
Noname manuscript No.
(will be inserted by the editor)

Efficient Projection Algorithms onto the Weighted `1 Ball

Guillaume Perez1 · Sebastian Ament2 · Carla
Gomes2 · Michel Barlaud3

Received: date / Accepted: date

Abstract Projected gradient descent has been proved efficient in many optimization
and machine learning problems. The weighted `1 ball has been shown effective in
sparse system identification and features selection. In this paper we propose three
new efficient algorithms for projecting any vector of finite length onto the weighted
`1 ball. The first two algorithms have a linear worst case complexity. The third one
has a highly competitive performances in practice but the worst case has a quadratic
complexity. These new algorithms are efficient tools for machine learning methods
based on projected gradient descent such as compress sensing, feature selection. We
illustrate this effectiveness by adapting an efficient compress sensing algorithm to
weighted projections. We demonstrate the efficiency of our new algorithms on bench-
marks using very large vectors. For instance, it requires only 8 ms, on an Intel I7 3rd
generation, for projecting vectors of size 107.

1 Introduction

Looking for sparsity appears in many machine learning applications, such as biomarker
identification in biology [1,13], or the recovery of sparse signals in compressed sens-
ing [10]. For example consider the problem of minimizing a common `2 reconstruc-
tion loss function. In addition consider constraining the number of non-zero compo-
nents (`0 norm) of the learned vector to be lower than a given sparsity value:

minimize
x∈Rd

‖Ax− b‖2 subject to ‖x‖0 < ε

A solution of this generic problem will use only a subset of size lower than ε of the
components of x leading to the best reconstruction error. This implies that solving

1Huawei Technologies Ltd, French Research Center
2Cornell University, Ithaca, New York, 14850, United States
3Université Côte d’Azur, CNRS, Sophia Antipolis, 06900,
E-mail: guillaume.perez06@gmail.com,
barlaud@i3s.unice.fr

ar
X

iv
:2

00
9.

02
98

0v
1

 [
cs

.L
G

]
 7

 S
ep

 2
02

0

2 Guillaume Perez1 et al.

this problem and varying the ε value allows us to manage sparsity with a fine grain.
Unfortunately, this problem is generally strictly nonconvex and very difficult to solve
[18]. Hence a common solution is to constrain the `1 norm of the vector instead
[21,9], or one of its modified versions [20,16,2]. More specifically, the weighted
`1 ball has been proven to have strong properties for finding or recovering sparse
vectors [3,20]. To this purpose, it is crucially important to have simple algorithms to
work with the weighted `1 ball during the optimization process. Several methods in
machine learning are based on projected gradient descent for their optimization part,
for example by iterating between gradient updates and `1 ball projections [11]. The
goal of this paper is to help the application of projected gradient descent methods
for solving sparse machine learning problems by working with the weighted `1 ball.
Unfortunately, efficiently applying projected gradient descent requires an efficient
projection algorithm. For the basic `1 ball, many projection algorithms have been
proposed [17,23,15,7,19], but in the context of the weighted `1 ball, only few works
have been done [20].

In this paper, we propose three efficient projection algorithms by generalizing
works made for the basic (i.e. non weighted) `1 ball to its generalization, the weighted
`1 ball. We start by giving a proof of existence of the threshold value (λ∗) allowing
efficient projection algorithms as for the basic `1 ball [14]. Using this threshold, we
propose three efficient algorithms. First, w-pivotF iteratively approximates λ∗ using
a pivot-based algorithm. It Splits the vector in two sub-vectors at each iteration and
has quadratic worst case complexity, but is near linear in practice. Second, w-bucket
and w-bucketF , two algorithms based on a bucket decomposition of the vector that
efficiently detects components that will be zero in the projection. These two ones have
linear worst case complexity. We propose an experimental protocol using randomly
generated high dimensional (> 105) vectors to show the performances of our algo-
rithm. We then adapt the sparse vector recovery framework from [22] to the proposed
projection algorithms and show the efficiency and simplicity of the model. The paper
starts with the definitions of the projection onto the `1 and weighted `1 balls, and
highlights the need of finding the λ∗ value. In the projection section, the algorithm
w-pivotF is first defined and the algorithms w-bucket and w-bucketF are later de-
fined. In the experiments section, an evaluation of the time performances shows that
the proposed algorithms are order of magnitude faster than current projection meth-
ods, and then that they can be used to adapt existing machine-learning frameworks.
Finally, the proofs required for the proposed algorithms are given and followed by
the conclusion.

2 Definitions of the Projections

`1 ball Given a vector y = (y1, y2, . . . , yd) ∈ Rd and a real a > 0, we aim at
computing its projection PBa(y) onto the `1 ball Ba of radius a:

Ba =
{
x ∈ Rd| ‖x‖1 ≤ a

}
, (1)

where ‖x‖1 =
∑d
i=1 |xi|. The projection PBa

(y) is defined by

PBa
(y) = arg min

x∈Ba

‖x− y‖2 (2)

Efficient Projection Algorithms onto the Weighted `1 Ball 3

where ‖x‖2 is the Euclidean norm. As shown in [11] and revisited in [7], the projec-
tion onto the `1 ball can be derived from the projection onto the simplex ∆a:

∆a=

{
x ∈ Rd |

d∑
i=1

xi = a and xi ≥ 0,∀i = 1, . . . , d

}
. (3)

Let the sign function sign(v) defined as sign(v) = 1 if v > 0, sign(v) = −1 if v < 0
and sign(v) = 0 otherwise, for any real value v ∈ R. The projection of y onto the `1
ball is given by the following formula:

PBa
(y) =

{
y if y ∈ Ba,
(sign(y1)x1, . . . , sign(yd)xd) otherwise, (4)

where x = P∆a
(|y|) with |y| = (|y1|, |y2|..., |yd|) is the projection of |y| onto ∆a.

