifying types of causal relations do have the
potential to support causal inference. Apart from the listed Methods 1, 2
and 3, the practitioners may develop their own specific modifications. Of
course, as discussed in Maathuis et al.| (2010), great care should be taken in
real applications when the underlying assumptions, such as the multivariate
Gaussianity and the faithfulness, are violated. Nevertheless, we hope that
the example given in this section could motivate more studies on the use of
the local and global ITC in observational studies.

7 Concluding Remarks

In this paper, we present a local method for identifying types of causal
relations without evaluating causal effects and learning a global causal
structure. A sufficient and necessary graphical condition is provided to
check the existence of a causal path from a treatment to a target based on
a CPDAG. We also study the graphical properties of each type of causal
relation. Inspired by these properties, we further propose a local identification
criterion for each type of causal relation, which depends only on the induced
subgraph of the true CPDAG over the adjacent variables of the treatment as
well as some queries about d-separation relations. The local criteria naturally
lead to a local learning algorithm for identifying types of causal relations
if one assumes that the faithfulness condition holds. Experimental studies
empirically prove that the proposed local algorithm performs well.

Our work introduces the local characterizations of types of causal rela-
tions, which are helpful for understanding causal relations hidden behind
observational data. Except for the theoretical contributions, our results have
many potential applications as well. Firstly, as mentioned in the introduc-
tion, some real-world problems, such as fault analysis in telecommunication
networks and online product recommendation, qualitative analysis is enough
for making decisions. Secondly, even in quantitative analysis, when the
causal effect is not uniquely identifiable due to Markov equivalence, we may
also use the proposed methods to check whether the bounds on a causal
effect cover zero. For example, as shown in the experiments, our methods
can be used to modify the current IDA-type algorithms to predict which
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interventions are likely to have a strong effect, as mentioned by [Maathuis
et al. (2010). Thirdly, the proposed local method can be combined with
the IDA algorithm to reduce the computational costs. For instance, if a
treatment is a non-cause of a target, then without any computation we can
conclude that all possible effects are zeros (Maathuis et al., 2009). Compared
to the existing global method that depends on the global structure of an
input CPDAG, the proposed local methods are more effective and efficient,
especially when we are only interested in the causal effect of one treatment
on one target, not the causal effects of all treatments on all targets. Finally,
Shi and Li| (2021) provided a method to find all “mediators" lying on at least
one directed path from a given treatment to a given target, assuming that
the underlying DAG is identifiable from data. When the underlying DAG
is not identifiable but a CPDAG is identifiable, our proposed methods are
potentially useful for finding “definite mediators", which are not only the
definite effects of the treatment but also the definite causes of the target.
These variables must lie on at least one directed path from the treatment to
the target, no matter which equivalent DAG is the true one.

Our results can be easily extended to interventional essential graphs
(He and Geng}, 2008; Hauser and Bithlmann| [2012), which can be used to
represent Markov equivalence classes where some variables are intervened.
Basically, interventional essential graphs are also chain graphs and can be
learned from the mixture of observational and interventional data. Extending
our proposed concepts, theorems, and algorithms to interventional essential
graphs is straightforward. A possible future work is to extend the global
characterization for definite causal relations to maximal PDAGs. Maximal
PDAGs are generalizations of CPDAGs, and have been frequently used
for representing causal background knowledge (Perkovié et al., [2017} Fang
and He|, 2020; Perkovid, 2020; [Witte et al., [2020; |Guo and Perkovi¢, [2020).
Another interesting direction is to take hidden variables and selection biases
into account. For example, one may extend the results to partially ancestral
graphs (Richardson and Spirtes, [2002; |Ali et al., 2005; Zhang, [2008).
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A Graph Terminology

A graph G is defined as a vertex set (or node set) V and an edge set E. A
graph is directed (undirected, partially directed) if all edges in the graph are
directed (undirected, a mixture of directed and undirected). The skeleton of
a graph G is an undirected graph resulted from turning every directed edge
in G into an undirected edge. Given a subset V' of V, the induced subgraph
of G over V' is defined as G’ = (V',E') where E' C E contains only edges
between vertices in V'. If a directed edge X; — X j occurs in G, we call X;
a parent of X; and X; a child of X;. Two distinct vertices X; and X; are
siblings of each other if the undirected edge X; — X; appears in G. If for
any V' C V, there exist X’ € V' and X € V\ V' such that X and X' are
adjacent, then the graph is called connected, otherwise, it is disconnected.
Furthermore, if there is an edge between any two vertices, then the graph is
called complete.

A path is a sequence of distinct vertices (Xj,,- -+, Xy,) such that X,
is adjacent to Xy, ,. Xg, and Xy, are endpoints of the path, while other
vertices on the path are intermediate vertices (nodes). The length of a
path is the number of vertices on the path minus one. A path is called
partially directed from Xy, to Xy, it X, < Xj,,, does not occur in G for
any i = 1,...,j — 1. A partially directed path is directed (undirected) if all
edges on the path are directed (undirected). A cycle is a path from a vertex
to itself. A partially directed (directed, undirected) cycle can be defined
similarly. We note that both directed paths (cycles) and undirected paths
(cycles) are partially directed. A vertex X; is an ancestor of X; and X; is a
descendant of X; if there is a directed path from X; to X; or X; = X;. A
chord of a path (cycle) is any edge joining two nonconsecutive vertices on
the path (cycle). A path (cycle) without any chord is called chordless. Any
path with length one is chordless. An undirected graph is chordal if it has
no chordless cycle with length greater than three. Given a chordal graph
C = (V,E), if the induced subgraph of C over V' C V is complete, then V’
is called a cligue of C. Moreover, if there is no V" such that V' ¢ V" and
V" is a clique, then V' is called a mazimal clique. A directed graph is acyclic
(DAG) if there are no directed cycles.
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B Causal-Effect-Based Methods: Detailed Algo-
rithms