An important property has been established to compute this projection. It was shown
[14] that there exists a unique τ = τy ∈ R such that

xi = max{yi − τ, 0},∀i = 1, . . . , d. (5)

The projection is almost equivalent to a thresholding operation. The main difficulty is
to compute quickly the threshold τy for any vector y. Let y(i) be the ith largest value
of y such that y(d) ≤ y(d−1) ≤ . . . ≤ y(1). It is interesting to note that (5) involves
that

∑d
i=i max{yi − τ, 0} = a. Let S∗ be the support of x, i.e., S∗ = {i|xi > 0}.

Then,

a =

d∑
i=1

xi =
∑
i∈S∗

xi =
∑
i∈S∗

(yi − τ).

It follows that τy = (
∑
i∈S∗ yi − a)/|S∗| where |S∗| is the number of elements of

S∗. The following property allows us to compute the threshold τy . Let

%j(y) =

(
j∑
i=1

y(i) − a

)
/j (6)

for any j = 1, . . . , d. Then, it was shown that τy = %Ky
(y) where

Ky = max{k ∈ {1, . . . , d} | %k(y) < y(k)}. (7)

Looking for Ky , or equivalently y(Ky), allows us to find immediately the threshold
τy . The most famous algorithm to compute the projection, which has been presented
in [14], is based on (7). It consists in sorting the values and then finding the first
value satisfying (7). A possible implementation is given in Algorithm 1. The worst
case complexity of this algorithm is O(d log d). Several other methods have been
proposed [17,23,15,7,19], outperforming this simple approach.

4 Guillaume Perez1 et al.

Algorithm 1: Sort based algorithm [14]
Data: y, a
u← sort(y)

K ← max1≤k≤d{k|(
∑k

r=1 ur − a)/k < uk}
τ ← (

∑K
r=1 ur − a)/K

for i ∈ 1..d do
xi ← max(yi − τ, 0)

Weighted `1 ball Given a vector y = (y1, y2, . . . , yd) ∈ Rd, a vectorw = (w1, w2, . . . , wd) ∈
Rd, wi > 0 1 for all i, and a real a > 0, we aim at computing its projection PBw,a(y)
onto the w weighted `1 ball Bw,a of radius a:

Bw,a =

{
x ∈ Rd|

d∑
i=1

wi|xi| ≤ a

}
, (8)

The projection PBw,a
(y) is defined by

PBw,a(y) = arg min
x∈Bw,a

‖x− y‖2 (9)

where ‖x‖2 is the Euclidean norm.
As for the classical `1 ball, the weighted projection operator can be derived from

the weighted simplex ∆w,a projection [20]:

∆w,a=

{
x ∈ Rd |

d∑
i=1

wixi = a and xi ≥ 0,∀i = 1, . . . , d

}
. (10)

The projection of y onto the weighted `1 ball is given by the following formula:

PBw,a
(y) =

{
y if y ∈ Bw,a,
(sign(y1)x1, . . . , sign(yd)xd) otherwise, (11)

where x = P∆w,a(|y|) with |y| = (|y1|, |y2|..., |yd|) is the projection of |y| onto
∆w,a. Once again, the fast computation of the projection x = P∆w,a(y) for any
vector y is of utmost importance.

Let the vector y = (y1, y2, . . . , yd) ∈ Rd, the vector w = (w1, w2, . . . , wd) ∈
Rd, wi ≥ 0 for all i, and a real a > 0, if y 6∈ ∆w,a, then there exists a unique
λ = λy ∈ R such that

xi = max{yi − wiλ, 0},∀i = 1, . . . , d. (12)

The proof is given in the proof section of this paper, and is used to derive three
projection algorithms. These algorithms are generalizations of the current state-of-
the-art algorithms for `1 ball projection [7,19]. The main difficulty is to compute
quickly the threshold λy for any vector y. Let z ∈ Rd be the vector such that

zi =
yi
wi
,∀i = 1, . . . , d. (13)

1 We can consider wi > 0 instead of wi ≥ 0 without loss of generality since the associated entries of
y will be present in the projection, and do not influence the processing of the rest of the projection.

Efficient Projection Algorithms onto the Weighted `1 Ball 5

Algorithm 2: Weighted generalization of the sort based algorithm.
Data: y, w, a
Output: x = PBw,a (y)

zu ← { yi
wi
|∀i ∈ [1, d]}

() ← Permutation↑ (zu)
z ← {zu

(i)
|∀i ∈ [1, d]}

J ← max1≤J≤d{argmax j :
−a+

∑d
i=j+1 w(i)y(i)∑d
i=j+1 w2

(i)

> zj}

λ∗ ←
−a+

∑d
j=J+1 w(j)y(j)∑d
j=J+1

w2
(j)

for i ∈ 1..d do
xi ← sign(yi)max(yi − wiλ

∗, 0)

Let z(i) be the ith largest value of z such that z(d) ≤ z(d−1) ≤ . . . ≤ z(1). Let y(i)

(resp. w(i)) be the jth entry of y such that z(i) = yj/wj . y() is a permutation of y
with respect to the order of z(). It is interesting to note that equation (12) implies that∑d
i=i max{yi − wiλ, 0} = a. Let S∗ be the support of x, i.e., S∗ = {i|xi > 0}.

Then,

a =

d∑
i=1

wixi =
∑
i∈S∗

wixi =
∑
i∈S∗

wi(yi − wiλ).

It follows that

λ =

∑
i∈S∗ wiyi − a∑

i∈S∗ w
2
i

(14)

The following property compute the threshold λj .

%j(w, y) =

∑j
i=1 w(i)y(i) − a∑j

i=1 w
2
(i)

(15)

for any j = 1, . . . , d. Then, we have shown in the proof section that λy = %Ky (w, y)
where

Ky = max{k ∈ {1, . . . , d} | %k(w, y) < z(k)}. (16)

Looking for Ky , or equivalently y(Ky), gives us immediately the threshold λ.
A direct algorithm to compute this projection, which is a generalization of [14], is

based on (16), and is given in Algorithm 2. This algorithm starts by sorting the values
according to z, and then searches for the Ky index. Note that once z sorted, finding
Ky is easily done by starting from the largest value. That is why Algorithm 2 does
not need more steps as in [20,16].

3 Efficient Projection

Many works have focused on designing efficient algorithms for finding PBa(y) given
y ∈ Rd and a ∈ R [17,15,23,7,19]. In this section, given y, w, and a, we propose to
generalize some of these efficient algorithms to find the projection onto the weighted

6 Guillaume Perez1 et al.

`1 ball Ba,w. Specifically, we generalize the methods from [7,19] that we respectively
name pivotF and bucketF . Both of these methods are looking for the τ value such
that the projection PBa

(y) = x is defined by equation (5).
For the weighted ball, we are looking for the λ value such that the projection

PBa,w
(y) = x is given by equation (12). As for the basic `1 ball, the weighted `1

ball algorithms are looking for K and y(K) from equation (16). Let z = y
w . If z is

sorted in increasing order, then finding λ can be easily done by iteratively processing
%i(w, y), with i = d, ..., 1 until %i(w, y) ≥ (zi), as shown in Algorithm 2. A pro-
jection algorithm using as a first iteration a sort has already been proposed [20]. But
most of the time z is not sorted, and sorting z is the exact operation that we want
to avoid because of its time complexity, and that often, we are looking for sparse
solutions, thus only a subset of the values of y will remain relevant. This section is
split into two parts. The first one is a generalization of the algorithm pivotF [7]. The
second one is a generalization of the algorithm bucketF [19].

3.1 w-pivotF Algorithm

In this section we propose a generalization of the pivotF algorithm. The proposed
algorithm is composed of three points that we name pivot, lower bound extraction and
online filtering, and are described in the next paragraphs. The idea of the algorithm is
the following, at each iteration, the vector is split into two sub-vectors, using a pivot
value, and determine which sub-vector contains y(K) (pivot part). In the mean time,
a fine grain lower bound is defined as a pivot for an efficient splitting (lower bound
part). Finally, the algorithm discards on the fly values that are provably not part of S∗

(online filtering part).
Pivot It is often considered that for regular amount of data, the quicksort algo-

rithm is the fastest sort [8]. The quicksort algorithm splits the data into two partitions
by using a pivot value. Values smaller than the pivot go into the first partition, oth-
ers in the second. The process is then applied recursively to both partitions. In the
context of the basic simplex projection, using a pivot like algorithm led to some of
the most efficient algorithms [15,11,17,7]. From equation (14), we can notice that
the λ value only requires the knowledge about elements of the set S∗, but not that
this set is ordered. Such a remark gives a hint in why partitioning instead of sorting
could be beneficial. Consider p ∈ [z(1), z(n)], note that to get z(1) and z(n) only one
pass over the vector z is required. One can partition z into zlow and zhigh by putting
the elements smaller (resp larger) than p from z. Consider that the size of zhigh is
j (i.e. it contains j entries), then we can easily compute %j(w, y). If %j(w, y) ≥ p,
then λ ≥ p. If this condition is true, this implies that we can stop the processing of
zlow because z(Ky) ∈ zhigh. If the condition is false, if %j(w, y) ≤ p, then λ ≤ p,
then we know that {i|zi ∈ zhigh} ⊆ S∗. Using this knowledge, we can continue the
processing of zlow.

Lower bound as pivot The choice for the pivot is of utmost importance for the
global running time, we can easily show that the worst case complexity is O(d2). As
for the basic simplex, one could seek for the median pivot [15]. From a complexity
point of view, this could be an improvement, but our goal is not to partition equitably

Efficient Projection Algorithms onto the Weighted `1 Ball 7

the data, but to efficiently find λ. Instead, we will seek for a pivot which is a lower
bound of λ.

Let V be any sub-sequence of y. Then the value

pV =
−a+

∑
i∈V w(i)y(i)∑

i∈V w
2
(i)

(17)

is a lower bound of λ. The proof can be found at the end of this paper.
Using pV as a pivot implies that elements of zlow can always be discarded.
Proof. If we use pV as a threshold value, and by definition of a lower bound, we

have:
a ≤

∑
i∈1..d

w(i) max(y(i) − w(i)pV , 0) (18)

If zi ∈ zlow, it implies that max(yi−wipV , 0) = 0, which also implies that max(yi−
wiλ, 0) = 0. Consider the algorithm iterating between the following step: Step 1)
Set p = pzhigh

. Step 2) remove elements of zhigh which are smaller than p. This
algorithm will converge to a state where no element can be removed anymore. This
state implies that the resulting vector zhigh is S∗.

Online Filtering Another optimization of this algorithm is the following, the
pivot value does not need to wait until the end of step 2) before being updated, but can
be updated after every element of zhigh is read. Such an interactive update requires
us to divide the algorithm in two parts.