In Section [5.3] we introduce four modifications of the IDA algorithm. In
this section, Algorithms [5] and [6] show the detailed procedures of the second
and third modifications, respectively. For simplicity, we assume that the
observed variables follow a linear-Gaussian structural equation model. This
assumption, together with the causal faithfulness assumption, guarantees
that X has a non-zero total causal effect on Y if and only if X has a directed
path to Y in the underlying DAG. We note that this claim does not always
hold. For example, consider three binary variables X, Y and Z, such that
X =Y, Z— X and Z — Y. Assume that P(Z = 0) = 0.4, P(X =0 |
Z=0=02,P(X=0|2Z2=1)=04,PY=0|X=0,Z=0)=0.5,
PY=0|X=02=1)=01,PY =0|X=1,7=0) =02 and
PY=0|X=1,Z=1)=0.3. It is easy to check that P(X,Y, Z) is faithful
to the DAG structure consisting of X — Y, Z — X and Z — Y. However,
using the back-door adjustment, one can calculate that P(Y =1 | do(X =
0)) =P =1]|do(X =1)) =0.26.

Algorithm [5] shows the detailed procedure of the second modification,
which is IDA -+ significance tests for the minimum and maximum absolute
effects. The key step is to test the significance of the minimum and maximum
absolute effects. In the linear-Gaussian case, © is a collection of regression
coefficients of X, each of which corresponds to a linear regression of ¥ on X
and some adjustment set. Since the adjustment sets in different regression
models may overlap, it is difficult to derive the (asymptotic) distributions of
Omin and 6. under the null hypothesis. Therefore, in our implementation,
we only test Onin and f,.x in their own regression models.

Algorithm [6] shows the detailed procedure of the third modification,
which is IDA + utilizing non-ancestral relations + significance tests for all
estimated effects. The key steps are lines 3 and 4. In line 3, Algorithm [6] calls
Meek’s rules to complete the orientations Q — X and X — sib(X,G*)\ Q
in G*. The resulting graph, which is denoted by H, is a maximally partially
directed acyclic graph (MPDAG) containing both directed and undirected
edges. Perkovié et al| (2017, Lemma 3.2) proved that X is not a b-possible
ancestor of Y in an MPDAG if there is no b-possibly causal path from X to
Y, where a path from X to Y is b-possibly causal if none of the edge and
chord on the path points towards X. Consequently, Algorithm [6] graphically
checks whether X is a b-possible ancestor of Y in H. If X is not a b-possible
ancestor of Y in #, then X is a non-ancestor of Y in any DAG in [#], which
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Algorithm 5 IDA + significance tests for the minimum and maximum

absolute effects.
Require: A treatment X, a target Y, a CPDAG G* over a vertex set V,

and a significance level a.
Ensure: The type of causal relation between X and Y.

1: set © =[],

2: for each Q C sib(X,G*) such that orienting Q — X and X —
sib(X,G*) \ Q does not introduce any v-structure collided on X, let
S=QUpa(X,G*) and do

3:  estimate the causal effect 8 of X on Y by adjusting for S, and add the

causal effect to ©,

4: end for

5: let Opax = max{6 | 6 € ©}, test the null hypothesis O,ax = 0 and denote
the corresponding p-value by pmax,

6: let Omin = min{0 | 6 € O}, test the null hypothesis Oy, = 0 and denote
the corresponding p-value by pmin,

7: if pmin < a then

. return X is a definite cause of Y,
9: end if
10: if ppax > o then
11: return X is a definite non-cause of Y,
12: end if
13: return X is a possible cause of Y.

is the restricted Markov equivalence class represented by H (Perkovié et al.|
2017; [Fang and He, 2020), and thus Algorithm @ sets # = 0 and p = 1. More
information about MPDAGs can be found in |[Meek| (1995) and Perkovi¢ et al.
(2017).

C Detailed Proofs

The proofs of lemmas, theorems and corollaries in the main text of this
paper will be presented in this section. Before that, we first introduce some
prerequisite concepts and results.

Let m = (vo, v1, ..., v;) denote a path with length k. The subpath 7 (v;, v;)
of m, with j > 4, is the path (v;, vit1,...,vj-1,v;). If kK > 2, we say three
consecutive vertices v;, v;+1 and v;42 form a triangle on 7 if v; is adjacent to
viro. m is called triangle-free if it does not contain any triangle. For a path
in a chordal graph, we have the following result.

34



Algorithm 6 IDA + utilizing non-ancestral relations + significance tests

for all estimated effects
Require: A treatment X, a target Y, a CPDAG G* over a vertex set V,

and a significance level a.
Ensure: The type of causal relation between X and Y.

1: set © =[],

2: for each Q C sib(X,G*) such that orienting Q — X and X —
sib(X,G*) \ Q does not introduce any v-structure collided on X, let
S=QUpa(X,G*) and do

3:  Orient Q — X and X — sib(X,G*) \ Q in G*, and complete the

orientations with Meek’s rules (Meek, [1995). Denote the resulting
graph by H,
4:  Check whether X is a non-ancestor of Y in ‘H (Perkovic et al.l 2017) ,
5 if X is a non-ancestor of Y in H, then
6 set 6 =0 and p =1,
7. else
8
9

estimate the causal effect 8 of X on Y by adjusting for S,
test the null hypothesis § = 0, and compute the p-value p,
10:  end if

11:  add 0 to ©, and add p to Py,

12: end for

13: if every p-value in Py, is less than or equal to a then

14: return X is a definite cause of Y,

15: end if

16: if every p-value in Py, is greater than o then

172 return X is a definite non-cause of Y,

18: end if

19: return X is a possible cause of Y.

Lemma 3. In any chordal graph, a path is chordless if and only if it is
triangle-free.

Proof. Let m = (vg,v1,...,vx) denote a path with length k& > 2, If 7 is
chordless, then it is obviously triangle-free. Suppose 7 is not chordless, then
we can choose a chord v; — v; such that the subpath 7(v;,v;) has no chord
except for v; —v;. If j = i+2, then v;, v;11 and v; form a triangle. If j > i+42,
then (v, v;) and v; — v; form a cycle with length greater than 3. However,
since the graph is chordal, we must have a chord vy — v; with ¢ < k,1 < j
and [ > k+2and [ — k < j — 4. This is contrary to our assumption. O
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Lemma [3] is useful for finding chordless path, since checking whether a
path is triangle-free is much easier. The following is another useful result for
chordal graphs.

Lemma 4. Let p be a cycle with length greater than 3 in a given chordal
graph, and X be a vertex on p. If the two vertices adjacent to X on p are
not adjacent to each other, then p has a chord where X is an endpoint.

Proof. Let v and vy be two vertices adjacent to X on p. Suppose that p does
not have a chord where X is an endpoint. Since p has length greater than 3,
p must have a chord. Clearly, any chord of p separates p into two sub-cycles.
By assumption, it is easy to check that at least one sub-cycle contains X, vy
and vy. If this sub-cycle still has a chord, then we can construct another cycle
containing X, v1 and v9 but with shorter length. Finally, we will have a cycle
containing X, v; and v9 without any chord. Since v; and vy are not adjacent,
the length of this cycle must be greater than 3, which is contradicted to the
definition of chordal graph. O

A chordal graph C can be turned into a directed graph by orienting its
edges. If the resulting directed graph is a DAG without v-structure, then these
orientations form a v-structure-free acyclic orientation of C (Bernstein and
Tetali, 2017). Any v-structure-free acyclic orientation of a connected chordal
graph has a unique source, that is, a vertex which has no parent. Conversely,
any vertex in a connected chordal graph can be the unique source in some
v-structure-free acyclic orientation (Blair and Peyton, [1993; |Bernstein and
Tetali, [2017). Recall that the undirected subgraph of a CPDAG is the union
of disjoint connected chordal graphs called chain components (Andersson
et al., |1997). Maathuis et al. (2009) argued that any v-structure-free acyclic
orientation of the edges in G corresponds to a DAG in the equivalence class
represented by G*, and such an orientation can be considered separately
for each of the disjoint chordal graphs (or chain components). Moreover,
Maathuis et al.| (2009) proved that,

Lemma 5. (Maathuis et al., 2009, Lemma 3.1) Let G* be a CPDAG,
X be a vertex of G*, and S C ne(X,G*). Then there is a DAG G € [G*] such
that pa(X,G) = pa(X,G*) US if and only if orienting S — X and X — D
for every S € S and D € sib(X,G*)\' S in G* does not introduce any new
v-structure.

Meek! (1995, Lemma 1) proved that if Y € pa(X, G*), then Y € pa(X’,G*)
for every X' € ne(X,G*). From this result we can prove that the condition
in Lemma [5| holds if and only if S is a clique. As we will see, Lemma [5| plays
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a key role in proving the main results of this paper, as it provides a simple
and local criterion for checking whether a subset of X’s siblings can be X's
parents in some equivalent DAGs.

Let 7 denote a path. A subsequence of 7 is obtained by deleting some
vertices from 7 without changing the order of the remaining vertices. The
final prerequisite result is about the relation between directed paths and
partially directed paths.

Lemma 6. There is a directed path from X to'Y in G* if and only if there
s a partially directed path from X to Y in G* on which the node adjacent to
X is a child of X.

Proof. The necessity is trivial. For sufficiency, let 7 = (X, v,...,Y) be the
partially directed path from X to Y in G* such that X — v. Assume that
w is the first vertex from the side of Y which is adjacent to X, then we
have X — w. Now consider 7(w,Y"). As 7(w,Y) is also partially directed,
by |[Perkovi¢ et al.| (2017, Lemma 3.6), there is a subsequence 7* of 7w(w,Y")
forms a chordless partially directed path from X to Y in G*. Let 7™* denote
the path by concatenating X — w and «*, then 7** is a partially directed
path from X to Y on which the node adjacent to X is a child of X. By
construction, X is not adjacent to any vertex on 7** except for w. Thus, by
Maathuis and Colombol (2015, Lemma 7.2), 7** is a directed path. [

In the following Appendices C.1 to C.13, we will present the detailed
proofs of the main results provided in the main text, with the help of the
aforementioned concepts and lemmas.