The first part is the first pass over y, where we do not have any knowledge about
y. Let initialize V = {1} and the pivot by pV = w1y1−a

w2
1

. Consider that we are
processing the jth element of y, which implies that we have already processed all the
elements in [1, j − 1]. From these elements, we have built a sub-sequence V , and an
associated pivot pV . If we have zi ≤ pV , then, as before, we can discard this element.
Otherwise, if zi > pV , then we can add i to V because zi is potentially larger than λ.
Once V is updated, we can update pV incrementally without waiting for the pass to
be over, and then process the (j + 1)th element of y.

For the second part, we have hopefully already discarded several elements of y,
and more importantly, we have a set V containing elements that are potentially larger
than λ. In addition, we have the associated pivot pV , which is processed with respect
to all the elements in V . Consider that we pass over the elements of zi ∈ V , if
zi ≤ pV , then we can remove zi from V , and update pV accordingly. Note that just
like for the first part, this can be done incrementally. When no more element can be
removed from V , the algorithm finished and V = S∗. A possible implementation is
given in Algorithm 3.

In the same fashion as [7], we have incorporated a refinement. During the first
iteration, while processing the ith element, when the current pivot value is smaller
than the one defined by the current value p′ = wiyi−a

w2
i

, then p′ will become the new
basis. To do that, an additional set v′ is required and a cleanup step which ensures that
V contains all the elements zi larger than pV before the second part of the algorithm.
Note that the proposed algorithm works on the permuted space of z without using
z for the calculation of J and λ, which is a major difference with the non-weighted
version.

8 Guillaume Perez1 et al.

Algorithm 3: w-pivotF

Data: y, w, a
v ← {y1}
ṽ ← ∅
λ′ ← w1y1−a

w2
1

for n ∈ 2..d do
if yn
wn

> λ′ then

λ′ ← wnyn−a+
∑

i∈v w(i)y(i)

w2
n+

∑
i∈v w

2
(i)

if wnyn−a
w2

1
< λ′ then

Add n to v
else

Add v to ṽ
v ← {yn}
λ′ ← wnyn−a

w2
n

if ṽ 6= ∅ then
for n ∈ ṽ do

if yn
wn

> λ′ then
Add n to v
λ′ ← −a+

∑
i∈v w(i)y(i)∑
i∈v w

2
(i)

while |v| changes do
for n ∈ v do

if yn
wn

< λ′ then
Remove n to v
λ′ ← −a+

∑
i∈v w(i)y(i)∑
i∈v w

2
(i)

λ∗ ← λ′

for i ∈ 1..|y| do
xi ← max(yi − wiλ∗, 0)

3.2 w-bucketF Algorithm

In this section, we present the w-bucketF algorithm, which is a generalization of
the linear time simplex projection bucketF [19]. w-bucketF fundamental idea is to
recursively split vector z into B ≥ 2 ordered sub-vectors (say buckets) z̃kb with b =
1, . . . , B and k = 1, . . . , k̄, while looking for z(K). We say that the sub-vectors are
ordered in the sense that all elements of z̃kb are smaller than the ones of z̃kb+1 for all
b = 1, . . . , B − 1. The depth, or number of recursive splitting is k̄. In the description
of w-pivotF , from the two sub-vectors zlow and zhigh, only one of them was re-used
at the next iteration. In the w-bucketF algorithm, only one of the B buckets will be

Efficient Projection Algorithms onto the Weighted `1 Ball 9

re-used at the next iteration. Such a fine grain gives us three possible states for the
buckets, < z(K), > z(K), ?z(K). Only one bucket will be in the uncertainty state
(?z(K)), this is the bucket that will be re-used.

We define here the different components of the w-bucketF algorithm. For any
level k + 1 ≥ 1, consider the interval Ik+1 defined by

Ik+1 = [min z̃kbk ,max z̃kbk] (19)

with min z̃kb (resp. max z̃kb) the minimum (resp. maximum) element of sub-vector z̃kb .
Consider a partition of Ik+1 into B ordered sub-intervals Ik+1

1 ,. . . , Ik+1
B . Let

hk+1 : Ik+1 7→ {1, . . . , B} be the bucketing function such that hk+1(v) = b when
the real value v belongs to Ik+1

b . The bucket z̃kbk is split into B ordered sub-vectors
z̃k+1
b such that

1. Sk+1
b = {i ∈ Skbk : hk+1(zi) = b},

2. z̃k+1
b = (zi)i∈Sk+1

b
,

3. max z̃k+1
b < min z̃k+1

b+1 for all b = 1, . . . , B − 1,

with the convention S0
b0

= {1, . . . , d}. We get
∣∣SkB∣∣ ≥ 1 at any level k ≥ 1 because

of the definition of Ik+1. The fact that max z̃k+1
b < min z̃k+1

b+1 follows from the fact
that equal values of z necessarily belongs to the same bucket.

For any k > 0,

Ckb =

k−1∑
k′=1

∑
b′>bk′

∑
i∈Sk′

b′

wiyi +
∑
b′≥b

∑
i∈Sk

b′

wiyi (20)

W k
b =

k−1∑
k′=1

∑
b′>bk′

∑
i∈Sk′

b′

w2
i +

∑
b′≥b

∑
i∈Sk

b′

w2
i (21)

Nk
b =

k−1∑
k′=1

∑
b′>bk′

∑
i∈Sk′

b′

1 +
∑
b′≥b

∑
i∈Sk

b′

1 (22)

are cumulative sums of all the buckets discarded because we know they belong to S∗
from previous iterations, and all the larger or equal buckets of the iteration k. Both of
these values will be used for incrementally processing %j(w, y), equation (15). More
precisely, we define:

%Nk
b

(w, y) = (Ckb − a)/W k
b . (23)

Let b be the largest value such that z̃kb is not empty. If %Nk
b

(w, y) ≥ min z̃kb , then
bk = b and we can discard all the buckets with b′ < b and continue to the next
iteration, since λ ≥ %Nk

b
(w, y). Otherwise, if %Nk

b
(w, y) < min z̃kb , then Skb ⊆ S∗

and we can continue processing the other buckets. Let bk be the largest value such that
z̃kbk is not empty and %Nk

bk

(w, y) ≥ min z̃kbk . We know that for all b > bk, Skb ⊆ S∗,

and that for all b < bk, ∀v ∈ z̃kb , v < %Nk
bk

(w, y) ≤ λ. Thus we can safely go to the

10 Guillaume Perez1 et al.

Algorithm 4: w-bucket
Data: y, w, a
ỹ0
b0
← y

C0
b0
← −a

W 0
b0
← 0

1 for k ∈ 1..dlogb(D)e do
for b ∈ 1..B do

Skb ← {i ∈ S
k−1
bk−1
| hk−1(yi) = b}

ỹkb ← (yi)i∈Sk
b

2 for b ∈ B..1 do
bk ← b
if %Nk

b+1
(w, y) > max(ỹkb) then

break loop 1
if %Nk

b
(w, y) ≥ min(ỹkb) then

break loop 2

τ ← %Nk
bk

(y)

for i ∈ 1..|y| do
xi ← max(yi − wiτ, 0)

next iteration, considering only z̃kbk . Note that if y ∈ ∆a, then such a bk value does
not exist, and at the first iteration we can stop.

From the definition of Ik (19), we can show that the size of the bucket z̃kbk is
strictly decreasing. Let k̄ be the iteration where z(K) is the minimum value of a bucket
z̃k̄bk̄ . Let b′ be the largest value, strictly lower than bk̄, such that z̃k̄b′ is not empty. We
have:

max z̃k̄b′ < %N k̄
b
k̄

(w, y) ∧min z̃k̄bk̄ ≥ %N k̄
b
k̄

(w, y). (24)

Such a condition, from equation (16), implies that %N k̄
bk̄

(w, y) = λ. The complexity

of the w-bucketF algorithm is highly dependent of the bucketing function hk, and
using equation (19), we can easily show that the worst case complexity is bound by
O(d2). Following the same idea as [19], we can use a bucketing function based on the
numbers encoding in nowadays computers. Such a function, at each iteration, choose
to partition the numbers with respect to their kth byte, in the same fashion as the
Radix sort [8]. Using such a bucketing function loose the property of equation (19),
but the advantage is that the complexity becomes linearO(d+B). An implementation
is given in Algorithm 4.

Filtering The advantage of algorithm w-pivotF is to discard values that are
known to be already dominated by an incrementally updated lower bound of λ. In
w-bucketF , we can easily use the exact same lower bound, by keeping its process
in parallel of the processing of the buckets. Moreover, thanks to the bucketization,
we can also have another lower bound. When we are processing bucket b at iteration

Efficient Projection Algorithms onto the Weighted `1 Ball 11

k, then %Nk
b+1

(w, y) is another, pretty good lower bound of λ. Note that this value
should be directly available, because it was required to process the previous bucket.
Finally, the filtering consists in removing values that are lower than one of our lower
bounds.

4 Experimental evaluation

In these experiments, we reproduced the experiments from [19] by defining random
vectors of size varying between 105 and 107, using either uniform or Gaussian dis-
tributions. We generated 500 vectors for each experiment and ran each algorithm
independently, and extracted their mean times. We show here the performances of
the proposed algorithms, w-pivotF , and w-bucket and w-bucketF against the ex-
isting algorithm w-sort [20] Algorithm 1, implemented using an efficient quick-sort
procedure. The difference between w-bucket and w-bucketF is the use or not of the
filtering improvement. All the algorithms are implemented in C, and run on a I7 3rd
generation. All source codes are available online2.

Uniform We start our experiments with Figure 4. This figure shows that when a
uniform random distribution is used for vector y, the time needed for projecting the
vector grows linearly for all methods as a function of the vector size. Moreover, the
proposed algorithms seem to perform order of magnitude faster than w-sort, which
is already a faster algorithm than the state of the art. The second plot of Figure 4
shows the impact of the radius for the projection time. It is interesting to note that
while all proposed methods outperform the sorting scheme, when the radius becomes
too large, the cost of filtering become larger than the gain it can bring, because less
values are discarded.

Gaussian Figure 6 (top) shows that the time seems to grow linearly with d, the
size of vector y. Moreover, the w-bucketF and w-pivotF algorithms perform better.
Figure 6 (bottom) shows that first, when the radius is small or unit, the filtering algo-
rithms are the most efficient, but the more the radius grows, the less they are, and the
classical bucket become the best one. Such a result may imply that in function of the
radius size, one should choose to use the filtering or not in the w-bucket algorithms.
Figures 5 shows the different results for the filtered algorithms only, since their run-
ning times are order of magnitude faster. As we can see, they behave similarly in
most of the cases, which may imply that the larger cuts in the search are induced by
the filtering scheme, rather than the splitting scheme.

Discussion Differences in terms of running time between w-bucketF and w-
pivotF are relatively small in practice. From a theoretical point of view, both of these
algorithms take advantage of the filtering. Thus implementing both algorithms in a
projected gradient descent solver would be useless. We made the choice of designing
these two algorithms because they represent some of the current best state of the art
algorithms for the `1 ball. From our point of view, only the w-bucketF algorithm
should be implemented because of its efficiency and complexity guaranties.