C.1 Proof of Lemma [

Proof. Given a CPDAG G*, for any DAG G € [G*], |Fang and He (2020,
Lemma 2) showed that a variable X is not a cause of another variable Y
in G if and only if the critical set of X with respect to Y in G*, which is
denoted by C, is a subset of pa(X,G). Consequently, X is a cause of Y in G
if and only if C is not a subset of pa(X,G). That is, some vertex in C must
be a child of X in G. The desired result comes from the definition of definite
cause. [

C.2 Proof of Lemma 2

Proof. We first show the necessity. By the definition, C C sib(X,G*) U
ch(X,G*). Let G € [G*] be an arbitrary DAG. If C N ch(X,G) = 0 and
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C # (), then C C pa(X, G), and thus we have C C sib(X, G*). [Maathuis et al.
(2009, Lemma 3) proved that a non-empty subset of sib(X,G*) can be a part
of X’s parent set in some equivalent DAG if and only if the subset induces a
complete subgraph. Therefore, C induces a complete subgraph of G*. This
completes the proof of the necessity. We next prove the sufficiency. If C = (),
then it is clear that C N ch(X,G) = 0 for some G € [G*]. Now assume that
C # () and C induces a complete subgraph of G* and C Nch(X,G*) = 0. As
C C sib(X,G%) Uch(X,G%), we have C C sib(X,G*). Again, by Maathuis
et al| (2009, Lemma 3), there is a DAG G in [G*] such that C C pa(X,G).
Therefore, C N ch(X,G) = 0. O

C.3 Proof of Theorem [II
Proof. Theorem [I] follows from Lemmas [I] and [2] directly. O

C.4 Proof of Proposition

Proof. Denote the CPDAG containing X and Y by G*. It suffices to show
that, if X and Y are in the same chain component, then there exists a DAG
in [G*] in which Y is an ancestor of X. By Lemma 5] there exists a DAG G
in [G*] such that pa(Y,G) = pa(Y,G*) and ch(Y,G) = ch(Y,G*) U sib(Y, G¥).
Let m = (Y, vy, ..., X) be the shortest path from Y to X. It is clear that 7 has
no chord. Moreover, the corresponding path of 7 in G* is undirected as X
and Y are in the same chain component. On the other hand, Y — v isin G
by our construction. Hence, according to [Perkovi¢ et al.| (2017, Lemma B.1),
7 is a directed path. ]

C.5 Proof of Proposition

Proof. According to the definition of partially directed path, an undirected
path is also partially directed, hence if X and Y are in the same chain compo-
nent, they are possible causes of each other by Theorem [2| and Proposition
Conversely, if X and Y are possible causes of each other, then by Theorem
there is a partially directed path from X to Y as well as a partially directed
path from Y to X. Clearly, neither of these two paths contains a directed
edge, otherwise, a partially directed cycle containing directed edges would
occur. Therefore, X and Y are connected by an undirected path, which
means they are in the same chain component. O
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C.6 Proof of Proposition

Proof. Let Z be a vertex in the chain component containing X, then every
partially directed path between Z and Y, if any, must pass through X. Since
there is a v-structure-free orientation of the chain component whose unique
source is X, there is a DAG in the Markov equivalence class represented by
G* such that none of the vertex in the chain component is an ancestor of Y’
except X . ]

C.7 Proof of Proposition

Proof. If X and Y are in the same chain component, then Z = {Y} and
the equation trivially holds. Suppose that X and Y are not in the same
chain component. We first prove that Cxy C UzczCxz. Without loss of
generality, we can assume that Cxy # (0. By the definition of critical set,
for any C € Cxy, there is a chordless partially directed path p from X to
Y on which C is adjacent X. Since X and Y are not in the same chain
component, p must contain a directed edge. Let Z be the vertex on p such
that p(Z,Y) starts with a directed edge and Z is in the chain component
containing X. By |[Maathuis and Colombo (2015, Lemma 7.2) or Perkovié
et al. (2017, Lemma B.1), p(Z,Y) is a directed path. Therefore, Z is an
explicit cause of Y. Since X is not an explicit cause of Y, we have Z # X,
and thus p(X, Z) is a chordless undirected path. This means C' € Cxy.
As C € Cxy is arbitrary, we have Cxy C UzczCxz. Conversely, for any
Z € Z and C € Cxy, there is a chordless undirected path 7 from X to
Z on which C is adjacent X. Let my be the shortest directed path from Z
to Y. As X and Y are not in the same chain component, Z # Y. Hence,
concatenating 71 and 7y results a partially directed path from X to Y with
length greater than 1. Denote such a path by m. If 7 is chordless, then we
have C' € Cxy. If this is not the case, then m must have a chord connecting
one vertex v; on m; and another vertex vo on . Clearly, the edge between
v1 and v9 should be directed, and the direction is v1 — v9. Since X is not
an explicit cause of Y, it holds that v; # X. With out loss of generality, we
assume that vy is the first vertex from X’s side who are adjacent to some
v9 on my, then concatenating 7(X,v1), v1 — vy and m(va,Y') results another
partially directed path 7/ which is shorter than 7. It is easy to verify that
7/ is chordless, and C is still adjacent to X on #’. Therefore, C' € Cxy,
and consequently we have UzczCxz C Cxy. This completes the proof of
Proposition [4] O
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C.8 Proof of Theorem 2

Proof. Suppose X is a definite non-cause of Y, then for every DAG G in
the Markov equivalence class represented by G*, Y is a non-descendant of
X. Since Lemma [5| indicates that there is a DAG G such that pa(X,G) =
pa(X,G*) and ch(X,G) = adj(X,G*)\ pa(X,G*), we have X 1LY | pa(X,G*)
by local Markov property. On the other hand, if X is a definite cause or
a possible cause of Y, then by definition there is a DAG G in the Markov
equivalence class represented by G* in which X is an ancestor of Y. Assume
that « is a directed path from X to Y in G. Since every vertex on 7 is a non-
collider and none of the vertices on 7 is in pa(X,G*), X LY | pa(X,G*). O

C.9 Proof of Theorem 3

Proof. If X is an explicit cause of Y, then there is a directed path 7 from X to
Y in G*. Hence, for any DAG G in the Markov equivalence class represented
by G*, m is directed in G, which means 7 has no collider in G. However, none
of the vertices on 7 is a member of pa(X,G*) or sib(X,G*), since otherwise,
a directed cycle or a partially directed cycle with directed edges would
occur in G*. Therefore, 7 is active given pa(X,G*)Usib(X,G*), which means
X LY | pa(X,G*)Usib(X,G*). Conversely, suppose X is not an explicit cause
of Y. In the following, we will prove that X 1LY | pa(X, G*)Usib(X, G*) holds.
By Lemma [5] there is a DAG G in the Markov equivalence class represented
by G* such that ch(X,G) = sib(X,G*)Uch(X,G*) and pa(X, G) = pa(X,G*).
Consider a path 7 from X to Y in G. If the length of 7 is 1, then the
corresponding path of 7 in G* must be X < Y or X — Y. Thus, 7 is blocked
given pa(X,G*) U sib(X,G*). If the length of 7 is greater than 1, without
loss of generality we can assume that 7 = (X, vy, ...,v,,Y). If v1 € pa(X,G),
then 7 is blocked by pa(X, G*) U sib(X,G*) since v; cannot be a collider on 7.
If v1 € ch(X,G"), then 7 is not directed, since otherwise, the corresponding
path in G* would be a partially directed path from X to Y where the node
adjacent to X is a child of X. Therefore, there must be a collider on .
Let v; be the collider nearest to X. If v; € an(pa(X,G*) U sib(X,G*),G),
there exists a partially directed cycle with directed edges in G*, which is
impossible. Thus, v; ¢ an(pa(X,G*) U sib(X,G*),G), and 7 is blocked by
pa(X,G*) U sib(X,G*). Finally, in the case where v; € sib(X,G*), if v; is a
non-collider, 7 is clearly blocked by pa(X, G*) U sib(X,G*). If vy is a collider,
then vy is adjacent to X, which means vo ¢ ch(X,G*), since otherwise, both
X - vg - vy — X and X — w9 —v; — X are partially directed cycles
with directed edges. This means vs € pa(X,G*) U sib(X,G*). Since vy is a
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non-collider on 7, 7 is blocked by pa(X,G*) U sib(X,G*). This completes
the proof of Theorem O

We note that, the sufficiency of Theorem [3| can also be proved using the
theories of chain graph models. Here we provide a sketch. |Andersson et al.
(1997) proved that every DAG G is LWF (globally) Markov equivalent to the
CPDAG G* representing [G]. Therefore, a distribution P faithful to G must
be LWF globally Markovian to G*. Note that, Sadeghi (2017, Corollary 34)
proved that P must satisfy the regularization condition (CI5) in Frydenberg
(1990), thus P should be LWF locally Markovian to G* (Frydenberg) 1990,
Theorem 3.3), which implies that X l1Lp Y | pa(X,G*) U sib(X,G*) for
any Y € V\ (de(X,G*) U pa(X,G*) U sib(X,G*)). Therefore, X 1Y |
pa(X,G*) Usib(X,G*) for any Y € V \ (de(X,G*) Upa(X,G*) U sib(X,G*))
due to the faithfulness of P. This completes the proof of the sufficiency of
Theorem [3l