2 Link hidden

12 Guillaume Perez1 et al.

Algorithm 5: Smooth Iterative Reweighted `1 ball Projections
Data: x0 ∈ Rm, A ∈ Rn×m, b ∈ Rm
p← 1
while p > 0 do

while IRLS-p hasn’t converged do
wki = p

(|xk
i |+ε)1−p , i = 1, . . . , n.

xk+1 ∈
minimize
x∈Rd

‖Ax− b‖2

subject to‖W kx‖1 < rk

Decrease smoothly p

5 Variables Selection

In signal reconstruction and variables selection, the non-smooth `p (0 < p < 1)
regularization has proven efficient in finding sparse solutions. Consider the prob-
lem of minimizing a quadratic reconstruction error subject to the `p regularization,
‖x‖p =

∑d
i=1 |xi|p.

minimize
x∈Rd

‖Ax− b‖2 + λ‖x‖p (25)

where A ∈ Rn×m, b ∈ Rm, and λ ∈≥0 is the penalty parameter.
A popular method to solve this problem is to use the iteratively reweighted `1

minimization (IRL1) [3,4,5,6]. An application of IRL1 to problem (25) can be

xk+1 ∈ arg min
x∈Rd

‖Ax− b‖2 subject to ‖W kx‖1 < rk (26)

with the weight W k = diag(wk), and wk is defined by the previous iterates by

wki =
1

(|xki |+ ε)1−p , i = 1, . . . , n. (27)

where ε ∈ R>0.
Using the weighted `1 ball projection algorithms proposed in this paper, solving

(26) can be done easily. We propose to use the following algorithm, based on [22], we
start with x0 ∈ Rm randomly defined. We set p = 1, which is equivalent to solving
the LASSO problem. Then, we smoothly decrease p, and iteratively solve an IRL1
problem such as (26) with a fixed p. A possible implementation of this algorithm is in
Algorithm 5. We call this algorithm Smooth Iterative Reweighted `1 ball Projections
(SIRL1).

Reconstruction results We show in the section the reconstruction efficiency of the
SIRL1, which is a direct application of having an efficient projection onto the weighted
L1 ball. We reproduce here part of the experimental protocol of [3]. We compare the
reconstruction error and the sparsity against the state of the art LASSO algorithm

Efficient Projection Algorithms onto the Weighted `1 Ball 13

Fig. 1 Relationship between the number of iterations, p, and the norms (n=100, m=256, k=15).

and the projection based (PC) version of [3]. In this experiment, n is the number of
rows, m the number of columns and k the real number of non-zero components of
the solution. First, table 1 shows some results on the reconstruction of sparse vectors
with sparsity of 5, 15, 30 non-zero values over 100 values. As we can see, The re-
construction accuracy and the sparsity is rapidly found with even a small number of
different p. Moreover, because of the smoothness induced by p, even if the number
of iterations is larger in (a=5,#p = 5) compared to (a=5,#p = 3), the running time
is slower.

A look at the impact of the smoothness between the values of p is given in Table
2. We can see that less than 3 iterations over p may be too small, and that more than 5
in this example seem to be useless. But one must be careful with the smoothness, we
tried to push the smoothness to 100 iterations over p, the results are in Fig 1. As we
can see, the number of iterations between p = 0.2 and p = 0.8 is high, while the L0
norm is not impacted. We were able to see this kind of results in different settings we
set, with larger n, m and k. Finaly, the radius is one of the most important parameter
of this algorithm, it’s impact can be seen on table 3. As it is expected, a radius smaller
than the number of non-zero components has a bad impact on the reconstruction, but
it is interesting to see that less iterations seem to be required to solve these problems
than for larger values of the radius. Finally, the results we obtained are coherent with
the results obtained in [22], which validates the inverted model we used.

6 Conclusion

Data and feature sizes are ever increasing in nowadays problems. In this paper we pro-
posed 3 efficient projection algorithms with different complexities, including linear
time, for working with very large problems. Two of the proposed algorithms project
very large non-sparse vectors in a small amount of time, such as 8 ms for vectors of
size 107, and seem to be robust to the randomness of the vector. We showed how to
directly use them in basic sparse-vector reconstruction frameworks and obtain state

14 Guillaume Perez1 et al.

Algo L0 L1 rec time #it a
Lasso 5 5.00 1.00 0.0029 11 5.00
PC 5 4.86 4.82 1.1295 3880 5.00
#p = 3 5 5.22 0.00 0.2542 2107 5.00
#p = 5 5 5.22 0.00 0.1844 2176 5.00
Lasso 151 15.00 0.01 0.0163 159 15.00
PC 256 14.80 0.00 0.9570 307 15.00
#p = 3 15 14.80 0.01 0.3580 4909 15.00
#p = 5 15 14.80 0.00 0.3790 5201 15.00
Lasso 146 30.00 0.05 0.0223 240 30.00
PC 256 27.73 0.00 0.0477 352 30.00
#p = 3 30 27.73 0.00 0.1563 2053 30.00
#p = 5 30 27.73 0.00 0.5103 7131 30.00

Table 1 Reconstruction and Sparsity for various State of the art algorithm and the SIRL1. (n=100, m=256)

L0 L1 rec time #it a #p
156 15.00 0.00 0.0580 655 15.00 1
15 14.76 0.15 0.0600 796 15.00 2
15 14.80 0.01 0.3429 4909 15.00 3
15 14.80 0.00 0.3770 5201 15.00 5
15 14.80 0.00 0.4386 5929 15.00 6
15 14.80 0.00 1.1664 11197 15.00 10
5 5.00 1.00 0.0050 14 5.00 1
5 5.03 0.91 0.6068 3032 5.00 2
5 5.22 0.00 0.1810 2107 5.00 3
5 5.22 0.00 0.1766 2176 5.00 5
5 5.22 0.00 0.2325 2227 5.00 6
5 5.22 0.00 0.1939 2446 5.00 10