C.10 Proof of Theorem [

Proof. Let C be the critical set of X with respect to Y in G*. Suppose that X
is an implicit cause of Y, then by Theorem[3| X 1LY | pa(X,G*)Usib(X,G*).
For any M,, € M, from Theorem [I| we know that C\ M,, # (). Therefore,
according to Proposition [4 there is a partially directed path from X to
Y, denoted by 7y, = (X —wy; — ... —wy — Zy, — ... = Y), such that
X —wy — ... —wy — Zy is chordless and w; ¢ M,,. Since every partially
directed cycle in G* is an undirected cycle, none of the vertices on m,, is a
parent of X in G*. Moreover, due to the chordless-ness, if wy # Z,,, then
none of we, ..., wy, Zy, is adjacent to X and thus none of them is in M,,. (If
w1 = Zy, then it is clear that Z,, ¢ M,,.) Since by Lemma [5| there is a DAG
in the Markov equivalence class represented by G* such that m,, is directed,
Ty is active given pa(X,G*) UM,,. Therefore, X L Y | pa(X,G*) UM
for any M € M. Conversely, X 1LY | pa(X,G*) U sib(X,G*) implies X
is not an explicit cause of Y, which also means Y ¢ ch(X,G*). Moreover,
X LY | pa(X,G*) UM for any M € M implies Y ¢ pa(X,G*) U sib(X,G").
Therefore, X and Y are not adjacent. Suppose that X is not implicit. Since
X is not an explicit cause of Y, C N ch(X,G*) = (. Thus, by Theorem
there exists an M € M such that C is a subset of M. (If C = (), then for
any M € M, C C M.) We will show that pa(X,G*) UM d-separates X
and Y. By Lemma [5] there is a DAG G in the Markov equivalence class
represented by G* such that ch(X,G) = sib(X,G*) U ch(X,G*) \ M and
pa(X,G) = pa(X,G*) UM. Let m = (X, v1,...,v,,Y) be an arbitrary path
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connecting X and Y in G. The length of 7 should be greater than 1 as X and
Y are not adjacent. If v; is a parent of X in G, then clearly 7 is blocked by
pa(X,G*) UM, since v; is a non-collider on 7 and v; € pa(X,G*) UM by the
construction of G. Now assume that vy is a child of X in G. If v; € ch(X,G*),
then there must be a collider on 7, since otherwise, the corresponding path of
min G* is a partially directed path where the node adjacent to X is a child of
X, which means X is an explicit cause of Y according to Lemma [6] Clearly,
the collider nearest to X on 7 is not an ancestor of pa(X,G*) U M. Thus, =
is blocked by pa(X,G*) UM. For the same reason, if v; € sib(X,G*)\ M and
there is a collider on 7, then 7 is blocked by pa(X,G*) UM due to the fact
that the collider nearest to X on 7 can not be an ancestor of pa(X,G*) U M.
Finally, if v; € sib(X,G*)\ M and there is no collider on 7, then 7 is directed
in G, and the corresponding path of 7 in G* is partially directed. Let Z be
the vertex on 7 such that the subpath 7(X, 7) is undirected in G* and Z is
an explicit cause of Y. Obviously, such Z exists, and Z # Y or X. Since
v1 ¢ M, we have v; ¢ C and thus (X, Z) has a chord. By [Perkovi¢ et al.
(2017, Lemma 3.6), there is a subsequence 7* of 7(X, Z) forms a chordless
undirected path from X to Z in G*. Together with Proposition {4} this result
indicates that there is a vertex w on 7(X, Z) such that w € C. However,
by construction, w € pa(X,G), which makes 7(X,w) and w — X form a
directed cycle in G. Thus, m must contain a collider. This completes the
proof. O

C.11 Proof of Theorem [G

Proof. The proof directly follows from Theorems [I] to [, as well as Proposi-
tions 2] and O

D Additional Experimental Results

As a supplement to Section [6] we present additional experimental results in
this section.

D.1 Frequencies of Different Types of Causal Relations

Table [2| reports the frequencies of different types of causal relations in all
50- and 100-node randomly sampled positive weight graphs used in our
simulations. For instance, the value given in the upper left cell, 0.9536, is the
ratio of the total number of definite non-causal relations in 5,000 randomly
sampled graphs with n = 50, d = 1.5 and positive edge weights, to the
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total number of variable pairs (5000 x 50 x 49). The frequencies in mixed
weight graphs are similar and thus omitted. As expected, a large portion
of variable pairs correspond to the definite non-causal relations. Meanwhile,
the frequencies of the possible causal relations and definite causal relations
are similar to each other.

d n = 50 n = 100

Def. non-cause Poss. cause Def. cause Def. non-cause Poss. cause Def. cause
1.5 0.9536 0.0314 0.0150 0.9740 0.0192 0.0068
2.0 0.9328 0.0402 0.0270 0.9636 0.0242 0.0122
2.5 0.9086 0.0530 0.0384 0.9492 0.0292 0.0216
3.0 0.8852 0.0596 0.0552 0.9298 0.0372 0.0330
3.5 0.8470 0.0646 0.0884 0.9086 0.0436 0.0478
4.0 0.8274 0.0640 0.1086 0.8896 0.0454 0.0650

Table 2: The frequencies of different types of causal relations in all 50- and
100-node randomly sampled positive weight graphs used in our simulations.

D.2 Mixed Edge Weights

Figure [§] shows the results on 100-node graphs with mixed edge weights.
The true graph structures are provided in the experiments. It can be seen
that the results are similar to those presented in the main text, though the
Kappa coefficients of different methods drop in all cases. Nevertheless, the
Kappa coefficients of the local ITC drop less than those of the CE-based
methods. Thus, the differences between the local ITC and the CE-based
methods increase. Note that, allowing mixed edge weights does not have
much influence on the computational time, as the graph structures are
generated according to the same model. As shown in Figure[8] the local ITC
is more efficient, and the CE-based methods using non-ancestral relations
are less efficient.

The existence of mixed edge weights generally increases the chance of
violations of the faithfulness assumption. Thus, when mixed edge weights are
allowed, the discrepancy between the learned and the true graph structures
could be very large, and the performance of all methods declines. In our
experiments, the Kappa coefficients of all methods drop down to 0.2 ~ 0.4.
Nevertheless, the local ITC is still better than the other methods in most
cases.
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Figure 8: The Kappa coefficients and the CPU time (in seconds) of different
methods on 100-node graphs with mixed edge weights. The true graph
structures are provided. The CPU time of “IDA + an + test (all)" and “IDA
+ an + test (min/max)" is not shown, as they are more than 50-100 times
slower than the other methods.