Table 2 Impact of the smoothness of Q on the reconstruction sparsity. (n=100, m=256)

L0 L1 rec time #it Radius
8 11.58 13.18 0.0328 316 7.50
9 12.05 11.69 0.0265 247 8.62
10 13.13 8.73 0.1676 1072 9.75
11 13.33 7.61 0.0452 459 10.88
12 13.82 3.34 0.2793 2251 12.00
14 14.50 1.95 0.0318 306 13.12
15 14.69 1.02 0.0427 528 14.25
15 14.80 0.00 0.3668 5411 15.38
17 14.80 0.00 0.4542 5607 16.50
19 14.80 0.00 0.4216 5829 17.62
20 14.80 0.00 0.4015 5601 18.75
20 14.80 0.00 0.4011 5754 19.88

Table 3 Impact of the radius on the reconstruction sparsity. (n=100, m=256, k=15, #p = 4)

of the art results. Finally, we empirically proved that they should be used as a basis
for projected gradient descent frameworks working with `1 balls, weighted or not.

Efficient Projection Algorithms onto the Weighted `1 Ball 15

0 10 20 30 40 50
0

10

20

30

40

C(
)

Fig. 2 Example of C function. Looking for a projection onto a = 10 is equivalent to looking for C(λ) =
10. Each blue vertical line is the position of a zi value.

7 Proofs

Proof of existence of λ∗ The projection onto the weighted simplex can be formulated
as:

arg min
x
‖x− y‖2

subject to wx = a

xi ≥ 0,∀i ∈ [0, d]

Whose Lagrange dual is: arg min
x
‖x− y‖2 + λ(wx − a) + µx Using the Kuhn-

Tucker theorem [12], we can show that necessary and sufficient conditions for x to
be a optimum are xi − yi = µi − wiλ, µi ≥ 0, and µixi = 0. If we define x
and µ to be respectively xi = max(yi − wiλ, 0), µi = max(wiλ − yi, 0) then the
conditions are respected. From this definition, it follows that xi ≥ 0 for all i. Let
C(λ) =

∑
i wi max(yi − wiλ, 0) =

∑
i wixi. Our goal is to find the value of λ∗

such that C(λ∗) = a.
We know that the C function cannot be negative and can reach any positive value.

ThatC is piece-wise linear, and that the pieces of linearity are delimited by the values
of z = { yiwi

|∀i ∈ [0, d]}. Moreover, C is non-increasing.
Suppose z sorted in increasing order, thus z1 ≤ z2 ≤ ... ≤ zd, let () denote the

permutation of y and w to z such that y(1)

w(1)
≤ y(2)

w(2)
≤ ... ≤ y(d)

w(d)
. The values at the

vertices of C are

C(zi) =

d∑
j=1

wj max(yj −
wjy(i)

w(i)
, 0)

C(zi) =

d∑
j=i+1

w(j)(y(j) −
w(j)y(i)

w(i)
)

C(zi) =

d∑
j=i+1

w(j)y(j) −
d∑

j=i+1

w2
(j)y(i)

w(i)

16 Guillaume Perez1 et al.

Since C(λ∗) = a, then for any zi < λ∗, xi = 0 and C(zi) > a. Thus xi = 0 for
i ∈ [1, J], with:

J := max

{
j

∣∣∣∣−a+
∑d
i=j+1 w(i)y(i)∑d

i=j+1 w
2
(i)

> z(j)

}
(28)

Using J , w can finally get λ∗.

C(λ∗) =

d∑
j=J+1

w(j)y(j) −
d∑

j=J+1

w2
(j)λ

∗ = a

−λ∗
d∑

j=J+1

w2
(j) = −

d∑
j=J+1

w(j)y(j) + a

λ∗ =
−a+

∑d
j=J+1 w(j)y(j)∑d
j=J+1 w

2
(j)

This proof shows that once z is sorted, finding J and λ∗ can be done in worst case
linear time, as for the non-weighted version. Only one iteration gives J .

Proof that each subset is a lower-bound Consider V to be any sub-sequence of
y. We can compute the following pivot:

pV =
−a+

∑
i∈V wiyi∑

i∈V w
2
i

Then we have:

a = −pV
∑
i∈V

w2
i +

∑
i∈V

wiyi

a =
∑
i∈V

wi(yi − wipV)

a ≤
∑
i∈1..d

wi max(yi − wipV , 0)

References

1. Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P., Saeys, Y.: Robust biomarker identification for
cancer diagnosis with ensemble feature selection methods. Bioinformatics 26(3), 392–398 (2009)

2. Bogdan, M., Van Den Berg, E., Sabatti, C., Su, W., Candès, E.J.: Slopeadaptive variable selection via
convex optimization. The annals of applied statistics 9(3), 1103 (2015)

3. Candes, E.J., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted l1 minimization. Journal of
Fourier analysis and applications 14(5-6), 877–905 (2008)

4. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: 2008 IEEE
International Conference on Acoustics, Speech and Signal Processing, pp. 3869–3872. IEEE (2008)

5. Chen, X., Zhou, W.: Convergence of reweighted l1 minimization algorithms and unique solution of
truncated lp minimization. Department of Applied Mathematics, The Hong Kong Polytechnic Uni-
versity (2010)

Efficient Projection Algorithms onto the Weighted `1 Ball 17

0.0 0.2 0.4 0.6 0.8 1.0
Vector size (d) 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

tim
e

in
 (s

)

w-sort
w-bucket
w-bucketF

w-pivotF

100 101 102

Radius (a)

10 3

6 × 10 4

tim
e

in
 (s

)

Bucket filter
Split filter

Fig. 3 Uniform distribution - Top: Projection time comparison, while the d value (size of the vector y to
project) changes from 105 to 107, with a = 4. Bottom: Projection time comparison, while the radius a
changes from 1 to 512, with d = 1O5.