D.3 Detailed TPRs and FPRs

In this section, we report the detailed TPRs and FPRs based on 100-node
graphs with the average degree d = 2 and with positive or mixed edge weights.
When the true graph structures are provided, the local ITC achieves the
highest TPR and the lowest FPR in most cases, as shown in Table [3] Table [4]
and Table Bl show the detailed TPRs and FPRs of different methods for
identifying each type of causal relation based on the positive and mixed
weight graphs, respectively. Note that, since all standard deviations of the
reported TPRs and FPRs are below 0.002, we only report the mean values.
As one can see from the tables, the local ITC does not always outperform
others. Nevertheless, the performance of the local ITC is more balanced in
terms of both TPR and FPR. On the other hand, the performance of the
global ITC combined with GES is not as well as the other methods. We
found that this is because in our simulations the CPDAG estimated by GES
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Def. non-cause Poss. cause Def. cause

Method
TPR FPR TPR FPR TPR FPR
true graph + local ITC 0.9994 0.1209 0.8512 0.0014 0.8361 0.0004
true graph + IDA + test (all) 0.9985 0.1484 0.8430 0.0020 0.7705 0.0006
true graph + IDA + multi (all) 0.9992  0.1703  0.8099 0.0016  0.7541  0.0006
true graph + IDA + test (min/max) 0.9985  0.1923 0.7934 0.0016 0.7705 0.0006
true graph + IDA + an + test (all) 1.0000 0.1484 0.8430 0.0012 0.7705 0.0000

true graph + IDA + an + test (min/max) 1.0000 0.1868 0.8017 0.0008 0.7705 0.0000

Table 3: Some detailed TPRs and FPRs on 100-node graphs with positive
edge weights. The graph structures are given.

Def. non-cause Poss. cause Def. cause
Method

TPR FPR TPR FPR TPR FPR
local + local ITC 0.9792 0.2527 0.6446 0.0180 0.5574 0.0073
local + IDA + test (all) 0.9765 0.2692 0.6446 0.0213 0.4918  0.0069
local + IDA + multi (all) 0.9786 0.2802 0.6364 0.0193 0.4918 0.0067
PC + global ITC 0.9927 0.5879  0.4215 0.0092 0.1803 0.0006
PC + IDA + test (all) 0.9653 0.2802  0.5950  0.0281 0.4262 0.0128
PC + IDA + test (min/max) 0.9685 0.3462 0.5289 0.0236 0.4262 0.0134
PC + IDA + an + test (all) 0.9936 0.6099 0.4215 0.0086 0.1148 0.0004
PC + IDA + an + test (min/max) 0.9936 0.6264 0.3967 0.0086 0.1148 0.0004
PCS + global ITC 0.9929 0.6264 0.3719 0.0082 0.1475 0.0016
PCS + IDA + test (all) 0.9647 0.3132  0.5289  0.0268 0.4262 0.0150
GES + global ITC 0.6467 0.2912 0.0248 0.0066 0.9508 0.3519
GES + IDA + test (all) 0.9979 0.6264 0.0331 0.0004 0.6066 0.0071

Table 4: Some detailed TPRs and FPRs on 100-node graphs with positive
edge weights. The graph structures are learned from data.

is relatively inaccurate.

Compare Table [5] to Table [d] it can be seen that the TPRs of different
methods for learning possible and definite causes decrease significantly, while
the corresponding FPRs are stable. On the other hand, the FPRs for learning
definite non-causes increase, but the corresponding TPRs are stable. These
results suggest that, when the mixed edge weights are allowed, many possible
and definite causes are wrongly identified as definite non-causes. This is
probably due to the violation of the faithfulness assumption, since many
causal paths are missing in the learned graph as two causal paths may cancel
each other out, and the total causal effects and the dependence of between a
cause and a effect may also vanish because of the canceling paths.
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Def. non-cause Poss. cause Def. cause

Method
TPR FPR TPR FPR TPR FPR
local + local ITC 0.9925 0.6099 0.3448 0.0068 0.2121 0.0041
local + IDA + test (all) 0.9911 0.6154 0.3448 0.0078 0.2121 0.0043
local + IDA + multi (all) 0.9917 0.6264 0.3362 0.0072 0.1970  0.0043
PC + global ITC 0.9973 0.7912 0.2155 0.0035 0.0606 0.0010
PC + IDA + test (all) 0.9832 0.6044 0.3190 0.0147 0.1970  0.0063
PC + IDA + test (min/max) 0.9846  0.6374 0.2931 0.0127 0.1970 0.0063
PC + IDA + an + test (all) 0.9979 0.7912 0.2241 0.0029 0.0606 0.0008
PC + IDA + an + test (min/max) 0.9981 0.8022 0.2069 0.0027 0.0606 0.0008
PCS + global ITC 0.9973 0.7967 0.2069 0.0033 0.0455 0.0014
PCS + IDA + test (all) 0.9832 0.6099 0.3017 0.0147 0.1818 0.0067
GES + global ITC 0.6743 0.4121 0.0259 0.0080 0.6667 0.3223
GES + IDA + test (all) 0.9965 0.7857 0.0000 0.0000 0.2727 0.0077

Table 5: Some detailed TPRs and FPRs on 100-node graphs with mixed
edge weights. The graph structures are learned from data.

D.4 Optimal IDA

In this section, we study the CE-based methods with the optimal IDA instead
of the original IDA, and compare them to the local ITC, global ITC and the
other CE-based methods.

Figure |§| shows the Kappa coefficients of the local ITC (combined with the
variant of MB-by-MB), the global ITC (combined with PC), four CE-based
methods with the original IDA (combined with PC), and four CE-based
methods with the optimal IDA (combined with PC). Note that, the optimal
IDA is a semi-local algorithm, which uses Meek’s rules and thus requires
an entire CPDAG as input. Therefore, unlike the original IDA, the optimal
IDA cannot be combined with the variant of MB-by-MB. In most cases, the
local ITC is the best, and the global ITC generally has better performance
than the CE-based methods using the optimal IDA. Consider the CE-based
methods, when the edge weights are all positive and the sample size is large,
the CE-based methods with the optimal IDA is better than that with the
original IDA. However, when the sample size is small or the edge weights are
mixed, these methods have similar performance.

Comparing four CE-based methods with the optimal IDA, one can see
that testing all estimated effects are better than only testing the minimum
and maximum absolute estimated effects. However, when using the optimal
IDA, utilizing non-ancestral relations no longer has significant improvement
on the results. This is probably due to the fact that the non-ancestral
relations have already been implicitly considered when finding the optimal

46



— local + local ITC PC + IDA + test (min/max) — PC + 0pt-IDA + test (all) —— PC + opt-IDA + an + test (min/max)
— PC +global ITC —— PC+1IDA +an + test (all) —— PC + opt-IDA + test (min/max)
—— PC+IDA +test (all) PC+IDA +an +test(min/max) ~ —— PC + opt-IDA + an + test (all)
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and mixed edge weights and mixed edge weights and mixed edge weights

Figure 9: The Kappa coefficients of the CE-based methods using the optimal
IDA. The graph structures are learned from data. N = (Ngraph, Neffect)
denotes the sample sizes for learning graphs and estimating causal effects.

adjustment set.

D.5 Hybrid Method

We also tested the hybrid method which checks whether X is a definite non-
cause of Y based on a learned CPDAG and then calls a CE-based method if
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Figure 10: The experimental results of the hybrid method on 100-node
graphs with positive weights.

X is not a definite non-cause of Y. We combined the hybrid method with
the PC algorithm, and used two CE-based methods, including “IDA + test
(all)" and “IDA + test (min/max)" to deal with the case where X is not a
definite non-cause of Y.

Figure demonstrates the results on 100-node graphs with positive
weights. For comparison, we also include the results of the non-hybrid CE-
based methods combined with PC. Considering the Kappa coefficients, the
hybrid methods are slightly better than the non-hybrid CE-based methods
that utilize non-ancestral relations when the sample size is relatively large.
This is because that the hybrid methods take the advantage of the correctly
learned causal graphs. On the other hand, since the two hybrid methods also
need an entire CPDAG, their total computational time is similar to that of
“PC + IDA + test (all)" and “PC + IDA + test (min/max)", respectively.

D.6 Confidence Intervals

The identification of types of causal relations can be regarded as a classifica-
tion problem. Using re-sampling techniques, we may estimate the probability
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Figure 11: The estimated confidence intervals with the confidence level of
95% for graphs with different average degrees (d), each of which is plotted
as a point, with the form of “(lower bound, upper bound)". Other settings:
n = 50, positively weighted, N = (100, 100) and m = 100.

of each type of causal relation for a pair of treatment and target, as well as
its confidence interval, which can be used to analysis how an inferred graph
structure affects the performance of the global and local ITC.

Following the work of Friedman et al. (1999), for a given data set with
Ngraph observations for learning graphs and another Negeci observations
for inferring types of causal relations, we first sample m re-sampling data
set, each of which contains Ngpapn observations sampled from the data for
learning graphs with replacement. Then, for each re-sampling data set, we
learn a graph structure, using either a global method such as PC, or a local
method such as the variant of MB-by-MB. Finally, we use the sub-dataset
with Nefect Observations to estimate the type of causal relation. The above
procedure results in a multinomial distribution with three categories. The
point estimation of the probability for each category as well as its confidence
interval can then be estimated from these results.
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We focus on the definite and possible causal relations, whose proportions
are usually smaller than 10% as suggested by Tables 4| and |5, For ease of
demonstration, for a pair of treatment and target, we only estimate the
probability and its confidence interval of the true type with the confidence
level of 95%. We run 5,000 repeats on 50-node, positive weight graphs for
each average degree d and each method. Figure [11| shows the results with
N = (Ngraph; Neffect) = (100,100) and m = 100. It can be seen that many
points of the local ITC are concentrated at the upper right corner while many
points of the global ITC are concentrated at the lower left corner, meaning
that the local ITC is more accurate. Moreover, both methods give about the
same length of confidence intervals when they identify the causal relations
correctly. For instance, when d = 4 and the lower bounds of the confidence
intervals are greater than 0.5, the average length of these confidence intervals
of the local and global ITC are 0.122 and 0.118 respectively.
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