0.0 0.2 0.4 0.6 0.8 1.0
Vector size (d) 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

tim
e

in
 (s

)

w-sort
w-bucket
w-bucketF

w-pivotF

100 101 102

Radius (a)

10 3

10 2

tim
e

in
 (s

)

w-sort
w-bucket
w-bucketF

w-pivotF

Fig. 4 Uniform distribution - Top: Projection time comparison, while the d value (size of the vector y to
project) changes from 105 to 107, with a = 4. Bottom: Projection time comparison, while the radius a
changes from 1 to 512, with d = 1O5.

6. Chen, X., Zhou, W.: Convergence of the reweighted l1 minimization algorithm for l2-lp minimization.
Computational Optimization and Applications 59(1-2), 47–61 (2014)

7. Condat, L.: Fast projection onto the simplex and the l1 ball. Mathematical Programming Series A
158(1), 575–585 (2016)

8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, vol. 6. MIT press
Cambridge (2001)

9. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via
l1 minimization. Proceedings of the National Academy of Sciences 100(5), 2197–2202 (2003)

10. Donoho, D.L., et al.: Compressed sensing. IEEE Transactions on information theory 52(4), 1289–
1306 (2006)

11. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the l 1-ball for learn-
ing in high dimensions. In: Proceedings of the 25th international conference on Machine learning, pp.
272–279. ACM (2008)

12. Hanson, M.A.: On sufficiency of the kuhn-tucker conditions. Journal of Mathematical Analysis and
Applications 80(2), 545–550 (1981)

13. He, Z., Yu, W.: Stable feature selection for biomarker discovery. Computational biology and chemistry
34(4), 215–225 (2010)

14. Held, M., Wolfe, P., Crowder, H.P.: Validation of subgradient optimization. Mathematical program-
ming 6(1), 62–88 (1974)

15. Kiwiel, K.C.: Breakpoint searching algorithms for the continuous quadratic knapsack problem. Math-
ematical Programming 112(2), 473–491 (2008)

18 Guillaume Perez1 et al.

100 101 102

Radius (a)

10 2

2 × 10 2

tim
e

(s
)

w-bucketF

w-pivotF

100 101 102

Radius (a)

10 2

2 × 10 2

tim
e

in
 (s

)

Bucket filter
Split filter

100 101 102

Radius (a)

10 2

9 × 10 3

tim
e

in
 (s

)

Bucket filter
Split filter

Fig. 5 Gaussian law, impact of std-dev. All three experiments have d = 106. Top: std-dev=10−1. Middle:
std-dev=10−2. Bottom: std-dev=10−3

0.0 0.2 0.4 0.6 0.8 1.0
Vector size (d) 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

tim
e

in
 (s

)

w-sort
w-bucket
w-bucketF

w-pivotF

100 101 102

Radius (a)

10 2

10 1

tim
e

in
 (s

)

w-sort
w-bucket
w-bucketF

w-pivotF

Fig. 6 Gaussian law:Top: Projection time comparison, while the a value changes from 1 to 512, with
d = 106 and std-dev = 10−1. Bottom: Projection time comparison, while the d value changes from 105

to 107, with a = 1 and std-dev = 10−2.

16. Kopsinis, Y., Slavakis, K., Theodoridis, S.: Online sparse system identification and signal reconstruc-
tion using projections onto weighted l1 balls. IEEE Transactions on Signal Processing 59(3), 936–952
(2010)

17. Michelot, C.: A finite algorithm for finding the projection of a point onto the canonical simplex of n.
Journal of Optimization Theory and Applications 50(1), 195–200 (1986)

18. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM journal on computing 24(2),
227–234 (1995)

19. Perez, G., Barlaud, M., Fillatre, L., Régin, J.C.: A filtered bucket-clustering method for projection onto
the simplex and the `1 ball. Mathematical Programming (2019). DOI 10.1007/s10107-019-01401-3.
URL https://doi.org/10.1007/s10107-019-01401-3

https://doi.org/10.1007/s10107-019-01401-3

Efficient Projection Algorithms onto the Weighted `1 Ball 19

100 101 102

Radius (a)

10 2

2 × 10 2

tim
e

(s
)

w-bucketF

w-pivotF

0.0 0.2 0.4 0.6 0.8 1.0
Vector size (d) 1e7

0.00

0.02

0.04

0.06

0.08

tim
e

in
 (s

)

w-bucketF

w-pivotF

Fig. 7 Gaussian law comparison ofw-bucketF andw-pivotF . Top: std-dev=10−1 and d = 106 Bottom
a = 2 and std-dev=10−1.

20. Slavakis, K., Kopsinis, Y., Theodoridis, S.: Adaptive algorithm for sparse system identification using
projections onto weighted l1 balls. In: Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on, pp. 3742–3745. IEEE (2010)

21. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological) pp. 267–288 (1996)

22. Trzasko, J., Manduca, A.: Highly undersampled magnetic resonance image reconstruction via homo-
topic l0-minimization. IEEE Transactions on Medical imaging 28(1), 106–121 (2008)

23. Van Den Berg, E., Friedlander, M.P.: Probing the pareto frontier for basis pursuit solutions. SIAM
Journal on Scientific Computing 31(2), 890–912 (2008)

	1 Introduction
	2 Definitions of the Projections
	3 Efficient Projection
	4 Experimental evaluation
	5 Variables Selection
	6 Conclusion
	7 Proofs

